bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546733; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

The Salivary Microbiome and Predicted Metabolite Production are Associated

with Progression from Barrett’s Esophagus to Esophageal Adenocarcinoma

Quinn S Solfisburg?, Federico Baldini?, Brittany L Baldwin-Hunter3, Harry H Lee?,
Heekuk Park3+4, Daniel E Freedberg3°, Charles J Lightdale®, Tal Korem?67*  Julian A

Abramss.5.8*

*co-corresponding authors

'Department of Medicine, Boston University School of Medicine, Boston, MA, USA
2Program for Mathematical Genomics, Department of Systems Biology, Columbia
University Irving Medical Center, New York, NY, USA

3Department of Medicine, Columbia University Irving Medical Center, New York, NY,
USA

4Microbiome and Pathogen Genomics Collaborative Center, Department of Medicine,
Columbia University Irving Medical Center, New York, NY, USA

SDigestive and Liver Disease Research Center, Columbia University Irving Medical
Center, New York, NY, USA

6Department of Obstetrics and Gynecology, Columbia University Irving Medical Center,
New York, NY, USA

’CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada

8Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical
Center, New York, NY USA

Co-corresponding authors:

Tal Korem, PhD

530 W 166t Street

Alianza Building, 3 floor

New York, NY 10032

E-mail: tal.korem@columbia.edu

Julian Abrams, MD, MS

630 W 168t Street

P&S 3-401

New York, NY 10032

E-mail: ja660 @cumc.columbia.edu



https://doi.org/10.1101/2023.06.27.546733
http://creativecommons.org/licenses/by-nc/4.0/

O© o0 9 N »n B~ WO

N N NN N N N o e e e e e e e e
AN LN A WD = O O XN NN R WD = O

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546733; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Abstract:

Esophageal adenocarcinoma (EAC) is rising in incidence and associated with poor
survival, and established risk factors do not explain this trend. Microbiome alterations
have been associated with progression from the precursor Barrett’s esophagus (BE) to
EAC, yet the oral microbiome, tightly linked to the esophageal microbiome and easier to
sample, has not been extensively studied in this context. We aimed to assess the
relationship between the salivary microbiome and neoplastic progression in BE to
identify microbiome-related factors that may drive EAC development. We collected
clinical data and oral health and hygiene history and characterized the salivary
microbiome from 250 patients with and without BE, including 78 with advanced
neoplasia (high grade dysplasia or early adenocarcinoma). We assessed differential
relative abundance of taxa by 16S rBRNA gene sequencing and associations between
microbiome composition and clinical features and used microbiome metabolic modeling
to predict metabolite production. We found significant shifts and increased dysbiosis
associated with progression to advanced neoplasia, with these associations occurring
independent of tooth loss, and the largest shifts were with the genus Streptococcus.
Microbiome metabolic models predicted significant shifts in the metabolic capacities of
the salivary microbiome in patients with advanced neoplasia, including increases in L-
lactic acid and decreases in butyric acid and L-tryptophan production. Our results
suggest both a mechanistic and predictive role for the oral microbiome in esophageal
adenocarcinoma. Further work is warranted to identify the biological significance of
these alterations, to validate metabolic shifts, and to determine whether they represent

viable therapeutic targets for prevention of progression in BE.
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INTRODUCTION:

Esophageal adenocarcinoma (EAC) has seen a dramatic rise in incidence in the
past several decades, is often diagnosed at advanced stages, and is associated with
poor survival.'?2 The factors that drive EAC remain incompletely understood. Barrett’s
esophagus (BE) is the precursor lesion to EAC, but the overwhelming majority of BE
patients do not progress to EAC. Established EAC risk factors, including
gastroesophageal reflux disease (GERD) and obesity, do not fully explain the rise in its

incidence.34

Increasing evidence suggests that the microbiome plays an important role in
modifying the risk of a variety of epithelial cancers®2 as well as in modulating the
response to treatment.%'" Changes in the esophageal microbiome have been observed
in EAC and with progression from BE to EAC,'213 raising the possibility that bacteria
contribute to esophageal neoplasia. Reliable sampling of the esophageal microbiome,
however, requires invasive procedures. A more accessible “window” to the esophageal
ecosystem is the oral microbiome, which was shown to strongly influence it.'* A small
study of the tumor-associated microbiome in EAC found a high prevalence of
domination by oral flora such as Streptococcus,’? pointing to a link between the oral
microbiome and EAC. Oral microbiome alterations have been associated with future
risk of EAC'5, and differences in the oral microbiome of BE patients were described
previously in a small study of 49 patients.'® Alterations in the oral microbiome have also
been associated with poor oral health'”, which was in itself associated with increased
risk of EAC in a recent analysis.'® It remains unclear how oral dysbiosis and poor oral
health interact in their association with EAC. Finally, little is known with regard to oral
microbiome alterations associated with neoplastic progression in BE patients. A clearer
understanding of these oral microbiome changes could identify factors that may drive

progression of neoplasia, representing novel therapeutic targets.

Here, we profiled the salivary microbiome from 250 patients with various stages
of BE and EAC who were undergoing upper endoscopy. We identify multiple

characteristics of the oral microbiome associated with neoplastic progression in BE and
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show that they are independent of oral health. Using metabolic modeling, we predict

metabolite profiles associated with alterations in BE, suggesting a mechanistic role for

microbially produced metabolites. Finally, we show that the salivary microbiome offers a

mild improvement in diagnostic accuracy compared to models based on clinical risk

factors. Our results demonstrate the potential of studying the oral microbiome in the

context of progression to EAC.

RESULTS:

Oral microbial composition from a large endoscopy cohort

We recruited 250 adult patients undergoing upper endoscopy and characterized

their oral microbiome using 16S rBRNA gene sequencing. (Methods) A total of 244

patients were included in the analyses: 125 controls without Barrett’s esophagus (BE),

and 119 BE patients (20 with non-dysplastic BE, 11 indefinite for dysplasia, 10 low

Age, years; mean (SD)
Sex, male; N (%)

Ever smokers; N (%)
BMI mean (SD)

Race, white; N (%)
GERD; N (%)

PPI use; N (%)

Aspirin use; N (%)
Oral health and hygiene

Tooth loss; N (%)

Tooth brushing frequency, >
daily; N (%)

Mouthwash frequency, >
daily; N (%)

All (n=244)

57.8 (18.7)
140 (57%)
103 (42%)
27.5 (6.7)
222 (90%)
167 (68%)
148 (60%)
77 (31%)

127 (52%)
233 (95%)

139 (56%)

Non-BE
(n=125)
50.9 (18.7)
45 (36%)
41 (33%)
27.0(7.9)
105 (84%)
64 (51%)
41 (33%)
25 (20%)

52 (42%)
123 (98%)

69 (55%)

BE
(n=119)
65.0 (15.8)
95 (80%)
62 (52%)
28.1 (5.1)
117 (98%)
103 (87%)
107 (90%)
52 (44%)

75 (63%)
110 (92%)

70 (59%)

P-value

<0.001
<0.001

0.002
<0.001
<0.001
<0.001
<0.001
<0.001

<0.001
0.03

0.61

Table 1. Patient Characteristics. P — t-test or Fisher exact p for difference between BE and non-

BE.
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grade dysplasia, 54 high grade dysplasia, and 24 intramucosal (T1a) adenocarcinoma).
Patients with BE were more likely to be older (t-test p<0.001), male (Fisher exact
p<0.001), white (p=0.001), or ever-smokers (defined as =100 lifetime cigarettes
smoked) (p=0.003). They were also more likely to have GERD (p<0.001), to be treated
with proton pump inhibitor (PPI; p<0.001), to take aspirin (p<0.001), and to have a
higher BMI (p<0.001). (Table 1) There was no significant difference in the use of
mouthwash between BE and non-BE patients (p=0.61), but non-BE patients were more
likely to brush their teeth at least daily (98% vs 92%, p=0.03). Compared to non-BE, a
significantly higher proportion of patients with BE had tooth loss (63% vs. 42%,
p=0.001), largely due to an increase in tooth loss in patients with advanced neoplasia
(defined as high grade dysplasia or adenocarcinoma, 66%; non-dysplastic BE, 40%;
non-BE, 42%; Fisher’s exact p=0.001). (Figure 1) Older age (per year, adjusted OR
1.06, 95% CI 1.04-1.08) and a history of smoking (adjusted OR 2.12, 95% CI 1.07-4.19)
were independently associated with tooth loss. (Supplementary Table 1) In
multivariable analyses adjusting for EAC risk factors (age, male sex, white race, and
GERD), tooth loss was associated with a non-significant increased risk of advanced
neoplasia (vs. non-BE, adjusted OR 1.49, 95%Cl 0.96-2.47). (Supplementary Table 2)
These results are in line with a recent analyses of data from the Nurses’ Health Study,
which found an association between both tooth loss and periodontal disease and risk of
esophageal adenocarcinoma, but showed a decrease in association strength after
adjusting for covariates.'® Established EAC risk factors were independently associated
with advanced neoplasia even after controlling for daily tooth brushing, use of
mouthwash, and presence of tooth loss, whereas these measures of oral health and
hygiene were not independently associated with advanced neoplasia (p=0.21, 0.57, and

0.34, respectively).
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Figure 1. Tooth loss is significantly more common in advanced neoplasia. A significantly
higher proportion of patients with advanced neoplasia (high grade dysplasia or esophageal
adenocarcinoma) had tooth loss as compared to non-BE and non-dysplastic BE patients combined
(Fisher’s exact p = 0.001). P — Fisher’s exact.

94
95 The oral microbiome of BE patients is progressively altered with dysplastic

96 changes.
97 To assess whether the salivary microbiome is associated with neoplastic
98 progression, we focused our analyses on comparisons between three groups: non-BE
99  (n=125), non-dysplastic BE (n=20), and advanced neoplasia (high grade dysplasia and
100  adenocarcinoma [HGD/EAC]; n=78). We found that neoplastic progression was
101  associated with significantly lower alpha diversity (Shannon: Kruskal-Wallis p=0.005,
102  Figure 2A; Simpson: p=0.0029, Supplementary Figure 1). Compared to patients
103 without BE, the alterations in alpha diversity were more pronounced in patients with
104  advanced neoplasia than in those with nondysplastic BE (non-BE vs. non-dysplastic BE,
105 Mann-Whitney p=0.11; non-BE vs advanced neoplasia, p=0.0006). There was no

106  significant difference in alpha diversity comparing nondysplastic BE with advanced
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107  neoplasia (p=0.23). We further found that the oral microbiome from patients with

108  advanced neoplasia tended to cluster separately than the rest of the cohort (weighted
109  UniFrac, ANOSIM p<0.001; Figure 2B). Similar results were found when including all
110  the subjects in their individual groups (non-BE, nondysplastic BE, IND, LGD, HGD, and
111  EAC; Supplementary Figure 2). Our results indicate that the salivary microbiome

112  alterations observed in advanced neoplasia are reflected both in the diversity of each
113 individual’s microbiome (alpha diversity) and in compositional differences between

114  individuals (beta diversity).
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Figure 2. A microbial signature of BE. (A) Patients with advanced neoplasia have significantly
reduced alpha diversity compared to non-BE patients. Kruskal-Wallis overall p-value=0.005. p —
Mann-Whitney U test. (B) Weighted UniFrac PCoA demonstrated significant clustering of patients
with advanced neoplasia (ANOSIM p=0.001). NDBE, non-dysplastic BE; advanced neoplasia — high

grade dysplasia or esophageal adenocarcinoma; ellipse, 2 standard deviation sigma ellipse.
115
116 We next checked whether specific microbes were associated with BE
117  progression. We therefore compared relative abundance of different OTUs between all
118  BE patients vs. non-BE using ALDEx2.1° (Methods) A total of 26 OTUs were identified
119 as differentially abundant (p < 0.05, FDR corrected at 0.1; Figure 3). To assess

120  whether the dysbiotic signature associated with BE is more pronounced with dysplastic
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changes, we checked whether these 26 OTUs were correlated with progression across
the neoplastic spectrum, from no dysplasia to EAC (Methods). There was a significant
association (p<0.05, FDR corrected at 0.1) for 23 of the 26 taxa, with a clear shift in
composition with neoplastic progression, notably in the transition from low grade
dysplasia (LGD) to high grade dysplasia (HGD). (Figure 3) This transition in
composition from LGD to HGD is consistent with our prior observations of esophageal
microbiome alterations with progression to EAC.2° The taxonomic alterations
associated with progression were notable for increased relative abundance of several

Streptococcus species. Streptococci form biofilms in the oral cavity?'-23.
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Otu22: Streptococcus parasanguinis -
Otu3: Veillonella dispar -

Otu64: Streptococcus mutans -
Otu2: Streptococcus mitis -
Otu7: Streptococcus salivarius -
Otu93: Prevotella oralis -
Otu862: Veillonella atypica -
Otui4: Atopobium parvulum -
Otu38: Schaalia spp. -

Otu125: Schaalia lingnae -
Otu11: Granulicatella adiacens -
Otu8: Rothia mucilaginosa -
Otu21: Rothia dentocariosa -
Otu10: Saccharibacteria -
Otu97: Veillonella spp. -

Otu51: Saccharibacteria -

Otu829: Saccharibacteria -
Otu66: Prevotella shahii -

Otu87: Porphyromonas spp. -
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--0.2

Otu6: Neisseria perflava -
Otu17: Porphyromonas pasteri -
Otu53: Saccharibacteria -

3

Otu39: Peptostreptococcus stomatis -
Otu25: Prevotella nanceiensis -
Otu15: Alloprevotella spp. -

Otu81: Alloprevotella spp. -

NDBE Indef LGD HGD EAC

Neoplastic Progression

Figure 3. Increased oral dysbiosis with progressive dysplasia. Shifts in the oral microbiome
compared to non-BE patients (shown as ALDEx2 effect sizes) were more pronounced with progression
from no dysplasia to EAC, particularly notable in patients with high grade dysplasia and EAC. Bolded
OTUs were significantly associated with neoplastic progression. (p < 0.05, FDR corrected at 0.1;
Methods) NDBE, nondysplastic Barrett’s esophagus; Indef, indefinite for dysplasia; LGD, low grade
dysplasia; HGD, high grade dysplasia; EAC, esophageal adenocarcinoma.
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131  The salivary microbiome is associated with advanced neoplasia even when

132 controlling for tooth loss.

133 Tooth loss is known to be strongly associated with oral microbiome

134  composition'’, and there was an increased proportion of advanced neoplasia patients
135  with tooth loss. (Figure 1) Comparing patients who did and did not have all or most of
136  their natural adult teeth, we found that those with tooth loss had lower alpha diversity
137  (Shannon, Mann-Whitney p=0.001; Supplementary Figure 3A), and that oral

138  microbiomes from both groups clustered separately (weighted UniFrac, ANOSIM

139  p=0.003; Supplementary Figure 3B). We also identified 29 OTUs that had significantly
140  different abundance between patients with and without tooth loss. (ALDEx2 p < 0.05,
141  FDR corrected at 0.1; Figure 4) As poor oral health is associated with oral dysbiosis,
142  this raised the question of whether the oral microbiome is associated with advanced
143  neoplasia independent of tooth loss.

144 We first examined whether salivary microbiome composition as a whole is

145  associated with advanced neoplasia independently of tooth loss. We therefore

146  calculated microbiome principal coordinates (PCos) using weighted UniFrac distances
147  and used the top five PCos, which represented two thirds of the variance in microbiome
148  composition. We then used multivariable logistic regression and found that PCo2

149  (explaining 22% of microbiome variation) and PCo4 (4.6%) were independently

150 associated with advanced neoplasia. (p<0.001 and p=0.004, respectively) We then

151 added the major EAC risk factors (age, sex, race, BMI, GERD history, and smoking

152 history) to the model, and found that PCo2 remained independently associated with

153 advanced neoplasia (p=0.004), suggesting that salivary microbiome composition

154  represents a potential novel independent risk factor for EAC. Adding tooth loss to the
155 model did not alter the association between PCo2 and advanced neoplasia (p=0.004),
156  and in this model tooth loss was not independently associated with advanced neoplasia
157  (p=0.12). Our results suggest that the association of tooth loss with advanced

158 neoplasia is mediated through the oral microbiome.

159 We next assessed whether associations between specific oral taxa and

160 advanced neoplasia are independent of tooth loss. Of the 33 taxa associated with

10
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161 advanced neoplasia (N=78) vs. non-BE (N=125; ALDEx2 p < 0.05; FDR corrected at
162  0.1), 18 were also associated with tooth loss. (Figure 4) After adjusting for tooth loss in
163  a generalized linear model, 20 of these taxa remained significantly associated with

164  advanced neoplasia. (ALDEx2 p < 0.05, FDR corrected at 0.1) Notably, the four OTUs
165  with the greatest increase in relative abundance in advanced neoplasia were all

166  assigned to the genus Streptococcus, and the increased abundance of these

167  Streptococcus OTUs in advanced neoplasia was independent of tooth loss. This

168  corresponds with previous studies that found that the tumor-associated microbiome in

169 EAC is often dominated by Streptococcus species.?

11
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Figure 4. Oral microbes are independently associated with advanced neoplasia and tooth loss.
Differentially abundant taxa in patients with advanced neoplasia (high-grade dysplasia or esophageal
adenocarcinoma) compared to non-BE (left) and in patients with and without tooth loss (right). Many
taxa were associated with both neoplasia and tooth loss, yet most of these remained significantly
differentially abundant after adjusting for tooth loss and advanced neoplasia, respectively (ALDEX2 p
< 0.05, FDR corrected at 0.1; denoted by asterisks).
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171  Metabolic modeling predicts distinct metabolic secretion capabilities in advanced
172 neoplasia.

173 Metabolite production by microbial communities is an important modality by

174 which the microbiome affects the host. In order to assess if microbially produced

175  metabolites might play a role as a driver or biomarker of neoplasia, we used microbiome
176  community-scale metabolic models to predict metabolite secretion by the microbiome
177  for every sample. (Methods) We found significant clustering of predicted metabolite
178  profiles comparing advanced neoplasia cases with non-BE subjects (PERMANOVA

179  p=0.001). Using principal components analysis, we found notable shift in the second
180 component (15% explained variance; Mann-Whitney p=0.0003). (Figure 5A) Forty-four
181  predicted metabolites had significantly altered abundance (p < 0.05, FDR corrected at
182  0.1) in advanced neoplasia. (Figure 5B) Notable alterations included increased

183  predicted levels of L-lactic acid (p=0.023), a by-product of aerobic glycolysis, a hallmark
184  of cancer which can contribute to neoplasticity;>* and 2-ketobutyric acid (p=0.033),

185  previously reported to support mitochondrial respiration and cell proliferation.?®> We also
186  predicted that advanced neoplasia features a decrease in butyric acid (p=0.0089), a key
187  promoter of gut homeostasis that was previously shown to be depleted in colon cancer
188  and inflammatory bowel disease;?%-? and a decrease in L-tryptophan (p=0.0017).

189  (Figure 5C) Circulating levels of tryptophan have been inversely associated with colon
190  cancer risk?®, and melatonin, a by-product of L-tryptophan metabolism, is under

191 investigation for EAC prevention.>® The pattern of the shifts we predict is therefore

192  consistent with the potential promotion of proliferation, inflammation, and cancer.

193
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Figure 5. The predicted metabolic profile is altered in patients with advanced neoplasia. (A)
Significant clustering by advanced neoplasia status on principal components analysis (PERMANOVA
p=0.001), with pronounced shifts in PC2 (p=0.0003). (B) Volcano plot demonstrating differentially
abundant metabolites in advanced neoplasia. (C) Significantly altered predicted levels of L-lactic acid,
2-ketobutyric acid, butyric acid, and L-tryptophan in advanced neoplasia. Plot capped at -4 for
butyrate. P, Mann-Whitney test

Salivary microbiome data improves on clinical risk factors-based prediction of
advanced neoplasia.

We next performed an exploratory analysis to determine whether salivary
microbiome features in this cohort could be used to distinguish advanced neoplasia
from non-BE patients. As a baseline, we first trained a gradient boosted decision trees
model which uses clinical risk factors for EAC and tooth loss to classify advanced
neoplasia. The classifier was tested in cross-validation on patients not seen in the

training of that model and achieved an area under the receiver operating characteristic
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203  curve (AUROC) of 0.84 (95%CI 0.79-0.89). The same process was then used to train a
204 classifier using microbiome data, whereas, within each training fold, 10 OTUs were

205 selected based on a Kruskal-Wallis test. This classifier had an AUROC of 0.72 (95%ClI
206  0.65-0.79). Finally, a model trained on the combination of both microbiome data and
207  EAC risk factors resulted in somewhat higher model accuracy, producing an AUROC of
208  0.88 (95%CI 0.83-0.91; vs. clinical risk factor model AUROC 0.84, 95%CI 0.79-0.89;
209 Delong p=0.053). (Supplementary Figure 4) A combined microbiome and clinical risk
210  factor model with the outcome limited to HGD and excluding intramucosal EAC showed
211  similar results with an AUROC 0.86 (95%CI 0.80-0.92), compared to an AUROC of 0.83
212 (95%CI 0.77-0.89) using only clinical risk factors for the same task. (Supplementary
213 Figure 5)

214

215

216 DISCUSSION:

217 In this cross-sectional study of patients with and without BE, we detected marked

218  shifts in the salivary microbiome with progression to EAC, with changes that appeared
219  to be most pronounced in patients with advanced neoplasia. These changes included
220  reduced diversity as well as significantly increased relative abundance of several taxa in
221 the genus Streptococcus. As in previous studies, we found that tooth loss is more

222 common in patients with advanced neoplasia. However, we show that many of the

223  salivary microbiome associations observed in BE and advanced neoplasia persisted
224 even when accounting for it. Further, we used metabolic modeling to identify distinct
225  predicted metabolic secretion capabilities in advanced neoplasia.

226 Our findings add to the growing body of evidence that the oral microbiome is

227 linked to the esophageal microbiome and may contribute to esophageal neoplasia. In a
228  case-control study of patients with EAC, BE, and controls, the EAC-associated

229  microbiome had significantly reduced alpha diversity, similar to our observations in

230 saliva.'? Interestingly, in that study 5/15 of the EAC tumors were dominated by

231  Streptococcus spp. (relative abundance 69%-98%). In our salivary microbiome

232 analyses, 4 of the 5 taxa most strongly associated with advanced neoplasia were also
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233 Streptococcus spp. Our group conducted a randomized controlled trial and found that
234 an antimicrobial mouth rinse can produce esophageal microbiome and tissue gene

235  expression changes, highlighting the relevance of oral bacteria to esophageal disease.®’
236  In another cohort study analyzing mouth rinse samples from patients enrolled in two
237  large cancer prevention studies, oral microbiome alterations were noted to precede an
238 EAC diagnosis by several years.’ In a small study of 49 patients we previously noted
239  marked salivary microbiome alterations associated with BE and also with advanced

240 neoplasia.®

241 Our study features the use of microbiome metabolic models to identify broad

242  shifts in metabolites predicted to be produced by the saliva microbiome. Many of the
243  predicted changes to metabolite outputs correspond with existing knowledge. Lactic

244  acid, for example, was predicted to be increased in advanced neoplasia. Lactic acid can
245  serve as a major energy source for proliferative cancer cells, and is known to activate
246  hypoxia inducible factors, which in turn contribute to proliferation, angiogenesis, and
247  other neoplastic features.?* Our findings could therefore support the hypothesis that the
248 oral and esophageal microbiota promotes EAC development and progression via

249  production of metabolites.®? Our findings further correspond with a previous study

250  detecting lactic-acid bacteria in many esophageal adenocarcinomas.!> However, the
251  biological significance of predicted metabolite production is unclear, and future studies
252  are needed to validate these predictions and to elucidate the biological effects of

253  specific bacterial metabolites on esophageal neoplasia.

254 Prior work has associated tooth loss and periodontal disease with increased risks
255  of esophageal squamous cell cancer and gastric cancer, and a recent study found an
256  association between both tooth loss and periodontal disease and risk of esophageal
257 adenocarcinoma.'® This indicates a potential confounding effect, as tooth loss is also
258  associated with major alterations in oral microbiome composition.'” Our study offers an
259  explanation for these associations, demonstrating that salivary microbiome composition
260 is independently associated with advanced neoplasia, even when adjusting for EAC risk

261 factors and for tooth loss. These findings suggest that the association between tooth
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262  loss and esophageal neoplasia is mediated by changes in the salivary microbiome, and
263  that the salivary microbiome may represent a novel independent risk factor for EAC.
264 We performed exploratory analyses to assess whether the salivary microbiome
265  could discriminate patients at highest EAC risk. The salivary microbiome is highly

266  suitable for diagnostics, as it is stable over time33-3%, especially compared to other body
267 sites®, and is resistant to perturbations.?” Addition of a microbiome-based classifier to
268 EAC risk factors resulted in modest improvement in discrimination. However, the

269  current study was not specifically designed to address this question, and future studies
270  should explore further the salivary microbiome as a potential biomarker for advanced
271  neoplasia.

272 Important strengths of the current study include the relatively large sample size
273 and the inclusion of oral health and hygiene information from patients. The large

274  sample size allowed for the detection of significant microbiome alterations, even when
275  correcting for multiple comparisons. Previous studies of the oral microbiome in BE and
276  EAC have not included oral health and hygiene data, key potential confounders. The
277  patients were well characterized, with data collected on key EAC risk factors including
278  GERD history, BMI, and smoking, which permitted microbiome analyses adjusting for
279  these variables. The BE patients in the study were demographically similar to BE

280  populations from other studies, enhancing the generalizability of the findings. Lastly,
281  novel methods for predicted microbiome metabolic profiling allowed for insights into
282  functional correlates of the salivary microbiome alterations.

283 The study does have certain limitations. There were a relatively small number of
284  non-dysplastic BE patients, limiting analyses in this subgroup. Analyses did not

285  incorporate dietary intake; however, previous studies suggest that diet has minimal

286  impact on salivary microbiome composition.®8-4% No conclusions can be drawn with
287  regard to temporality in this cross-sectional study. It is possible that the observed

288  salivary microbiome alterations were caused by BE-associated advanced neoplasia,
289  although we believe that this is unlikely. Tooth loss was self-reported rather than

290  measured, and periodontal disease was not directly assessed. Community-scale

291  metabolic models also have notable limitations. Our analysis was based on 16S rRNA
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292  gene sequencing, which does not allow us to tailor models to specific strains or genetic
293  potential present in each sample. Additionally, while genome-scale models have been
294  curated for common gut commensals, to our knowledge, such efforts have not been

295  done for oral microbes. Consequently, some models may be missing, while existing
296 ones may lack representation of niche-specific metabolic capacity. Despite these

297 limitations, these models allow a systematic application of biochemical and genetic

298 knowledge to our analysis and raise interesting hypotheses that could be experimentally
299  validated.

300 In conclusion, patients with BE-associated advanced neoplasia have a markedly
301 altered salivary microbiome, and analyses of taxonomic alterations associated with

302 stages of progression from BE to EAC appear to indicate that these changes are most
303 notable at the transition from low- to high-grade dysplasia. Increased tooth loss was
304 also observed with progression to EAC, although the salivary microbiome alterations
305 were largely independent of tooth loss, suggesting that the association of tooth loss with
306 advanced neoplasia is mediated through the oral microbiome. There were marked

307 increases in various taxa in the genus Streptococcus in advanced neoplasia, possibly
308 pointing to a biological contribution of these bacteria to neoplastic progression. In

309 addition to the microbiome alterations, progression to EAC was associated with

310 numerous changes to predicted bacterial metabolite production, with notable alterations
311 that suggest possible proneoplastic effects related to these shifts. Further work is

312 warranted to identify the biological significance of the microbiome alterations, to validate
313  metabolic shifts, and to determine whether they represent viable therapeutic targets for
314  prevention of progression in BE.

315

316

317 METHODS:

318  Study Design

319 A total of 250 patients with and without BE undergoing upper endoscopy at

320  Columbia University Irving Medical Center (New York, NY) were prospectively enrolled

321  from February 2018 through February 2019. Patients were =18 years old and

18


https://doi.org/10.1101/2023.06.27.546733
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546733; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

322  scheduled to undergo endoscopy for clinical indications. Patients were excluded if they
323  had a concurrently scheduled colonoscopy, had a history of gastric or esophageal

324  surgery, a history of esophageal squamous cell cancer, or use of antibiotics, steroids, or
325  other immunosuppressants in the 3 months prior to the procedure. This study was

326  approved by the Columbia University Institutional Review Board. All patients provided
327  written informed consent.

328 Data were collected on patient demographics and anthropometrics (to calculate
329  BMI) as well as clinical information including medical history, history of gastro-

330 esophageal reflux disease (GERD; defined as experiencing frequent heartburn or fluid
331 regurgitation), medication use at time of enroliment (with specific notation of daily use of
332 proton pump inhibitors (PPIs), histamine-2 receptor antagonists, statins, and daily use
333  of aspirin and non-steroidal anti-inflammatory drugs), alcohol history, and smoking

334  history (ever smoking defined as having smoked >100 lifetime cigarettes). Data were
335 collected on self-reported oral health and hygiene. Tooth loss was assessed using

336  categories adapted from Borningen et al.’”: all or most of natural adult teeth, partial

337 plates or implants, full upper dentures or implants, full lower dentures or implants, full
338 upper and lower dentures or implants. Data were also collected on tooth brushing and
339  mouthwash use.

340 Patients did not eat or drink after midnight prior to the endoscopy and saliva

341 collection; saliva was collected prior to the endoscopy. Patients were categorized as
342 BE if they had a history of endoscopically suspected BE with intestinal metaplasia on
343  esophageal biopsies. BE patients were further categorized based on the highest

344  degree of neoplasia ever (no dysplasia (NDBE), indefinite for dysplasia (IND), low grade
345 dysplasia (LGD), high grade dysplasia (HGD), adenocarcinoma (EAC)).

346

347 Microbiome Sequencing and Analysis

348 The 16S rRNA V3-V4 region was amplified using lllumina adapter-ligated

349  primers.4! The lllumina Nextera XT v2 index sets A-D were used to barcode

350 sequencing libraries. Libraries were sequenced on an Illlumina MiSeq using the v3

351 reagent kit (600 cycles) and a loading concentration of 12 pM with 10% PhiX spike-in.
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352  Sequences were assigned to operational taxonomic units (OTUs) using USEARCH#*?
353  with 2 97% sequence homology. Taxonomic assignments for the OTUs were based on
354  the Human Oral Microbiome Database (HOMD).*® Any subsequently unassigned OTUs
355 were assigned by referencing the Ribosomal Database Project (RDP).44 Samples were
356  subsampled to 10,000 reads to compare across even sequencing depths while

357 minimizing data loss. Five patients were excluded after sequencing because of

358 relatively low sequencing depth with <10,000 total reads per sample. The median read
359  count for the full cohort was >33,000. One patient was excluded because of a history of
360 both EAC and esophageal squamous cell carcinoma.

361

362 Microbiome metabolic modeling of oral microbial communities

363 Microbiome metabolic modeling was performed using the Microbiome Modeling
364  Toolbox (COBRA toolbox commit: 71¢117305231f77a0292856e292b95ab32040711)
365 4546 and the AGORA metabolic models (AGORA 1.02).47 All computations were

366  performed in MATLAB version 2019a (Mathworks, Inc.), using the IBM CPLEX (IBM,
367 Inc.) solver. We first matched species detected by our microbial sequencing analysis
368  with the ones present in AGORA.4” Because AGORA metabolic models are available at
369 the strain level, we generated species-level models using the createPanModels.m

370  function of the Microbiome Modeling Toolbox (MMT)4® as previously described.*® To
371 increase the number of species represented in our microbiome models we chose

372  genus-level representative models for abundant microbes present in the oral cavity with
373  >5% relative abundance in more than 10 samples. There were six species without a
374  corresponding metabolic model, and these were either grouped with similar species or
375 excluded from the analyses (See Supplementary Table 3 for details).

376 We then used the mgPipe.m automated pipeline of the MMT to build and

377 interrogate sample-specific microbiome metabolic models. Briefly, for each sample,
378 personalized microbiome models are created by joining species-level metabolic models
379  using the compartmentalization technique?*?; a lumen compartment enabling microbial
380 metabolic interactions is added, as well as additional input and output compartments,

381 allowing microbiome intake and secretion of metabolites. Altogether our microbiome
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382  models included 160 microbial species with an average of 50 species for each sample
383 and a maximum of 69. As constraint-based metabolic modeling benefits from a

384  specification of the metabolic environment such as media and carbon source

385 availability®0, we applied a “western diet™! to each sample in the form of constraints on
386 the metabolites uptake reactions.5' Finally, to obtain metabolic predictions, we used the
387  Net Maximal Production Capabilities (NMPCs) through the mgPipe pipeline*® to provide
388  predictions of the metabolite secretion profile of each sample. To detect significant

389 changes in NMPCs distributions between cases and controls a Mann-Whitney U test
390  was performed for each retained NMPCs. Only NMPCs which were present in at least
391  10% of the cases and had at least a value of 0.01 were retained for the significance
392 analysis. FDR correction using the Benjamini-Hochberg procedure was applied.

393

394  Statistical Analysis

395 The primary groups of comparison were BE patients with advanced neoplasia
396 (HGD or EAC), non-dysplastic BE (NDBE) and non-BE controls. Grouping high grade
397 dysplasia and intramucosal adenocarcinoma together as advanced neoplasia reflects
398 common practice as well as clinical guidelines for treatment.>? There is extremely low
399 inter-observer agreement (even among expert gastrointestinal pathologists) for the

400 diagnosis of LGD%3-%5, as inflammation-induced cytologic atypia mimics the findings of
401 LGD. As a result, while estimates of cancer risk for LGD are relatively low on

402  average,* these estimates vary widely, thus making interpretations of findings for this
403  group challenging. Patients with low grade dysplasia or indefinite for dysplasia were
404  included in analyses assessing for alterations in the oral microbiome across the entire
405 BE neoplastic spectrum. While there was no a priori reason to suspect that endoscopic
406 therapy would have altered the salivary microbiome, comparisons were made between
407  those patients with LGD or worse who had (n=78) and had not (n=10) received prior
408 endoscopic therapy. There were no differences in alpha diversity (p=0.16), no evidence
409  of clustering on beta diversity analyses (ANOSIM p=0.13), and no differentially

410 abundant taxa. Thus, treated and untreated patients were grouped together for all

411  analyses.
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412 Categorical variables were compared across groups using Fisher’s exact tests.
413  Continuous variables were analyzed using t-tests or rank sum tests as appropriate, with
414  ANOVA and Kruskal Wallis tests for >3 groups. For purposes of analyses, tooth loss
415  was dichotomized as having all or most of natural adult teeth (yes/no). Multivariable
416 logistic regression was performed to assess the association between tooth loss and

417  advanced neoplasia, adjusted for known EAC risk factors (age, sex, GERD, body mass
418 index (BMI), smoking).

419 Alpha diversity was evaluated using the Shannon diversity index and beta

420  diversity using weighted UniFrac®® distances. Groups were compared using both

421  permutational multivariate analysis of variance (PERMANOVA) for predicted metabolite
422  profiles and analysis of similarities (ANOSIM) for microbial compositions. To find

423  differential abundances between study groups, the ALDEx2'° R package was used. For
424  differential abundance analyses, only OTUs present in at least 5% of all samples were
425  included to allow for more meaningful comparisons. ALDEx2 was used to compare

426  worst histological grades of BE as an ordinal variable in a generalized linear model and
427  to assess correlation of BE-associated OTUs with neoplastic progression using

428  aldex.corr to treat worst histological grade as a continuous variable. ALDEx2 was also
429  used to find significance for differentially abundant taxa in a multivariate model with both
430 advanced neoplasia and tooth loss.

431 Generalized linear models were used to assess differential relative abundance of
432  bacterial taxa in advanced neoplasia, adjusted for tooth loss. Multivariable logistic

433  regression was performed to detect associations between advanced neoplasia and

434 microbiome composition (represented by its top five principal coordinates), adjusted for
435  EAC risk factors (age, sex, race, BMI, smoking, GERD). Supervised machine learning
436  was used to classify patients with advanced neoplasia using the LightGBM package.®’
437  Three models were created: 1) EAC risk factors alone (age, sex, race, BMI, smoking,
438 GERD); 2) microbiome features alone; and 3) EAC risk factors and microbiome features
439  together. Model parameters were optimized per fold in 10-fold cross-validation, with

440  strict train-test sterility. The output of the models were predicted probabilities of whether

22


https://doi.org/10.1101/2023.06.27.546733
http://creativecommons.org/licenses/by-nc/4.0/

441
442
443
444
445
446
447

448
449

450
451

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546733; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a patient has advanced neoplasia or no BE, with the goal of identifying the patients at
highest risk of mortality from EAC.

All statistical analyses were performed in Python or R. Statistical significance
was defined as p<0.05. Differential abundance analyses were corrected for multiple
comparisons using the Benjamini-Hochberg procedure, and corrected statistical
significance was defined as p<0.1. 95% confidence intervals for AUCs were calculated

using the DeLong method using pROC.58

Data Availability: 16S rBRNA gene sequencing files were uploaded to NCBI Sequence
Read Archive (PRJNA785879).
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