

1 **Efficacy of the oral nucleoside prodrug GS-5245 (Obeldesivir) against SARS-CoV-2 and**
2 **coronaviruses with pandemic potential**

3
4 David R. Martinez,^{1, 2, *} Fernando R. Moreira,³ Mark R. Zweigart,³ Kendra L. Gully,³ Gabriela
5 De la Cruz,⁴ Ariane J. Brown,³ Lily E. Adams,³ Nicholas Catanzaro,³ Boyd Yount,³ Thomas J.
6 Baric,³ Michael L. Mallory,³ Helen Conrad,³ Samantha R. May,³ Stephanie Dong,³ D. Trevor
7 Scobey,³ Stephanie A. Montgomery,⁵ Jason Perry,⁶ Darius Babusis,⁶ Kimberly T. Barrett,⁶
8 Anh-Hoa Nguyen,⁶ Anh-Quan Nguyen,⁶ Rao Kalla,⁶ Roy Bannister,⁶ John P. Bilello,⁶ Joy Y.
9 Feng,⁶ Tomas Cihlar,⁶ Ralph S. Baric,^{3, 7} Richard L. Mackman,^{6, *} Alexandra Schäfer,^{3, 7, *}
10 Timothy P. Sheahan^{3, 7, *}

11
12 ¹Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA

13
14 ²Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510,
15 USA

16
17 ³Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,
18 USA

19
20 ⁴Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine,
21 Chapel Hill, NC, USA

22
23 ⁵Department of Pathology and Laboratory Medicine, University of North Carolina School of
24 Medicine, Chapel Hill, NC, USA

25
26 ⁶Gilead Sciences, Inc, Foster City, CA, USA

27
28 ⁷Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at
29 Chapel Hill, Chapel Hill, NC, USA

30
31
32 *Correspondence: david.martinez@yale.edu (D.R.M.), richard.mackman@gilead.com (R.L.M.,)
33 aschaefer@email.unc.edu (A.S.), sheahan@email.unc.edu (T.P.S.)

34
35

36

37

38

39

40

41 **Abstract**

42 Despite the wide availability of several safe and effective vaccines that can prevent
43 severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can
44 partially evade vaccine immunity remains a global health concern. In addition, the emergence of
45 highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can
46 partially or fully evade (*I*) many therapeutic monoclonal antibodies in clinical use underlines the
47 need for additional effective treatment strategies. Here, we characterize the antiviral activity of
48 GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which
49 targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we
50 show that GS-5245 is broadly potent *in vitro* against alphacoronavirus HCoV-NL63, severe
51 acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014,
52 Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the
53 highly transmissible SARS-CoV-2 BA.1 Omicron variant *in vitro* and highly effective as
54 antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-
55 CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed
56 protection and/or significant reduction of disease metrics such as weight loss, lung viral
57 replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice
58 compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the
59 main protease (M^{pro}) inhibitor nirmatrelvir had increased efficacy *in vivo* against SARS-CoV-2
60 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of
61 GS-5245 in humans infected with COVID-19, including as part of a combination antiviral
62 therapy, especially in populations with the most urgent need for more efficacious and durable
63 interventions.

64 **Keywords**

65 Antivirals, broad-spectrum drugs, GS-5245, obeldesivir, nirmatrelvir, nucleoside, oral antiviral
66 drugs, pandemic preparedness, Paxlovid™, remdesivir.

67

68 **INTRODUCTION**

69 The emergence of three highly pathogenic novel coronaviruses (CoVs) into
70 immunologically naïve human populations in the last two decades underlines an urgent need to
71 develop broad-acting countermeasures. While broad-spectrum vaccines (2-4) and monoclonal
72 antibodies (5-8) show promise in animal models against the sarbecovirus subgenus, the spike
73 protein has extensively mutated throughout the COVID-19 pandemic and has partially and/or
74 fully evaded vaccine and monoclonal antibody therapies in clinical use (1). In contrast, highly
75 conserved viral enzymes, like the RNA-dependent RNA polymerase (RdRp, non-structural
76 protein 12, NSP12) or main protease (i.e. M^{pro}, NSP5) are more genetically stable and thus
77 represent rational targets for broad-based antivirals. As broadly acting antivirals targeting the
78 CoV RdRp, both remdesivir and molnupiravir have antiviral activity in vitro and in vivo against
79 SARS-CoV-2 and divergent coronaviruses (9-16) and have been deployed for human use in the
80 COVID-19 pandemic (17, 18). The M^{pro} inhibitor nirmatrelvir (PF-07321332 or PF-332), the
81 active antiviral agent in Paxlovid™, exerts strong antiviral activity in vitro and in SARS-CoV-2
82 animal models (19). Importantly, Veklury® (remdesivir), Lagevrio™ (molnupiravir), and
83 Paxlovid™ (nirmatrelvir/ritonavir) all improve outcomes in COVID-19-infected patients when
84 given early in the course of infection (18, 20-22) and thus far have retained their antiviral activity
85 against SARS-CoV-2 VOC including Omicron (16, 23). However, with the continued emergence
86 of SARS-CoV-2 variants and increased use of antiviral monotherapy, it is critical to strengthen

87 our armamentarium of orally bioavailable drugs and their combinations to treat COVID-19 in all
88 populations, reduce its impact on the health care system, and minimize the development of
89 antiviral resistance.

90 Here, we tested the antiviral efficacy of an oral prodrug, GS-5245 (ODV), of the
91 nucleoside analog, GS-441524 (24). The prodrug is rapidly cleaved pre-systemically to generate
92 GS-441524 into systemic circulation at higher exposures than what is achieved through direct
93 oral dosing of GS-441524. We demonstrate that GS-5245 has broad therapeutic efficacy against
94 endemic, enzootic, and pandemic coronaviruses in vitro and in vivo following oral delivery,
95 including NL63, bat SARS-related RsSHC014-CoV, SARS-CoV, MERS-CoV, the ancestral
96 SARS-CoV-2 WA1, and the highly transmissible SARS-CoV-2 Omicron variant. Moreover,
97 therapy with a combination of GS-5245 and nirmatrelvir resulted in increased efficacy against
98 SARS-CoV-2 replication in mice than either agent alone. These results support the continued
99 exploration of GS-5245 in human clinical trials and confirms the need to develop an antiviral
100 COVID-19 combination therapy in humans.

101

102 **RESULTS**

103 **GS-5245 is broadly active against enzootic, endemic, and pandemic coronaviruses in 104 primary human airway cells**

105 We first evaluated the antiviral activity of the GS-5245, its parent nucleoside GS-441524,
106 remdesivir, and the M^{pro} inhibitor PF-07321332 (PF-332), against a SARS-CoV-2 WA/1
107 nanoluciferase reporter virus in A549 cells that overexpress human ACE2 (Fig. 1A). SARS-
108 CoV-2 was strongly inhibited by these antivirals with EC₅₀ values of 0.74, 4.6, 0.19, and 0.07
109 μM for GS-5245, GS-441524, remdesivir, and PF-332, respectively, and where applicable,

110 consistent with previously reported in vitro tests (11, 19). The improved potency for the prodrug
111 GS-5245, compared to parent GS-441524, was also observed in other SARS-CoV-2 cell culture
112 assessments and is thought to be due to the improved permeability properties, such as
113 unexpectedly favorable interactions with intestinal nucleoside transporters, of the prodrug (24).
114 We observed a strong reduction in SARS-CoV-2-expressed nanoluciferase activity (Fig. S1A)
115 without cytotoxicity (Fig. S1B). To assess the antiviral breadth of GS-5245 against
116 alphacoronavirus, we designed a nanoluciferase (nLuc)-expressing NL63 infectious clone and
117 recovered recombinant reporter virus (Fig. S2A). NL63nLuc replicated with similar kinetics
118 compared to a wild-type isolate (Fig. S2B) and expressed nanoluciferase to high levels in
119 infected cells (Fig. S2C). Using NL63nLuc virus, we then tested the antiviral activity of GS-
120 441524, remdesivir, and GS-5245 and observed robust antiviral activity in LLC-MK2 cells with
121 respective EC₅₀ values of 0.52, 0.49, and 0.62 μM (Fig. S3A and S3C) without evidence of
122 cytotoxicity (Fig. S3B).

123 To further evaluate the breadth of GS-5245 antiviral activity against enzootic, endemic,
124 epidemic, and pandemic coronaviruses, including highly transmissible SARS-CoV-2 variants,
125 we evaluated GS-5245 in primary human airway epithelial (HAE) cells from two different
126 human donors. The HAE platform is a highly biologically relevant three-dimensional culture
127 system which models the structure and cellular complexity of the conducting airway and
128 importantly contains epithelial target cells of the CoVs (25). Importantly, we observed a GS-
129 5245 dose-dependent reduction in infectious virus production for all viruses tested including
130 SARS-CoV Urbani, Bat-CoV RsSHC014, SARS-CoV-2 WA/1, the highly transmissible
131 Omicron BA.1 variant, and MERS-CoV in HAE derived from two unique human donors (Figs.
132 1B and 1C). In addition, we did not observe measurable cytotoxicity of GS-5245 at the tested

133 concentrations in HAE (Fig. S4). These studies demonstrate that the prodrug GS-5245
134 effectively releases parent GS-441524 in these cell experiments to generate the active
135 triphosphate metabolite leading to antiviral activity. In conclusion, GS-441524 has potent
136 activity against a broad array of genetically distinct CoVs including current SARS-CoV-2 VOC
137 in the cell lines employed such as the biologically relevant primary HAE.

138 Residues in the nsp12 RdRp polymerase F-motif (V557 and A558) and B-motif (T687)
139 help position the template in the active site (26). The conservation of residues in the active site
140 that could impact incorporation, as well as residues responsible for both delayed chain
141 termination and template-dependent inhibition. While the RdRp protein surface amino acid
142 residue conservation was as low as 59% in HCoV-NL63 compared to SARS-CoV-2, the residues
143 which would directly impact the efficacy of GS-5245 were 100% conserved across these and
144 several other human and zoonotic coronaviruses (Fig. S5), demonstrating the potential for broad
145 antiviral activity of small molecular inhibitors like GS-5245.

146

147 **Efficacy of GS-5245 and molnupiravir against SARS-CoV-2 in BALB/c mice**

148 To determine the optimal therapeutic dose of GS-5245 in mice, we performed a
149 therapeutic dose-ranging study in SARS-CoV-2 MA10-infected (1×10^4 plaque forming units;
150 PFU) BALB/c mice. We initiated therapy 12 hours post infection (hpi) with vehicle or 3, 10, or
151 30 mg/kg GS-5245 diluted in vehicle and mice were dosed orally twice daily (bis in die; BID)
152 through 4 days post infection (dpi). The daily systemic exposure of GS-441524 following oral
153 dosing at 30 mg/kg of GS-5245 across the different mice strains ranged from 81-108 μ M.h and
154 no intact GS-5245 prodrug was observed (Fig. S6B). This exposure of GS-441524 is consistent

155 with the daily GS-441524 exposures achieved following oral administration of a tri-ester prodrug
156 of GS-441524, GS-621763, dosed at 30 mg/kg BID in our earlier efficacy studies (24, 27).

157 We also included a cohort treated orally with molnupiravir at 100 mg/kg BID, a human
158 equivalent dose determined based on the area under the curve (AUC) exposure. Overall, there
159 was a distinct GS-5245 dose-dependent reduction in virus replication and pathogenesis (Figs.
160 2A-F). Mice treated with 3 mg/kg GS-5245 had measurable weight loss similar to vehicle, but
161 only trended towards reductions in virus replication, macroscopic lung discoloration, and viral-
162 induced pulmonary dysfunction. A higher GS-5245 dose of 10 mg/kg improved efficacy, as
163 observed by significant protection from weight loss (Fig. 2A), lung virus titer, and gross lung
164 pathology (i.e. lung discoloration). However, protection from pulmonary dysfunction and
165 histological measures of acute lung injury (ALI) was not observed in the 10 mg/kg GS-5245
166 group. Mice treated with 30 mg/kg of GS-5245 were protected against weight loss (Fig. 2A) and
167 had undetectable virus in lung tissue (Fig. 2B) similar to the 100 mg/kg molnupiravir-treated
168 group. Macroscopic (Fig. 2C) and microscopic (Figs. 2E and F) measures of lung pathology and
169 physiologic measures of lung function by whole body plethysmography (WBP) (Fig. 2D) were
170 all significantly improved as compared to the vehicle control arm. These data demonstrate the
171 strong dose-dependent relationship between the dose of GS-5245 and protection from SARS-
172 CoV-2 disease. Moreover, GS-5245 affords similar protection at a lower dose (30 mg/kg) to that
173 of molnupiravir (100 mg/kg) in mice.

174

175 **Early treatment with GS-5245 reduces SARS-CoV-2 pathogenesis in BALB/c mice**

176 To determine the time at which GS-5245 therapy fails to improve outcomes in mice, we
177 performed a therapeutic efficacy study initiating treatment in SARS-CoV-2 MA10 infected

178 (1x10⁴ PFU) BALB/c mice at 12, 24, and 36 hpi. We chose 30 mg/kg BID GS-5245 as it
179 provided the most robust efficacy in prior studies. As expected, protection from virus replication
180 and disease was dependent on the time of initiation of therapy (14). We observed complete
181 protection from weight loss, lung viral replication, gross lung pathology, and degradation of
182 pulmonary function (Fig. S7A-D) in the 12 and 24 hpi groups. In contrast, in the cohort where
183 we initiated 30 mg/kg GS-5245 at 36 hpi, we did not observe protection from weight loss, lung
184 pathology, or respiratory function, despite the significant decrease in lung viral replication
185 compared to the vehicle group (Fig. S7A-D). Given the success of 30 mg/kg therapy at 24 hpi,
186 we next aimed to determine the degree of protection with a lower dose of 10 mg/kg GS-5245
187 administered at the same timepoints post infection (Fig. S8). As we had seen with 30 mg/kg
188 therapy, mice treated with 10 mg/kg GS-5245 at 12 hpi were protected from weight loss (Fig.
189 S8A); had reduced virus lung titers (Fig. S8B), macroscopic lung discoloration (Fig. S8C),
190 histologic acute lung injury scores (Fig. S8D, S8E), and degradation of pulmonary function (Fig.
191 S8F). Treatment with 10 mg/kg at 24 or 36 hpi did not prevent body weight loss (Fig. S8A), but
192 did reduce virus titer (Fig. S8B), gross pathology (Fig. S8C) and one of two histologic acute lung
193 injury scores (Fig. S8D, 24 hpi only). Altogether, these data suggests that the therapeutic activity
194 of GS-5245 at either 10 or 30 mg/kg is most effective early after infection (12 or 24 hpi) prior to
195 the peak of viral replication, which is at 48 hpi in this SARS-CoV-2 mouse model (28).

196

197 **GS-5245 is effective against SARS-related Bat-CoV RsSHC014 in K18-hACE mice**

198 We next aimed to understand the breadth of antiviral efficacy *in vivo* against
199 coronaviruses that are more distantly related to SARS-CoV-2, including SARS-related Bat-CoV
200 RsSHC014 and MERS-CoV, which frequently emerges. As we aimed to use transgenic mice on

201 a different genetic background, C57BL/6, than that used in the above efficacy studies, we first
202 performed a pharmacokinetic (PK) study with GS-5245 in K18-human angiotensin-converting
203 enzyme 2 (hACE2) mice and those with humanized human dipeptidyl peptidase 4 (hDPP4) (Fig.
204 S6A), which are susceptible to RsSHC014 and MERS-CoV, respectively. After oral dosing with
205 GS-5245 at 30 mg/kg, we measured the nucleoside parent GS-441524 in mouse plasma over
206 time. We observed no differences in the plasma levels of GS-441524 in either transgenic line
207 when compared to control BALB/c, supporting the use of similar oral doses of GS-5245 in our
208 planned in vivo efficacy studies in these transgenic mice (Fig. S6B).

209 The SARS-like Bat-CoV RsSHC014 can efficiently replicate in human airway epithelial
210 cells and can evade existing SARS-CoV-2 vaccines and mAb countermeasures against SARS-
211 CoV (4, 29). Thus, we evaluated the therapeutic efficacy of GS-5245 in RsSHC014 infected
212 K18-hACE2 mice initiating treatment at times post-infection (i.e. 12 and 24 hpi) with
213 demonstrable success in SARS-CoV-2 models described above. Unlike the SARS-CoV-2 MA10
214 BALB/c model, marked weight loss is not a hallmark of RsSHC014 infection in K18-hACE2
215 mice through day 4, although we did observe increased weight in the infected animals dosed with
216 30 mg/kg initiated at 12 hpi compared to vehicle-treated mice (Fig. 3A). While we observed a
217 trend in reduced virus replication (Fig. 3B) and gross lung pathology (Fig. 3C) with the 10 mg/kg
218 dose, only the 30 mg/kg dose initiated at either 12 or 24 hpi significantly reduced virus lung
219 titers, and gross lung pathology. As done in the SARS-CoV-2 MA10 model, we next evaluated
220 histologic manifestations of acute lung injury (ALI) using two different scoring tools (Figs. 3D
221 and E). Mice dosed with 30 mg/kg initiated at either 12 or 24 hpi had significant reductions in
222 ALI. Thus, a significant reduction in SARS-related enzootic virus replication and disease was
223 observed with GS-5245 therapy.

224

225 **The therapeutic efficacy of GS-5245 against SARS-CoV in BALB/c mice**

226 With ~10% mortality rate in humans, the highly virulent SARS-CoV strain emerged in
227 2002-2003 in Guangdong Province China ultimately causing over 8000 cases in 29 countries and
228 over 800 deaths (30, 31). Therefore, we next aimed to evaluate the antiviral activity of GS-5245
229 against emerging coronaviruses distinct from SARS-CoV-2 with clear human epidemic potential.
230 To increase the stringency of our in vivo assessment of GS-5245, we designed a therapeutic
231 efficacy study using the highly pathogenic mouse-adapted SARS-CoV MA15 virus in BALB/c
232 mice (32). Only early therapeutic intervention with 30 mg/kg initiated at 12 hpi protected from
233 significant body weight loss (Fig. 4A). We observed a trend towards reduced virus replication
234 (Fig. 4B), and gross lung pathology (Fig. 4C) with GS-5245 at 10 mg/kg, and significant
235 reductions in these metrics was afforded by 30 mg/kg initiated at 12 hpi. As SARS-CoV MA15
236 infection causes mortality in BABL/c mice, we observed a high degree of protection in the 12
237 hpi 30 mg/kg group with 100% survival in this group compared to vehicle-treated mice which
238 exhibited 80% mortality by day 4 post infection (Fig. 4D). We also observed 30% mortality in
239 the 12 hpi 10mg/kg group. In contrast, both the 24 hpi 10 and 30 mg/kg treatments had similar
240 mortality rates to the vehicle group. In our assessment of ALI using the ATS (Fig. 4E) or DAD
241 (Fig. 4F) histologic scoring tools, only 30 mg/kg initiated at 12 hpi significantly reduced
242 microscopic lung pathology. Although the lower dose of GS-5245 did not afford much protection
243 in the metrics above, all dose groups had improved pulmonary function by 3 dpi (Fig. 4G). In
244 addition, 30 mg/kg initiated at 12 hpi prevented the loss of pulmonary function observed in the
245 vehicle on days 1 and 2 (Fig. 4G). Thus, early treatment with a 30 mg/kg dose of GS-5245 is
246 highly protective against SARS-CoV disease symptoms and mortality in mice.

247

248 **Successful in vivo efficacy with GS-5245 against MERS-CoV in DPP4 288/330-modified**
249 **mice**

250 We next aimed to assess therapeutic efficacy against MERS-CoV using a mouse model
251 that utilizes a modified dipeptidyl peptidase 4 (DPP4) at amino acid positions 288 and 330 (33,
252 34). Since initiating therapy at 12 hpi offered the most protection in the SARS-CoV model
253 above, we evaluated the therapeutic efficacy of GS-5245 at 10 or 30 mg/kg in MERS-CoV
254 infected animals at 12 hpi. In agreement with the SARS-CoV-2, and SARS-CoV in vivo data
255 above, GS-5245 at 30 mg/kg provided the strongest protection against signs of clinical disease
256 including weight loss, lung viral titers, acute lung injury, and degradation in respiratory function
257 (Figs. 5A-F). While the lower 10 mg/kg dose only afforded partial protection from weight loss
258 (Fig. 5A), it markedly reduced lung viral replication (Fig. 5B). Unlike the 30 mg/kg dose, the
259 lower 10 mg/kg dose did not reduce gross lung pathology (Fig. 5C), pulmonary function as
260 measured by whole body plethysmography (Fig. 5D), or ALI as measured by quantitative
261 histologic scoring tools (Figs. 5E and F). Thus, GS-5245 protects against MERS-CoV
262 pathogenesis in mice when therapy is initiated soon after infection.

263

264 **GS-5245 therapy is highly effective at reducing SARS-CoV-2 Omicron replication in K18-**
265 **hACE2 mice**

266 As we observed a high degree of protection against bat RsSHC014-CoV, SARS-CoV,
267 MERS-CoV, and a mouse-adapted SARS-CoV-2 based on the Wuhan-1 isolate, we sought to
268 evaluate GS-5245 against the highly transmissible Omicron (B.1.1.529/BA.1.) variant in K18-
269 hACE2 mice. As previous studies did not find that B.1.1.529 caused severe disease in K18-

270 hACE2 mice including weight loss or lung pathology (35), we performed a therapeutic efficacy
271 study where the main readout was BA.1 replication in the lung. Consistent with Halfman *et al.*,
272 we did not observe weight loss through day 4 post infection nor severe lung pathology in
273 vehicle-treated mice (Figs. 6A and 6C-E). Mice treated with GS-5245 at 30 mg/kg 12 hpi had
274 significantly lower lung viral titers relative to vehicle-treated groups at 2-, 3-, and 4-days post
275 infection (Fig. 6B), and protection from macroscopic and microscopic lung pathology compared
276 to vehicle (Figs. 6C, 6D, and 6E). We conclude that GS-5245 demonstrates a high degree of
277 protection against lung viral replication *in vivo* against the highly transmissible BA.1 variant.

278

279 **Combination therapy of PF-07321332 and GS-5245 against SARS-CoV-2 in BALB/c mice**

280 As the oral antiviral nirmatrelvir (PF-332) demonstrated a high degree of efficacy in mice
281 and humans (19, 20), we sought to evaluate if combination of PF-332 with GS-5245 could
282 further diminish SARS-CoV-2 pathogenesis in mice. PF-332 inhibits M^{pro} by preventing
283 processing of the viral polyprotein whereas GS-5245 inhibits the RdRp by terminating
284 transcription and replication (36) and/or excessive polymerase pausing (37). We first performed
285 a dose-de-escalation experiment to determine the doses of PF-332 that provides optimal and
286 suboptimal protection from SARS-CoV-2 replication and disease in mice. At 12 hpi, we initiated
287 therapy with 400, 120, 40, or 12 mg/kg PF-332 BID or 1.2 mg/kg GS-5245 BID. We observed
288 that PF-332 protected mice from weight loss (Fig. 7A), lung viral replication (Fig. 7B), lung
289 discoloration (Fig. 7C), and degradation in pulmonary function (Fig. 7D) at the highest drug
290 treatment doses but not at lower doses. Similarly, the 1.2 mg/kg GS-5245 dose was highly
291 suboptimal and little protection was observed.

292 As virus replication is the main driver of disease in this model, we sought to determine if
293 combination therapy initiated at 12 hpi with sub-optimal doses of PF-332 and GS-5245 would
294 result in an increased reduction in virus lung titers than either drug alone. Thus, we designed a
295 therapeutic efficacy study in mice infected with SARS-CoV-2 treated with suboptimal doses of
296 single agents administered BID (GS-5245 at 1.2 or 4 mg/kg, PF-332 at 12 or 40 mg/kg) or
297 several combinations of the two administered BID: “low dose combination” of 1.2 mg/kg GS-
298 5245 + 12 mg/kg PF-332, “medium dose combination” of 1.2 mg/kg GS-5245 + 40 mg/kg PF-
299 332, or “high dose combination” of 4 mg/kg GS-5245 + 40 mg/kg PF-332. As compared to
300 vehicle-treated animals, SARS-CoV-2 lung titers were not reduced following therapy with
301 suboptimal doses of single agents at multiple dose levels including 1.2 mg/kg of GS-5245 or PF-
302 332 at 12 or 40 mg/kg (Fig. 7E). In contrast, intervention of GS-5245 at 4 mg/kg singly
303 significantly reduced viral titers in the lung (Fig. 7E). Impressively, combination of GS-5245 at
304 1.2 mg/kg and PF-332 at 40 mg/kg resulted in significantly more profound levels of lung viral
305 replication compared to vehicle and single agent groups. Similarly, by increasing the
306 concentration of each component of combination therapy (4 mg/kg GS-5245 and 40 mg/kg PF-
307 332), we observed a marked reduction in viral titers in the lung that was significantly lower than
308 either single agent (Fig. 7E). Altogether, these data suggest that combination therapy of GS-5245
309 and PF-332 is highly effective at suppressing lung viral replication in mice even when combined
310 at suboptimal doses.

311

312 **DISCUSSION**

313 The SARS-CoV-2 spike protein, which is the primary target of neutralizing antibodies,
314 has undergone extensive changes conferring an increased ability to evade existing antibody-

315 based countermeasures (1). The emergence of the Omicron (BA.1) and several Omicron sub-
316 lineages have continually eroded the neutralizing activity of vaccine-elicited antibodies in the
317 COVID-19 vaccines (38). The natural waning of vaccine-elicited serum immune responses may
318 contribute to the surge in infections with highly transmissible SARS-CoV-2 VOCs (39).
319 Moreover, the emergence of more immune-evasive variants such as BQ.1.1 and XBB evade all
320 human monoclonal antibodies in clinical use whereas antivirals like remdesivir remain active
321 against these variants (40). In the setting of continued SARS-CoV-2 spike protein evolution and
322 waning vaccine immunity, it is critical to develop orally bioavailable drugs that can broadly
323 inhibit SARS-CoV-2 and its current and future VOCs.

324 Intravenously administered remdesivir (Veklury[®]) has received full Food and Drug
325 Administration (FDA) approval; and orally administered molnupiravir and nirmatrelvir have
326 received Emergency Use Authorization (EUA) for the treatment of COVID-19 in the U.S.
327 Molnupiravir similarly exhibits broad-spectrum activity against zoonotic and pandemic
328 coronaviruses in primary HAE cells, mice, and humans (13, 21). In contrast to remdesivir and
329 molnupiravir, which target the RdRp albeit through different mechanisms of action, nirmatrelvir
330 targets M^{pro}. Nirmatrelvir alone showed a high degree of protection against SARS-CoV-2
331 pathogenesis in mice (19), and when combined with ritonavir (PaxlovidTM) showed protection in
332 human clinical trials (20). When given early after infection, remdesivir demonstrates efficacy
333 and reduces risk of hospitalization due to COVID-19 (22). Consistent with this, early remdesivir
334 treatment of SARS-CoV and SARS-CoV-2-infected mice offered the most protection against
335 viral pathogenesis (11, 14).

336 Despite the promising efficacy of remdesivir, (22) its intravenous administration has been
337 a major barrier for broad use due to the requirement of trained medical personnel to administer

338 drug in outpatient settings such as infusion centers. To overcome this challenge, an oral prodrug
339 (GS-5245; ODV) of the parent nucleoside GS-441524, was developed (24). GS-5245 ultimately
340 forms the same active triphosphate in lung tissue as remdesivir. Here, we show that GS-5245 is
341 highly effective at diminishing replication and disease pathogenesis for enzootic, epidemic,
342 emerging, and pandemic coronaviruses including the highly transmissible SARS-CoV-2
343 Omicron variant following oral administration. The twice daily 30 mg/kg dose was effective
344 across the different SARS-CoV-2 models and corresponded to daily GS-441524 exposures
345 ranging from 81-108 μ M.h. This exposure is consistent with the estimated GS-441524 exposure
346 at efficacious oral doses of GS-5245 in a non-human primate SARS-CoV-2 infection model and
347 the targeted exposures in humans (24) . Thus, GS-5245 is potentially an additional oral antiviral
348 for outpatients with COVID-19. In the context of pandemic preparedness, drugs targeting highly
349 conserved viral proteins, like the RdRp, are advantageous as they may retain activity against
350 future VOCs and emerging coronavirus threats. Viruses like SARS-CoV, MERS-CoV and
351 SARS-CoV-2 have been found circulating among wild animals and as a result present a threat to
352 our public health security. Thus, GS-5245 may not only prove to be important for treating
353 SARS-CoV-2 infections but could also be deployed to outbreaks of new coronaviruses that may
354 emerge in the future. Despite the high degree of conservation in the RdRp and M^{pro},
355 coronaviruses can evolve to escape single-agent therapies in a laboratory setting (41, 42). Like
356 HIV-1 antiviral therapy treatments that combine antivirals with different mechanisms or action,
357 such as protease and polymerase inhibitors (43), we demonstrate that combination oral antiviral
358 therapy to treat acute SARS-CoV-2 infections may be advantageous to increase efficacy of
359 antiviral interventions. An additional benefit of combining oral antiviral therapies to treat
360 COVID-19 may be the reduced risk of monotherapy drug-resistant SARS-CoV-2 variants as has

361 been documented in remdesivir-treated immunocompromised patients (44-46). Moreover, in
362 vitro selection studies demonstrate that SARS-CoV-2 can acquire mutations that confer the Mpro
363 protease with resistance to nirmatrelvir (47). Therefore, it will be critical to explore combination
364 therapy in humans to not only increase the efficacy of antivirals that have different viral targets
365 but also to potentially reduce risk of antiviral resistance in the setting of monotherapy,
366 particularly in immunocompromised patients who invariably experience prolonged viral
367 replication. Combination antiviral interventions may also diminish COVID-19 progression to
368 Post-Acute Sequelae of SARS-CoV-2 infection (PASC)/long COVID manifestations (48).
369 Moreover, as SARS-CoV-2 infectious virus rebound following Paxlovid™ treatment occurs in
370 patients (49, 50), combination drug intervention strategies may be clinically useful in reducing or
371 eliminating cases of viral rebound.

372 Altogether, our data indicates that GS-5245 may have clinical utility against highly
373 transmissible SARS-CoV-2 variants as well as zoonotic coronaviruses that may emerge in the
374 future. Moreover, GS-5245 demonstrated efficacy against common-cold human
375 alphacoronavirus NL63 and pre-emergent SARS-CoV-related viruses, underlining the broad
376 antiviral efficacy of this drug and its potential treatment of common-cold human coronaviruses,
377 which can progress to severe life-threatening illnesses in the very young and aged (51). GS-5245
378 is currently being investigated in two international Phase 3 trials in standard and high risk
379 COVID-19 patients (ClinicalTrials.gov: NCT05715528 and NCT05603143). The present in vitro
380 and in vivo data support the continued clinical evaluation of GS-5245 for the treatment of
381 COVID-19 and potentially other coronaviruses.

382

383 **Limitations of the study**

384 Despite the strong efficacy of GS-5245 in vivo, our study has limitations. The breadth of
385 protection was only tested in mice and not in additional animal models of coronavirus
386 pathogenesis. While remdesivir exhibits clinical efficacy across broad patient populations and
387 stages of COVID-19 disease, the testing of GS-5245's clinical efficacy is ongoing. The clinical
388 efficacy of GS-5245 may be established based on ongoing controlled, randomized, and powered
389 Phase III clinical trials in humans; the study results are pending. Similarly, while GS-5245 and
390 nirmatrelvir exhibited enhanced efficacy when tested in combination in SARS-CoV-2-infected
391 mice, the clinical efficacy of GS-5245 in combination with Paxlovid™ based on properly
392 designed human clinical studies has not yet been established. Therefore, it will be important to
393 continue evaluating both GS-5245 monotherapy and combination therapy with Paxlovid™ in
394 future human clinical trials.

395

396 **ACKNOWLEDGEMENTS**

397 This work was supported by an NIAID AVIDD U19AI171292 to R.S.B, R01 AI132178 and
398 R01AI132178-04S1 to T.P.S. and R.S.B., and an NIH animal models contract
399 (HHSN272201700036I) to R.S.B. Histopathology was performed by the Pathology Services
400 Core at the University of North Carolina-Chapel Hill, which is supported in part by an NCI
401 Center Core Support Grant (5P30CA016080-42). D.R.M. is funded by a Hanna H. Gray
402 Fellowship from the Howard Hughes Medical Institute.

403

404

405 **AUTHOR CONTRIBUTIONS**

406 Conceived the study: D.R.M., A.S., and T.P.S.; designed experiments: D.R.M., J.Y.F., J.P.B.
407 T.C., R.L.M., R.S.B., K.T.B., R.B., A.S., and T.P.S.; performed laboratory experiments: D.R.M.,
408 F.R.M., M.R.Z., K.G., G.D.I.C., J.J.W., A.J.B., W.S.C., S.R.M., S.D., S.M., A.S., and T.P.S.;
409 provided critical reagents: D.B., K.B., A.N., R.K., A.N., R.B, J.P.B., J.F., T.C., R.L.M.; wrote
410 the first draft of the paper: D.R.M. edited the manuscript: D.R.M., D.B., K.T.B., R.B, J.P.B., J.P.,
411 J.F., T.C., R.L.M., R.S.B, A.S., and T.P.S.; all authors reviewed and approved the manuscript.
412

413 **DECLARATION OF INTERESTS**

414 These authors are employees of Gilead Sciences and hold stock in Gilead Sciences: D.B., A.N.,
415 K.T.B., R.B, J.P.B., J.Y.F., T.C., R.L.M.

416

417 **STATISTICAL ANALYSIS**

418 The statistical analysis performed using SAS Software version 9.4 (SAS Institute Inc., Cary, NC,
419 USA) and the R statistical package version 3.6.1 (Vienna, Austria). Statistical tests used are
420 described in the figure legends.

421

422 **MATERIALS AND METHODS**

423 *Viruses*

424 Recombinant viruses utilized for in vitro studies include SARS-CoV Urbani expressing
425 nanoluciferase (SARS-nLuc, nLuc replaces ORF7) and MERS-CoV EMC Strain, SARS-CoV-2
426 WA1, Bat SARS-related CoV RsSHC014, HCoV-NL63 were created from molecular cDNA

427 clones as described (52-54) previously. SARS-CoV-2 Omicron BA.1 isolate was obtained as a
428 gift from Dr. Yoshihiro Kawaoka from the University of Wisconsin, Madison.

429

430 **Preclinical experiments**

431 ***Mouse strains and infections***

432 Eight-week-old female BALB/c mice were purchased from Envigo (#047). Eight-week-old
433 female K18-humanized ACE2 mice on a B6 background were purchased from Jackson
434 Laboratory (#034860). 288/330⁺⁺ dipeptidyl peptidase 4 (DPP4) mice were bred at the
435 University of North Carolina at Chapel Hill and were described previously (34). For SARS-CoV-
436 2 infections in BALB/c mice, a mouse-adapted SARS-CoV-2 virus (MA10) was used and mice
437 were infected with 1×10^4 PFU intranasally (28). For SARS-CoV infections in BALB/c mice, an
438 intranasal infectious of 1×10^4 PFU was used (32). For RsSHC014-CoV and SARS-CoV-2
439 Omicron (BA.1) infections, K18-hACE2 mice were infected with 1×10^4 PFU intranasally.
440 Finally, 288/330⁺⁺ DPP4 mice were infected intranasally with 5×10^4 PFU with a mouse-adapted
441 MERS-CoV (maM35c4) virus as described previously (33, 34). Infected mice were weighed
442 daily and were monitored for signs of disease in all infection and treatment studies.

443

444 ***GS-5245, molnupiravir, and PF- 07321332 formulations***

445 GS-5245 was synthesized at Gilead Sciences, Inc., and their chemical composition and purity
446 was quality controlled by nuclear magnetic resonance, high resolution mass spectrometry, and
447 high-performance liquid chromatography. Molnupiravir was purchased from MedChemExpress
448 (Monmouth Junction, NJ). Nirmatrelvir (PF-07321332) was purchased from MedChemExpress
449 (Monmouth Junction, NJ) or WuXi AppTec (Shanghai, China). GS-5245 was solubilized in

450 2.5% dimethyl sulfoxide, 10% Kolliphor HS-15; 10% Labrasol; 2.5% propylene glycol; 75%
451 water; pH 2-3 or 10% ethanol, 90% propylene glycol for mouse *in vivo* studies. Molnupiravir
452 was solubilized in 2.5% Kolliphor RH 40, 10% polyethylene glycol, 87.5% water for mouse *in*
453 *vivo* studies. PF-07321332 was formulated in 10% ethanol, 90% propylene glycol. Oral antiviral
454 drugs were made available to UNC Chapel Hill under an existing material transfer agreement
455 with Gilead Sciences, Inc.

456

457 ***Structural analysis of nsp12 conservation***

458 A model of the pre-incorporation state of the GS-5245 active metabolite in the SARS-CoV-2
459 polymerase complex was based on the cryo-EM structure 6XEZ (55) and previously described
460 (56). Homology models using Schrödinger Release 2022-2 (Prime, Schrödinger, LLC, New
461 York, NY) were generated for the nsp12 subunit were generated for the viral strains used in this
462 study.

463

464 ***Mouse GS-5245 pharmacokinetic studies***

465 Mouse pharmacokinetic (PK) studies were performed at LabCorp Drug Development. Briefly,
466 n=4 female BALB/c and n=3 female and n=3 male mice from each different strain of K18-
467 hACE2 and 288/330⁺⁺ DPP4 were dosed with 30 mg/kg of GS-5245 by oral gavage. Plasma
468 concentrations (μM) of GS-411524 were quantitated in each mouse strain at select timepoints
469 over 24 hours as described previously (27).

470

471 ***Antiviral activity of GS-5245 against SARS-CoV-2***

472 We employed an antiviral assay as described (27). Briefly, human lung epithelial cell line A549
473 (ATCC # CCL185) stably expressing hACE2 were plated at a density of 20,000 cells per well in
474 100 μ L in black-walled clear-bottom 96-well plates 24 hours prior to infection. GS-5245, RDV,
475 GS-441524, remdesivir, and PF-07321332 were diluted in 100% DMSO (1:2) resulting in a
476 1000X dose response from 10 to 0.039 mM 10 to 0.039 μ M. All conditions were performed in
477 triplicate. In a Biosafety Level 3 Laboratory (BSL3), medium was removed, and cells were
478 infected with 100 μ L SARS-CoV-2 nLUC (multiplicity of infection (MOI) = 0.5) for 1 hour at
479 37 °C. After this incubation, virus was removed and wells were washed (150 μ L) with infection
480 media (Dulbecco's Modified Eagle's Medium (DMEM), 4% fetal bovine serum (FBS), 1X
481 antibiotic/antimycotic). Infection media (100 μ L) containing diluted drug in dose response was
482 then added. DMSO remained at 0.1% across the dilution series. Plates were incubated at 37 °C
483 for 48 hours. NanoGlo assay was performed at 48 hpi. Sister plates were exposed to drug but not
484 infected to gauge cytotoxicity using a CellTiter-Glo assay (CTG, Promega) at 48 hours post
485 treatment. Values were normalized to the uninfected and infected DMSO controls (0% and 100%
486 infection, respectively). Data was fit using a four-parameter non-linear regression analysis using
487 GraphPad Prism. EC₅₀ and CC₅₀ values were then determined as the concentration reducing the
488 signal by 50%.

489

490 ***Antiviral activity of GS-5245 against HCoV-NL63***

491 An antiviral assay was performed with recombinant NL63 reporter virus expressing
492 nanoluciferase as described (57). Briefly, LLCMK2 cells stably expressing TMPRSS2 were
493 seeded at 20,000 cells per well and infected with NL63 nLUC at an MOI of 0.02 for 1 hr after
494 which virus was removed, cultures were washed with medium, and a dose response of each drug

495 was added in triplicate. After 48 hr, virus replication was quantitated by measuring
496 nanoluciferase expression. For cytotoxicity, sister plates were exposed to the same dose response
497 as those infected. Cytotoxicity was quantitated using CellTiter Glo assay at 48 hours post
498 exposure. Three independent studies were performed. Values were normalized to the uninfected
499 and infected DMSO controls (0% and 100% infection, respectively). Data was fit using a four-
500 parameter non-linear regression analysis using GraphPad Prism. EC₅₀ and CC₅₀ values were then
501 determined as the concentration reducing the signal by 50%.

502

503 ***Antiviral activity in primary human airway epithelial cells***

504 Human airway epithelial (HAE) cell cultures were obtained from the Tissue Procurement and Cell
505 Culture Core Laboratory in the Marsico Lung Institute/Cystic Fibrosis Research Center at UNC.
506 Prior to infection, HAE were washed with PBS and moved into ALI media containing a dose
507 response of 10, 1, or 0.1 μ M GS-5245 or DMSO. HAE were infected at an MOI of 0.5 for 1.5 hr
508 at 37°C after which virus was removed, cultures were washed with PBS and then incubated at 37°C
509 for 72hr. Virus replication/titration was performed as previously described. Similar data was
510 obtained in two independent studies using cells from two different patient donors. Cytotoxicity
511 was measured via ToxiLight Assay (Lonza) in triplicate HAE cell cultures treated with 10, 1, or
512 0.1 μ M GS-5245 or DMSO. DMSO remained at 0.1% for all conditions. As a positive control,
513 duplicate wells were exposed to Promega nanoluciferase lysis buffer for 10 minutes prior to
514 Toxilight Assay.

515

516 ***Animal care***

517 Animal efficacy studies were performed in accordance with the recommendations for care and
518 use of animals by the Office of Laboratory Animal Welfare (OLAW), National Institutes of
519 Health and the Institutional Animal Care and Use Committee (IACUC) protocol number: 20-059
520 at University of North Carolina (UNC permit no. A-3410-01). All mice were anesthetized prior
521 to viral inoculation and great efforts were undertaken to reduce animal suffering. Mice were fed
522 standard chow diets and housed in groups of five.

523

524 ***Lung pathology scoring***

525 Acute lung injury was quantified with two distinct lung pathology scoring tools. The first scoring
526 tool is the Matute-Bello scoring system developed by the American Thoracic Society (ATS), and
527 the second scoring tool is the Diffuse Alveolar Damage (DAD) to score lung damage caused by
528 acute viral infections as described previously (14). Lung scoring and scoring analyses were
529 performed by a Board-Certified Veterinary Pathologist who was blinded to the treatment groups.
530 Lung pathology slides were read and scored at 600X total magnification.

531

532 ***Laboratory biosafety***

533 Cell culture and animal studies were approved by the UNC Institutional Biosafety Committee
534 approved under laboratory and animal protocols used in the Baric laboratory. All work described
535 here, including coronavirus work, was performed with approved standard operating procedures
536 for SARS-CoV, SARS-CoV-2, and MERS-CoV in a biosafety level 3 (BSL-3) facility which
537 met and exceeded requirements recommended in the Microbiological and Biomedical
538 Laboratories, by the U.S. Department of Health and Human Service, the U.S. Public Health

539 Service, and the U.S. Center for Disease Control and Prevention (CDC), and the National
540 Institutes of Health (NIH).

541

542 ***Quantification and statistical analysis***

543 Statistical analyses were performed in Prism version 9.0, SAS Software version 9.4, and the R
544 statistical package version 3.6.1. Figure legends describe each statistical test used in each figure.

545 ***Materials availability***

546 Material and reagents generated in this study will be made available upon installment of
547 a standard material transfer agreement (MTA) through UNC, while other reagents and viruses
548 are available through BEI.

549

550

551

552

553

554

555

556

557

558

559

560

561 **REFERENCES AND NOTES**

- 562 1. E. Cameroni *et al.*, Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron
563 antigenic shift. *Nature* **602**, 664-670 (2022).
- 564 2. A. C. Walls *et al.*, Elicitation of broadly protective sarbecovirus immunity by receptor-
565 binding domain nanoparticle vaccines. *Cell* **184**, 5432-5447.e5416 (2021).
- 566 3. K. O. Saunders *et al.*, Neutralizing antibody vaccine for pandemic and pre-emergent
567 coronaviruses. *Nature*, (2021).
- 568 4. D. R. Martinez *et al.*, Chimeric spike mRNA vaccines protect against Sarbecovirus
569 challenge in mice. *Science* **373**, 991-998 (2021).
- 570 5. D. R. Martinez *et al.*, A broadly cross-reactive antibody neutralizes and protects against
571 sarbecovirus challenge in mice. *Sci Transl Med* **14**, eabj7125 (2022).
- 572 6. C. G. Rappazzo *et al.*, Broad and potent activity against SARS-like viruses by an
573 engineered human monoclonal antibody. *Science* **371**, 823-829 (2021).
- 574 7. D. Pinto *et al.*, Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
575 antibody. *Nature* **583**, 290-295 (2020).
- 576 8. M. A. Tortorici *et al.*, Broad sarbecovirus neutralization by a human monoclonal
577 antibody. *Nature* **597**, 103-108 (2021).
- 578 9. A. J. Brown *et al.*, Broad spectrum antiviral remdesivir inhibits human endemic and
579 zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase.
Antiviral Res **169**, 104541 (2019).
- 580 10. A. J. Pruijssers *et al.*, Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and
581 Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. *Cell Rep*
582 **32**, 107940 (2020).
- 583 11. T. P. Sheahan *et al.*, Broad-spectrum antiviral GS-5734 inhibits both epidemic and
584 zoonotic coronaviruses. *Sci Transl Med* **9**, (2017).
- 585 12. T. P. Sheahan *et al.*, Comparative therapeutic efficacy of remdesivir and combination
586 lopinavir, ritonavir, and interferon beta against MERS-CoV. *Nat Commun* **11**, 222
588 (2020).
- 589 13. T. P. Sheahan *et al.*, An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-
590 2 in human airway epithelial cell cultures and multiple coronaviruses in mice. *Sci Transl
591 Med* **12**, (2020).
- 592 14. D. R. Martinez *et al.*, Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in
593 mice. *Cell Rep* **36**, 109450 (2021).
- 594 15. B. N. Williamson *et al.*, Clinical benefit of remdesivir in rhesus macaques infected with
595 SARS-CoV-2. *Nature*, (2020).
- 596 16. J. Pitts *et al.*, Remdesivir and GS-441524 Retain Antiviral Activity against Delta,
597 Omicron, and Other Emergent SARS-CoV-2 Variants. *Antimicrob Agents Chemother* **66**,
598 e0022222 (2022).
- 599 17. J. H. Beigel *et al.*, Remdesivir for the Treatment of Covid-19 - Preliminary Report. *N
600 Engl J Med*, (2020).
- 601 18. A. Jayk Bernal *et al.*, Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized
602 Patients. *New England Journal of Medicine* **386**, 509-520 (2021).
- 603 19. D. R. Owen *et al.*, An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the
604 treatment of COVID-19. *Science* **374**, 1586-1593 (2021).

- 605 20. J. Hammond *et al.*, Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-
606 19. *New England Journal of Medicine*, (2022).
- 607 21. W. A. Fischer, 2nd *et al.*, A phase 2a clinical trial of molnupiravir in patients with
608 COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious
609 virus. *Sci Transl Med* **14**, eabl7430 (2022).
- 610 22. R. L. Gottlieb *et al.*, Early Remdesivir to Prevent Progression to Severe Covid-19 in
611 Outpatients. *New England Journal of Medicine* **386**, 305-315 (2021).
- 612 23. L. Vangeel *et al.*, Remdesivir, Molnupiravir and Nirmatrelvir remain active against
613 SARS-CoV-2 Omicron and other variants of concern. *Antiviral Res* **198**, 105252 (2022).
- 614 24. R. L. Mackman *et al.*, Discovery of GS-5245 (Obeldesivir), an Oral Prodrug of
615 Nucleoside GS-441524 that Exhibits Antiviral Efficacy in SARS-CoV-2 Infected African
616 Green Monkeys. *bioRxiv*, 2023.2004.2028.538473 (2023).
- 617 25. M. L. Fulcher, S. H. Randell, Human nasal and tracheo-bronchial respiratory epithelial
618 cell culture. *Methods Mol Biol* **945**, 109-121 (2013).
- 619 26. R. N. Kirchdoerfer, A. B. Ward, Structure of the SARS-CoV nsp12 polymerase bound to
620 nsp7 and nsp8 co-factors. *Nature Communications* **10**, 2342 (2019).
- 621 27. A. Schäfer *et al.*, Therapeutic treatment with an oral prodrug of the remdesivir parental
622 nucleoside is protective against SARS-CoV-2 pathogenesis in mice. *Sci Transl Med* **14**,
623 eabm3410 (2022).
- 624 28. S. R. Leist *et al.*, A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and
625 Mortality in Standard Laboratory Mice. *Cell* **183**, 1070-1085.e1012 (2020).
- 626 29. V. D. Menachery *et al.*, A SARS-like cluster of circulating bat coronaviruses shows
627 potential for human emergence. *Nat Med* **21**, 1508-1513 (2015).
- 628 30. N. S. Zhong *et al.*, Epidemiology and cause of severe acute respiratory syndrome (SARS)
629 in Guangdong, People's Republic of China, in February, 2003. *Lancet* **362**, 1353-1358
630 (2003).
- 631 31. J. S. M. Peiris, K. Y. Yuen, A. D. M. E. Osterhaus, K. Stöhr, The Severe Acute
632 Respiratory Syndrome. *New England Journal of Medicine* **349**, 2431-2441 (2003).
- 633 32. A. Roberts *et al.*, A mouse-adapted SARS-coronavirus causes disease and mortality in
634 BALB/c mice. *PLoS Pathog* **3**, e5 (2007).
- 635 33. M. G. Douglas, J. F. Kocher, T. Scobey, R. S. Baric, A. S. Cockrell, Adaptive evolution
636 influences the infectious dose of MERS-CoV necessary to achieve severe respiratory
637 disease. *Virology* **517**, 98-107 (2018).
- 638 34. A. S. Cockrell *et al.*, A mouse model for MERS coronavirus-induced acute respiratory
639 distress syndrome. *Nat Microbiol* **2**, 16226 (2016).
- 640 35. P. J. Halfmann *et al.*, SARS-CoV-2 Omicron virus causes attenuated disease in mice and
641 hamsters. *Nature*, (2022).
- 642 36. C. J. Gordon *et al.*, Remdesivir is a direct-acting antiviral that inhibits RNA-dependent
643 RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high
644 potency. *J Biol Chem* **295**, 6785-6797 (2020).
- 645 37. M. Seifert *et al.*, Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a
646 single-molecule perspective. *Elife* **10**, (2021).
- 647 38. J. Yu *et al.*, Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. *N
648 Engl J Med* **386**, 1579-1580 (2022).
- 649 39. Y. Goldberg *et al.*, Waning Immunity after the BNT162b2 Vaccine in Israel. *New
650 England Journal of Medicine* **385**, e85 (2021).

- 651 40. M. Imai *et al.*, Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and
652 XBB. *New England Journal of Medicine*, (2022).
- 653 41. L. J. Stevens *et al.*, Mutations in the SARS-CoV-2 RNA dependent RNA polymerase
654 confer resistance to remdesivir by distinct mechanisms. *Sci Transl Med*, eabo0718
655 (2022).
- 656 42. A. M. Szemiel *et al.*, In vitro selection of Remdesivir resistance suggests evolutionary
657 predictability of SARS-CoV-2. *PLoS Pathog* **17**, e1009929 (2021).
- 658 43. S. M. Hammer *et al.*, A controlled trial of two nucleoside analogues plus indinavir in
659 persons with human immunodeficiency virus infection and CD4 cell counts of 200 per
660 cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. *N Engl J Med* **337**,
661 725-733 (1997).
- 662 44. S. Gandhi *et al.*, De novo emergence of a remdesivir resistance mutation during treatment
663 of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report.
664 *Nat Commun* **13**, 1547 (2022).
- 665 45. J. I. Hogan *et al.*, Remdesivir Resistance in Transplant Recipients With Persistent
666 Coronavirus Disease 2019. *Clinical Infectious Diseases* **76**, 342-345 (2022).
- 667 46. A. Heyer *et al.*, Remdesivir-induced emergence of SARS-CoV2 variants in patients with
668 prolonged infection. *Cell Rep Med* **3**, 100735 (2022).
- 669 47. E. Heilmann *et al.*, SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system
670 confer resistance to nirmatrelvir, ensitrelvir, and GC376. *Sci Transl Med* **15**, eabq7360
671 (2023).
- 672 48. K. H. Dinnon, 3rd *et al.*, SARS-CoV-2 infection produces chronic pulmonary epithelial
673 and immune cell dysfunction with fibrosis in mice. *Sci Transl Med*, eabo5070 (2022).
- 674 49. A. F. Carlin *et al.*, Virologic and Immunologic Characterization of COVID-19
675 Recrudescence after Nirmatrelvir/Ritonavir Treatment. *Clin Infect Dis*, (2022).
- 676 50. J. Boucau *et al.*, Characterization of virologic rebound following nirmatrelvir-ritonavir
677 treatment for COVID-19. *Clin Infect Dis*, (2022).
- 678 51. M. M. Kesheh, P. Hosseini, S. Soltani, M. Zandi, An overview on the seven pathogenic
679 human coronaviruses. *Rev Med Virol* **32**, e2282 (2022).
- 680 52. A. C. Sims *et al.*, Severe acute respiratory syndrome coronavirus infection of human
681 ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of
682 the lungs. *J Virol* **79**, 15511-15524 (2005).
- 683 53. Y. J. Hou *et al.*, SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in
684 the Respiratory Tract. *Cell* **182**, 429-446.e414 (2020).
- 685 54. T. Scobey *et al.*, Reverse genetics with a full-length infectious cDNA of the Middle East
686 respiratory syndrome coronavirus. *Proc Natl Acad Sci U S A* **110**, 16157-16162 (2013).
- 687 55. J. Chen *et al.*, Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2
688 Replication-Transcription Complex. *Cell* **182**, 1560-1573.e1513 (2020).
- 689 56. C. J. Gordon *et al.*, Efficient incorporation and template-dependent polymerase inhibition
690 are major determinants for the broad-spectrum antiviral activity of remdesivir. *J Biol
691 Chem* **298**, 101529 (2022).
- 692 57. C. E. Edwards *et al.*, Swine acute diarrhea syndrome coronavirus replication in primary
693 human cells reveals potential susceptibility to infection. *Proc Natl Acad Sci U S A* **117**,
694 26915-26925 (2020).
- 695

696 **Figure legends**

697

698 **Fig. 1. GS-5245 is broadly active against enzootic, endemic and pandemic coronaviruses in**
699 **primary human airway cells**

700 (A) The mean percent inhibition and cytotoxicity of SARS-CoV-2 replication by GS-5245 and
701 control compounds GS-441524, remdesivir, and PF-07321332 in A459-hACE2 cells is shown
702 (triplicate samples were analyzed). Data is representative of two independent experiments.

703 (B) Antiviral activity of GS-5245 in primary human airway epithelial cell donor 1 against SARS-
704 CoV and related bat-CoV SHC014, SARS-CoV-2 WA1 and SARS-CoV-2 Omicron BA.1 and
705 MERS-CoV. Human airway epithelial cell cultures (HAE) were treated with different doses of
706 drug or DMSO and then infected with SARS-CoV-2 at an MOI of 0.5. After 2 hours of infection,
707 input virus was removed, cultures were washed once, and infectious virus titers in plaque
708 forming units (PFU) was measured in apical washes after 72 hours. Cultures remained in the
709 presence of drug for the duration of the study.

710 (C) Antiviral activity of GS-5245 in primary human airway epithelial cell donor 2 against SARS-
711 CoV and related bat-CoV SHC014, SARS-CoV-2 WA1, and SARS-CoV-2 Omicron BA.1 and
712 MERS-CoV. This was performed similarly but independent of the study in panel B. For B and C,
713 each symbol represents the virus titer per triplicate culture and the line is at the mean and *
714 indicates $p < 0.05$ as determined by One-Way ANOVA/Tukey's multiple comparison test.

715

716 **Fig. 2. Dose-dependent therapeutic efficacy of GS-5245 against SARS-CoV-2 MA10 in**
717 **BALB/c mice**

718 (A) Percent starting weight through 4 dpi in 10-week-old female BALB/c mice infected with
719 SARS-CoV-2 MA10 at 1×10^4 PFU. Mice were treated BID with vehicle (veh: gray squares), 3
720 mg/kg GS-5245 (upside-down red triangles), 10 mg/kg GS-5245 (right-side-up blue triangles),
721 30 mg/kg GS-5245 (green circles), and 100 mg/kg molnupiravir (purple diamonds) starting at 12
722 hpi. N=10 mice per group. Rx = drug. Asterisks denote p values from a two-way ANOVA after a
723 Dunnett's multiple comparisons test. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$
724 (B) SARS-CoV-2 MA10 lung infectious viral titers 4 dpi in mice treated with vehicle or GS-
725 5245 at increasing concentrations and 100 mg/kg molnupiravir (Mol.). Asterisks denote p values
726 from a Kruskal-Wallis test after a Dunnett's multiple comparisons test.
727 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated mice compared to vehicle.
728 Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple comparisons test.
729 (D) Pulmonary function (PenH) monitored by whole-body plethysmography from day zero
730 through 4 dpi in SARS-CoV-2-infected treated mice. Asterisks denote p values from a two-way
731 ANOVA after a Dunnett's multiple comparisons test.
732 (E) Microscopic ATS acute lung injury pathology scoring at day 4 post infection in vehicle vs.
733 GS-5245 or molnupiravir-treated mice. Asterisks denote p values from a Kruskal-Wallis test
734 after a Dunnett's multiple comparisons test.
735 (F) Microscopic DAD acute lung injury pathology scoring at 4 dpi in vehicle, GS-5245, or
736 molnupiravir-treated mice. Asterisks denote p values from a Kruskal-Wallis test after a
737 Dunnett's multiple comparisons test.
738
739 **Fig. 3. Therapeutic efficacy of GS-5245 against pre-emergent bat SARS-related RsSHC014-**
740 **CoV in K18-hACE2 mice**

741 (A) Percent starting weight in 10-week-old female K18-hACE2 mice infected with 1×10^4 PFU
742 therapeutically treated BID with vehicle (veh: gray squares), 10 mg/kg GS-5245 (right-side-up
743 light blue triangles), 30 mg/kg GS-5245 (dark green circles) at 12 hpi, and 10 mg/kg GS-5245
744 (right-side-up dark blue triangles), and 30 mg/kg GS-5245 (light green circles) at 24 hpi. N=10
745 mice per group. Asterisks denote p values from a two-way ANOVA after a Dunnett's multiple
746 comparisons test.

747 (B) RsSHC014-CoV lung infectious viral titers 4 dpi in mice treated with vehicle or GS-5245 at
748 10 and 30 mg/kg at either 12 or 24 hpi. Asterisks denote p values from a Kruskal-Wallis test
749 after a Dunnett's multiple comparisons test.

750 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated K18-hACE2 mice
751 compared to vehicle. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's
752 multiple comparisons test.

753 (D) Microscopic ATS acute lung injury pathology scoring at day 4 post infection in vehicle vs.
754 GS-5245-treated mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's
755 multiple comparisons test.

756 (E) Microscopic DAD acute lung injury pathology scoring at day 4 post infection in vehicle vs.
757 GS-5245-treated mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's
758 multiple comparisons test.

759

760 **Fig. 4. GS-5245 protects against SARS-CoV MA15 mortality in BALB/c mice**

761 (A) Percent starting weight in 10-week-old female BALB/c mice infected with 1×10^4 PFU
762 therapeutically treated BID with vehicle (veh: gray squares), 10 mg/kg GS-5245 (right-side-up
763 light blue triangles), 30 mg/kg GS-5245 (dark green circles) at 12 hpi, and 10 mg/kg GS-5245
764 (right-side-up dark blue triangles), and 30 mg/kg GS-5245 (light green circles) at 24 hpi. N=10
765 mice per group. Asterisks denote p values from a two-way ANOVA after a Dunnett's multiple
766 comparisons test.

767 (B) SARS-CoV MA15 lung infectious viral titers 4 dpi in mice treated with vehicle or GS-5245
768 at 10 and 30 mg/kg at either 12 or 24 hpi. Asterisks denote p values from a Kruskal-Wallis test
769 after a Dunnett's multiple comparisons test.

770 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated BALB/c mice compared to
771 vehicle. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
772 comparisons test.

773 (D) Percent survival in vehicle vs GS-5245-treated mice. Asterisks denote p values from a Log-
774 rank Mantel-Cox test.

775 (E) Microscopic ATS acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-treated
776 mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
777 comparisons test.

778 (F) Microscopic DAD acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-
779 treated mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
780 comparisons test.

781 (G) Pulmonary function monitored by whole-body plethysmography from day zero through 4 dpi
782 in SARS-CoV-infected treated mice. Asterisks denote p values from a two-way ANOVA after a
783 Dunnett's multiple comparisons test.

784

785 **Fig. 5. GS-5245 inhibits MERS-CoV disease in 288/330⁺⁺ DPP4-modified mice**

786 (A) Percent starting weight in 20-week-old male and female 288/330⁺⁺ DPP4-modified mice

787 infected with a mouse-adapted MERS-CoV with 5×10^4 PFU. Mice were therapeutically treated

788 BID starting at 12 hpi with vehicle (veh: gray squares), 10 mg/kg GS-5245 (right-side-up light

789 blue triangles), 30 mg/kg GS-5245 (dark green circles). N=8 total mice per group. Male and

790 female mice were distributed as equally as possible in each group. Asterisks denote p values

791 from a two-way ANOVA after a Dunnett's multiple comparisons test.

792 (B) MERS-CoV lung infectious viral titers 5 dpi in mice treated with vehicle or GS-5245 at 10

793 and 30 mg/kg at 12 hpi. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's

794 multiple comparisons test.

795 (C) Macroscopic lung discoloration at 5 dpi in therapeutically treated mice compared to vehicle.

796 Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple comparisons test.

797 (D) Pulmonary function monitored by whole-body plethysmography from day zero through 5 dpi

798 in MERS-CoV-infected treated 288/330⁺⁺ DPP4 mice. Asterisks denote p values from a two-way

799 ANOVA after a Dunnett's multiple comparisons test.

800 (E) Microscopic ATS acute lung injury pathology scoring at 5 dpi in vehicle vs. GS-5245-treated

801 mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple

802 comparisons test.

803 (F) Microscopic DAD acute lung injury pathology scoring at 5 dpi in vehicle vs. GS-5245-

804 treated mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple

805 comparisons test.

806

807 **Fig. 6. Therapeutic efficacy of GS-5245 against the highly transmissible and neutralization-
808 resistant BA.1 (Omicron B.1.1.529) variant in K18-hACE2 mice**

809 (A) Percent starting weight in 10-week-old female K18-hACE2 mice infected at 1×10^4 PFU
810 with a BA.1 clinical isolate. Mice were therapeutically treated BID starting at 12 hpi with vehicle
811 (veh: gray squares) and 30 mg/kg GS-5245 (dark green circles). N=10 mice per group. Asterisks
812 denote p values from a two-way ANOVA after a Dunnett's multiple comparisons test.

813 (B) BA.1 lung infectious viral titers 2, 3, and 4 dpi in mice treated with vehicle or GS-5245 and
814 30 mg/kg at 12 hpi. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's
815 multiple comparisons test.

816 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated mice compared to vehicle.
817 Asterisks denote p values from a Mann-Whitney test.

818 (D) Microscopic ATS acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-treated
819 mice. Asterisks denote p values from a Mann-Whitney test.

820 (E) Microscopic DAD acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-
821 treated mice. Asterisks denote p values from a Mann-Whitney test.

822

823 **Fig. 7. The effect of GS-5245 and PF-332 combination therapy on SARS-CoV-2 MA10
824 pathogenesis in BALB/c mice**

825 (A) Percent starting weight in 10-week-old female BALB/c mice infected at 1×10^4 PFU with a
826 SARS-CoV-2 MA10. Mice were treated BID starting at 12 hpi with vehicle (veh: gray squares)
827 400 mg/kg PF-332 (purple diamonds), 120 mg/kg PF-332 (light green diamonds), 40 mg/kg PF-

828 332 (blue diamonds), 12 mg/kg PF-332 (dark green diamonds), and 1.2 mg/kg GS-5245 (upside-
829 down red triangles). N=10 mice per group. Asterisks denote p values from a two-way ANOVA
830 after a Dunnett's multiple comparisons test.

831 (B) SARS-CoV-2 MA10 lung infectious viral titers 4 dpi in mice treated at 12 hpi with vehicle
832 and at decreasing doses of PF-332 and a sub-protective dose of 1.2 mg/kg GS-5245. Asterisks
833 denote p values from a Kruskal-Wallis test with a Dwass-Steel-Critchlow-Fligner procedure for
834 pairwise comparisons.

835 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated mice compared to vehicle.
836 Asterisks denote p values from a Kruskal-Wallis test with a Dwass-Steel-Critchlow-Fligner
837 procedure for pairwise comparisons.

838 (D) Pulmonary function as measured by whole-body plethysmography in SARS-CoV-2-infected
839 mice starting at day 0 through 4 dpi.

840 (E) Sub-protective oral drug combination therapy and its effect on lung infectious SARS-CoV-2
841 viral titers. Vehicle (gray squares), 1.2 mg/kg GS-5245 (right-side-up red triangles), 4 mg/kg
842 GS-5245 (red circles), 12 mg/kg PF-332 (right-side-up blue triangles), 40 mg/kg PF-332 (blue
843 circles), combination 1.2 mg/kg GS-5245/12 mg/kg PF-332 (pink circles), combination 1.2
844 mg/kg GS-5245/40 mg/kg PF-332 (purple circles), combination 4 mg/kg GS-5245/40 mg/kg PF-
845 332 (purple hexagons). Kruskal-Wallis test was used to compare the group samples, and Dwass-
846 Steel-Critchlow-Fligner procedure was used for pairwise comparisons.

847

848

849 **Supplementary Materials**

850 **Fig. S1. Measuring the antiviral and cytotoxic activity of GS-5245, GS-441524, remdesivir,
851 and PF-07321332 in A549-hACE2 cells (related to Fig. 1).**

852 (A) A549-hACE2 were plated at 20,000 cells per well and infected with SARS-CoV-2 nLUC at
853 an MOI of 0.5 for 1hr after which virus was removed, cultures were washed with medium and
854 then a dose response of each drug was added in triplicate. After 48hr, virus replication was
855 quantitated by measuring nLUC expression.

856 (B) For cytotoxicity, sister plates were exposed to the same dose response as those infected.

857 Cytotoxicity was quantitated using CellTiter Glo assay at 48 hr post exposure.

858

859 **Fig. S2. Generation, recovery, and characterization of an NL63 infectious clone (ic)
860 expressing nanoluciferase (nLuc) (related to Fig. 1).**

861 (A) Infectious clone diagram of NL63 open reading frames (top) and the fragments used in
862 assembly (bottom). ORF3a was replaced with a gene encoding nanoluciferase.

863 (B) Growth kinetics of icNL63 (blue, triangle) and icNL63-nLuc (black, square).

864 (C) Luciferase signal of icNL63-nLuc 72 hpi. Background luciferase in virus without infecting
865 cells (open square). Luciferase signal after infecting cells (filled square).

866

867 **Fig. S3. The antiviral activity of GS-5245 against human coronavirus NL63 (related to Fig.
868 1).**

869 (A) LLCMK2 cells stably expressing TMPRSS2 were seeded at 20,000 cells per well and
870 infected with NL63 nLUC at an MOI of 0.02 for 1 hr after which virus was removed, cultures

871 were washed with medium and then a dose response of each drug was added in triplicate. After
872 48 hr, virus replication was quantitated by measuring nLUC expression.
873 (B) For cytotoxicity, sister plates were exposed to the same dose response as those infected.
874 Cytotoxicity was quantitated using CellTiter Glo assay at 48 hr post exposure.
875 (C) The percent antiviral inhibition for each drug is shown.

876

877 **Fig. S4. Cytotoxicity of GS-5245 in HAE (related to Fig. 1).**

878 Primary human airway epithelial cell cultures from donors 1 and 2 were treated with different
879 doses of GS-5245 or DMSO for 72hr in triplicate, after which cytotoxicity was assessed by
880 ToxiLight Assay which measures alkaline phosphatase released by dead and dying cells. As a
881 positive control (+ Control), duplicate wells were exposed to Promega nanoluciferase lysis buffer
882 for 10 minutes prior to Toxilight Assay.

883

884 **Fig. S5. Homology models of nsp12 show the polymerase active site is well conserved across**
885 **coronaviruses (related to Fig. 1).**

886 (A) Model of the pre-incorporated GS-5245 active triphosphate metabolite (purple) in SARS-
887 CoV-2 WA-1 nsp12 was based on the cryo-EM structure 6XEZ. (B) A homology model of
888 Omicron BA.1 with the single mutation, P323L (shown in red), was generated from the WA-1
889 model. Additional homology models were generated for (C) SARS-CoV, (D) RsSHC014-CoV,
890 (E) MERS-CoV EMC strain and (F) HCoV-NL63, where non-conserved residues with respect to
891 WA-1 are also shown in red. (G) A detail of the NL63 active site, the least conserved virus
892 among this set, shows the active site, and particularly the residues which recognize the important
893 1'-CN of the active triphosphate produced from GS-5245, are completely conserved.

894 **Fig. S6. Pharmacokinetics of GS-441524 following oral administration of GS-5245 in**
895 **different mouse strains (related to Figs. 2, 3, 4, and 5)**

896 (A) Plasma pharmacokinetics of GS-441524 in different mouse strains.
897 (B) BALB/c, K18-hACE2, and 288/330⁺⁺ DPP4 mice were orally gavaged with 30 mg/kg of GS-
898 5245 and plasma concentrations (μ M) of GS-411524 were quantified. A total of n=4 females in
899 BALB/c and n=3 males and n=3 females per mouse strain in K18-hACE2, and 288/330⁺⁺ DPP4
900 were used.

901

902 **Fig. S7. 30 mg/kg GS-5245 treatment kinetics in SARS-CoV-2-infected BALB/c mice**
903 **(related to Fig. 2).**

904 (A) Percent starting weight through 4 dpi in 10-week-old female BALB/c mice infected with
905 SARS-CoV-2 MA10 at 1×10^4 PFU. Mice were treated BID with vehicle (gray squares), 30
906 mg/kg GS-5245 at 12 hpi (dark green circles), 30 mg/kg GS-5245 at 24 hpi (light green circles),
907 and 30 mg/kg GS-5245 at 36 hpi (orange circles). N=10 mice per group. Asterisks denote p
908 values from a two-way ANOVA after a Dunnett's multiple comparisons test. * p \leq 0.05, ** p \leq
909 0.01, *** p \leq 0.001, **** p \leq 0.0001

910 (B) SARS-CoV-2 MA10 lung infectious viral titers 4 dpi in mice treated with vehicle or 30
911 mg/kg GS-5245 at 12, 24, and 36 hpi. Asterisks denote p values from a Kruskal-Wallis test after
912 a Dunnett's multiple comparisons test.

913 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated mice with GS-5245 at
914 various intervention timepoints compared to vehicle. Asterisks denote p values from a Kruskal-
915 Wallis test after a Dunnett's multiple comparisons test.

916 (D) Microscopic ATS acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-treated
917 mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
918 comparisons test.

919 (E) Microscopic DAD acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-
920 treated mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
921 comparisons test.

922 (F) Pulmonary function monitored by whole-body plethysmography from day zero through 4 dpi
923 in SARS-CoV-2-infected 30 mg/kg GS-5245 vs. vehicle treated mice. Asterisks denote p values
924 from a two-way ANOVA after a Dunnett's multiple comparisons test.

925

926 **Fig. S8. 10 mg/kg GS-5245 treatment kinetics in SARS-CoV-2-infected BALB/c mice**
927 **(related to Fig. 2)**

928 (A) Percent starting weight through 4 dpi in 10-week-old female BALB/c mice infected with
929 SARS-CoV-2 MA10 at 1×10^4 PFU. Mice were treated BID with vehicle (gray squares), 10
930 mg/kg GS-5245 at 12 hpi (dark green circles), 10 mg/kg GS-5245 at 24 hpi (light green circles),
931 and 10 mg/kg GS-5245 at 36 hpi (orange circles). N=10 mice per group. Asterisks denote p
932 values from a two-way ANOVA after a Dunnett's multiple comparisons test. * p ≤ 0.05 , ** p \leq
933 0.01, *** p ≤ 0.001 , **** p ≤ 0.0001

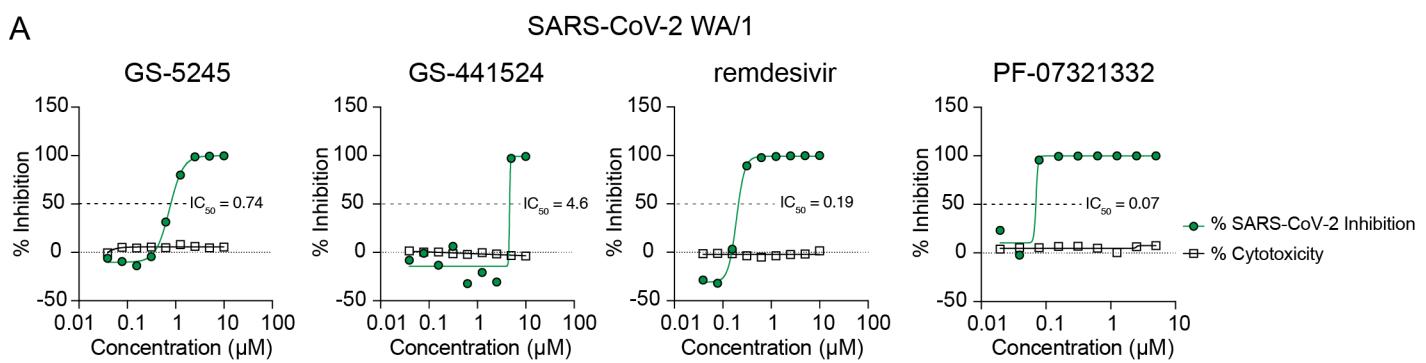
934 (B) SARS-CoV-2 MA10 lung infectious viral titers 4 dpi in mice treated with vehicle or 10
935 mg/kg GS-5245 at 12, 24, and 36 hpi. Asterisks denote p values from a Kruskal-Wallis test after
936 a Dunnett's multiple comparisons test.

937 (C) Macroscopic lung discoloration at 4 dpi in therapeutically treated mice with GS-5245 at
938 various intervention timepoints compared to vehicle. Asterisks denote p values from a Kruskal-
939 Wallis test after a Dunnett's multiple comparisons test.

940 (D) Microscopic ATS acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-treated
941 mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
942 comparisons test.

943 (E) Microscopic DAD acute lung injury pathology scoring at 4 dpi in vehicle vs. GS-5245-
944 treated mice. Asterisks denote p values from a Kruskal-Wallis test after a Dunnett's multiple
945 comparisons test.

946 (F) Pulmonary function monitored by whole-body plethysmography from day zero through 4 dpi
947 in SARS-CoV-2-infected 10 mg/kg GS-5245 vs vehicle treated mice. Asterisks denote p values
948 from a two-way ANOVA after a Dunnett's multiple comparisons test.


949

950

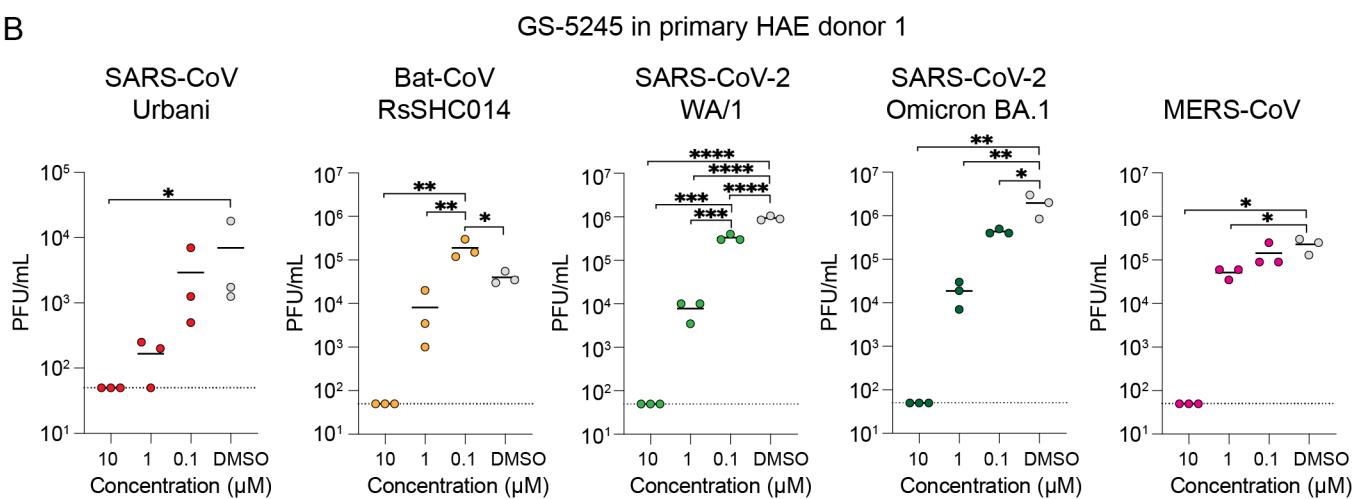

951

Figure 1

A

B

C

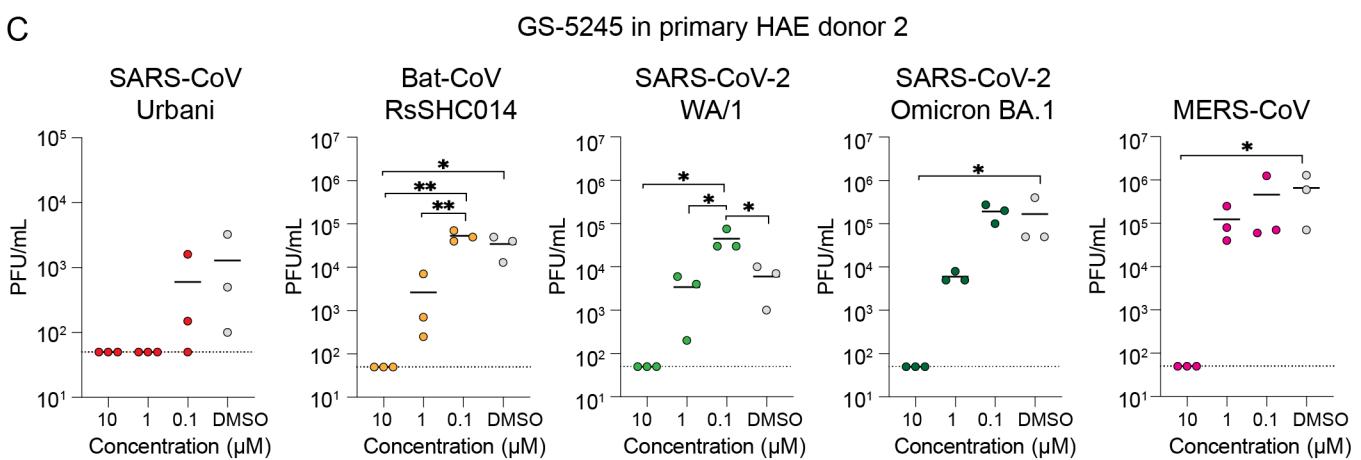
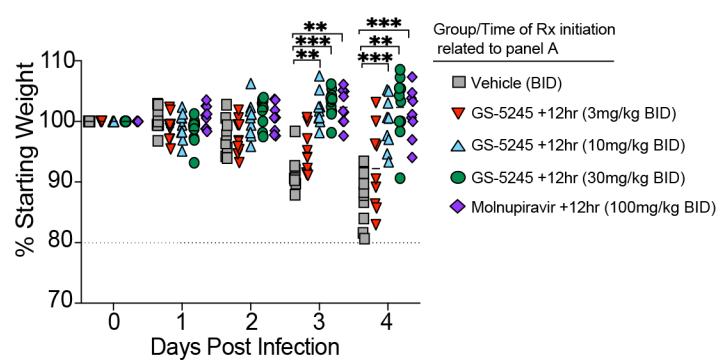
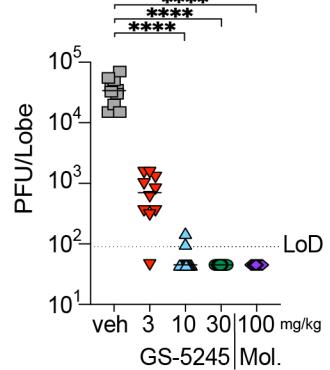
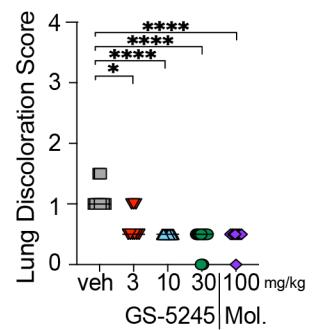
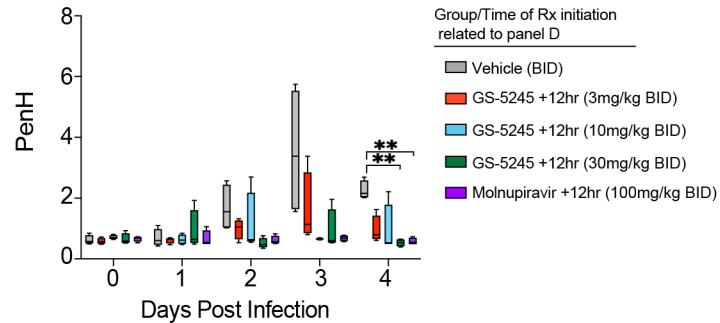
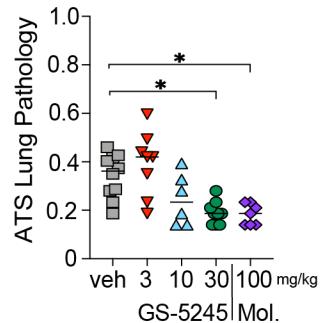




Figure 2


A Percent Starting Weight


B SARS-CoV-2 Lung Titer 4dpi


C Lung discoloration 4dpi

D Pulmonary function

E ATS 4dpi

F DAD 4dpi

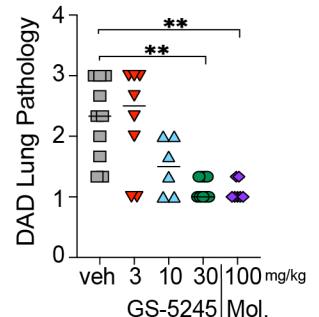
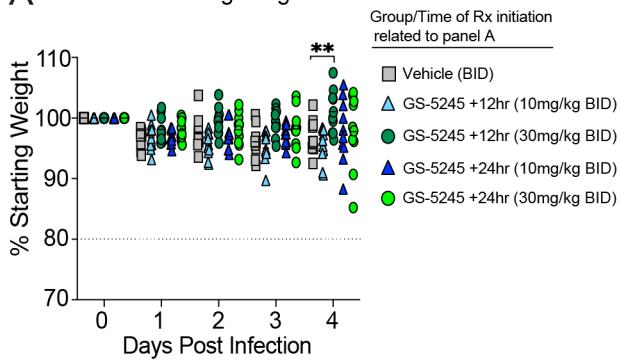
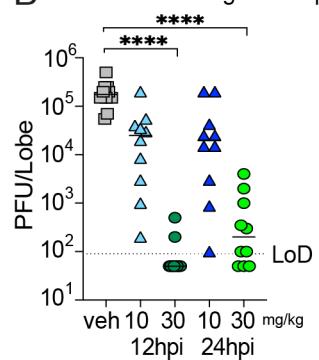
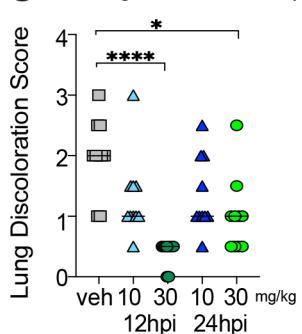
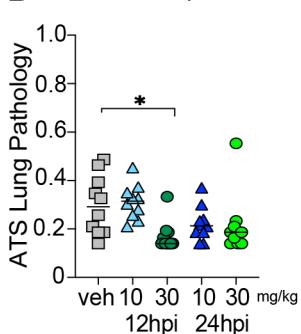




Figure 3


A Percent Starting Weight


B RsSHC014 Lung Titer 4dpi

C Lung discoloration 4dpi

D ATS 4dpi

E DAD 4dpi

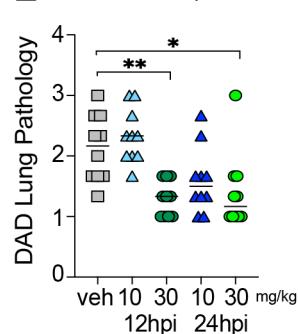


Figure 4

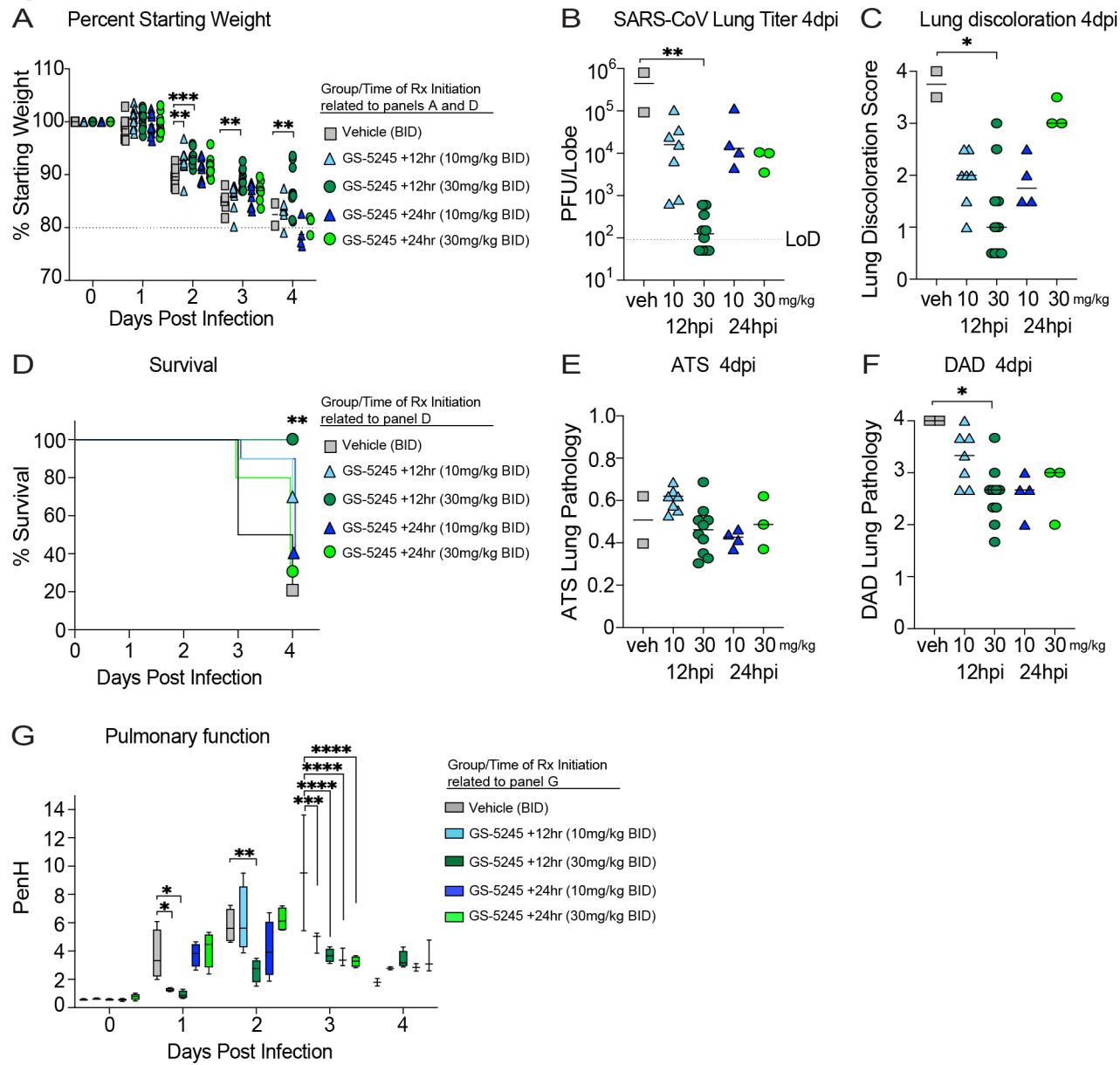
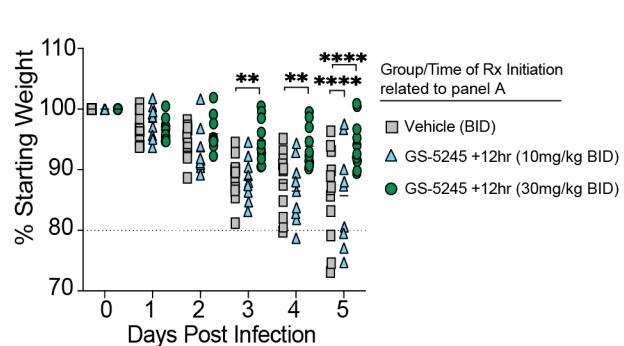
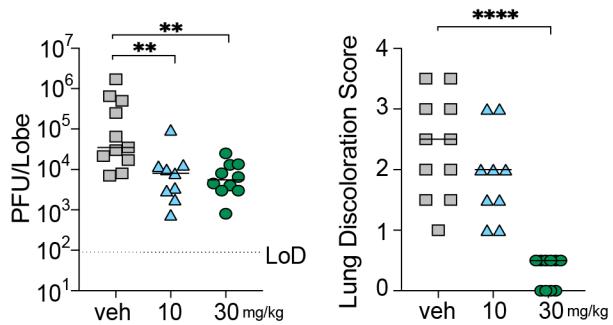
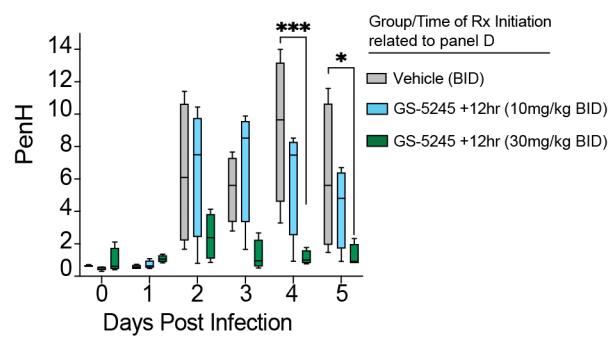
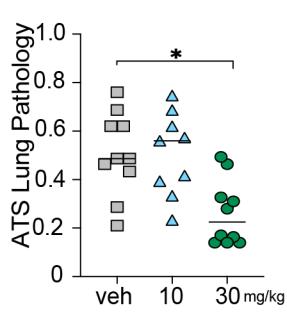




Figure 5


A Percent Starting Weight


B MERS-CoV Lung Titer 5dpi C Lung discoloration 5dpi

D Pulmonary function

E ATS 5dpi

F DAD 5dpi

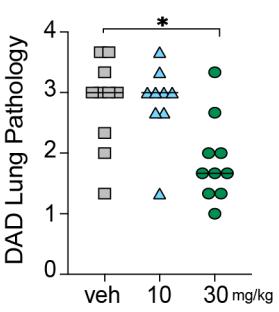
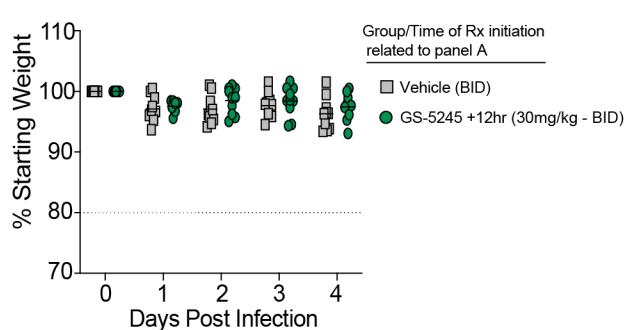
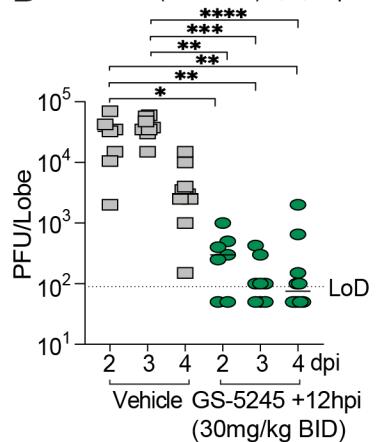
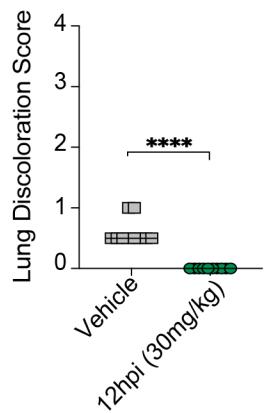
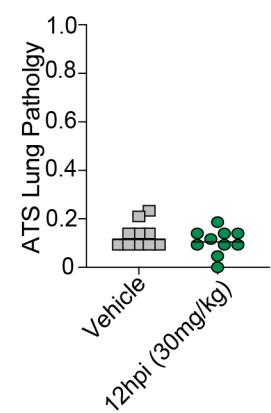




Figure 6


A Percent Starting Weight


B Omicron (B.1.1.529) 2, 3, 4dpi

C Lung discoloration 4dpi

D ATS 4dpi

E DAD 4dpi

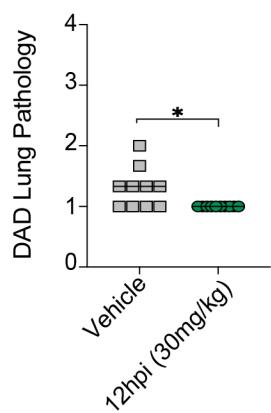
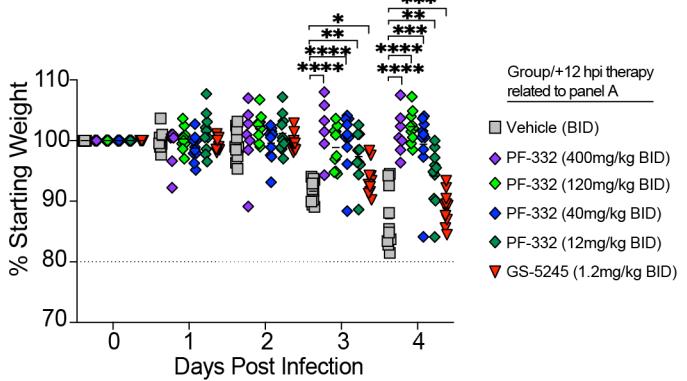
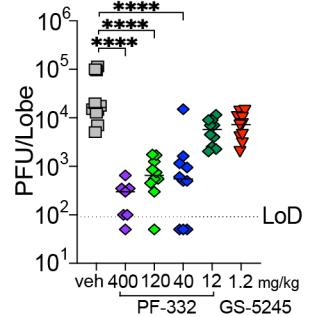
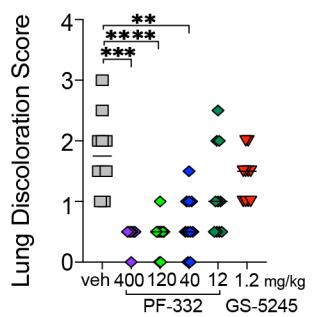
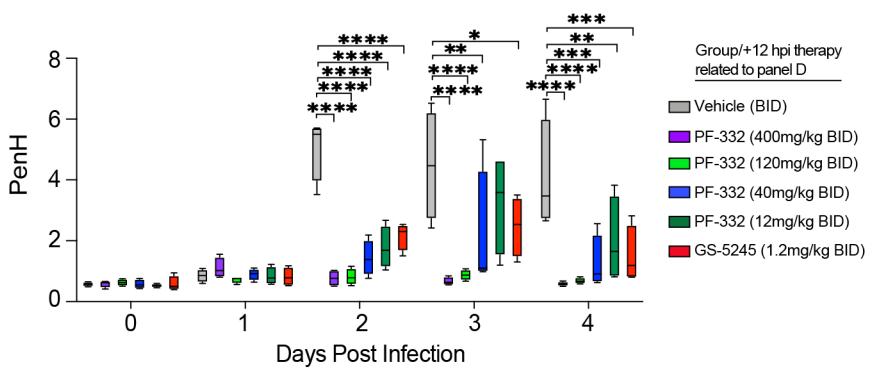




Figure 7


A Percent Starting Weight


B SARS-CoV-2 Lung Titer 4dpi

C Lung discoloration 4dpi

D Pulmonary function

E GS-5245 + PF-332 combination therapy at 12hpi

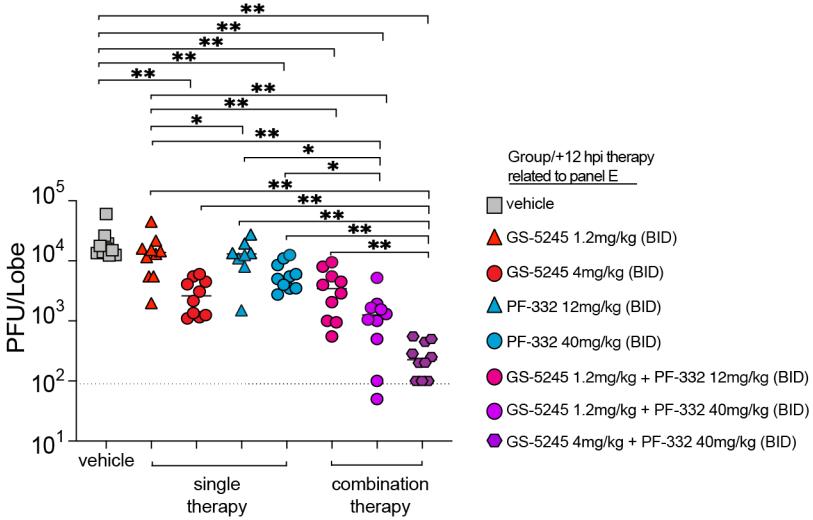
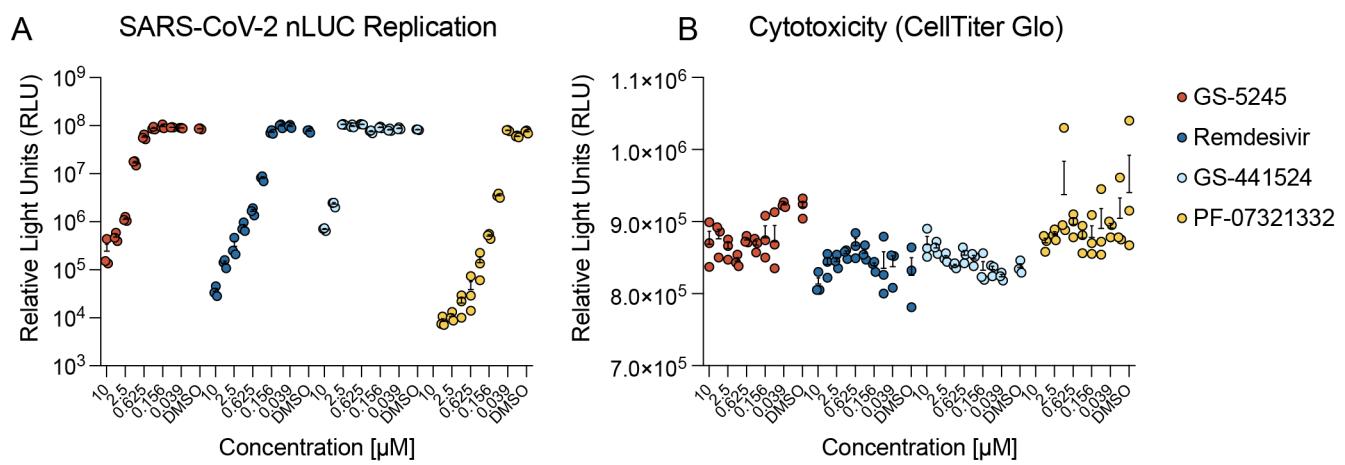
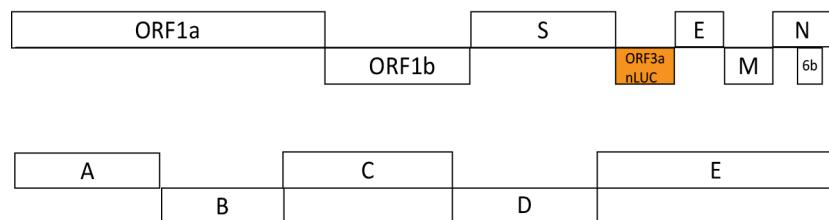
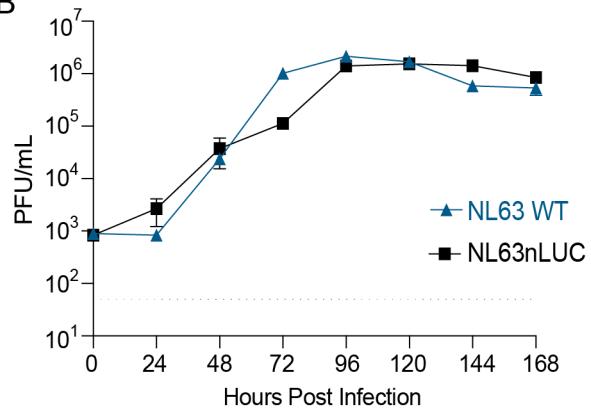


Figure S1


Figure S2

A

NL63 infectious clone

B

C

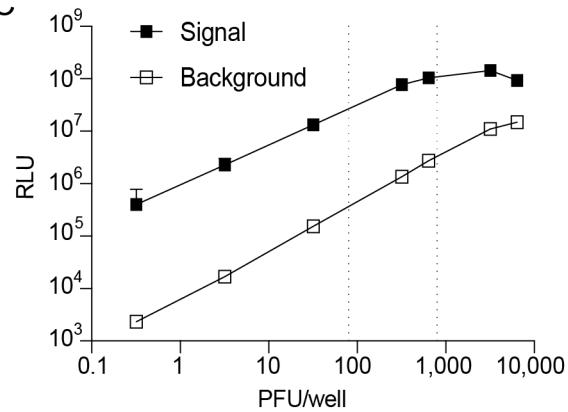


Figure S3

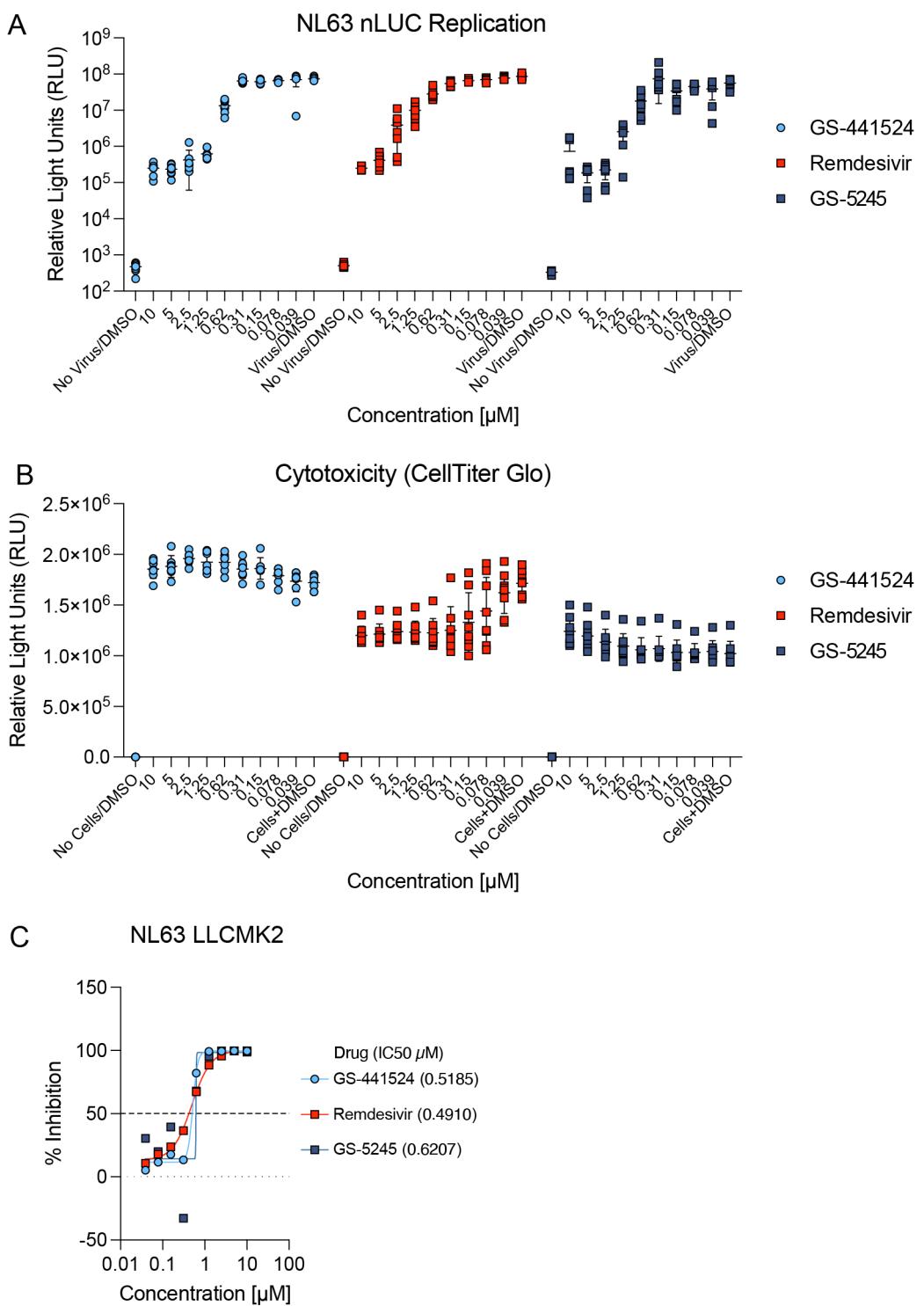


Figure S4

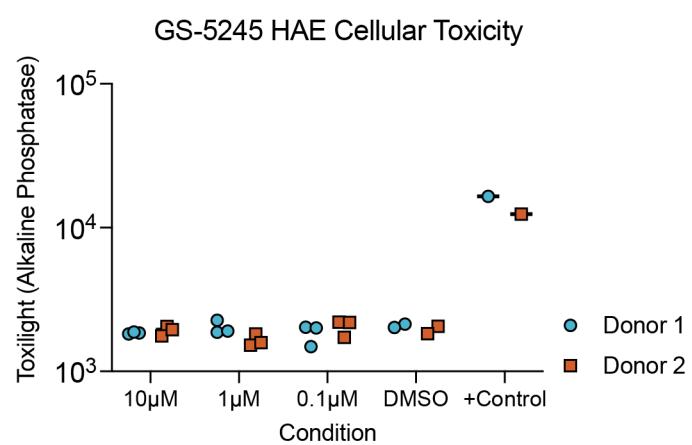


Figure S5

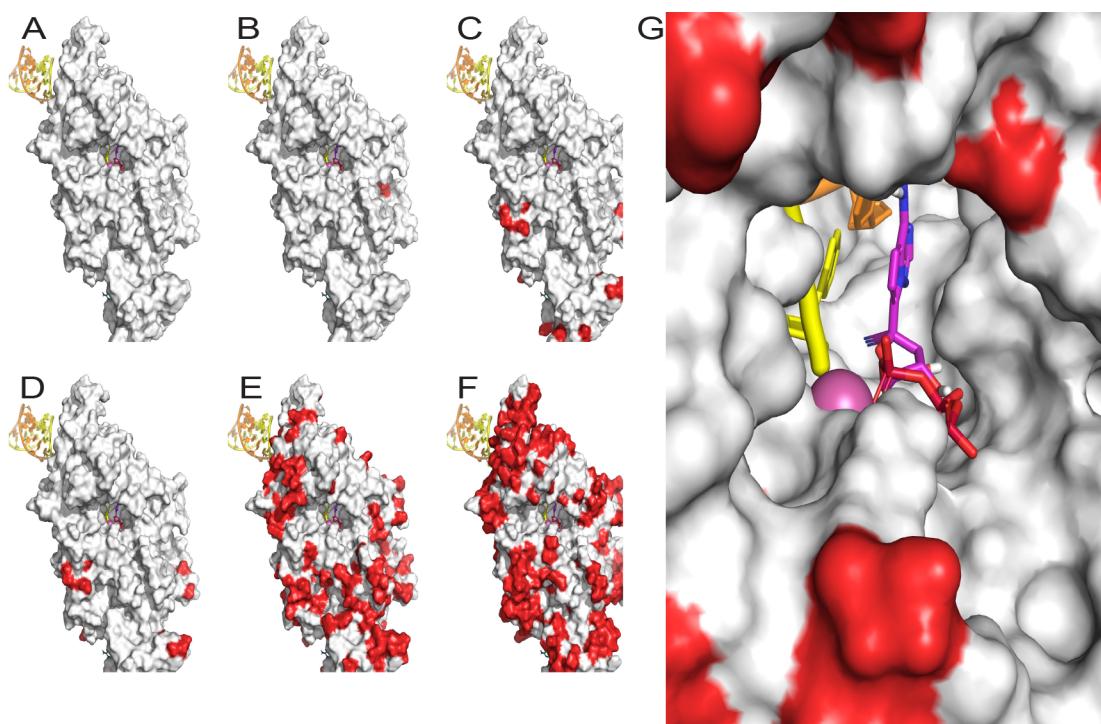
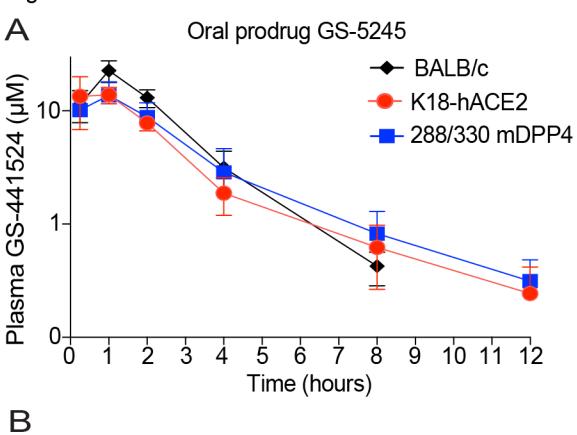
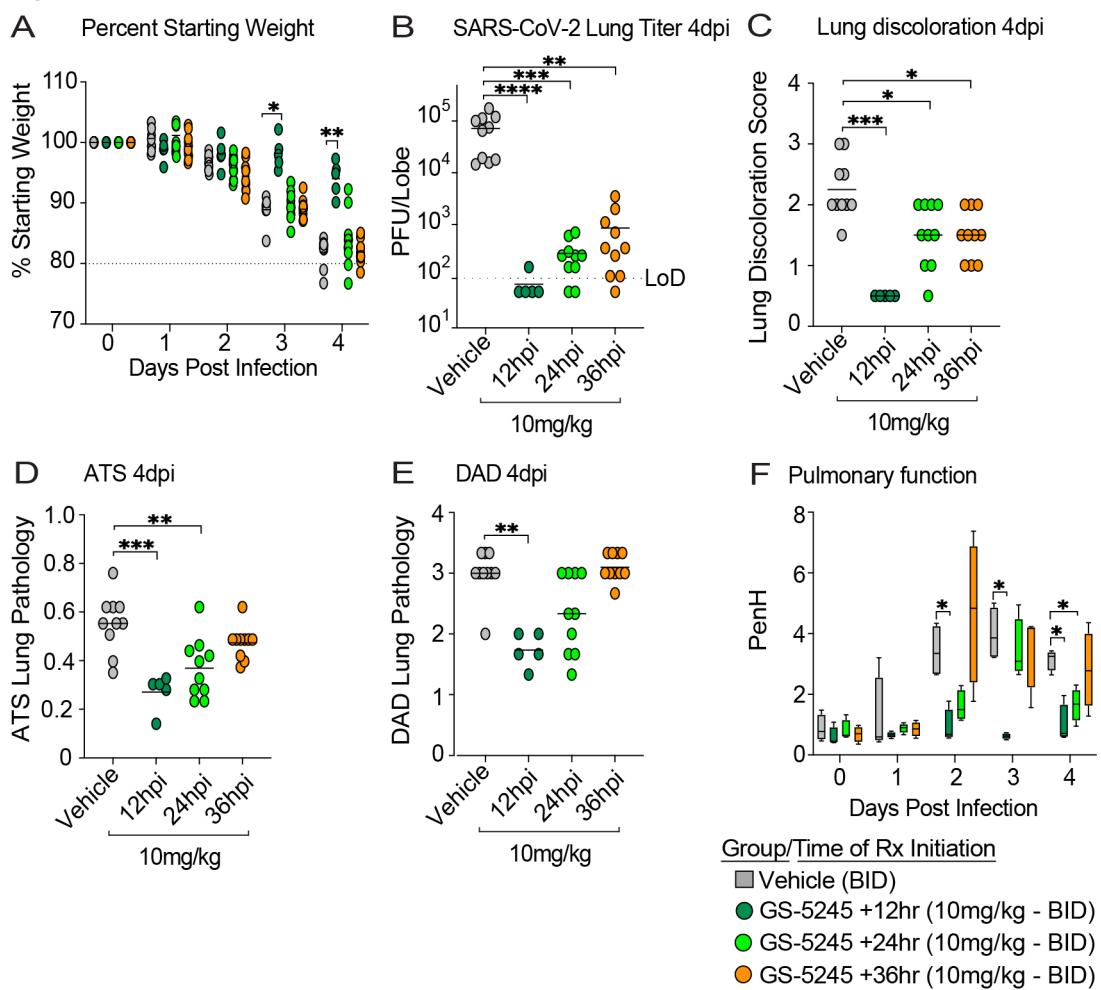



Figure S6


B

GS-441524 PK parameters in mice			
Strain	BALB/c	C57BL/6 288/330 mDPP4	C57BL/6 K18-hACE2
Sex	Female	3 males and 3 females	
Dose	30mg/kg		
T _{max} (h)	1±0	0.88±0.31	0.75±0.39
C _{max} (nM)	22.7±4.9	14.3±3.4	16.0±3.9
AUC ₀₋₁₂ (μM.h)	53.9±3.4	42.8±13.8	40.3±7.4

Figure S7

Figure S8

