

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

1 Emerging Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

2

3 Jyothsna Suresh^{1,2}, Mark Saddler¹, Vytas Bindokas³, Anita Bhansali¹, Lorenzo Pesce¹, Janice

4 Wang¹, Jeremy Marks^{1,4}, Wim van Drongelen^{1,2,4}

5

6 ¹ Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA

7 ² Committee on Computational Neuroscience, The University of Chicago, Chicago, IL

8 60637, USA

9 ³ Department of Pharmacological and Physiological Sciences, The University of Chicago,

10 Chicago, IL 60637, USA

11 ⁴ Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA

12

13 Running Title: Synaptogenesis in Dissociated Hippocampal Cultures

14

15 Corresponding Author:

16 Wim van Drongelen, The University of Chicago, KCBD 4124, 900 E 57th Street, Chicago, IL

17 60637, Tel: (773) 834-9049, E-mail: wvandron@uchicago.edu

18

19 Author Contribution:

20 Conceived and designed the experiments: JS, JM, WvD

21 Performed the experiments: JS, VB, AB

22 Analyzed the data: JS, MS, WvD

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

23 Prepared the cultures: JW, JM

24 Wrote the paper: JS, WvD

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

25 Abstract

26 Cultures of dissociated hippocampal neurons display a stereotypical development of network
27 activity patterns within the first three weeks of maturation. During this process, network
28 connections develop and the associated spiking patterns range from increasing levels of activity
29 in the first two weeks to regular bursting activity in the third week of maturation.
30 Characterization of network structure is important to examine the mechanisms underlying the
31 emergent functional organization of neural circuits. To accomplish this, confocal microscopy
32 techniques have been used and several automated synapse quantification algorithms based on
33 (co)localization of synaptic structures have been proposed recently. However, these approaches
34 suffer from the arbitrary nature of intensity thresholding and the lack of correction for random-
35 chance colocalization. To address this problem, we developed and validated an automated
36 synapse quantification algorithm that requires minimal operator intervention. Next, we applied
37 our approach to quantify excitatory and inhibitory synaptogenesis using confocal images of
38 dissociated hippocampal neuronal cultures captured at 5, 8, 14 and 20 days *in vitro*, the time
39 period associated with the development of distinct neuronal activity patterns. As expected, we
40 found that synaptic density increased with maturation, coinciding with increasing spiking activity
41 in the network. Interestingly, the third week of the maturation exhibited a reduction in excitatory
42 synaptic density suggestive of synaptic pruning that coincided with the emergence of regular
43 bursting activity in the network.

44

45 **Keywords:** Network Maturation, Epileptiform Activity, Synaptic Detection Algorithm

46

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

47 1. Introduction

48

49 Dissociated hippocampal cell cultures display a stereotypical emergence of network activity

50 patterns during the first weeks of development, ranging from low spiking activity at 5 days *in*

51 *vitro* (DIV), increased spiking activity at 8 DIV, random bursting interspersed with spiking

52 activity at 14 DIV and highly regular and synchronous network-wide bursting activity at 20 DIV

53 that is reminiscent of an epileptic network (Wagenaar et al. 2006; Chiappalone et al. 2007;

54 Pasquale et al. 2008; Charlesworth et al. 2015). Excitatory and inhibitory synaptogenesis,

55 associated with the formation and reformation of axons, dendrites and synaptic contacts in the

56 network play an important role in the network level manifestation of activity patterns in these

57 cultures. Therefore quantification of the synaptic development may improve our understanding

58 of the observed emerging neuronal network activity. To unequivocally quantify the density of

59 synaptic connections in a neuronal network, one might apply electron microscopy (Van Huizen

60 et al. 1985; Ichikawa et al. 1993; Papa et al. 1995; De Felipe et al. 1997; Boyer et al. 1998);

61 however, quantification of synaptic density of an entire network at this extremely high-resolution

62 is laborious and time consuming. Confocal microscopy techniques offer a promising method to

63 capture and analyze high-resolution images of neuronal networks with marked synaptic

64 structures (Durand et al. 1996; Zito et al. 1999; Mironova et al. 2007; Hohensee et al. 2008). To

65 obtain quantitative information such as number of synapses from confocal images, the analysis is

66 typically based on object-based colocalization of detected pre- and post-synaptic puncta

67 structures. However, confocal images are prone to several noise components such as non-specific

68 staining, auto-fluorescence of non-target structures and photon-noise which lead to spurious

69 detections and random overlap between them when there is no real colocalization of synaptic

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

70 structures. To mitigate the effects of these noise components, most existing synapse
71 quantification strategies are predominantly manual or semi-manual (Glynn and McAllister 2006;
72 Ippolito and Erogulu 2010; Danielson and Lee 2014) requiring user-set thresholds to distinguish
73 signal from noise, which is extremely labor-intensive and introduces observer bias. Therefore
74 tremendous amount of effort has been invested recently in developing automated approaches for
75 detection of synaptic structures from confocal images. Most common automated procedures
76 implement detectors that are based on arbitrary intensity threshold settings such as the mean and
77 standard deviation of the image intensity levels (Schmitz et al. 2011; Schätzle et al. 2012; Harrill
78 et al. 2015). While threshold-based image segmentation might eliminate low intensity
79 background noise, the aforementioned noise components span wide range of intensities, resulting
80 in different estimates of synapse counts for different threshold settings, leading to ambiguous
81 results.

82 The goal of the present investigation is to quantify excitatory and inhibitory
83 synaptogenesis at different functional stages of development in dissociated hippocampal cell
84 cultures, ranging from sparsely connected networks that exhibit low levels of spiking activity to
85 densely connected mature networks that exhibit periodic bursting. To quantify synaptogenesis,
86 we evaluated and applied a novel automated, high-throughput approach, based on the spatial
87 correlation between presynaptic and postsynaptic structures. This approach does not significantly
88 depend on image intensity threshold and provides consistent estimation of noise components. We
89 validated our approach using synthetic images and then applied it to quantify excitatory and
90 inhibitory synaptogenesis during the first three weeks of maturation in dissociated hippocampal
91 cell cultures. We found that there is an increase in excitatory synaptic density during the first
92 weeks of maturation that coincided with increased spike activity at the network level. This was

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

93 followed by a reduction in excitatory synaptic density towards the third week, suggesting that a
94 synaptic pruning phase occurs as these cultures develop that coincides with regular bursting
95 activity in the network.

96

97 2. Methods

98

99 We captured confocal images of neuronal cultures made from dissociated hippocampal
100 neurons in rat embryos (E18). All experimental procedures involving animals were approved by
101 and were in compliance with the Institutional Animal Care and Use Committee (IACUC) at The
102 University of Chicago.

103

104 2.1 Cell cultures

105 Dissociated hippocampal neuronal cell cultures were prepared from embryonic day 18
106 Sprague Dawley rats as previously described (Suresh et al. 2016). Briefly, under deep ethrane
107 anesthesia of the dam, E18 fetuses were extracted from the uterus and decapitated. The
108 forebrains were removed, split sagitally in the midline and the meninges removed. Each
109 hippocampus was gently freed from the surrounding cortex, minced and subjected to trypsin
110 digestion followed by mechanical trituration to dissociate the cells. The dam was sacrificed
111 under deep anesthesia by removal of the heart. The dissociated cells were seeded on poly-D-
112 lysine coated glass cover-slips and multi-electrode arrays (MEAs) and maintained in neurobasal
113 medium containing B27 supplement and GlutaMax (all from Life Technologies), in a humidified
114 atmosphere (5% CO₂, 95% atmospheric air at 37°C). Cytosine arabinoside (AraC) was added to
115 the medium (2 μM at final concentration) at 4 days *in vitro* (DIV) to suppress the proliferation of

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

116 non-neuronal cells such as glia. Two sets of cultures were used in the experiments, seeded at a
117 density of ~850 cells/mm² and ~650 cells/mm² respectively. Cultures were maintained by
118 replacing half of the media volume with freshly made culture media, every 4-5 days. The
119 neurobasal medium contained (in mM): 51.7 NaCl, 26 NaHCO₃, 0.91 NaH₂PO₄, 0.81 MgCl₂,
120 5.33 KCl, 25 D-glucose, and 1.8 CaCl₂.

121

122 **2.2 Recording**

123 *Multichannel extracellular recording*

124 Multichannel recordings were performed with multi-electrode arrays (MEA) and a MEA
125 2100 device (Multichannel Systems, Reutlingen, Germany). The MEAs contain 60 titanium
126 nitride electrodes, laid out in a square grid: electrode diameter was 30 µm and inter- electrode
127 distance was 200 µm. Experiments were performed in a controlled environment (5% CO₂, 95%
128 atmospheric air, and temperature 36 - 37°C). Each recording was done over a 15 min time period
129 at a sample rate of 25 kHz/channel and a bandwidth of 1 Hz – 3 kHz. All recordings from the
130 MEA were performed in neurobasal medium.

131

132 *Intracellular recording*

133 Standard electrophysiological recordings were obtained from the coverslips using whole-
134 cell current-clamp technique under the visual guidance of a Axioskop 2 plus microscope (Carl
135 Zeiss, Inc., Thornwood, NY, USA), connected to a Nikon CoolSnap HQ2 camera (Nikon
136 Corporation, Tokyo, Japan) and imaged using Nikon Imaging Software (NIS Elements AR,
137 Nikon Inc., USA). Patch electrode pipettes were fabricated from filamented borosilicate glass
138 capillaries (Warner Instruments LLC, Hamden, CT, USA) using a P-97 micropipette puller

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

139 (Sutter Instrument Company, Novato, CA, USA). The electrodes were filled with pipette
140 solution containing (in mM): 140 K-gluconate, 10 HEPES, 2 MgCl₂*6H₂O, 4 Na₂ATP, 1
141 CaCl₂*6H₂O and 10 EGTA (pH 7.3-7.4) with a resistance between 3 and 5 MΩ and all
142 recordings were performed in extracellular artificial cerebrospinal fluid (ACSF) solution
143 containing (in mM): 118 NaCl, 25 NaHCO₃, 1 NaH₂PO₄, 1 MgCl₂*6H₂O, 3 KCl, 30 D-glucose,
144 and 1.5 CaCl₂. Neuronal activity was recorded using a MultiClamp 700B amplifier (Molecular
145 Devices, Sunnyvale, CA, USA), and digitized and acquired at 25 kHz using a Digidata 1440A
146 interface (Molecular Devices).

147

148 **2.3 MEA Data Analysis**

149 To quantify network activity we calculated the mean firing rate (spikes/sec) and mean
150 burst rate (bursts/min) averaged across all electrodes in the MEA. Extracellular recordings were
151 filtered off-line by a digital filter (a Butterworth filter, second order band pass 300 Hz - 1.5 kHz)
152 using Matlab software (MathWorks, Natick, MA, USA). The filtered output was used to detect
153 spikes, defined as negative deflections that exceeded five standard deviations of the filtered
154 signal. The multi-unit spike trains were saved in rasters as arrays of 0's (no spike) and 1's. To
155 detect bursts, the spike rasters were used as input to a leaky integrator with a time constant of 50
156 ms, a value close to the time constant of a hippocampal pyramidal cell (Staff et al. 2000). The
157 output, which represents the integrated spike activity was used to detect bursts (van Drongelen et
158 al. 2006; Suresh et al 2016). Burst detection threshold was set at four standard deviations of the
159 integrated spike activity amplitude to identify the individual bursts.

160

161 **2.4 Immunofluorescence**

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

162 In order to quantify synaptogenesis, cultures were fixed using 4% paraformaldehyde in
163 PBS and stained after 5, 8, 14 and 20 DIV. Excitatory and inhibitory synapses were stained in
164 separate cover-slip preparations. To identify excitatory synapses, neurons were triple stained to
165 label dendrites and excitatory pre- and post-synaptic terminals, using chicken-anti-MAP2
166 (Abcam 1.9 μ g/ml), rabbit anti-vGluT1 (Synaptic Systems, 10 μ g/ml), and mouse anti-PSD-95
167 (UC Davis/NIH NeuroMab Facility, 10 μ g/ml) respectively. To identify inhibitory synapses,
168 neurons were triple stained to label dendrites and inhibitory pre and post-synaptic terminals,
169 using chicken-anti MAP2 (Abcam 1.9 μ g/ml), rabbit anti-vGAT (Synaptic Systems 10 μ g/ml),
170 and mouse anti-gephyrin (Synaptic Systems 10 μ g /ml). Binding was detected with Alexa Fluor
171 488-labeled, highly cross-adsorbed goat anti-chicken IgY, Alexa-647-labelled highly cross-
172 adsorbed goat anti-rabbit IgG, and Alexa-594-labelled highly cross-adsorbed goat anti-mouse
173 IgG (1:500; Jackson). Cells were incubated in DAPI (300 nM for 2 min) to label nuclei, and
174 mounted in Cytoseal-60 (Thermo Scientific).

175

176 **2.5 Image capture**

177 Cover-slips were imaged with a 63 \times , 1.40 numerical aperture, oil immersion objective on a
178 laser scanning confocal microscope (Leica SP5 AOBS, in resonant scanner mode), with identical
179 illumination acquisition settings across staining conditions. We used 12-bit dynamic range and
180 highly-sensitive, linear HyD detectors for the pre- and post-synaptic puncta channels and
181 standard illumination settings were created to make use of the dynamic range for the typical
182 staining signals in this preparation. The image capture procedure is shown in Figure 1. For a
183 given age of the culture (5, 8, 14 or 20 DIV) and each synapse type (i.e., excitatory or
184 inhibitory), we fixed and stained cultures on two coverslips (Fig 1A). In each coverslip we

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

185 sampled 81 locations to capture images, each image measuring $51.2\mu\text{m} \times 51.2 \mu\text{m}$ (1024×1024 pixels) (Fig 1B). We thus captured a total of 162 images for each synapse type, for a given age 186 within a culture. Sequential line scans were used to capture four separate channels of high 187 resolution images of dendrites (Alexa 594), presynaptic puncta (Alexa 647), post synaptic puncta 188 (Alexa 488) and nuclei (DAPI), using laser lines at 405 nm, 488 nm, 561 nm, and 633 nm, 189 respectively. Figure 1C depicts a representative merged image (1024×1024 pixels) formed by 190 superimposing the aforementioned four channels. Figures 1D and 1E depict zoomed-in sample 191 images (200×200 pixels) capturing excitatory and inhibitory synapses respectively along with 192 the dendrites.

194 Digital emission filter windows were tuned to non-overlapping bands covering dye emission 195 peaks. Raw multi-channel images were acquired in a Leica Image File (LIF) format, containing 196 12-bit grayscale data. Uniform grid capture was controlled by a template created in Matrix 197 software (Leica), enabling autofocus and z-stack capture at each sample location. Since the 198 dissociated hippocampal cell cultures used in the study are essentially two dimensional where the 199 neuropil is $<1\mu\text{m}$ high in these cultures, we collected 3 z-stacks, with a $0.33\mu\text{m}$ z-step size to 200 cover that entire range. Thus, each image-stack contained images of three planes: one plane 201 with the neuropil in focus, one focal plane above the neuropil and one focal plane below the 202 neuropil.

203

204 ***2.6 Preprocessing and automated synapse detection***

205 We performed an initial inspection prior to image analysis to discard images that were of 206 poor quality where the signal was indistinguishable from background. We used a criterion of 207 $\text{SNR} < 0.5$, as poor quality images. To remove distortion arising from the microscope's point

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

208 spread function and to improve signal-to-noise ratio, images were pre-processed using Huygens
209 deconvolution software (Huygens v.4.5.1, SVI, Hilversum, The Netherlands) using maximum-
210 likelihood estimation and signal to-noise ratio of 5. Subsequent image analysis involved
211 automated synapse quantification of series of images, implemented in batch-processing mode.
212 This was performed on a Windows 7 computer using a customized script written in ImageJ
213 (<https://imagej.nih.gov/ij/index.html>).

214 Synapse identification was applied to the maximum intensity projections from the three
215 z-planes, as our cell cultures are essentially a 2D monolayer of cells (neuropil thickness < 1 μ m).
216 We identified a synapse as colocalized pre- and post-synaptic puncta with their centroids lying
217 within a distance of 250 nm, located on dendrites. This colocalization distance criteria of 250 nm
218 was based on reports from super-resolution microscopy studies using rodent cortical cell cultures
219 (Dani et al. 2010), that all relevant synaptic protein labeling can fit within a 250 nm radius from
220 the midpoint of a synapse. Furthermore, electron microscopy studies have also shown that the
221 dimensions of the pre- and post-synaptic puncta terminals are ~ 200 nm-wide in diameter and
222 separated by a ~50 nm-wide synaptic cleft (Ribrault et al. 2011). The detection of synapses was
223 performed in a three-step procedure described in the following.

224 Step 1 involved the identification of putative pre- and post-synaptic puncta and dendrites
225 from the raw images (Fig 2A). For the puncta channels (Fig 2A1-A2), we first applied a rolling-
226 ball background subtraction to correct for unevenness in background illumination. We used a
227 rolling-ball radius of 4 pixels, which would produce a protected zone of 9-pixel-wide diameter
228 (450 nm) as sampled. We then used a 3 \times 3 median filter, to remove point noise within the image.
229 To enable detection of low intensity signals while removing the low intensity noise component,
230 we employed a threshold at 45% of total intensity distribution which was below the mean

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

231 intensity value commonly used (Schmitz et al. 2011; Schätzle et al. 2012; Harrill et al. 2015). We
232 then captured the pixel locations of all intensity-maxima exceeding this threshold, and expanded
233 each location by 2 pixels in all directions, creating 5-pixel wide (250 nm) puncta objects (Fig
234 2B1-2). Since we used local intensity-maxima to detect putative synapses, the threshold value of
235 45% of total intensity distribution proved best for our samples as it dropped several background
236 local maxima thereby providing better signal to noise ratios. Next, we segmented the dendritic
237 image by thresholding at mean pixel intensity to detect the dendrites (Fig 2B3), and dilated the
238 dendritic mask by 2 pixels to capture all the colocalized pre- and post-synaptic puncta lying on
239 and in close proximity to the dendrites.

240 Step 2 was to estimate the total number of colocalized pre- and post-synaptic puncta on
241 the dendrites. To accomplish this, we performed a binary AND operation between the three
242 binary masks generated for the dendritic, pre- and post-synaptic puncta channels (Fig 2B1-3) and
243 counted the number (Fig 2E).

244 In step 3, we estimated the detection noise caused by random chance (or false positive)
245 puncta-colocalizations on the dendrites. We repeated the AND operation of step2 after disrupting
246 the spatial correlation between the pre- and postsynaptic puncta objects. This was achieved with
247 two independent methods: (a) randomizing locations of the pre- and post-synaptic puncta within
248 the respective images (Fig 2C1-2); (b) shifting the original pre- and post-synaptic masks relative
249 to each other, i.e. spatial cross-correlation (Fig 2D1-2). To establish the reliability of our noise
250 estimation procedure, the agreement between these noise estimates was assessed (see Fig 8).

251 Finally, we computed the difference between the total number of detected colocalizations (in step
252 2, Fig 2E) and the noise estimate (Fig 2F) to get a noise-corrected estimate of the puncta-
253 colocalizations (Fig 2G). Figure 3 depicts exemplary raw images (1024 × 1024 pixels) capturing

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

254 the dendrites and the excitatory and inhibitory synapses as well as the corresponding binary
255 masks.

256

257 ***2.7 Validation of the synapse quantification algorithm using synthetic images***

258 To evaluate the performance of our algorithm, we used it to detect signal and noise
259 components in simulated binary images of dendrites, pre- and post-synaptic puncta channels (Fig
260 4). To mimic a situation of our experimental data, we created images 1024×1024 pixels in size,
261 with 800 colocalized puncta on the dendrites (representing real synapses i.e. the signal) and
262 added pre- and post-synaptic noise components. The objects in each puncta channel were
263 depicted as 250 nm-wide circles (Fig 4A-B) and the dendrites were depicted as 5-pixel-wide
264 lines (Fig 4C). The puncta objects representing real synapses (Fig 4D), were spatially correlated
265 along the dendrites and were separated by a distance less than 250 nm. We created a series of
266 images containing the original signal with different noise levels. This was done by adding
267 different amounts of 250 nm wide circular objects, at spatially random locations in the simulated
268 pre- and post-synaptic images. Using this procedure we obtained simulated image series with
269 known signal and noise components, i.e. in contrast to the measured data, we had access to the
270 gold standard. We then applied our algorithm to establish its performance using the known
271 signal-to-noise ratio.

272

273 ***2.8 Statistical analysis***

274 We quantified both excitatory and inhibitory synaptic densities across four developmental
275 stages: 5, 8, 14, 20 days *in vitro* (DIV), in two independent series of cell cultures seeded at a
276 density of ~ 850 cells/mm 2 and ~ 650 cells/mm 2 respectively. We analyzed a total of 2212

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

277 confocal images captured across all time points across both series of cultures (5 DIV, n=599; 8
278 DIV, n=548; 14 DIV, n=540; 20 DIV, n=525). The synaptic densities were calculated as the
279 number of colocalized pre- and post-synaptic puncta per $100 \mu\text{m}^2$ dendritic area, after correcting
280 for random chance colocalizations. We used the Data Analysis tool pack in Microsoft Excel
281 2013 (Microsoft, Redmond, Washington, USA), Matlab (MathWorks, Natick, MA, USA) and R
282 (RDC Team, 2012) to compute basic statistics. Within each culture series, we used the
283 nonparametric Wilcoxon rank-sum test to compare differences in excitatory synaptic densities
284 across the developmental stages (5 vs 8, 8 vs 14 and 14 vs 20 DIV). The level of significance
285 was determined at $p<0.05$ after corrections for multiple comparisons were applied using the
286 Bonferroni method.

287 We analyzed the MEA cultures data using R (RDC Team, 2012). The longitudinal time
288 dependent evolution of the neuronal activity over the DIV values was modeled using a mixed
289 model for a nested design (electrodes within cultures) using the package lme4. Models of
290 progressive complexity were tested using the package ANOVA test until adding terms produced
291 no significant improvement in the model. We started with two random factors (electrodes nested
292 within cultures) and a mean value and ended with a cubic fit (the cubic fit was adopted because
293 the plots showed a clear increase in slope before decreasing again, which requires a third order
294 term to be modeled). We kept only slope as a random factor in the fit because the biology of the
295 models requires a zero intercept and adding higher order terms makes the model too flexible and
296 hard to fit and interpret. Significance was set at 0.01 to account for testing of multiple quantities
297 (4). To confirm the results, a nested bootstrap approach (random sampling of cultures with
298 replacement, followed by random sampling of electrodes with replacement within those cultures
299 – the electrodes were selected once for all the DIV values to preserve the longitudinal sampling

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

300 of the experiment). Bootstrap results are reported as 99% confidence intervals (also to account
301 for multiple comparisons).

302

303

304 **3. Results**

305 In this section we first present the typical network activity patterns that spontaneously
306 emerge during the first three weeks of culture maturation. Next we quantify synaptogenesis
307 during this period and validate our novel synapse detection algorithm. We especially determine
308 robustness of our detection procedure with respect to the presence of noise and detector threshold
309 selection.

310

311 ***3.1 Activity Patterns during Network Growth***

312 Typical samples of the activity patterns recorded from dissociated cell cultures grown on
313 MEAs, during the first three weeks of development are depicted in Figure 5. Although culturing
314 the cells in neurobasal medium and in the absence of glia renders them relatively spine-free
315 (Lesuisse and Martin 2002; Meberg and Miller 2003), our electrophysiological recordings have
316 revealed vigorous activity associated with synaptogenesis (Fig 5). The extracellularly recorded
317 spike activity (Fig 5A) is initially low or absent (5 DIV) and develops into low to moderate
318 levels of spiking around the end of the first week of maturation (8 DIV). Towards the end of the
319 second week (14 DIV), the network activity is dominated by irregular population bursts
320 interspersed with spiking activity. This pattern of burst activity finally transitions into an
321 extremely regular bursting pattern with very few or no extra-burst spikes (20 DIV). We
322 quantified this activity in terms of mean spiking and bursting rates (Table 1) and found that there

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

323 was measurable spiking and bursting activity by 8DIV which increased significantly by 14 DIV,
324 followed by a reduction towards 20 DIV. The corresponding intracellular measurements confirm
325 the activity patterns observed in the MEA (Fig 5B). The bottom traces in Figure 5B show the
326 details of the measurement marked by the horizontal lines in the top traces of this panel. The
327 sample of the initial state at 5 DIV is associated with subthreshold fluctuations. Action potentials
328 are observed a few days later (8 DIV) and they start to cluster into occasional bursts at 14 DIV.
329 Interestingly, the regular bursting we observe at 20 DIV is clearly associated with paroxysmal
330 depolarization shifts (PDSs), a cellular hallmark of epileptiform activity (Fig 5B). The structural
331 development as observed in the confocal images is depicted in Figure 5C. Although individual
332 synaptic structures are not included in these images, the growth of the neurites involved in
333 network maturation can be observed. At 5 DIV, the areas covered by the neurites of the
334 individual neurons hardly overlap, while the density of the neurites clearly increases with time in
335 the images at 8, 14, and 20 DIV. These observed functional and structural developments during
336 the first three weeks of maturation motivated us to quantify synaptogenesis in during this epoch.

337

338 *3.2 Quantification of Synaptogenesis*

339 Because we developed a novel algorithm to automate quantification of synaptic
340 structures, we started with evaluating its performance on simulated images. Next, we used the
341 approach to quantify synaptic structures from confocal images of hippocampal cultures captured
342 at 5, 8, 14 and 20 DIV.

343 *Simulated Images*

344 We produced simulated images with known signal-to-noise ratios (SNR) (Methods, Fig 4)
345 to determine the performance of our synapse detection algorithm under realistic, noisy

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

346 conditions. Figure 6 depicts the relationship between the real number of synapses, noise levels
347 and their estimates. We found that our detector reports a consistent estimate of number of
348 puncta-colocalizations (green solid line, Fig 6) for SNR values between 1.5 and 6, which is the
349 relevant range for our measured data set. Thus, in this range, the sensitivity of our detector is
350 rather stable, i.e. 90-92% (the ratio between the detected and true synaptic structures shown by
351 the green lines in Fig 6). In contrast, the error in the synaptic density estimation without noise
352 correction, due to false positive detections (Type I error), increases significantly (10-40%) with
353 decreasing SNR values in this range (purple line in Fig 6).

354 *Hippocampal Cultures*

355 Using the confocal images, we quantified excitatory and inhibitory synaptogenesis in two series
356 of cultures that were plated at different cell densities: 650 cells/mm² and 850 cells/mm² (Fig 7A).
357 In both series, we found that excitatory synaptic density initially increased and reached a peak
358 around 8-14 DIV and then decreased towards 20 DIV (Fig 7B-C). Since there was no clear
359 indication of neuron apoptosis (Fig 7A) during the later developmental stages, this observation of
360 overshoot followed by a reduction in excitatory synaptic density is suggestive of synaptic
361 pruning. On the other hand, density of inhibitory synapses showed an increasing trend as the
362 cultures matured. Interestingly, the culture that was plated at sparser cell density showed onset
363 of synaptic pruning at a later stage in the development as compared to the culture plated at a
364 higher cell density (Fig 7B-C).

365 *Estimation of Detector Noise*

366 In contrast to the simulated images, signal and noise levels arising from random
367 colocalization are unknown in the experimental data. To compensate for this lack of knowledge
368 (in part), we estimated and compared the noise levels in the detector output with two independent

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

369 methods: randomizing the locations of the binary puncta-objects in the masks, and spatially
370 shifting the original masks, i.e. spatial cross-correlation analysis. We found that these
371 independent estimates were in agreement. A representative example of our noise estimates is
372 shown in Figure 8. Figure 8A depicts the results obtained from a series of image samples in a
373 single coverslip, demonstrating that the detector behaved consistently across the samples in a
374 single coverslip. Figure 8B plots the spatial cross-correlation function that asymptotes to the
375 estimated noise level for one of the samples. Noise estimates obtained with both methods were
376 similar, a typical result for image#81, estimating a noise level of 25.4 synapses/100 μm^2
377 dendritic area, is shown in Figure 8 (dashed line).

378

379 ***Robustness of the Detector***

380 One important component of an automated quantification of synaptogenesis is the
381 procedure to set the detection threshold for potential synaptic elements. Usually, detector output
382 critically depends on the threshold level. The salient aspect of our novel synapse quantification
383 algorithm is that irrespective of the threshold set on fluorescence intensity of the pre- and post-
384 synaptic puncta channels, the final synaptic density calculated is rather consistent. This property
385 is demonstrated in Figure 9, where each of the four sub-plots depicts synaptic densities computed
386 from representative images captured at 5, 8, 14 and 20 DIV. In each plot, the detected dendritic
387 synaptic density (corrected for random chance puncta colocalization) is plotted versus the
388 threshold settings used on the pre- and post-synaptic puncta channels. It can be seen that the
389 estimate of synaptic density is similar for intensity thresholds up to 65-70% of the overall
390 intensity distribution. Unsurprisingly, for higher threshold settings, we observed a drop in the
391 detected synaptic density due to failure of detection of low intensity signal.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

392

393

394 4. Discussion

395 In this work, we applied and evaluated a novel method for automated detection and
396 quantification of synapses in confocal images of neuronal networks and applied it to quantify
397 excitatory and inhibitory synaptogenesis in dissociated hippocampal cell cultures. Using both
398 simulated and experimental data sets, we established that the automated procedure provided
399 consistent estimates of synaptic density, and that these estimates were rather independent of
400 noise contamination of the images and detector threshold selection (Figs 6, 8 and 9). In the
401 experimental data, we found that excitatory synaptic density increased and reached a peak
402 around 8-14 DIV, and then declined towards 20 DIV, which might be suggestive of synaptic
403 pruning (Fig 7B,C). On the other hand, we found that the density of inhibitory synapses
404 increased as the culture matured. Our observations of excitatory and inhibitory synaptic
405 development could be simulated with a simplified activity-dependent network growth model (Fig
406 11).

407 Our motivation behind this study was to correlate the emergence of structure and
408 function in developing neuronal networks in vitro. Figs 5A and 7B depict the emergence of
409 functional activity and structural connectivity respectively at specific developmental stages of
410 hippocampal cell cultures (seeded at a density of 650 cells/mm²). Based on these observations,
411 we can speculate how synaptogenesis in these cultures might shape network activity during
412 maturation. It can be seen that by the beginning of the second developmental week in vitro
413 (8DIV), the initially isolated neurons develop axons and dendrites to form random network
414 connections via synapses as reflected by the gradual increase in excitatory and inhibitory

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

415 synaptic densities. This is manifested at the functional level in the form of initially low spiking
416 activity (5 DIV) which then develops into measurable levels of spiking and bursting around the
417 end of the first week of maturation (8 DIV). By the end of second week in vitro (14 DIV),
418 although there is a continued increase in inhibitory synaptic density, there is a significantly large
419 increase in excitatory synaptic density. This could lead to a massive excitatory drive to a large
420 number of target neurons that might not be sufficiently contained by the inhibitory connections.
421 This is manifested at the network activity level in the form of high levels of bursting and spiking
422 activity (Table 1). Towards 20 DIV, however, there is a reduction in excitatory synaptic density
423 along with a parallel increase in inhibitory synaptic density that coincides with a reduction in
424 mean spike and burst rates (Table 1) at the network level. The spontaneous activity at this stage
425 is characterized by regular alternating periods of bursting and quiescence (Fig 5A).

426 Although many groups have investigated synaptogenesis in *in vitro* cell cultures, a
427 direct comparison of our results with theirs is difficult because of different experimental
428 procedures (Catherine Croft Swanwick 2006 confirms inhibitory synaptogenesis). For example,
429 we used glia-free and serum-free cultures maintained in neurobasal media with B27 supplement,
430 which render them relatively spine-free (Lesuisse and Martin 2002; Meberg and Miller 2003).
431 Other groups have used neuron-glia cultures maintained in serum-based medium, which develop
432 dendritic spines [Van Huizen et al. 1985; Ichikawa et al. 1993; Schätzle et al. 2012; Harrill et al.
433 2015]. Furthermore, there are differences in seeded cell densities. In addition, different
434 techniques, i.e. electron microscopy and confocal microscopy were applied to assess
435 synaptogenesis. In spite of the differences in culture preparation and measurement technique, our
436 data suggesting synaptic pruning is in agreement with the electron microscopy results reported
437 by Van Huizen et al. (1985) and Ichikawa et al. (1993). Interestingly, both these studies used

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

438 similar cell density as ours (~900 cells/mm²). In contrast, the confocal microscopy results from
439 Schätzle et al. (2012) and Harrill et al. (2015) did not find clear evidence of a pruning phase but
440 rather an increase in densities during the first three weeks of maturation. Schatzle et al. used
441 neuronal cultures in the presence of glia, while Harill et al. used a glia-free culture just as we did.
442 However, as compared to our cell densities (650 cells/mm² and 850 cells/mm²), both these
443 studies employed a much lower cell density: 40 cells/mm² and 315 cells/mm² respectively. In
444 conclusion, the applied culture density is the common difference between the studies that report
445 pruning and those that do not. These findings are not necessarily contradictory since our
446 experimental and modeling results demonstrate that the timing of the pruning phase in the
447 synaptic development critically depends on the network's cell density (Fig 7). We find that a low
448 cell density is associated with a delayed pruning phase. Thus in the studies that employed low
449 cell densities, e.g. Schätzle et al. (2012) and Harrill et al. (2015), the pruning phase could have
450 occurred outside the window over which the culture was observed. We would also like to point
451 out that we only observed and reported the synaptic densities at four discrete time points within a
452 3-week developmental period. Therefore, any significant changes in development of synaptic
453 densities that could have occurred in between these time points were not captured in this study.

454 One problem of using confocal studies to quantify synaptogenesis is the fact that the
455 staining procedures are not 100% specific for the target synaptic structures. For the synapse
456 detection this results in spurious staining, leading to a significant noise component in the images.
457 At the data acquisition level, uncertainty caused by this noise component can be reduced by
458 staining both pre- and post-synaptic terminals, and by using colocalization of these structures as
459 the synapse detection criterion. However, since both the pre- and post-synaptic terminal staining
460 include spurious results, their combination will still create noise in the form of random chance

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

461 colocalizations. Another problem with the identification of synaptic structures in the images is
462 the presence of auto-fluorescence of non-target structures and therefore some degree of false
463 detection associated with the intensity threshold of the detector. Different authors have
464 developed strategies to estimate the noise components arising from random chance
465 colocalization (Van Steensel et al. 1996; Lachmanovich et al. 2003; Costes et al. 2004).
466 Similarly, several authors have attempted to circumvent the detection of non-target synaptic
467 structures by using manual inspection of the images (Glynn and McAllister 2006; Ippolito and
468 Eroglu 2010) or automated detection procedures that use an arbitrary intensity threshold value
469 based on the mean and standard deviation of the image intensity level (Schätzle et al. 2012;
470 Harrill et al. 2015). As with any detection process, the level of an arbitrary intensity threshold is
471 a trade-off between missing identification of real structures (Type II error), and erroneous
472 detection of noise components (Type I error). The goal of our automated synapse quantification
473 approach was to mitigate, as much as possible, the problems created by the noise components
474 and threshold effects (Figs 6, 8 and 9). We accomplished this by obtaining reliable estimates for
475 the noise component in our images (Fig 8), resulting in a highly sensitive detector (90-92%) over
476 a large range of SNRs (Fig 6). This reliable noise estimate made threshold selection a less critical
477 property (Fig 9), which enabled us to employ a lower intensity threshold value (i.e. below the
478 mean intensity) as compared with the mean pixel intensity that is commonly employed in
479 existing detection procedures (Schmitz et al. 2011; Schätzle et al. 2012; Harrill et al. 2015). Our
480 approach to synapse quantification is to use the spatial correlation of pre- and post-synaptic
481 puncta along a neuronal surface i.e., dendrites in our case. Our current method of performing the
482 AND operation on both the puncta and the surface masks would equally apply for other staining

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

483 strategies in other types of cultures. For example, our approach could be extended to analyze
484 images where the masks capture dendritic spines as well.

485 One finding of particular interest is the presence of a pruning phase during the
486 development of the network (Fig 7). Albeit at a different timescale, several human studies
487 (Huttenlocher 1979; Huttenlocher 1986) as well as other primate studies (Bourgeois and Rakic
488 1993; Wolff et al. 1995; Mimura et al. 2003), have also shown evidence for initial
489 overproduction followed by pruning of neurites and synaptic structures. This similarity between
490 the experimental data and reported clinical findings, as well as simulation studies, indicates that
491 the dissociated cortical culture may be a useful model to study the rules underpinning
492 synaptogenesis. Therefore, these *in vitro* models may ultimately help to understand synaptic
493 mechanisms governing the development of the connectivity in neuronal networks.

494

495 **Grants**

496 This work was supported by National Institute of Neurological Disorders and Stroke Grants R01-
497 NS-095368 and R01-NS-084142.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

498 References

499

500 **Bourgeois JP, Rakic P.** Changes of synaptic density in the primary visual cortex of the macaque
501 monkey from fetal to adult stage. *J Neurosci* 13:2801-20, 1993.

502

503 **Boyer C, Schikorski T, Stevens CF.** Comparison of hippocampal dendritic spines in culture and
504 in brain. *J Neurosci* 18:5294-300, 1998.

505

506 **Charlesworth P, Cotterill E, Morton A, Grant SG, Eglen SJ.** Quantitative differences in
507 developmental profiles of spontaneous activity in cortical and hippocampal cultures. *Neural Dev*
508 10:1, 2015.

509

510 **Chiappalone M, Vato A, Berdondini L, Koudelka-Hep M, Martinoia S.** Network dynamics
511 and synchronous activity in cultured cortical neurons. *Int J Neural Syst* 17:87-103, 2007.

512

513 **Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S.** Automatic and
514 quantitative measurement of protein-protein colocalization in live cells. *Biophys. J* 86:3993-
515 4003, 2004.

516

517 **Dani A, Huang B, Bergan J, Dulac C, Zhuang X.** Superresolution imaging of chemical
518 synapses in the brain. *Neuron* 68:843-56, 2010.

519

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

520 **Danielson E, Lee SH.** SynPAnal: software for rapid quantification of the density and intensity of
521 protein puncta from fluorescence microscopy images of neurons. *PLoS One* 9:e115298, 2014.

522

523 **De Felipe J, Marco P, Fairen A, Jones EG.** Inhibitory synaptogenesis in mouse somatosensory
524 cortex. *Cereb Cortex* 7:619-34, 1997.

525

526 **Durand GM, Kovalchuk Y, Konnerth A.** Long-term potentiation and functional synapse
527 induction in developing hippocampus. *Nature* 381:71, 1996.

528

529 **Glynn MW, McAllister AK.** Immunocytochemistry and quantification of protein colocalization
530 in cultured neurons. *Nat Protoc* 1:1287-96, 2006.

531

532 **Harrill JA, Chen H, Streifel KM, Yang D, Mundy WR, Lein PJ.** Ontogeny of biochemical,
533 morphological and functional parameters of synaptogenesis in primary cultures of rat
534 hippocampal and cortical neurons. *Mol Brain* 8:1, 2015.

535

536 **Hohensee S, Bleiss W, Duch C.** Correlative electron and confocal microscopy assessment of
537 synapse localization in the central nervous system of an insect. *Journal of neuroscience methods*.
538 *J Neurosci Methods* 168:64-70, 2008.

539

540 **Huttenlocher PR.** Synaptic density in human frontal cortex—developmental changes and
541 effects of aging. *Brain Res* 163:195-205, 1979.

542

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

543 **Huttenlocher PR, De Courten C.** The development of synapses in striate cortex of man. *Hum*
544 *Neurobiol* 6:1-9, 1986.

545

546 **Ichikawa M, Muramoto K, Kobayashi K, Kawahara M, Kuroda Y.** Formation and
547 maturation of synapses in primary cultures of rat cerebral cortical cells: an electron microscopic
548 study. *Neurosci Res* 16:95-103, 1993.

549

550 **Ippolito DM, Eroglu C.** Quantifying synapses: an immunocytochemistry-based assay to
551 quantify synapse number. *J Vis Exp* 16:e2270, 2010.

552

553 **Lachmanovich E, Shvartsman DE, Malka Y, Botvin C, Henis YI, Weiss AM.** Co-localization
554 analysis of complex formation among membrane proteins by computerized fluorescence
555 microscopy: application to immunofluorescence co-patching studies. *J Microsc* 212:122-31,
556 2003.

557

558 **Lesuisse C, Martin LJ.** Long-term culture of mouse cortical neurons as a model for neuronal
559 development, aging, and death. *J Neurobiol* 51:9-23, 2002.

560

561 **Meberg PJ, Miller MW.** Culturing hippocampal and cortical neurons. *Methods Cell Biol*
562 71:111-27, 2003.

563

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

564 **Mironova EV, Evstratova AA, Antonov SM.** A fluorescence vital assay for the recognition and
565 quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on
566 neurons in culture. *J Neurosci Methods* 163:1-8, 2007.

567

568 **Papa M, Bundman MC, Greenberger V, Segal M.** Morphological analysis of dendritic spine
569 development in primary cultures of hippocampal neurons. *J Neurosci* 15:1-1, 1995.

570

571 **Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S.** Self-organization and
572 neuronal avalanches in networks of dissociated cortical neurons. *Neuroscience* 153:1354-69,
573 2008.

574

575 **Ribrault C, Sekimoto K, Triller A.** From the stochasticity of molecular processes to the
576 variability of synaptic transmission. *Nature Rev Neurosci* 12:375-87, 2011.

577

578 **Rolston JD, Wagenaar DA, Potter SM.** Precisely timed spatiotemporal patterns of neural
579 activity in dissociated cortical cultures. *Neuroscience* 148:294-303, 2007.

580

581 **Schätzle P, Wuttke R, Ziegler U, Sonderegger P.** Automated quantification of synapses by
582 fluorescence microscopy. *J Neurosci Methods* 204:144-9, 2012.

583

584 **Schmitz SK, Hjorth JJ, Joemai RM, Wijntjes R, Eijgenraam S, de Brujin P, Georgiou C,**
585 **de Jong AP, van Ooyen A, Verhage M, Cornelisse LN.** Automated analysis of neuronal
586 morphology, synapse number and synaptic recruitment. *J Neurosci Methods* 195:185-93, 2011.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

587

588 **Suresh J, Radojicic M, Pesce L, Bhansali A, Wang J, Tryba AK, Marks JD, van Drongelen**

589 **W.** Network Burst Activity in Hippocampal Neuronal Cultures: The Role of Synaptic and

590 Intrinsic Currents. *J Neurophysiol* 115(6):3073-89, 2016.

591

592 **Van Huizen F, Romijn HJ, Habets AM.** Synaptogenesis in rat cerebral cortex cultures is

593 affected during chronic blockade of spontaneous bioelectric activity by tetrodotoxin. *Dev Brain*

594 *Res* 19:67-80, 1985.

595

596 **van Steensel B, van Binnendijk EP, Hornsby CD, Van der Voort HT, Krozowski ZS, de**

597 **Kloet ER, van Driel R.** Partial colocalization of glucocorticoid and mineralocorticoid receptors

598 in discrete compartments in nuclei of rat hippocampus neurons. *J Cell Sci* 109:787-92, 1996.

599

600 **Wolff JR, Laskawi R, Spatz WB, Missler M.** Structural dynamics of synapses and synaptic

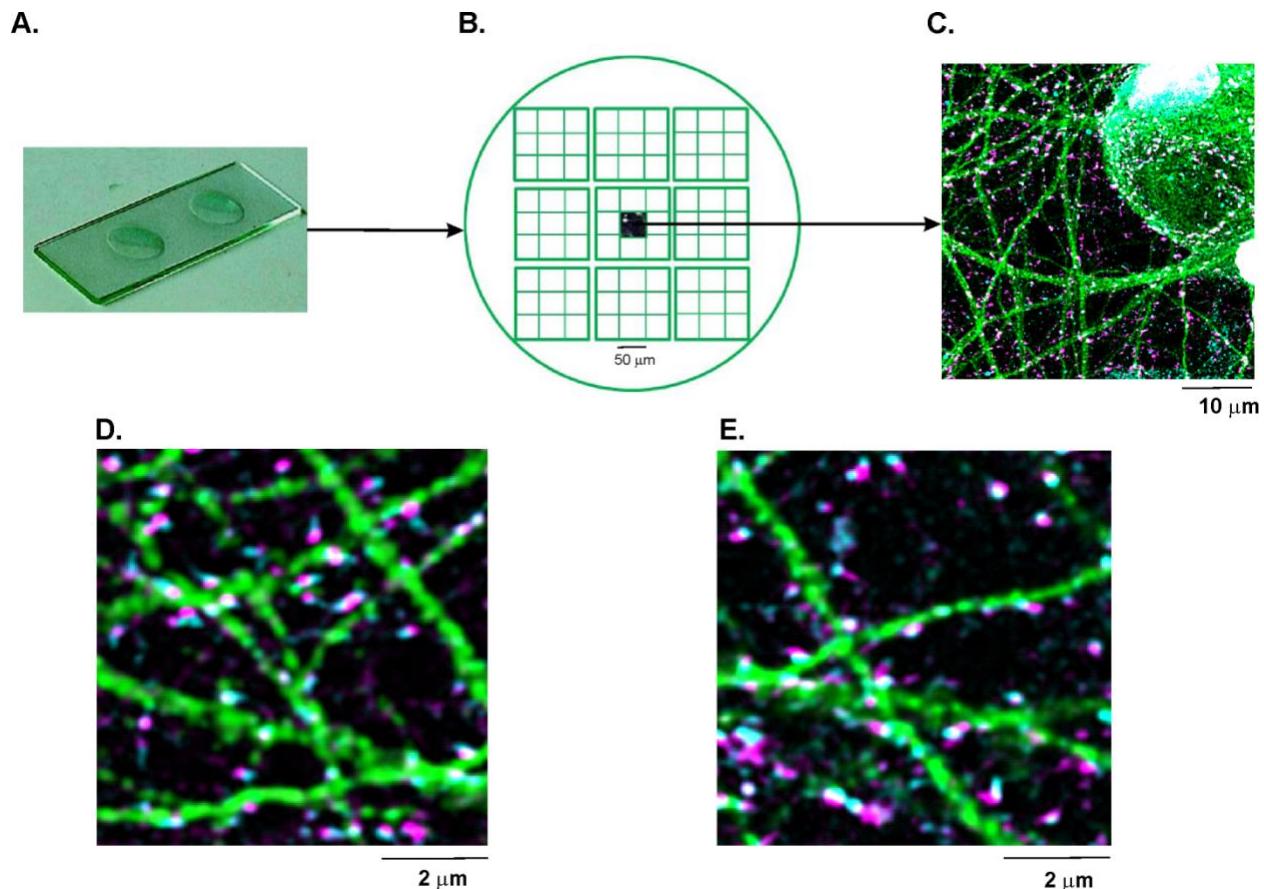
601 components. *Behav Brain Res* 66:13-20, 1995.

602

603 **Wagenaar D, Pine J, Potter S.** An extremely rich repertoire of bursting patterns during the

604 development of cortical cultures. *BMC Neurosci* 7:11, 2006.

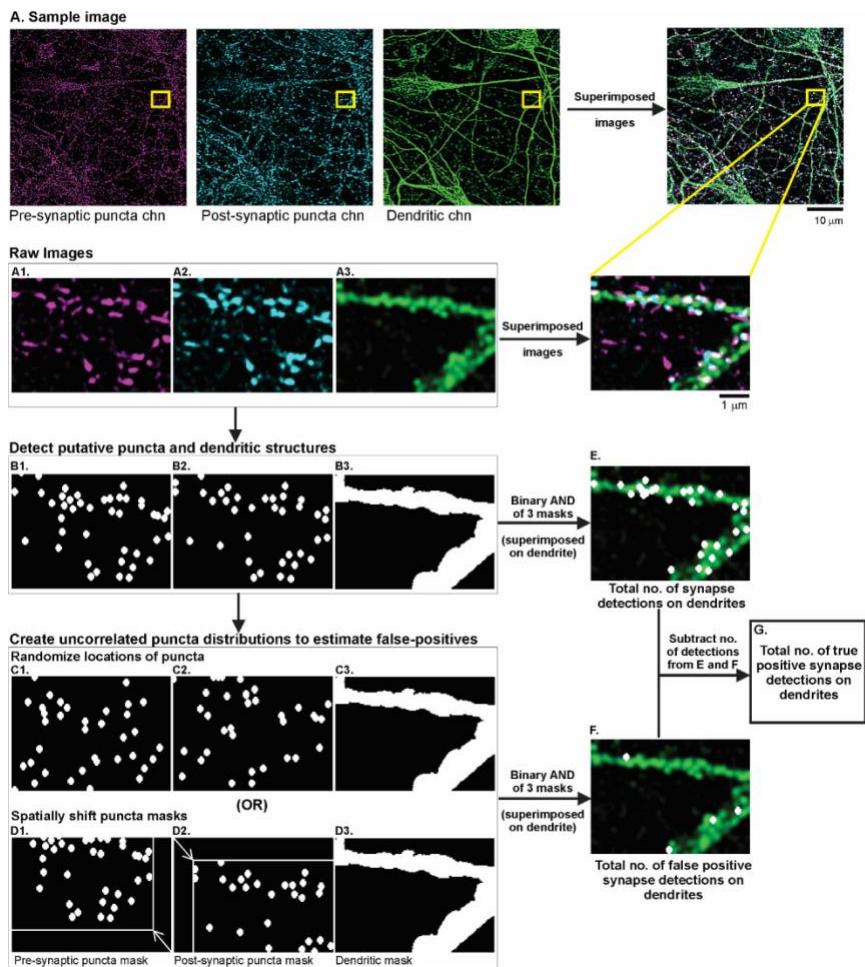
605


606 **Zito K, Parnas D, Fetter RD, Isacoff EY, Goodman CS.** Watching a synapse grow:

607 noninvasive confocal imaging of synaptic growth in Drosophila. *Neuron* 22:719-29, 1999.

608

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

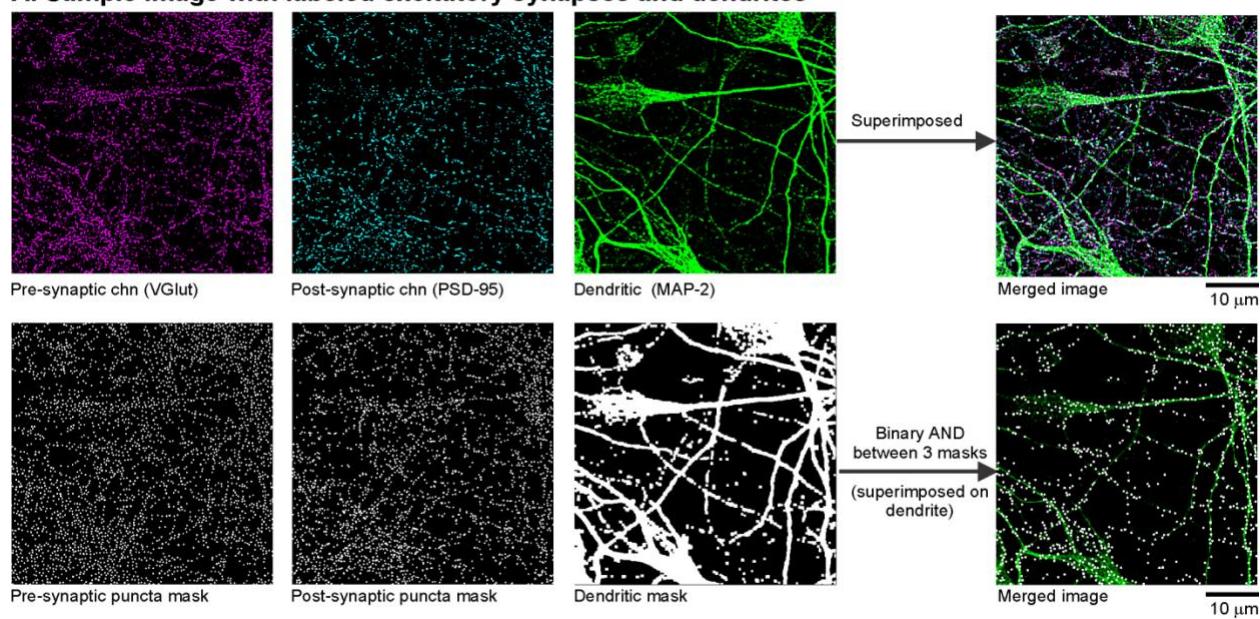

609 Figures and Legends

610

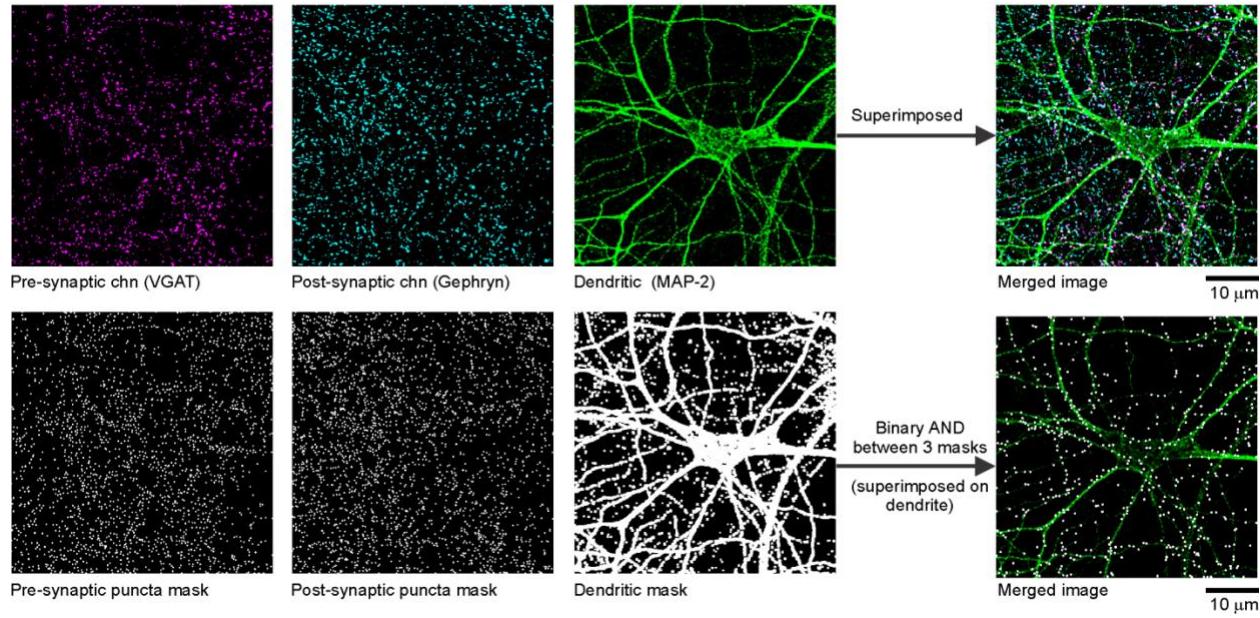
611 **Fig 1. Immunocytofluorescence and image capture.** A) Microscope slide showing two cover-
612 slips that contain fixed and stained neuronal cell cultures. B) Cartoon of a single cover-slip, from
613 which 81 multi-channel images were captured, arranged in a 9-by-9 grid. C) An example of one
614 of the 81 multi-channel images, captured from the cover-slip. This is a merged image formed by
615 superimposing four separate channels each capturing the pre-synaptic puncta (magenta), post-
616 synaptic puncta (cyan), dendrites (green) and soma (grey). A zoomed in multi-channel image
617 comprising of D) excitatory and E) inhibitory pre- and post-synaptic puncta as well as dendrites
618 labeled with VGlut1/VGAT, PSD-95/Gephryn and MAP-2 respectively.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

619


620 **Fig 2. Flowchart of the automated synapse quantification algorithm.** A) The first row
621 depicts a sample raw image (1024×1024 pixels) labeled for the pre-synaptic structures
622 (magenta), post-synaptic structures (cyan) and dendrites (green). The merged image formed by
623 superimposing these separate channels, is shown in the rightmost panel in the first row. The
624 yellow rectangle indicates the zoomed-in portion of the images used to explain the flowchart of
625 our synapse quantification procedure. A1-A3) Raw images of the pre-synaptic puncta channel,
626 post-synaptic puncta channel, dendritic channel respectively. B1-B2) Binary image of the pre-
627 and post-synaptic puncta channels respectively, generated after implementing the following
628 steps: rolling-ball background subtraction, 3×3 median filtering, thresholding at 45% of the total
629 intensity distribution, identifying single-pixel local maxima, enlarging each maxima by 2 pixels

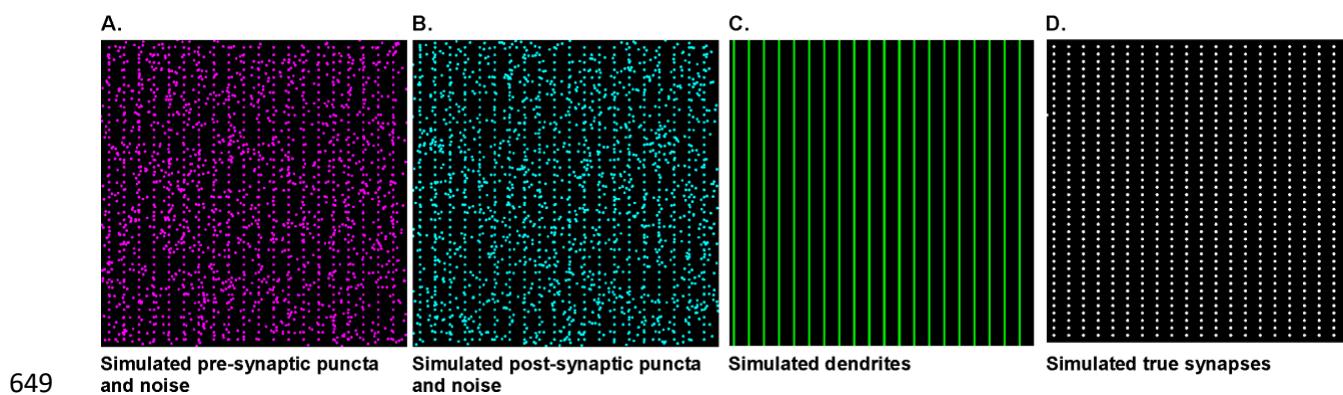
Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures


630 in all directions, creating a 250 nm wide circular binary mask. Each circular mask represents a
631 detected punctum. B3) Binary image of the dendritic channel, generated by setting a threshold at
632 the mean pixel intensity in the raw image and extending the mask by 4 pixels. To estimate the
633 noise due to random chance puncta-colocalizations on the dendrites, spatially uncorrelated
634 puncta distributions were created using one of two independent methods: randomizing puncta
635 locations in the binary masks (C1, C2) or spatially shifting the puncta masks relative to each
636 other (D1, D2). E) Performing binary AND operation of the 3 original binary masks B1,B2, B3,
637 gives an estimate of the total number of detections (colocalized puncta) on the dendrites. F)
638 Performing binary AND operation of the 3 binary masks after creating spatially uncorrelated
639 puncta distributions, gives an estimate of false positive detections on the dendrites. G)
640 Subtracting the number of false positives (computed in F) from the total number of detections
641 (computed in E) gives an estimate of the total number of putative synapses.
642

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

A. Sample image with labeled excitatory synapses and dendrites

B. Sample image with labeled inhibitory synapses and dendrites



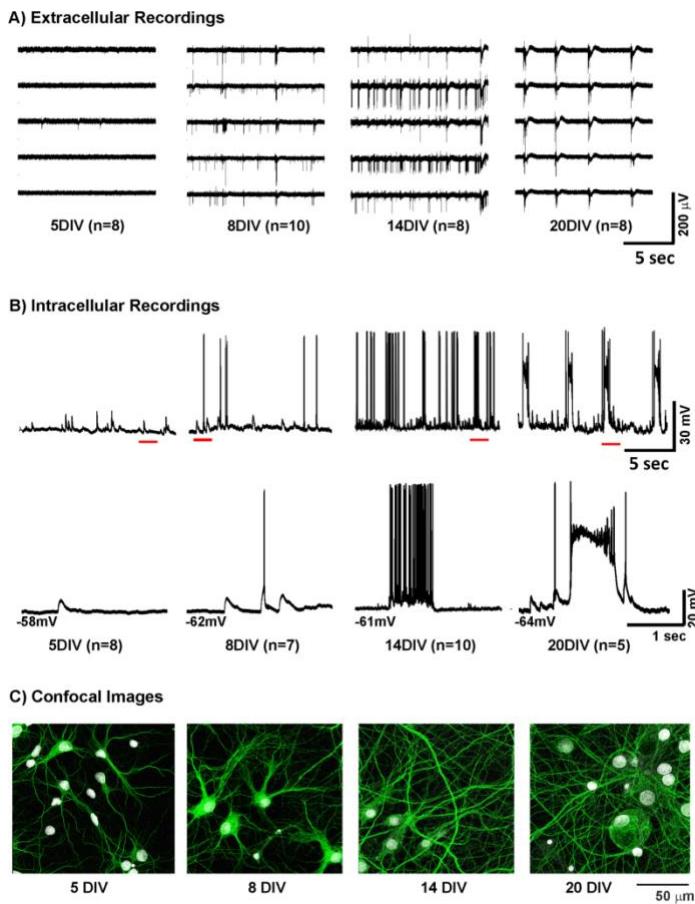
643

644 **Fig 3. Binary masks generated from raw images.** Sample raw images and the corresponding
645 binary masks generated for the channels capturing the pre-synaptic terminals (magenta), post-
646 synaptic terminals (cyan) and dendrites (green). Representative images are shown for A)
647 excitatory and B) inhibitory synapses.

648

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

649


650

651 **Fig 4. Simulated images used to validate synapse quantification algorithm.** Simulated binary
652 images of A) pre-synaptic puncta and B) post-synaptic puncta, each containing true synaptic
653 terminals and a noise component. C) Simulated image of dendrites. D) Depiction of the true
654 synapses (signal) simulated as colocalized pre- and post-synaptic puncta on the dendrites. These
655 simulated images were used to test the performance of our synaptic quantification algorithm.

656 Image dimension was the same as the experimental one, 1024×1024 pixels.

657

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

658

659

660 **Fig 5. Activity patterns during network growth**

661 A) Representative samples of network activity observed across the MEA at 5, 8, 14 and 20 DIV.

662 This culture was seeded at a density of 650 cells/mm². The extracellular data shows initial low

663 levels of activity (5 DIV), evolving into irregular spiking pattern (8 DIV). Occasional bursts are

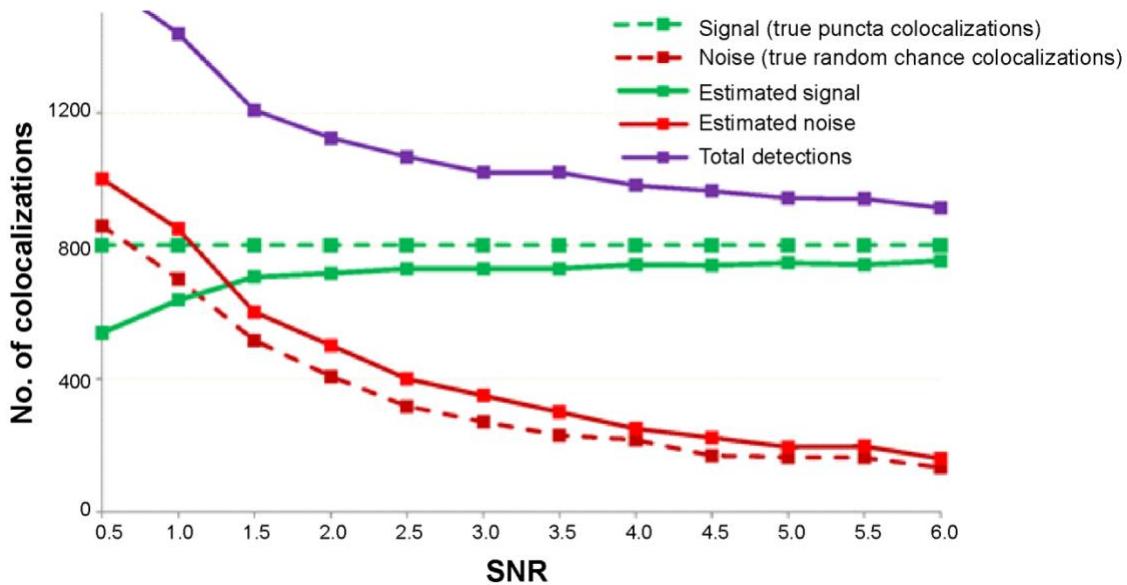
664 observed at 14 DIV, while regular bursting emerges at 20 DIV. B) Intracellular recordings across

665 the same stages of network maturation show that the initial activity at 5 DIV typically consists of

666 subthreshold fluctuations while occasional spikes are observed a few days later (8DIV).

667 Interestingly, the bursting that emerges after 14 DIV consists of typical grouped spikes.

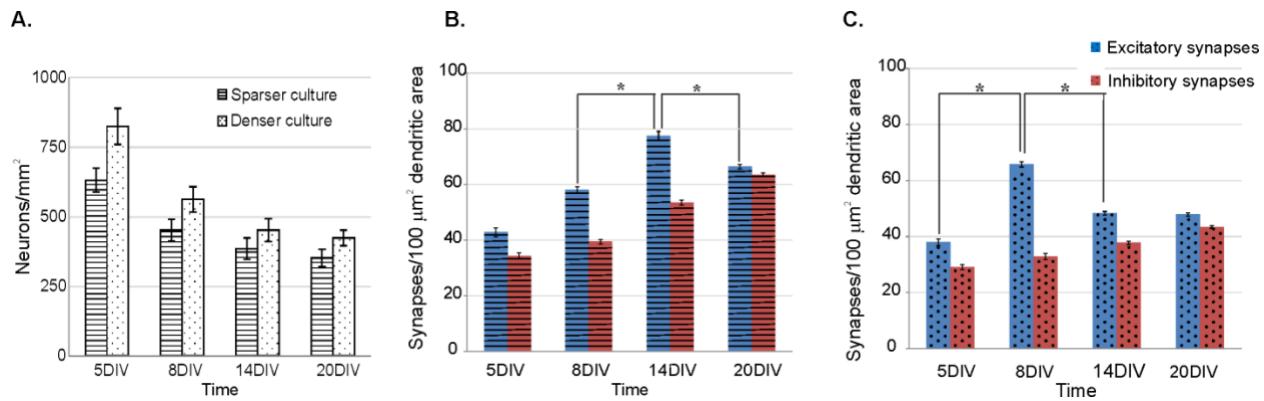
668 However, the regular bursting pattern around 20 DIV is characterized by paroxysmal


669 depolarizations, a cellular hallmark of epileptiform activity.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

670 C) Development of hippocampal networks *in vitro*. Images of dissociated hippocampal neuronal
671 cultures fixed and stained on coverslips at 5, 8, 14 and 20 DIV, at a density of 650 cells/mm².
672 Each image in this depiction is a mosaic formed by stitching 9 individual sample images (each
673 51.2µm×51.2µm), laid in a 3-by-3 grid (Fig 1). Merged images shown here comprise of
674 dendrites and cell bodies (labeled in green and grey colors respectively).

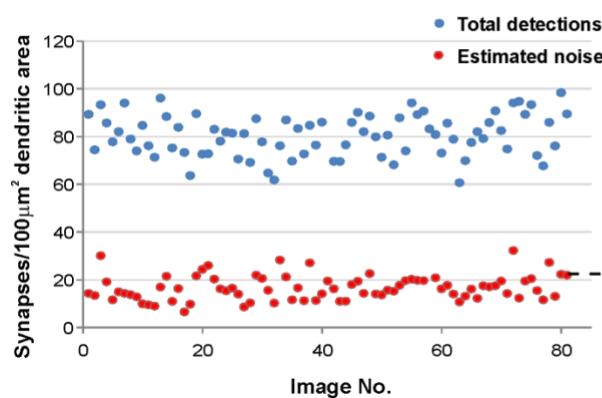
675


Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

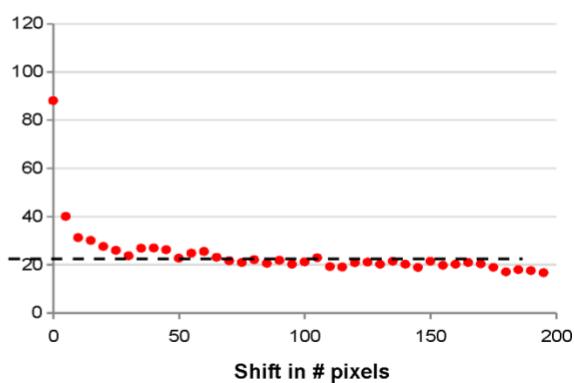
676

677 **Fig 6. Performance of synapse quantification algorithm using simulated images.** Detection
678 as a function of signal-to-noise ratio (SNR). In the simulated images, signal is the number of real
679 puncta-colocalizations (800 in this example) and noise is the number of random chance
680 colocalizations. It can be seen that with decreasing SNR (i.e. increase in noise level), both the
681 total number of detections (purple line) and noise estimate (red solid line) both increase,
682 effectively keeping the number of true positive detections (green solid line) almost constant. For
683 SNR values between 1.5 and 6, the algorithm performs with 90-92% sensitivity in estimating the
684 number of colocalizations, after which it starts to severely underestimate these numbers. The true
685 signal and noise components in the simulated images are shown by the dashed green and red
686 lines respectively.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

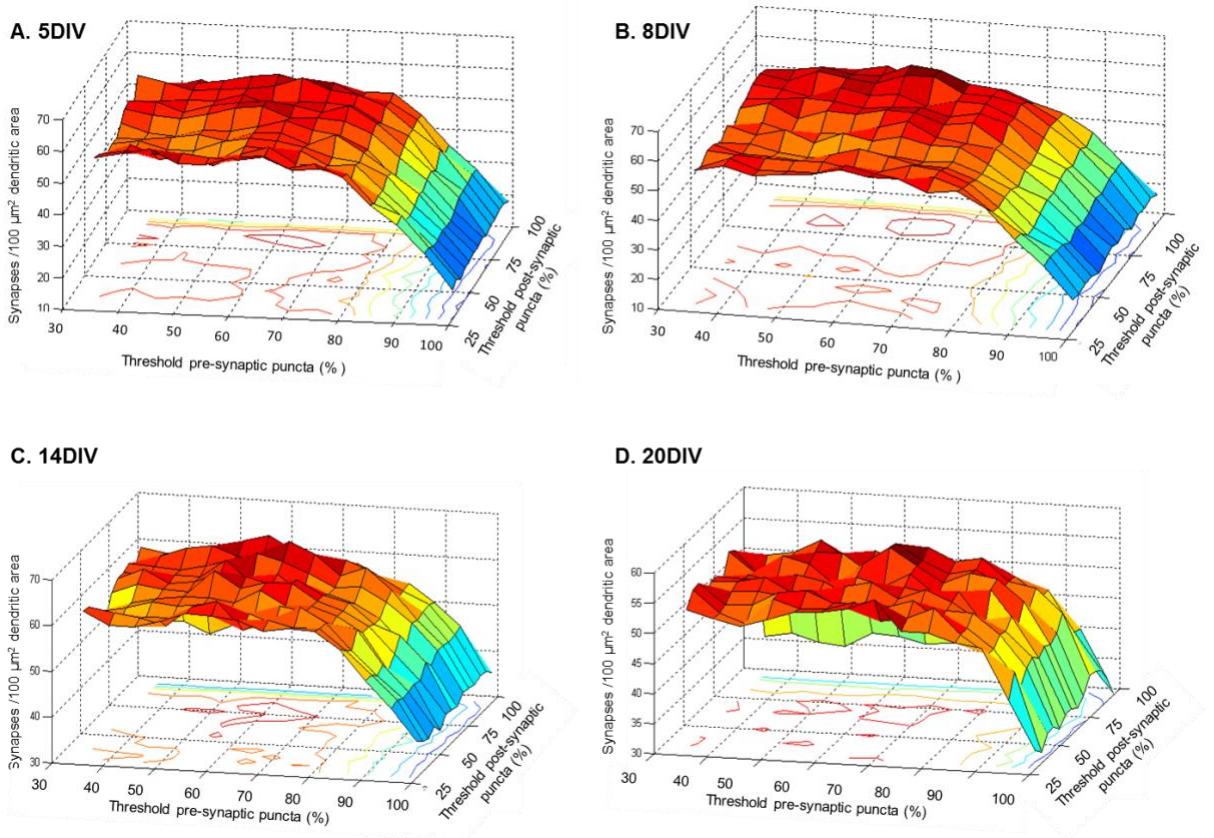

687

688 **Fig 7. Excitatory and inhibitory synaptogenesis in hippocampal networks.** (A) Comparison
689 of cell densities in two series of dissociated hippocampal cell cultures used in the study: a sparser
690 culture plated at 650 neurons/mm² and a denser one plated at 850 neurons/mm². The two panels
691 on the right show the excitatory and inhibitory synaptic densities of the sparser (B) and denser
692 (C) culture across developmental stages. Synaptic densities are presented in terms of mean \pm
693 SEM. Note that as the culture matures, excitatory synaptic density increases, exhibits a
694 maximum followed by a decrease in density. Inhibitory synaptic density on the other hand
695 exhibits an increasing trend. Furthermore, the maximum of the excitatory synaptic density is
696 observed later for the sparser culture (14 DIV) as compared to the denser one (8 DIV). Statistics
697 were computed using Wilcoxon rank-sum test.


698 * Indicates statistical significant difference below an adjusted 0.05 level after Bonferroni
699 correction.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

A. Noise estimation after randomizing puncta locations



B. Noise estimation after spatial shifting of masks

701 **Fig 8. Noise estimates obtained from randomizing or spatial shifting of binary puncta. (A)**
702 Results obtained from randomizing the locations of the binary puncta. Blue and red dots
703 represent the estimate of total number of puncta colocalizations and the estimate of noise, due to
704 random chance puncta colocalizations. Each point on the x-axis represents an individual image
705 sample collected from a single cover slip. (B) Result from the spatial cross-correlation function.
706 Red dots represent the puncta colocalizations, with values asymptoting to the noise estimate
707 (dashed line). Note that the noise estimates of both procedures, here shown for image#81, are
708 similar.

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

709

710 **Fig 9. Effect of threshold on synapse quantification.** Each panel (A- 5 DIV, B- 8 DIV, C- 14
711 DIV, D- 20 DIV) depicts the effect of threshold for the pre- and post-synaptic puncta detection
712 (horizontal axes) on the estimate of synaptic density (vertical axis). The threshold intensity
713 values are set as the percentage of overall pixel intensity distribution. Synaptic density estimates
714 were corrected for random chance puncta colocalization.

715

Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures

716	Days <i>in vitro</i>	(n)	Spike Rate (spikes/sec)	Burst Rate (bursts/min)
717				
718	5	8	0.38±0.01	0.25±0.06
719	8	10	1.65±0.07	4.13±0.06
720	14	8	4.83±1.25	23.50±0.87
721	20	8	3.93±0.12	16.25±0.78

722

723 **Table 1**

724 **Tracking network activity during development in hippocampal cell cultures**

725 The developmental stages tracked in this study are 5, 8, 14 and 20 days *in vitro* as indicated in
726 the first column. The number of experiments (n) corresponding to each developmental period is
727 indicated in the second column. The respective spike rates (spikes/sec) and the burst rates (in
728 bursts/min) are expressed as mean ± SEM.

729