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Abstract:  1 

Esophageal adenocarcinoma (EAC) is rising in incidence and associated with poor 2 

survival, and established risk factors do not explain this trend.  Microbiome alterations 3 

have been associated with progression from the precursor Barrett’s esophagus (BE) to 4 

EAC, yet the oral microbiome, tightly linked to the esophageal microbiome and easier to 5 

sample, has not been extensively studied in this context.  We aimed to assess the 6 

relationship between the salivary microbiome and neoplastic progression in BE to 7 

identify microbiome-related factors that may drive EAC development.  We collected 8 

clinical data and oral health and hygiene history and characterized the salivary 9 

microbiome from 250 patients with and without BE, including 78 with advanced 10 

neoplasia (high grade dysplasia or early adenocarcinoma).  We assessed differential 11 

relative abundance of taxa by 16S rRNA gene sequencing and associations between 12 

microbiome composition and clinical features and used microbiome metabolic modeling 13 

to predict metabolite production.  We found significant shifts and increased dysbiosis 14 

associated with progression to advanced neoplasia, with these associations occurring 15 

independent of tooth loss, and the largest shifts were with the genus Streptococcus.  16 

Microbiome metabolic models predicted significant shifts in the metabolic capacities of 17 

the salivary microbiome in patients with advanced neoplasia, including increases in L-18 

lactic acid and decreases in butyric acid and L-tryptophan production.  Our results 19 

suggest both a mechanistic and predictive role for the oral microbiome in esophageal 20 

adenocarcinoma.  Further work is warranted to identify the biological significance of 21 

these alterations, to validate metabolic shifts, and to determine whether they represent 22 

viable therapeutic targets for prevention of progression in BE. 23 

 24 

 25 

  26 
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INTRODUCTION:  27 

Esophageal adenocarcinoma (EAC) has seen a dramatic rise in incidence in the 28 

past several decades, is often diagnosed at advanced stages, and is associated with 29 

poor survival.1,2  The factors that drive EAC remain incompletely understood.  Barrett’s 30 

esophagus (BE) is the precursor lesion to EAC, but the overwhelming majority of BE 31 

patients do not progress to EAC.  Established EAC risk factors, including 32 

gastroesophageal reflux disease (GERD) and obesity, do not fully explain the rise in its 33 

incidence.3,4   34 

Increasing evidence suggests that the microbiome plays an important role in 35 

modifying the risk of a variety of epithelial cancers5-8 as well as in modulating the 36 

response to treatment.9-11  Changes in the esophageal microbiome have been observed 37 

in EAC and with progression from BE to EAC,12,13 raising the possibility that bacteria 38 

contribute to esophageal neoplasia.  Reliable sampling of the esophageal microbiome, 39 

however, requires invasive procedures.  A more accessible “window” to the esophageal 40 

ecosystem is the oral microbiome, which was shown to strongly influence it.14  A small 41 

study of the tumor-associated microbiome in EAC found a high prevalence of 42 

domination by oral flora such as Streptococcus,12 pointing to a link between the oral 43 

microbiome and EAC.  Oral microbiome alterations have been associated with future 44 

risk of EAC15, and differences in the oral microbiome of BE patients were described 45 

previously in a small study of 49 patients.16  Alterations in the oral microbiome have also 46 

been associated with poor oral health17, which was in itself associated with increased 47 

risk of EAC in a recent analysis.18  It remains unclear how oral dysbiosis and poor oral 48 

health interact in their association with EAC.  Finally, little is known with regard to oral 49 

microbiome alterations associated with neoplastic progression in BE patients.  A clearer 50 

understanding of these oral microbiome changes could identify factors that may drive 51 

progression of neoplasia, representing novel therapeutic targets.   52 

Here, we profiled the salivary microbiome from 250 patients with various stages 53 

of BE and EAC who were undergoing upper endoscopy. We identify multiple 54 

characteristics of the oral microbiome associated with neoplastic progression in BE and 55 
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show that they are independent of oral health. Using metabolic modeling, we predict 56 

metabolite profiles associated with alterations in BE, suggesting a mechanistic role for 57 

microbially produced metabolites. Finally, we show that the salivary microbiome offers a 58 

mild improvement in diagnostic accuracy compared to models based on clinical risk 59 

factors. Our results demonstrate the potential of studying the oral microbiome in the 60 

context of progression to EAC. 61 

 62 

RESULTS:  63 

Oral microbial composition from a large endoscopy cohort 64 

We recruited 250 adult patients undergoing upper endoscopy and characterized 65 

their oral microbiome using 16S rRNA gene sequencing. (Methods)  A total of 244 66 

patients were included in the analyses: 125 controls without Barrett’s esophagus (BE), 67 

and 119 BE patients (20 with non-dysplastic BE, 11 indefinite for dysplasia, 10 low 68 

  
  

All (n=244)  Non-BE 
(n=125) 

BE  
(n=119) 

P-value 

Age, years; mean (SD) 57.8 (18.7) 50.9 (18.7) 65.0 (15.8) <0.001 

Sex, male; N (%) 140 (57%) 45 (36%) 95 (80%) <0.001 

Ever smokers; N (%) 103 (42%) 41 (33%) 62 (52%) 0.002 

BMI mean (SD) 27.5 (6.7) 27.0 (7.9) 28.1 (5.1) <0.001 

Race, white; N (%) 222 (90%) 105 (84%) 117 (98%) <0.001 

GERD; N (%) 167 (68%) 64 (51%) 103 (87%) <0.001 

PPI use; N (%) 148 (60%) 41 (33%) 107 (90%) <0.001 

Aspirin use; N (%) 77 (31%) 25 (20%) 52 (44%) <0.001 

Oral health and hygiene 
    

 
Tooth loss; N (%) 127 (52%) 52 (42%) 75 (63%) <0.001 

 
Tooth brushing frequency, ≥ 
daily; N (%) 

233 (95%) 123 (98%) 110 (92%) 0.03 
 

Mouthwash frequency, ≥ 
daily; N (%) 

139 (56%) 69 (55%) 70 (59%) 0.61 

Table 1.  Patient Characteristics. P – t-test or Fisher exact p for difference between BE and non-
BE.  
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grade dysplasia, 54 high grade dysplasia, and 24 intramucosal (T1a) adenocarcinoma).  69 

Patients with BE were more likely to be older (t-test p<0.001), male (Fisher exact 70 

p<0.001), white (p=0.001), or ever-smokers (defined as ≥100 lifetime cigarettes 71 

smoked) (p=0.003). They were also more likely to have GERD (p<0.001), to be treated 72 

with proton pump inhibitor (PPI; p<0.001), to take aspirin (p<0.001), and to have a 73 

higher BMI (p<0.001). (Table 1) There was no significant difference in the use of 74 

mouthwash between BE and non-BE patients (p=0.61), but non-BE patients were more 75 

likely to brush their teeth at least daily (98% vs 92%, p=0.03).  Compared to non-BE, a 76 

significantly higher proportion of patients with BE had tooth loss (63% vs. 42%, 77 

p=0.001), largely due to an increase in tooth loss in patients with advanced neoplasia 78 

(defined as high grade dysplasia or adenocarcinoma, 66%; non-dysplastic BE, 40%; 79 

non-BE, 42%; Fisher’s exact p=0.001). (Figure 1)  Older age (per year, adjusted OR 80 

1.06, 95% CI 1.04-1.08) and a history of smoking (adjusted OR 2.12, 95% CI 1.07-4.19) 81 

were independently associated with tooth loss. (Supplementary Table 1)  In 82 

multivariable analyses adjusting for EAC risk factors (age, male sex, white race, and 83 

GERD), tooth loss was associated with a non-significant increased risk of advanced 84 

neoplasia (vs. non-BE, adjusted OR 1.49, 95%CI 0.96-2.47). (Supplementary Table 2) 85 

These results are in line with a recent analyses of data from the Nurses’ Health Study, 86 

which found an association between both tooth loss and periodontal disease and risk of 87 

esophageal adenocarcinoma, but showed a decrease in association strength after 88 

adjusting for covariates.18  Established EAC risk factors were independently associated 89 

with advanced neoplasia even after controlling for daily tooth brushing, use of 90 

mouthwash, and presence of tooth loss, whereas these measures of oral health and 91 

hygiene were not independently associated with advanced neoplasia (p=0.21, 0.57, and 92 

0.34, respectively). 93 
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Figure 1. Tooth loss is significantly more common in advanced neoplasia. A significantly 

higher proportion of patients with advanced neoplasia (high grade dysplasia or esophageal 

adenocarcinoma) had tooth loss as compared to non-BE and non-dysplastic BE patients combined 

(Fisher’s exact p = 0.001). P – Fisher’s exact.  

 94 
The oral microbiome of BE patients is progressively altered with dysplastic 95 

changes. 96 

To assess whether the salivary microbiome is associated with neoplastic 97 

progression, we focused our analyses on comparisons between three groups: non-BE 98 

(n=125), non-dysplastic BE (n=20), and advanced neoplasia (high grade dysplasia and 99 

adenocarcinoma [HGD/EAC]; n=78).  We found that neoplastic progression was 100 

associated with significantly lower alpha diversity (Shannon: Kruskal-Wallis p=0.005, 101 

Figure 2A; Simpson: p=0.0029, Supplementary Figure 1).  Compared to patients 102 

without BE, the alterations in alpha diversity were more pronounced in patients with 103 

advanced neoplasia than in those with nondysplastic BE (non-BE vs. non-dysplastic BE, 104 

Mann-Whitney p=0.11; non-BE vs advanced neoplasia, p=0.0006).  There was no 105 

significant difference in alpha diversity comparing nondysplastic BE with advanced 106 
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neoplasia (p=0.23).  We further found that the oral microbiome from patients with 107 

advanced neoplasia tended to cluster separately than the rest of the cohort (weighted 108 

UniFrac, ANOSIM p<0.001; Figure 2B).  Similar results were found when including all 109 

the subjects in their individual groups (non-BE, nondysplastic BE, IND, LGD, HGD, and 110 

EAC; Supplementary Figure 2).  Our results indicate that the salivary microbiome 111 

alterations observed in advanced neoplasia are reflected both in the diversity of each 112 

individual’s microbiome (alpha diversity) and in compositional differences between 113 

individuals (beta diversity).  114 

 
Figure 2. A microbial signature of BE. (A) Patients with advanced neoplasia have significantly 

reduced alpha diversity compared to non-BE patients. Kruskal-Wallis overall p-value=0.005. p – 

Mann-Whitney U test. (B) Weighted UniFrac PCoA demonstrated significant clustering of patients 

with advanced neoplasia (ANOSIM p=0.001). NDBE, non-dysplastic BE; advanced neoplasia – high 

grade dysplasia or esophageal adenocarcinoma; ellipse, 2 standard deviation sigma ellipse. 

    115 

We next checked whether specific microbes were associated with BE 116 

progression. We therefore compared relative abundance of different OTUs between all 117 

BE patients vs. non-BE using ALDEx2.19 (Methods)  A total of 26 OTUs were identified 118 

as differentially abundant (p < 0.05, FDR corrected at 0.1; Figure 3).  To assess 119 

whether the dysbiotic signature associated with BE is more pronounced with dysplastic 120 
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changes, we checked whether these 26 OTUs were correlated with progression across 121 

the neoplastic spectrum, from no dysplasia to EAC (Methods).  There was a significant 122 

association (p<0.05, FDR corrected at 0.1) for 23 of the 26 taxa, with a clear shift in 123 

composition with neoplastic progression, notably in the transition from low grade 124 

dysplasia (LGD) to high grade dysplasia (HGD). (Figure 3)  This transition in 125 

composition from LGD to HGD is consistent with our prior observations of esophageal 126 

microbiome alterations with progression to EAC.20  The taxonomic alterations 127 

associated with progression were notable for increased relative abundance of several 128 

Streptococcus species.  Streptococci form biofilms in the oral cavity21-23. 129 

 130 
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Figure 3. Increased oral dysbiosis with progressive dysplasia.  Shifts in the oral microbiome 

compared to non-BE patients (shown as ALDEx2 effect sizes) were more pronounced with progression 

from no dysplasia to EAC, particularly notable in patients with high grade dysplasia and EAC.  Bolded 

OTUs were significantly associated with neoplastic progression. (p < 0.05, FDR corrected at 0.1; 

Methods) NDBE, nondysplastic Barrett’s esophagus; Indef, indefinite for dysplasia; LGD, low grade 

dysplasia; HGD, high grade dysplasia; EAC, esophageal adenocarcinoma. 
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The salivary microbiome is associated with advanced neoplasia even when 131 

controlling for tooth loss. 132 

Tooth loss is known to be strongly associated with oral microbiome 133 

composition17, and there was an increased proportion of advanced neoplasia patients 134 

with tooth loss. (Figure 1)  Comparing patients who did and did not have all or most of 135 

their natural adult teeth, we found that those with tooth loss had lower alpha diversity 136 

(Shannon, Mann-Whitney p=0.001; Supplementary Figure 3A), and that oral 137 

microbiomes from both groups clustered separately (weighted UniFrac, ANOSIM 138 

p=0.003; Supplementary Figure 3B). We also identified 29 OTUs that had significantly 139 

different abundance between patients with and without tooth loss. (ALDEx2 p < 0.05, 140 

FDR corrected at 0.1; Figure 4)  As poor oral health is associated with oral dysbiosis, 141 

this raised the question of whether the oral microbiome is associated with advanced 142 

neoplasia independent of tooth loss. 143 

We first examined whether salivary microbiome composition as a whole is 144 

associated with advanced neoplasia independently of tooth loss. We therefore 145 

calculated microbiome principal coordinates (PCos) using weighted UniFrac distances 146 

and used the top five PCos, which represented two thirds of the variance in microbiome 147 

composition.  We then used multivariable logistic regression and found that PCo2 148 

(explaining 22% of microbiome variation) and PCo4 (4.6%) were independently 149 

associated with advanced neoplasia. (p<0.001 and p=0.004, respectively)  We then 150 

added the major EAC risk factors (age, sex, race, BMI, GERD history, and smoking 151 

history) to the model, and found that PCo2 remained independently associated with 152 

advanced neoplasia (p=0.004), suggesting that salivary microbiome composition 153 

represents a potential novel independent risk factor for EAC.  Adding tooth loss to the 154 

model did not alter the association between PCo2 and advanced neoplasia (p=0.004), 155 

and in this model tooth loss was not independently associated with advanced neoplasia 156 

(p=0.12).  Our results suggest that the association of tooth loss with advanced 157 

neoplasia is mediated through the oral microbiome. 158 

We next assessed whether associations between specific oral taxa and 159 

advanced neoplasia are independent of tooth loss.  Of the 33 taxa associated with 160 
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advanced neoplasia (N=78) vs. non-BE (N=125; ALDEx2 p < 0.05; FDR corrected at 161 

0.1), 18 were also associated with tooth loss. (Figure 4)  After adjusting for tooth loss in 162 

a generalized linear model, 20 of these taxa remained significantly associated with 163 

advanced neoplasia. (ALDEx2 p < 0.05, FDR corrected at 0.1)  Notably, the four OTUs 164 

with the greatest increase in relative abundance in advanced neoplasia were all 165 

assigned to the genus Streptococcus, and the increased abundance of these 166 

Streptococcus OTUs in advanced neoplasia was independent of tooth loss.  This 167 

corresponds with previous studies that found that the tumor-associated microbiome in 168 

EAC is often dominated by Streptococcus species.12  169 
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Figure 4. Oral microbes are independently associated with advanced neoplasia and tooth loss. 

Differentially abundant taxa in patients with advanced neoplasia (high-grade dysplasia or esophageal 

adenocarcinoma) compared to non-BE (left) and in patients with and without tooth loss (right).  Many 

taxa were associated with both neoplasia and tooth loss, yet most of these remained significantly 

differentially abundant after adjusting for tooth loss and advanced neoplasia, respectively (ALDEx2 p 

< 0.05, FDR corrected at 0.1; denoted by asterisks).  
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Metabolic modeling predicts distinct metabolic secretion capabilities in advanced 171 

neoplasia.   172 

 Metabolite production by microbial communities is an important modality by 173 

which the microbiome affects the host.  In order to assess if microbially produced 174 

metabolites might play a role as a driver or biomarker of neoplasia, we used microbiome 175 

community-scale metabolic models to predict metabolite secretion by the microbiome 176 

for every sample. (Methods)  We found significant clustering of predicted metabolite 177 

profiles comparing advanced neoplasia cases with non-BE subjects (PERMANOVA 178 

p=0.001). Using principal components analysis, we found notable shift in the second 179 

component (15% explained variance; Mann-Whitney p=0.0003). (Figure 5A)  Forty-four 180 

predicted metabolites had significantly altered abundance (p < 0.05, FDR corrected at 181 

0.1) in advanced neoplasia. (Figure 5B)  Notable alterations included increased 182 

predicted levels of L-lactic acid (p=0.023), a by-product of aerobic glycolysis, a hallmark 183 

of cancer which can contribute to neoplasticity;24  and 2-ketobutyric acid (p=0.033), 184 

previously reported to support mitochondrial respiration and cell proliferation.25  We also 185 

predicted that advanced neoplasia features a decrease in butyric acid (p=0.0089), a key 186 

promoter of gut homeostasis that was previously shown to be depleted in colon cancer 187 

and inflammatory bowel disease;26-28 and a decrease in L-tryptophan (p=0.0017). 188 

(Figure 5C)  Circulating levels of tryptophan have been inversely associated with colon 189 

cancer risk29, and melatonin, a by-product of L-tryptophan metabolism, is under 190 

investigation for EAC prevention.30  The pattern of the shifts we predict is therefore 191 

consistent with the potential promotion of proliferation, inflammation, and cancer.  192 

 193 
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Figure 5. The predicted metabolic profile is altered in patients with advanced neoplasia. (A) 

Significant clustering by advanced neoplasia status on principal components analysis (PERMANOVA 

p=0.001), with pronounced shifts in PC2 (p=0.0003). (B) Volcano plot demonstrating differentially 

abundant metabolites in advanced neoplasia. (C) Significantly altered predicted levels of L-lactic acid, 

2-ketobutyric acid, butyric acid, and L-tryptophan in advanced neoplasia.  Plot capped at -4 for 

butyrate. P, Mann-Whitney test 

 194 

Salivary microbiome data improves on clinical risk factors-based prediction of 195 

advanced neoplasia. 196 

We next performed an exploratory analysis to determine whether salivary 197 

microbiome features in this cohort could be used to distinguish advanced neoplasia 198 

from non-BE patients.  As a baseline, we first trained a gradient boosted decision trees 199 

model which uses clinical risk factors for EAC and tooth loss to classify advanced 200 

neoplasia.  The classifier was tested in cross-validation on patients not seen in the 201 

training of that model and achieved an area under the receiver operating characteristic 202 
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curve (AUROC) of 0.84 (95%CI 0.79-0.89).  The same process was then used to train a 203 

classifier using microbiome data, whereas, within each training fold, 10 OTUs were 204 

selected based on a Kruskal-Wallis test.  This classifier had an AUROC of 0.72 (95%CI 205 

0.65-0.79).  Finally, a model trained on the combination of both microbiome data and 206 

EAC risk factors resulted in somewhat higher model accuracy, producing an AUROC of 207 

0.88 (95%CI 0.83-0.91; vs. clinical risk factor model AUROC 0.84, 95%CI 0.79-0.89; 208 

DeLong p=0.053). (Supplementary Figure 4) A combined microbiome and clinical risk 209 

factor model with the outcome limited to HGD and excluding intramucosal EAC showed 210 

similar results with an AUROC 0.86 (95%CI 0.80-0.92), compared to an AUROC of 0.83 211 

(95%CI 0.77-0.89) using only clinical risk factors for the same task. (Supplementary 212 

Figure 5) 213 

 214 

 215 

DISCUSSION: 216 

 In this cross-sectional study of patients with and without BE, we detected marked 217 

shifts in the salivary microbiome with progression to EAC, with changes that appeared 218 

to be most pronounced in patients with advanced neoplasia.  These changes included 219 

reduced diversity as well as significantly increased relative abundance of several taxa in 220 

the genus Streptococcus.  As in previous studies, we found that tooth loss is more 221 

common in patients with advanced neoplasia. However, we show that many of the 222 

salivary microbiome associations observed in BE and advanced neoplasia persisted 223 

even when accounting for it. Further, we used metabolic modeling to identify distinct 224 

predicted metabolic secretion capabilities in advanced neoplasia.  225 

 Our findings add to the growing body of evidence that the oral microbiome is 226 

linked to the esophageal microbiome and may contribute to esophageal neoplasia.  In a 227 

case-control study of patients with EAC, BE, and controls, the EAC-associated 228 

microbiome had significantly reduced alpha diversity, similar to our observations in 229 

saliva.12 Interestingly, in that study 5/15 of the EAC tumors were dominated by 230 

Streptococcus spp. (relative abundance 69%-98%).  In our salivary microbiome 231 

analyses, 4 of the 5 taxa most strongly associated with advanced neoplasia were also 232 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.27.546733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.27.546733
http://creativecommons.org/licenses/by-nc/4.0/


 16 

Streptococcus spp.  Our group conducted a randomized controlled trial and found that 233 

an antimicrobial mouth rinse can produce esophageal microbiome and tissue gene 234 

expression changes, highlighting the relevance of oral bacteria to esophageal disease.31  235 

In another cohort study analyzing mouth rinse samples from patients enrolled in two 236 

large cancer prevention studies, oral microbiome alterations were noted to precede an 237 

EAC diagnosis by several years.15  In a small study of 49 patients we previously noted 238 

marked salivary microbiome alterations associated with BE and also with advanced 239 

neoplasia.16     240 

 Our study features the use of microbiome metabolic models to identify broad 241 

shifts in metabolites predicted to be produced by the saliva microbiome.  Many of the 242 

predicted changes to metabolite outputs correspond with existing knowledge. Lactic 243 

acid, for example, was predicted to be increased in advanced neoplasia. Lactic acid can 244 

serve as a major energy source for proliferative cancer cells, and is known to activate 245 

hypoxia inducible factors, which in turn contribute to proliferation, angiogenesis, and 246 

other neoplastic features.24  Our findings could therefore support the hypothesis that the 247 

oral and esophageal microbiota promotes EAC development and progression via 248 

production of metabolites.32  Our findings further correspond with a previous study 249 

detecting lactic-acid bacteria in many esophageal adenocarcinomas.12  However, the 250 

biological significance of predicted metabolite production is unclear, and future studies 251 

are needed to validate these predictions and to elucidate the biological effects of 252 

specific bacterial metabolites on esophageal neoplasia. 253 

 Prior work has associated tooth loss and periodontal disease with increased risks 254 

of esophageal squamous cell cancer and gastric cancer, and a recent study found an 255 

association between both tooth loss and periodontal disease and risk of esophageal 256 

adenocarcinoma.18  This indicates a potential confounding effect, as tooth loss is also 257 

associated with major alterations in oral microbiome composition.17  Our study offers an 258 

explanation for these associations, demonstrating that salivary microbiome composition 259 

is independently associated with advanced neoplasia, even when adjusting for EAC risk 260 

factors and for tooth loss.  These findings suggest that the association between tooth 261 
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loss and esophageal neoplasia is mediated by changes in the salivary microbiome, and 262 

that the salivary microbiome may represent a novel independent risk factor for EAC. 263 

 We performed exploratory analyses to assess whether the salivary microbiome 264 

could discriminate patients at highest EAC risk.  The salivary microbiome is highly 265 

suitable for diagnostics, as it is stable over time33-35, especially compared to other body 266 

sites36, and is resistant to perturbations.37  Addition of a microbiome-based classifier to 267 

EAC risk factors resulted in modest improvement in discrimination.  However, the 268 

current study was not specifically designed to address this question, and future studies 269 

should explore further the salivary microbiome as a potential biomarker for advanced 270 

neoplasia.  271 

 Important strengths of the current study include the relatively large sample size 272 

and the inclusion of oral health and hygiene information from patients.  The large 273 

sample size allowed for the detection of significant microbiome alterations, even when 274 

correcting for multiple comparisons.  Previous studies of the oral microbiome in BE and 275 

EAC have not included oral health and hygiene data, key potential confounders.  The 276 

patients were well characterized, with data collected on key EAC risk factors including 277 

GERD history, BMI, and smoking, which permitted microbiome analyses adjusting for 278 

these variables.  The BE patients in the study were demographically similar to BE 279 

populations from other studies, enhancing the generalizability of the findings.  Lastly, 280 

novel methods for predicted microbiome metabolic profiling allowed for insights into 281 

functional correlates of the salivary microbiome alterations. 282 

 The study does have certain limitations.  There were a relatively small number of 283 

non-dysplastic BE patients, limiting analyses in this subgroup.  Analyses did not 284 

incorporate dietary intake; however, previous studies suggest that diet has minimal 285 

impact on salivary microbiome composition.38-40  No conclusions can be drawn with 286 

regard to temporality in this cross-sectional study.  It is possible that the observed 287 

salivary microbiome alterations were caused by BE-associated advanced neoplasia, 288 

although we believe that this is unlikely.  Tooth loss was self-reported rather than 289 

measured, and periodontal disease was not directly assessed.  Community-scale 290 

metabolic models also have notable limitations. Our analysis was based on 16S rRNA 291 
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gene sequencing, which does not allow us to tailor models to specific strains or genetic 292 

potential present in each sample.  Additionally, while genome-scale models have been 293 

curated for common gut commensals, to our knowledge, such efforts have not been 294 

done for oral microbes.  Consequently, some models may be missing, while existing 295 

ones may lack representation of niche-specific metabolic capacity.  Despite these 296 

limitations, these models allow a systematic application of biochemical and genetic 297 

knowledge to our analysis and raise interesting hypotheses that could be experimentally 298 

validated.  299 

In conclusion, patients with BE-associated advanced neoplasia have a markedly 300 

altered salivary microbiome, and analyses of taxonomic alterations associated with 301 

stages of progression from BE to EAC appear to indicate that these changes are most 302 

notable at the transition from low- to high-grade dysplasia.  Increased tooth loss was 303 

also observed with progression to EAC, although the salivary microbiome alterations 304 

were largely independent of tooth loss, suggesting that the association of tooth loss with 305 

advanced neoplasia is mediated through the oral microbiome.  There were marked 306 

increases in various taxa in the genus Streptococcus in advanced neoplasia, possibly 307 

pointing to a biological contribution of these bacteria to neoplastic progression.  In 308 

addition to the microbiome alterations, progression to EAC was associated with 309 

numerous changes to predicted bacterial metabolite production, with notable alterations 310 

that suggest possible proneoplastic effects related to these shifts.  Further work is 311 

warranted to identify the biological significance of the microbiome alterations, to validate 312 

metabolic shifts, and to determine whether they represent viable therapeutic targets for 313 

prevention of progression in BE. 314 

 315 

 316 

METHODS: 317 

Study Design 318 

A total of 250 patients with and without BE undergoing upper endoscopy at 319 

Columbia University Irving Medical Center (New York, NY) were prospectively enrolled 320 

from February 2018 through February 2019.  Patients were ≥18 years old and 321 
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scheduled to undergo endoscopy for clinical indications.  Patients were excluded if they 322 

had a concurrently scheduled colonoscopy, had a history of gastric or esophageal 323 

surgery, a history of esophageal squamous cell cancer, or use of antibiotics, steroids, or 324 

other immunosuppressants in the 3 months prior to the procedure.  This study was 325 

approved by the Columbia University Institutional Review Board.  All patients provided 326 

written informed consent.   327 

Data were collected on patient demographics and anthropometrics (to calculate 328 

BMI) as well as clinical information including medical history, history of gastro-329 

esophageal reflux disease (GERD; defined as experiencing frequent heartburn or fluid 330 

regurgitation), medication use at time of enrollment (with specific notation of daily use of 331 

proton pump inhibitors (PPIs), histamine-2 receptor antagonists, statins, and daily use 332 

of aspirin and non-steroidal anti-inflammatory drugs), alcohol history, and smoking 333 

history (ever smoking defined as having smoked >100 lifetime cigarettes).  Data were 334 

collected on self-reported oral health and hygiene.  Tooth loss was assessed using 335 

categories adapted from Borningen et al.17:  all or most of natural adult teeth, partial 336 

plates or implants, full upper dentures or implants, full lower dentures or implants, full 337 

upper and lower dentures or implants.  Data were also collected on tooth brushing and 338 

mouthwash use. 339 

Patients did not eat or drink after midnight prior to the endoscopy and saliva 340 

collection; saliva was collected prior to the endoscopy.  Patients were categorized as 341 

BE if they had a history of endoscopically suspected BE with intestinal metaplasia on 342 

esophageal biopsies.  BE patients were further categorized based on the highest 343 

degree of neoplasia ever (no dysplasia (NDBE), indefinite for dysplasia (IND), low grade 344 

dysplasia (LGD), high grade dysplasia (HGD), adenocarcinoma (EAC)).   345 

 346 

Microbiome Sequencing and Analysis 347 

The 16S rRNA V3-V4 region was amplified using Illumina adapter-ligated 348 

primers.41  The Illumina Nextera XT v2 index sets A-D were used to barcode 349 

sequencing libraries. Libraries were sequenced on an Illumina MiSeq using the v3 350 

reagent kit (600 cycles) and a loading concentration of 12 pM with 10% PhiX spike-in.  351 
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Sequences were assigned to operational taxonomic units (OTUs) using USEARCH42 352 

with ≥ 97% sequence homology.  Taxonomic assignments for the OTUs were based on 353 

the Human Oral Microbiome Database (HOMD).43  Any subsequently unassigned OTUs 354 

were assigned by referencing the Ribosomal Database Project (RDP).44  Samples were 355 

subsampled to 10,000 reads to compare across even sequencing depths while 356 

minimizing data loss.  Five patients were excluded after sequencing because of 357 

relatively low sequencing depth with <10,000 total reads per sample.  The median read 358 

count for the full cohort was >33,000.  One patient was excluded because of a history of 359 

both EAC and esophageal squamous cell carcinoma.   360 

 361 

Microbiome metabolic modeling of oral microbial communities  362 

 Microbiome metabolic modeling was performed using the Microbiome Modeling 363 

Toolbox (COBRA toolbox commit: 71c117305231f77a0292856e292b95ab32040711) 364 
45,46 and the AGORA metabolic models (AGORA 1.02).47 All computations were 365 

performed in MATLAB version 2019a (Mathworks, Inc.), using the IBM CPLEX (IBM, 366 

Inc.) solver.  We first matched species detected by our microbial sequencing analysis 367 

with the ones present in AGORA.47 Because AGORA metabolic models are available at 368 

the strain level, we generated species-level models using the createPanModels.m 369 

function of the Microbiome Modeling Toolbox (MMT)45 as previously described.48  To 370 

increase the number of species represented in our microbiome models we chose 371 

genus-level representative models for abundant microbes present in the oral cavity with 372 

>5% relative abundance in more than 10 samples.  There were six species without a 373 

corresponding metabolic model, and these were either grouped with similar species or 374 

excluded from the analyses (See Supplementary Table 3 for details).   375 

We then used the mgPipe.m automated pipeline of the MMT to build and 376 

interrogate sample-specific microbiome metabolic models.  Briefly, for each sample, 377 

personalized microbiome models are created by joining species-level metabolic models 378 

using the compartmentalization technique49; a lumen compartment enabling microbial 379 

metabolic interactions is added, as well as additional input and output compartments, 380 

allowing microbiome intake and secretion of metabolites.  Altogether our microbiome 381 
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models included 160 microbial species with an average of 50 species for each sample 382 

and a maximum of 69.  As constraint-based metabolic modeling benefits from a 383 

specification of the metabolic environment such as media and carbon source 384 

availability50, we applied a “western diet”51 to each sample in the form of constraints on 385 

the metabolites uptake reactions.51  Finally, to obtain metabolic predictions, we used the 386 

Net Maximal Production Capabilities (NMPCs) through the mgPipe pipeline45 to provide 387 

predictions of the metabolite secretion profile of each sample. To detect significant 388 

changes in NMPCs distributions between cases and controls a Mann-Whitney U test 389 

was performed for each retained NMPCs. Only NMPCs which were present in at least 390 

10% of the cases and had at least a value of 0.01 were retained for the significance 391 

analysis. FDR correction using the Benjamini–Hochberg procedure was applied.  392 

 393 

Statistical Analysis 394 

The primary groups of comparison were BE patients with advanced neoplasia 395 

(HGD or EAC), non-dysplastic BE (NDBE) and non-BE controls.  Grouping high grade 396 

dysplasia and intramucosal adenocarcinoma together as advanced neoplasia reflects 397 

common practice as well as clinical guidelines for treatment.52 There is extremely low 398 

inter-observer agreement (even among expert gastrointestinal pathologists) for the 399 

diagnosis of LGD53-55, as inflammation-induced cytologic atypia mimics the findings of 400 

LGD.  As a result, while estimates of cancer risk for LGD are relatively low on 401 

average,54 these estimates vary widely, thus making interpretations of findings for this 402 

group challenging. Patients with low grade dysplasia or indefinite for dysplasia were 403 

included in analyses assessing for alterations in the oral microbiome across the entire 404 

BE neoplastic spectrum.  While there was no a priori reason to suspect that endoscopic 405 

therapy would have altered the salivary microbiome, comparisons were made between 406 

those patients with LGD or worse who had (n=78) and had not (n=10) received prior 407 

endoscopic therapy.  There were no differences in alpha diversity (p=0.16), no evidence 408 

of clustering on beta diversity analyses (ANOSIM p=0.13), and no differentially 409 

abundant taxa.  Thus, treated and untreated patients were grouped together for all 410 

analyses. 411 
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Categorical variables were compared across groups using Fisher’s exact tests. 412 

Continuous variables were analyzed using t-tests or rank sum tests as appropriate, with 413 

ANOVA and Kruskal Wallis tests for ³3 groups.  For purposes of analyses, tooth loss 414 

was dichotomized as having all or most of natural adult teeth (yes/no).  Multivariable 415 

logistic regression was performed to assess the association between tooth loss and 416 

advanced neoplasia, adjusted for known EAC risk factors (age, sex, GERD, body mass 417 

index (BMI), smoking).   418 

Alpha diversity was evaluated using the Shannon diversity index and beta 419 

diversity using weighted UniFrac56 distances. Groups were compared using both 420 

permutational multivariate analysis of variance (PERMANOVA) for predicted metabolite 421 

profiles and analysis of similarities (ANOSIM) for microbial compositions.  To find 422 

differential abundances between study groups, the ALDEx219 R package was used.  For 423 

differential abundance analyses, only OTUs present in at least 5% of all samples were 424 

included to allow for more meaningful comparisons.  ALDEx2 was used to compare 425 

worst histological grades of BE as an ordinal variable in a generalized linear model and 426 

to assess correlation of BE-associated OTUs with neoplastic progression using 427 

aldex.corr to treat worst histological grade as a continuous variable. ALDEx2 was also 428 

used to find significance for differentially abundant taxa in a multivariate model with both 429 

advanced neoplasia and tooth loss.  430 

Generalized linear models were used to assess differential relative abundance of 431 

bacterial taxa in advanced neoplasia, adjusted for tooth loss.  Multivariable logistic 432 

regression was performed to detect associations between advanced neoplasia and 433 

microbiome composition (represented by its top five principal coordinates), adjusted for 434 

EAC risk factors (age, sex, race, BMI, smoking, GERD).  Supervised machine learning 435 

was used to classify patients with advanced neoplasia using the LightGBM package.57  436 

Three models were created: 1) EAC risk factors alone (age, sex, race, BMI, smoking, 437 

GERD); 2) microbiome features alone; and 3) EAC risk factors and microbiome features 438 

together.  Model parameters were optimized per fold in 10-fold cross-validation, with 439 

strict train-test sterility.  The output of the models were predicted probabilities of whether 440 
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a patient has advanced neoplasia or no BE, with the goal of identifying the patients at 441 

highest risk of mortality from EAC.    442 

All statistical analyses were performed in Python or R.  Statistical significance 443 

was defined as p<0.05.  Differential abundance analyses were corrected for multiple 444 

comparisons using the Benjamini-Hochberg procedure, and corrected statistical 445 

significance was defined as p<0.1.  95% confidence intervals for AUCs were calculated 446 

using the DeLong method using pROC.58 447 

 448 
Data Availability:  16S rRNA gene sequencing files were uploaded to NCBI Sequence 449 

Read Archive (PRJNA785879).   450 

  451 
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