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Abstract

RNA viruses are diverse components of global ecosystems. The metagenomic identification
of RNA virusesis currently limited to those with sequence similarity to known viruses, such
that highly divergent viruses that comprise the “dark matter” of the virosphere remain
challenging to detect. We developed a deep learning algorithm — LucaProt — to search for
highly divergent RNA-dependent RNA polymerase (RARP) sequencesin 10,487 global meta-
transcriptomes. LucaProt integrates both sequence and structural information to accurately
and efficiently detect RARP sequences. With this approach we identified 180,571 RNA vira
species and 180 superclades (viral phyla/classes). Thisisthe broadest diversity of RNA
viruses described to date, including many viruses undetectable using BLAST or HMM
approaches. The newly identified RNA viruses were present in diverse ecological niches,
including the air, hot springs and hydrothermal vents, and both virus diversity and abundance
varied substantially among ecological types. We also identified the longest RNA virus
genome (nido-like) observed so far, at 47,250 nucleotides, and expanded the diversity of
RNA bacteriophage to more than ten phyla/classes. This study marks the beginning of a new
eraof virus discovery, with the potential to redefine our understanding of the global

virosphere and reshape our understanding of virus evolutionary history.
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62  Introduction

63  RNA virusesinfect a huge array of host species. Despite this ubiquity, their role as an

64  essentia component of global ecosystems has only recently been recognized thanks to

65 systematic and large-scale virus discovery projects performed in animals™?, plants®, fungi?,
66  marine’, and soil environments®. A common feature of these studies is that they were based
67 ontheanalysis of RNA-dependent RNA polymerase (RIRP) sequences, a canonical

68  component of RNA viruses. Combined, they have resulted in the discovery of tens of

69  thousands of new virus species, leading to at least a ten-fold expansion of the virosphere and

70  the addition of five new phyla of RNA viruses, including the “ Taraviricota’®

. Similarly, data
71 mining exercises that reanalyzed over 10° meta-transcriptomic contigs associated with

72 diverse ecosystems have identified several divergent clades of RNA bacteriophage’. Despite
73 such significant progressin filling the gaps of RNA virus diversity through ecological

74 sampling and sequencing, our understanding of the full spectrum of the RNA virosphereis
75 likely limited®®. Thisisin part because the BLAST-based sequence similarity searching

76  approaches used to discover new RNA virus sequences have limitations in detecting highly
77 divergent RARPs', while the profile alignment (i.e., HMM) based approach misses a

78  significant proportion of viruses dueto a high false-negative rate™. To efficiently uncover the
79  full range of RNA virus diversity, the development of novel strategiesis therefore essential.
80 Over the past decade, artificial intelligence (Al) related approaches, especially deep

81 learning algorithms, have had a huge impact on various research fields in the life sciences,
82 including molecular docking, compound screening and interaction, protein structure

83  prediction and functional annotation, and the modelling of infectious diseases™™*’. These

84  advancements can be attributed to the advantages of deep learning algorithms over classic
85  bioinformatic approaches, including greater accuracy, better performance, less feature

86  engineering, flexible models, and self-learning capabilities'. Recently, deep learning

87  approaches, such as CHEER, VirHunter, Virtifier and RNN-VirSeeker have also been

88  developed and applied to identify viruses from genomic and metagenomic data®®?*. However,
89  many of these approaches rely on nucleotide sequence information without incorporating

90 protein sequence or structural information, and are hence less likely to identify highly

91 divergent RNA viruses. The transformer architecture was recently developed and applied to
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sequence-based protein function predictions, outperforming the convolutional neural
networks (CNN) and recurrent neural network (RNN) algorithms implemented in previous
virus discovery algorithms®*%. As a consequence, transformer architecture can be used to
design abetter tool to uncover the hidden “dark matter” of highly divergent RNA viruses.
Herein, we show how Al can be used to accurately and efficiently detect RNA viruses that are
too divergent in sequence to be detected by traditional sequence similarity-based methods, in

doing so revealing a hidden world of virus diversity.

Results

Deep lear ning toreveal the dark matter of the RNA virosphere

We performed all-inclusive searches to reveal the entirety of RNA virus diversity present in
different ecological systems sampled at global scale (Extended Data Fig. 1, Supplementary
Table 1 and 2). Accordingly, atotal of 10,487 meta-transcriptomes (51 Tb of sequencing data)
were assembled, which resulted in more than 1,368 million contigs and 872 million predicted
proteins. Based on this data set, potential viral RORPs were revealed and cross-validated
using two different strategies (Fig. 1, Extended Data Fig. 2-4). The major Al algorithm used
here (i.e., “LucaProt”) is adeep learning, transformer-based model established based on
sequence and structural features of 5,979 well-characterized RARPs and 229,434 non-RdRPs.
LucaProt had high accuracy (0.03% false positives) and specificity (0.20% false negatives)
on the test data set (Fig. 1b, Extended Data Fig. 4). Independently to the deep-learning
approach, we applied a more conventional approach (i.e., “ ClstrSearch”) that clustered all
proteins based on their sequence homology and then used BLAST or HMM modelsto
identify any resemblanceto viral RARPs or non-RdRP proteins. The latter approach is
distinguished from previous BLAST or HMM based approaches because it queries on protein
clusters (i.e., dignments) instead of individual sequences, which greatly reduced both the
false positive and negative rates of virus identification.

By merging the results of the two search strategies we discovered 513,134 RNA viral
contigs, representing 180,571 RNA viral species (i.e., > 90% RdRP identity), and 180 RNA
viral superclades at the phylum level taxonomic rank (Fig. 1, Supplementary Table 3 and see
Methods). Among these, 512,691 viral contigs (0.04% of total contigs) and 157 superclades
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(87.2%) wererevealed by both “LucaProt” and “ClstrSearch”, whereas 443 contigs and 23
superclades were only predicted by “LucaProt”. Both strategies out-performed previous
attempts at RNA virus discovery from ocean®, soil®, and more diverse ecosystems’ (Fig. 1c).
Indeed, “LucaProt” was able to identify 98.2% ~ 99.9% of RdRPs discovered in these
previous studies, even though none were used in either training or testing of the models
(Extended Data Fig. 5). To ensure the robustness and introduce innovative findings from the
Al approach, we jointly applied the two strategies and merged the results; this enabled us to
identify 93,580 viral species and 59 novel superclades, and resulted in a 9-fold expansionin
RNA virus diversity (Fig. 1c). Thiswas reflected in the expansion of both existing viral
superclades and the identification of new superclades unlikely to be discovered by sequence
homology and HMM based approaches alone (Fig. 1d).

All the RNA viral sequences discovered here were organized into clusters and
superclades without the influence of the current virus classification system®?®. These
superclades were then placed back onto the classification system at the phylum (such as
phylum Lenarviricotain the case of the Narna-Levi superclade) or class (such asthe
Stelpaviricetes, Alsuviricetes, Hasuviricetes classes for the Astro-Poty, Hepe-Virga, Flavi
superclades) levels (Supplementary Table 4)%. Notably, however, the virus superclades
comprised much greater phylogenetic diversity than their corresponding phyla/classes. Also
of note was that our data did not conform to several of the higher taxonomic ranks, such as
the phyla Duplornaviricota and Negarnaviricota, which were now too broad to be regarded as
single phyla. Indeed, even the Markov cluster algorithm (MCL) approach, on which the
existing virus classification scheme is derived®, fails to re-group these expanded classes

into the existing phyla’.

Verification and confirmation of newly identified viral superclades

That the 180 RNA viral superclades identified represented RNA-based organisms was
verified by multiple lines of evidence. At the sequence level, two criteria were used to
establish aviral superclade: alack of homology to cellular proteins and the presence of key
RdRP motifs (Fig. 2a). Furthermore, the majority (157/180) of the newly identified

superclades shared a variable degree of sequence homology with existing RARPs (i.e.,
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152  BLAST e-value < 1E-3 and/or had HMM model score = 10). The exception were 23

153  superclades that had no detectable homology to viral RARPs and therefore named as “Al-

154  specific” superclades (Fig. 2a, Extended Data Fig. 6, Supplementary Table 5). To justify the
155  computational prediction, we performed simultaneous DNA and RNA extraction and

156  sequencing to examine whether the viral superclades identified here also exist in DNA form.
157  Thisanalysis revealed that only RNA sequencing reads were mapped to contigs associated
158  with viral RdRPs, whereas both RNA and DNA sequencing reads were mapped to contigs
159  associated with DNA viruses, reverse-transcriptase (RT), and cellular organisms (Fig. 2b,

160  Extended Data Fig. 7-9). These results were further confirmed by a more sensitive RT-PCR
161  approach which showed that none of the sequences encoding viral RARP were detected in the
162  DNA extractions, suggesting that these viral superclades were bona fide RNA organisms (Fig.
163  2c, Extended Data Fig. 7b). Finaly, we performed 3D alignment analysis (newly identified
164  viral RARPs compared with known viral RARPs, eukaryotic RARPs, eukaryotic DdRPs and
165 RT) to determine the degree of structure similarity among them (Fig. 2d). The novel viral

166  RdRP superclades (including Al-specific ones) bore at least three signature motifs that gave
167  them much higher structural similarity to known viral RARPs than their cellular counterparts.
168

169  Genomic structuresreveal modularity and flexibility within the RNA virosphere

170  We next analyzed the composition and structure of potential RNA virus genomes identified in
171 thisstudy. The length of the RdRP-encoding genomes or genome segments differed markedly
172 within and between viral superclades, although most were centered around 2,569 nt (Fig. 3).
173 Notably, our data set contained some extremely long RNA virus genomes identified from soil
174  that belonged to the Nido-like superclade: the length of one of these, at 47.3 kb, exceeded
175  Planarian secretory cell nidovirus (41.2 kb)* as the longest RNA virus genome identified to
176  date (Fig. 3c, Extended Data Fig. 10 Supplementary Table 6). In addition to the RARP, we
177  characterized the remaining proteins encoded by the newly identified virus genomes. While
178  most of these predicted proteins had no homologs in the existing databases, we identified

179  some that were related to structural (i.e., coat, capsid, glycoprotein and envelope proteins,

180  amongst others) and non-structural (i.e., helicase, protease, methyltransferase, movement
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protein, immune or host-related regulatory proteins, amongst others) proteins from known
viruses (Fig. 3d, Extended Data Fig. 11). Importantly, the presence of these additional virus
proteinsin newly identified supergroups provided further evidence that these were bona fide
RNA viruses. Furthermore, that the occurrence of these proteins was incongruent with the
groupings of RARPs (Fig. 3e) suggests that RNA virus genomes have a modular-like
configuration, transferring proteins across taxonomic groups. Thiswas in line with the
dramatic changes in genome structure (genome length, gene organization, ORF numbers, and
segmentation) observed among related viruses, such that no prototype genome structures

could be defined for each group or supergroup (Fig. 3e).

Expanded phylogenetic diversity of RNA viruses

The enormous expansion in the RNA virosphere described here was also reflected in both the
growing size of known virus groups and the addition of entirely new groups (Fig. 4). For
existing supergroups, the viruses newly described here were distinguished from those
identified previously such that they formed unique clusters at more ancestral positionsin the
phylogenetic trees (Fig. 4). Interestingly, some previously smaller sized viral groupswith
limited diversity — the Astro-Poty, Hypo, Yan and Cysto — expanded to become large viral
groups comprising substantial genetic diversity (Fig. 4). Several newly identified supergroups
were also revealed to have high levels of phylogenetic diversity, including SC022 (8,128
species), SC024 (3,682 species), and SC37 (1,772 species), highlighting the limitations in
previous attempts to identify highly divergent groups of RNA viruses. Following our analysis,
the supergroups with the greatest number of species were the Narna-Levi (64,667 species),
Picorna-Calici (23,430 species), and Tombus-Nada (16,798 species).

In addition to greatly expanding virus genetic diversity, this study identified more virus
groups associated with bacterial hosts than the leviviruses, cystoviruses, and the members of
Partiti-Picobirna supercluster known previously’. Specifically, we identified bacterial viruses
within the Narna-Levi, Hepe-Virga, and SC037 supergroups whose sequences were
recognized and “recorded” by the bacterial CRISPR system. Furthermore, based on proteins
associated with bacterial infection (i.e., Lysis, Prok-E2, and Prok-RING), we inferred

potential bacterial RNA viruses in the Tombus-Noda, Yan, and SC022 supergroups
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(Supplementary Table 7). As a consequence, those RNA viruses associated with bacteria has
expanded to ten supergroups, and these numbers are likely to further increase given our

limited knowledge of host associations for most of the viruses in this study.

Ecological structure of the global RNA virome

Our study investigated the RNA virome of 10,487 ecological samples, revealing the
ubiquitous presence of RNA viruses across diverse ecological types (48 categories) and in
1,837 locations globally. Despite repeated efforts to uncover the RNA virus diversity from
such ecological samples™”’, alarge proportion of the viruses detected here were entirely novel
(Fig. 5a). Indeed, the rate of RNA virus discovery did not plateau (Fig. 5b), suggesting that
the global space of RNA virus diversity remains largely under-characterized, with a
particularly rapid increase in soil (Fig. 5b).

We compared aphadiversity (measured by the Shannon index) and abundance levels
(measured by the number of reads per million total non-rRNA reads, i.e., RPM) of the RNA
virome among diverse ecological types, revealing enormous variation (Fig. 5c,
Supplementary Table 8). In general, average alpha diversity was highest in leaf litter, estuary,
freshwater, and wetland environments, whereas virus abundance was highest in freshwater,
marine sediment, and rhizosphere systems, whose average RPMs were between 12466.9 and
26617.3 (Fig. 5¢). In contrast, the lowest average diversity and abundance were observed in
halite and subsurface environments (Fig. 5c), which as expected as these samples were
particularly low in biomass (i.e., host cells). For extreme ecological types such as hot springs
and hydrothermal vents, the associated RNA viruses were characterized by low diversity but
moderate abundance (1528.9 ~ 3726.9 average RPM) (Fig. 5¢). It is also worth noting that
the new viral superclades established in this study were mostly identified from aquatic and
sediment samples, with few from vertebrate and invertebrate animal samples (Fig. 5c).

Our results further revealed the prevalence and abundance levels of single viral species
across different ecological types (Fig. 5d), including some that could be considered
ecological generalists. For example, members of the Narna-Levi, Partiti-Picobirna and
Picornasuperclades as well as Superclade022 were among the prominent generalist RNA

viruses and found in more than 45 ecological types (Extended Data Fig. 12). Conversely, the
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majority (85.9%) of the viruses discovered here only occurred in asingle ecological type.
Finally, we also identified “marker’ virus species for each ecotype, which appeared at high
prevalence and abundance in one ecological type but not in the others (Fig. 5d). Among these,
Partiti-Picobirna sp. 4207 and Partiti-Picobirna sp. 9871 were associated with hot springs
and Tombus-Noda sp. 2280 and Superclade026 sp. 2292 were associated with hydrothermal

vents, suggesting their important role in these ecosystems.

Discussion

Our understanding of the genetic diversity of the RNA virosphere, and hence of RNA virus
ecology and evolution in general, is greatly hampered by the inability to accurately identify
the highly divergent “dark matter” of viruses®*, Indeed, the conventional way to discover
RNA viruses has relied heavily on the utility of sequence similarity comparisons and the
completeness of sequence databases™*. To address these issues, we developed a data-driven
deep learning model (i.e., LucaProt) that overcome these shortcomings while outperforming
conventional approaches in accuracy, efficiency, and, most importantly, the scope of diversity.
Importantly, LucaProt not only incorporated sequence data but also structural information,
which is relevant in predicting protein function (in this case of the RdRP)**. Without
implementing the structural model, our model had only 41.8% and 94.9% specificity and
accuracy, respectively, on the testing data set, and could only detect 44.5% of the predicted
RdRP proteins. In addition, the advanced transformer architecture incorporated into our

model allowed the parallel processing of larger amino acid sequences®

, Which can easily
capture the relationship between residues from distant parts of sequence space, thereby
outperforming the CNN and/or RNN encoders implemented in the CHEER, VirHunter,
Virtifier and RNN-VirSeeker RNA virus discovery tools (Extended Data Fig. 13)°>%,
Coallectively, we have established an Al framework for large-scale RNA virus discovery,
which can be easily extended to the accurate description of any biological dark matter.

Despite the large expansion in RNA virus diversity documented here, magjor gaps remain
in our understanding of the ecology and evolution of the newly discovered viruses. In

particular, nothing is known about the hosts of the viruses identified, including that with the

longest virus genome identified to date. It is possible that the viral clades and superclades
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identified here were largely associated with diverse microbial eukaryotic hosts, given that the

majority of current known RNA viruses infect eukaryotes®*

and microbial eukaryotes exist
in great abundance and diversity in natural environments®“. Nevertheless, it is also likely
that a substantial proportion of the novel viruses discovered are associated with bacterial (and
perhaps archaeal) hosts™*3. Indeed, based on this and previous studies’, more than ten
superclades contained RNA viruses likely associated with bacteria. Importantly, the presence
of RNA bacteriophages in multiple RNA viral superclades underlines the evolutionary
connection between RNA viruses from bacterial and eukaryotic hosts. If viewed through the
lens of virus-host co-divergence™**, such alink between bacterial and eukaryotic hosts

suggests that the evolutionary history of RNA virusesis at least aslong, if not longer, than

that of the cellular organisms.

Methods

Samples and data sets

This study comprised the meta-transcriptomic analysis of 10,487 samples for RNA virus
discovery. The majority of the samples (n = 10,437) were mined from the NCBI Sequence
Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) between January 16 -

August 14, 2020. We targeted samples collected from a wide range of environmental types
globally (Extended Data Fig. 1), including: aquatic (such as marine, riverine and lake water),
soil (such as sediment, sludge and wetland), host-related (such as biofilm, wood decay, and
rhizosphere), and extreme environmental samples (such as hydrothermal vent, hypersaline
lake and salt marsh), that were subject to high quality meta-transcriptomics sequencing.
Furthermore, the samples included in this study were subject to high-quality short-read
sequencing (i.e., utilizing Illumina sequencing platforms), had between 35.1-204.1 Gbp raw
sequencing data output, and were not enriched for any specific types of microbial organisms.
For highly abundant environmental types, such as “soil” and “marine’, representative
samples were selected to include as many projects (i.e., independent studies), geographic
locations and ecological niches as possible.

In addition to data mined from the SRA database, we obtained 50 samples from

Antarcticaand Chinafor RNA virus discovery and confirmation. The sample types included


https://doi.org/10.1101/2023.04.18.537342
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537342; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

available under aCC-BY-NC 4.0 International license.

marine (N = 5), freshwater (N = 12), soil (N = 19), and sediment (N = 14), of which nine
sediment samples were collected at the Ross Sea station in Antarctica between January and
February 2022, with the others from Zhegjiang, Guangdong, Hubei, and Heilongjiang
provinces, China between August and October 2022. For each of these samples, DNA and
RNA were simultaneously extracted: the soil and sediment samples were extracted using the
RNeasy® PowerSoil® Total RNA Kit and RNeasy® PowerSoil® DNA Elution Kit
(QIAGEN, Germany), while the marine and freshwater samples were extracted using the
DNeasy® PowerWater® Kit and RNeasy® PowerWater® Kit (QIAGEN, Germany). The
extracted nucleic acid was then subject to library construction using NEBNext Ultra RNA
Library Prep Kit and NEB Next Ultra DNA Library Prep Kit (LTD.NEB, China) for RNA and
DNA samples, respectively. Paired-end (150 bp) sequencing of these libraries was performed
using the lllumina NovaSeq 6000 platform (Illumina, the United States).

For all 10,487 data sets generated and collected for this study, reads were assembled de
novo into contigs using MEGAHIT v1.2.8* with default parameters. Potential encoded
proteins were predicted from contigs using ORFfinder v0.4.3

(https:/ftp.ncbi.nlm.nih.gov/genomes/TOOL S/ORFfinder/linux-i64/; parameters, -g 1, -s 2).

I dentification of RNA viruses based on deep learning

We developed a new deep learning, transformer-based model, termed “Deep Sequential and
Structural Information Fusion Network for Protein Function Prediction” (i.e., LucaProt), that
takes into account protein sequence composition and structure information to facilitate the
accurate identification of viral RARPs. The model included five modules: Input, Tokenizer,

Encoder, Pooling, and Output (Extended Data Fig. 2€).
Input Layer : Our model uses the amino acid sequence as input.

Tokenizer Layer: This module consists of two components. One used a frequent
substring algorithm®, which generated subwords from the input sequence, treated co-
occurring amino acids as awhole (namely, “words”), and resulted in a vocabulary with

20,000 such “words’. The other component broke down each protein sequence into a
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combination of single amino acid characters which were later used in protein structure
modeling.

Encoder Layer: This module processes the two types of input into sequence and
structural representation matrices, respectively. In the case of subword processing, an
advanced Transformer-Encoder was applied to obtain the sequence representation matrix,
while for structural processing, two strategies were considered to calculate the protein
structure representation matrix. The first strategy used a structural model (such as
RoseTTAFold*’, AlpahFold™, and ESMFold*®) to predict 3D protein structure, calculated the
distance between the C-atoms (Alpha-C or Beta-C) of all amino acid residues into a Contact
Map matrix, and applied Graph Convolutional Network (GCN)*to encode the Contact Map
into a representation matrix. The second approach was to directly use the intermediate matrix
from the structural model and employ it as the structural representation matrix. This method
not only addressed the issue of the insufficient number of 3D structures observed in
experiments, but also circumvented the need to perform the encoder, resulting in a cost-
effective approach suitable for large-scale implementation such as this study. We therefore
adopted the second strategy here and used the faster ESM Fold™ for structural representation.

Pooling Layer: The previous module obtained the sequence and structure representation
matrices. A value-level attention pooling (VLAP) approach™ was then used to transform
these two matricesinto two vectors.

Output Layer: A concatenation operator was used to join the two vectors generated by
the pooling layer. A fully connected layer and the sigmoid function (Extended Data Fig. 2€)
were then used to generate the probability values between 0.0 and 1.0 as a measure of
confidence, and athreshold of 0.5 was used to determine whether it represents viral RNA
(Extended Data Fig. 4).

Model Building: We constructed a data set with 235,413 samples for model building,
which included 5,979 positive samples of known viral RARPs (i.e., the well-curated RARP
database described above), and randomly selected 229,434 negative samples of confirmed
non-virus RARPs (as the positive sample accounts for a very small portion of the total data,
we constructed the training data set using the conventional 1:40 ratio of positive to negative

data). The non-virus RARP-like sequences contained proteins from the eukaryotic RNA
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dependent RNA polymerase (Eu RARP, N = 2,233), the eukaryotic DNA dependent RNA
polymerase (Eu DdRP, N = 1,184), reverse transcriptase (RT, N = 48,490), proteins obtained
from DNA viruses (N = 1,533), non-RdRP proteins obtained from RNA viruses (N = 1,574),
aswell asawide array of cellular proteins from different functional categories (N = 174,420).
We randomly divided the data set into training, validation, and testing setswith aratio of
8.5:1:1, which were used for model fitting, model finalization (based on the best F1-score
training iteration), and performance reporting (including accuracy, precision, recall, F1-score,
and Area under the ROC Curve (AUC)), respectively (Extended Data Fig. 4).

LucaProt identified 792,436 putative RARP signatures from 144,690,558 proteins. These
results were first compared with the RdRPs identified based on sequence homology (see
below). RARPs that were identified only by deep learning agorithms were either incorporated
into the superclades using the Diamond blastp program v0.9.25.126 with an e-value
threshold of 1E-3, or, if they remained unclassified, were subjected to clustering, merging,
and manual alignment inspection as described below to form deep learning specific

superclades (the case for 23 superclades).

I dentification of RNA viruses based on homologous clustered proteins

The first approach to identify RNA viruses was based on sequence and structural similarity to
previously known RARP amino acid sequences (Extended Data Fig. 2a). A total of 871.8
million amino acid sequences predicted by ORFfinder (see Samples and data sets) were
compared against awell-curated RARP database (N = 5,979) that contained only those
derived from reference RNA virus genomes downloaded from the NCBI GenBank database
and their close relatives from vertebrate and invertebrate hosts"2. The comparisons were
performed using the Diamond blastp program v0.9.25.126", with the e-value threshold set at
1E+5 to identify more divergent RARP proteins (Extended Data Fig. 2a, Extended Data Fig.
3a). This process resulted in 75.3 million hits which were further subjected to homology-
based and multi-step clustering (three iterations with 90%, 60%, and 20% amino acid identity,
respectively) using CD-HIT v4.8.1 (https://github.com/weizhongli/cdhit), which resulted in

3,805,584 clusters. False positives and hits to known RARP proteins were removed by
comparing against the NCBI non-redundant (nr) protein database, the NCBI RefSeq protein
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389 database and the virus RARP database (Extended Data Fig. 2b). The remaining unknown
390 protein clusters were subject to viral RARP domain search using a hidden Markov models

391 (HMMs) built from a manually reviewed profile of known RARP clusters using the program

392 hmmscan v3.3.2 (e = 10, hits = 1)*. Clusters that contain more than one hmmscan hit were

393  subsequently aligned and inspected for the presence of conserved RARP motifs. Finally, a
394  total of 713 novel RARP clusters were retained as aresult of our rigorous screening and

395  checking steps.

396 To further expand the RARP collection based on the viruses newly discovered here, we
397  updated the RARP protein database with the 713 novel RARP clusters identified here and used
398 it to detect additional RARP sequences from the original 144.6 million amino acid sequences
399  using the Diamond blastp and an e-value threshold of 1E-3. The newly detected RARPs were
400 againincorporated into the RARP database for another round of detection. This process was
401  repeated for ten iterations. The resulting RARP proteins (21,747,015 in total) were subjected
402  to the homology-based clustering, the removal of false positives, a HMMs-based search, and
403  manual alignment inspection as described above (Extended Data Fig. 2¢, Extended Data Fig.
404  3b).

405 Finally, the remaining clusters were merged into superclades using a hierarchical method
406  employing the Girvan—Newman algorithm®, with the edge betweenness determined based on
407  median e-value threshold of 1E-3 for each pair of clusters (Extended Data Fig. 2d, Extended
408 DataFig. 3c and 3d). Briefly, the merging of clusters used the following four steps: (i) the
409  betweenness of all edges (median e-value between clusters) in the network was calculated; (ii)
410  the edge(s) with the highest betweenness were removed; (iii) the betweenness of all edges
411  affected by the removal was recalculated; (iv) stepsii and iii were repeated until no edges
412 remained. All processes related to merging were performed using igraph package v1.3.5>
413  implementedin R.

414

415  Virusverification

416  To determine whether the newly discovered viral RARPs belonged to RNA viruses rather than

417  organisms with DNA genomes, we performed two experiments. First, the 50 environmental
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418  samples collected in this study were subject to simultaneous RNA and DNA extraction and
419  sequencing. The reads from the DNA sequencing results were mapped against the RARP
420  sequencesto verify that there was no DNA counterpart. Quality control of viral contigs was

421 performed using bbduk.sh (https://sourceforge.net/projects/bbmap/), and the mapping

422 analyses were performed by Bowtie2 v2.4.2> with the “end-to-end” setting. Similarly, from
423  our collection of SRA data, we also searched for those studies that performed both RNA and
424  DNA sequencing, and these data were used for mapping analyses to confirm that the viruses
425  discovered had bona fide RNA genomes.

426 In addition to read mapping, RT-PCR assays were performed to confirm that the detected
427  viral superclades were RNA organisms. Two pairs of validation primers were designed for
428  each of the representative RARP sequences from 17 RNA viral superclades, gene sequences
429  from two DNA virus families (i.e., Podoviridae and Sphoviridae), and RT sequences

430 identified in this study, with a product length of 300-550 bp. For each of the samples, both the
431  reverse-transcribed RNA and the matching DNA underwent simultaneous PCR amplification,
432  and the amplification products were subject to electrophoresis using a 1% agarose gel with
433  GelRed dye, which was subsequently visualized under UV.

434

435  Structural prediction and comparisons of viral RARPs and homologous proteins

436  Three-dimensional structures of newly identified viral RARPs from diverse RNA viral

437  superclades were predicted from primary sequences using AlphaFold 2 v2.3" and visualized
438 using the PyMol software v2.5.4 (http://www.pymol.org/pymol). AlphaFold 2 predictionis a

439  relatively reliable source of structure information as the pLDDT socre of more than 2/3

440 residuesit predicted are above 75%. The previously resolved or predicted structures of viral
441  RdRP, eukaryotic RARP, eukaryotic DARP and RT proteins were compared using the Super
442 dgorithm™. Considering that the protein structures have similar molecular weights but

443  substantia variationsin their conformations, the “number of aligned atoms after refinement”
444  option was employed to evaluate the similarity between each pair of proteins. Subsequently,

445  networkX (https://networkx.org/) was employed to construct a three-dimensional structure

446  diagram using the "edge-weighted spring embedded" approach, with results then mapped as a
447  scatter plot (depicted in the Fig. 2d). Simultaneously, we visualized four viral RARP domain
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448  proteinsusing PyMol.

449

450  Annotation and characterization of virus genomes

451  Potential open reading frames (ORFs) were predicted from newly identified virus genomes
452  based on two criteria: (i) the predicted amino acid sequences were longer than 200 amino
453  acidsin length, and (ii) they were not completely nested within larger ORFs. The annotation
454  of non-RdRP ORFs was mainly based on comparisons of predicted proteins to hidden

455  Markov models (HMMs) collected from the Pfam database (https://pfam-legacy.xfam.org/)

456 using hmmscan implemented in HMMER®2. For the remaining ORFs, the annotation was

457  carried out by blastp comparisons against the nr protein database with an e-value threshold of
458  1E-3.

459

460  Analyses of virome diversity, evolution and ecology

461  Toreved the diversity of the RNA viruses identified, we used an RARP identity threshold of
462  90% to define new virus species. Abundance levels were subsequently estimated for every
463  virus species based on the number of non-rRNA reads per million (RPM) within each sample
464  (i.e. sequencing runs) mapped to viral sequences belonging to that species. Virus alpha

465 diversity (measured with the Shannon index) and overall abundance were subsequently

466  estimated and compared across different geographic locations and ecological types, namely;
467  soil, marine, freshwater, wetland, hot spring, salt marsh, and other types. “Marker virus

468  species’ that were greatly enriched in certain ecological types were also identified based on

469  virus mapping results. The marker virus species were defined as present only in one
470  ecological subtype with RPM = 1 and coverage = 20%. To reveal the diversity and

471  evolutionary relationship of RNA viruses within asuperclade, RARP representatives of

472 overal diversity werefirst selected based on homology-based clustering. These

473 representatives were aligned using L-INS-I algorithm implemented in Mafft v7.475"".

474  Phylogenetic analyses were performed based on the alignment using a maximum likelihood
475  agorithm, a LG amino acid substitution model, a Subtree Pruning and Regrafting (SPR)

476  branch swapping algorithm, and a Shimodaira—Hasegawa-like procedure implemented in the
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477 Phyml program v3.1%,

478

479  ldentification of CRISPR spacer hits

480 A CRISPR-Cas spacer database was compiled from 65,703 genomes of bacteria and archaea
481  downloaded from the GTDB database (https://gtdb.ecogenomic.org/)* using a modified

482  version of the CRISPR Recognition Tool (CRT)®. This database was supplemented with an
483  additional 11.8 million precompiled CRISPR-Cas spacers obtained from the CrisprOpenDB

484  spacer database (http://crispr.genome.ulaval.ca)®. All spacers were queried for exact matches

485 against viral contigs using the BLASTn-short function implemented in the NCBI BLAST

486 v2.9.0+ package™ with parameters “-evalue 1E-10, -perc_identity 95, -dust no -word_size 77,
487  alowing only 0-1 mismatches across the entire length of the spacer to minimize the number
488  of false-positive hits.

489

490 Data availability

491  Raw sequence reads newly generated in this study are available at the NCBI Sequence Read
492  Archive (SRA) database under the BioProject accession PRINA 956286 and PRINA 956287
493  (Extended Data Table. 2). All virus sequence data produced in this study are publicly

494  available at http://47.93.21.181/, which includes all RNA virus contigs, RORP CDS, RdRP

495  proteins, RARP HMM profiles and phylogenetic tree files. Additionally, this website also
496  includes related data sets for model building and validation, and the trained model of

497  LucaProt.

498

499  Code availability

500 Theorigina codes of ClstrSearch and LucaProt are stored at GitHub repository

501 (https://github.com/alibaba/lucaProt), and the link will be available upon acceptance of the

502  paper. Currently, the codes are provided for the review process only. Any additional

503 information required to reanalyze the data reported in this paper is available from the lead
504  contact upon request.
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Figureand Table L egends

Fig. 1. Global diverse RNA virosphere. a, RNA virus discovery pipeline. The pathway for
sequence homol og-based virus discovery is highlighted in blue on the left, including the
clustering, expand and merge steps. The RARP Al modeling pathway is highlighted in orange
on the right, including the modeling, clustering and merge steps. b, Number of viral
superclades discovered using two methods (left), and the detection accuracy of RARPAI
modelling (right). ¢, Venn diagram shows the shared representative viral species between
available data from Zayed et al., Neri et al., Chen et al., and this study. The bar graph shows
the shared viral superclades between the four studies and the unique viral superclades
identified in this study. d, Diverse clusters of RNA viruses (dark colored small circle) and
RNA virus superclades (light colored large circle). The known viral clusters and superclades
are denoted in dark grey and light grey, respectively. The novel viral clusters discovered in
this study are denoted with dark blue and dark orange circles, while the novel viral
superclades are denoted with light blue and light orange circle. The size of the circle reflects

the size of the viral cluster.

Fig. 2. Evaluation of authenticity of RNA viral superclades. a, Distribution of BLAST
median e-value, HMM score and mean Al modeling probabilities of RNA virus superclade
grouping by the sensitivity of three methods, with the primary sequence-identified conserved
RdRP motif C of each superclade shown on the left. The known viral superclades show high
sensitivity for all three methods and are shown in grey. The novel superclades show declining
homology but the relative stable Al probahility. b, The positive libraries and mean RPM (the
number of mapped reads per million non-rRNA reads) of representative vira superclades,
DNA viruses, RT, and cell organisms in 50 samples collected in this study. DNA libraries are
shown in purple and RNA libraries in yellow, the different groups of RNA viruses and DNA
organisms are shown in different colors, and red asterisks refer to those subsequently
validated by RT-PCR. ¢, RT-PCR results of first pairs of validation primers for representative
RdRP sequences from 17 RNA viral superclades, capsid sequences from two DNA viral

families (Podoviridae and Sphoviridae), and RT sequences. d, Three-dimensional (3D)
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structure homology analysis of representative RARPs from 180 viral superclades with Eu
DdRPs, Eu RdRPs, and RT. Each point stands for a representative structure. The distance
between different points represents structure similarity and the greater the distance, the lower
the structure similarity. Four RARP domain structures of the Al-specific superclades are

displayed with the A, B and C motifs highlighted.

Fig 3. Genomic features of viral superclades. a, Size (the number of contigs) of all novel
viral superclades compared to 21 known superclades. b, Genome length of all novel viral
superclades compared to 21 known superclades. Centre lines in the box plots represent the
median bounds. ¢, Histogram of the genome size distribution of RNA viruses from known
and novel viral superclades. d, The distribution of annotated functional protein in each viral
superclade. e, Genome structure of representatives from six known superclades, 17 novel
superclades and eight Al-specific superclades. Grey stars represent reference virus genomes
of known superclades. Domains not commonly found in RNA viruses are shown in yellow
and are labeled above their corresponding positions. At the bottom, scale length in
nucleotides. Abbreviations: GOLGAZ2L5: golgin subfamily A member 2-like protein 5;
Pentaxin: pentaxin family; Tme5 EGF: thrombomodulin like fifth domain, EGFlike; Mg
trans NIPA: magnesium transporter NIPA; NUDI X, nucleoside diphosphate-X hydrolase;
RecX: RecX family; TssO: type VI secretion system, TssO; Securin: securin sister-chromatid
separation inhibitor; Rax2: cortical protein marker for cell polarity; Abhydrolase: alpha/beta-
hydrolase family; OmdA: bacteriocin-protection, Ydel or OmpD-Associated; Bltl C: Get5
carboxyl domain; Dnal: Dnal domain; Trypan PARP: procyclic acidic repetitive protein
(PARP); SAM KSR: kinase suppressor RAS 1; CBD PlyG: PlyG cell wall binding domain;
LydB: LydA-holin antagonist; RelB: RelB antitoxin; T2SSE: type I1/IV secretion system
protein; PARP regulatory: poly A polymerase regulatory subunit; Pheromone: fungal mating-
type pheromone; Y phosphatase?: tyrosine phosphatase family; PseudoU synth: RNA
pseudouridylate synthase; Glyco hydro 35: glycosyl hydrolases family 35; TIP: tuftelin

interacting protein.

Fig 4. Phylogenetic diversity of 32 RNA viral superclades. Each phylogenetic tree was
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estimated using a maximum likelihood method based on the conserved RARP domain. Within
each phylogenetic tree, the viruses newly identified here are shaded yellow, those reported
previously are shaded green and blue. The name of each superclade is shown on the top of
each phylogeny and the names of the families within each superclade are shown on right of
the tree. The proteins associated with bacterial hosts are denoted with different shapes on the
right side of the corresponding viral sequence. All trees are midpoint-rooted for clarity only,

and the scale bar indicates 0.5 amino acid substitutions per site.

Fig 5. Ecological dynamics of the global RNA virome. a, Global distribution of RNA
viruses identified in this study. Species of known virus superclades are shown in gray and
species from novel superclades are shown in magenta. Pie size reflects the number of viral
species. b, Rarefaction curve of all RNA viral species. Inset, Rarefaction curve of RNA viral
species at the ecotype level with colors indicating different ecotypes. ¢, Distribution of alpha
diversity, RPM, novel viral species and Al-specific species at different ecological subtypes
and colored by their ecotype. The ecological subtypes on the y-axis are ordered from the
highest to the lowest alphadiversity for each ecotype. d, Vira distribution patternsin
environmental and animal samples. The relative abundance of virusesin each library was
calculated and normalized by the number of mapped reads per million no-rRNA reads (RPM).
Viral species from 11 ecological subtypes are shown and divided into three groups, indicated

by the colors on the heatmap.

Extended Data Fig. 1 Geographic cover age of the meta-transcriptomic data analyzed in
this study. a, Geographical distribution of samples at the ecotype level. Pie sizeis positively

correlated to the number of samples. b, Total number of samples at different ecotypes.

Extended Data Fig. 2. Detailed RNA virus discovery pipeline. a, Schematic diagram of
homol ogy-based discovery and RARPAI modeling. b, Protein clustering process; only
clusters with more than ten members are retained for viral cluster discovery. c, Ten iterations
of RARP expansion by recruiting newly detected RARP in this process. d, RARP clusters
merging into RARP superclades using BLAST median e-value. e, RdRPidentification by a
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new deep learning model (i.e., LucaProt), includes five modules: Input, Tokenizer, Encoder,

Pooling, and Output.

Extended Data Fig. 3. Benchmarking of the threshold at three processes (clustering,
expand and merge). a, Number of hits using different e-values at the test stage. b,
Benchmarking of hmmescan bitscore and aligned fraction using the RARP and non-RdRP data
sets (including RT, Eu DARP and Ed RARP derived from NCBI GenBank database). c,
BLAST Median e-value within the same known RdRP cluster. d, BLAST Median e-value
between pairwise comparisons of known RARP clusters, with a 1E-3 cut-off used for cluster

merging.

Extended Data Fig. 4. Benchmarking of the Al RARP modeling. a, The sigmoid function
of the Al modeling. b, Statistics of the data set for Al model building, including the entire
data set, training set, validation set, and testing set. ¢, The distribution of Al modeling
probabilities of positive data sets, d, The Al distribution of Al modeling probabilities of
negative data sets, including RT, Eu DARP and Eu RdRP.

Extended Data Fig. 5. Comparisons of RNA virus discovery results between three
previous studies and the current study. a, The distribution of representative viral RARPs of
four studies at the superclade level and the study-specific level. b, Venn diagram shows the
number of RARP superclades found in each study and those shared between and among four
studies. ¢, Venn diagram shows the number of representative RARPs found in each study and
those shared between and among four studies. d, Bar graph shows the number of known,

novel, Al-specific and study-specific RARPs of four studies.

Extended Data Fig. 6. The distribution of Al modeling probabilities of viral RARPs. a,
Distribution of Al modeling probabilities for all RARPs from known viral superclades (first
left column) and representative RARP superclades (right four columns). b, Distribution of Al
modeling probabilities for all RARPs from novel viral superclades (first left column) and
representative RARP superclades (right four columns) captured by BLAST, HMM and the
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deep learning model. ¢, The distribution of Al modeling probabilities for all RARPs from
novel viral superclades (first left column) and representative RARP superclades (right four
columns) captured by both HMM and the deep learning model. d, Distribution of Al
modeling probabilities for all Al-specific RARPs (first left column) and representative RARP
superclades (right four columns) that could only be captured by the deep learning model.

Extended Data Fig. 7. Expression difference of RNA viruses and DNA organismsin our
newly sequenced data. a, Abundance comparisons between 58 RNA viral superclades, four
DNA virus families, RT and cell organisms at DNA and RNA libraries. b, RT-PCR results of
second pairs of validation primers for representative RARP sequences from 17 RNA viral

superclades, capsid sequences from two DNA virus families (Podoviridae and Sphoviridae),

and RT sequences.

Extended Data Fig. 8. Genome cover age of r epresentative genomefor RNA viruses and
DNA organismsin our newly sequenced data. For 42 RNA viral superclades, four DNA
virus families, RT, and cell organism, genomes with high abundance in RNA libraries were

chosen to check reads coverage in DNA libraries.

Extended Data Fig. 9. The cover age and abundance of RNA viruses and DNA or ganisms.

The coverage of viral sequences shown as rising with rpm.

Extended Data Fig. 10. Phylogenetic tree of the Nido-like superclade and the genome
structur e of representatives. The tree was estimated using a maximum likelihood method
based on the conserved RARP domain. The reference sequences reported previously are
shaded grey, the viruses newly identified here are shaded by different colors according to
different ecotypes. The names of viral families are shown on right of the tree. The tree was
midpoint-rooted for clarity only, and the scale bar of tree indicates 0.2 amino acid
substitutions per site. The genome structures of representative viruses are shown on right of

the tree. At the bottom, scale indicates the length in nucleotides.
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Extended Data Fig. 11. Association between RNA viral superclades and other non-RdRP
protein clusters. Grey and pink circles denote known and novel superclades, respectively.

Blue circles denote non-RdRP protein clusters.

Extended Data Fig. 12. Specificity and shareability of RNA viruses. a, Number of specific
viral species (“marker” species) in each ecological subtype. b, Association between RNA
viruses and different environmental ecotypes. The size of the colored circles indicates the
number of viral species identified by each ecotype, while the thickness of the line indicates

the number of viral species shared by each ecotype.

Extended Data Fig. 13. Comparison of CHEER, VirHunter, Virtifier, RNN-Vir Seeker
and LucaProt. a, Positive rate of prediction results for CHEER, VirHunter, Virtifier, RNN-
VirSeeker and LucaProt based on the test data set. b, False positive rate of prediction results
for CHEER, VirHunter, Virtifier, RNN-VirSeeker and LucaProt based on the test data set. c,
Recall rate of prediction results for CHEER, VirHunter, Virtifier, RNN-VirSeeker and
LucaProt based on all RdRPs identified this study. d, Number of viral sequences of different
groups by contig length identified by CHEER, VirHunter, Virtifier, RNN-VirSeeker and
LucaProt. The training machines, training data sets, training strategies, and final model
selection of all comparison models are consistent with LucaProt. All comparison models were

built using multiple sets of hyperparameters with the best results selected for the comparison.

Supplementary Table 1. Detailed information of 10,437 meta-transcriptomics retrieved from
the SRA database.

Supplementary Table 2. Detailed information on the 50 environmental samples collected in

this study.

Supplementary Table 3. Information on all the RARP sequences identified in this study.

Supplementary Table 4. Taxonomic comparison of known viral superclades between this
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study and the current RNA virus classification system. New taxonomies that are incompatible

with current viral phyla or classes are shown in orange.

Supplementary Table 5. Predicted results of RdRPs identified in this study using three
methods (Threshold: BLAST: e<=1E-3; HMM: score>=10; Al: prob>=0.5).

Supplementary Table 6. Size information (the number of contigs) of al viral superclades.

Supplementary Table 7. Distribution of proteins associated with bacterial hostsin vira
superclades.

Supplementary Table 8: Normalized abundance levels (measured by RPM) of each viral

speciesin environmental samples (RPM>=1, coverage>=20%).
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