

The Salivary Microbiome and Predicted Metabolite Production are Associated with Progression from Barrett's Esophagus to Esophageal Adenocarcinoma

Quinn S Solfisburg¹, Federico Baldini², Brittany L Baldwin-Hunter³, Harry H Lee²,
Heekuk Park^{3,4}, Daniel E Freedberg^{3,5}, Charles J Lightdale³, Tal Korem^{2,6,7*}, Julian A
Abrams^{3,5,8*}

*co-corresponding authors

¹Department of Medicine, Boston University School of Medicine, Boston, MA, USA

²Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA

³Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA

⁴Microbiome and Pathogen Genomics Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA

⁵Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY, USA

⁶Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA

⁷CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada

⁸Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA

Co-corresponding authors:

Tal Korem, PhD
530 W 166th Street
Alianza Building, 3rd floor
New York, NY 10032
E-mail: tal.korem@columbia.edu

Julian Abrams, MD, MS
630 W 168th Street
P&S 3-401
New York, NY 10032
E-mail: ja660@cumc.columbia.edu

1 **Abstract:**

2 Esophageal adenocarcinoma (EAC) is rising in incidence and associated with poor
3 survival, and established risk factors do not explain this trend. Microbiome alterations
4 have been associated with progression from the precursor Barrett's esophagus (BE) to
5 EAC, yet the oral microbiome, tightly linked to the esophageal microbiome and easier to
6 sample, has not been extensively studied in this context. We aimed to assess the
7 relationship between the salivary microbiome and neoplastic progression in BE to
8 identify microbiome-related factors that may drive EAC development. We collected
9 clinical data and oral health and hygiene history and characterized the salivary
10 microbiome from 250 patients with and without BE, including 78 with advanced
11 neoplasia (high grade dysplasia or early adenocarcinoma). We assessed differential
12 relative abundance of taxa by 16S rRNA gene sequencing and associations between
13 microbiome composition and clinical features and used microbiome metabolic modeling
14 to predict metabolite production. We found significant shifts and increased dysbiosis
15 associated with progression to advanced neoplasia, with these associations occurring
16 independent of tooth loss, and the largest shifts were with the genus *Streptococcus*.
17 Microbiome metabolic models predicted significant shifts in the metabolic capacities of
18 the salivary microbiome in patients with advanced neoplasia, including increases in L-
19 lactic acid and decreases in butyric acid and L-tryptophan production. Our results
20 suggest both a mechanistic and predictive role for the oral microbiome in esophageal
21 adenocarcinoma. Further work is warranted to identify the biological significance of
22 these alterations, to validate metabolic shifts, and to determine whether they represent
23 viable therapeutic targets for prevention of progression in BE.

24

25

26

27 **INTRODUCTION:**

28 Esophageal adenocarcinoma (EAC) has seen a dramatic rise in incidence in the
29 past several decades, is often diagnosed at advanced stages, and is associated with
30 poor survival.^{1,2} The factors that drive EAC remain incompletely understood. Barrett's
31 esophagus (BE) is the precursor lesion to EAC, but the overwhelming majority of BE
32 patients do not progress to EAC. Established EAC risk factors, including
33 gastroesophageal reflux disease (GERD) and obesity, do not fully explain the rise in its
34 incidence.^{3,4}

35 Increasing evidence suggests that the microbiome plays an important role in
36 modifying the risk of a variety of epithelial cancers⁵⁻⁸ as well as in modulating the
37 response to treatment.⁹⁻¹¹ Changes in the esophageal microbiome have been observed
38 in EAC and with progression from BE to EAC,^{12,13} raising the possibility that bacteria
39 contribute to esophageal neoplasia. Reliable sampling of the esophageal microbiome,
40 however, requires invasive procedures. A more accessible "window" to the esophageal
41 ecosystem is the oral microbiome, which was shown to strongly influence it.¹⁴ A small
42 study of the tumor-associated microbiome in EAC found a high prevalence of
43 domination by oral flora such as *Streptococcus*,¹² pointing to a link between the oral
44 microbiome and EAC. Oral microbiome alterations have been associated with future
45 risk of EAC¹⁵, and differences in the oral microbiome of BE patients were described
46 previously in a small study of 49 patients.¹⁶ Alterations in the oral microbiome have also
47 been associated with poor oral health¹⁷, which was in itself associated with increased
48 risk of EAC in a recent analysis.¹⁸ It remains unclear how oral dysbiosis and poor oral
49 health interact in their association with EAC. Finally, little is known with regard to oral
50 microbiome alterations associated with neoplastic progression in BE patients. A clearer
51 understanding of these oral microbiome changes could identify factors that may drive
52 progression of neoplasia, representing novel therapeutic targets.

53 Here, we profiled the salivary microbiome from 250 patients with various stages
54 of BE and EAC who were undergoing upper endoscopy. We identify multiple
55 characteristics of the oral microbiome associated with neoplastic progression in BE and

56 show that they are independent of oral health. Using metabolic modeling, we predict
57 metabolite profiles associated with alterations in BE, suggesting a mechanistic role for
58 microbially produced metabolites. Finally, we show that the salivary microbiome offers a
59 mild improvement in diagnostic accuracy compared to models based on clinical risk
60 factors. Our results demonstrate the potential of studying the oral microbiome in the
61 context of progression to EAC.

62

63 **RESULTS:**

64 **Oral microbial composition from a large endoscopy cohort**

65 We recruited 250 adult patients undergoing upper endoscopy and characterized
66 their oral microbiome using 16S rRNA gene sequencing. (**Methods**) A total of 244
67 patients were included in the analyses: 125 controls without Barrett's esophagus (BE),
68 and 119 BE patients (20 with non-dysplastic BE, 11 indefinite for dysplasia, 10 low

	All (n=244)	Non-BE (n=125)	BE (n=119)	P-value
Age, years; mean (SD)	57.8 (18.7)	50.9 (18.7)	65.0 (15.8)	<0.001
Sex, male; N (%)	140 (57%)	45 (36%)	95 (80%)	<0.001
Ever smokers; N (%)	103 (42%)	41 (33%)	62 (52%)	0.002
BMI mean (SD)	27.5 (6.7)	27.0 (7.9)	28.1 (5.1)	<0.001
Race, white; N (%)	222 (90%)	105 (84%)	117 (98%)	<0.001
GERD; N (%)	167 (68%)	64 (51%)	103 (87%)	<0.001
PPI use; N (%)	148 (60%)	41 (33%)	107 (90%)	<0.001
Aspirin use; N (%)	77 (31%)	25 (20%)	52 (44%)	<0.001
Oral health and hygiene				
Tooth loss; N (%)	127 (52%)	52 (42%)	75 (63%)	<0.001
Tooth brushing frequency, ≥ daily; N (%)	233 (95%)	123 (98%)	110 (92%)	0.03
Mouthwash frequency, ≥ daily; N (%)	139 (56%)	69 (55%)	70 (59%)	0.61

Table 1. Patient Characteristics. P – t-test or Fisher exact p for difference between BE and non-BE.

69 grade dysplasia, 54 high grade dysplasia, and 24 intramucosal (T1a) adenocarcinoma).
70 Patients with BE were more likely to be older (t-test $p<0.001$), male (Fisher exact
71 $p<0.001$), white ($p=0.001$), or ever-smokers (defined as ≥ 100 lifetime cigarettes
72 smoked) ($p=0.003$). They were also more likely to have GERD ($p<0.001$), to be treated
73 with proton pump inhibitor (PPI; $p<0.001$), to take aspirin ($p<0.001$), and to have a
74 higher BMI ($p<0.001$). (**Table 1**) There was no significant difference in the use of
75 mouthwash between BE and non-BE patients ($p=0.61$), but non-BE patients were more
76 likely to brush their teeth at least daily (98% vs 92%, $p=0.03$). Compared to non-BE, a
77 significantly higher proportion of patients with BE had tooth loss (63% vs. 42%,
78 $p=0.001$), largely due to an increase in tooth loss in patients with advanced neoplasia
79 (defined as high grade dysplasia or adenocarcinoma, 66%; non-dysplastic BE, 40%;
80 non-BE, 42%; Fisher's exact $p=0.001$). (**Figure 1**) Older age (per year, adjusted OR
81 1.06, 95% CI 1.04-1.08) and a history of smoking (adjusted OR 2.12, 95% CI 1.07-4.19)
82 were independently associated with tooth loss. (**Supplementary Table 1**) In
83 multivariable analyses adjusting for EAC risk factors (age, male sex, white race, and
84 GERD), tooth loss was associated with a non-significant increased risk of advanced
85 neoplasia (vs. non-BE, adjusted OR 1.49, 95%CI 0.96-2.47). (**Supplementary Table 2**)
86 These results are in line with a recent analyses of data from the Nurses' Health Study,
87 which found an association between both tooth loss and periodontal disease and risk of
88 esophageal adenocarcinoma, but showed a decrease in association strength after
89 adjusting for covariates.¹⁸ Established EAC risk factors were independently associated
90 with advanced neoplasia even after controlling for daily tooth brushing, use of
91 mouthwash, and presence of tooth loss, whereas these measures of oral health and
92 hygiene were not independently associated with advanced neoplasia ($p=0.21$, 0.57, and
93 0.34, respectively).

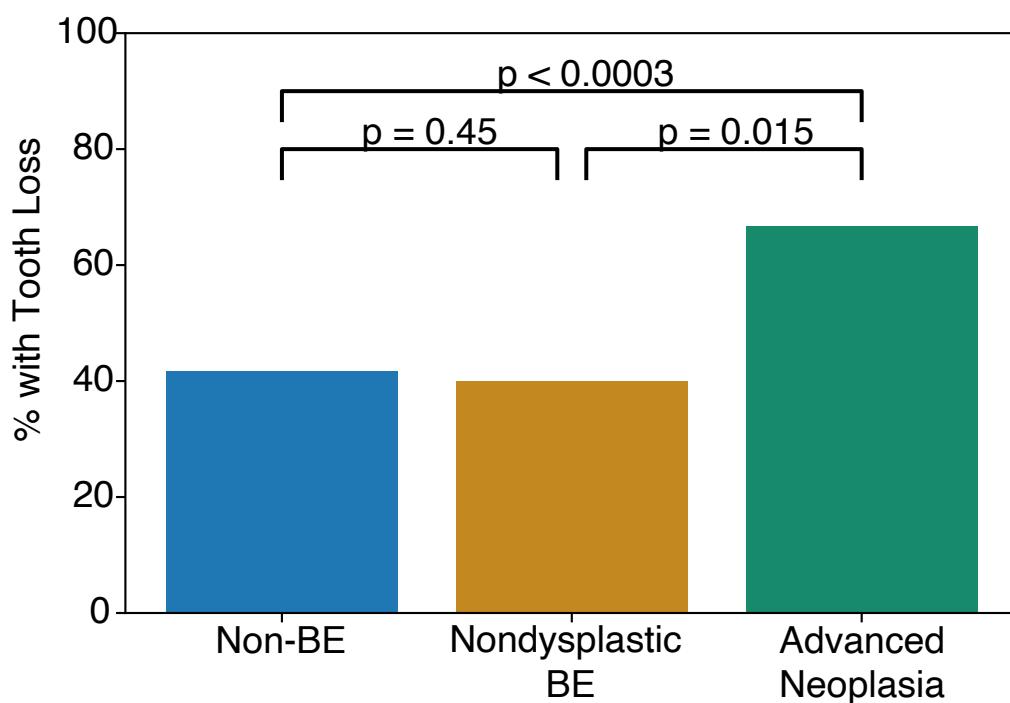


Figure 1. Tooth loss is significantly more common in advanced neoplasia. A significantly higher proportion of patients with advanced neoplasia (high grade dysplasia or esophageal adenocarcinoma) had tooth loss as compared to non-BE and non-dysplastic BE patients combined (Fisher's exact $p = 0.001$). P – Fisher's exact.

94
95
96

The oral microbiome of BE patients is progressively altered with dysplastic changes.

97 To assess whether the salivary microbiome is associated with neoplastic progression, we focused our analyses on comparisons between three groups: non-BE (n=125), non-dysplastic BE (n=20), and advanced neoplasia (high grade dysplasia and adenocarcinoma [HGD/EAC]; n=78). We found that neoplastic progression was associated with significantly lower alpha diversity (Shannon: Kruskal-Wallis $p=0.005$, Simpson: $p=0.0029$, **Supplementary Figure 1**). Compared to patients without BE, the alterations in alpha diversity were more pronounced in patients with advanced neoplasia than in those with nondysplastic BE (non-BE vs. non-dysplastic BE, Mann-Whitney $p=0.11$; non-BE vs advanced neoplasia, $p=0.0006$). There was no significant difference in alpha diversity comparing nondysplastic BE with advanced

107 neoplasia ($p=0.23$). We further found that the oral microbiome from patients with
108 advanced neoplasia tended to cluster separately than the rest of the cohort (weighted
109 UniFrac, ANOSIM $p<0.001$; **Figure 2B**). Similar results were found when including all
110 the subjects in their individual groups (non-BE, nondysplastic BE, IND, LGD, HGD, and
111 EAC; **Supplementary Figure 2**). Our results indicate that the salivary microbiome
112 alterations observed in advanced neoplasia are reflected both in the diversity of each
113 individual's microbiome (alpha diversity) and in compositional differences between
114 individuals (beta diversity).

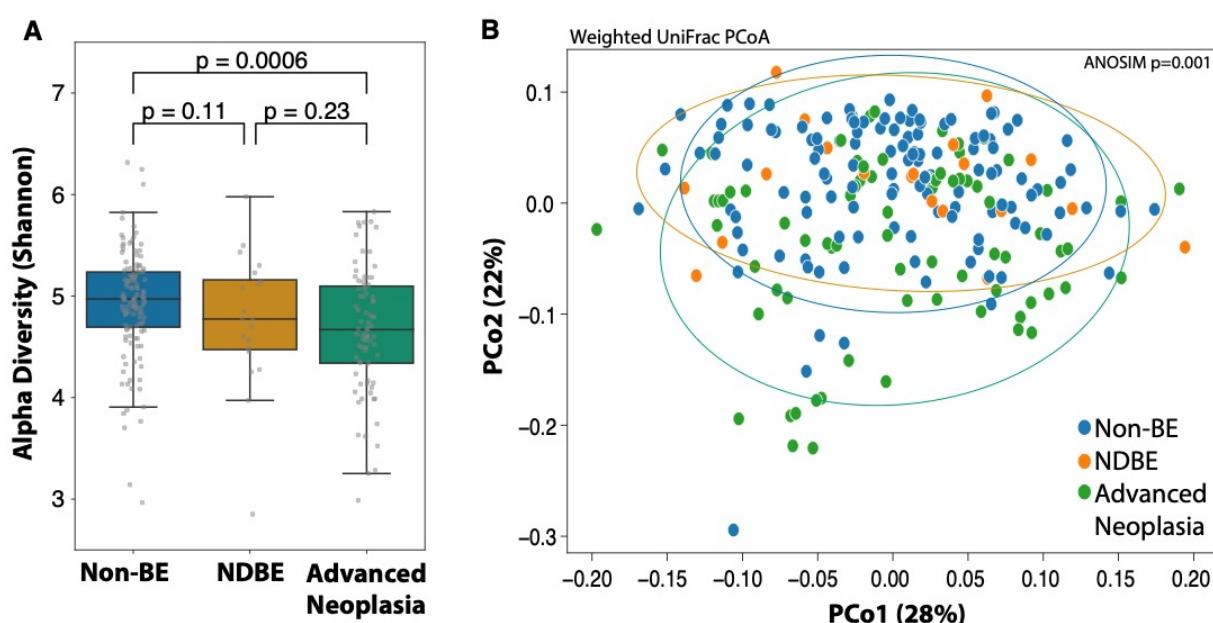


Figure 2. A microbial signature of BE. (A) Patients with advanced neoplasia have significantly reduced alpha diversity compared to non-BE patients. Kruskal-Wallis overall p -value=0.005. p – Mann-Whitney U test. (B) Weighted UniFrac PCoA demonstrated significant clustering of patients with advanced neoplasia (ANOSIM $p=0.001$). NDBE, non-dysplastic BE; advanced neoplasia – high grade dysplasia or esophageal adenocarcinoma; ellipse, 2 standard deviation sigma ellipse.

115
116 We next checked whether specific microbes were associated with BE
117 progression. We therefore compared relative abundance of different OTUs between all
118 BE patients vs. non-BE using ALDEEx2.¹⁹ (**Methods**) A total of 26 OTUs were identified
119 as differentially abundant ($p < 0.05$, FDR corrected at 0.1; **Figure 3**). To assess
120 whether the dysbiotic signature associated with BE is more pronounced with dysplastic

121 changes, we checked whether these 26 OTUs were correlated with progression across
122 the neoplastic spectrum, from no dysplasia to EAC (Methods). There was a significant
123 association ($p<0.05$, FDR corrected at 0.1) for 23 of the 26 taxa, with a clear shift in
124 composition with neoplastic progression, notably in the transition from low grade
125 dysplasia (LGD) to high grade dysplasia (HGD). (**Figure 3**) This transition in
126 composition from LGD to HGD is consistent with our prior observations of esophageal
127 microbiome alterations with progression to EAC.²⁰ The taxonomic alterations
128 associated with progression were notable for increased relative abundance of several
129 *Streptococcus* species. Streptococci form biofilms in the oral cavity²¹⁻²³.
130

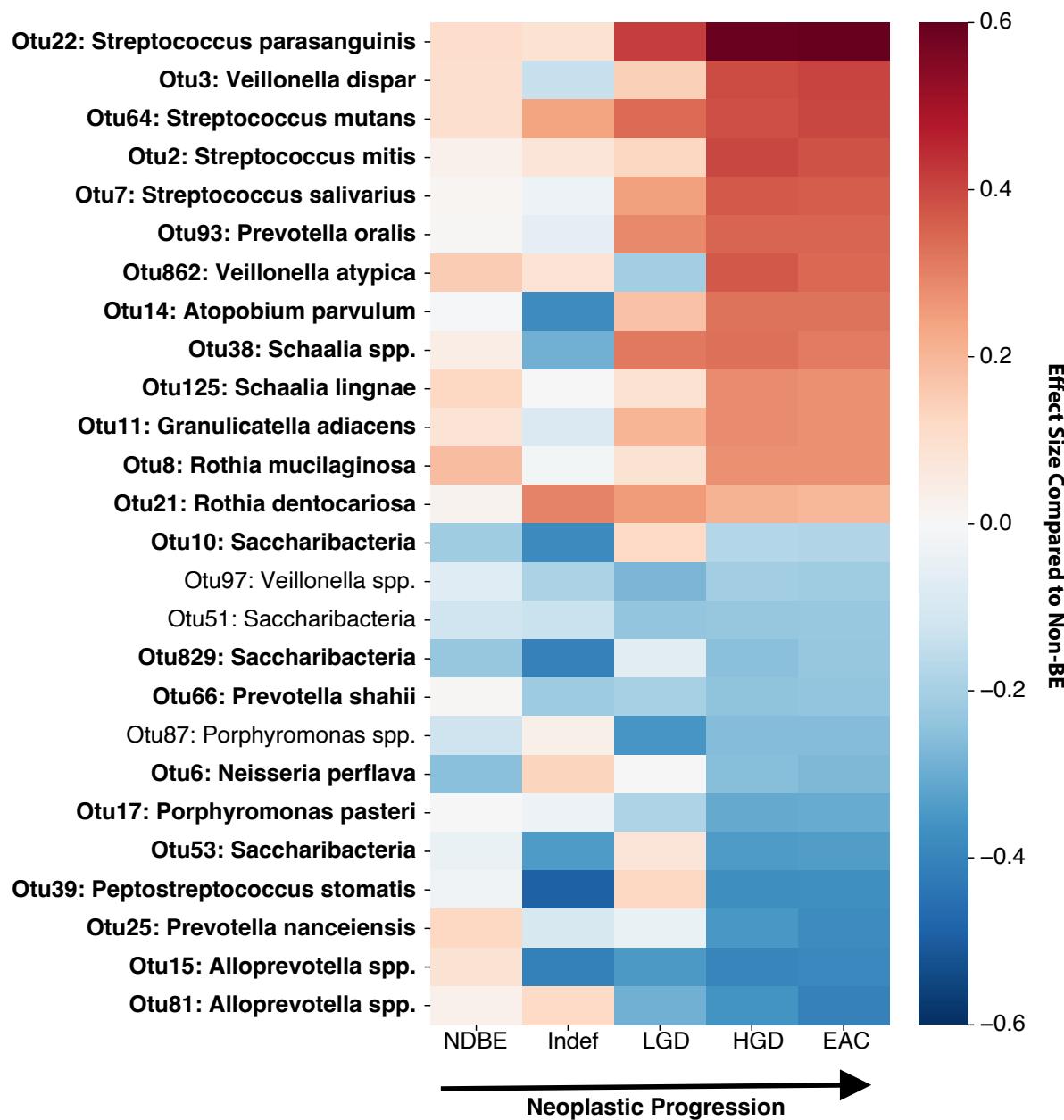


Figure 3. Increased oral dysbiosis with progressive dysplasia. Shifts in the oral microbiome compared to non-BE patients (shown as ALDEx2 effect sizes) were more pronounced with progression from no dysplasia to EAC, particularly notable in patients with high grade dysplasia and EAC. Bolded OTUs were significantly associated with neoplastic progression. (p < 0.05, FDR corrected at 0.1; **Methods**) NDBE, nondysplastic Barrett's esophagus; Indef, indefinite for dysplasia; LGD, low grade dysplasia; HGD, high grade dysplasia; EAC, esophageal adenocarcinoma.

131 **The salivary microbiome is associated with advanced neoplasia even when
132 controlling for tooth loss.**

133 Tooth loss is known to be strongly associated with oral microbiome
134 composition¹⁷, and there was an increased proportion of advanced neoplasia patients
135 with tooth loss. (**Figure 1**) Comparing patients who did and did not have all or most of
136 their natural adult teeth, we found that those with tooth loss had lower alpha diversity
137 (Shannon, Mann-Whitney p=0.001; **Supplementary Figure 3A**), and that oral
138 microbiomes from both groups clustered separately (weighted UniFrac, ANOSIM
139 p=0.003; **Supplementary Figure 3B**). We also identified 29 OTUs that had significantly
140 different abundance between patients with and without tooth loss. (ALDEx2 p < 0.05,
141 FDR corrected at 0.1; **Figure 4**) As poor oral health is associated with oral dysbiosis,
142 this raised the question of whether the oral microbiome is associated with advanced
143 neoplasia independent of tooth loss.

144 We first examined whether salivary microbiome composition as a whole is
145 associated with advanced neoplasia independently of tooth loss. We therefore
146 calculated microbiome principal coordinates (PCos) using weighted UniFrac distances
147 and used the top five PCos, which represented two thirds of the variance in microbiome
148 composition. We then used multivariable logistic regression and found that PCo2
149 (explaining 22% of microbiome variation) and PCo4 (4.6%) were independently
150 associated with advanced neoplasia. (p<0.001 and p=0.004, respectively) We then
151 added the major EAC risk factors (age, sex, race, BMI, GERD history, and smoking
152 history) to the model, and found that PCo2 remained independently associated with
153 advanced neoplasia (p=0.004), suggesting that salivary microbiome composition
154 represents a potential novel independent risk factor for EAC. Adding tooth loss to the
155 model did not alter the association between PCo2 and advanced neoplasia (p=0.004),
156 and in this model tooth loss was not independently associated with advanced neoplasia
157 (p=0.12). Our results suggest that the association of tooth loss with advanced
158 neoplasia is mediated through the oral microbiome.

159 We next assessed whether associations between specific oral taxa and
160 advanced neoplasia are independent of tooth loss. Of the 33 taxa associated with

161 advanced neoplasia (N=78) vs. non-BE (N=125; ALDEx2 $p < 0.05$; FDR corrected at
162 0.1), 18 were also associated with tooth loss. (**Figure 4**) After adjusting for tooth loss in
163 a generalized linear model, 20 of these taxa remained significantly associated with
164 advanced neoplasia. (ALDEx2 $p < 0.05$, FDR corrected at 0.1) Notably, the four OTUs
165 with the greatest increase in relative abundance in advanced neoplasia were all
166 assigned to the genus *Streptococcus*, and the increased abundance of these
167 *Streptococcus* OTUs in advanced neoplasia was independent of tooth loss. This
168 corresponds with previous studies that found that the tumor-associated microbiome in
169 EAC is often dominated by *Streptococcus* species.¹²

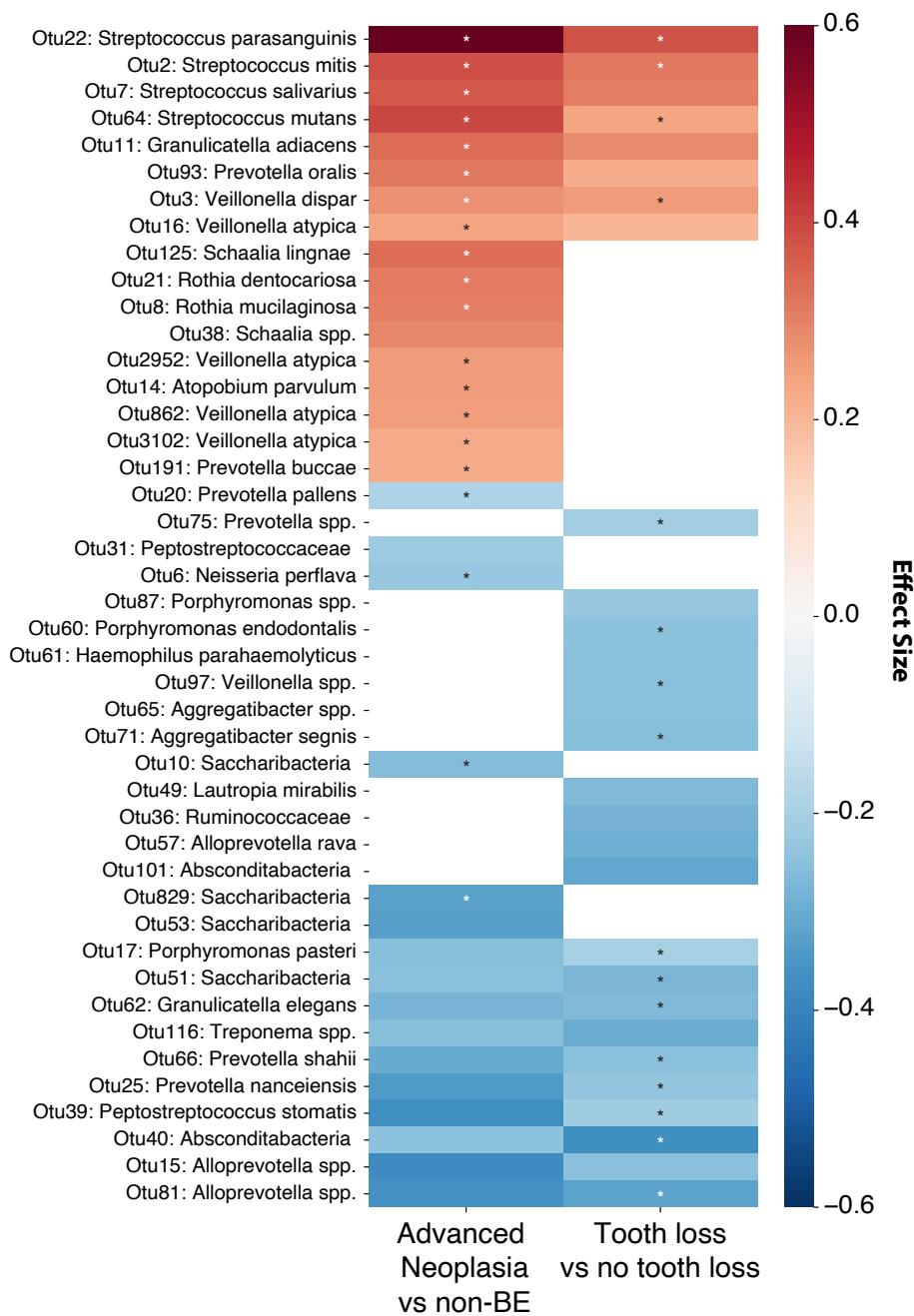


Figure 4. Oral microbes are independently associated with advanced neoplasia and tooth loss.

Differentially abundant taxa in patients with advanced neoplasia (high-grade dysplasia or esophageal adenocarcinoma) compared to non-BE (left) and in patients with and without tooth loss (right). Many taxa were associated with both neoplasia and tooth loss, yet most of these remained significantly differentially abundant after adjusting for tooth loss and advanced neoplasia, respectively (ALDEx2 p < 0.05, FDR corrected at 0.1; denoted by asterisks).

171 **Metabolic modeling predicts distinct metabolic secretion capabilities in advanced**
172 **neoplasia.**

173 Metabolite production by microbial communities is an important modality by
174 which the microbiome affects the host. In order to assess if microbially produced
175 metabolites might play a role as a driver or biomarker of neoplasia, we used microbiome
176 community-scale metabolic models to predict metabolite secretion by the microbiome
177 for every sample. **(Methods)** We found significant clustering of predicted metabolite
178 profiles comparing advanced neoplasia cases with non-BE subjects (PERMANOVA
179 $p=0.001$). Using principal components analysis, we found notable shift in the second
180 component (15% explained variance; Mann-Whitney $p=0.0003$). **(Figure 5A)** Forty-four
181 predicted metabolites had significantly altered abundance ($p < 0.05$, FDR corrected at
182 0.1) in advanced neoplasia. **(Figure 5B)** Notable alterations included increased
183 predicted levels of L-lactic acid ($p=0.023$), a by-product of aerobic glycolysis, a hallmark
184 of cancer which can contribute to neoplasticity;²⁴ and 2-ketobutyric acid ($p=0.033$),
185 previously reported to support mitochondrial respiration and cell proliferation.²⁵ We also
186 predicted that advanced neoplasia features a decrease in butyric acid ($p=0.0089$), a key
187 promoter of gut homeostasis that was previously shown to be depleted in colon cancer
188 and inflammatory bowel disease;²⁶⁻²⁸ and a decrease in L-tryptophan ($p=0.0017$).
189 **(Figure 5C)** Circulating levels of tryptophan have been inversely associated with colon
190 cancer risk²⁹, and melatonin, a by-product of L-tryptophan metabolism, is under
191 investigation for EAC prevention.³⁰ The pattern of the shifts we predict is therefore
192 consistent with the potential promotion of proliferation, inflammation, and cancer.

193

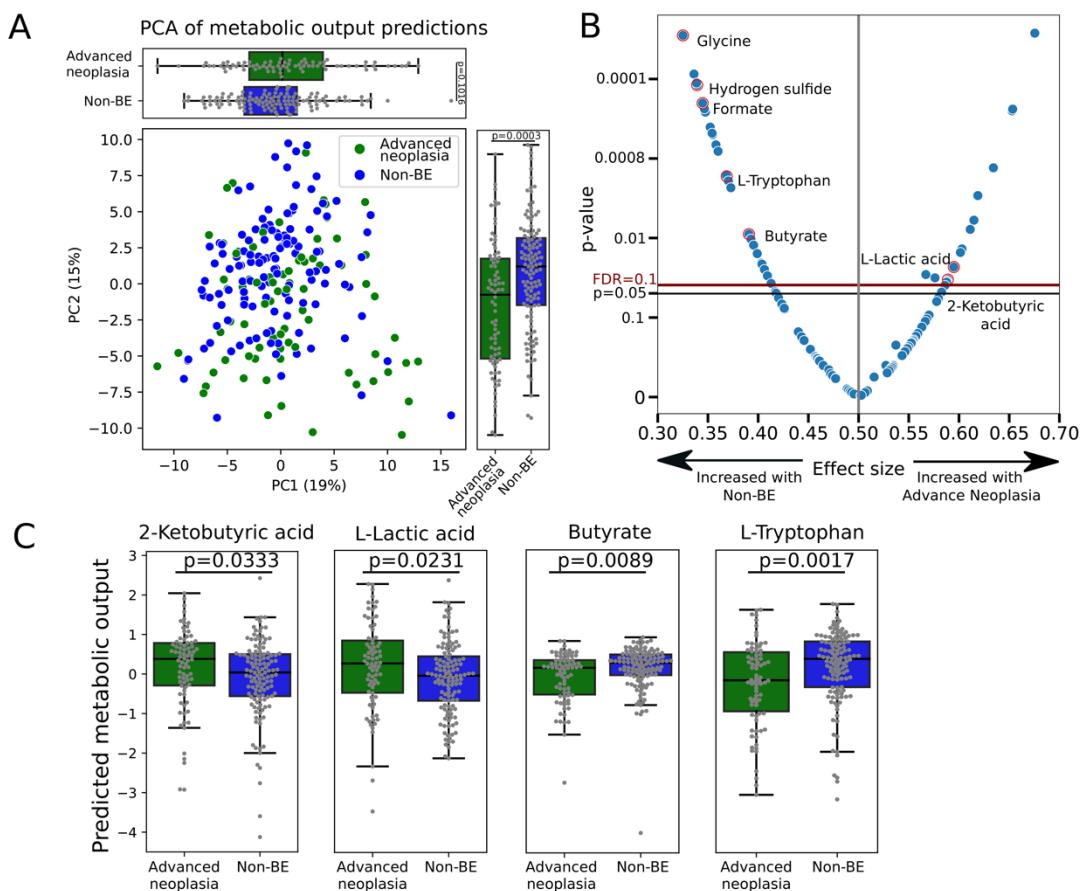


Figure 5. The predicted metabolic profile is altered in patients with advanced neoplasia. (A) Significant clustering by advanced neoplasia status on principal components analysis (PERMANOVA $p=0.001$), with pronounced shifts in PC2 ($p=0.0003$). (B) Volcano plot demonstrating differentially abundant metabolites in advanced neoplasia. (C) Significantly altered predicted levels of L-lactic acid, 2-ketobutyric acid, butyric acid, and L-tryptophan in advanced neoplasia. Plot capped at -4 for butyrate. P, Mann-Whitney test

194

195 **Salivary microbiome data improves on clinical risk factors-based prediction of**
196 **advanced neoplasia.**

197 We next performed an exploratory analysis to determine whether salivary
198 microbiome features in this cohort could be used to distinguish advanced neoplasia
199 from non-BE patients. As a baseline, we first trained a gradient boosted decision trees
200 model which uses clinical risk factors for EAC and tooth loss to classify advanced
201 neoplasia. The classifier was tested in cross-validation on patients not seen in the
202 training of that model and achieved an area under the receiver operating characteristic

203 curve (AUROC) of 0.84 (95%CI 0.79-0.89). The same process was then used to train a
204 classifier using microbiome data, whereas, within each training fold, 10 OTUs were
205 selected based on a Kruskal-Wallis test. This classifier had an AUROC of 0.72 (95%CI
206 0.65-0.79). Finally, a model trained on the combination of both microbiome data and
207 EAC risk factors resulted in somewhat higher model accuracy, producing an AUROC of
208 0.88 (95%CI 0.83-0.91; vs. clinical risk factor model AUROC 0.84, 95%CI 0.79-0.89;
209 DeLong p=0.053). (**Supplementary Figure 4**) A combined microbiome and clinical risk
210 factor model with the outcome limited to HGD and excluding intramucosal EAC showed
211 similar results with an AUROC 0.86 (95%CI 0.80-0.92), compared to an AUROC of 0.83
212 (95%CI 0.77-0.89) using only clinical risk factors for the same task. (**Supplementary**
213 **Figure 5**)

214
215

216 **DISCUSSION:**

217 In this cross-sectional study of patients with and without BE, we detected marked
218 shifts in the salivary microbiome with progression to EAC, with changes that appeared
219 to be most pronounced in patients with advanced neoplasia. These changes included
220 reduced diversity as well as significantly increased relative abundance of several taxa in
221 the genus *Streptococcus*. As in previous studies, we found that tooth loss is more
222 common in patients with advanced neoplasia. However, we show that many of the
223 salivary microbiome associations observed in BE and advanced neoplasia persisted
224 even when accounting for it. Further, we used metabolic modeling to identify distinct
225 predicted metabolic secretion capabilities in advanced neoplasia.

226 Our findings add to the growing body of evidence that the oral microbiome is
227 linked to the esophageal microbiome and may contribute to esophageal neoplasia. In a
228 case-control study of patients with EAC, BE, and controls, the EAC-associated
229 microbiome had significantly reduced alpha diversity, similar to our observations in
230 saliva.¹² Interestingly, in that study 5/15 of the EAC tumors were dominated by
231 *Streptococcus* spp. (relative abundance 69%-98%). In our salivary microbiome
232 analyses, 4 of the 5 taxa most strongly associated with advanced neoplasia were also

233 *Streptococcus* spp. Our group conducted a randomized controlled trial and found that
234 an antimicrobial mouth rinse can produce esophageal microbiome and tissue gene
235 expression changes, highlighting the relevance of oral bacteria to esophageal disease.³¹
236 In another cohort study analyzing mouth rinse samples from patients enrolled in two
237 large cancer prevention studies, oral microbiome alterations were noted to precede an
238 EAC diagnosis by several years.¹⁵ In a small study of 49 patients we previously noted
239 marked salivary microbiome alterations associated with BE and also with advanced
240 neoplasia.¹⁶

241 Our study features the use of microbiome metabolic models to identify broad
242 shifts in metabolites predicted to be produced by the saliva microbiome. Many of the
243 predicted changes to metabolite outputs correspond with existing knowledge. Lactic
244 acid, for example, was predicted to be increased in advanced neoplasia. Lactic acid can
245 serve as a major energy source for proliferative cancer cells, and is known to activate
246 hypoxia inducible factors, which in turn contribute to proliferation, angiogenesis, and
247 other neoplastic features.²⁴ Our findings could therefore support the hypothesis that the
248 oral and esophageal microbiota promotes EAC development and progression via
249 production of metabolites.³² Our findings further correspond with a previous study
250 detecting lactic-acid bacteria in many esophageal adenocarcinomas.¹² However, the
251 biological significance of predicted metabolite production is unclear, and future studies
252 are needed to validate these predictions and to elucidate the biological effects of
253 specific bacterial metabolites on esophageal neoplasia.

254 Prior work has associated tooth loss and periodontal disease with increased risks
255 of esophageal squamous cell cancer and gastric cancer, and a recent study found an
256 association between both tooth loss and periodontal disease and risk of esophageal
257 adenocarcinoma.¹⁸ This indicates a potential confounding effect, as tooth loss is also
258 associated with major alterations in oral microbiome composition.¹⁷ Our study offers an
259 explanation for these associations, demonstrating that salivary microbiome composition
260 is independently associated with advanced neoplasia, even when adjusting for EAC risk
261 factors and for tooth loss. These findings suggest that the association between tooth

262 loss and esophageal neoplasia is mediated by changes in the salivary microbiome, and
263 that the salivary microbiome may represent a novel independent risk factor for EAC.

264 We performed exploratory analyses to assess whether the salivary microbiome
265 could discriminate patients at highest EAC risk. The salivary microbiome is highly
266 suitable for diagnostics, as it is stable over time³³⁻³⁵, especially compared to other body
267 sites³⁶, and is resistant to perturbations.³⁷ Addition of a microbiome-based classifier to
268 EAC risk factors resulted in modest improvement in discrimination. However, the
269 current study was not specifically designed to address this question, and future studies
270 should explore further the salivary microbiome as a potential biomarker for advanced
271 neoplasia.

272 Important strengths of the current study include the relatively large sample size
273 and the inclusion of oral health and hygiene information from patients. The large
274 sample size allowed for the detection of significant microbiome alterations, even when
275 correcting for multiple comparisons. Previous studies of the oral microbiome in BE and
276 EAC have not included oral health and hygiene data, key potential confounders. The
277 patients were well characterized, with data collected on key EAC risk factors including
278 GERD history, BMI, and smoking, which permitted microbiome analyses adjusting for
279 these variables. The BE patients in the study were demographically similar to BE
280 populations from other studies, enhancing the generalizability of the findings. Lastly,
281 novel methods for predicted microbiome metabolic profiling allowed for insights into
282 functional correlates of the salivary microbiome alterations.

283 The study does have certain limitations. There were a relatively small number of
284 non-dysplastic BE patients, limiting analyses in this subgroup. Analyses did not
285 incorporate dietary intake; however, previous studies suggest that diet has minimal
286 impact on salivary microbiome composition.³⁸⁻⁴⁰ No conclusions can be drawn with
287 regard to temporality in this cross-sectional study. It is possible that the observed
288 salivary microbiome alterations were caused by BE-associated advanced neoplasia,
289 although we believe that this is unlikely. Tooth loss was self-reported rather than
290 measured, and periodontal disease was not directly assessed. Community-scale
291 metabolic models also have notable limitations. Our analysis was based on 16S rRNA

292 gene sequencing, which does not allow us to tailor models to specific strains or genetic
293 potential present in each sample. Additionally, while genome-scale models have been
294 curated for common gut commensals, to our knowledge, such efforts have not been
295 done for oral microbes. Consequently, some models may be missing, while existing
296 ones may lack representation of niche-specific metabolic capacity. Despite these
297 limitations, these models allow a systematic application of biochemical and genetic
298 knowledge to our analysis and raise interesting hypotheses that could be experimentally
299 validated.

300 In conclusion, patients with BE-associated advanced neoplasia have a markedly
301 altered salivary microbiome, and analyses of taxonomic alterations associated with
302 stages of progression from BE to EAC appear to indicate that these changes are most
303 notable at the transition from low- to high-grade dysplasia. Increased tooth loss was
304 also observed with progression to EAC, although the salivary microbiome alterations
305 were largely independent of tooth loss, suggesting that the association of tooth loss with
306 advanced neoplasia is mediated through the oral microbiome. There were marked
307 increases in various taxa in the genus *Streptococcus* in advanced neoplasia, possibly
308 pointing to a biological contribution of these bacteria to neoplastic progression. In
309 addition to the microbiome alterations, progression to EAC was associated with
310 numerous changes to predicted bacterial metabolite production, with notable alterations
311 that suggest possible proneoplastic effects related to these shifts. Further work is
312 warranted to identify the biological significance of the microbiome alterations, to validate
313 metabolic shifts, and to determine whether they represent viable therapeutic targets for
314 prevention of progression in BE.

315
316

317 **METHODS:**

318 **Study Design**

319 A total of 250 patients with and without BE undergoing upper endoscopy at
320 Columbia University Irving Medical Center (New York, NY) were prospectively enrolled
321 from February 2018 through February 2019. Patients were ≥ 18 years old and

322 scheduled to undergo endoscopy for clinical indications. Patients were excluded if they
323 had a concurrently scheduled colonoscopy, had a history of gastric or esophageal
324 surgery, a history of esophageal squamous cell cancer, or use of antibiotics, steroids, or
325 other immunosuppressants in the 3 months prior to the procedure. This study was
326 approved by the Columbia University Institutional Review Board. All patients provided
327 written informed consent.

328 Data were collected on patient demographics and anthropometrics (to calculate
329 BMI) as well as clinical information including medical history, history of gastro-
330 esophageal reflux disease (GERD; defined as experiencing frequent heartburn or fluid
331 regurgitation), medication use at time of enrollment (with specific notation of daily use of
332 proton pump inhibitors (PPIs), histamine-2 receptor antagonists, statins, and daily use
333 of aspirin and non-steroidal anti-inflammatory drugs), alcohol history, and smoking
334 history (ever smoking defined as having smoked >100 lifetime cigarettes). Data were
335 collected on self-reported oral health and hygiene. Tooth loss was assessed using
336 categories adapted from Borningen et al.¹⁷: all or most of natural adult teeth, partial
337 plates or implants, full upper dentures or implants, full lower dentures or implants, full
338 upper and lower dentures or implants. Data were also collected on tooth brushing and
339 mouthwash use.

340 Patients did not eat or drink after midnight prior to the endoscopy and saliva
341 collection; saliva was collected prior to the endoscopy. Patients were categorized as
342 BE if they had a history of endoscopically suspected BE with intestinal metaplasia on
343 esophageal biopsies. BE patients were further categorized based on the highest
344 degree of neoplasia ever (no dysplasia (NDBE), indefinite for dysplasia (IND), low grade
345 dysplasia (LGD), high grade dysplasia (HGD), adenocarcinoma (EAC)).

346

347 **Microbiome Sequencing and Analysis**

348 The 16S rRNA V3-V4 region was amplified using Illumina adapter-ligated
349 primers.⁴¹ The Illumina Nextera XT v2 index sets A-D were used to barcode
350 sequencing libraries. Libraries were sequenced on an Illumina MiSeq using the v3
351 reagent kit (600 cycles) and a loading concentration of 12 pM with 10% PhiX spike-in.

352 Sequences were assigned to operational taxonomic units (OTUs) using USEARCH⁴²
353 with $\geq 97\%$ sequence homology. Taxonomic assignments for the OTUs were based on
354 the Human Oral Microbiome Database (HOMD).⁴³ Any subsequently unassigned OTUs
355 were assigned by referencing the Ribosomal Database Project (RDP).⁴⁴ Samples were
356 subsampled to 10,000 reads to compare across even sequencing depths while
357 minimizing data loss. Five patients were excluded after sequencing because of
358 relatively low sequencing depth with $<10,000$ total reads per sample. The median read
359 count for the full cohort was $>33,000$. One patient was excluded because of a history of
360 both EAC and esophageal squamous cell carcinoma.

361

362 **Microbiome metabolic modeling of oral microbial communities**

363 Microbiome metabolic modeling was performed using the Microbiome Modeling
364 Toolbox (COBRA toolbox commit: 71c117305231f77a0292856e292b95ab32040711)
365^{45,46} and the AGORA metabolic models (AGORA 1.02).⁴⁷ All computations were
366 performed in MATLAB version 2019a (Mathworks, Inc.), using the IBM CPLEX (IBM,
367 Inc.) solver. We first matched species detected by our microbial sequencing analysis
368 with the ones present in AGORA.⁴⁷ Because AGORA metabolic models are available at
369 the strain level, we generated species-level models using the createPanModels.m
370 function of the Microbiome Modeling Toolbox (MMT)⁴⁵ as previously described.⁴⁸ To
371 increase the number of species represented in our microbiome models we chose
372 genus-level representative models for abundant microbes present in the oral cavity with
373 $>5\%$ relative abundance in more than 10 samples. There were six species without a
374 corresponding metabolic model, and these were either grouped with similar species or
375 excluded from the analyses (See **Supplementary Table 3** for details).

376 We then used the mgPipe.m automated pipeline of the MMT to build and
377 interrogate sample-specific microbiome metabolic models. Briefly, for each sample,
378 personalized microbiome models are created by joining species-level metabolic models
379 using the compartmentalization technique⁴⁹; a lumen compartment enabling microbial
380 metabolic interactions is added, as well as additional input and output compartments,
381 allowing microbiome intake and secretion of metabolites. Altogether our microbiome

382 models included 160 microbial species with an average of 50 species for each sample
383 and a maximum of 69. As constraint-based metabolic modeling benefits from a
384 specification of the metabolic environment such as media and carbon source
385 availability⁵⁰, we applied a “western diet”⁵¹ to each sample in the form of constraints on
386 the metabolites uptake reactions.⁵¹ Finally, to obtain metabolic predictions, we used the
387 Net Maximal Production Capabilities (NMPCs) through the mgPipe pipeline⁴⁵ to provide
388 predictions of the metabolite secretion profile of each sample. To detect significant
389 changes in NMPCs distributions between cases and controls a Mann-Whitney U test
390 was performed for each retained NMPCs. Only NMPCs which were present in at least
391 10% of the cases and had at least a value of 0.01 were retained for the significance
392 analysis. FDR correction using the Benjamini–Hochberg procedure was applied.

393

394 **Statistical Analysis**

395 The primary groups of comparison were BE patients with advanced neoplasia
396 (HGD or EAC), non-dysplastic BE (NDBE) and non-BE controls. Grouping high grade
397 dysplasia and intramucosal adenocarcinoma together as advanced neoplasia reflects
398 common practice as well as clinical guidelines for treatment.⁵² There is extremely low
399 inter-observer agreement (even among expert gastrointestinal pathologists) for the
400 diagnosis of LGD⁵³⁻⁵⁵, as inflammation-induced cytologic atypia mimics the findings of
401 LGD. As a result, while estimates of cancer risk for LGD are relatively low on
402 average,⁵⁴ these estimates vary widely, thus making interpretations of findings for this
403 group challenging. Patients with low grade dysplasia or indefinite for dysplasia were
404 included in analyses assessing for alterations in the oral microbiome across the entire
405 BE neoplastic spectrum. While there was no *a priori* reason to suspect that endoscopic
406 therapy would have altered the salivary microbiome, comparisons were made between
407 those patients with LGD or worse who had (n=78) and had not (n=10) received prior
408 endoscopic therapy. There were no differences in alpha diversity (p=0.16), no evidence
409 of clustering on beta diversity analyses (ANOSIM p=0.13), and no differentially
410 abundant taxa. Thus, treated and untreated patients were grouped together for all
411 analyses.

412 Categorical variables were compared across groups using Fisher's exact tests.
413 Continuous variables were analyzed using t-tests or rank sum tests as appropriate, with
414 ANOVA and Kruskal Wallis tests for ≥ 3 groups. For purposes of analyses, tooth loss
415 was dichotomized as having all or most of natural adult teeth (yes/no). Multivariable
416 logistic regression was performed to assess the association between tooth loss and
417 advanced neoplasia, adjusted for known EAC risk factors (age, sex, GERD, body mass
418 index (BMI), smoking).

419 Alpha diversity was evaluated using the Shannon diversity index and beta
420 diversity using weighted UniFrac⁵⁶ distances. Groups were compared using both
421 permutational multivariate analysis of variance (PERMANOVA) for predicted metabolite
422 profiles and analysis of similarities (ANOSIM) for microbial compositions. To find
423 differential abundances between study groups, the ALDEx2¹⁹ R package was used. For
424 differential abundance analyses, only OTUs present in at least 5% of all samples were
425 included to allow for more meaningful comparisons. ALDEx2 was used to compare
426 worst histological grades of BE as an ordinal variable in a generalized linear model and
427 to assess correlation of BE-associated OTUs with neoplastic progression using
428 aldex.corr to treat worst histological grade as a continuous variable. ALDEx2 was also
429 used to find significance for differentially abundant taxa in a multivariate model with both
430 advanced neoplasia and tooth loss.

431 Generalized linear models were used to assess differential relative abundance of
432 bacterial taxa in advanced neoplasia, adjusted for tooth loss. Multivariable logistic
433 regression was performed to detect associations between advanced neoplasia and
434 microbiome composition (represented by its top five principal coordinates), adjusted for
435 EAC risk factors (age, sex, race, BMI, smoking, GERD). Supervised machine learning
436 was used to classify patients with advanced neoplasia using the LightGBM package.⁵⁷
437 Three models were created: 1) EAC risk factors alone (age, sex, race, BMI, smoking,
438 GERD); 2) microbiome features alone; and 3) EAC risk factors and microbiome features
439 together. Model parameters were optimized per fold in 10-fold cross-validation, with
440 strict train-test sterility. The output of the models were predicted probabilities of whether

441 a patient has advanced neoplasia or no BE, with the goal of identifying the patients at
442 highest risk of mortality from EAC.

443 All statistical analyses were performed in Python or R. Statistical significance
444 was defined as $p < 0.05$. Differential abundance analyses were corrected for multiple
445 comparisons using the Benjamini-Hochberg procedure, and corrected statistical
446 significance was defined as $p < 0.1$. 95% confidence intervals for AUCs were calculated
447 using the DeLong method using pROC.⁵⁸

448
449 **Data Availability:** 16S rRNA gene sequencing files were uploaded to NCBI Sequence
450 Read Archive (PRJNA785879).

451

References:

1. Abrams JA, Sharaiha RZ, Gonsalves L, Lightdale CJ, Neugut AI. Dating the rise of esophageal adenocarcinoma: analysis of Connecticut Tumor Registry data, 1940-2007. *Cancer Epidemiol Biomarkers Prev*. Jan 2011;20(1):183-6. doi:10.1158/1055-9965.EPI-10-0802 1055-9965.EPI-10-0802 [pii]
2. Hur C, Miller M, Kong CY, et al. Trends in esophageal adenocarcinoma incidence and mortality. *Cancer*. Mar 15 2013;119(6):1149-58. doi:10.1002/cncr.27834
3. Kong CY, Nattinger KJ, Hayeck TJ, et al. The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. *Cancer Epidemiol Biomarkers Prev*. Nov 2011;20(11):2450-6. doi:10.1158/1055-9965.EPI-11-0547
4. Friedenberg FK, Hanlon A, Vanar V, et al. Trends in gastroesophageal reflux disease as measured by the National Ambulatory Medical Care Survey. *Dig Dis Sci*. Jul 2010;55(7):1911-7. doi:10.1007/s10620-009-1004-0
5. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. *Fusobacterium nucleatum* promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. *Cell host & microbe*. Aug 14 2013;14(2):195-206. doi:10.1016/j.chom.2013.07.012
6. Tomkovich S, Dejea CM, Winglee K, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. *J Clin Invest*. Mar 11 2019;130:1699-1712. doi:10.1172/JCI124196
7. Kadosh E, Snir-Alkalay I, Venkatachalam A, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. *Nature*. Oct 2020;586(7827):133-138. doi:10.1038/s41586-020-2541-0
8. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) *E. coli*. *Nature*. Apr 2020;580(7802):269-273. doi:10.1038/s41586-020-2080-8
9. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. *Science*. Jan 5 2018;359(6371):97-103. doi:10.1126/science.aan4236
10. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. *Science*. Jan 5 2018;359(6371):104-108. doi:10.1126/science.aaq3290
11. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. *Science*. Jan 5 2018;359(6371):91-97. doi:10.1126/science.aan3706
12. Elliott DRF, Walker AW, O'Donovan M, Parkhill J, Fitzgerald RC. A non-endoscopic device to sample the oesophageal microbiota: a case-control study. *Lancet Gastroenterol Hepatol*. Jan 2017;2(1):32-42. doi:10.1016/s2468-1253(16)30086-3
13. Snider EJ, Compres G, Freedberg DE, et al. Alterations to the Esophageal Microbiome Associated with Progression from Barrett's Esophagus to Esophageal Adenocarcinoma. *Cancer Epidemiol Biomarkers Prev*. Aug 29 2019;doi:10.1158/1055-9965.EPI-19-0008

14. Annavajhala MK, May M, Compres G, et al. Relationship of the Esophageal Microbiome and Tissue Gene Expression and Links to the Oral Microbiome: A Randomized Clinical Trial. *Clinical and Translational Gastroenterology*. 2020;11(12):e00235. doi:10.14309/ctg.0000000000000235
15. Peters BA, Wu J, Pei Z, et al. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. *Cancer research*. Dec 1 2017;77(23):6777-6787. doi:10.1158/0008-5472.CAN-17-1296
16. Snider EJ, Compres G, Freedberg DE, et al. Barrett's esophagus is associated with a distinct oral microbiome. *Clin Transl Gastroenterol*. Feb 20 2018;9(3):135. doi:10.1038/s41424-018-0005-8
17. Bornigen D, Ren B, Pickard R, et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. *Sci Rep*. Dec 15 2017;7(1):17686. doi:10.1038/s41598-017-17795-z
18. Lo CH, Kwon S, Wang L, et al. Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. *Gut*. Mar 2021;70(3):620-621. doi:10.1136/gutjnl-2020-321949
19. Fernandes AD, Reid JNS, Macklaim JM, McMurrrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. *Microbiome*. 2014/05/05 2014;2(1):15. doi:10.1186/2049-2618-2-15
20. Snider EJ, Compres G, Freedberg DE, et al. Alterations to the Esophageal Microbiome Associated with Progression from Barrett's Esophagus to Esophageal Adenocarcinoma. *Cancer Epidemiol Biomarkers Prev*. Oct 2019;28(10):1687-1693. doi:10.1158/1055-9965.Epi-19-0008
21. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. *Nat Rev Microbiol*. Feb 2004;2(2):95-108. doi:10.1038/nrmicro821
22. Froeliger EH, Fives-Taylor P. Streptococcus parasanguis fimbria-associated adhesin fap1 is required for biofilm formation. *Infect Immun*. Apr 2001;69(4):2512-9. doi:10.1128/IAI.69.4.2512-2519.2001
23. Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. *Infect Immun*. Mar 1996;64(3):1035-8. doi:10.1128/iai.64.3.1035-1038.1996
24. Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. *Nat Rev Immunol*. Mar 2021;21(3):151-161. doi:10.1038/s41577-020-0406-2
25. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. *Cell*. Jul 30 2015;162(3):552-63. doi:10.1016/j.cell.2015.07.017
26. O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. *Nature reviews Gastroenterology & hepatology*. Dec 2016;13(12):691-706. doi:10.1038/nrgastro.2016.165
27. Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. *Clinical cancer research : an official journal of the American Association for Cancer Research*. Feb 15 2014;20(4):799-803. doi:10.1158/1078-0432.CCR-13-2483

28. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. *Science*. Aug 2 2013;341(6145):569-73. doi:10.1126/science.1241165

29. Papadimitriou N, Gunter MJ, Murphy N, et al. Circulating tryptophan metabolites and risk of colon cancer: Results from case-control and prospective cohort studies. *International journal of cancer Journal international du cancer*. Jul 1 2021;doi:10.1002/ijc.33725

30. Majka J, Wierdak M, Brzozowska I, et al. Melatonin in Prevention of the Sequence from Reflux Esophagitis to Barrett's Esophagus and Esophageal Adenocarcinoma: Experimental and Clinical Perspectives. *Int J Mol Sci*. Jul 13 2018;19(7)doi:10.3390/ijms19072033

31. Annavajhala MK, May M, Compres G, et al. Relationship of the Esophageal Microbiome and Tissue Gene Expression and Links to the Oral Microbiome: A Randomized Clinical Trial. *Clin Transl Gastroenterol*. Dec 2020;11(12):e00235. doi:10.14309/ctg.00000000000000235

32. Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. *Nat Rev Microbiol*. Feb 2021;19(2):77-94. doi:10.1038/s41579-020-0438-4

33. Vogtmann E, Hua X, Zhou L, et al. Temporal Variability of Oral Microbiota Over 10 Months and the Implications for Future Epidemiologic Studies. *Cancer Epidemiol Biomarkers Prev*. Feb 23 2018;doi:10.1158/1055-9965.EPI-17-1004

34. Belstrom D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ. Temporal Stability of the Salivary Microbiota in Oral Health. *PLoS One*. 2016;11(1):e0147472. doi:10.1371/journal.pone.0147472

35. Cameron SJ, Huws SA, Hegarty MJ, Smith DP, Mur LA. The human salivary microbiome exhibits temporal stability in bacterial diversity. *FEMS Microbiol Ecol*. Sep 2015;91(9):fiv091. doi:10.1093/femsec/fiv091

36. Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. *Genome biology*. 2011;12(5):R50. doi:10.1186/gb-2011-12-5-r50

37. Cabral DJ, Wurster JI, Flokas ME, et al. The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. *Sci Rep*. Sep 8 2017;7(1):11040. doi:10.1038/s41598-017-11427-2

38. Belstrom D, Holmstrup P, Nielsen CH, et al. Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. *J Oral Microbiol*. 2014;6doi:10.3402/jom.v6.23609

39. Kato I, Vasquez A, Moyerbrailean G, et al. Nutritional Correlates of Human Oral Microbiome. *J Am Coll Nutr*. Feb 2017;36(2):88-98. doi:10.1080/07315724.2016.1185386

40. Nearing JT, DeClercq V, Van Limbergen J, Langille MGI. Assessing the Variation within the Oral Microbiome of Healthy Adults. *mSphere*. Sep 30 2020;5(5)doi:10.1128/mSphere.00451-20

41. Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. *Nucleic Acids Res*. Mar 31 2015;43(6):e37. doi:10.1093/nar/gku1341

42. Edgar RC. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. *bioRxiv*. 2016:074161. doi:10.1101/074161

43. Escapa I, Huang Y, Chen T, et al. Construction of habitat-specific training sets to achieve species-level assignment in 16S rRNA gene datasets. *Microbiome*. 2020/05/15 2020;8(1):65. doi:10.1186/s40168-020-00841-w

44. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Applied and environmental microbiology*. Aug 2007;73(16):5261-7. doi:10.1128/aem.00062-07

45. Baldini F, Heinken A, Heirendt L, Magnusdottir S, Fleming RMT, Thiele I. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. *Bioinformatics*. Jul 1 2019;35(13):2332-2334. doi:10.1093/bioinformatics/bty941

46. Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. *Nat Protoc*. Mar 2019;14(3):639-702. doi:10.1038/s41596-018-0098-2

47. Magnusdottir S, Heinken A, Kutt L, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. *Nature biotechnology*. Jan 2017;35(1):81-89. doi:10.1038/nbt.3703

48. Baldini F, Hertel J, Sandt E, et al. Parkinson's disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. *BMC biology*. Jun 9 2020;18(1):62. doi:10.1186/s12915-020-00775-7

49. Klitgord N, Segre D. Environments that induce synthetic microbial ecosystems. *PLoS computational biology*. Nov 18 2010;6(11):e1001002. doi:10.1371/journal.pcbi.1001002

50. Orth JD, Thiele I, Palsson BO. What is flux balance analysis? *Nature biotechnology*. Mar 2010;28(3):245-8. doi:10.1038/nbt.1614

51. Noronha A, Modamio J, Jarosz Y, et al. The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease. *Nucleic Acids Res*. Jan 8 2019;47(D1):D614-D624. doi:10.1093/nar/gky992

52. Shaheen NJ, Falk GW, Iyer PG, Gerson LB. ACG Clinical Guideline: Diagnosis and Management of Barrett's Esophagus. *Am J Gastroenterol*. Jan 2016;111(1):30-50; quiz 51. doi:10.1038/ajg.2015.322

53. Vennalaganti P, Kanakadandi V, Goldblum JR, et al. Discordance Among Pathologists in the United States and Europe in Diagnosis of Low-Grade Dysplasia for Patients With Barrett's Esophagus. *Gastroenterology*. Feb 2017;152(3):564-570.e4. doi:10.1053/j.gastro.2016.10.041

54. Wani S, Falk GW, Post J, et al. Risk factors for progression of low-grade dysplasia in patients with Barrett's esophagus. *Gastroenterology*. Oct 2011;141(4):1179-86, 1186.e1. doi:10.1053/j.gastro.2011.06.055

55. Wani S, Rubenstein JH, Vieth M, Bergman J. Diagnosis and Management of Low-Grade Dysplasia in Barrett's Esophagus: Expert Review From the Clinical Practice Updates Committee of the American Gastroenterological Association. *Gastroenterology*. Nov 2016;151(5):822-835. doi:10.1053/j.gastro.2016.09.040

56. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. *Isme j*. Feb 2011;5(2):169-72. doi:10.1038/ismej.2010.133

57. Ke G, Meng Q, Finley T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: Guyon I, Luxburg UV, Bengio S, et al, eds. *31st Conference on Neural Information Processing Systems (NIPS 2017)*. 2017.
58. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. *BMC Bioinformatics*. Mar 17 2011;12:77. doi:10.1186/1471-2105-12-77

DECLARATIONS

Ethical approval and consent to participate: This study was approved by the Columbia University Institutional Review Board. All patients provided written informed consent.

Consent for publication: Not applicable

Availability of data and materials: 16S rRNA gene sequencing files were uploaded to NCBI Sequence Read Archive (PRJNA785879).

Competing interests: The authors have none to disclose.

Funding: This study was supported in part by the National Cancer Institute (U54 CA163004; R01 CA238433) and the Digestive Disease Research Foundation. T.K. is a CIFAR Azrieli Global Scholar in the Humans & the Microbiome Program. DEF was supported in part by a Department of Defense Peer Reviewed Medical Research Program Clinical Trial Award (PR181960) and by a Columbia University Irving Scholar Award.

Authors' contributions: Quinn Solfisburg performed data analysis, data interpretation, and original drafting of the manuscript. Federico Baldini performed data analysis, data interpretation, and assisted with drafting the manuscript. Brittany Baldwin Hunter performed study conduct and provided critical input to the manuscript. Harry Lee performed data analysis and provided critical input to the manuscript. Daniel Freedberg performed data interpretation and provided critical input to the manuscript. Charles Lightdale performed study conduct and provided critical input to the manuscript. Tal Korem supervised data analysis, performed data interpretation, and assisted with drafting the manuscript. Julian Abrams designed the study, supervised data analysis, performed data interpretation, and assisted with drafting the manuscript. All authors approved the final version of the manuscript.

Acknowledgments: None

Authors' information: See title page.