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Abstract

Functional interactions between brain regions can be viewed as a network, empowering
neuroscientists to leverage network science to investigate distributed brain function.
However, obtaining a brain network from functional neuroimaging data involves multiple
steps of data manipulation, which can drastically affect the organisation and validity of the
estimated brain network and its properties. Here, we provide a systematic evaluation of 576
unique data-processing pipelines for functional connectomics from resting-state functional
MRI, obtained from all possible recombinations of popular choices for brain atlas type and
size, connectivity definition and selection, and global signal regression. We use the portrait
divergence, an information-theoretic measure of differences in network topology across
scales, to quantify the influence of analytic choices on the overall organisation of the derived
functional connectome. We evaluate each pipeline across an entire battery of criteria,
seeking pipelines that (i) minimise spurious test-retest discrepancies of network topology,
while simultaneously (ii) mitigating motion confounds, and being sensitive to both (iii) inter-
subject differences and (iv) experimental effects of interest, as demonstrated by propofol-
induced general anaesthesia. Our findings reveal vast and systematic variability across
pipelines’ suitability for functional connectomics. Choice of the wrong data-processing
pipeline can lead to results that are not only misleading, but systematically so, distorting the
functional connectome more drastically than the passage of several months. We also found
that the majority of pipelines failed to meet at least one of our criteria. However, we identified
8 candidates satisfying all criteria across each of four independent datasets spanning
minutes, weeks, and months, ensuring the generalisability of our recommendations. Our
results also generalise to alternative acquisition parameters and preprocessing and
denoising choices. By providing the community with a full breakdown of each pipeline’s
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performance across this multi-dataset, multi-criteria, multi-scale and multi-step approach, we
establish a comprehensive set of benchmarks to inform future best practices in functional
connectomics.

Keywords: brain networks; fMRI; parcellation; thresholding; global signal regression;
functional connectomics.

Introduction

The human brain is a remarkably complex system, comprising a large number of regions
interacting over time. To address this challenge and obtain insights about distributed brain
function and dysfunction, neuroscientists have turned to network science, whereby different
parts of the brain can be viewed as nodes in a network, and the statistical relationships
between them are used to represent connections between nodes'~. This powerful approach
leverages graph theory to quantify key aspects of brain network organisation in vivo,
iluminating the neurobiological underpinnings of healthy and pathological cognition®®. In
particular, resting-state functional MRI (rs-fMRI) is a very popular imaging tool, due to its
excellent spatial resolution and wide applicability'®: being task-free, it can be easily
administered even to challenging populations, from in-utero foetuses!! to severely injured
and even unconscious patients!?!4, Indeed, aberrant functional connectivity patterns have

been observed in many neurological and psychiatric conditions?>19,

However, recent studies have highlighted how different analysis workflows can lead to
sometimes drastically different conclusions about the same neuroimaging dataset?°, owing to
a vast pool of possible methodological choices which effectively constitute a combinatorial
explosion problem?!. Crucially, such a combinatorial explosion also plagues network
analyses of the human brain: even beyond substantial differences introduced by data
preprocessing and denoising procedures®??3, a wide variety of approaches have been
proposed to derive brain networks from preprocessed functional neuroimaging data. The
very definition of nodes in brain networks is controversial: although fMRI voxels have no
intrinsic biological meaning, it is well-established based on both functional involvement and
lesion studies but also cellular, molecular, and fiber architecture that the brain exhibits
biologically meaningful regional organisation, such that voxels can be grouped together into
anatomically distinct areas 2425, However, there is yet no consensus on the most
appropriate parcellation of the human brain, or the number and spatial extent of brain
regions, or whether they should be discrete or overlapping?’. Similar difficulties arise for the
definition of functional connections (edges) between nodes: how to quantify them, which
ones to retain for analysis, and whether to emphasise the presence/absence of connections

(binary network) or their relative strength (weighted network)!28, highlighting the intricacies
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of this issue?’. This challenge has practical consequences: even with high-quality data, a
poor choice of network construction pipeline may produce misleading conclusions about
neurobiology and functional organisation, and possibly misinform biomarker discovery and
clinical practice. Thus, to ensure the value of graph-based estimates as clinical biomarkers,
it is of paramount priority to establish what is the most appropriate way to construct a

functional brain network from rs-fMRI data.

Reliability of network topology is of fundamental importance for any subsequent analysis of
network properties: any pipelines that recover vastly different topologies from two scans of
the same individual taken within the same hour, are liable to produce misleading results
when used to associate network properties with behavioural traits® or clinical outcomes?®.
Thus, identification of reliable network construction pipelines represents a fundamental
prerequisite for both network-based investigation of individual differences using functional
neuroimaging®3! and subsequent efforts aimed at clinical translation®2. Existing scientific
work comparing different network construction steps typically focused on specific global or
local network properties (e.g., modularity, small-world character, global or local efficiency,
down to individual edges) and evaluated the different alternatives by maximising the intra-
class correlation (ICC) of the adopted global or local network properties?:33-43,

However, these approaches both have limitations. On the one hand, focusing on local
aspects (individual edges, node-level properties) runs the risk of “missing the forest for the
trees”3, because networks are more than just collections of edges: rather, the way that
edges are organised gives rise to micro-, meso- and macro-scale structure, which is
precisely what makes network-based approaches so powerful. On the other hand, focusing
on specific high-level properties of the network will inevitably limit the generalisability of
results, because a vast and ever-growing array of network properties can be defined and
used to obtain insights about brain function*“° but there is no guarantee that

recommendations pertaining to one will also apply to others.

In the present study, we introduce a framework to explicitly address and tame the
combinatorial explosion. First, we evaluate network construction pipelines end-to-end, rather
than restricting our attention to individual steps in isolation, as most previous studies have
done. Second, we base our evaluation on the network’s topology, that is, the network’s
organisation as a whole. For this purpose, we leverage the advantages of the recently
introduced “Portrait divergence” (PDiv) measure of dissimilarity between networks?*. This
information-theoretic measure simultaneously takes into account all scales of organisation

within a network, from local structure to motifs to large-scale connectivity patterns.
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Therefore, it incorporates all aspects of network topology, enabling us to go beyond the use
of specific and arbitrarily-chosen graph-theoretical properties.

Third, test-retest reliability is a necessary but arguably not sufficient condition for a pipeline
to be suitable for functional connectomics. Therefore, we seek to identify network
construction pipelines that minimise spurious (noise- or motion-induced) differences between
brain networks of the same individual across repeated scan sessions, but that also satisfy
additional criteria of biological relevance: sensitivity to individual differences, clinical
contrasts of interest, and experimental manipulations - here operationalised by
pharmacological intervention with the general anaesthetic propofol. Fourth, to ensure the
generalisability of our results?®, each pipeline is evaluated across two independent test-retest
datasets, spanning short (45 minutes), medium (2-4 weeks) and long term delays (5-16
months). Our focus here is not on preprocessing/denoising approaches to fMRI data (where
a vast literature exists*’~°%), but rather on the workflow that begins with preprocessed fMRI
data and results in a brain network. However, to ensure that our recommendations can be
further generalised to datasets acquired with different scanning parameters and
preprocessed with different methods, we also require that optimal pipelines should meet all
the above-mentioned criteria in an additional independent dataset (test-retest dataset from
the Human Connectome Project), which was acquired with higher spatial (2mm) and
temporal resolution (TR=0.72s) than the other datasets; preprocessed using a surface-
based rather than volume-based workflow; and denoised with a different method than the
anatomical CompCor used for our main datasets (FIX-ICA, which is designed to affect

artifacts specifically and avoid modifying the neural signal of interest)4"51:52,

Through this comprehensive, multi-criterion approach, we compare the topologies of
functional brain networks obtained from systematic combinations of different options at each
step in the network construction process. (i) First, given our interest in robustness and
generalisability, we conduct all our analyses on two versions of the same data: with versus
without the controversial preprocessing step of global signal regression (GSR) *2. This allows
us to make recommendations that are specific for GSR-processed data, or for non-GSR-
processed data, as well as identifying network processing pipelines that are suitable for both.
(i) Definition of network nodes: based on functional characteristics (combination of local
homogeneity and global gradients of connectivity), or anatomical properties, or multimodal
features from functional and structural MRI 22?4, (ii) Number of nodes: approximately 100,
200, or 400, for each type of parcellation. (iv) Two different ways to define network edges
from BOLD time-series: linear Pearson correlation or non-linear mutual information. (v) Eight

different approaches to filter the network’s edges: by imposing a pre-specified density
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(retaining 5%, 10%, or 20% of total edges, or matching the density of the structural
connectome), or imposing a pre-specified minimum edge weight (0.3 or 0.5), or using data-
driven methods (Efficiency Cost Optimisation and Orthogonal Minimum Spanning Trees, two
different strategies to define and then optimise the balance between network efficiency and
wiring cost)>*%6, (vi) Use of either binary or weighted networks. Fig.1 illustrates the set of
choices across the investigated network construction steps that influence the construction of
a functional brain network, yielding a total set of 576 pipelines (2*3*3*2*8*2). To the best of
our knowledge, this is the first time in the literature that all of these available network
construction steps are explored simultaneously end-to-end, and with a focus on topology as

a whole rather than on specific network features.

Overall, a strength of our current study is our ability to make recommendations for the choice
of pipelines end-to-end, not only on the basis of theoretical gold standard metrics (test-
retest) but also on the basis of practical relevance: meaningful inference about changes in
brain functional network topology and individual differences, and robustness and
generalisability. To anticipate our main findings, we discovered large and systematic
variability among pipelines’ ability to recover a reliable network topology, with the majority of
pipelines failing to meet at least one criterion. Choice of an inappropriate network
construction pipeline can lead to results that are not only misleading (statistically significant
in the opposite direction as the true effect), but replicably so (being observed in two
independent datasets). However, we also identified a number of pipelines that satisfy all our
criteria, in all four test-retest comparisons, making them suitable candidates for functional
connectomics and biomarker discovery. Through this multi-dataset, multi-criteria, multi-scale,
and multi-step approach, we provide a comprehensive set of benchmarks for trustworthy

functional connectomics.
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Fig. 1. Overview of the steps to turn functional MRI data into a network. Starting from preprocessed and
denoised data, the following steps are involved. (i) Use of data with vs without global signal regression (GSR), in
addition to other denoising protocol (aCompCor for NYU-short, NYU-long, and Cambridge datasets; FIX-ICA for
HCP); (ii) Definition of nodes (based on anatomical features, local and global functional characteristics, or
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multimodal features); (iii) Choice of number of nodes (approximately 100, 200, or 400); (iv) Definition of
connectivity measure (from Pearson correlation or mutual information); (v) Choice of edges to retain (8 filtering
schemes considered, based on a priori choices of network density, or minimum edge weight, or data-driven
strategies to optimise the balance between network efficiency and wiring cost), (vi) Use of binary or weighted
edges. In total, we consider 2*3*3*2*8*2 = 576 unique pipelines. For each pipeline, the resulting functional
networks are compared for the same subject across different time-spans (minutes, weeks, or months) using the
Portrait Divergence. A network portrait for a binary network is a matrix B whose rows each correspond to a
histogram obtained by thresholding the matrix of shortest paths between the networks’s constituent nodes, at
each path length | between 0 and the network’s diameter L, such that entry Bk encodes the number of nodes that
have k nodes at distance |. For weighted networks, the histogram is obtained by binning (see Methods).
lllustration of Portrait Divergence adapted from Bagrow and Bollt (2019)*L.

Results

We used an information-theoretic measure of distance between network topologies across
scales, termed Portrait divergence (PDiv), to systematically compare 576 alternative network
construction pipelines in terms of their ability to recover similar brain network topologies from
functional MRI scans of the same individual across minutes (NYU dataset, same-session
scans), weeks (Cambridge dataset), or months (NYU dataset, between-sessions
comparison) (see Methods, and Fig. S1-2 for examples of network portraits and their
divergence). Additionally, we considered an additional dataset (HCP test-retest) that was
acquired with higher spatial (2mm isotropic) and temporal resolution (0.72s TR); with longer
duration (1200 volumes); denoised using FIX-ICA instead of aCompCor; and parcellated on
the surface rather than in volumetric space, as for the other datasets *’~°°. Our end-to-end
approach allowed us to simultaneously assess the effects of atlas type and number of
nodes; connectivity quantification, thresholding, and binarisation; and global signal
regression; while ensuring robustness to aspects such as acquisition, time between test and

retest, and denoising method.

Being grounded in information theory, the Portrait divergence between two networks can be
interpreted as measuring how much information is lost when using one network to represent

another: it ranges from 0 (no information loss) to 1 (complete information loss) “°.

To identify suitable pipelines, we required each of the following criteria to be met:

e Criterion (I): Avoiding spurious differences (“PDiv ranking”). Since the two networks
that we consider are derived from different scans of the same healthy individuals
under conditions in which no experimentally meaningful changes in functional
network topology are expected, we aim to identify pipelines that minimise test-retest
PDiv. We consider pipelines as candidates for optimal if they are in the top 20% in

terms of the average PDiv rank calculated across all test-retest intervals.
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e Criterion (Il): Detecting true experimental differences (“propofol”). Suitable pipelines
should detect a significant effect for propofol, in the right direction, in both propofol
datasets, i.e., a pipeline is excluded if it fails to detect the expected effect (greater
change between wakefulness and anaesthesia than between two awake scans) in
either of the two propofol datasets.

e Criterion (lll): Detecting inter-individual differences (“within-between”). A pipeline
fails this criterion if the resulting networks are more similar between than within
subjects more than 50% of the times, for any of the four test-retest datasets.

e Criterion (IV): Avoiding motion-induced differences (“motion”). A pipeline fails this
criterion if its PDiv has a significant correlation with differences in head motion in any
of the four test-retest datasets.

e Criterion (V): Non-empty networks. As a final sanity check, we also exclude any
pipelines that remove all connections from a network, in any of the four test-retest

datasets.

These criteria also incorporate the need for recommendations to be generalisable across
datasets and acquisition/preprocessing choices, since we only consider a criterion to be met

if it is met in all the relevant datasets.

A summary of all pipeline characteristics can be found in the Supplementary Interactive Tool.
We provide an Excel spreadsheet with an interactive table, including filters that allow
selection based on multiple criteria at once to identify pipelines which adhere to the specific
criteria desired by the reader. We encourage readers to view the interactive table
concurrently with the results described below, as this will allow a closer inspection of
associations between a pipeline’s specific network processing choices and the desirable
properties described in each subsection of the Results. A user guide for the interactive table

is also included in the Supplementary Material.

Portrait Divergence identifies drastic and systematic variability across pipelines’

capacity to avoid spurious differences

For each dataset, Fig.2 illustrates the distributions of group-mean test-retest similarities of
network topologies (portrait divergence) across the full set of 576 pipelines (See Fig.S3-30
for the distribution of PDiv across pipelines, broken down by network construction step, for
each dataset). Clearly, two patterns can be observed. First, network construction pipelines
differ widely in how well they are able to recover the same network topology across different
scans of the same individual, on average - whether on a timescale of minutes, weeks, or

months. The worst pipelines induce a greater than five-fold increase in topological

8


https://doi.org/10.1101/2023.06.23.546329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546329; this version posted June 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

dissimilarity (PDiv) between functional connectomes of the same individual, compared with

the best-performing ones.

Best and worst pipelines

-2*SD +2°SD ®  1st Worst: AALSO + GSR + weig + Abs05 + Mutualinfo
2nd Worst: Schaefer116 + GSR + weig + Abs05 + Mutualinfo

3rd Worst: Lausanne129 + GSR + weig + Abs05 + Mutualinfo

4th Worst: Lausanne463 + NoGSR + weig + ECO + Pearson
5th Worst: Schaefer454 + GSR + bin + Abs05 + Mutualinfo

5th Best: Brainnetome246 + GSR + weig + FD20% + Pearson

Cambridge

4th Best: Schaefer454 + GSR + weig + Abs03 + Pearson
3rd Best: Schaefer454 + GSR + weig + FD20% + Pearson
2nd Best: Glasser414 + GSR + weig + Abs03 + Pearson
1st Best: Glasser414 + GSR + weig + FD20% + Pearson
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4th Best: Glasserd14 + GSR + weig + FD20% + Pearson

3rd Best: Schaefer232 + GSR + weig + FD20% + Pearson
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Fig.2. Distribution of group-average portrait divergence values for each of 576 alternative network
construction pipelines, across different time intervals. From top to bottom: Cambridge dataset (rescan
within 2-4 weeks).NYU short-term dataset (rescan within 45 minutes). NYU long-term dataset (rescan within 16
months; average 11.4); HCP dataset (rescan 1-11 months). Right-side: highlighting the top 5 (lowest PDiv) and
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bottom 5 performers (highest PDiv). Red lines mark 2 standard deviations from the mean of the distribution.
center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Abbreviations.
GSR: Global Signal Regression. OMST: Orthogonal Minimal Spanning Trees.

Second, our results indicate high consistency across the four test-retest comparisons
considered here, in terms of which data-processing steps feature prominently among the
pipelines that are best (and worst) at minimising the average within-subject PDiv. Correlation
between all pipelines’ ranks across time intervals revealed very high consistency between all
datasets (Spearman’s rho ranging from .71 to .98, all p < 0.001) (Fig.3), indicating that
pipelines’ suitability for network construction is not dataset-specific but rather can generalise
to independent groups of individuals - spanning time intervals from hours to months. We
view a small PDiv in these datasets as a desirable property: even though learning and
plasticity could account for some amount of connectome reorganisation over weeks or
months in healthy adults, such factors cannot plausibly be expected to be the cause of any
network-wide reorganisation observed within the course of a single hour (in the absence of
any intervention), which should instead be treated as unwanted noise.
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Fig. 3. Rank-based correlations of the pipelines’ performance across datasets. PDiv, portrait divergence;
HCP, Human Connectome Project data; NYU, New York University dataset. All p < 0.001.
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Sensitivity to experimental differences: Low-PDiv pipelines are more likely to detect
pharmacologically-induced connectome reorganisation

We have shown that network construction pipelines vary drastically and systematically in
their robustness to noise-induced changes in the functional connectomes of the same
individuals scanned multiple times. However, this minimisation of noise-induced differences
should not come at the expense of also minimising meaningful changes in network topology,
such as control-patient contrasts (an example of this would be a pipeline that never detects
any changes). Rather, a good pipeline should simultaneously minimise noise-induced
differences, while remaining sensitive to true ones. In other words, test-retest reliability is not
the only criterion that neuroscientists need to consider for their choice of network
construction pipelines: ultimately, the resulting networks need to also demonstrate empirical
usefulness by providing neurobiologically meaningful results**#4. An ideal pipeline would
therefore strike a balance between sensitivity to experimental manipulations or contrasts of
interest on the one hand, and low portrait divergence in test-retest over relatively short
periods of time in healthy individuals and under the same test conditions on the other hand.
Therefore, in addition to identifying pipelines that do not detect differences when we know
that there should be none or only minor ones (best exemplified by test-retest scanning within
the same hour), we should find pipelines that can also detect a difference, when we know
that a difference must be present: we need to combine a low rate of false positives (low test-

retest PDiv) with a low rate of false negatives.

Perhaps the most drastic possible difference that can be induced between two scans of the
same individual, is that between consciousness and unconsciousness. General anaesthetics
such as the intravenous agent propofol can rapidly and reversibly induce a state of
unconsciousness, whereby the subject is behaviourally unresponsive and has no subjective
experiences. There is arguably no short-term, reversible alteration of the mind that is so all-
encompassing, and it cannot be expected to leave the functional connectome unaltered.
Therefore, if a pipeline is unable to detect anaesthetic-induced differences in the topology of
the functional connectome, we can reasonably conclude that it is not sensitive enough for

use in network neuroscience.

Following this rationale, we compared the PDiv from the NYU-short dataset (two scans
within the same hour) against the PDiv observed between an awake rs-fMRI scan, and a
second scan of the same individuals while under propofol-induced general anaesthesia (also
acquired within the same visit). We seek to identify pipelines that produce significantly

greater PDiv between an awake and an anaesthetised scan of the same individual, than
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between two awake scans acquired at a comparable distance in time. To ensure the
reliability of our approach, we repeat this analysis for two independent datasets of propofol
anaesthesia to further bolster the reproducibility and generalisability of our findings.

Across both datasets, our results suggest that pipelines with lower PDiv also tend to have t-
scores reflective of the expected effect of propofol (Fig. 4), as demonstrated by significant
correlations between short-term test-retest PDiv (based on the NYU dataset) and t-scores
both for the Western (rho=.42, p<.001) and the Cambridge propofol datasets (rho=.26,
p<.001). As control test-retest PDiv becomes larger, t-scores also seem to become more
variable, Reassuringly, we identified multiple pipelines that provide the expected effect in
both datasets (Fig. 4, green dots). Intriguingly, however, we also identified a number of
large-PDiv pipelines that detect a statistically significant difference between test-retest and
anaesthesia, but in the opposite direction: that is, greater connectome reorganisation
between two awake scans, than between an awake and an anaesthetised scan (Fig. 4, red
triangles). In other words, these pipelines produce networks that are actively misleading
about what we have strong reason to believe must be the ground truth (because there is a
very substantial difference introduced by anaesthesia, reflected in the suspension of the
brain’s input-processing abilities and cognitive function more broadly). These pipelines can
be found in the Supplementary Interactive Tool (pipelines labelled “Opposite” in the columns
Status Propofol West and Status Propofol Cam). Worryingly, we find that a non-negligible
number of pipelines (38) produce the opposite of the expected effect for both propofol
datasets - thereby returning results that are systematically misleading, and highlighting the
dangers of an inappropriate choice of network construction workflow. Of note, all the
consistently misleading pipelines use an absolute threshold; all but two use weighted edges;
and 23/38 use mutual information to quantify connectivity. Overall, 55 pipelines show the
expected effect for both propofol datasets, thereby satisfying this criterion, whereas 357
pipelines are neutral (failing to detect statistically significant differences in at least one

propofol dataset).

12


https://doi.org/10.1101/2023.06.23.546329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546329; this version posted June 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Propofol (Cambridge) Propofol (Western)

ST ST

rho = 0.26

B
dd
»
>
>
.
o
>
3
»
>
>
>
>

1]
N
A

NYU short vs. Propofol (PDiv)
o

NYU short vs. Propofol (PDiv)
o

0.2 0.4 0.6 0.2 0.4 0.6
NYU short (PDiv) NYU short (PDiv)

Fig. 4. Correlation between low PDiv and ability to detect significant difference between anaesthesia and
test-retest. Left: Cambridge anaesthesia dataset, Right: Western anaesthesia dataset. Both correlations are
statistically significant, p < 0.001. The t-scores are obtained from permutation-based two-sample t-tests
comparing PDiv from test-retest NYU short, against PDiv from awake vs anaesthesia. Horizontal red lines
indicate t + 1.96, corresponding to a statistically significant difference between the two groups’ mean, with
negative t-scores corresponding to PDiv (anaesthesia) > PDiv (test-retest). Green dots indicate pipelines that
produce the expected effect in both datasets. Red triangles indicate pipelines that produce a misleading effect in
both datasets.

Sensitivity to inter-individual differences

Another means by which the adequacy of a pipeline may be assessed is by comparing PDiv
within subjects (scan 1 vs. scan 2 for subject 1, scan 1 vs. scan 2 for subject 2, etc...) and
PDiv between subjects (subject 1 vs. subject 2, etc...). The proportion of participants for
whom the within-subjects (WS) PDiv is smaller than between-subjects (BS) PDiv may be
used as an additional criterion of pipeline quality, with the rationale that even after
accounting for bona fide changes due to plasticity and learning, an individual’s functional
connectome should not differ from itself at another point in time, more than it differs from the

connectomes of other individuals.

Our results suggest that pipelines with smaller PDiv are also better at producing networks
that are sensitive to individual differences, such that the same subject’s brain network
diverges less from the same subject’s network than from those of other people. This was the
case for the NYU short test-retest data (rho=-.39, p<.001), the medium-term test-retest time
interval for the Cambridge dataset (rho=-.42, p<.001), the NYU long test-retest data (rho=-
.37, p<.001) and the HCP dataset (rho=-.54, p<.001).
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Passing and failing pipelines on the basis of this within-between criterion can be found in the
Supplementary Interactive Tool (column Criterion within-between all). The interactive tool
also lists the proportion of participants in a given pipeline for which within-subject PDiv is
smaller than between-subjects PDiv in columns Within-between Cam (%), Within-between
NYU short (%), Within-between NYU long (%), and Within-between HCP (%). In the
Cambridge dataset, 59 pipelines were excluded based on this criterion. This was the case
for 43 in the NYU short-term test-retest data and for 32 for the NYU long-term data as well
as for 21 pipelines in the HCP data. In total, on the basis of the overall within-between

criterion across datasets, 112 pipelines were excluded and 464were retained.
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Fig. 5. PDiv within versus between individuals. Pipeline PDiv in a given dataset is plotted against the
proportion of participants in the same dataset for whom the within-subject PDiv (baseline vs follow up) is smaller
than between-subject PDiv. Pipelines above the red line meet the within-between criterion such that portrait
divergence is smaller for within-subject test-retest compared to between subject comparisons.

Avoiding motion confound

As a further criterion, we sought to identify and exclude pipelines whose PDiv is significantly

correlated with differences in subject motion (mean framewise displacement). For the
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Cambridge dataset, 34 pipelines showed a significant correlation between PDiv and motion
(magnitude of the correlation coefficient rho ranging between 0.60 and -0.66). For the NYU
short-term dataset, 16 pipelines exhibited a significant correlation between PDiv and motion
(magnitude of the correlation ranging between 0.45 and -0.57). For the NYU long-term
dataset, 13 pipelines exhibited a significant correlation between PDiv and motion (magnitude
of the correlation ranging between -0.52 and 0.56). Finally, for the HCP dataset we found

that PDiv and motion were correlated significantly in 29 pipelines (rho between -.38 and .41).

It is argued in the literature that GSR can help to mitigate the noise induced by subject
motion*>4®, When contrasting all pipelines with GSR against those without GSR, no
significant difference in the strength of the correlation (absolute r-statistic) between PDiv and
motion based on this option was found in the Cambridge (1(568)=.54, p=.592, d=.05), the
NYU short test-retest (t(524)=1.44, p=.151, d=.12) or the NYU long-term test-retest
(t(524)=1.32, p=.186, d=.11). That is, whether GSR was or was not applied, this decision
had no bearing on the degree to which test-retest portrait divergence was associated with
motion, on average across all pipelines. However, in the HCP data, there was a significant,
moderate effect of GSR on the magnitude of the correlation between motion and PDiv
(t(530)=-8.72. p<.001, d=-.76), showing a stronger association between PDiv and motion in
pipelines without GSR than with GSR.

Sanity check: Avoiding empty networks

Pipelines employing an a priori threshold on the strength of edges, rather than on their
density (i.e., removing all edges with weight below a pre-specified value, also known as an
“absolute” threshold) run the risk of removing all edges in the network, if none surpass the
threshold value. This would be unquestionably incorrect, but it is conceivable that such an
occurrence might never materialise in practice. Indeed, we found that this never occurred
when edge weights were defined in terms of Pearson correlation. However, empty networks
were returned for at least one subject by a total of 46 unique pipelines employing mutual
information for edge weight definition (37 occurrences in the NYU long test-retest, 32
occurrences in the NYU short test-retest, 44 in the HCP dataset, none in the Cambridge
dataset). As expected, all of these pipelines used absolute threshold values: mostly with the
0.5 threshold, but for ten pipelines this was also the case for the more lenient 0.3 threshold
(reported in the Supplementary Interactive Tool under the column Criterion edge failure).
Therefore, any pipeline which removes all edges in any one dataset is excluded from further
consideration as a suitable candidate. However, note that pipelines that fail this sanity check

would also be eliminated from consideration based on the other four criteria: only one of
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those that failed the sanity check satisfied both the within-between and propofol criteria
(Lausannel29 + No GSR + binarisation + Abs 0.3 + Mutual Info).

Overall recommendations for network construction pipelines

As a final step, we combined all the criteria identified above:

() Avoiding spurious differences: we operationalise this as having low PDiv (pipelines
with the average global rank in the top 20%, as calculated from the average of
independent rankings within each dataset; 115 pipelines fulfilled this criterion);

(I Detecting true experimental differences: ability to correctly identify statistically
greater PDiv in anaesthesia than test-retest, across both propofol datasets (55
pipelines passed);

(1) Sensitivity to inter-individual differences: ability to detect smaller within- than
between-subjects PDiv in at least 50% of subjects, in each of the four test-retest
datasets (464 pipelines passed);

(IV) Avoiding motion confounds: no significant correlation between PDiv and subject
motion, in any of the four test-retest datasets (444 passed);

(V) Non-empty networks: we rejected pipelines that produce empty networks for any
subject in any of the four test-retest datasets (530 pipelines pass).

Out of the full set of 576 pipelines considered here, we found that only 8 (around 1%) jointly
satisfied all of our criteria in each of the test-retest datasets that we considered — meaning
that the vast majority of pipelines (568 out of 576) may be less than optimal (Figure 6 and
Table 1). However, 84 pipelines were excluded from the optimal ones because they each
failed one single criterion in one single dataset, such that their failures were neither
systematic nor pervasive. In particular, the set of optimal pipelines would expand to 26 (~5%
of the total) if a less stringent criterion for the PDiv were adopted, such that all pipelines in
the upper 50% were admissible (while still having to satisfy all other criteria in each of the

relevant datasets).
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Fig. 6. Evaluating pipelines across all criteria. Each data-point represents one pipeline, with colour and shape
reflecting which criteria are meet. Criterion (I): Avoiding spurious differences (“PDiv ranking”). We consider
pipelines as optimal if they are in the top 20% in terms of the global rank based on PDiv calculated as the
average rank achieved in each dataset . We further show pipelines which fulfil all other criteria while being among
the top 50% in terms of the average global rank. The maximum average PDiv among the top 50% pipelines is
.266. Multiple pipelines were tied for 50" place meaning that a total of 289 pipelines were selected as belonging
to the top 50% based on global rank alone. Criterion (ll): Detecting true experimental differences (“propofol”).
Suitable pipelines should detect a significant effect for propofol, in the right direction, in both propofol datasets,
i.e. a pipeline is excluded if it fails to detect the expected effect in either of the two propofol datasets. The Y axis
reports the maximum between the two t-statistics obtained for the two propofol datasets, so pipelines satisfy the
sensitivity criterion if they score < 1.96 on this axis (i.e., find a significant effect for propofol, in the right direction,
in both propofol datasets). Criterion (ll): Detecting inter-individual differences (“within-between”). A pipeline fails
this criterion if the resulting networks are more similar between than within subjects more than 50% of the times,
for any of the four test-retest datasets. Criterion (IV): Avoiding motion-induced differences (“motion”). A pipeline
fails this criterion if its PDiv has a significant correlation with differences in head motion in any of the four test-
retest datasets. Criterion (V): Non-empty networks. As a final sanity check, we also exclude any pipelines that
remove all connections from a network, in any of the four test-retest datasets. Fail both refers to pipelines failing
in terms of motion and within-between criteria, while Pass both refers to pipelines which satisfy both of these
criteria. Points circled in purple represent pipelines that produced empty networks. Overall, 8 pipelines satisfy all
criteria in all datasets; this number grows to 26 if a more liberal PDiv criterion is adopted (top 50% global rank).

When considering the distribution of individual pipeline steps among the 8 optimal ones,
three clear patterns emerge: all pipelines use weighted (rather than binary) edges, and all
quantified connectivity in terms of Pearson correlation (rather than mutual information)

(Fig.7). Moreover, the preferred filtering method among the optimal pipelines is the OMST, a
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method to optimise the balance between network efficiency and wiring cost in a data-driven
manner (selected in 5/8 cases). In other words, the single combination of Pearson
correlation, weighted edges, and OMST accounted for 5 out of 8 optimal pipelines, despite
being only one out of 2*8*2=32 equally likely combinations of edge quantification,
thresholding, and binarisation. This is highly unlikely to occur just by chance: the probability
of randomly choosing 8 pipelines out of 576 and having 5 or more of them belong to the
same group (out of 32 possible groups) is less than 3x10* (confirmed with permutation
testing: p < 0.001). In contrast to the clear importance of edge definition, atlas choice seems
to have less bearing on a pipeline’s performance, but we do observe greater prevalence of
pipelines using GSR than not (six out of eight). However, this last pattern disappears when
using a less stringent criterion in terms of PDiv (average rank across datasets in the top
50%, rather than the top 20% - while still satisfying all other criteria). We also find that while
edges based on Pearson correlation still dominate under this less stringent criterion, there is
now also a number of well-performing pipelines using proportional thresholds (either fixed or
SDM) with binarised edges. Node type and number remains less clearly decisive, and the
occurrence of GSR versus no-GSR pipelines is nearly equal.

19


https://doi.org/10.1101/2023.06.23.546329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546329; this version posted June 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

WJ\MI‘M“UA%W’FL
IKIWAWW"\NW GSR?

1

Atlas type

!

Atlas scale

v

Scale 100

1/8

Scale 400
4/8

Edge
quantification

Edge
filtering

Edge
binarization

Weighted
8/8

Fig. 7. Prevalence of specific network construction steps among the 8 optimal pipelines. Pie charts
demonstrate, for each network construction step, the proportion and absolute number of each option that is found
among the optimal pipelines. Abbreviations. FD: fixed density. GSR: global signal regression. OMST:
orthogonal minimal spanning tree. SDM: structural density. See Fig. S31 for a version of this figure with a
breakdown of the pipelines under the more liberal PDiv criterion
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Table 1. Final selection of pipelines which meet all selection

criteria.
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Overall, inspecting the whole list of optimal pipelines (Table 1) clearly reveals that
considering each pipeline step in isolation from the others does not provide the full picture.
Specifically, we found that a few combinations of options account for most of the optimal
pipelines (Figure 8), with 5 out of 8 pipelines which meet all inclusion criteria using the
combination of weighted edges, Pearson correlation and OMST filtering for edge definition
and thresholding.

These results suggest that a pipeline’s performance is not solely attributable to any specific

step: rather, some combinations of steps seem to be especially favourable.

Pearson
FD5%
weighted

5/8
Pearson |
OMST
weighted

Fig. 8. Optimal edge processing combinations. Pie chart displays the frequency of each combination of edge
type definition, filtering, and binarisation among the 8 pipelines which fulfil all criteria for a suitable network
construction pipeline. See Fig. S32 for a version of this figure with a breakdown of the pipelines under the more
liberal global rank criterion, and Fig. S33-35 for a breakdown of the relationship between PDiv and commonly
studied graph properties, in terms of edge quantification, binarisation, and filtering method.
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Discussion

A tremendous amount of neuroimaging research with functional MRI is devoted to finding
reliable functional connectomic biomarkers for brain function and its disorders — but this

process involves a combinatorial explosion of arbitrary choices!®1928,

Here, we tackled this challenge by systematically investigating 576 unique pipelines that a
neuroscientist could adopt to obtain brain networks from resting-state fMRI data, arising from
the combination of several key data-processing steps. To do so, we departed from most
previous studies in a number of key respects. First, we explicitly addressed the combinatorial
explosion, by considering pipelines end-to-end, rather than restricting our attention to
specific steps. Second, rather than choosing any arbitrary local or global graph-theoretical
property for our comparisons, we focused on the pipelines’ ability to recover the networks’
overall topology across all scales. Third, we did not focus exclusively on test-retest reliability,
but rather we adopted an entire battery of criteria that any appropriate pipeline for functional
connectomics should meet, in order to provide practically useful results: these include
minimising both random (noise-induced) and systematic (motion-induced) topological
distortions, while also being sensitive to differences between individuals and between
experimental conditions. Finally, we required all criteria to be consistently met in each of
several independent datasets, encompassing short (minutes), medium (weeks) and long
timespans (up to 16 months), and using different spatial and temporal resolution, and
different preprocessing/denoising approaches, to ensure the generalisability of our
recommendations. Through this multi-dataset, multi-criteria, multi-scale and multi-step
approach, our goal was to provide a comprehensive set of benchmarks for trustworthy

functional connectomics.

Inappropriate network pipelines are ubiquitous and can produce systematically
misleading results.

Our first finding is that the substantial majority of the pipelines that we considered failed to
meet at least one of our criteria for consistent functional connectomics. We also observed
drastic and systematic variability among pipelines’ performance: an inappropriate choice of
pipeline can greatly impair one’s ability to recover a reliable network topology. Even for
scans obtained less than 45 minutes apart, we observed up to a 5-fold increase in
topological dissimilarity (PDiv) compared with the best-performing pipelines (Fig. 2), even

across several months. Put differently, adoption of an inappropriate pipeline can distort the
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functional connectome more drastically than the passage of nearly a year — which may have
far-reaching repercussions for longitudinal studies of brain network properties.

A recent review of statistical power in network neuroscience suggested that “many real
effects may be missed by current studies”®. Our results are in line with this observation: we
found that the vast majority (approximately 90%) of pipelines were unable to reliably detect
the effect of general anaesthesia on the functional connectome. Thus, one potential
implication of our work is that some true effects may have been missed due to a suboptimal

choice of network construction pipelines for functional connectomics.

Even more worryingly, choice of the wrong pipeline can lead to results that are not only
misleading (statistically significant in the opposite direction as the true effect), but replicably
so (being observed in two independent propofol datasets): we found this to be the case for
38 pipelines. This means that adopting an inappropriate pipeline for network analysis can
turn the replicability of results against researchers, boosting their confidence in results that
are actively the opposite of the truth. Being consistently wrong rather than randomly so,
these results would not be “washed out” by approaches such as meta-analytic aggregation:
on the contrary, they would propagate to the meta-analysis itself. Clearly, such a scenario
would have devastating consequences for the use of functional connectomics for biomarker
identification; in the worst-case scenario, a treatment that actually makes the disease worse

may be systematically mis-identified as making it better.

Finally, our results show that the above-mentioned concerns cannot be easily dismissed,
because suboptimal pipelines are not a rare exception, but rather the rule: the vast majority
of pipelines among those considered (568 out of 576) failed to meet at least one of our
criteria (or 550 if the criterion of having low PDiv on average is relaxed). In other words, our
results clearly demonstrate that even when combining steps for network construction that
are individually sensible, it is overwhelmingly likely (over 98%) that the resulting overall
pipeline will not be appropriate for functional connectomics — at least not optimal. Indeed, we
find that no single step uniquely determines a pipeline’s ability (or inability) to accurately
recover the network’s topology: pipelines differing by only one step are largely overlapping in
terms of their portrait divergence distributions (Fig. S7-S30). These observations highlight
the importance of focusing on entire pipelines as we do here, in contrast to most published

approaches that typically consider only one or two steps in isolation.

Identification of optimal network construction pipelines.

24


https://doi.org/10.1101/2023.06.23.546329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546329; this version posted June 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Fortunately, we were able to identify a number of pipelines (8 out of 576) that consistently
recover effects in the correct direction, and that additionally satisfy all our other criteria for
trustworthy functional connectomics: low PDiv for test-retest scans, indicating that the
pipeline minimises spurious differences; greater PDiv across subjects than within the same
subject on average, indicating that the pipeline reflects the ground-truth difference between
networks; no empty networks; and no correlation between PDiv and motion. We emphasise
that each of these criteria had to be met in all our datasets, which included both differences

in time-span, and also differences in data resolution and preprocessing/denoising.

Additionally, we found that pipelines’ performance on our criteria is far from random, nor
does it vary idiosyncratically with each dataset, instead being highly correlated across
different independent datasets spanning short, medium, and long timespans (with
Spearman’s rho ranging between .71 and .98; Fig.3). Ability to minimise test-retest
differences is also correlated with a pipeline’s ability to detect true differences, when they do
exist — both between different individuals (Fig.5), and within the same individual (induced by
potent pharmacological intervention; Fig.4). In other words, there are systematic factors at
play. Indeed, patterns of similarity clearly emerge among the pipelines that satisfy all our
criteria. Specifically, 5 out of 8 optimal pipelines employ the same procedure for edge
definition (out of 32 possible ones), consisting of Pearson correlation, weighted edges, and
the OMST method of optimising the balance between network efficiency and wiring cost.
This is a statistically unlikely occurrence, suggesting that there may be something about this
combination that makes it especially appropriate. In fact, all 8 (or 22/26 under the less
stringent PDiv criterion) employ Pearson correlation for edge definition. More combinations
for edge construction become available if pipelines with PDiv rank in the top 50% are
included, with fixed-density thresholds at 5% and 20% density also performing well in
combination with weighted and binary edges, respectively (6/26 pipelines each). The edge
construction part of the pipeline therefore appears as the most crucial choice: once it is fixed,
both GSR and NoGSR options are available among the optimal pipelines, and many

combinations of atlas type and size.

It is especially reassuring that our results about pipeline performance are shared across
multiple independent datasets. Likewise, our results generalise across different popular
methods for functional MRI denoising (aCompCor and FIX-ICA). The Cambridge and NYU
datasets were acquired with parameters for spatial and temporal resolution that are widely
used in functional neuroimaging studies. Therefore, we expect our results to generalise to
other datasets with similar specifications, such as the publicly available and intensely studied
Cam-CANS®?, Philadelphia Neurodevelopmental Cohort®?, CENTER-TBI®®, Harvard Aging
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Brain Study®4, Autism Brain Imaging Data Exchange (ABIDE)®, and UCLA
Neurophenomics® datasets, enabling the functional connectomics community to make the
most of these valuable resources to study development, aging, and disease. Importantly
though, our results about pipeline performance and choice of optimal pipelines also
replicated in the high-quality HCP data, which have higher temporal and spatial resolution
(suitable for surface-based analysis). Therefore, we expect that our recommendations
should also be applicable to more recent datasets acquired with HCP-like specifications,
such as UK Biobank®. However, our recommendations are intended to complement
investigators’ domain-expertise, not replace it: each study has its own driving hypotheses
and unique challenges. For this reason, we have made available our Supplementary
Interactive Tool, which provides a full breakdown of each pipeline’s performance across
each criterion and each dataset: to enable readers to engage with our results, and identify

pipelines that fit their specific requirements.

Our optimal pipelines are those that pass all our tests across all datasets: they minimise
noise-driven differences, but correctly detect genuine ones, in a way that is consistent
across datasets. While this stringency undoubtedly contributed to the exclusion of many
pipelines — 84 of which only due to a single failure in a single dataset — it should equally
bolster our confidence about the recommended pipelines’ suitability to provide sensible
results, including across different time-spans and different data acquisition and
preprocessing choices. By recommending a select number of network construction pipelines
that provide the most replicable and generalisable results, we hope that the present work will

facilitate future meta-analyses of functional connectomics studies.

Shared characteristics among optimal network construction pipelines.

It is reassuring that our recommended pipelines overwhelmingly favour Pearson correlation
to quantify functional connectivity. Owing to its ease of application and interpretation,
Pearson correlation is a cornerstone of functional connectomics, and remains the most
widely used method to quantify connectivity between regions across thousands of published
studies (accounting for over 75% of the studies reviewed by Hallquist and Hillary).
Nevertheless, here we did not assume a priori that fMRI BOLD signals are linear, and

instead also considered a nonlinear method (Ml).

At the microscopic level of neurons and circuits, the brain is unquestionably a nonlinear
system. However, the superior performance of (linear) Pearson correlation that we observed
in our results dovetails with multiple lines of evidence that the macroscale level observed by

functional MRI signals may be suitably accounted for as linear 8, such that limited or no
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additional benefit is obtained when using more complex nonlinear methods to relate
structural and functional connectivity >, or to predict demographic variables from functional
MRI 72, or when comparing the ability of linear versus nonlinear models to fit high-resolution
BOLD timeseries "3. Crucially, the observed predominance of linear dynamics in macroscale
brain signals cannot be dismissed as a mere artifact of functional MRI 73, Although fMRI’s
low temporal resolution does contribute to linearising the signal due to both temporal
averaging and the limited number of samples, linear models were also recently shown to
outperform nonlinear ones in terms of their ability to fit intracranial EEG (IEEG) time-series
3, which are electrodynamic rather than haemodynamic in origin, and have much higher
temporal resolution. Thus, empirical results from diverse neuroimaging modalities converge
with both simulations 7 and theoretical analysis 4, showing that the dynamics of nonlinear
stochastic populations converge to linear dynamics at the macroscale, as a result of spatial
averaging. In other words, observing superior performance of linear methods at the
macroscale should not be viewed as un-physiological, or a mere artifact of a specific imaging
modality, or a denial of the brain’s microscale nonlinearity. Rather, linearisation is an
inherent consequence of observing brain activity at the macroscale, and this phenomenon
contributes to explaining why Pearson correlation is suitable for quantifying functional

connectivity.

Pertaining to edge filtering, the OMST — our main recommended approach — is a data-driven
method that optimises the balance between efficiency and wiring cost of the network. OMST
is unigue among the filtering schemes considered here, for multiple reasons. First, because
it guarantees that the resulting network is not fragmented into disconnected components
(Fig. S35). This feature makes OMST analogous to percolation-based filtering schemes,
whereby the weakest edges are iteratively removed from the network, up to the point where
further removal would make the network disconnected, which corresponds to the percolation
threshold”>~"’. Thus, OMST and percolation thresholding both ensure that global connectivity
is not impacted by removal of a few weak but topologically important edges. Unlike
percolation, however, OMST is not restricted to preserving only the strongest edges. Rather,
weaker edges can be preferred to stronger ones and be included in the OMST-filtered
network, if they contribute to an optimal balance of efficiency and cost. Because of this ability
to include weaker edges over stronger ones based on their role in the overall topology,
OMST avoids a pitfall of percolation thresholding, whereby the presence of a single node
whose edges are all relatively weak, can result in a network that is potentially very dense
(because the percolation threshold is determined by the weakest edge whose removal would
make the network disconnected, and if this edge is very weak, many other edges may

survive the threshold).
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In other words, the second feature that makes OMST unique among the filtering schemes
considered here is that OMST takes into account not only the strength of connections, but
also their more general topological role in the network. Therefore, connectomes obtained
through OMST can include edges that both absolute and proportional thresholding methods
would simply disregard as too weak, regardless of any further role they may play in network
organisation. The key role of weak connections acting as shortcuts between segregated
modules, often referred to as the “strength of weak ties””’-°, has been increasingly
recognised across artificial and biological networks, including the human brain — a clear
argument in favour of OMST’s ability to reconstruct biologically plausible networks,
especially in combination with weighted (rather than binary) edges, which is consistent with

our optimal pipelines.

It is key to note that despite the similar name, OMST is very different in practice from simple
Minimum Spanning Tree filtering. Reducing the network to its minimum spanning tree will
enforce every individual's network to have the same number of edges, which is the minimum
number possible. In contrast, while the OMST does ensure the desirable property of network
connectedness, it determines the final number of edges in a data-driven manner by
optimising the network’s balance of efficiency and wiring cost. This approach therefore
produces plausibly sparse networks, but without imposing the same a-priori level across all

individuals (arguably a biologically implausible feature of fixed-density methods).

The good performance of OMST is arguably due to this method being data-driven based on
each individual connectome, rather than a one-size-fits-all. Indeed, although OMST is a
relatively recent method, its use has already been recommended by several studies on
multiple grounds. OMST filtering was shown to minimise topological differences between
pipelines®; it has outperformed alternative thresholding schemes for functional networks in
terms of recognition accuracy and reliability®>°%8; and it has also been recommended for
use with alternative neuroimaging modalities such as electro- and magneto-
encephalography3%%8°  suggesting that its applicability may generalise beyond rs-fMRI.
Finally, the use of OMST (as well as 20% fixed-density thresholding) was also
recommended by another recent study* that evaluated a large number of individual options
(though without combining them, and using as criterion the ICC of specific network
properties instead of our topological approach). Therefore, our results suggest a
convergence of recommendations for brain network construction across different criteria and
different studies — possibly heralding the emergence of consistent analytic practices in the

field. This convergence may in part be helped by our choice to use the Portrait divergence,
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which enabled us to take into account both local and global aspects of network organisation
across scales®: by considering the network’s topology as a whole, our results are inherently
more general than results based on any specific graph-theoretical metric.

Limitations and future directions

In this study, we endeavoured to systematically sample and combine many of the most
common options across each step in the process of constructing a functional brain network
from rs-fMRI data — resulting in 576 unique pipelines. However, due to combinatorial
explosion, it would be unfeasible to consider every single option that has been proposed in
the literature, and this inevitable limitation should be borne in mind when interpreting our
results. In particular, although we considered some of the most widely used parcellation
schemes for defining nodes in the brain, encompassing the most common range of network
sizes used in the field, we inevitably could not include all the possible atlases in
existence?:%268182  and we chose to focus on some of the most widely adopted. More
broadly, thanks to the interpretability of dividing the brain into discrete, spatially
circumscribed regions, atlas-based methods have enjoyed enduring popularity for defining
nodes in brain networks 2%?°, which motivated the focus of the present work. However, they
also come with implicit assumptions about spatial localisation (e.g., by imposing the
constraints that parcels should be spatially contiguous and non-overlapping) and about what
should be regarded as the functional units of the brain?. Indeed, recent gradient-based
approaches provide alternative representations of the brain that are spatially extended and
continuous rather than discrete, offering a complementary perspective on the constituent

elements of the brain’s functional organisation 27:83-86,

Here, we made the pragmatic choice to consider well-established and widely used methods
for node definition that vary along some of the most relevant dimensions for network
construction. Combinatorial explosion prevented us from extending our investigation to
alternative, parcellation-free methods for node definition, such as voxelwise/vertexwise
networks with thousands of nodes®"®#’ (which sacrifice biological interpretability for maximal
spatial resolution), and methods based on PCA or (spatial or temporal) ICA that can provide
non-contiguous, spatially overlapping parcels, possibly better able to reflect the complexity of
brain organisation®-°, Simulations previously suggested that defining nodes based on ICA
may outperform the use of regions-of-interest (e.g., based on atlases)®: future work in this
direction may reveal whether some of these alternative approaches to node definition
perform consistently better — or consistently worse — across our criteria, than the atlas-based

node definitions adopted in the present work. However, based on the pattern of shared
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features among our recommended pipelines, we note that our results point towards a more
prominent role of edge definition than node definition, for determining the success of a

pipeline.

Pertaining to edge definition, many alternative thresholding methods also exist, whether
based on statistical significance®?, percolation’>?, or shrinkage methods®®°? — or avoiding
thresholding entirely, by using analytic methods that can deal with fully connected and
signed networks*. More broadly, future work may adopt more advanced methods of
guantifying connectivity: for instance, by adopting multivariate connectivity estimators®® or
methods from information decomposition capable of recovering different kinds of information
sharing between regions®-% or the directionality of connections (transfer entropy, Granger
causality, Dynamic Causal Modelling®’), or disambiguating between direct and indirect
connections (e.g. partial correlation®). Additionally, it remains to be determined how our
results will generalise to the case of time-varying (“dynamic”) networks, an increasingly
popular approach in fMRI functional connectivity®®'% and to frequency-specific networks
obtained from EEG or MEG!® (although see Jiang et al. * and Dimitriadis et al. 121 for

recent investigations of frequency bands for fMRI network construction).

It is also known that different motion correction strategies can influence the validity of BOLD
signals and subsequent network characteristics; however, no correction strategy offered
perfect motion correction?. Here, we adopted a widely used denoising strategy (anatomical
CompCor), and required our results to also replicate in a dataset denoised with FIX-ICA
instead, which unlike aCompCor is designed to affect artifacts specifically and avoid
modifying the neural signal of interest®>52, Additionally, we also considered two versions of
each dataset, preprocessed with versus without the additional step of global signal
regression, due to ongoing controversy about the effect of GSR on functional
connectivity®®1% Finally, to further mitigate the potential impact of motion on our
recommendations, we also explicitly included as one of our criteria that pipelines should not
produce a PDiv distribution that is significantly correlated with the distribution of differences
in subject motion, across any of the four test-retest datasets. We note that when GSR is
included, PDiv tends to be smaller across all datasets — possibly reflecting the elimination of
residual noise. However, our final recommendations include pipelines both with and without
GSR - although the latter is somewhat more prevalent among the very best-performing
ones. In particular, we even found that the set of optimal pipelines includes versions of the
same pipeline both with and without GSR: Brainnetome-246 for Pearson-OMST-weighted
(with GSR and no-GSR versions both featuring among the 8 optimal pipelines); and in the

expanded set, Schaefer4d54 Top20%-binary-Pearson, Lausanne-463 Top20%-binary-
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Pearson, Lausanne-463 Top20%-binary-Mutuallnfo. Therefore, our results suggest that
investigators may have some discretion in the choice of using GSR, depending on their
specific datasets and hypotheses. As an example, GSR may remove physiological and
motion-induced noise*®*°, and it may strengthen brain-behaviour associations!®, but it can
also remove signal of interest pertaining to some pharmacological and pathological
conditions®21% or distort group®® and individual differences®®. Likewise, a recent study
observed reduced generalisability of graph-theoretical properties across sites, sessions, and
paradigms when GSR was used?®®, although Tozzi et al (2020)*? delineated a more intricate
picture, whereby GSR decreases reliability for networks and most edges, but increases it for
some others. A comprehensive evaluation of the relative advantages and drawbacks of GSR
is beyond the scope of this paper, and the reader is referred to Fox & Murphy (2017)%2 and
Liu et al. (2017)1% for extensive discussions. Finally, we did not explore potential differences
between resting-state conditions (eyes-open vs eyes-closed vs naturalistic viewing)*®1°7, or
the impact of scan duration and spontaneous fluctuations in arousal state — although we did

include datasets with different scan duration, up to 1200 volumes 108,

In addition to increasing the number of options and pipelines considered, future work may
further expand on the present results in several ways: it remains to be determined to what
extent our results apply to task-based rather than resting-state fMRI 109110 The
generalizability of the proposed framework beyond healthy individuals is also worthy of
future exploration. Compared to healthy controls, some clinical populations have
demonstrated lower test-retest reliability!'112, Reliability across the lifespan should be also
considered by comparing age-groups, as early evidence untangled age-related differences
in test-retest reliability of rs-fMRI*3, The choice of the optimal pipeline for functional
connectomics may therefore vary by clinical characteristics, which still remains to be
ascertained and may benefit from topology-based approaches such as the one adopted
here. This is an important next step following the present work. It is also possible that a
different proportion of optimal pipelines would be found when alternative reconstruction

methods are included, or different neuroimaging modalities.

The time-spans that we considered here range from less than an hour to nearly a year
between scans. Certainly, in addition to measurement noise, some degree of change in the
topology of the functional connectome over the course of weeks or months is to be
expected, due to learning and plasticity. However, such physiological phenomena cannot be
expected to appreciably reorganise the entire functional connectome within the span of less
than an hour (in the absence of experimental interventions). Therefore, any test-retest PDiv

observed within the same hour is most plausibly attributable to noise, and an appropriate
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pipeline should simply minimise it, as per our test-retest criterion. Additionally, plasticity and
learning should not make the functional connectome so different that it becomes
indistinguishable from the connectomes of other individuals: rather, such an occurrence
should be minimised, as it indicates measurement noise. Our results clearly show a
convergence of these criteria: pipelines that produce small test-retest PDiv over weeks or
months are also those that minimise within-hour PDiv, and that minimise the mis-
identification of individuals. Thus, across datasets and time-spans we observed an

encouraging convergence of criteria for reliable functional connectomics.

As a final note, our approach has been to identify which pipelines produce sensible
functional connectomes, so that researchers may have a guide to orient their choice among
the “forking paths” of analytical possibilities. However, an alternative approach exists:
performing a “multiverse” analysis, adopting not one but many pipelines and then finding
suitable ways to aggregate the results — or using machine learning tools to characterise a
low-dimensional space of pipelines'4. The two approaches are not mutually exclusive, but
rather complementary: our criteria and our final recommendations could be used to prune
the number of branching options to a manageable number of optimal pipelines, and a
multiverse analysis could then be carried out in parallel across them, with the confidence

that the overall picture will not be contaminated by inappropriate choices.

Conclusion

In conclusion, our study provides a principled framework to search for the best network
construction pipelines across hundreds of candidates, with the aim of recovering brain
networks that satisfy multiple criteria for scientific accuracy and practical utility. We revealed
drastic differences across pipelines in terms of their ability to recover similar network
topologies across different scans of the same individual — even within the same hour — and
to recover the true directionality of experimental effects of interest. The existence and
prevalence of systematically misleading pipelines further enhances the importance of
identifying suitable network construction pipelines. Thus, our results indicate that
researchers should pay careful consideration to their choice of network processing pipeline:
pipelines vary widely in their ability to detect true effects while mitigating spurious ones, and
the vast majority of pipelines are not optimal. Our findings further indicate that no single step
in the network construction workflow can single-handedly guarantee that all criteria will be
met. Fortunately, however, we also show that by carefully combining different steps in the
network construction workflow, neuroscientists can obtain functional brain networks that

satisfy all our criteria, across datasets covering different time-spans and different acquisition
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and preprocessing procedures, and may be used with confidence. These recommendations
can inform future studies, to help investigators make principled choices and minimise the
chance that an inappropriate choice of network construction will lead to unreliable or false
negatives results. Overall, by enabling systematic evaluation of network processing steps in
a way that does not require the arbitrary selection of specific network properties of interest,
we hope that the topology-based, multi-criteria framework proposed here will lead towards

an objective consensus and more consistent practices in functional connectomics.

Materials and Methods

NYU Test-Retest dataset

This is an open dataset from the International Neuroimaging Data-Sharing Initiative (INDI)

(http://www.nitrc.org/projects/nyu_trt), originally described in Shehzad et al., (2009)5.

Briefly, this dataset includes 25 participants (mean age 30.7 + 8.8 years, 16 females) with no
history of psychiatric or neurological illness. The study was approved by the institutional
review boards of the New York University School of Medicine and New York University, and

participants provided written informed consent and were compensated for their participation.

For each participant, 3 resting-state scans were acquired. Scans 2 and 3 were conducted in
a single scan session, 45 min apart, which took place on average 11 months (range 5-16
months) after scan 1. Each scan was acquired using a 3T Siemens (Allegra) scanner, and
consisted of 197 contiguous EPI functional volumes (TR = 2000 ms; TE = 25 ms; flip angle =
90°; 39 axial slices; field of view (FOV) = 192 x 192 mm2; matrix = 64 x 64; acquisition voxel
size = 3 x 3 x 3 mm3). Participants were instructed to relax and remain still with their eyes
open during the scan. For spatial normalization and localization, a high-resolution T1-
weighted magnetization prepared gradient echo sequence was also obtained (MPRAGE, TR
= 2500 ms; TE = 4.35 ms; Tl = 900 ms; flip angle = 8°; 176 slices, FOV = 256 mm).

Cambridge test-retest dataset

Right-handed healthy participants (N=22, age range, 19-57 years; mean age, 35.0 years;
SD 11.2; female-to-male ratio, 9/13) were recruited via advertisements in the Cambridge
area and were paid for their participation. Cambridgeshire 2 Research Ethics Committee

approved the study (LREC 08/H0308/246) and all volunteers gave written informed consent
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before participating. Exclusion criteria included National Adult Reading Test (NART) <70,
Mini Mental State Examination (MMSE) <23, left- handedness, history of drug/alcohol abuse,
history of psychiatric or neurological disorders, contraindications for MRI scanning,
medication that may affect cognitive performance or prescribed for depression, and any
physical handicap that could prevent the completion of testing.

The study consisted of two visits (separated by 2—-4 weeks). For each visit, resting-state
fMRI was acquired for 5:20 minutes using a Siemens Trio 3T scanner (Erlangen, Germany).
Functional imaging data were acquired using an echo-planar imaging (EPI) sequence with
parameters TR 2,000 ms, TE 30 ms, Flip Angle 78, FOV 192 x 192mm2, in-plane resolution
3.0 x 3.0mm, 32 slices 3.0mm thick with a gap of 0.75mm between slices. A 3D high
resolution MPRAGE structural image was also acquired, with the following parameters: TR
2,300 ms, TE 2.98 ms, Flip Angle 9°, FOV 256 x 256 mm2. Task-based data were also
collected, and have been analysed before to investigate separate experimental
questions!®17 A final set of 18 participants had usable data for both resting-state fMRI
scans and were included in the present analysis.

Human Connectome Project test-retest data

This dataset is a subset of the 1,200 Human Connectome Project (HCP) subjects®’8. It
includes resting-state functional MRI (and accompanying structural MRI) scans for 46
healthy individuals (13 male, age 22-35 years), who were each scanned twice at 3T, at
intervals ranging between 1 month and 11 months). All HCP scanning protocols were
approved by the local Institutional Review Board at Washington University in St. Louis.
Detailed information about the acquisition and imaging is provided in the dedicated HCP
publications. Briefly: anatomical (T1-weighted) images were acquired in axial orientation,
with FOV = 224 x 224 mm, voxel size 0.7 mm3 (isotropic), TR 2,400ms, TE 2.14ms, flip
angle 8°. Functional MRI data (1200 volumes) were acquired with EPI sequence, 2 mm

isotropic voxel size, TR 720ms, TE 33.1ms, flip angle 52°, 72 slices.

Cambridge propofol dataset

The Cambridge University (“Cambridge”) propofol dataset has been published before!!8-120;
we refer the reader to the original study for a detailed description!®. As previously reported,
16 healthy volunteer subjects were initially recruited for scanning. In addition to the original
16 volunteers, data were acquired for nine participants using the same procedures, bringing

the total number of participants in this dataset to 25 (11 males, 14 females; mean age 34.7
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years, SD = 9.0 years). Ethical approval for these studies was obtained from the
Cambridgeshire 2 Regional Ethics Committee, and all subjects gave informed consent to
participate in the study. Volunteers were informed of the risks of propofol administration,
such as loss of consciousness, respiratory and cardiovascular depression. They were also
informed about more minor effects of propofol such as pain on injection, sedation and
amnesia. In addition, standard information about intravenous cannulation, blood sampling

and MRI scanning was provided.

Three target plasma levels of propofol were used: no drug (Awake), 0.6 mg/ml (Mild
sedation) and 1.2 mg/ml (Moderate sedation). Scanning (rs-fMRI) was acquired at each
stage, and also at Recovery; anatomical images were also acquired. The level of sedation
was assessed verbally immediately before and after each of the scanning runs. Propofol was
administered intravenously as a “target controlled infusion” (plasma concentration mode),
using an Alaris PK infusion pump (Carefusion, Basingstoke, UK). A period of 10 min was
allowed for equilibration of plasma and effect-site propofol concentrations. Blood samples
were drawn towards the end of each titration period and before the plasma target was
altered, to assess plasma propofol levels. In total, 6 blood samples were drawn during the
study. The mean (SD) measured plasma propofol concentration was 304.8 (141.1) ng/ml
during mild sedation, 723.3 (320.5) ng/ml during moderate sedation and 275.8 (75.42) ng/ml|
during recovery. Mean (SD) total mass of propofol administered was 210.15 (33.17) mg,
equivalent to 3.0 (0.47) mg/kg. Two senior anaesthetists were present during scanning
sessions and observed the subjects throughout the study from the MRI control room and on
a video link that showed the subject in the scanner. Electrocardiography and pulse oximetry
were performed continuously, and measurements of heart rate, non-invasive blood pressure,

and oxygen saturation were recorded at regular intervals.

The acquisition procedures are described in detail in the original study!®. As previously
reported, MRI data were acquired on a Siemens Trio 3T scanner (WBIC, Cambridge). For
each level of sedation, 150 rs-fMRI volumes (5 min scanning) were acquired. Each
functional BOLD volume consisted of 32 interleaved, descending, oblique axial slices, 3 mm
thick with interslice gap of 0.75 mm and in-plane resolution of 3 mm, field of view = 192x192
mm, TR = 2000 ms, acquisition time = 2000 ms, time echo = 30 ms, and flip angle 78. T1-
weighted structural images at 1 mm isotropic resolution were also acquired in the sagittal
plane, using an MPRAGE sequence with TR = 2250 ms, Tl = 900 ms, TE = 2.99 ms and flip
angle = 9 degrees, for localization purposes. During scanning, volunteers were instructed to
close their eyes and think about nothing in particular throughout the acquisition of the resting

state BOLD data. Of the 25 healthy subjects, 15 were ultimately retained (7 males, 8
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females): 10 were excluded, either because of missing scans (n=2), or due of excessive
motion in the scanner (n=8, 5mm maximum motion threshold). Here, we only use data from

the Awake and Moderate anaesthesia resting-state scanning.

Western propofol dataset

The Western University (“Western”) propofol data have been published before!4120.121 gand
we refer the reader to the original study for a detailed description. Briefly, data were
collected between May and November 2014 at the Robarts Research Institute, Western
University, London, Ontario (Canada). The study received ethical approval from the Health
Sciences Research Ethics Board and Psychology Research Ethics Board of Western
University (Ontario, Canada). Healthy volunteers (n=19) were recruited (18—40 years; 13
males). Volunteers were right-handed, native English speakers, and had no history of
neurological disorders. In accordance with relevant ethical guidelines, each volunteer
provided written informed consent, and received monetary compensation for their time. Due
to equipment malfunction or physiological impediments to anaesthesia in the scanner, data
from n=3 participants (1 male) were excluded from analyses, leaving a total n=16 for

analysis®*.

Resting-state fMRI data were acquired at different propofol levels: no sedation (Awake),
Deep anaesthesia (corresponding to Ramsay score of 5) and also during post-anaesthetic
recovery. As previously reported!4, for each condition fMRI acquisition began after two
anaesthesiologists and one anaesthesia nurse independently assessed Ramsay level in the
scanning room. The anaesthesiologists and the anaesthesia nurse could not be blinded to
experimental condition, since part of their role involved determining the participants’ level of
anaesthesia. Note that the Ramsay score is designed for critical care patients, and therefore
participants did not receive a score during the Awake condition before propofol
administration: rather, they were required to be fully awake, alert and communicating
appropriately. To provide a further, independent evaluation of participants’ level of
responsiveness, they were asked to perform two tasks: a test of verbal memory recall, and a
computer-based auditory target-detection task. Wakefulness was also monitored using an

infrared camera placed inside the scanner.

Propofol was administered intravenously using an AS50 auto syringe infusion pump (Baxter
Healthcare, Singapore); an effect-site/plasma steering algorithm combined with the
computer-controlled infusion pump was used to achieve step-wise sedation increments,

followed by manual adjustments as required to reach the desired target concentrations of
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propofol according to the TIVA Trainer (European Society for Intravenous Aneaesthesia,
eurosiva.eu) pharmacokinetic simulation program. This software also specified the blood
concentrations of propofol, following the Marsh 3-compartment model, which were used as
targets for the pharmacokinetic model providing target-controlled infusion. After an initial
propofol target effect-site concentration of 0.6 pg mL?, concentration was gradually
increased by increments of 0.3 pg mL!, and Ramsay score was assessed after each
increment: a further increment occurred if the Ramsay score was lower than 5. The mean
estimated effect-site and plasma propofol concentrations were kept stable by the
pharmacokinetic model delivered via the TIVA Trainer infusion pump. Ramsay level 5 was
achieved when participants stopped responding to verbal commands, were unable to
engage in conversation, and were rousable only to physical stimulation. Once both
anaesthesiologists and the anaesthesia nurse all agreed that Ramsay sedation level 5 had
been reached, and participants stopped responding to both tasks, data acquisition was
initiated. The mean estimated effect-site propofol concentration was 2.48 (1.82- 3.14) yg mL-
!, and the mean estimated plasma propofol concentration was 2.68 (1.92- 3.44) pug mL™.
Mean total mass of propofol administered was 486.58 (373.30- 599.86) mg. These values of
variability are typical for the pharmacokinetics and pharmacodynamics of propofol. Oxygen
was titrated to maintain SpO2 above 96%.

At Ramsay 5 level, participants remained capable of spontaneous cardiovascular function
and ventilation. However, the sedation procedure did not take place in a hospital setting;
therefore, intubation during scanning could not be used to ensure airway security during
scanning. Consequently, although two anaesthesiologists closely monitored each
participant, scanner time was minimised to ensure return to normal breathing following deep
sedation. No state changes or movement were noted during the deep sedation scanning for
any of the participants included in the study**. Propofol was discontinued following the deep
anaesthesia scan, and participants reached level 2 of the Ramsey scale approximately

eleven minutes afterwards, as indicated by clear and rapid responses to verbal commands.

As previously reported!4, once in the scanner participants were instructed to relax with
closed eyes, without falling asleep. Resting-state functional MRI in the absence of any tasks
was acquired for 8 minutes for each participant. A further scan was also acquired during
auditory presentation of a plot-driven story through headphones (5-minute long). Participants
were instructed to listen while keeping their eyes closed. The present analysis focuses on
the resting-state data only, from the Awake and Deep scanning; the story scan data have

been published separately'?? and will not be discussed further here.
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As previously reported'*, MRI scanning was performed using a 3-Tesla Siemens Tim Trio
scanner (32-channel coil), and 256 functional volumes (echo-planar images, EPI) were
collected from each participant, with the following parameters: slices = 33, with 25% inter-
slice gap; resolution = 3mm isotropic; TR = 2000ms; TE = 30ms; flip angle = 75 degrees;
matrix size = 64x64. The order of acquisition was interleaved, bottom-up. Anatomical
scanning was also performed, acquiring a high-resolution T1- weighted volume (32-channel
coil, 1mm isotropic voxel size) with a 3D MPRAGE sequence, using the following

parameters: TA = 5min, TE = 4.25ms, 240x256 matrix size, 9 degrees flip angle!“.

Functional MRI preprocessing and denoising

Preprocessing of the functional MRI data for all datasets except HCP followed the same
standard workflow as in our previous studies®, and was implemented in the CONN toolbox

(http://www.nitrc.org/projects/conn), version 17f'2, The following steps were performed:

removal of the first 5 volumes to allow for steady-state magnetisation; functional realignment,
motion correction, and spatial normalisation to Montreal Neurological Institute (MNI-152)
standard space with 2x2x2mm isotropic resolution. Denoising followed the anatomical
CompCor (aCompCor) method of removing cardiac and motion artifacts, by regressing out of
each individual’s functional data the first 5 principal components corresponding to white
matter signhal, and the first 5 components corresponding to cerebrospinal fluid signal, as well
as six subject-specific realignment parameters (three translations and three rotations) and
their first- order temporal derivatives, and nuisance regressors identified by the artifact
detection software art'?*. The subject-specific denoised BOLD signal time-series were
linearly detrended and band-pass filtered between 0.008 and 0.09 Hz to eliminate both low-
frequency drift effects and high-frequency noise. No spatial smoothing was applied, since all
analyses were performed on parcellated data, whereby the signal was averaged across

voxels belonging to the same ROI (see below, section Node definition).

For the HCP test-retest dataset, we instead used the minimally preprocessed functional data
made available by HCP, which were further denoised with FIX-ICA®2, This popular
approach is intended to remove non-BOLD noise arising from multiple known sources,
including spatially specific noise from head motion, cardiac pulsation, breathing, and scanner
artifacts. Using different denoising methods enables us to ensure that our final results are
not specific to a particular way of denoising rs-fMRI data, thereby ensuring their robustness

and generalisability.
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A further, particularly controversial denoising step is global signal regression (GSR):
although some authors suggest that GSR may improve subsequent construction of
functional brain networks®®#!, others did not find such an effect®***” or even reported GSR as
deleterious®“2, Here, we therefore evaluated the performance of different network
construction pipelines on two versions of each dataset: with the application of GSR, and
without the application of GSR.

Node definition

When deciding on how to turn preprocessed and denoised fMRI data into a brain network,
the first decision that needs to be made is: what are the elements of the network? Different
approaches exist in the literature, from the use of each voxel as a node to maximise spatial
resolution, to the use of Independent Components Analysis and similar data-driven
techniques to obtain study- or even subject-specific clusterings of brain signals, which may
be spatially extended or even nested within each other, coalescing and splitting over time.
Although each of these approaches has unquestionable merits, perhaps the most common
approach for defining nodes in human network neuroscience is the use of parcellations: pre-
defined assignments of spatially contiguous voxels into regions-of-interest (ROIs) — typically
on the ground of neuroanatomical/cytoarchitectonic considerations, or shared function, or
some combination thereof. A wide variety of parcellations exist?!, and recent work reported
how the choice of parcellation scheme can affect aspects such as structure-function
similarity estimation'® but also the intra-subject and inter-subject variability of the functional
connectome and whole-brain resting-state modeling*>12?6, Parcellation schemes vary on two
main dimensions: the criterion based on which clusters are identified (e.g., based on
neuroanatomy, or functional considerations, or a combination thereof from multiple
modalities) and the number of ROIs — ranging from a few tens to thousands. The number of
ROIs involves a trade-off between the superior spatial resolution of finer-grained
parcellations, and the robustness and increased signal-to-noise ratio that derive from spatial

averaging of many neighboring voxels.

Here, we considered both of these dimensions: we employed parcellations spanning three
scales (approximately 100, 200 and 400 nodes) and obtained based on anatomical,
functional, or multimodal considerations, across one or multiple scales (summarised in Table
2). We consider the multi-scale anatomical Lausanne atlas with 129, 234 and 463 cortical
and subcortical nodes obtained by subdividing the sulcus-based Desikan-Killiany atlas!?’.
We also consider the functional multi-scale parcellation developed by Schaefer and
colleagues?® which combines local gradients and global similarity across task-based and

resting-state functional connectivity. Following our previous work, we included versions with
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100, 200 and 400 cortical regions, respectively supplemented with 16, 32 or 54 subcortical
regions from the recent subcortical functional atlas developed by Tian and colleagues*?.

Finally, we include three widely used single-scale parcellations: (i) the Automated
Anatomical Labelling (AAL) atlas, an anatomical parcellation with 90 cortical and subcortical
regions'®; (ii) the Brainnetome atlas, which comprises 210 cortical and 36 subcortical
regions, identified by combining anatomical, functional and meta-analytic information®*; (iii)
and the Glasser parcellation comprising 360 cortical regions identified by combining multi-
modal information about cortical architecture, function, connectivity, and topography**2. The
volumetric Glasser parcellation in MNI-152 space made available by Preti and Van de
Ville'*® was used. Since the Glasser parcellation is cortical-only, it was also supplemented
with the 54-region version of the Melbourne atlas, in order to include a comparable number

of subcortical regions, resulting in 414 ROls.

For all but the HCP dataset, we used parcellations in volumetric MNI-152 space; for each
parcellation, the average denoised BOLD timeseries across all voxels belonging to a given
ROI were extracted. For the HCP test-retest dataset, given the higher spatial resolution, we
opted to use a surface-based parcellation approach instead — thereby enabling us to verify

that our final results are not specific to a given parcellation approach.

Table 2. Atlases adopted in the present study, by scale (rows) and method (columns).

Anatomical multi- Functional multi- Single-scale

scale scale

Scale-100 Lausanne 129 Schaefer 100 + | AAL 90
Melbourne 16

Scale-200 Lausanne 234 Schaefer 200 + | Brainnetome 246
Melbourne 32

Scale-400 Lausanne 463 Schaefer 400 + | Glasser 360 +
Melbourne 54 Melbourne 54
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Functional connectivity

We considered two alternative ways of quantifying the interactions between regional BOLD
signal timeseries. First, we used Pearson correlation, whereby for each pair of nodes i and j,
their functional connectivity F;j was given by the Pearson correlation coefficient between the
timecourses of i and j, over the full scanning length. Second, we also used the mutual
information |, which quantifies the interdependence between two random variables X and Y,
and is defined as the average reduction in uncertainty about X when Y is given (or vice

versa, since this quantity is symmetric):

1(X;Y) = H(X) + H(Y) — H(X,Y) = H(X) — H(X]Y)

1)

With H(X) being the Shannon entropy of a variable X. Unlike Pearson correlation, mutual
information considers both linear and nonlinear relationships, and it does not provide
negative values. For consistency with previous work®*, the values in each individual matrix of
mutual information were divided by the maximum value in the matrix, thereby rescaling them

to lie between zero and unity.

Filtering Schemes

Both Pearson correlation and MI provide continuous values for the statistical association
between pairs of nodes, resulting in a dense matrix of functional connections. Therefore,
some form of filtering is typically employed to remove spurious connections that are likely to
be driven by noise, and obtain a sparse network of functional connectivity. However, there is
no gold standard approach to decide which connections to retain, and different filtering
schemes have emerged in the literature. Here, we considered 8 different edge filtering
schemes (Table 3), described below. The Brain Connectivity Toolbox*4> was used to
implement absolute and proportional thresholds and quantify network density, as well as the

networks’ mean clustering coefficient and characteristic path length (Fig. S33-S35).
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Table 3. Edge filtering schemes adopted in the present study.

Filtering Scheme Description
Fixed Density 5% (FD5%) Top 5% of strongest edges
Fixed Density 10% (FD10%) Top 10% of strongest edges
Fixed Density 20% (FD20%) Top 20% of strongest edges
Absolute Threshold 0.3 Edges with value > 0.3
(Abs0.3)
Absolute Threshold 0.5 Edges with value > 0.5
(Abs0.5)

Efficiency Cost Optimisation Average node degree = 3, to maximise trade-off between overall efficiency
(ECO) and wiring cost

Structural Density Matching | Proportional thresholding, with same density as the HCP group-average DTI

(SDM) data parcellated using the same atlas
Orthogonal Minimum Optimisation of global efficiency minus wiring cost, by combining independent
Spanning Trees (OMST) minimum spanning trees of the network.

Absolute thresholding

The simplest approach to decide which edges to retain is to accept or reject edges based on

a pre-determined minimum acceptable weight. However, there is no consensus in the
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literature about which threshold one should adopt. Here, we considered absolute threshold
values of 0.3 or 0.5 (for Pearson correlation, only positively-value edges were considered).

Proportional thresholding

Absolute thresholding can produce networks with very different densities, which can
introduce confounds in subsequent network analyses. Therefore, a popular approach simply
retains a fixed proportion of the strongest edges. However, there is once againh no
consensus in the literature on the correct proportion of edges to retain. We therefore
employed three different density levels, in the range commonly reported in the literature:
fixed density (FD) of 5%, 10%, and 20% of the strongest edges.

Structural Density Matching

The main problem with proportional thresholding is the selection of an appropriate target
density — especially since this may vary depending on the number of nodes in the network.
To address this issue in a principled manner, we recently introduced a method termed
Structural Density Matching (SDM)>*, whereby the proportion of functional edges to retain
corresponds to the density s of the corresponding structural connectome (the network of
anatomical connectivity obtained from the group-averaged diffusion-weighted MRI data from
the Human Connectome Project!**. In other words, SDM ensures that functional and
structural networks obtained using the same parcellation have the same density, instead of

using an arbitrary target density.

Efficiency Cost Optimisation

The Efficiency Cost Optimisation (ECO) is designed to optimise the trade-off between the
network’s overall efficiency (sum of global and average local efficiency) and its wiring cost

(number of edges)®®, by ensuring that the network maximises the following target function J:

_E +E

/ P

)

With E; and E; being the global and mean local efficiency of the network, respectively. This

filtering scheme produces sparse graphs while still preserving their structure, as
demonstrated by its empirical success at discriminating between different graph topologies®®.

Here, we obtained ECO-thresholded graphs by setting a proportional threshold such that the
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average node degree would be 3, since previous analytic and empirical results indicate that
the optimal density corresponds to enforcing an average node degree approximately equal
to 3.

Orthogonal Minimum Spanning Trees

OMST®® js another data-driven approach intended to optimise the balance between
efficiency and density of the network, while also ensuring that the network is fully connected.
Specifically, the method involves three steps: (1) identifying the minimum set of edges such
that each node can be reached from each other node — known as the minimum spanning
tree (MST); (2) identifying an alternative (orthogonal) MST, and combining it with the
previous one; (3) repeating steps (1) and (2) until the network formed by the progressive

addition of orthogonal MSTs optimises a global cost function defined as E; — Cost (with

Cost corresponding to the ratio of the total weight of the selected edges, divided by the total
strength of the original fully weighted graph). This approach produces plausibly sparse
networks without imposing an a-priori level across all subjects, and it has been shown that
the resulting networks provide higher recognition accuracy and reliability than many

alternative filtering schemes®>#°,
Binarisation

For all filtering schemes considered here, edges that were not selected were set to zero.
However, edges that were included in the network could be weighted or unweighted. In the
case of unweighted (binary) networks, we set all non-zero edges to unity. Otherwise, their

original weight was retained.

Topological distance as Portrait Divergence

To quantify the difference between network topologies, we used the recently developed
Portrait Divergence. The Portrait Divergence between two graphs G; and G; is the Jensen-
Shannon divergence between their “network portraits”, which encode the distribution of
shortest paths of the two networks*®. Specifically, the network portrait is a matrix B whose
entry By, | =0, 1, ..., d (with d being the graph diameter), k=0, 1, ..., N—1, is the number of

nodes having k nodes at shortest-path distance I.

Thus, to compute the Portrait Divergence one needs to compute the probability P(k, I) (and
similarly Q(k, 1) for the second graph) of randomly choosing two nodes at distance | and, for

one of the two nodes, to have k nodes at distance I
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N
1 1
P(k D) = P(KDP() = —By —— > KBy,
(k) = P(RIDP() Nmzcﬂgzn .
3)

where n¢ is the number of nodes in the connected component c. Then, the Portrait
Divergence distance is defined using the Jensen-Shannon divergence (an information-
theoretic notion of distance):

1 1
D(Gy,6;) = 5 KL(P|IM) + 35 KL(Q|IM)
4)
where M = (P + Q)/2 is the mixture distribution of P and Q, and KL(:||-) is the Kullback-Leibler

divergence.

The Portrait Divergence offers three key advantages that make it well suited for the present
investigation. First, it is based on network portraits, which do not change depending on how
a graph is represented. Comparing network topologies based on such “graph invariants” is
highly desirable, because it removes the potential confound of encoding format. Second, the
Portrait Divergence does not require the networks in question to have the same number of
nodes or edges, and it can be applied to both binary and weighted networks — making it
ideally suited for the applications of the present study. And finally, the Portrait Divergence is
not predicated on a single specific network property, but rather it takes into account all
scales of structure within networks, from local structure to motifs to large scale connectivity

patterns: that is, it considers the topology of the network as a whole*®.

For each subject, at each timepoint, we obtained one brain network following each of the

possible combinations of steps above (576 distinct pipelines in total).

For each pipeline, we then computed the Portrait Divergence between networks obtained
from the same subject at different points in time, and subsequently obtained a group-

average value of Portrait Divergence for each pipeline.
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