
1 
 

Converging on consistent functional connectomics  

Andrea I. Luppi 1,2,3,4,5 Helena M. Gellersen 6*, Zhen-Qi Liu5, Alexander R. D. Peattie 1,2, 
Anne E. Manktelow 1,2, Ram Adapa 1,2, Adrian M. Owen 7, Lorina Naci 8, David K. Menon 1, 

Stavros I. Dimitriadis 9-15, Emmanuel A. Stamatakis1,2 

1Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom. 
2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom. 

3Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, United Kingdom. 
4The Alan Turing Institute, London, United Kingdom. 

5Montreal Neurological Institute, McGill University, Montreal, Canada.      
6Department of Psychology, University of Cambridge, Cambridge, United Kingdom. 

7Department of Psychology and Department of Physiology and Pharmacology, Western Institute for 

Neuroscience (WIN), Western University, London, ON, Canada. 
8Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland. 

9Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain. 
10Institut de Neurociències, University of Barcelona, Barcelona, Spain. 

11Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, 

College of Biomedical and Life Sciences, CF24 4HQ, Cardiff, Wales, United Kingdom. 
12Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and 

Life Sciences, Cardiff University, CF24 4HQ, Cardiff, Wales, United Kingdom. 
13Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life 

Sciences, Cardiff University, CF24 4HQ, Cardiff, Wales, United Kingdom. 
14MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life 

Sciences, Cardiff University, CF24 4HQ, Cardiff, Wales, United Kingdom. 
15Integrative Neuroimaging Lab, 55133, Thessaloniki, Greece. 

* Present address: German Center for Neurodegenerative Diseases, Magdeburg, Germany. 

 

These authors share senior authorship: S.I.D., E.A.S. 

Correspondence: Andrea I. Luppi. Email: al857@cam.ac.uk 

 

Abstract 

Functional interactions between brain regions can be viewed as a network, empowering 
neuroscientists to leverage network science to investigate distributed brain function. 
However, obtaining a brain network from functional neuroimaging data involves multiple 
steps of data manipulation, which can drastically affect the organisation and validity of the 
estimated brain network and its properties. Here, we provide a systematic evaluation of 576 
unique data-processing pipelines for functional connectomics from resting-state functional 
MRI, obtained from all possible recombinations of popular choices for brain atlas type and 
size, connectivity definition and selection, and global signal regression. We use the portrait 
divergence, an information-theoretic measure of differences in network topology across 
scales, to quantify the influence of analytic choices on the overall organisation of the derived 
functional connectome. We evaluate each pipeline across an entire battery of criteria, 
seeking pipelines that (i) minimise spurious test-retest discrepancies of network topology, 
while simultaneously (ii) mitigating motion confounds, and being sensitive to both (iii) inter-
subject differences and (iv) experimental effects of interest, as demonstrated by propofol-
induced general anaesthesia. Our findings reveal vast and systematic variability across 
pipelines’ suitability for functional connectomics. Choice of the wrong data-processing 
pipeline can lead to results that are not only misleading, but systematically so, distorting the 
functional connectome more drastically than the passage of several months. We also found 
that the majority of pipelines failed to meet at least one of our criteria. However, we identified 
8 candidates satisfying all criteria across each of four independent datasets spanning 
minutes, weeks, and months, ensuring the generalisability of our recommendations. Our 
results also generalise to alternative acquisition parameters and preprocessing and 
denoising choices. By providing the community with a full breakdown of each pipeline’s 
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performance across this multi-dataset, multi-criteria, multi-scale and multi-step approach, we 
establish a comprehensive set of benchmarks to inform future best practices in functional 
connectomics. 
 
Keywords: brain networks; fMRI; parcellation; thresholding; global signal regression; 
functional connectomics. 

Introduction 

The human brain is a remarkably complex system, comprising a large number of regions 

interacting over time. To address this challenge and obtain insights about distributed brain 

function and dysfunction, neuroscientists have turned to network science, whereby different 

parts of the brain can be viewed as nodes in a network, and the statistical relationships 

between them are used to represent connections between nodes1–5. This powerful approach 

leverages graph theory to quantify key aspects of brain network organisation in vivo, 

illuminating the neurobiological underpinnings of healthy and pathological cognition6–9. In 

particular, resting-state functional MRI (rs-fMRI) is a very popular imaging tool, due to its 

excellent spatial resolution and wide applicability10: being task-free, it can be easily 

administered even to challenging populations, from in-utero foetuses11 to severely injured 

and even unconscious patients12–14. Indeed, aberrant functional connectivity patterns have 

been observed in many neurological and psychiatric conditions15–19. 

However, recent studies have highlighted how different analysis workflows can lead to 

sometimes drastically different conclusions about the same neuroimaging dataset20, owing to 

a vast pool of possible methodological choices which effectively constitute a combinatorial 

explosion problem21. Crucially, such a combinatorial explosion also plagues network 

analyses of the human brain: even beyond substantial differences introduced by data 

preprocessing and denoising procedures22,23, a wide variety of approaches have been 

proposed to derive brain networks from preprocessed functional neuroimaging data. The 

very definition of nodes in brain networks is controversial: although fMRI voxels have no 

intrinsic biological meaning, it is well-established based on both functional involvement and 

lesion studies but also cellular, molecular, and fiber architecture that the brain exhibits 

biologically meaningful regional organisation, such that voxels can be grouped together into 

anatomically distinct areas 21,24–26. However, there is yet no consensus on the most 

appropriate parcellation of the human brain, or the number and spatial extent of brain 

regions, or whether they should be discrete or overlapping27. Similar difficulties arise for the 

definition of functional connections (edges) between nodes: how to quantify them, which 

ones to retain for analysis, and whether to emphasise the presence/absence of connections 

(binary network) or their relative strength (weighted network)18,28, highlighting the intricacies 
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of this issue27. This challenge has practical consequences: even with high-quality data, a 

poor choice of network construction pipeline may produce misleading conclusions about 

neurobiology and functional organisation, and possibly misinform biomarker discovery and 

clinical practice. Thus, to ensure the value of graph-based estimates as clinical biomarkers, 

it is of paramount priority to establish what is the most appropriate way to construct a 

functional brain network from rs-fMRI data.  

Reliability of network topology is of fundamental importance for any subsequent analysis of 

network properties: any pipelines that recover vastly different topologies from two scans of 

the same individual taken within the same hour, are liable to produce misleading results 

when used to associate network properties with behavioural traits10 or clinical outcomes29. 

Thus, identification of reliable network construction pipelines represents a fundamental 

prerequisite for both network-based investigation of individual differences using functional 

neuroimaging30,31 and subsequent efforts aimed at clinical translation32. Existing scientific 

work comparing different network construction steps typically focused on specific global or 

local network properties (e.g., modularity, small-world character, global or local efficiency, 

down to individual edges) and evaluated the different alternatives by maximising the intra-

class correlation (ICC) of the adopted global or local network properties25,33–43. 

 

However, these approaches both have limitations. On the one hand, focusing on local 

aspects (individual edges, node-level properties) runs the risk of “missing the forest for the 

trees”33, because networks are more than just collections of edges: rather, the way that 

edges are organised gives rise to micro-, meso- and macro-scale structure, which is 

precisely what makes network-based approaches so powerful. On the other hand, focusing 

on specific high-level properties of the network will inevitably limit the generalisability of 

results, because a vast and ever-growing array of network properties can be defined and 

used to obtain insights about brain function44,45, but there is no guarantee that 

recommendations pertaining to one will also apply to others. 

In the present study, we introduce a framework to explicitly address and tame the 

combinatorial explosion. First, we evaluate network construction pipelines end-to-end, rather 

than restricting our attention to individual steps in isolation, as most previous studies have 

done. Second, we base our evaluation on the network’s topology, that is, the network’s 

organisation as a whole. For this purpose, we leverage the advantages of the recently 

introduced “Portrait divergence” (PDiv) measure of dissimilarity between networks46. This 

information-theoretic measure simultaneously takes into account all scales of organisation 

within a network, from local structure to motifs to large-scale connectivity patterns. 
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Therefore, it incorporates all aspects of network topology, enabling us to go beyond the use 

of specific and arbitrarily-chosen graph-theoretical properties.  

Third, test-retest reliability is a necessary but arguably not sufficient condition for a pipeline 

to be suitable for functional connectomics. Therefore, we seek to identify network 

construction pipelines that minimise spurious (noise- or motion-induced) differences between 

brain networks of the same individual across repeated scan sessions, but that also satisfy 

additional criteria of biological relevance: sensitivity to individual differences, clinical 

contrasts of interest, and experimental manipulations - here operationalised by 

pharmacological intervention with the general anaesthetic propofol. Fourth, to ensure the 

generalisability of our results29, each pipeline is evaluated across two independent test-retest 

datasets, spanning short (45 minutes), medium (2-4 weeks) and long term delays (5-16 

months). Our focus here is not on preprocessing/denoising approaches to fMRI data (where 

a vast literature exists47–50), but rather on the workflow that begins with preprocessed fMRI 

data and results in a brain network. However, to ensure that our recommendations can be 

further generalised to datasets acquired with different scanning parameters and 

preprocessed with different methods, we also require that optimal pipelines should meet all 

the above-mentioned criteria in an additional independent dataset (test-retest dataset from 

the Human Connectome Project), which was acquired with higher spatial (2mm) and 

temporal resolution (TR=0.72s) than the other datasets; preprocessed using a surface-

based rather than volume-based workflow; and denoised with a different method than the 

anatomical CompCor used for our main datasets (FIX-ICA, which is designed to affect 

artifacts specifically and avoid modifying the neural signal of interest)47,51,52.        

Through this comprehensive, multi-criterion approach, we compare the topologies of 

functional brain networks obtained from systematic combinations of different options at each 

step in the network construction process. (i) First, given our interest in robustness and 

generalisability, we conduct all our analyses on two versions of the same data: with versus 

without the controversial preprocessing step of global signal regression (GSR) 53. This allows 

us to make recommendations that are specific for GSR-processed data, or for non-GSR-

processed data, as well as identifying network processing pipelines that are suitable for both. 

(ii) Definition of network nodes: based on functional characteristics (combination of local 

homogeneity and global gradients of connectivity), or anatomical properties, or multimodal 

features from functional and structural MRI 21,24. (ii) Number of nodes: approximately 100, 

200, or 400, for each type of parcellation. (iv) Two different ways to define network edges 

from BOLD time-series: linear Pearson correlation or non-linear mutual information. (v) Eight 

different approaches to filter the network’s edges: by imposing a pre-specified density 
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(retaining 5%, 10%, or 20% of total edges, or matching the density of the structural 

connectome), or imposing a pre-specified minimum edge weight (0.3 or 0.5), or using data-

driven methods (Efficiency Cost Optimisation and Orthogonal Minimum Spanning Trees, two 

different strategies to define and then optimise the balance between network efficiency and 

wiring cost)54–56. (vi) Use of either binary or weighted networks. Fig.1 illustrates the set of 

choices across the investigated network construction steps that influence the construction of 

a functional brain network, yielding a total set of 576 pipelines (2*3*3*2*8*2). To the best of 

our knowledge, this is the first time in the literature that all of these available network 

construction steps are explored simultaneously end-to-end, and with a focus on topology as 

a whole rather than on specific network features.  

Overall, a strength of our current study is our ability to make recommendations for the choice 

of pipelines end-to-end, not only on the basis of theoretical gold standard metrics (test-

retest) but also on the basis of practical relevance: meaningful inference about changes in 

brain functional network topology and individual differences, and robustness and 

generalisability. To anticipate our main findings, we discovered large and systematic 

variability among pipelines’ ability to recover a reliable network topology, with the majority of 

pipelines failing to meet at least one criterion. Choice of an inappropriate network 

construction pipeline can lead to results that are not only misleading (statistically significant 

in the opposite direction as the true effect), but replicably so (being observed in two 

independent datasets). However, we also identified a number of pipelines that satisfy all our 

criteria, in all four test-retest comparisons, making them suitable candidates for functional 

connectomics and biomarker discovery. Through this multi-dataset, multi-criteria, multi-scale, 

and multi-step approach, we provide a comprehensive set of benchmarks for trustworthy 

functional connectomics.  
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Fig. 1. Overview of the steps to turn functional MRI data into a network. Starting from preprocessed and 
denoised data, the following steps are involved. (i) Use of data with vs without global signal regression (GSR), in 
addition to other denoising protocol (aCompCor for NYU-short, NYU-long, and Cambridge datasets; FIX-ICA for 
HCP); (ii) Definition of nodes (based on anatomical features, local and global functional characteristics, or 
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multimodal features); (iii) Choice of number of nodes (approximately 100, 200, or 400); (iv) Definition of 
connectivity measure (from Pearson correlation or mutual information); (v) Choice of edges to retain (8 filtering 
schemes considered, based on a priori choices of network density, or minimum edge weight, or data-driven 
strategies to optimise the balance between network efficiency and wiring cost), (vi) Use of binary or weighted 
edges. In total, we consider 2*3*3*2*8*2 = 576 unique pipelines. For each pipeline, the resulting functional 
networks are compared for the same subject across different time-spans (minutes, weeks, or months) using the 
Portrait Divergence. A network portrait for a binary network is a matrix B whose rows each correspond to a 
histogram obtained by thresholding the matrix of shortest paths between the networks’s constituent nodes, at 
each path length l between 0 and the network’s diameter L, such that entry Bl,k encodes the number of nodes that 
have k nodes at distance l. For weighted networks, the histogram is obtained by binning (see Methods). 
Illustration of Portrait Divergence adapted from Bagrow and Bollt (2019)41. 

 

Results 

We used an information-theoretic measure of distance between network topologies across 

scales, termed Portrait divergence (PDiv), to systematically compare 576 alternative network 

construction pipelines in terms of their ability to recover similar brain network topologies from 

functional MRI scans of the same individual across minutes (NYU dataset, same-session 

scans), weeks (Cambridge dataset), or months (NYU dataset, between-sessions 

comparison) (see Methods, and Fig. S1-2 for examples of network portraits and their 

divergence). Additionally, we considered an additional dataset (HCP test-retest) that was 

acquired with higher spatial (2mm isotropic) and temporal resolution (0.72s TR); with longer 

duration (1200 volumes); denoised using FIX-ICA instead of aCompCor; and parcellated on 

the surface rather than in volumetric space, as for the other datasets 57–59. Our end-to-end 

approach allowed us to simultaneously assess the effects of atlas type and number of 

nodes; connectivity quantification, thresholding, and binarisation; and global signal 

regression; while ensuring robustness to aspects such as acquisition, time between test and 

retest, and denoising method. 

 

Being grounded in information theory, the Portrait divergence between two networks can be 

interpreted as measuring how much information is lost when using one network to represent 

another: it ranges from 0 (no information loss) to 1 (complete information loss) 46. 

 

 To identify suitable pipelines, we required each of the following criteria to be met: 

● Criterion (I): Avoiding spurious differences (“PDiv ranking”). Since the two networks 

that we consider are derived from different scans of the same healthy individuals 

under conditions in which no experimentally meaningful changes in functional 

network topology are expected, we aim to identify pipelines that minimise test-retest 

PDiv. We consider pipelines as candidates for optimal if they are in the top 20% in 

terms of the average PDiv rank calculated across all test-retest intervals.  
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● Criterion (II): Detecting true experimental differences (“propofol”). Suitable pipelines 

should detect a significant effect for propofol, in the right direction, in both propofol 

datasets, i.e., a pipeline is excluded if it fails to detect the expected effect (greater 

change between wakefulness and anaesthesia than between two awake scans) in 

either of the two propofol datasets.  

● Criterion (III): Detecting inter-individual differences (“within-between”). A pipeline 

fails this criterion if the resulting networks are more similar between than within 

subjects more than 50% of the times, for any of the four test-retest datasets.  

● Criterion (IV): Avoiding motion-induced differences (“motion”). A pipeline fails this 

criterion if its PDiv has a significant correlation with differences in head motion in any 

of the four test-retest datasets.  

● Criterion (V): Non-empty networks. As a final sanity check, we also exclude any 

pipelines that remove all connections from a network, in any of the four test-retest 

datasets. 

These criteria also incorporate the need for recommendations to be generalisable across 

datasets and acquisition/preprocessing choices, since we only consider a criterion to be met 

if it is met in all the relevant datasets. 

A summary of all pipeline characteristics can be found in the Supplementary Interactive Tool. 

We provide an Excel spreadsheet with an interactive table, including filters that allow 

selection based on multiple criteria at once to identify pipelines which adhere to the specific 

criteria desired by the reader. We encourage readers to view the interactive table 

concurrently with the results described below, as this will allow a closer inspection of 

associations between a pipeline’s specific network processing choices and the desirable 

properties described in each subsection of the Results. A user guide for the interactive table 

is also included in the Supplementary Material.  

Portrait Divergence identifies drastic and systematic variability across pipelines’ 

capacity to avoid spurious differences  

For each dataset, Fig.2 illustrates the distributions of group-mean test-retest similarities of 

network topologies (portrait divergence) across the full set of 576 pipelines (See Fig.S3-30 

for the distribution of PDiv across pipelines, broken down by network construction step, for 

each dataset). Clearly, two patterns can be observed. First, network construction pipelines 

differ widely in how well they are able to recover the same network topology across different 

scans of the same individual, on average - whether on a timescale of minutes, weeks, or 

months. The worst pipelines induce a greater than five-fold increase in topological 
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dissimilarity (PDiv) between functional connectomes of the same individual, compared with 

the best-performing ones.       

 

 

      

 
Fig.2. Distribution of group-average portrait divergence values for each of 576 alternative network 

construction pipelines, across different time intervals.  From top to bottom:  Cambridge dataset (rescan 

within 2-4 weeks).NYU short-term dataset (rescan within 45 minutes). NYU long-term dataset (rescan within 16 

months; average 11.4); HCP dataset (rescan 1-11 months).  Right-side: highlighting the top 5 (lowest PDiv) and 
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bottom 5 performers (highest PDiv). Red lines mark 2 standard deviations from the mean of the distribution. 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Abbreviations. 

GSR: Global Signal Regression. OMST: Orthogonal Minimal Spanning Trees.  

 

 

Second, our results indicate high consistency across the four test-retest comparisons  

considered here, in terms of which data-processing steps feature prominently among the 

pipelines that are best (and worst) at minimising the average within-subject PDiv. Correlation 

between all pipelines’ ranks across time intervals revealed very high consistency between all 

datasets (Spearman’s rho ranging from .71 to .98, all p < 0.001) (Fig.3), indicating that 

pipelines’ suitability for network construction is not dataset-specific but rather can generalise 

to independent groups of individuals - spanning time intervals from hours to months. We 

view a small PDiv in these datasets as a desirable property: even though learning and 

plasticity could account for some amount of connectome reorganisation over weeks or 

months in healthy adults, such factors cannot plausibly be expected to be the cause of any 

network-wide reorganisation observed within the course of a single hour (in the absence of 

any intervention), which should instead be treated as unwanted noise. 

 

 

 
 

Fig. 3. Rank-based correlations of the pipelines’ performance across datasets. PDiv, portrait divergence; 
HCP, Human Connectome Project data; NYU, New York University dataset. All p < 0.001.  
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Sensitivity to experimental differences: Low-PDiv pipelines are more likely to detect 

pharmacologically-induced connectome reorganisation 

We have shown that network construction pipelines vary drastically and systematically in 

their robustness to noise-induced changes in the functional connectomes of the same 

individuals scanned multiple times. However, this minimisation of noise-induced differences 

should not come at the expense of also minimising meaningful changes in network topology, 

such as control-patient contrasts (an example of this would be a pipeline that never detects 

any changes). Rather, a good pipeline should simultaneously minimise noise-induced 

differences, while remaining sensitive to true ones. In other words, test-retest reliability is not 

the only criterion that neuroscientists need to consider for their choice of network 

construction pipelines: ultimately, the resulting networks need to also demonstrate empirical 

usefulness by providing neurobiologically meaningful results43,44. An ideal pipeline would 

therefore strike a balance between sensitivity to experimental manipulations or contrasts of 

interest on the one hand, and low portrait divergence in test-retest over relatively short 

periods of time in healthy individuals and under the same test conditions on the other hand. 

Therefore, in addition to identifying pipelines that do not detect differences when we know 

that there should be none or only minor ones (best exemplified by test-retest scanning within 

the same hour), we should find pipelines that can also detect a difference, when we know 

that a difference must be present: we need to combine a low rate of false positives (low test-

retest PDiv) with a low rate of false negatives. 

 

Perhaps the most drastic possible difference that can be induced between two scans of the 

same individual, is that between consciousness and unconsciousness. General anaesthetics 

such as the intravenous agent propofol can rapidly and reversibly induce a state of 

unconsciousness, whereby the subject is behaviourally unresponsive and has no subjective 

experiences. There is arguably no short-term, reversible alteration of the mind that is so all-

encompassing, and it cannot be expected to leave the functional connectome unaltered. 

Therefore, if a pipeline is unable to detect anaesthetic-induced differences in the topology of 

the functional connectome, we can reasonably conclude that it is not sensitive enough for 

use in network neuroscience. 

 

Following this rationale, we compared the PDiv from the NYU-short dataset (two scans 

within the same hour) against the PDiv observed between an awake rs-fMRI scan, and a 

second scan of the same individuals while under propofol-induced general anaesthesia (also 

acquired within the same visit). We seek to identify pipelines that produce significantly 

greater PDiv between an awake and an anaesthetised scan of the same individual, than 
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between two awake scans acquired at a comparable distance in time. To ensure the 

reliability of our approach, we repeat this analysis for two independent datasets of propofol 

anaesthesia to further bolster the reproducibility and generalisability of our findings.  

 

Across both datasets, our results suggest that pipelines with lower PDiv also tend to have t-

scores reflective of the expected effect of propofol (Fig. 4), as demonstrated by significant 

correlations between short-term test-retest PDiv (based on the NYU dataset) and t-scores 

both for the Western (rho=.42, p<.001) and the Cambridge propofol datasets (rho=.26, 

p<.001). As control test-retest PDiv becomes larger, t-scores also seem to become more 

variable, Reassuringly, we identified multiple pipelines that provide the expected effect in 

both datasets (Fig. 4, green dots). Intriguingly, however, we also identified a number of 

large-PDiv pipelines that detect a statistically significant difference between test-retest and 

anaesthesia, but in the opposite direction: that is, greater connectome reorganisation 

between two awake scans, than between an awake and an anaesthetised scan (Fig. 4, red 

triangles). In other words, these pipelines produce networks that are actively misleading 

about what we have strong reason to believe must be the ground truth (because there is a 

very substantial difference introduced by anaesthesia, reflected in the suspension of the 

brain’s input-processing abilities and cognitive function more broadly). These pipelines can 

be found in the Supplementary Interactive Tool (pipelines labelled “Opposite” in the columns 

Status Propofol West and Status Propofol Cam). Worryingly, we find that a non-negligible 

number of pipelines (38) produce the opposite of the expected effect for both propofol 

datasets - thereby returning results that are systematically misleading, and highlighting the 

dangers of an inappropriate choice of network construction workflow. Of note, all the 

consistently misleading pipelines use an absolute threshold; all but two use weighted edges; 

and 23/38 use mutual information to quantify connectivity. Overall, 55 pipelines show the 

expected effect for both propofol datasets, thereby satisfying this criterion, whereas 357 

pipelines are neutral (failing to detect statistically significant differences in at least one 

propofol dataset).  
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Fig. 4. Correlation between low PDiv and ability to detect significant difference between anaesthesia and 
test-retest. Left: Cambridge anaesthesia dataset, Right: Western anaesthesia dataset. Both correlations are 
statistically significant, p < 0.001. The t-scores are obtained from permutation-based two-sample t-tests 
comparing PDiv from test-retest NYU short, against PDiv from awake vs anaesthesia. Horizontal red lines 
indicate t ± 1.96, corresponding to a statistically significant difference between the two groups’ mean, with 
negative t-scores corresponding to PDiv (anaesthesia) > PDiv (test-retest). Green dots indicate pipelines that 
produce the expected effect in both datasets. Red triangles indicate pipelines that produce a misleading effect in 
both datasets.  
 
 
 

Sensitivity to inter-individual differences 

Another means by which the adequacy of a pipeline may be assessed is by comparing PDiv 

within subjects (scan 1 vs. scan 2 for subject 1, scan 1 vs. scan 2 for subject 2, etc…) and 

PDiv between subjects (subject 1 vs. subject 2, etc...). The proportion of participants for 

whom the within-subjects (WS) PDiv is smaller than between-subjects (BS) PDiv may be 

used as an additional criterion of pipeline quality, with the rationale that even after 

accounting for bona fide changes due to plasticity and learning, an individual’s functional 

connectome should not differ from itself at another point in time, more than it differs from the 

connectomes of other individuals.   

 

Our results suggest that pipelines with smaller PDiv are also better at producing networks 

that are sensitive to individual differences, such that the same subject’s brain network 

diverges less from the same subject’s network than from those of other people. This was the 

case for the NYU short test-retest data (rho=-.39, p<.001), the medium-term test-retest time 

interval for the Cambridge dataset (rho=-.42, p<.001), the NYU long test-retest data (rho=-

.37, p<.001) and the HCP dataset (rho=-.54, p<.001). 
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Passing and failing pipelines on the basis of this within-between criterion can be found in the 

Supplementary Interactive Tool (column Criterion within-between all). The interactive tool 

also lists the proportion of participants in a given pipeline for which within-subject PDiv is 

smaller than between-subjects PDiv in columns Within-between Cam (%), Within-between 

NYU short (%), Within-between NYU long (%), and Within-between HCP (%). In the 

Cambridge dataset, 59 pipelines were excluded based on this criterion. This was the case 

for 43 in the NYU short-term test-retest data and for 32 for the NYU long-term data as well 

as for 21 pipelines in the HCP data. In total, on the basis of the overall within-between 

criterion across datasets, 112 pipelines were excluded and 464were retained. 
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Fig. 5. PDiv within versus between individuals. Pipeline PDiv in a given dataset is plotted against the 
proportion of participants in the same dataset for whom the within-subject PDiv (baseline vs follow up) is smaller 
than between-subject PDiv. Pipelines above the red line meet the within-between criterion such that portrait 
divergence is smaller for within-subject test-retest compared to between subject comparisons. 

 

 

Avoiding motion confound 

As a further criterion, we sought to identify and exclude pipelines whose PDiv is significantly 

correlated with differences in subject motion (mean framewise displacement). For the 
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Cambridge dataset, 34 pipelines showed a significant correlation between PDiv and motion 

(magnitude of the correlation coefficient rho ranging between 0.60 and -0.66). For the NYU 

short-term dataset, 16 pipelines exhibited a significant correlation between PDiv and motion 

(magnitude of the correlation ranging between 0.45 and -0.57). For the NYU long-term 

dataset, 13 pipelines exhibited a significant correlation between PDiv and motion (magnitude 

of the correlation ranging between -0.52 and 0.56). Finally, for the HCP dataset we found 

that PDiv and motion were correlated significantly in 29 pipelines (rho between -.38 and .41). 

 

It is argued in the literature that GSR can help to mitigate the noise induced by subject 

motion42,45. When contrasting all pipelines with GSR against those without GSR, no 

significant difference in the strength of the correlation (absolute r-statistic) between PDiv and 

motion based on this option was found in the Cambridge (t(568)=.54, p=.592, d=.05), the 

NYU short test-retest (t(524)=1.44, p=.151, d=.12) or the NYU long-term test-retest 

(t(524)=1.32, p=.186, d=.11). That is, whether GSR was or was not applied, this decision 

had no bearing on the degree to which test-retest portrait divergence was associated with 

motion, on average across all pipelines. However, in the HCP data, there was a significant, 

moderate effect of GSR on the magnitude of the correlation between motion and PDiv 

(t(530)=-8.72. p<.001, d=-.76), showing a stronger association between PDiv and motion in 

pipelines without GSR than with GSR. 

Sanity check: Avoiding empty networks 

Pipelines employing an a priori threshold on the strength of edges, rather than on their 

density (i.e., removing all edges with weight below a pre-specified value, also known as an 

“absolute” threshold) run the risk of removing all edges in the network, if none surpass the 

threshold value. This would be unquestionably incorrect, but it is conceivable that such an 

occurrence might never materialise in practice. Indeed, we found that this never occurred 

when edge weights were defined in terms of Pearson correlation. However, empty networks 

were returned for at least one subject by a total of 46 unique pipelines employing mutual 

information for edge weight definition (37 occurrences in the NYU long test-retest, 32 

occurrences in the NYU short test-retest, 44 in the HCP dataset, none in the Cambridge 

dataset). As expected, all of these pipelines used absolute threshold values: mostly with the 

0.5 threshold, but for ten  pipelines this was also the case for the more lenient 0.3 threshold 

(reported in the Supplementary Interactive Tool under the column Criterion edge failure). 

Therefore, any pipeline which removes all edges in any one dataset is excluded from further 

consideration as a suitable candidate. However, note that pipelines that fail this sanity check 

would also be eliminated from consideration based on the other four criteria: only one of 
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those that failed the sanity check satisfied both the within-between and propofol criteria 

(Lausanne129 + No GSR + binarisation + Abs 0.3 + Mutual Info). 

 

Overall recommendations for network construction pipelines 

As a final step, we combined all the criteria identified above:  

(I) Avoiding spurious differences: we operationalise this as having low PDiv (pipelines 

with the average global rank in the top 20%, as calculated from the average of 

independent rankings within each dataset; 115 pipelines fulfilled this criterion);  

(II)  Detecting true experimental differences: ability to correctly identify statistically 

greater PDiv in anaesthesia than test-retest, across both propofol datasets (55 

pipelines passed);  

(III)   Sensitivity to inter-individual differences: ability to detect smaller within- than 

between-subjects PDiv in at least 50% of subjects, in each of the four test-retest 

datasets (464 pipelines passed);  

(IV)   Avoiding motion confounds: no significant correlation between PDiv and subject 

motion, in any of the four test-retest datasets (444 passed);  

(V)  Non-empty networks: we rejected pipelines that produce empty networks for any 

subject in any of the four test-retest datasets (530 pipelines pass). 

 

 Out of the full set of 576 pipelines considered here, we found that only 8 (around 1%) jointly 

satisfied all of our criteria in each of the test-retest datasets that we considered – meaning 

that the vast majority of pipelines (568 out of 576) may be less than optimal (Figure 6 and 

Table 1). However, 84 pipelines were excluded from the optimal ones because they each 

failed one single criterion in one single dataset, such that their failures were neither 

systematic nor pervasive. In particular, the set of optimal pipelines would expand to 26 (~5% 

of the total) if a less stringent criterion for the PDiv were adopted, such that all pipelines in 

the upper 50% were admissible (while still having to satisfy all other criteria in each of the 

relevant datasets). 
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Fig. 6. Evaluating pipelines across all criteria. Each data-point represents one pipeline, with colour and shape 

reflecting which criteria are meet. Criterion (I): Avoiding spurious differences (“PDiv ranking”). We consider 

pipelines as optimal if they are in the top 20% in terms of the global rank based on PDiv calculated as the 

average rank achieved in each dataset . We further show pipelines which fulfil all other criteria while being among 

the top 50% in terms of the average global rank. The maximum average PDiv among the top 50% pipelines is 

.266. Multiple pipelines were tied for 50th place meaning that a total of 289 pipelines were selected as belonging 

to the top 50% based on global rank alone. Criterion (II): Detecting true experimental differences (“propofol”). 

Suitable pipelines should detect a significant effect for propofol, in the right direction, in both propofol datasets, 

i.e. a pipeline is excluded if it fails to detect the expected effect in either of the two propofol datasets. The Y axis 

reports the maximum between the two t-statistics obtained for the two propofol datasets, so pipelines satisfy the 

sensitivity criterion if they score < 1.96 on this axis (i.e., find a significant effect for propofol, in the right direction, 

in both propofol datasets). Criterion (III): Detecting inter-individual differences (“within-between”). A pipeline fails 

this criterion if the resulting networks are more similar between than within subjects more than 50% of the times, 

for any of the four test-retest datasets. Criterion (IV): Avoiding motion-induced differences (“motion”). A pipeline 

fails this criterion if its PDiv has a significant correlation with differences in head motion in any of the four test-

retest datasets. Criterion (V): Non-empty networks. As a final sanity check, we also exclude any pipelines that 

remove all connections from a network, in any of the four test-retest datasets. Fail both refers to pipelines failing 

in terms of motion and within-between criteria, while Pass both refers to pipelines which satisfy both of these 

criteria. Points circled in purple represent pipelines that produced empty networks. Overall, 8 pipelines satisfy all 

criteria in all datasets; this number grows to 26 if a more liberal PDiv criterion is adopted (top 50% global rank).  

 

 

When considering the distribution of individual pipeline steps among the 8 optimal ones,  

three clear patterns emerge: all pipelines use weighted (rather than binary) edges, and all 

quantified connectivity in terms of Pearson correlation (rather than mutual information) 

(Fig.7). Moreover, the preferred filtering method among the optimal pipelines is the OMST, a 
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method to optimise the balance between network efficiency and wiring cost in a data-driven 

manner (selected in 5/8 cases). In other words, the single combination of Pearson 

correlation, weighted edges, and OMST accounted for 5 out of 8 optimal pipelines, despite 

being only one out of 2*8*2=32 equally likely combinations of edge quantification, 

thresholding, and binarisation. This is highly unlikely to occur just by chance: the probability 

of randomly choosing 8 pipelines out of 576 and having 5 or more of them belong to the 

same group (out of 32 possible groups) is less than 3x10-4 (confirmed with permutation 

testing: p < 0.001). In contrast to the clear importance of edge definition, atlas choice seems 

to have less bearing on a pipeline’s performance, but we do observe greater prevalence of 

pipelines using GSR than not (six out of eight).  However, this last pattern disappears when 

using a less stringent criterion in terms of PDiv (average rank across datasets in the top 

50%, rather than the top 20% - while still satisfying all other criteria). We also find that while 

edges based on Pearson correlation still dominate under this less stringent criterion, there is 

now also a number of well-performing pipelines using proportional thresholds (either fixed or 

SDM) with binarised edges. Node type and number remains less clearly decisive, and the 

occurrence of GSR versus no-GSR pipelines is nearly equal. 
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Fig. 7. Prevalence of specific network construction steps among the 8 optimal pipelines. Pie charts 
demonstrate, for each network construction step, the proportion and absolute number of each option that is found 
among the optimal pipelines. Abbreviations. FD: fixed density. GSR: global signal regression. OMST: 
orthogonal minimal spanning tree. SDM: structural density. See Fig. S31 for a version of this figure with a 
breakdown of the pipelines under the more liberal PDiv criterion. 
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Table 1. Final selection of pipelines which meet all selection 

criteria.
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Overall, inspecting the whole list of optimal pipelines (Table 1) clearly reveals that 

considering each pipeline step in isolation from the others does not provide the full picture. 

Specifically, we found that a few combinations of options account for most of the optimal 

pipelines (Figure 8), with 5 out of 8 pipelines which meet all inclusion criteria using the 

combination of weighted edges, Pearson correlation and OMST filtering for edge definition 

and thresholding.  

These results suggest that a pipeline’s performance is not solely attributable to any specific 

step: rather, some combinations of steps seem to be especially favourable. 

 

 

 

 
Fig. 8. Optimal edge processing combinations. Pie chart displays the frequency of each combination of edge 

type definition, filtering, and binarisation among the 8 pipelines which fulfil all criteria for a suitable network 

construction pipeline. See Fig. S32 for a version of this figure with a breakdown of the pipelines under the more 

liberal global rank criterion, and Fig. S33-35 for a breakdown of the relationship between PDiv and commonly 

studied graph properties, in terms of edge quantification, binarisation, and filtering method.
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Discussion 

A tremendous amount of neuroimaging research with functional MRI is devoted to finding 

reliable functional connectomic biomarkers for brain function and its disorders – but this 

process involves a combinatorial explosion of arbitrary choices18,19,28. 

 

Here, we tackled this challenge by systematically investigating 576 unique pipelines that a 

neuroscientist could adopt to obtain brain networks from resting-state fMRI data, arising from 

the combination of several key data-processing steps. To do so, we departed from most 

previous studies in a number of key respects. First, we explicitly addressed the combinatorial 

explosion, by considering pipelines end-to-end, rather than restricting our attention to 

specific steps. Second, rather than choosing any arbitrary local or global graph-theoretical 

property for our comparisons, we focused on the pipelines’ ability to recover the networks’ 

overall topology across all scales. Third, we did not focus exclusively on test-retest reliability, 

but rather we adopted an entire battery of criteria that any appropriate pipeline for functional 

connectomics should meet, in order to provide practically useful results: these include 

minimising both random (noise-induced) and systematic (motion-induced) topological 

distortions, while also being sensitive to differences between individuals and between 

experimental conditions. Finally, we required all criteria to be consistently met in each of 

several independent datasets, encompassing short (minutes), medium (weeks) and long 

timespans (up to 16 months), and using different spatial and temporal resolution, and 

different preprocessing/denoising approaches, to ensure the generalisability of our 

recommendations. Through this multi-dataset, multi-criteria, multi-scale and multi-step 

approach, our goal was to provide a comprehensive set of benchmarks for trustworthy 

functional connectomics.  

 

Inappropriate network pipelines are ubiquitous and can produce systematically 

misleading results.  

Our first finding is that the substantial majority of the pipelines that we considered failed to 

meet at least one of our criteria for consistent functional connectomics.  We also observed 

drastic and systematic variability among pipelines’ performance: an inappropriate choice of 

pipeline can greatly impair one’s ability to recover a reliable network topology. Even for 

scans obtained less than 45 minutes apart, we observed up to a 5-fold increase in 

topological dissimilarity (PDiv) compared with the best-performing pipelines (Fig. 2), even 

across several months. Put differently, adoption of an inappropriate pipeline can distort the 
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functional connectome more drastically than the passage of nearly a year – which may have 

far-reaching repercussions for longitudinal studies of brain network properties.  

 

A recent review of statistical power in network neuroscience suggested that “many real 

effects may be missed by current studies”60. Our results are in line with this observation: we 

found that the vast majority (approximately 90%) of pipelines were unable to reliably detect 

the effect of general anaesthesia on the functional connectome. Thus, one potential 

implication of our work is that some true effects may have been missed due to a suboptimal 

choice of network construction pipelines for functional connectomics.  

 

Even more worryingly, choice of the wrong pipeline can lead to results that are not only 

misleading (statistically significant in the opposite direction as the true effect), but replicably 

so (being observed in two independent propofol datasets): we found this to be the case for 

38 pipelines. This means that adopting an inappropriate pipeline for network analysis can 

turn the replicability of results against researchers, boosting their confidence in results that 

are actively the opposite of the truth. Being consistently wrong rather than randomly so, 

these results would not be “washed out” by approaches such as meta-analytic aggregation: 

on the contrary, they would propagate to the meta-analysis itself. Clearly, such a scenario 

would have devastating consequences for the use of functional connectomics for biomarker 

identification; in the worst-case scenario, a treatment that actually makes the disease worse 

may be systematically mis-identified as making it better.  

 

Finally, our results show that the above-mentioned concerns cannot be easily dismissed, 

because suboptimal pipelines are not a rare exception, but rather the rule: the vast majority 

of pipelines among those considered (568 out of 576) failed to meet at least one of our 

criteria (or 550 if the criterion of having low PDiv on average is relaxed). In other words, our 

results clearly demonstrate that even when combining steps for network construction that 

are individually sensible, it is overwhelmingly likely (over 98%) that the resulting overall 

pipeline will not be appropriate for functional connectomics – at least not optimal. Indeed, we 

find that no single step uniquely determines a pipeline’s ability (or inability) to accurately 

recover the network’s topology: pipelines differing by only one step are largely overlapping in 

terms of their portrait divergence distributions (Fig. S7-S30). These observations highlight 

the importance of focusing on entire pipelines as we do here, in contrast to most published 

approaches that typically consider only one or two steps in isolation.  

 

Identification of optimal network construction pipelines.  
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Fortunately, we were able to identify a number of pipelines (8 out of 576) that consistently 

recover effects in the correct direction, and that additionally satisfy all our other criteria for 

trustworthy functional connectomics: low PDiv for test-retest scans, indicating that the 

pipeline minimises spurious differences; greater PDiv across subjects than within the same 

subject on average, indicating that the pipeline reflects the ground-truth difference between 

networks; no empty networks; and no correlation between PDiv and motion.  We emphasise 

that each of these criteria had to be met in all our datasets, which included both differences 

in time-span, and also differences in data resolution and preprocessing/denoising.  

      

Additionally, we found that pipelines’ performance on our criteria is far from random, nor 

does it vary idiosyncratically with each dataset, instead being highly correlated across 

different independent datasets spanning short, medium, and long timespans (with 

Spearman’s rho ranging between .71 and .98; Fig.3). Ability to minimise test-retest 

differences is also correlated with a pipeline’s ability to detect true differences, when they do 

exist – both between different individuals (Fig.5), and within the same individual (induced by 

potent pharmacological intervention; Fig.4). In other words, there are systematic factors at 

play. Indeed, patterns of similarity clearly emerge among the pipelines that satisfy all our 

criteria. Specifically, 5 out of 8 optimal pipelines employ the same procedure for edge 

definition (out of 32 possible ones), consisting of Pearson correlation, weighted edges, and 

the OMST method of optimising the balance between network efficiency and wiring cost. 

This is a statistically unlikely occurrence, suggesting that there may be something about this 

combination that makes it especially appropriate. In fact, all 8 (or 22/26 under the less 

stringent PDiv criterion) employ Pearson correlation for edge definition. More combinations 

for edge construction become available if pipelines with PDiv rank in the top 50% are 

included, with fixed-density thresholds at 5% and 20% density also performing well in 

combination with weighted and binary edges, respectively (6/26 pipelines each). The edge 

construction part of the pipeline therefore appears as the most crucial choice: once it is fixed, 

both GSR and NoGSR options are available among the optimal pipelines, and many 

combinations of atlas type and size.  

 

It is especially reassuring that our results about pipeline performance are shared across 

multiple independent datasets. Likewise, our results generalise across different popular 

methods for functional MRI denoising (aCompCor and FIX-ICA). The Cambridge and NYU 

datasets were acquired with parameters for spatial and temporal resolution that are widely 

used in functional neuroimaging studies. Therefore, we expect our results to generalise to 

other datasets with similar specifications, such as the publicly available and intensely studied 

Cam-CAN61, Philadelphia Neurodevelopmental Cohort62, CENTER-TBI63, Harvard Aging 
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Brain Study64, Autism Brain Imaging Data Exchange (ABIDE)65, and UCLA 

Neurophenomics66 datasets, enabling the functional connectomics community to make the 

most of these valuable resources to study development, aging, and disease. Importantly 

though, our results about pipeline performance and choice of optimal pipelines also 

replicated in the high-quality HCP data, which have higher temporal and spatial resolution 

(suitable for surface-based analysis). Therefore, we expect that our recommendations 

should also be applicable to more recent datasets acquired with HCP-like specifications, 

such as UK Biobank67. However, our recommendations are intended to complement 

investigators’ domain-expertise, not replace it: each study has its own driving hypotheses 

and unique challenges. For this reason, we have made available our Supplementary 

Interactive Tool, which provides a full breakdown of each pipeline’s performance across 

each criterion and each dataset: to enable readers to engage with our results, and identify 

pipelines that fit their specific requirements. 

      

Our optimal pipelines are those that pass all our tests across all datasets: they minimise 

noise-driven differences, but correctly detect genuine ones, in a way that is consistent 

across datasets. While this stringency undoubtedly contributed to the exclusion of many 

pipelines – 84 of which only due to a single failure in a single dataset – it should equally 

bolster our confidence about the recommended pipelines’ suitability to provide sensible 

results, including across different time-spans and different data acquisition and 

preprocessing choices. By recommending a select number of network construction pipelines 

that provide the most replicable and generalisable results, we hope that the present work will 

facilitate future meta-analyses of functional connectomics studies.  

 

Shared characteristics among optimal network construction pipelines. 

It is reassuring that our recommended pipelines overwhelmingly favour Pearson correlation 

to quantify functional connectivity. Owing to its ease of application and interpretation, 

Pearson correlation is a cornerstone of functional connectomics, and remains the most 

widely used method to quantify connectivity between regions across thousands of published 

studies (accounting for over 75% of the studies reviewed by Hallquist and Hillary). 

Nevertheless, here we did not assume a priori that fMRI BOLD signals are linear, and 

instead also considered a nonlinear method (MI).  

 

At the microscopic level of neurons and circuits, the brain is unquestionably a nonlinear 

system. However, the superior performance of (linear) Pearson correlation that we observed 

in our results dovetails with multiple lines of evidence that the macroscale level observed by 

functional MRI signals may be suitably accounted for as linear 68,69, such that limited or no 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.23.546329doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546329
http://creativecommons.org/licenses/by/4.0/


27 
 

additional benefit is obtained when using more complex nonlinear methods to relate 

structural and functional connectivity 70,71, or to predict demographic variables from functional 

MRI 72, or when comparing the ability of linear versus nonlinear models to fit high-resolution 

BOLD timeseries 73. Crucially, the observed predominance of linear dynamics in macroscale 

brain signals cannot be dismissed as a mere artifact of functional MRI 73. Although fMRI’s 

low temporal resolution does contribute to linearising the signal due to both temporal 

averaging and the limited number of samples, linear models were also recently shown to 

outperform nonlinear ones in terms of their ability to fit intracranial EEG (iEEG) time-series 

73, which are electrodynamic rather than haemodynamic in origin, and have much higher 

temporal resolution. Thus, empirical results from diverse neuroimaging modalities converge 

with both simulations 73 and theoretical analysis 74, showing that the dynamics of nonlinear 

stochastic populations converge to linear dynamics at the macroscale, as a result of spatial 

averaging. In other words, observing superior performance of linear methods at the 

macroscale should not be viewed as un-physiological, or a mere artifact of a specific imaging 

modality, or a denial of the brain’s microscale nonlinearity. Rather, linearisation is an 

inherent consequence of observing brain activity at the macroscale, and this phenomenon 

contributes to explaining why Pearson correlation is suitable for quantifying functional 

connectivity. 

 

Pertaining to edge filtering, the OMST – our main recommended approach – is a data-driven 

method that optimises the balance between efficiency and wiring cost of the network. OMST 

is unique among the filtering schemes considered here, for multiple reasons. First, because 

it guarantees that the resulting network is not fragmented into disconnected components 

(Fig. S35). This feature makes OMST analogous to percolation-based filtering schemes, 

whereby the weakest edges are iteratively removed from the network, up to the point where 

further removal would make the network disconnected, which corresponds to the percolation 

threshold75–77. Thus, OMST and percolation thresholding both ensure that global connectivity 

is not impacted by removal of a few weak but topologically important edges. Unlike 

percolation, however, OMST is not restricted to preserving only the strongest edges. Rather, 

weaker edges can be preferred to stronger ones and be included in the OMST-filtered 

network, if they contribute to an optimal balance of efficiency and cost. Because of this ability 

to include weaker edges over stronger ones based on their role in the overall topology, 

OMST avoids a pitfall of percolation thresholding, whereby the presence of a single node 

whose edges are all relatively weak, can result in a network that is potentially very dense 

(because the percolation threshold is determined by the weakest edge whose removal would 

make the network disconnected, and if this edge is very weak, many other edges may 

survive the threshold).  
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In other words, the second feature that makes OMST unique among the filtering schemes 

considered here is that OMST takes into account not only the strength of connections, but 

also their more general topological role in the network. Therefore, connectomes obtained 

through OMST can include edges that both absolute and proportional thresholding methods 

would simply disregard as too weak, regardless of any further role they may play in network 

organisation. The  key role  of  weak  connections  acting  as  shortcuts  between segregated 

modules, often referred to as the “strength of weak ties”77–79, has been increasingly 

recognised across artificial and biological networks, including the human brain – a clear 

argument in favour of OMST’s ability to reconstruct biologically plausible networks, 

especially in combination with weighted (rather than binary) edges, which is consistent with 

our optimal pipelines.  

 

It is key to note that despite the similar name, OMST is very different in practice from simple 

Minimum Spanning Tree filtering. Reducing the network to its minimum spanning tree will 

enforce every individual’s network to have the same number of edges, which is the minimum 

number possible. In contrast, while the OMST does ensure the desirable property of network 

connectedness, it determines the final number of edges in a data-driven manner by 

optimising the network’s balance of efficiency and wiring cost. This approach therefore 

produces plausibly sparse networks, but without imposing the same a-priori level across all 

individuals (arguably a biologically implausible feature of fixed-density methods).  

 

The good performance of OMST is arguably due to this method being data-driven based on 

each individual connectome, rather than a one-size-fits-all. Indeed, although OMST is a 

relatively recent method, its use has already been recommended by several studies on 

multiple grounds. OMST filtering was shown to minimise topological differences between 

pipelines54; it  has outperformed alternative thresholding schemes for functional networks in 

terms of recognition accuracy and reliability30,55,80; and it has also been recommended for 

use with alternative neuroimaging modalities such as electro- and magneto-

encephalography30,55,80, suggesting that its applicability may generalise beyond rs-fMRI. 

Finally, the use of OMST (as well as 20% fixed-density thresholding) was also 

recommended by another recent study43 that evaluated a large number of individual options 

(though without combining them, and using as criterion the ICC of specific network 

properties instead of our topological approach). Therefore, our results suggest a 

convergence of recommendations for brain network construction across different criteria and 

different studies – possibly heralding the emergence of consistent analytic practices in the 

field. This convergence may in part be helped by our choice to use the Portrait divergence, 
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which enabled us to take into account both local and global aspects of network organisation 

across scales46: by considering the network’s topology as a whole, our results are inherently 

more general than results based on any specific graph-theoretical metric. 

 

Limitations and future directions 

In this study, we endeavoured to systematically sample and combine many of the most 

common options across each step in the process of constructing a functional brain network 

from rs-fMRI data – resulting in 576 unique pipelines. However, due to combinatorial 

explosion, it would be unfeasible to consider every single option that has been proposed in 

the literature, and this inevitable limitation should be borne in mind when interpreting our 

results. In particular, although we considered some of the most widely used parcellation 

schemes for defining nodes in the brain, encompassing the most common range of network 

sizes used in the field, we inevitably could not include all the possible atlases in 

existence21,25,26,81,82, and we chose to focus on some of the most widely adopted. More 

broadly, thanks to the interpretability of dividing the brain into discrete, spatially 

circumscribed regions, atlas-based methods have enjoyed enduring popularity for defining 

nodes in brain networks 21,25, which motivated the focus of the present work. However, they 

also come with implicit assumptions about spatial localisation (e.g., by imposing the 

constraints that parcels should be spatially contiguous and non-overlapping) and about what 

should be regarded as the functional units of the brain26. Indeed, recent gradient-based 

approaches provide alternative representations of the brain that are spatially extended and 

continuous rather than discrete, offering a complementary perspective on the constituent 

elements of the brain’s functional organisation 27,83–86.  

 

Here, we made the pragmatic choice to consider well-established and widely used methods 

for node definition that vary along some of the most relevant dimensions for network 

construction. Combinatorial explosion prevented us from extending our investigation to 

alternative, parcellation-free methods for node definition, such as voxelwise/vertexwise 

networks with thousands of nodes37,87 (which sacrifice biological interpretability for maximal 

spatial resolution), and methods based on PCA or (spatial or temporal) ICA that can provide 

non-contiguous, spatially overlapping parcels, possibly better able to reflect the complexity of 

brain organisation88–90. Simulations previously suggested that defining nodes based on ICA 

may outperform the use of regions-of-interest (e.g., based on atlases)90: future work in this 

direction may reveal whether some of these alternative approaches to node definition 

perform consistently better – or consistently worse – across our criteria, than the atlas-based 

node definitions adopted in the present work. However, based on the pattern of shared 
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features among our recommended pipelines, we note that our results point towards a more 

prominent role of edge definition than node definition, for determining the success of a 

pipeline. 

 

Pertaining to edge definition, many alternative thresholding methods also exist, whether 

based on statistical significance91, percolation75–77, or shrinkage methods89,92 – or avoiding 

thresholding entirely, by using analytic methods that can deal with fully connected and 

signed networks45. More broadly, future work may adopt more advanced methods of 

quantifying connectivity: for instance, by adopting multivariate connectivity estimators93 or 

methods from information decomposition capable of recovering different kinds of information 

sharing between regions94–96 or the directionality of connections (transfer entropy, Granger 

causality, Dynamic Causal Modelling97), or disambiguating between direct and indirect 

connections (e.g. partial correlation89). Additionally, it remains to be determined how our 

results will generalise to the case of time-varying (“dynamic”) networks, an increasingly 

popular approach in fMRI functional connectivity98–100, and to frequency-specific networks 

obtained from EEG or MEG101 (although see Jiang et al. 43 and Dimitriadis et al. 102,103, for 

recent investigations of frequency bands for fMRI network construction). 

 

It is also known that different motion correction strategies can influence the validity of BOLD 

signals and subsequent network characteristics; however, no correction strategy offered 

perfect motion correction23. Here, we adopted a widely used denoising strategy (anatomical 

CompCor), and required our results to also replicate in a dataset denoised with FIX-ICA 

instead, which unlike aCompCor is designed to affect artifacts specifically and avoid 

modifying the neural signal of interest51,52. Additionally, we also considered two versions of 

each dataset, preprocessed with versus without the additional step of global signal 

regression, due to ongoing controversy about the effect of GSR on functional 

connectivity53,104. Finally, to further mitigate the potential impact of motion on our 

recommendations, we also explicitly included as one of our criteria that pipelines should not 

produce a PDiv distribution that is significantly correlated with the distribution of differences 

in subject motion, across any of the four test-retest datasets. We note that when GSR is 

included, PDiv tends to be smaller across all datasets – possibly reflecting the elimination of 

residual noise. However, our final recommendations include pipelines both with and without 

GSR – although the latter is somewhat more prevalent among the very best-performing 

ones. In particular, we even found that the set of optimal pipelines includes versions of the 

same pipeline both with and without GSR: Brainnetome-246 for Pearson-OMST-weighted 

(with GSR and no-GSR versions both featuring among the 8 optimal pipelines); and in the 

expanded set, Schaefer454 Top20%-binary-Pearson, Lausanne-463 Top20%-binary-
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Pearson, Lausanne-463 Top20%-binary-MutualInfo. Therefore, our results suggest that 

investigators may have some discretion in the choice of using GSR, depending on their 

specific datasets and hypotheses. As an example, GSR may remove physiological and 

motion-induced noise48,50, and it may strengthen brain-behaviour associations104, but it can 

also remove signal of interest pertaining to some pharmacological and pathological 

conditions32,105, or distort group33 and individual differences106. Likewise, a recent study 

observed reduced generalisability of graph-theoretical properties across sites, sessions, and 

paradigms when GSR was used36, although Tozzi et al (2020)42 delineated a more intricate 

picture, whereby GSR decreases reliability for networks and most edges, but increases it for 

some others. A comprehensive evaluation of the relative advantages and drawbacks of GSR 

is beyond the scope of this paper, and the reader is referred to Fox & Murphy (2017)53 and 

Liu et al. (2017)104 for extensive discussions.  Finally, we did not explore potential differences 

between resting-state conditions (eyes-open vs eyes-closed vs naturalistic viewing)40,107, or 

the impact of scan duration and spontaneous fluctuations in arousal state – although we did 

include datasets with different scan duration, up to 1200 volumes 18,108.  

 

In addition to increasing the number of options and pipelines considered, future work may 

further expand on the present results in several ways: it remains to be determined to what 

extent our results apply to task-based rather than resting-state fMRI 109,110. The 

generalizability of the proposed framework beyond healthy individuals is also worthy of 

future exploration. Compared to healthy controls, some clinical populations have 

demonstrated lower test-retest reliability111,112. Reliability across the lifespan should be also 

considered by comparing age-groups, as early evidence untangled age-related differences 

in test-retest reliability of rs-fMRI113. The choice of the optimal pipeline for functional 

connectomics may therefore vary by clinical characteristics, which still remains to be 

ascertained and may benefit from topology-based approaches such as the one adopted 

here. This is an important next step following the present work. It is also possible that a 

different proportion of optimal pipelines would be found when alternative reconstruction 

methods are included, or different neuroimaging modalities. 

 

The time-spans that we considered here range from less than an hour to nearly a year 

between scans. Certainly, in addition to measurement noise, some degree of change in the 

topology of the functional connectome over the course of weeks or months is to be 

expected, due to learning and plasticity. However, such physiological phenomena cannot be 

expected to appreciably reorganise the entire functional connectome within the span of less 

than an hour (in the absence of experimental interventions). Therefore, any test-retest PDiv 

observed within the same hour is most plausibly attributable to noise, and an appropriate 
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pipeline should simply minimise it, as per our test-retest criterion. Additionally, plasticity and 

learning should not make the functional connectome so different that it becomes 

indistinguishable from the connectomes of other individuals: rather, such an occurrence 

should be minimised, as it indicates measurement noise. Our results clearly show a 

convergence of these criteria: pipelines that produce small test-retest PDiv over weeks or 

months are also those that minimise within-hour PDiv, and that minimise the mis-

identification of individuals. Thus, across datasets and time-spans we observed an 

encouraging convergence of criteria for reliable functional connectomics. 

 

As a final note, our approach has been to identify which pipelines produce sensible 

functional connectomes, so that researchers may have a guide to orient their choice among 

the “forking paths” of analytical possibilities. However, an alternative approach exists: 

performing a “multiverse” analysis, adopting not one but many pipelines and then finding 

suitable ways to aggregate the results – or using machine learning tools to characterise a 

low-dimensional space of pipelines114. The two approaches are not mutually exclusive, but 

rather complementary: our criteria and our final recommendations could be used to prune 

the number of branching options to a manageable number of optimal pipelines, and a 

multiverse analysis could then be carried out in parallel across them, with the confidence 

that the overall picture will not be contaminated by inappropriate choices. 

Conclusion 

In conclusion, our study provides a principled framework to search for the best network 

construction pipelines across hundreds of candidates, with the aim of recovering brain 

networks that satisfy multiple criteria for scientific accuracy and practical utility. We revealed 

drastic differences across pipelines in terms of their ability to recover similar network 

topologies across different scans of the same individual – even within the same hour – and 

to recover the true directionality of experimental effects of interest. The existence and 

prevalence of systematically misleading pipelines further enhances the importance of 

identifying suitable network construction pipelines. Thus, our results indicate that 

researchers should pay careful consideration to their choice of network processing pipeline: 

pipelines vary widely in their ability to detect true effects while mitigating spurious ones, and 

the vast majority of pipelines are not optimal. Our findings further indicate that no single step 

in the network construction workflow can single-handedly guarantee that all criteria will be 

met. Fortunately, however, we also show that by carefully combining different steps in the 

network construction workflow, neuroscientists can obtain functional brain networks that 

satisfy all our criteria, across datasets covering different time-spans and different acquisition 
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and preprocessing procedures, and may be used with confidence. These recommendations 

can inform future studies, to help investigators make principled choices and minimise the 

chance that an inappropriate choice of network construction will lead to unreliable or false 

negatives results. Overall, by enabling systematic evaluation of network processing steps in 

a way that does not require the arbitrary selection of specific network properties of interest, 

we hope that the topology-based, multi-criteria framework proposed here will lead towards 

an objective consensus and more consistent practices in functional connectomics. 

 

 

Materials and Methods 

NYU Test-Retest dataset 

This is an open dataset from the International Neuroimaging Data-Sharing Initiative (INDI) 

(http://www.nitrc.org/projects/nyu_trt), originally described in Shehzad et al., (2009)115. 

Briefly, this dataset includes 25 participants (mean age 30.7 ± 8.8 years, 16 females) with no 

history of psychiatric or neurological illness. The study was approved by the institutional 

review boards of the New York University School of Medicine and New York University, and 

participants provided written informed consent and were compensated for their participation.  

 

For each participant, 3 resting-state scans were acquired. Scans 2 and 3 were conducted in 

a single scan session, 45 min apart, which took place on average 11 months (range 5–16 

months) after scan 1. Each scan was acquired using a 3T Siemens (Allegra) scanner, and 

consisted of 197 contiguous EPI functional volumes (TR = 2000 ms; TE = 25 ms; flip angle = 

90°; 39 axial slices; field of view (FOV) = 192 × 192 mm2; matrix = 64 × 64; acquisition voxel 

size = 3 × 3 × 3 mm3). Participants were instructed to relax and remain still with their eyes 

open during the scan. For spatial normalization and localization, a high-resolution T1-

weighted magnetization prepared gradient echo sequence was also obtained (MPRAGE, TR 

= 2500 ms; TE = 4.35 ms; TI = 900 ms; flip angle = 8°; 176 slices, FOV = 256 mm). 

 

Cambridge test-retest dataset 

Right-handed healthy participants (N=22, age range, 19–57 years; mean age, 35.0 years; 

SD 11.2; female-to-male ratio, 9/13) were recruited via advertisements in the Cambridge 

area and were paid for their participation. Cambridgeshire 2 Research Ethics Committee 

approved the study (LREC 08/H0308/246) and all volunteers gave written informed consent 
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before participating. Exclusion criteria included National Adult Reading Test (NART) <70, 

Mini Mental State Examination (MMSE) <23, left- handedness, history of drug/alcohol abuse, 

history of psychiatric or neurological disorders, contraindications for MRI scanning, 

medication that may affect cognitive performance or prescribed for depression, and any 

physical handicap that could prevent the completion of testing.  

 

The study consisted of two visits (separated by 2–4 weeks). For each visit, resting-state 

fMRI was acquired for 5:20 minutes using a Siemens Trio 3T scanner (Erlangen, Germany). 

Functional imaging data were acquired using an echo-planar imaging (EPI) sequence with 

parameters TR 2,000 ms, TE 30 ms, Flip Angle 78◦, FOV 192 × 192mm2, in-plane resolution 

3.0 × 3.0mm, 32 slices 3.0mm thick with a gap of 0.75mm between slices. A 3D high 

resolution MPRAGE structural image was also acquired, with the following parameters: TR 

2,300 ms, TE 2.98 ms, Flip Angle 9◦, FOV 256 × 256 mm2. Task-based data were also 

collected, and have been analysed before to investigate separate experimental 

questions116,117 . A final set of 18 participants had usable data for both resting-state fMRI 

scans and were included in the present analysis. 

 

Human Connectome Project test-retest data      

This dataset is a subset of the 1,200 Human Connectome Project (HCP) subjects57,58. It 

includes resting-state functional MRI (and accompanying structural MRI) scans for 46 

healthy individuals (13 male, age 22–35 years), who were each scanned twice at 3T, at 

intervals ranging between 1 month and 11 months). All HCP scanning protocols were 

approved by the local Institutional Review Board at Washington University in St. Louis. 

Detailed information about the acquisition and imaging is provided in the dedicated HCP 

publications. Briefly: anatomical (T1-weighted) images were acquired in axial orientation, 

with FOV = 224 × 224 mm, voxel size 0.7 mm3 (isotropic), TR 2,400ms, TE 2.14ms, flip 

angle 8°. Functional MRI data (1200 volumes) were acquired with EPI sequence, 2 mm 

isotropic voxel size, TR 720ms, TE 33.1ms, flip angle 52°, 72 slices.      

Cambridge propofol dataset 

The Cambridge University (“Cambridge”) propofol dataset has been published before118–120; 

we refer the reader to the original study for a detailed description118. As previously reported, 

16 healthy volunteer subjects were initially recruited for scanning. In addition to the original 

16 volunteers, data were acquired for nine participants using the same procedures, bringing 

the total number of participants in this dataset to 25 (11 males, 14 females; mean age 34.7 
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years, SD = 9.0 years). Ethical approval for these studies was obtained from the 

Cambridgeshire 2 Regional Ethics Committee, and all subjects gave informed consent to 

participate in the study. Volunteers were informed of the risks of propofol administration, 

such as loss of consciousness, respiratory and cardiovascular depression. They were also 

informed about more minor effects of propofol such as pain on injection, sedation and 

amnesia. In addition, standard information about intravenous cannulation, blood sampling 

and MRI scanning was provided.  

 

Three target plasma levels of propofol were used: no drug (Awake), 0.6 mg/ml (Mild 

sedation) and 1.2 mg/ml (Moderate sedation). Scanning (rs-fMRI) was acquired at each 

stage, and also at Recovery; anatomical images were also acquired. The level of sedation 

was assessed verbally immediately before and after each of the scanning runs. Propofol was 

administered intravenously as a “target controlled infusion” (plasma concentration mode), 

using an Alaris PK infusion pump (Carefusion, Basingstoke, UK). A period of 10 min was 

allowed for equilibration of plasma and effect-site propofol concentrations. Blood samples 

were drawn towards the end of each titration period and before the plasma target was 

altered, to assess plasma propofol levels. In total, 6 blood samples were drawn during the 

study. The mean (SD) measured plasma propofol concentration was 304.8 (141.1) ng/ml 

during mild sedation, 723.3 (320.5) ng/ml during moderate sedation and 275.8 (75.42) ng/ml 

during recovery. Mean (SD) total mass of propofol administered was 210.15 (33.17) mg, 

equivalent to 3.0 (0.47) mg/kg. Two senior anaesthetists were present during scanning 

sessions and observed the subjects throughout the study from the MRI control room and on 

a video link that showed the subject in the scanner. Electrocardiography and pulse oximetry 

were performed continuously, and measurements of heart rate, non-invasive blood pressure, 

and oxygen saturation were recorded at regular intervals. 

 

The acquisition procedures are described in detail in the original study118. As previously 

reported, MRI data were acquired on a Siemens Trio 3T scanner (WBIC, Cambridge). For 

each level of sedation, 150 rs-fMRI volumes (5 min scanning) were acquired. Each 

functional BOLD volume consisted of 32 interleaved, descending, oblique axial slices, 3 mm 

thick with interslice gap of 0.75 mm and in-plane resolution of 3 mm, field of view = 192x192 

mm, TR = 2000 ms, acquisition time = 2000 ms, time echo = 30 ms, and flip angle 78. T1-

weighted structural images at 1 mm isotropic resolution were also acquired in the sagittal 

plane, using an MPRAGE sequence with TR = 2250 ms, TI = 900 ms, TE = 2.99 ms and flip 

angle = 9 degrees, for localization purposes. During scanning, volunteers were instructed to 

close their eyes and think about nothing in particular throughout the acquisition of the resting 

state BOLD data. Of the 25 healthy subjects, 15 were ultimately retained (7 males, 8 
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females): 10 were excluded, either because of missing scans (n=2), or due of excessive 

motion in the scanner (n=8, 5mm maximum motion threshold). Here, we only use data from 

the Awake and Moderate anaesthesia resting-state scanning. 

Western propofol dataset 

The Western University (“Western”) propofol data have been published before14,120,121 and 

we refer the reader to the original study for a detailed description. Briefly, data were 

collected between May and November 2014 at the Robarts Research Institute, Western 

University, London, Ontario (Canada). The study received ethical approval from the Health 

Sciences Research Ethics Board and Psychology Research Ethics Board of Western 

University (Ontario, Canada). Healthy volunteers (n=19) were recruited (18–40 years; 13 

males). Volunteers were right-handed, native English speakers, and had no history of 

neurological disorders. In accordance with relevant ethical guidelines, each volunteer 

provided written informed consent, and received monetary compensation for their time. Due 

to equipment malfunction or physiological impediments to anaesthesia in the scanner, data 

from n=3 participants (1 male) were excluded from analyses, leaving a total n=16 for 

analysis14.  

 

Resting-state fMRI data were acquired at different propofol levels: no sedation (Awake), 

Deep anaesthesia (corresponding to Ramsay score of 5) and also during post-anaesthetic 

recovery. As previously reported14, for each condition fMRI acquisition began after two 

anaesthesiologists and one anaesthesia nurse independently assessed Ramsay level in the 

scanning room. The anaesthesiologists and the anaesthesia nurse could not be blinded to 

experimental condition, since part of their role involved determining the participants’ level of 

anaesthesia. Note that the Ramsay score is designed for critical care patients, and therefore 

participants did not receive a score during the Awake condition before propofol 

administration: rather, they were required to be fully awake, alert and communicating 

appropriately. To provide a further, independent evaluation of participants’ level of 

responsiveness, they were asked to perform two tasks: a test of verbal memory recall, and a 

computer-based auditory target-detection task. Wakefulness was also monitored using an 

infrared camera placed inside the scanner.  

 

Propofol was administered intravenously using an AS50 auto syringe infusion pump (Baxter 

Healthcare, Singapore); an effect-site/plasma steering algorithm combined with the 

computer-controlled infusion pump was used to achieve step-wise sedation increments, 

followed by manual adjustments as required to reach the desired target concentrations of 
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propofol according to the TIVA Trainer (European Society for Intravenous Aneaesthesia, 

eurosiva.eu) pharmacokinetic simulation program. This software also specified the blood 

concentrations of propofol, following the Marsh 3-compartment model, which were used as 

targets for the pharmacokinetic model providing target-controlled infusion. After an initial 

propofol target effect-site concentration of 0.6 µg mL-1, concentration was gradually 

increased by increments of 0.3 µg mL1, and Ramsay score was assessed after each 

increment: a further increment occurred if the Ramsay score was lower than 5. The mean 

estimated effect-site and plasma propofol concentrations were kept stable by the 

pharmacokinetic model delivered via the TIVA Trainer infusion pump. Ramsay level 5 was 

achieved when participants stopped responding to verbal commands, were unable to 

engage in conversation, and were rousable only to physical stimulation. Once both 

anaesthesiologists and the anaesthesia nurse all agreed that Ramsay sedation level 5 had 

been reached, and participants stopped responding to both tasks, data acquisition was 

initiated. The mean estimated effect-site propofol concentration was 2.48 (1.82- 3.14) µg mL-

1, and the mean estimated plasma propofol concentration was 2.68 (1.92- 3.44) µg mL-1. 

Mean total mass of propofol administered was 486.58 (373.30- 599.86) mg. These values of 

variability are typical for the pharmacokinetics and pharmacodynamics of propofol. Oxygen 

was titrated to maintain SpO2 above 96%.  

 

At Ramsay 5 level, participants remained capable of spontaneous cardiovascular function 

and ventilation. However, the sedation procedure did not take place in a hospital setting; 

therefore, intubation during scanning could not be used to ensure airway security during 

scanning. Consequently, although two anaesthesiologists closely monitored each 

participant, scanner time was minimised to ensure return to normal breathing following deep 

sedation. No state changes or movement were noted during the deep sedation scanning for 

any of the participants included in the study14. Propofol was discontinued following the deep 

anaesthesia scan, and participants reached level 2 of the Ramsey scale approximately 

eleven minutes afterwards, as indicated by clear and rapid responses to verbal commands.  

 

As previously reported14, once in the scanner participants were instructed to relax with 

closed eyes, without falling asleep. Resting-state functional MRI in the absence of any tasks 

was acquired for 8 minutes for each participant. A further scan was also acquired during 

auditory presentation of a plot-driven story through headphones (5-minute long). Participants 

were instructed to listen while keeping their eyes closed. The present analysis focuses on 

the resting-state data only, from the Awake and Deep scanning; the story scan data have 

been published separately122  and will not be discussed further here. 
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As previously reported14, MRI scanning was performed using a 3-Tesla Siemens Tim Trio 

scanner (32-channel coil), and 256 functional volumes (echo-planar images, EPI) were 

collected from each participant, with the following parameters: slices = 33, with 25% inter-

slice gap; resolution = 3mm isotropic; TR = 2000ms; TE = 30ms; flip angle = 75 degrees; 

matrix size = 64x64. The order of acquisition was interleaved, bottom-up. Anatomical 

scanning was also performed, acquiring a high-resolution T1- weighted volume (32-channel 

coil, 1mm isotropic voxel size) with a 3D MPRAGE sequence, using the following 

parameters: TA = 5min, TE = 4.25ms, 240x256 matrix size, 9 degrees flip angle14. 

 

Functional MRI preprocessing and denoising 

Preprocessing of the functional MRI data for all datasets except HCP followed the same 

standard workflow as in our previous studies54, and was implemented in the CONN toolbox 

(http://www.nitrc.org/projects/conn), version 17f123. The following steps were performed: 

removal of the first 5 volumes to allow for steady-state magnetisation; functional realignment, 

motion correction, and spatial normalisation to Montreal Neurological Institute (MNI-152) 

standard space with 2x2x2mm isotropic resolution. Denoising followed the anatomical 

CompCor (aCompCor) method of removing cardiac and motion artifacts, by regressing out of 

each individual’s functional data the first 5 principal components corresponding to white 

matter signal, and the first 5 components corresponding to cerebrospinal fluid signal, as well 

as six subject-specific realignment parameters (three translations and three rotations) and 

their first- order temporal derivatives, and nuisance regressors identified by the artifact 

detection software art124. The subject-specific denoised BOLD signal time-series were 

linearly detrended and band-pass filtered between 0.008 and 0.09 Hz to eliminate both low-

frequency drift effects and high-frequency noise. No spatial smoothing was applied, since all 

analyses were performed on parcellated data, whereby the signal was averaged across 

voxels belonging to the same ROI (see below, section Node definition).  

For the HCP test-retest dataset, we instead used the minimally preprocessed functional data 

made available by HCP, which were further denoised with FIX-ICA51,52. This popular 

approach is intended to remove non-BOLD noise arising from multiple known sources, 

including spatially specific noise from head motion, cardiac pulsation, breathing, and scanner 

artifacts. Using different denoising methods enables us to ensure that our final results are 

not specific to a particular way of denoising rs-fMRI data, thereby ensuring their robustness 

and generalisability. 
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A further, particularly controversial denoising step is global signal regression (GSR): 

although some authors suggest that GSR may improve subsequent construction of 

functional brain networks35,41, others did not find such an effect34,37 or even reported GSR as 

deleterious36,42. Here, we therefore evaluated the performance of different network 

construction pipelines on two versions of each dataset: with the application of GSR, and 

without the application of GSR. 

Node definition 

When deciding on how to turn preprocessed and denoised fMRI data into a brain network, 

the first decision that needs to be made is: what are the elements of the network? Different 

approaches exist in the literature, from the use of each voxel as a node to maximise spatial 

resolution, to the use of Independent Components Analysis and similar data-driven 

techniques to obtain study- or even subject-specific clusterings of brain signals, which may 

be spatially extended or even nested within each other, coalescing and splitting over time. 

Although each of these approaches has unquestionable merits, perhaps the most common 

approach for defining nodes in human network neuroscience is the use of parcellations: pre-

defined assignments of spatially contiguous voxels into regions-of-interest (ROIs) – typically 

on the ground of neuroanatomical/cytoarchitectonic considerations, or shared function, or 

some combination thereof. A wide variety of parcellations exist21, and recent work reported 

how the choice of parcellation scheme can affect aspects such as structure-function 

similarity estimation125 but also the intra-subject and inter-subject variability of the functional 

connectome and whole-brain resting-state modeling42,126. Parcellation schemes vary on two 

main dimensions: the criterion based on which clusters are identified (e.g., based on 

neuroanatomy, or functional considerations, or a combination thereof from multiple 

modalities) and the number of ROIs – ranging from a few tens to thousands. The number of 

ROIs involves a trade-off between the superior spatial resolution of finer-grained 

parcellations, and the robustness and increased signal-to-noise ratio that derive from spatial 

averaging of many neighboring voxels. 

Here, we considered both of these dimensions: we employed parcellations spanning three 

scales (approximately 100, 200 and 400 nodes) and obtained based on anatomical, 

functional, or multimodal considerations, across one or multiple scales (summarised in Table 

2). We consider the multi-scale anatomical Lausanne atlas with 129, 234 and 463 cortical 

and subcortical nodes obtained by subdividing the sulcus-based Desikan-Killiany atlas127. 

We also consider the functional multi-scale parcellation developed by Schaefer and 

colleagues128 which combines local gradients and global similarity across task-based and 

resting-state functional connectivity. Following our previous work, we included versions with 
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100, 200 and 400 cortical regions, respectively supplemented with 16, 32 or 54 subcortical 

regions from the recent subcortical functional atlas developed by Tian and colleagues129.  

Finally, we include three widely used single-scale parcellations: (i)  the Automated 

Anatomical Labelling (AAL) atlas, an anatomical parcellation with 90 cortical and subcortical 

regions130; (ii) the Brainnetome atlas, which comprises 210 cortical and 36 subcortical 

regions, identified by combining anatomical, functional and meta-analytic information131; (iii) 

and the Glasser parcellation comprising 360 cortical regions identified by combining multi-

modal information about cortical architecture, function, connectivity, and topography132. The 

volumetric Glasser parcellation in MNI-152 space made available by Preti and Van de 

Ville133 was used. Since the Glasser parcellation is cortical-only, it was also supplemented 

with the 54-region version of the Melbourne atlas, in order to include a comparable number 

of subcortical regions, resulting in 414 ROIs.  

For all but the HCP dataset, we used parcellations in volumetric MNI-152 space; for each 

parcellation, the average denoised BOLD timeseries across all voxels belonging to a given 

ROI were extracted. For the HCP test-retest dataset, given the higher spatial resolution, we 

opted to use a surface-based parcellation approach instead – thereby enabling us to verify 

that our final results are not specific to a given parcellation approach. 

Table 2. Atlases adopted in the present study, by scale (rows) and method (columns). 

  Anatomical multi-

scale 

Functional multi-

scale 

Single-scale 

Scale-100 Lausanne 129 Schaefer 100 + 

Melbourne 16 

AAL 90 

Scale-200 Lausanne 234 Schaefer 200 + 

Melbourne 32 

Brainnetome 246 

Scale-400 Lausanne 463 Schaefer 400 + 

Melbourne 54 

Glasser 360 + 

Melbourne 54 
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Functional connectivity  

We considered two alternative ways of quantifying the interactions between regional BOLD 

signal timeseries. First, we used Pearson correlation, whereby for each pair of nodes i and j, 

their functional connectivity Fij was given by the Pearson correlation coefficient between the 

timecourses of i and j, over the full scanning length. Second, we also used the mutual 

information I, which quantifies the interdependence between two random variables X and Y, 

and is defined as the average reduction in uncertainty about X when Y is given (or vice 

versa, since this quantity is symmetric): 

 

I(X;Y) = H(X) + H(Y) – H(X,Y) = H(X) – H(X|Y) 

(1) 

With H(X) being the Shannon entropy of a variable X. Unlike Pearson correlation, mutual 

information considers both linear and nonlinear relationships, and it does not provide 

negative values. For consistency with previous work54, the values in each individual matrix of 

mutual information were divided by the maximum value in the matrix, thereby rescaling them 

to lie between zero and unity. 

  

Filtering Schemes 

Both Pearson correlation and MI provide continuous values for the statistical association 

between pairs of nodes, resulting in a dense matrix of functional connections. Therefore, 

some form of filtering is typically employed to remove spurious connections that are likely to 

be driven by noise, and obtain a sparse network of functional connectivity. However, there is 

no gold standard approach to decide which connections to retain, and different filtering 

schemes have emerged in the literature. Here, we considered 8 different edge filtering 

schemes (Table 3), described below. The Brain Connectivity Toolbox44,45 was used to 

implement absolute and proportional thresholds and quantify network density, as well as the 

networks’ mean clustering coefficient and characteristic path length (Fig. S33-S35). 
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Table 3. Edge filtering schemes adopted in the present study. 

Filtering Scheme Description 

Fixed Density 5% (FD5%) Top 5% of strongest edges 

Fixed Density 10% (FD10%) Top 10% of strongest edges 

Fixed Density 20% (FD20%) Top 20% of strongest edges 

Absolute Threshold 0.3 

(Abs0.3) 

Edges with value > 0.3 

Absolute Threshold 0.5 

(Abs0.5) 

Edges with value > 0.5 

Efficiency Cost Optimisation 

(ECO) 

Average node degree = 3, to maximise trade-off between overall efficiency 

and wiring cost 

Structural Density Matching 

(SDM) 

Proportional thresholding, with same density as the HCP group-average DTI 

data parcellated using the same atlas 

Orthogonal Minimum 

Spanning Trees (OMST) 

Optimisation of global efficiency minus wiring cost, by combining independent 

minimum spanning trees of the network. 

  

Absolute thresholding  

The simplest approach to decide which edges to retain is to accept or reject edges based on 

a pre-determined minimum acceptable weight. However, there is no consensus in the 
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literature about which threshold one should adopt. Here, we considered absolute threshold 

values of 0.3 or 0.5 (for Pearson correlation, only positively-value edges were considered).  

Proportional thresholding  

Absolute thresholding can produce networks with very different densities, which can 

introduce confounds in subsequent network analyses. Therefore, a popular approach simply 

retains a fixed proportion of the strongest edges. However, there is once again no 

consensus in the literature on the correct proportion of edges to retain. We therefore 

employed three different density levels, in the range commonly reported in the literature:  

fixed density (FD) of 5%, 10%, and 20% of the strongest edges. 

Structural Density Matching 

The main problem with proportional thresholding is the selection of an appropriate target 

density – especially since this may vary depending on the number of nodes in the network. 

To address this issue in a principled manner, we recently introduced a method termed 

Structural Density Matching (SDM)54, whereby the proportion of functional edges to retain 

corresponds to the density s of the corresponding structural connectome (the network of 

anatomical connectivity obtained from the group-averaged diffusion-weighted MRI data from 

the Human Connectome Project134. In other words, SDM ensures that functional and 

structural networks obtained using the same parcellation have the same density, instead of 

using an arbitrary target density.  

Efficiency Cost Optimisation  

The Efficiency Cost Optimisation (ECO) is designed to optimise the trade-off between the 

network’s overall efficiency (sum of global and average local efficiency) and its wiring cost 

(number of edges)56, by ensuring that the network maximises the following target function J:  

  

 
(2) 

With and being the global and mean local efficiency of the network, respectively. This 

filtering scheme produces sparse graphs while still preserving their structure, as 

demonstrated by its empirical success at discriminating between different graph topologies56. 

Here, we obtained ECO-thresholded graphs by setting a proportional threshold such that the 
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average node degree would be 3, since previous analytic and empirical results indicate that 

the optimal density corresponds to enforcing an average node degree approximately equal 

to 356.   

Orthogonal Minimum Spanning Trees 

OMST55,80 is another data-driven approach intended to optimise the balance between 

efficiency and density of the network, while also ensuring that the network is fully connected. 

Specifically, the method involves three steps: (1) identifying the minimum set of edges such 

that each node can be reached from each other node – known as the minimum spanning 

tree (MST); (2) identifying an alternative (orthogonal) MST, and combining it with the 

previous one; (3) repeating steps (1) and (2) until the network formed by the progressive 

addition of orthogonal MSTs optimises a global cost function defined as   – Cost (with 

Cost corresponding to the ratio of the total weight of the selected edges, divided by the total 

strength of the original fully weighted graph). This approach  produces plausibly sparse 

networks without imposing an a-priori level across all subjects, and it has been shown that 

the resulting networks provide higher recognition accuracy and reliability than many 

alternative filtering schemes55,80.  

Binarisation 

For all filtering schemes considered here, edges that were not selected were set to zero. 

However, edges that were included in the network could be weighted or unweighted. In the 

case of unweighted (binary) networks, we set all non-zero edges to unity. Otherwise, their 

original weight was retained.  

Topological distance as Portrait Divergence 

To quantify the difference between network topologies, we used the recently developed 

Portrait Divergence. The Portrait Divergence between two graphs G1 and G2 is the Jensen-

Shannon divergence between their “network portraits”, which encode the distribution of 

shortest paths of the two networks46. Specifically, the network portrait is a matrix B whose 

entry Blk, l = 0, 1, …, d (with d being the graph diameter), k = 0, 1, …, N – 1, is the number of 

nodes having k nodes at shortest-path distance l.  

Thus, to compute the Portrait Divergence one needs to compute the probability P(k, l) (and 

similarly Q(k, l) for the second graph) of randomly choosing two nodes at distance l and, for 

one of the two nodes, to have k nodes at distance l: 
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(3) 

where nc is the number of nodes in the connected component c. Then, the Portrait 

Divergence distance is defined using the Jensen-Shannon divergence (an information-

theoretic notion of distance): 

 
(4) 

where M = (P + Q)/2 is the mixture distribution of P and Q, and KL(⋅||⋅) is the Kullback-Leibler 

divergence.  

The Portrait Divergence offers three key advantages that make it well suited for the present 

investigation. First, it is based on network portraits, which do not change depending on how 

a graph is represented. Comparing network topologies based on such “graph invariants” is 

highly desirable, because it removes the potential confound of encoding format. Second, the 

Portrait Divergence does not require the networks in question to have the same number of 

nodes or edges, and it can be applied to both binary and weighted networks – making it 

ideally suited for the applications of the present study. And finally, the Portrait Divergence is 

not predicated on a single specific network property, but rather it takes into account all 

scales of structure within networks, from local structure to motifs to large scale connectivity 

patterns: that is, it considers the topology of the network as a whole46.  

For each subject, at each timepoint, we obtained one brain network following each of the 

possible combinations of steps above (576 distinct pipelines in total). 

For each pipeline, we then computed the Portrait Divergence between networks obtained 

from the same subject at different points in time, and subsequently obtained a group-

average value of Portrait Divergence for each pipeline. 
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