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Abstract 41 

RNA viruses are diverse components of global ecosystems. The metagenomic identification 42 

of RNA viruses is currently limited to those with sequence similarity to known viruses, such 43 

that highly divergent viruses that comprise the “dark matter” of the virosphere remain 44 

challenging to detect. We developed a deep learning algorithm – LucaProt – to search for 45 

highly divergent RNA-dependent RNA polymerase (RdRP) sequences in 10,487 global meta-46 

transcriptomes. LucaProt integrates both sequence and structural information to accurately 47 

and efficiently detect RdRP sequences. With this approach we identified 180,571 RNA viral 48 

species and 180 superclades (viral phyla/classes). This is the broadest diversity of RNA 49 

viruses described to date, including many viruses undetectable using BLAST or HMM 50 

approaches. The newly identified RNA viruses were present in diverse ecological niches, 51 

including the air, hot springs and hydrothermal vents, and both virus diversity and abundance 52 

varied substantially among ecological types. We also identified the longest RNA virus 53 

genome (nido-like) observed so far, at 47,250 nucleotides, and expanded the diversity of 54 

RNA bacteriophage to more than ten phyla/classes. This study marks the beginning of a new 55 

era of virus discovery, with the potential to redefine our understanding of the global 56 

virosphere and reshape our understanding of virus evolutionary history. 57 
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Introduction  62 

RNA viruses infect a huge array of host species. Despite this ubiquity, their role as an 63 

essential component of global ecosystems has only recently been recognized thanks to 64 

systematic and large-scale virus discovery projects performed in animals1,2, plants3, fungi4, 65 

marine5, and soil environments6. A common feature of these studies is that they were based 66 

on the analysis of RNA-dependent RNA polymerase (RdRP) sequences, a canonical 67 

component of RNA viruses. Combined, they have resulted in the discovery of tens of 68 

thousands of new virus species, leading to at least a ten-fold expansion of the virosphere and 69 

the addition of five new phyla of RNA viruses, including the “Taraviricota”5. Similarly, data 70 

mining exercises that reanalyzed over 109 meta-transcriptomic contigs associated with 71 

diverse ecosystems have identified several divergent clades of RNA bacteriophage7. Despite 72 

such significant progress in filling the gaps of RNA virus diversity through ecological 73 

sampling and sequencing, our understanding of the full spectrum of the RNA virosphere is 74 

likely limited8,9. This is in part because the BLAST-based sequence similarity searching 75 

approaches used to discover new RNA virus sequences have limitations in detecting highly 76 

divergent RdRPs10, while the profile alignment (i.e., HMM) based approach misses a 77 

significant proportion of viruses due to a high false-negative rate11. To efficiently uncover the 78 

full range of RNA virus diversity, the development of novel strategies is therefore essential. 79 

Over the past decade, artificial intelligence (AI) related approaches, especially deep 80 

learning algorithms, have had a huge impact on various research fields in the life sciences, 81 

including molecular docking, compound screening and interaction, protein structure 82 

prediction and functional annotation, and the modelling of infectious diseases12-17. These 83 

advancements can be attributed to the advantages of deep learning algorithms over classic 84 

bioinformatic approaches, including greater accuracy, better performance, less feature 85 

engineering, flexible models, and self-learning capabilities18,19. Recently, deep learning 86 

approaches, such as CHEER, VirHunter, Virtifier and RNN-VirSeeker have also been 87 

developed and applied to identify viruses from genomic and metagenomic data20-23. However, 88 

many of these approaches rely on nucleotide sequence information without incorporating 89 

protein sequence or structural information, and are hence less likely to identify highly 90 

divergent RNA viruses. The transformer architecture was recently developed and applied to 91 
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sequence-based protein function predictions, outperforming the convolutional neural 92 

networks (CNN) and recurrent neural network (RNN) algorithms implemented in previous 93 

virus discovery algorithms24-26. As a consequence, transformer architecture can be used to 94 

design a better tool to uncover the hidden “dark matter” of highly divergent RNA viruses. 95 

Herein, we show how AI can be used to accurately and efficiently detect RNA viruses that are 96 

too divergent in sequence to be detected by traditional sequence similarity-based methods, in 97 

doing so revealing a hidden world of virus diversity.  98 

 99 

Results 100 

Deep learning to reveal the dark matter of the RNA virosphere 101 

We performed all-inclusive searches to reveal the entirety of RNA virus diversity present in 102 

different ecological systems sampled at global scale (Extended Data Fig. 1, Supplementary 103 

Table 1 and 2). Accordingly, a total of 10,487 meta-transcriptomes (51 Tb of sequencing data) 104 

were assembled, which resulted in more than 1,368 million contigs and 872 million predicted 105 

proteins. Based on this data set, potential viral RdRPs were revealed and cross-validated 106 

using two different strategies (Fig. 1, Extended Data Fig. 2-4). The major AI algorithm used 107 

here (i.e., “LucaProt”) is a deep learning, transformer-based model established based on 108 

sequence and structural features of 5,979 well-characterized RdRPs and 229,434 non-RdRPs. 109 

LucaProt had high accuracy (0.03% false positives) and specificity (0.20% false negatives) 110 

on the test data set (Fig. 1b, Extended Data Fig. 4). Independently to the deep-learning 111 

approach, we applied a more conventional approach (i.e., “ClstrSearch”) that clustered all 112 

proteins based on their sequence homology and then used BLAST or HMM models to 113 

identify any resemblance to viral RdRPs or non-RdRP proteins. The latter approach is 114 

distinguished from previous BLAST or HMM based approaches because it queries on protein 115 

clusters (i.e., alignments) instead of individual sequences, which greatly reduced both the 116 

false positive and negative rates of virus identification.  117 

By merging the results of the two search strategies we discovered 513,134 RNA viral 118 

contigs, representing 180,571 RNA viral species (i.e., > 90% RdRP identity), and 180 RNA 119 

viral superclades at the phylum level taxonomic rank (Fig. 1, Supplementary Table 3 and see 120 

Methods). Among these, 512,691 viral contigs (0.04% of total contigs) and 157 superclades 121 
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(87.2%) were revealed by both “LucaProt” and “ClstrSearch”, whereas 443 contigs and 23 122 

superclades were only predicted by “LucaProt”. Both strategies out-performed previous 123 

attempts at RNA virus discovery from ocean5, soil6, and more diverse ecosystems7 (Fig. 1c). 124 

Indeed, “LucaProt” was able to identify 98.2% ~ 99.9% of RdRPs discovered in these 125 

previous studies, even though none were used in either training or testing of the models 126 

(Extended Data Fig. 5). To ensure the robustness and introduce innovative findings from the 127 

AI approach, we jointly applied the two strategies and merged the results; this enabled us to 128 

identify 93,580 viral species and 59 novel superclades, and resulted in a 9-fold expansion in 129 

RNA virus diversity (Fig. 1c). This was reflected in the expansion of both existing viral 130 

superclades and the identification of new superclades unlikely to be discovered by sequence 131 

homology and HMM based approaches alone (Fig. 1d). 132 

All the RNA viral sequences discovered here were organized into clusters and 133 

superclades without the influence of the current virus classification system27,28. These 134 

superclades were then placed back onto the classification system at the phylum (such as 135 

phylum Lenarviricota in the case of the Narna-Levi superclade) or class (such as the 136 

Stelpaviricetes, Alsuviricetes, Flasuviricetes classes for the Astro-Poty, Hepe-Virga, Flavi 137 

superclades) levels (Supplementary Table 4)28. Notably, however, the virus superclades 138 

comprised much greater phylogenetic diversity than their corresponding phyla/classes. Also 139 

of note was that our data did not conform to several of the higher taxonomic ranks, such as 140 

the phyla Duplornaviricota and Negarnaviricota, which were now too broad to be regarded as 141 

single phyla. Indeed, even the Markov cluster algorithm (MCL) approach, on which the 142 

existing virus classification scheme is derived29,30, fails to re-group these expanded classes 143 

into the existing phyla5. 144 

 145 

Verification and confirmation of newly identified viral superclades 146 

That the 180 RNA viral superclades identified represented RNA-based organisms was 147 

verified by multiple lines of evidence. At the sequence level, two criteria were used to 148 

establish a viral superclade: a lack of homology to cellular proteins and the presence of key 149 

RdRP motifs (Fig. 2a). Furthermore, the majority (157/180) of the newly identified 150 

superclades shared a variable degree of sequence homology with existing RdRPs (i.e., 151 
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BLAST e-value ≤ 1E-3 and/or had HMM model score ≥ 10). The exception were 23 152 

superclades that had no detectable homology to viral RdRPs and therefore named as “AI-153 

specific” superclades (Fig. 2a, Extended Data Fig. 6, Supplementary Table 5). To justify the 154 

computational prediction, we performed simultaneous DNA and RNA extraction and 155 

sequencing to examine whether the viral superclades identified here also exist in DNA form. 156 

This analysis revealed that only RNA sequencing reads were mapped to contigs associated 157 

with viral RdRPs, whereas both RNA and DNA sequencing reads were mapped to contigs 158 

associated with DNA viruses, reverse-transcriptase (RT), and cellular organisms (Fig. 2b, 159 

Extended Data Fig. 7-9). These results were further confirmed by a more sensitive RT-PCR 160 

approach which showed that none of the sequences encoding viral RdRP were detected in the 161 

DNA extractions, suggesting that these viral superclades were bona fide RNA organisms (Fig. 162 

2c, Extended Data Fig. 7b). Finally, we performed 3D alignment analysis (newly identified 163 

viral RdRPs compared with known viral RdRPs, eukaryotic RdRPs, eukaryotic DdRPs and 164 

RT) to determine the degree of structure similarity among them (Fig. 2d). The novel viral 165 

RdRP superclades (including AI-specific ones) bore at least three signature motifs that gave 166 

them much higher structural similarity to known viral RdRPs than their cellular counterparts. 167 

 168 

Genomic structures reveal modularity and flexibility within the RNA virosphere 169 

We next analyzed the composition and structure of potential RNA virus genomes identified in 170 

this study. The length of the RdRP-encoding genomes or genome segments differed markedly 171 

within and between viral superclades, although most were centered around 2,569 nt (Fig. 3). 172 

Notably, our data set contained some extremely long RNA virus genomes identified from soil 173 

that belonged to the Nido-like superclade: the length of one of these, at 47.3 kb, exceeded 174 

Planarian secretory cell nidovirus (41.2 kb)31 as the longest RNA virus genome identified to 175 

date (Fig. 3c, Extended Data Fig. 10 Supplementary Table 6). In addition to the RdRP, we 176 

characterized the remaining proteins encoded by the newly identified virus genomes. While 177 

most of these predicted proteins had no homologs in the existing databases, we identified 178 

some that were related to structural (i.e., coat, capsid, glycoprotein and envelope proteins, 179 

amongst others) and non-structural (i.e., helicase, protease, methyltransferase, movement 180 
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protein, immune or host-related regulatory proteins, amongst others) proteins from known 181 

viruses (Fig. 3d, Extended Data Fig. 11). Importantly, the presence of these additional virus 182 

proteins in newly identified supergroups provided further evidence that these were bona fide 183 

RNA viruses. Furthermore, that the occurrence of these proteins was incongruent with the 184 

groupings of RdRPs (Fig. 3e) suggests that RNA virus genomes have a modular-like 185 

configuration, transferring proteins across taxonomic groups. This was in line with the 186 

dramatic changes in genome structure (genome length, gene organization, ORF numbers, and 187 

segmentation) observed among related viruses, such that no prototype genome structures 188 

could be defined for each group or supergroup (Fig. 3e).  189 

 190 

Expanded phylogenetic diversity of RNA viruses 191 

The enormous expansion in the RNA virosphere described here was also reflected in both the 192 

growing size of known virus groups and the addition of entirely new groups (Fig. 4). For 193 

existing supergroups, the viruses newly described here were distinguished from those 194 

identified previously such that they formed unique clusters at more ancestral positions in the 195 

phylogenetic trees (Fig. 4). Interestingly, some previously smaller sized viral groups with 196 

limited diversity – the Astro-Poty, Hypo, Yan and Cysto – expanded to become large viral 197 

groups comprising substantial genetic diversity (Fig. 4). Several newly identified supergroups 198 

were also revealed to have high levels of phylogenetic diversity, including SC022 (8,128 199 

species), SC024 (3,682 species), and SC37 (1,772 species), highlighting the limitations in 200 

previous attempts to identify highly divergent groups of RNA viruses. Following our analysis, 201 

the supergroups with the greatest number of species were the Narna-Levi (64,667 species), 202 

Picorna-Calici (23,430 species), and Tombus-Nada (16,798 species). 203 

In addition to greatly expanding virus genetic diversity, this study identified more virus 204 

groups associated with bacterial hosts than the leviviruses, cystoviruses, and the members of 205 

Partiti-Picobirna supercluster known previously7. Specifically, we identified bacterial viruses 206 

within the Narna-Levi, Hepe-Virga, and SC037 supergroups whose sequences were 207 

recognized and “recorded” by the bacterial CRISPR system. Furthermore, based on proteins 208 

associated with bacterial infection (i.e., Lysis, Prok-E2, and Prok-RING), we inferred 209 

potential bacterial RNA viruses in the Tombus-Noda, Yan, and SC022 supergroups 210 
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(Supplementary Table 7). As a consequence, those RNA viruses associated with bacteria has 211 

expanded to ten supergroups, and these numbers are likely to further increase given our 212 

limited knowledge of host associations for most of the viruses in this study. 213 

 214 

Ecological structure of the global RNA virome  215 

Our study investigated the RNA virome of 10,487 ecological samples, revealing the 216 

ubiquitous presence of RNA viruses across diverse ecological types (48 categories) and in 217 

1,837 locations globally. Despite repeated efforts to uncover the RNA virus diversity from 218 

such ecological samples5-7, a large proportion of the viruses detected here were entirely novel 219 

(Fig. 5a). Indeed, the rate of RNA virus discovery did not plateau (Fig. 5b), suggesting that 220 

the global space of RNA virus diversity remains largely under-characterized, with a 221 

particularly rapid increase in soil (Fig. 5b).  222 

We compared alpha diversity (measured by the Shannon index) and abundance levels 223 

(measured by the number of reads per million total non-rRNA reads, i.e., RPM) of the RNA 224 

virome among diverse ecological types, revealing enormous variation (Fig. 5c, 225 

Supplementary Table 8). In general, average alpha diversity was highest in leaf litter, estuary, 226 

freshwater, and wetland environments, whereas virus abundance was highest in freshwater, 227 

marine sediment, and rhizosphere systems, whose average RPMs were between 12466.9 and 228 

26617.3 (Fig. 5c). In contrast, the lowest average diversity and abundance were observed in 229 

halite and subsurface environments (Fig. 5c), which as expected as these samples were 230 

particularly low in biomass (i.e., host cells). For extreme ecological types such as hot springs 231 

and hydrothermal vents, the associated RNA viruses were characterized by low diversity but 232 

moderate abundance (1528.9 ~ 3726.9 average RPM) (Fig. 5c). It is also worth noting that 233 

the new viral superclades established in this study were mostly identified from aquatic and 234 

sediment samples, with few from vertebrate and invertebrate animal samples (Fig. 5c). 235 

Our results further revealed the prevalence and abundance levels of single viral species 236 

across different ecological types (Fig. 5d), including some that could be considered 237 

ecological generalists. For example, members of the Narna-Levi, Partiti-Picobirna and 238 

Picorna superclades as well as Superclade022 were among the prominent generalist RNA 239 

viruses and found in more than 45 ecological types (Extended Data Fig. 12). Conversely, the 240 
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majority (85.9%) of the viruses discovered here only occurred in a single ecological type. 241 

Finally, we also identified “marker’ virus species for each ecotype, which appeared at high 242 

prevalence and abundance in one ecological type but not in the others (Fig. 5d). Among these, 243 

Partiti-Picobirna sp. 4207 and Partiti-Picobirna sp. 9871 were associated with hot springs 244 

and Tombus-Noda sp. 2280 and Superclade026 sp. 2292 were associated with hydrothermal 245 

vents, suggesting their important role in these ecosystems. 246 

 247 

Discussion  248 

Our understanding of the genetic diversity of the RNA virosphere, and hence of RNA virus 249 

ecology and evolution in general, is greatly hampered by the inability to accurately identify 250 

the highly divergent “dark matter” of viruses32,33. Indeed, the conventional way to discover 251 

RNA viruses has relied heavily on the utility of sequence similarity comparisons and the 252 

completeness of sequence databases11,32. To address these issues, we developed a data-driven 253 

deep learning model (i.e., LucaProt) that overcome these shortcomings while outperforming 254 

conventional approaches in accuracy, efficiency, and, most importantly, the scope of diversity. 255 

Importantly, LucaProt not only incorporated sequence data but also structural information, 256 

which is relevant in predicting protein function (in this case of the RdRP)34. Without 257 

implementing the structural model, our model had only 41.8% and 94.9% specificity and 258 

accuracy, respectively, on the testing data set, and could only detect 44.5% of the predicted 259 

RdRP proteins. In addition, the advanced transformer architecture incorporated into our 260 

model allowed the parallel processing of larger amino acid sequences35,36, which can easily 261 

capture the relationship between residues from distant parts of sequence space, thereby 262 

outperforming the CNN and/or RNN encoders implemented in the CHEER, VirHunter, 263 

Virtifier and RNN-VirSeeker RNA virus discovery tools (Extended Data Fig. 13)20-23. 264 

Collectively, we have established an AI framework for large-scale RNA virus discovery, 265 

which can be easily extended to the accurate description of any biological dark matter.  266 

 Despite the large expansion in RNA virus diversity documented here, major gaps remain 267 

in our understanding of the ecology and evolution of the newly discovered viruses. In 268 

particular, nothing is known about the hosts of the viruses identified, including that with the 269 

longest virus genome identified to date. It is possible that the viral clades and superclades 270 
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identified here were largely associated with diverse microbial eukaryotic hosts, given that the 271 

majority of current known RNA viruses infect eukaryotes37,38 and microbial eukaryotes exist 272 

in great abundance and diversity in natural environments39,40. Nevertheless, it is also likely 273 

that a substantial proportion of the novel viruses discovered are associated with bacterial (and 274 

perhaps archaeal) hosts41-43. Indeed, based on this and previous studies7, more than ten 275 

superclades contained RNA viruses likely associated with bacteria. Importantly, the presence 276 

of RNA bacteriophages in multiple RNA viral superclades underlines the evolutionary 277 

connection between RNA viruses from bacterial and eukaryotic hosts. If viewed through the 278 

lens of virus-host co-divergence1,2,44, such a link between bacterial and eukaryotic hosts 279 

suggests that the evolutionary history of RNA viruses is at least as long, if not longer, than 280 

that of the cellular organisms.  281 

 282 

Methods 283 

Samples and data sets 284 

This study comprised the meta-transcriptomic analysis of 10,487 samples for RNA virus 285 

discovery. The majority of the samples (n = 10,437) were mined from the NCBI Sequence 286 

Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) between January 16 - 287 

August 14, 2020. We targeted samples collected from a wide range of environmental types 288 

globally (Extended Data Fig. 1), including: aquatic (such as marine, riverine and lake water), 289 

soil (such as sediment, sludge and wetland), host-related (such as biofilm, wood decay, and 290 

rhizosphere), and extreme environmental samples (such as hydrothermal vent, hypersaline 291 

lake and salt marsh), that were subject to high quality meta-transcriptomics sequencing. 292 

Furthermore, the samples included in this study were subject to high-quality short-read 293 

sequencing (i.e., utilizing Illumina sequencing platforms), had between 35.1-204.1 Gbp raw 294 

sequencing data output, and were not enriched for any specific types of microbial organisms. 295 

For highly abundant environmental types, such as “soil” and “marine”, representative 296 

samples were selected to include as many projects (i.e., independent studies), geographic 297 

locations and ecological niches as possible.  298 

In addition to data mined from the SRA database, we obtained 50 samples from 299 

Antarctica and China for RNA virus discovery and confirmation. The sample types included 300 
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marine (N = 5), freshwater (N = 12), soil (N = 19), and sediment (N = 14), of which nine 301 

sediment samples were collected at the Ross Sea station in Antarctica between January and 302 

February 2022, with the others from Zhejiang, Guangdong, Hubei, and Heilongjiang 303 

provinces, China between August and October 2022. For each of these samples, DNA and 304 

RNA were simultaneously extracted: the soil and sediment samples were extracted using the 305 

RNeasy® PowerSoil® Total RNA Kit and RNeasy® PowerSoil® DNA Elution Kit 306 

(QIAGEN, Germany), while the marine and freshwater samples were extracted using the 307 

DNeasy® PowerWater® Kit and RNeasy® PowerWater® Kit (QIAGEN, Germany). The 308 

extracted nucleic acid was then subject to library construction using NEBNext Ultra RNA 309 

Library Prep Kit and NEB Next Ultra DNA Library Prep Kit (LTD.NEB, China) for RNA and 310 

DNA samples, respectively. Paired-end (150 bp) sequencing of these libraries was performed 311 

using the Illumina NovaSeq 6000 platform (Illumina, the United States). 312 

For all 10,487 data sets generated and collected for this study, reads were assembled de 313 

novo into contigs using MEGAHIT v1.2.845 with default parameters. Potential encoded 314 

proteins were predicted from contigs using ORFfinder v0.4.3 315 

(https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/ORFfinder/linux-i64/; parameters, -g 1, -s 2).  316 

 317 

Identification of RNA viruses based on deep learning 318 

We developed a new deep learning, transformer-based model, termed “Deep Sequential and 319 

Structural Information Fusion Network for Protein Function Prediction” (i.e., LucaProt), that 320 

takes into account protein sequence composition and structure information to facilitate the 321 

accurate identification of viral RdRPs. The model included five modules: Input, Tokenizer, 322 

Encoder, Pooling, and Output (Extended Data Fig. 2e).  323 

Input Layer：Our model uses the amino acid sequence as input. 324 

Tokenizer Layer: This module consists of two components. One used a frequent 325 

substring algorithm46, which generated subwords from the input sequence, treated co-326 

occurring amino acids as a whole (namely, “words”), and resulted in a vocabulary with 327 

20,000 such “words”. The other component broke down each protein sequence into a 328 
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combination of single amino acid characters which were later used in protein structure 329 

modeling. 330 

Encoder Layer: This module processes the two types of input into sequence and 331 

structural representation matrices, respectively. In the case of subword processing, an 332 

advanced Transformer-Encoder was applied to obtain the sequence representation matrix, 333 

while for structural processing, two strategies were considered to calculate the protein 334 

structure representation matrix. The first strategy used a structural model (such as 335 

RoseTTAFold47, AlpahFold15, and ESMFold48) to predict 3D protein structure, calculated the 336 

distance between the C-atoms (Alpha-C or Beta-C) of all amino acid residues into a Contact 337 

Map matrix, and applied Graph Convolutional Network (GCN)49 to encode the Contact Map 338 

into a representation matrix. The second approach was to directly use the intermediate matrix 339 

from the structural model and employ it as the structural representation matrix. This method 340 

not only addressed the issue of the insufficient number of 3D structures observed in 341 

experiments, but also circumvented the need to perform the encoder, resulting in a cost-342 

effective approach suitable for large-scale implementation such as this study. We therefore 343 

adopted the second strategy here and used the faster ESMFold48 for structural representation. 344 

Pooling Layer: The previous module obtained the sequence and structure representation 345 

matrices. A value-level attention pooling (VLAP) approach50 was then used to transform 346 

these two matrices into two vectors.  347 

Output Layer: A concatenation operator was used to join the two vectors generated by 348 

the pooling layer. A fully connected layer and the sigmoid function (Extended Data Fig. 2e) 349 

were then used to generate the probability values between 0.0 and 1.0 as a measure of 350 

confidence, and a threshold of 0.5 was used to determine whether it represents viral RNA 351 

(Extended Data Fig. 4). 352 

Model Building: We constructed a data set with 235,413 samples for model building, 353 

which included 5,979 positive samples of known viral RdRPs (i.e., the well-curated RdRP 354 

database described above), and randomly selected 229,434 negative samples of confirmed 355 

non-virus RdRPs (as the positive sample accounts for a very small portion of the total data, 356 

we constructed the training data set using the conventional 1:40 ratio of positive to negative 357 

data). The non-virus RdRP-like sequences contained proteins from the eukaryotic RNA 358 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.18.537342doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537342
http://creativecommons.org/licenses/by-nc/4.0/


dependent RNA polymerase (Eu RdRP, N = 2,233), the eukaryotic DNA dependent RNA 359 

polymerase (Eu DdRP, N = 1,184), reverse transcriptase (RT, N = 48,490), proteins obtained 360 

from DNA viruses (N = 1,533), non-RdRP proteins obtained from RNA viruses (N = 1,574), 361 

as well as a wide array of cellular proteins from different functional categories (N = 174,420). 362 

We randomly divided the data set into training, validation, and testing sets with a ratio of 363 

8.5:1:1, which were used for model fitting, model finalization (based on the best F1-score 364 

training iteration), and performance reporting (including accuracy, precision, recall, F1-score, 365 

and Area under the ROC Curve (AUC)), respectively (Extended Data Fig. 4). 366 

LucaProt identified 792,436 putative RdRP signatures from 144,690,558 proteins. These 367 

results were first compared with the RdRPs identified based on sequence homology (see 368 

below). RdRPs that were identified only by deep learning algorithms were either incorporated 369 

into the superclades using the Diamond blastp program v0.9.25.12651 with an e-value 370 

threshold of 1E-3, or, if they remained unclassified, were subjected to clustering, merging, 371 

and manual alignment inspection as described below to form deep learning specific 372 

superclades (the case for 23 superclades). 373 

 374 

Identification of RNA viruses based on homologous clustered proteins 375 

The first approach to identify RNA viruses was based on sequence and structural similarity to 376 

previously known RdRP amino acid sequences (Extended Data Fig. 2a). A total of 871.8 377 

million amino acid sequences predicted by ORFfinder (see Samples and data sets) were 378 

compared against a well-curated RdRP database (N = 5,979) that contained only those 379 

derived from reference RNA virus genomes downloaded from the NCBI GenBank database 380 

and their close relatives from vertebrate and invertebrate hosts1,2. The comparisons were 381 

performed using the Diamond blastp program v0.9.25.12651, with the e-value threshold set at 382 

1E+5 to identify more divergent RdRP proteins (Extended Data Fig. 2a, Extended Data Fig. 383 

3a). This process resulted in 75.3 million hits which were further subjected to homology-384 

based and multi-step clustering (three iterations with 90%, 60%, and 20% amino acid identity, 385 

respectively) using CD-HIT v4.8.1 (https://github.com/weizhongli/cdhit), which resulted in 386 

3,805,584 clusters. False positives and hits to known RdRP proteins were removed by 387 

comparing against the NCBI non-redundant (nr) protein database, the NCBI RefSeq protein 388 
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database and the virus RdRP database (Extended Data Fig. 2b). The remaining unknown 389 

protein clusters were subject to viral RdRP domain search using a hidden Markov models 390 

(HMMs) built from a manually reviewed profile of known RdRP clusters using the program 391 

hmmscan v3.3.2 (e = 10, hits ≥ 1)52. Clusters that contain more than one hmmscan hit were 392 

subsequently aligned and inspected for the presence of conserved RdRP motifs. Finally, a 393 

total of 713 novel RdRP clusters were retained as a result of our rigorous screening and 394 

checking steps. 395 

To further expand the RdRP collection based on the viruses newly discovered here, we 396 

updated the RdRP protein database with the 713 novel RdRP clusters identified here and used 397 

it to detect additional RdRP sequences from the original 144.6 million amino acid sequences 398 

using the Diamond blastp and an e-value threshold of 1E-3. The newly detected RdRPs were 399 

again incorporated into the RdRP database for another round of detection. This process was 400 

repeated for ten iterations. The resulting RdRP proteins (21,747,015 in total) were subjected 401 

to the homology-based clustering, the removal of false positives, a HMMs-based search, and 402 

manual alignment inspection as described above (Extended Data Fig. 2c, Extended Data Fig. 403 

3b).  404 

Finally, the remaining clusters were merged into superclades using a hierarchical method 405 

employing the Girvan–Newman algorithm53, with the edge betweenness determined based on 406 

median e-value threshold of 1E-3 for each pair of clusters (Extended Data Fig. 2d, Extended 407 

Data Fig. 3c and 3d). Briefly, the merging of clusters used the following four steps: (i) the 408 

betweenness of all edges (median e-value between clusters) in the network was calculated; (ii) 409 

the edge(s) with the highest betweenness were removed; (iii) the betweenness of all edges 410 

affected by the removal was recalculated; (iv) steps ii and iii were repeated until no edges 411 

remained. All processes related to merging were performed using igraph package v1.3.554 412 

implemented in R. 413 

 414 

Virus verification  415 

To determine whether the newly discovered viral RdRPs belonged to RNA viruses rather than 416 

organisms with DNA genomes, we performed two experiments. First, the 50 environmental 417 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.18.537342doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537342
http://creativecommons.org/licenses/by-nc/4.0/


samples collected in this study were subject to simultaneous RNA and DNA extraction and 418 

sequencing. The reads from the DNA sequencing results were mapped against the RdRP 419 

sequences to verify that there was no DNA counterpart. Quality control of viral contigs was 420 

performed using bbduk.sh (https://sourceforge.net/projects/bbmap/), and the mapping 421 

analyses were performed by Bowtie2 v2.4.255 with the “end-to-end” setting. Similarly, from 422 

our collection of SRA data, we also searched for those studies that performed both RNA and 423 

DNA sequencing, and these data were used for mapping analyses to confirm that the viruses 424 

discovered had bona fide RNA genomes. 425 

 In addition to read mapping, RT-PCR assays were performed to confirm that the detected 426 

viral superclades were RNA organisms. Two pairs of validation primers were designed for 427 

each of the representative RdRP sequences from 17 RNA viral superclades, gene sequences 428 

from two DNA virus families (i.e., Podoviridae and Siphoviridae), and RT sequences 429 

identified in this study, with a product length of 300-550 bp. For each of the samples, both the 430 

reverse-transcribed RNA and the matching DNA underwent simultaneous PCR amplification, 431 

and the amplification products were subject to electrophoresis using a 1% agarose gel with 432 

GelRed dye, which was subsequently visualized under UV. 433 

 434 

Structural prediction and comparisons of viral RdRPs and homologous proteins 435 

Three-dimensional structures of newly identified viral RdRPs from diverse RNA viral 436 

superclades were predicted from primary sequences using AlphaFold 2 v2.315 and visualized 437 

using the PyMol software v2.5.4 (http://www.pymol.org/pymol). AlphaFold 2 prediction is a 438 

relatively reliable source of structure information as the pLDDT socre of more than 2/3 439 

residues it predicted are above 75%. The previously resolved or predicted structures of viral 440 

RdRP, eukaryotic RdRP, eukaryotic DdRP and RT proteins were compared using the Super 441 

algorithm56. Considering that the protein structures have similar molecular weights but 442 

substantial variations in their conformations, the “number of aligned atoms after refinement” 443 

option was employed to evaluate the similarity between each pair of proteins. Subsequently, 444 

networkX (https://networkx.org/) was employed to construct a three-dimensional structure 445 

diagram using the "edge-weighted spring embedded" approach, with results then mapped as a 446 

scatter plot (depicted in the Fig. 2d). Simultaneously, we visualized four viral RdRP domain 447 
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proteins using PyMol.  448 

 449 

Annotation and characterization of virus genomes 450 

Potential open reading frames (ORFs) were predicted from newly identified virus genomes 451 

based on two criteria: (i) the predicted amino acid sequences were longer than 200 amino 452 

acids in length, and (ii) they were not completely nested within larger ORFs. The annotation 453 

of non-RdRP ORFs was mainly based on comparisons of predicted proteins to hidden 454 

Markov models (HMMs) collected from the Pfam database (https://pfam-legacy.xfam.org/) 455 

using hmmscan implemented in HMMER52. For the remaining ORFs, the annotation was 456 

carried out by blastp comparisons against the nr protein database with an e-value threshold of 457 

1E-3. 458 

 459 

Analyses of virome diversity, evolution and ecology  460 

To reveal the diversity of the RNA viruses identified, we used an RdRP identity threshold of 461 

90% to define new virus species. Abundance levels were subsequently estimated for every 462 

virus species based on the number of non-rRNA reads per million (RPM) within each sample 463 

(i.e. sequencing runs) mapped to viral sequences belonging to that species. Virus alpha 464 

diversity (measured with the Shannon index) and overall abundance were subsequently 465 

estimated and compared across different geographic locations and ecological types, namely; 466 

soil, marine, freshwater, wetland, hot spring, salt marsh, and other types. “Marker virus 467 

species” that were greatly enriched in certain ecological types were also identified based on 468 

virus mapping results. The marker virus species were defined as present only in one 469 

ecological subtype with RPM ≥ 1 and coverage ≥ 20%. To reveal the diversity and 470 

evolutionary relationship of RNA viruses within a superclade, RdRP representatives of 471 

overall diversity were first selected based on homology-based clustering. These 472 

representatives were aligned using L-INS-I algorithm implemented in Mafft v7.47557. 473 

Phylogenetic analyses were performed based on the alignment using a maximum likelihood 474 

algorithm, a LG amino acid substitution model, a Subtree Pruning and Regrafting (SPR) 475 

branch swapping algorithm, and a Shimodaira–Hasegawa-like procedure implemented in the 476 
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Phyml program v3.158. 477 

 478 

Identification of CRISPR spacer hits 479 

A CRISPR-Cas spacer database was compiled from 65,703 genomes of bacteria and archaea 480 

downloaded from the GTDB database (https://gtdb.ecogenomic.org/)59 using a modified 481 

version of the CRISPR Recognition Tool (CRT)60. This database was supplemented with an 482 

additional 11.8 million precompiled CRISPR-Cas spacers obtained from the CrisprOpenDB 483 

spacer database (http://crispr.genome.ulaval.ca)61. All spacers were queried for exact matches 484 

against viral contigs using the BLASTn-short function implemented in the NCBI BLAST 485 

v2.9.0+ package62 with parameters “-evalue 1E-10, -perc_identity 95, -dust no -word_size 7”, 486 

allowing only 0-1 mismatches across the entire length of the spacer to minimize the number 487 

of false-positive hits. 488 

 489 

Data availability 490 

Raw sequence reads newly generated in this study are available at the NCBI Sequence Read 491 

Archive (SRA) database under the BioProject accession PRJNA956286 and PRJNA956287 492 

(Extended Data Table. 2). All virus sequence data produced in this study are publicly 493 

available at http://47.93.21.181/, which includes all RNA virus contigs, RdRP CDS, RdRP 494 

proteins, RdRP HMM profiles and phylogenetic tree files. Additionally, this website also 495 

includes related data sets for model building and validation, and the trained model of 496 

LucaProt. 497 

 498 

Code availability 499 

The original codes of ClstrSearch and LucaProt are stored at GitHub repository 500 

(https://github.com/alibaba/LucaProt), and the link will be available upon acceptance of the 501 

paper. Currently, the codes are provided for the review process only. Any additional 502 

information required to reanalyze the data reported in this paper is available from the lead 503 

contact upon request. 504 
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Figure and Table Legends 664 

 665 

Fig. 1. Global diverse RNA virosphere. a, RNA virus discovery pipeline. The pathway for 666 

sequence homolog-based virus discovery is highlighted in blue on the left, including the 667 

clustering, expand and merge steps. The RdRP AI modeling pathway is highlighted in orange 668 

on the right, including the modeling, clustering and merge steps. b, Number of viral 669 

superclades discovered using two methods (left), and the detection accuracy of RdRP AI 670 

modelling (right). c, Venn diagram shows the shared representative viral species between 671 

available data from Zayed et al., Neri et al., Chen et al., and this study. The bar graph shows 672 

the shared viral superclades between the four studies and the unique viral superclades 673 

identified in this study. d, Diverse clusters of RNA viruses (dark colored small circle) and 674 

RNA virus superclades (light colored large circle). The known viral clusters and superclades 675 

are denoted in dark grey and light grey, respectively. The novel viral clusters discovered in 676 

this study are denoted with dark blue and dark orange circles, while the novel viral 677 

superclades are denoted with light blue and light orange circle. The size of the circle reflects 678 

the size of the viral cluster. 679 

 680 

Fig. 2. Evaluation of authenticity of RNA viral superclades. a, Distribution of BLAST 681 

median e-value, HMM score and mean AI modeling probabilities of RNA virus superclade 682 

grouping by the sensitivity of three methods, with the primary sequence-identified conserved 683 

RdRP motif C of each superclade shown on the left. The known viral superclades show high 684 

sensitivity for all three methods and are shown in grey. The novel superclades show declining 685 

homology but the relative stable AI probability. b, The positive libraries and mean RPM (the 686 

number of mapped reads per million non-rRNA reads) of representative viral superclades, 687 

DNA viruses, RT, and cell organisms in 50 samples collected in this study. DNA libraries are 688 

shown in purple and RNA libraries in yellow, the different groups of RNA viruses and DNA 689 

organisms are shown in different colors, and red asterisks refer to those subsequently 690 

validated by RT-PCR. c, RT-PCR results of first pairs of validation primers for representative 691 

RdRP sequences from 17 RNA viral superclades, capsid sequences from two DNA viral 692 

families (Podoviridae and Siphoviridae), and RT sequences. d, Three-dimensional (3D) 693 
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structure homology analysis of representative RdRPs from 180 viral superclades with Eu 694 

DdRPs, Eu RdRPs, and RT. Each point stands for a representative structure. The distance 695 

between different points represents structure similarity and the greater the distance, the lower 696 

the structure similarity. Four RdRP domain structures of the AI-specific superclades are 697 

displayed with the A, B and C motifs highlighted. 698 

 699 

Fig 3. Genomic features of viral superclades. a, Size (the number of contigs) of all novel 700 

viral superclades compared to 21 known superclades. b, Genome length of all novel viral 701 

superclades compared to 21 known superclades. Centre lines in the box plots represent the 702 

median bounds. c, Histogram of the genome size distribution of RNA viruses from known 703 

and novel viral superclades. d, The distribution of annotated functional protein in each viral 704 

superclade. e, Genome structure of representatives from six known superclades, 17 novel 705 

superclades and eight AI-specific superclades. Grey stars represent reference virus genomes 706 

of known superclades. Domains not commonly found in RNA viruses are shown in yellow 707 

and are labeled above their corresponding positions. At the bottom, scale length in 708 

nucleotides. Abbreviations: GOLGA2L5: golgin subfamily A member 2-like protein 5; 709 

Pentaxin: pentaxin family; Tme5 EGF: thrombomodulin like fifth domain, EGF-like; Mg 710 

trans NIPA: magnesium transporter NIPA; NUDIX, nucleoside diphosphate-X hydrolase; 711 

RecX: RecX family; TssO: type VI secretion system, TssO; Securin: securin sister-chromatid 712 

separation inhibitor; Rax2: cortical protein marker for cell polarity; Abhydrolase: alpha/beta-713 

hydrolase family; OmdA: bacteriocin-protection, YdeI or OmpD-Associated; Blt1 C: Get5 714 

carboxyl domain; DnaJ: DnaJ domain; Trypan PARP: procyclic acidic repetitive protein 715 

(PARP); SAM KSR: kinase suppressor RAS 1; CBD PlyG: PlyG cell wall binding domain; 716 

LydB: LydA-holin antagonist; RelB: RelB antitoxin; T2SSE: type II/IV secretion system 717 

protein; PARP regulatory: poly A polymerase regulatory subunit; Pheromone: fungal mating-718 

type pheromone; Y phosphatase2: tyrosine phosphatase family; PseudoU synth: RNA 719 

pseudouridylate synthase; Glyco hydro 35: glycosyl hydrolases family 35; TIP: tuftelin 720 

interacting protein. 721 

 722 

Fig 4. Phylogenetic diversity of 32 RNA viral superclades. Each phylogenetic tree was 723 
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estimated using a maximum likelihood method based on the conserved RdRP domain. Within 724 

each phylogenetic tree, the viruses newly identified here are shaded yellow, those reported 725 

previously are shaded green and blue. The name of each superclade is shown on the top of 726 

each phylogeny and the names of the families within each superclade are shown on right of 727 

the tree. The proteins associated with bacterial hosts are denoted with different shapes on the 728 

right side of the corresponding viral sequence. All trees are midpoint-rooted for clarity only, 729 

and the scale bar indicates 0.5 amino acid substitutions per site. 730 

 731 

Fig 5. Ecological dynamics of the global RNA virome. a, Global distribution of RNA 732 

viruses identified in this study. Species of known virus superclades are shown in gray and 733 

species from novel superclades are shown in magenta. Pie size reflects the number of viral 734 

species. b, Rarefaction curve of all RNA viral species. Inset, Rarefaction curve of RNA viral 735 

species at the ecotype level with colors indicating different ecotypes. c, Distribution of alpha 736 

diversity, RPM, novel viral species and AI-specific species at different ecological subtypes 737 

and colored by their ecotype. The ecological subtypes on the y-axis are ordered from the 738 

highest to the lowest alpha diversity for each ecotype. d, Viral distribution patterns in 739 

environmental and animal samples. The relative abundance of viruses in each library was 740 

calculated and normalized by the number of mapped reads per million no-rRNA reads (RPM). 741 

Viral species from 11 ecological subtypes are shown and divided into three groups, indicated 742 

by the colors on the heatmap.  743 

 744 

Extended Data Fig. 1 Geographic coverage of the meta-transcriptomic data analyzed in 745 

this study. a, Geographical distribution of samples at the ecotype level. Pie size is positively 746 

correlated to the number of samples. b, Total number of samples at different ecotypes. 747 

 748 

Extended Data Fig. 2. Detailed RNA virus discovery pipeline. a, Schematic diagram of 749 

homology-based discovery and RdRP AI modeling. b, Protein clustering process; only 750 

clusters with more than ten members are retained for viral cluster discovery. c, Ten iterations 751 

of RdRP expansion by recruiting newly detected RdRP in this process. d, RdRP clusters 752 

merging into RdRP superclades using BLAST median e-value. e, RdRP identification by a 753 
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new deep learning model (i.e., LucaProt), includes five modules: Input, Tokenizer, Encoder, 754 

Pooling, and Output. 755 

 756 

Extended Data Fig. 3. Benchmarking of the threshold at three processes (clustering, 757 

expand and merge). a, Number of hits using different e-values at the test stage. b, 758 

Benchmarking of hmmscan bitscore and aligned fraction using the RdRP and non-RdRP data 759 

sets (including RT, Eu DdRP and Ed RdRP derived from NCBI GenBank database). c, 760 

BLAST Median e-value within the same known RdRP cluster. d, BLAST Median e-value 761 

between pairwise comparisons of known RdRP clusters, with a 1E-3 cut-off used for cluster 762 

merging. 763 

 764 

Extended Data Fig. 4. Benchmarking of the AI RdRP modeling. a, The sigmoid function 765 

of the AI modeling. b, Statistics of the data set for AI model building, including the entire 766 

data set, training set, validation set, and testing set. c, The distribution of AI modeling 767 

probabilities of positive data sets, d, The AI distribution of AI modeling probabilities of 768 

negative data sets, including RT, Eu DdRP and Eu RdRP. 769 

 770 

Extended Data Fig. 5. Comparisons of RNA virus discovery results between three 771 

previous studies and the current study. a, The distribution of representative viral RdRPs of 772 

four studies at the superclade level and the study-specific level. b, Venn diagram shows the 773 

number of RdRP superclades found in each study and those shared between and among four 774 

studies. c, Venn diagram shows the number of representative RdRPs found in each study and 775 

those shared between and among four studies. d, Bar graph shows the number of known, 776 

novel, AI-specific and study-specific RdRPs of four studies. 777 

 778 

Extended Data Fig. 6. The distribution of AI modeling probabilities of viral RdRPs. a, 779 

Distribution of AI modeling probabilities for all RdRPs from known viral superclades (first 780 

left column) and representative RdRP superclades (right four columns). b, Distribution of AI 781 

modeling probabilities for all RdRPs from novel viral superclades (first left column) and 782 

representative RdRP superclades (right four columns) captured by BLAST, HMM and the 783 
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deep learning model. c, The distribution of AI modeling probabilities for all RdRPs from 784 

novel viral superclades (first left column) and representative RdRP superclades (right four 785 

columns) captured by both HMM and the deep learning model. d, Distribution of AI 786 

modeling probabilities for all AI-specific RdRPs (first left column) and representative RdRP 787 

superclades (right four columns) that could only be captured by the deep learning model. 788 

 789 

Extended Data Fig. 7. Expression difference of RNA viruses and DNA organisms in our 790 

newly sequenced data. a, Abundance comparisons between 58 RNA viral superclades, four 791 

DNA virus families, RT and cell organisms at DNA and RNA libraries. b, RT-PCR results of 792 

second pairs of validation primers for representative RdRP sequences from 17 RNA viral 793 

superclades, capsid sequences from two DNA virus families (Podoviridae and Siphoviridae), 794 

and RT sequences. 795 

 796 

Extended Data Fig. 8. Genome coverage of representative genome for RNA viruses and 797 

DNA organisms in our newly sequenced data. For 42 RNA viral superclades, four DNA 798 

virus families, RT, and cell organism, genomes with high abundance in RNA libraries were 799 

chosen to check reads coverage in DNA libraries.  800 

 801 

Extended Data Fig. 9. The coverage and abundance of RNA viruses and DNA organisms. 802 

The coverage of viral sequences shown as rising with rpm. 803 

 804 

Extended Data Fig. 10. Phylogenetic tree of the Nido-like superclade and the genome 805 

structure of representatives. The tree was estimated using a maximum likelihood method 806 

based on the conserved RdRP domain. The reference sequences reported previously are 807 

shaded grey, the viruses newly identified here are shaded by different colors according to 808 

different ecotypes. The names of viral families are shown on right of the tree. The tree was 809 

midpoint-rooted for clarity only, and the scale bar of tree indicates 0.2 amino acid 810 

substitutions per site. The genome structures of representative viruses are shown on right of 811 

the tree. At the bottom, scale indicates the length in nucleotides. 812 

 813 
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Extended Data Fig. 11. Association between RNA viral superclades and other non-RdRP 814 

protein clusters. Grey and pink circles denote known and novel superclades, respectively. 815 

Blue circles denote non-RdRP protein clusters. 816 

 817 

Extended Data Fig. 12. Specificity and shareability of RNA viruses. a, Number of specific 818 

viral species (“marker” species) in each ecological subtype. b, Association between RNA 819 

viruses and different environmental ecotypes. The size of the colored circles indicates the 820 

number of viral species identified by each ecotype, while the thickness of the line indicates 821 

the number of viral species shared by each ecotype. 822 

 823 

Extended Data Fig. 13. Comparison of CHEER, VirHunter, Virtifier, RNN-VirSeeker 824 

and LucaProt. a, Positive rate of prediction results for CHEER, VirHunter, Virtifier, RNN-825 

VirSeeker and LucaProt based on the test data set. b, False positive rate of prediction results 826 

for CHEER, VirHunter, Virtifier, RNN-VirSeeker and LucaProt based on the test data set. c, 827 

Recall rate of prediction results for CHEER, VirHunter, Virtifier, RNN-VirSeeker and 828 

LucaProt based on all RdRPs identified this study. d, Number of viral sequences of different 829 

groups by contig length identified by CHEER, VirHunter, Virtifier, RNN-VirSeeker and 830 

LucaProt. The training machines, training data sets, training strategies, and final model 831 

selection of all comparison models are consistent with LucaProt. All comparison models were 832 

built using multiple sets of hyperparameters with the best results selected for the comparison.  833 

 834 

Supplementary Table 1. Detailed information of 10,437 meta-transcriptomics retrieved from 835 

the SRA database.  836 

 837 

Supplementary Table 2. Detailed information on the 50 environmental samples collected in 838 

this study.  839 

 840 

Supplementary Table 3. Information on all the RdRP sequences identified in this study. 841 

 842 

Supplementary Table 4. Taxonomic comparison of known viral superclades between this 843 
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study and the current RNA virus classification system. New taxonomies that are incompatible 844 

with current viral phyla or classes are shown in orange. 845 

 846 

Supplementary Table 5. Predicted results of RdRPs identified in this study using three 847 

methods (Threshold: BLAST: e<=1E-3; HMM: score>=10; AI: prob>=0.5). 848 

 849 

Supplementary Table 6. Size information (the number of contigs) of all viral superclades. 850 

 851 

Supplementary Table 7. Distribution of proteins associated with bacterial hosts in viral 852 

superclades. 853 

 854 

Supplementary Table 8: Normalized abundance levels (measured by RPM) of each viral 855 

species in environmental samples (RPM>=1, coverage>=20%). 856 
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