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Abstract13

The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a noncovalent heterodimer with E2, the main14

target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance15

to E2-specific antibodies remains largely unknown. We investigate this problem using a combination of16

fitness landscape and evolutionary modelling. Our analysis indicates that E1 and E2 proteins collectively17

mediate viral fitness, and suggests that fitness-compensating E1 mutations may accelerate escape from18

E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies19

that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing20

directions for robust HCV vaccine development.21
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I. Introduction24

Hepatitis C virus (HCV), a single-stranded RNA virus, is the major cause of liver-associated disease and25

liver cancer. Currently, an estimated 58 million people are chronically infected with HCV [1]. Although direct-26

acting antivirals (DAAs) have been developed and offer promising treatments for chronic HCV infections,27

their high cost and low rates of HCV diagnosis limit their accessibility to a subset of infected individuals28

only [1], [2]. Additionally, the efficacy of DAAs is limited by their inability to prevent reinfection and the29

emergence of drug-resistant viral strains [3], [4]. Therefore, developing an effective vaccine is crucial for30

eradication of HCV.31

HCV encodes a single polyprotein, which is further cleaved by cellular and viral proteases into three32

structural proteins (core, E1, and E2) and seven non-structural proteins (NS1, NS2, NS3, NS4A, NS4B,33

NS5A, and NS5B). The envelope protein E2 is vital for viral entry into liver cells (hepatocytes), and it is34

the major target of neutralizing antibodies elicited against HCV [5]. Studies have shown that E2 alone can35

induce a potent humoral immune response and serve as a promising vaccine candidate [6]–[8]. However,36

the other envelope protein E1, which forms noncovalent heterodimers with E2 [5], has a function that37

has been shown to be inter-dependent with E2 [9]–[14]. For instance, E1 helps E2 maintain its functional38

conformation and regulates E2’s interaction with HCV receptors CD81 and SR-B1 [10]–[13], and both E139

and E2 are needed for interaction with CLDN1 [13], a key factor in HCV entry. E1 has also been shown to40

modulate the folding of E2 [15], [16]. While preliminary experiments suggest that specific mutations in E141

and E2 may jointly modulate viral infectivity [13], a comprehensive analysis of the role of E1E2 inter-protein42

interactions in mediating viral fitness is still lacking. Moreover, fitness of HCV is closely related to its ability43

to escape from antibody responses [17], [18]. Therefore, investigating the effect of E1 on escape from44

E2-specific neutralizing antibodies is of particular interest.45

To study the role of E1E2 inter-protein interactions in mediating viral fitness and antibody evasion, we46

develop a computational fitness landscape model, the joint model (JM), that considers interactions between47

E1 and E2 proteins. Comparing JM with a model that considers E1 and E2 proteins independently, named48

the independent model (IM), we find that JM captures more correlated structure in the E1E2 protein49

sequence data, providing a statistical quantification of the mutational interactions between E1 and E2.50

Comparing with the available in-vitro infectivity data, JM is found to be a better representative of the intrinsic51

fitness landscape of E1E2 compared to IM. These results suggest that E1 and E2 proteins collectively52

mediate infectivity of the virus. Based on the JM, we find that the strong E1E2 inter-protein interactions53

might be compensatory instead of antagonistic.54

To investigate the role of E1 on E2 in antibody evasion, we incorporate the JM into an in-host evolutionary55

model and assess antibody escape dynamics. We predict that the residues with known escape mutations56

would be easier to escape according to the JM compared with an E2-only model [19]. This points to the57

potential role of E1 in facilitating escape from E2-targeting antibodies. We use the evolutionary model to58

study the efficacy of human monoclonal antibodies (HmAbs) known for HCV, and compare the results59

with those obtained from the E2-only model. We find, again, that E1 may facilitate the virus to escape60
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specific HmAbs targeting E2. Our analysis also reveals potentially escape-resistant HmAbs against the61

E1E2 complex, offering directions for the development of an effective vaccine against HCV.62

II. Results63

A. Inference and statistical validation of the joint model for the E1E2 protein64

We developed a computational model, termed JM, for the entire E1E2 protein using the sequence data65

available for subtype 1a . This model uses a maximum entropy approach to estimate the probability of66

observing a virus with a specific E1E2 protein sequence . In this model, the probability of any sequence67

x = [x1, x2, . . . , xN ] is given by68

Ph,J(x) =
e−E(x)

Z
, where E(x) =

N−1∑
i=1

N∑
j=i+1

Jij (xi, xj) +

N∑
i=1

hi (xi) , (1)

where N is the length of the sequence, and Z =
∑

x e
−Eh,J(x) is a normalization factor which ensures69

the probabilities sum to one. The fields h and couplings J parameters represent the effect of mutations at70

a single residue and interactions between mutations at two different residues, respectively. E(x) denotes71

the energy of sequence x, which is inversely related to its prevalence. Inference of a maximum entropy72

model involves choosing the fields and couplings such that the model can reproduce the single and double73

mutant probabilities observed in the E1E2 sequence data.74

We inferred the E1E2 maximum entropy model using the GUI-based software implementation of MPF-75

BML [20] (see Methods for details), an efficient inference framework introduced in [21]. The single and76

double mutant probabilities obtained from the JM matched well with the E1E2 sequence data (Fig. 1a, b).77

Although not explicitly included in model inference, additional statistics including the connected correlations78

and the distribution of the number of mutations computed from the model also agreed well with those79

obtained from the E1E2 sequence data (Fig. 1c, d), demonstrating the predictive power of the inferred80

model. Overall, these results indicate that the inferred E1E2 JM captures well the statistics of the data.81

B. E1E2 inter-protein interactions are important in mediating viral fitness82

While some studies have considered E2 alone (i.e., independent of E1) [6]–[8], multiple studies have83

reported that these two proteins are functionally inter-dependent [10]–[13]. This suggests that interactions84

between E1 and E2 may be critical. Previously, we had investigated E2 alone wherein we had inferred85

a fitness landscape model for E2 and used it to explore HCV escape dynamics from neutralizing86

antibodies [19], [22]. Here, to investigate the importance of E1E2 inter-protein interactions on virus fitness87

and immune escape, we compared the inferred JM with a model that considers E1 and E2 proteins to be88

independent (see Methods for details). We refer to it as the independent model (IM). In this model, the89

energy of an E1E2 protein sequence x = [xE1, xE2] is given by the sum of the energies of its E1 and E290

parts, xE1 and xE2, respectively:91

E(x) = E(xE1) + E(xE2). (2)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.03.535505doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535505
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

Here, E(xE1) and E(xE2) are computed separately using inferred E1-only and E2-only maximum entropy92

models, respectively (see Methods for details). Both the E1-only and E2-only models capture well the93

statistics of the respective sequence data (Supplementary Fig. S1).94

Equipped with the JM and IM models, we first investigated whether E1 and E2 proteins can be considered95

statistically independent. This can be quantified by comparing the fraction of the correlated structure (FCS)96

of the E1E2 protein complex captured by the two models [23]. FCS captured by a model can be estimated97

using the entropy of the synthetic sequence data generated by the inferred model and comparing it with98

the entropy of an independent model and the estimated true entropy of the data (see Methods for details).99

If FCSs captured by both the JM and IM models are similar, it will be suggestive of E1 and E2 to be100

independent. Based on our analysis, the average FCS of the E1E2 protein complex captured by the JM101

(63%) was 22% more than that captured by the IM (41%) (p = 9.1× 10−5; Fig. 2), suggesting that E1 and102

E2 proteins are not statistically independent. Thus, there seem to be significant inter-protein correlations103

that are not captured by the IM.104

We next investigated if the additional correlations captured by the JM, compared to IM, make it a105

better representative of the intrinsic E1E2 fitness landscape. Maximum entropy models have been shown106

previously to be good representatives of the underlying fitness landscapes for multiple individual viral107

proteins of HCV (polymerase [24] and E2 [19], [22]) and HIV [21], [25]–[28]. To test this for JM and IM, we108

compared the predictions of both models using the in-vitro infectivity measurements available for E1E2.109

We compiled a total of 156 in-vitro infectivity measurements for E1E2 from 16 studies [13], [29]–[43]. We110

found that the JM provided a stronger negative Spearman correlation (r = −0.70; see Methods for details)111

between the predicted sequence energies (inversely related to prevalence) and experimental fitness values112

(Fig. 3) than the IM (r = −0.54; Fig. 3, inset). This result suggests that JM is a better representative of113

the E1E2 fitness landscape. It also indicates the potential importance of E1E2 inter-protein interactions in114

mediating viral fitness.115

C. Majority of strong E1E2 inter-protein interactions are compensatory116

The couplings of the inferred maximum entropy model (Jij in Eq. 1) are informative of the type of117

interactions between residues [44], [45]. When the value of Jij is large and positive, it signifies a strong118

antagonistic interaction or negative epistasis between residues i and j. This results in a decrease in the119

fitness of double mutants and makes it harder for new mutations to occur [46]. On the other hand, when120

the value of Jij is large and negative in Eq. 1, it indicates a strong compensatory interaction or positive121

epistasis between residues i and j. This signifies improved replication of double mutants, allowing the virus122

to acquire diverse mutations.123

Analyzing the top 300 pairs of inter-protein couplings (listed in Supplementary Data 1), i.e., with large124

absolute values of Jij , we found that the majority (70%) were negative (Fig. 4). This suggests that the125

top inter-protein couplings are largely compensatory, and that simultaneous mutations in the two proteins126

may assist in maintaining a viable virus. This result was robust to the number of top inter-protein couplings127
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considered (Supplementary Fig. S2). A recent study reported E1E2 as a highly fragile complex, with 92%128

of alanine mutations introduced independently at each residue severely impacting virus fitness [43]. The129

strong compensatory interactions identified in our analysis indicate a potential mechanism by which E1130

and E2, the most variable HCV proteins, may make multiple mutations while maintaining viral fitness.131

We further quantified whether the strongly-coupled residues (those associated with top 300 pairs of132

inter-protein couplings) were enriched in any known functional region of E1 and E2 proteins (see Methods133

for details). We observed that the strongly-coupled residues were statistically significantly enriched in134

hypervariable region 1 (HVR1) and hypervariable region 2 (HVR2) of E2 (Supplementary Table S1),135

suggesting that these regions may be involved in interactions with E1. This is also consistent with the136

literature that has shown that HVR2 is essential for the formation of the E1E2 heterodimer [47], and137

epistatic interactions exist between E1 and HVR1 of E2 [48]. As their names suggest, these two regions138

are highly variable, and are known to modulate viral escape from neutralizing antibodies [49]. Hence, the139

potential compensatory interactions between E1 and these two E2 regions may contribute to viral immune140

evasion.141

D. Evolutionary simulations suggest the E1 protein contributes to escape from142

E2-specific antibody responses143

To gain a deeper understanding of the impact of E1 on viral escape dynamics from E2-specific antibody144

responses, we quantified and compared the average time it takes for E2 residues to escape with and145

without the influence of E1. To achieve this, we utilized an in-host evolutionary model that takes into146

account the stochastic dynamics of viral evolution within the host including virus-host interactions, virus-147

virus competition, and escape pathways that the virus may employ to evade immune pressure. Similar148

models have been used previously for simulating in-host viral evolution for HIV [27] and HCV [19], [22].149

Here, we incorporated the inferred JM into a population genetics model, similar to the well-established150

Wright-Fisher model [50]. By doing so, we were able to predict the average number of generations, referred151

to as “escape time”, for each E2 residue to escape selective pressure (see Methods for more details). To152

determine escape times of these residues without the influence of the E1 protein, we utilized the E2-only153

model developed in our previous work [19].154

Previously, the E2-only model has been shown to be capable of predicting known escape mutations155

from multiple E2-specific HmAbs [34], [51]–[55] (listed in Supplementary Table S2), where these mutations156

were shown to be associated with lower escape times compared to mutations at other residues [19] as157

they enable the virus to evade the associated antibody pressure. We found that this was also true for the158

inferred JM (p = 9.9 × 10−24; Fig. 5a), suggesting the JM to be capable of distinguishing E2 residues159

associated with low and high escape times.160

Further comparing the escape times of E2 residues inferred from these two models, we found that161

the escape times of residues associated with escape mutations inferred from the JM were marginally162

significantly lower (p = 0.077; Fig. 5b, left panel) than those from the E2-only model. In contrast, there163
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was not much difference between the escape times of the remaining E2 residues (p = 0.525; Fig. 5b, right164

panel). This suggests that the E1 protein may assist in viral escape from E2-specific antibodies. In addition,165

we found that the strongly-coupled inter-protein residues (Fig. 4) were statistically significantly enriched in166

escape mutations (p = 5.4× 10−19; Fig. 5c). This further corroborates the potential role of E1 in mediating167

viral escape from neutralising antibodies.168

E. For multiple E2-specific HmAbs, E1 is predicted to provide accelerated escape169

dynamics170

Previously, we utilized the E2-only model to assess the efficacy of each known E2-specific HmAb based171

on the minimum escape time predicted for its binding residues [19], [22] (see Methods for details). Our172

analysis above suggests that E1 may potentially assist E2 in antibody evasion, hence we further studied173

how this would impact the efficacy of known HmAbs predicted by the JM in comparison to the E2-only174

model. We first employed a binary classifier [19] to determine an optimal cut-off value (ζ = 96 generations)175

for identifying escape-resistant residues based on the JM. This binary classifier utilized known escape176

mutations (listed in Supplementary Table S2) as true positives and the remaining E1E2 residues as true177

negatives, as detailed in Methods. We subsequently evaluated each antibody by comparing the minimum178

escape time predicted for its binding residues with the corresponding optimal cut-off value ζ for each model.179

For this analysis, we focused on 32 HmAbs for which binding residues have been determined using global180

alanine scanning experiments [37], [38], [56].181

Based on our previous predictions using the E2-only model, we had identified 21 E2-specific HmAbs182

that appear relatively easy for the virus to escape. These predictions were also consistent with the JM183

(Fig. 6). Among these HmAbs, studies have shown that AR1A, AR1B, AR2A, CBH-4B, CBH-4D, CBH-4G,184

CBH-20, CBH-21, and CBH-22 were non-neutralizing or isolate-specific [57]–[59], which further supports185

our predictions for both models. The remaining eight E2-specific HmAbs (212.15, 212.25, CBH-7, CBH-23,186

HC-1, HC33-1, HC84-20 and HCV1) were predicted to be escape-resistant by the E2-only model. However,187

only four (212.15 and 212.25, HC33-1, and HCV1) among these were predicted to be escape-resistant188

by JM (Fig. 6). The predictions of JM for these HmAbs align well with literature reports. For instance,189

HmAbs 212.25 and 212.15, isolated from patients who had spontaneously cleared HCV, were found to be190

cross-neutralizing [56]. HC33-1 and HCV1 have also been reported as potentially escape-resistant broadly191

neutralizing antibodies in multiple studies [37], [60]–[62]. On the other hand, of the four HmAbs (HC84-20,192

CBH-23, HC-1 and CBH-7) predicted to be escape-resistant by the E2-only model but not by the JM,193

studies have observed escape for strains isolated from patients who underwent liver transplantation for194

HmAbs CBH-23 and HC-1, while HmAb CBH-7 was obtained from a patient with chronic HCV infection195

[56], [63]. These findings suggest that E1 may play a role in facilitating HCV escape from these antibodies.196

Notably, the JM enabled identification of one HmAb, IGH526, that targets the E1 protein and may be197

escape resistant. Multiple studies have reported that IGH526 is cross-neutralizing and can target various198

HCV isolates from different genotypes [64], [65].199
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III. Discussion200

E1 and E2 are envelope proteins of HCV that form noncovalent heterodimers. While E2 is the major201

target of HmAbs and a promising vaccine candidate, E1 is also important for HCV entry and assembly,202

and it interacts with E2. Comparing a joint model (JM) that takes into account E1E2 interactions with203

an independent model (IM) that does not, we have determined that these interactions are important in204

mediating virus infectivity and immune escape. The top E1E2 inter-protein interactions are compensatory205

and enriched in HVR1 and HVR2 of E2. Further using in-host evolutionary modelling, our analysis suggests206

that E1 may facilitate HCV in escaping E2-specific antibody responses. We have identified potentially207

escape-resistant HmAbs against the E1E2 complex, which could aid in the development of a robust208

prophylactic vaccine against HCV.209

By comparing the correlation between in-vitro infectivity measurements and predictions of the JM and210

IM (Fig. 3), our study highlighted the importance of E1E2 inter-protein interactions in mediating viral fitness.211

This was further reinforced by comparing the predictions of the JM with those of a site-independent E1E2212

fitness landscape model (see Methods for details), which showed that the correlation between the JM213

predictions and in-vitro fitness measurements was much higher than that of the site-independent model (r =214

−0.54; Supplementary Fig. S3). These findings are consistent with previous studies that have emphasized215

the importance of considering interactions when inferring protein fitness landscapes [19], [21], [22], [24],216

[25], [27], [28], [66], [67] and for identifying networks of residues that play crucial roles in protein structure217

and function of viruses [68]–[72].218

A recent experimental study has shown that E1E2 is a fragile protein complex wherein even a single219

alanine mutation at 92% of positions abrogates replicative capacity of the virus [43]. Therefore, our finding220

that 70% of the top 300 pairs of mutations (ranked by absolute values of Jij) between E1 and E2 are221

compensatory suggests that these interactions may play a significant role in mediating viral fitness. To222

further investigate this experimentally, it would be helpful to conduct assays that quantify the change in223

replicative fitness by site-directed mutagenesis of the pairs of mutations identified to be associated with224

strong compensatory interactions (e.g., top 10) individually and simultaneously (Supplementary Data 1).225

Comparing the JM and the E2-only model, we found ten residues that were predicted to be escape-226

resistant by the E2-only model but easy to escape according to the JM. Interestingly, four of these (residues227

424, 437, 537 and 538) are known antibody binding residues, which suggests that the E1 protein may228

interact with these residues during antibody evasion. This motivates experimental studies for investigating229

the interactions between these four residues in the E2 and the E1 protein. One approach could involve230

longitudinal experiments [73], where the virus is allowed to infect cells in the presence of antibodies231

that specifically target these four residues, and changes in these residues as well as the E1 protein are232

monitored over time. By doing so, it could be determined if mutations arise at these residues in response to233

antibody pressure, and if simultaneous mutations are also observed in the E1 protein. This would provide234

important insights into the mechanisms by which the virus evolves to evade immune responses [74], which235

could ultimately inform the design of an effective vaccine against HCV.236
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By applying the JM and the E2-only model to evaluate the efficacy of known HmAbs, we identified 25237

HmAbs with consistent predictions for both models (Fig. 6). Among these, four HmAbs were predicted238

to be escape-resistant, while the other 21 HmAbs were not. This motivates investigating the differences239

in escape dynamics [75] between these two sets of HmAbs. For instance, experimentally quantifying the240

average time (number of generations) it takes for the virus to escape from HmAbs 212.15, 212.25, HC33-1241

or HCV1 (escape-resistant HmAbs) in comparison to HmAbs AR3A, AR3C or AR3D (non-escape-resistant242

HmAbs) would be a helpful follow up study.243

Four HmAbs (HC-1, CBH-23, CBH-7 and HC84-20) were associated with different predictions based244

on the JM compared to the E2-only model (Fig. 6). We found that the different predictions for these245

HmAbs were due to the differences in escape times of two specific binding residues 437 and 537 by246

these two models, which are shared by these HmAbs. Intriguingly, these two residues are also CD81247

binding residues [76]. Experiments to study the interactions between E1 and CD81 binding residues may248

be beneficial for discovering their potential roles in compensating viral infectivity or mediating viral entry.249

IV. Methods250

A. Inference of computational models for the E1E2 protein251

To explore the role of E1E2 inter-protein interactions, we considered two types of computational models252

for the E1E2 protein: One taking into account the E1E2 inter-protein interactions, named the joint model253

(JM), and the other without the E1E2 inter-protein interactions, named the independent model (IM).254

1) Joint model (JM)255

To infer a maximum entropy (least-biased) model for the whole E1E2 protein jointly, we downloaded256

8,021 aligned E1 subtype 1a and 6,225 aligned E2 subtype 1a sequences from the HCV-GLUE database257

(http://hcv.glue.cvr.ac.uk) [77], [78], both with genome coverage ≥ 99%. We constructed the MSA of the258

whole E1E2 protein by stitching together E1 and E2 sequences based on the information in their headers,259

yielding 6,198 E1E2 sequences. We conducted a principal component analysis (PCA) on the pair-wise260

similarity matrix (6198 × 6198) of the sequences [79], where the (i, j)th entry of the similarity matrix261

represents the fraction of residues that are identical in sequence i and j, to remove any outlier sequences.262

We considered a sequence as an outlier if its corresponding value in the first PC was more than 3 scaled263

median absolute deviations [80] from the median of the first PC. We also excluded 264 sequences for which264

patients’ information was not available. After these filtering procedures, we had M = 5867 sequences from265

W = 871 patients. Moreover, we excluded 21 fully-conserved E1E2 residues to improve the quality of the266

residues. Hence, the processed MSA was composed of M = 5867 sequences (listed in Supplementary267

Data 2) and N = 534 residues. We constructed a least-biased maximum entropy model for the E1E2268

protein that can reproduce the single and double mutant probabilities of this processed MSA (Eq. 1).269

To infer parameters (h and J) of the maximum entropy model, we used the GUI realization of MPF-270

BML [20], an efficient inference framework introduced in [21]. This software requires an MSA as input and271

a vector comprising the patient weight of each sequence included in the MSA. Patient weight is computed272
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as the inverse of the number of sequences associated with each patient. The MPF-BML parameters used273

for inferring the model parameters (fields h and couplings J) are: (i) L1 regularization parameters were274

set to 5× 10−4 for both fields and couplings. (ii) L2 regularization parameters were set to 0.05 for fields,275

and 125 for couplings respectively and (iii) all other parameters were set to their default values. The first276

and second order statistics of the inferred JM matched well with those of the MSA (Fig. 1).277

2) Independent model (IM)278

The independent model comprised of two maximum entropy models, one for the E1 protein and the279

other for the E2 protein. The maximum entropy models for E1 protein and E2 protein were inferred using280

the E1 part and the E2 part of the E1E2 processed MSA, respectively. Specifically, the MSA of both281

E1 and E2 consisted of M = 5867 sequences from W = 871 patients, where each sequence contains282

N = 187 residues (5 fully conserved ones were excluded) for E1 and N = 347 residues (16 fully conserved283

ones were excluded) for E2. The MSA and the patient weights were further set as the input of the MPF-284

BML software using the same parameters as the JM except both L1 and L2 regularization parameters285

were set to 50 for couplings for E1 and 15 for E2, and 5 × 10−4 for fields for both E1 and E2. Both the286

statistics of the inferred E1-only model and E2-only model lined up well with those of the respective MSAs287

(Supplementary Fig. S1). The final IM was a linear combination of these two models, where the energy of288

a full E1E2 sequence x = [xE1, xE2] is given by289

E(x) = E(xE1) + E(xE2). (3)

Here, E(xE1) and E(xE2) represent the energy of the E1 part xE1 and E2 part xE2 of sequence x calculated290

from each E1-only or E2-only model according to Eq. (1).291

As we had inferred a maximum entropy E2-only model in a previous study [19], we further investigated292

if our previous E2-only model (inferred from 3363 sequences of E2 available at that time) was capable of293

capturing the statistical variations in the E2 MSA we curated in this study (5867 sequences). Our results294

support that this is indeed the case (Supplementary Fig. S4), suggesting that both these E2-only models295

are equally representative of the variations in the E2 protein sequence data. In addition, the correlation of296

both models with in-vitro infectivity measurements was also similar, suggesting that both E2-only models297

are also equally good representatives of the E2 fitness landscape (Supplementary Fig. S5).298

B. Calculation of the fraction of the correlated structure (FCS) captured by each model299

FCS of the E1E2 protein complex captured by a model is given by Imodel/I. Here I reflects the300

overall strength of correlations in the protein complex [23], quantified by the difference between the site-301

independent model entropy (Sind) and the true entropy of the protein complex (Strue). In contrast, Imodel302

represents the strength of correlations captured by a model, calculated by the difference between the303

site-independent model entropy (Sind) and the inferred model entropy (Smodel). Below we describe how we304

calculated these different entropies.305

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.03.535505doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535505
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

Sind was computed by considering amino acids at each E1E2 residue independently with the observed306

frequencies, which is given by307

Sind =
∑
a∈Ω

N∑
i=1

fi(a) ln fi(a), where Ω = {A,R, . . . , V,−} (the 20 amino acids and the gap). (4)

Strue was estimated using the procedure described in [23], [81] that involves incrementally sub-sampling308

the data and measuring its entropy. Specifically, we first randomly chose M sequences and calculated the309

the “naive estimate” of the entropy Snaive(M) through310

Snaive(M) =
∑

x∈Msequences

−f(x) ln f(x), M = 500, 1000, . . . (5)

where f(x) is the frequency of sequence x. We repeated this procedure 100 times with different random311

seeds for M sequences (M = 500, 1000, . . .) and took the mean of Snaive(M), denoted by 〈Snaive(M)〉,312

over these iterations for each given M . As shown in [81], the naive estimate of the entropy can be well fit313

by314

〈Snaive(M)〉 = Strue +
S1

M
+

S2

M2
, (6)

where S1 and S2 are constants that depend on the distribution of the data. They account for the bias and315

variance that arise due to finite sample size effects. When M → +∞, these correction terms vanish, and316

the naive estimate converges to the true entropy Strue. By plotting 〈Snaive(M)〉 against 1
M , we can observe317

the quadratic relationship between the two variables (Supplementary Fig. S6). Extrapolating the y-intercept318

(when 1
M → 0) from this plot provides an estimate for Strue.319

We calculated Smodel, the entropy predicted by the inferred models, using sequence ensemble generated320

by a Markov Chain Monte Carlo (MCMC) procedure [23]. For the JM, the sequence ensemble comprised321

99,990 full E1E2 sequences, and the model entropy was calculated as SJM = −
∑

x f(x) ln f(x).322

For the IM, a sequence ensemble of 99,990 sequences was generated for each of the E1 and323

E2 protein separately using their respective individual models. The entropy for IM was calculated as324

SIM = −
∑

xE1
f(xE1

) ln f(xE1
) −

∑
xE2

f(xE2
) ln f(xE2

), where xE1
and xE2

are sequences from the325

E1 and E2 sequence ensemble, respectively. Entropies were calculated over ten instances of MCMC runs326

for both JM and IM. All entropies calculated above are shown in Supplementary Fig. S7.327

C. Fitness verification328

We used in-vitro experimental infectivity measurements compiled from the literature [13], [29]–[35], [37],329

[40]–[43] (listed in Supplementary Data 3) to investigate if our inferred models for E1E2 (JM and IM) are330

capable of capturing the infectivity of the virus. As experiments were conducted under different lab settings,331

we considered the weighted average of Spearman correlation coefficients from different experiments. This332

can be written as333

r =

∑qexp

i=1Qiri∑qexp

i=1Qi
,
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where ri is the Spearman correlation coefficient obtained from experiment i, and Qi is the number of334

measurements. qexp is the total number of experiments.335

D. Identification of strongly-coupled residues in the E1 and E2 proteins336

To identify strongly-coupled pairs of mutations (top inter-protein couplings) between the E1 and E2337

proteins, we constructed “null models” to determine a threshold [67], [82]. Specifically, to maintain the338

observed single mutant probabilities but to break any pair-wise correlations in the E1E2 sequence data,339

we first constructed a “null MSA” by choosing amino acids at each residue with the observed frequencies340

while keeping the same number of sequences (M = 5867) and number of residues (N = 534). We then341

used the “null MSA” to infer a maximum entropy model, i.e, a null model. This procedure was repeated342

ten times, and the threshold was set as the top 0.1 percentile of the absolute mean value of Jij of these343

ten null models, which corresponds to roughly choosing about top 300 pairs of inter-protein couplings344

in the JM model. The residues that are present in these 300 inter-protein couplings are referred to as345

“strongly-coupled residues” throughout the manuscript.346

E. Statistical significance testing347

We calculated the statistical significance of the number of strongly-coupled residues (identified by our348

model) in each functional regions of E1 and E2 proteins, as well as in known escape mutations (listed349

in Supplementary Table S2), using a p-value. For a given set of residues in a protein region, this p-value350

corresponds to the probability of observing at least i residues out of j strongly-coupled residues in that351

region, where there are n total residues in that protein region out of N total residues of a protein (187 for352

E1 and 347 for E2). These can be written as353

p =

min(j,n)∑
q=i

(
j

q

)(
N − j
n− q

)
(
N

n

) . (7)

A p-value less than 0.05 for a protein region indicates statistically significant enrichment of residues of that354

region within the strongly coupled E1E2 inter-protein interactions.355

F. Visualization of interactions between strongly-coupled pairs of mutations356

To visualize the interactions between strongly-coupled pairs of mutations, we utilized a Circos plot. The357

E1E2 residues were evenly distributed along the outer edge of the circles in Fig. 4 and Fig. 5c. The358

numbering of the residues was started at 192 (corresponding to the first residue of E1 according to the359

H77 sequence) at the 3 o’clock position and progressed in a counter-clockwise direction. Each link within360

the circle represents a pair of strongly-coupled mutations (ranked by the absolute values of Jij from Eq. 1).361

G. Evolutionary simulation362

To quantify the average time it takes for each residue in E2 to escape with the effect of the E1 protein, we363

considered a viral in-host population genetics evolutionary model incorporated with the inferred JM similar364
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to [19]. We used the “escape time” metric to represent the number of generations it takes on average365

for the virus with a mutation at a given residue to reach majority (frequency > 0.5) in a fixed-sized viral366

population under targeted immune pressure.367

To be specific, we used a well-established Wright-Fisher model [50], where in each generation, the virus368

population undergoes mutation, selection, and random sampling steps. The virus population size was fixed369

at Me = 2000, in line with the effective HCV population size in in-host evolution [83]. For each residue i370

of the E2 protein, we formed the initial viral population with duplicates of a sequence with the consensus371

amino acid at residue i. In the mutation step, the nucleotide of each sequence was mutated randomly to372

another nucleotide at a fixed mutation rate µ = 10−4, consistent with the known HCV mutation rate [84],373

[85]. In the selection step, each sequence was selected based on its fitness predicted from the inferred374

JM. Specifically, we calculated the survival probability of a virus with sequence x by:375

fh,J(x) =
gh,J(x)∑
y gh,J(y)

, (8)

where gh,J(x) is a function that maps the predicted energy of sequence x smoothly to a value between 0376

and 1. This function is defined as:377

gh,J(x) =
eβ(Ē−Eh,J(x))

1 + eβ(Ē−Eh,J(x))
, (9)

where Ē is the average energy of the current sequence population, while β ∼ 0.1 was chosen based on378

the slope between predicted sequence energies and in-vitro infectivity measurements [19]. To model the379

immune pressure at residue i, the fitness of all sequences having the consensus amino acid at residue380

i was decreased by a fixed value b, thereby providing a selective advantage to the sequences having381

a mutation at this residue. The value of b was set according to the largest value of the field parameter382

in the inferred landscape. Next, the subsequent generation of virus population was generated through a383

standard multinomial sampling process parameterized by Me and fh,J(x). This procedure was continued384

until the mutations at residue i reached a frequency > 0.5. The number of generations at this iteration385

was recorded. This process was repeated 100 times with the same initial sequence and 25 distinct initial386

sequences as well. The final escape time tie of residue i was the mean number of generations over all387

these runs of simulation.388

To perform a fair comparison between the escape times predicted by the JM and those by the E2-only389

model in [19], we set the same simulation parameters for both models, including the fitness penalty factor390

b (10), the number of generations (500), the number of distinct sequences forming the initial population (25)391

for each residue, and the number of runs of simulation (100) for each distinct initial sequence. The mean392

escape time predicted for each residue by JM and E2-only model is provided in Supplementary Data 4.393

H. Identification of escape-resistant residues394

We ran the evolutionary simulation using the JM for all E1E2 residues following the same procedure395

described above. We employed a binary classifier that utilized known escape mutations (listed in396
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Supplementary Table S2) as true positives and all other residues as true negatives, which achieved an397

area under curve (AUC) of 0.92 (Supplementary Fig. S8a). We selected the optimal cut-off value of ζ ∼ 96398

for determining whether a residue in the E1E2 protein is relatively escape-resistant or not based on the399

maximum F1 score and MCC (Supplementary Figure S8b), commonly used metrics for evaluating binary400

classifiers.401

I. Evaluation of the efficacy of known HmAbs402

To evaluate the efficacy of known HmAbs based on the escape times obtained from the JM or the403

E2-only model, we adopted the following criteria. We compared the minimum escape time tmin
e predicted404

for a HmAb’s binding residues [37], [38], [56] with the cut-off value (ζ) for each model. If tmin
e of a HmAb405

was greater than ζ for a model, that HmAb was characterized as relatively escape-resistant by that model,406

and vice versa.407

J. Site-independent model408

In order to compare JM with a model that ignores all interactions between residues, we defined a409

site-independent E1E2 fitness landscape model that is characterized solely by the “fields” h as follows410

hi(a) = ln
1− fi(a)

fi(a)
, i = 1, 2, . . . , N, (10)

where fi(a) is the frequency of observing amino acid a at residue i.411

Data and code availability412

• All data used in this work is publicly available. Top 300 pairs of inter-protein couplings obtained from the413

JM are listed in Supplementary Data 1. Accession numbers of E1E2 sequences used for inferring JM414

and IM are listed in Supplementary Data 2. The E1E2 infectivity measurements, used for correlating415

with predictions obtained from the inferred JM and IM, are included in Supplementary Data 3. The416

mean escape time predicted for each residue by JM and E2-only model is provided in Supplementary417

Data 4.418

• The GUI-based software implementation of the MPF-BML method [21], used for inferring the fitness419

landscape model, is available at https://github.com/ahmedaq/MPF-BML-GUI [20]. Data and scripts for420

reproducing the results of this manuscript are available at https://github.com/hangzhangust/HCVE1E2.421

• Any additional information related to the data reported in this paper is available from the lead contact422

upon request.423
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Figures433

Fig. 1: Statistical validation of the inferred E1E2 JM. Comparison of the (a) single mutant probabilities,
(b) double mutant probabilities, (c) connected correlations, and (d) distribution of the number of mutants
per sequence obtained from the MSA and those predicted by the inferred JM. Samples were generated
from the inferred model using the MCMC method [25].
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Fig. 2: Comparison of the fraction of the correlated structure in E1E2 protein captured by the joint
model (JM) and the independent model (IM). Fraction of the correlated structure (FCS) captured by a
model is quantified by Imodel/I. Here, I = Sind − Strue is the multi-information which measures the overall
strength of correlations in the system, where Sind denotes the entropy of a site-independent model of E1E2
protein and Strue is the true entropy of the E1E2 complex estimated using the approach in [81] (see Methods
for details). Similar to I, Imodel = Sind − Smodel measures the strength of correlations captured by the JM
or IM model, where Smodel is the entropy predicted by the JM or IM model based on the data generated
using the MCMC method (see Methods for details) [23]. Entropies for the JM and IM were calculated over
10 instances of MCMC runs, and the p-value was calculated using the one-sided Mann-Whitney test.

Fig. 3: Comparison of the E1E2 fitness prediction by JM and IM. Normalized energies computed from
the inferred JM correlate strongly with the experimental fitness measurements. Conversely, the inferred
IM provided a much lower correlation (inset). Legend shows the references from which fitness/infectivity
measurements were compiled [13], [29]–[43].
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Fig. 4: Strong E1E2 inter-protein interactions are largely compensatory. Each pair of mutations between
E1 and E2 proteins was ranked by the absolute values of Jij from Eq. 1 and top 300 pairs are plotted here.
Compensatory interactions (negative values of Jij) are colored in orange, while antagonistic interactions
(positive values of Jij) are colored in purple. The outer segments of the circle represent E1 (shown in
black, encompassing residues 192-383) and E2 (shown in gray, encompassing residues 384-746) proteins.

Fig. 5: Role of E1 in facilitating viral escape from E2-specific HmAbs. (a) Distribution of escape times
of E2 residues using the inferred JM. Residues were divided into two categories: those with known escape
mutations from E2-specific HmAbs (listed in Supplementary Table S2) and the remaining E2 residues.
P -value was calculated using the one-sided Mann-Whitney test. (b) Comparison of escape times of E2
residues inferred from the JM and the E2-only model for the known E2 escape mutations (left panel)
and the remaining E2 residues (right panel). P -values were calculated using the one-sided Mann-Whitney
test. (c) Circos plot displaying the interactions between strongly-coupled residues (Fig. 4) involving escape
mutations (shown in blue) and the remaining residues (shown in beige). The reported p-value measures
the probability of observing by a random chance at least the observed number of E2 escape mutations
among strongly-coupled residues (see Methods for details).
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Fig. 6: Evaluation of known HmAbs using the escape times inferred from the JM and the E2-
only model. For each HmAb, escape time associated with all binding residues was predicted using both
models. Each circle in the figure represents the minimum escape time associated with the binding residues
of each HmAb predicted by the JM (x-axis) and the E2-only model (y-axis). Global alanine scanning
mutagenesis [37], [38], [56] was used to determine the binding residues of each HmAb, where each
residue of the wild-type sequence was replaced by alanine (or glycine/serine if the residue in the wild-type
was alanine). We defined binding residues of each of these HmAbs as residues with relative binding (the
fraction of the mutant sequence’s binding compared to the wild-type sequence) less than or equal to 20%.
HmAbs predicted to be escape-resistant by both models are colored in red, the ones predicted to be
escape-resistant only by the E2-only model are colored in orange, and the ones predicted to be easy to
escape by both models (HmAbs 212.1.1, 212.10, A27, AR1A, AR1B, AR2A, AR3A, AR3B, AR3C, AR3D,
CBH-4B, CBH-4D, CBH-4G, CBH-5, CBH-20, CBH-21, CBH-22, HC33-4, HC-11, HC84-24, HC84-26) are
colored in blue. The HmAbs having binding residues in E1 (HmAbs AR4A, AR5A and IGH526) are shown
in gray and plotted along the x-axis, since E2-only model could not be used to predict their escape time.
The dashed line denotes the optimal cut-off value ζ for each model (see Methods for details).
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Supplementary Figures616

Fig. S1: Statistical validation of the inferred IM for the E1E2 protein. Comparison of the (a) single
mutant probabilities, (b) double mutant probabilities, (c) connected correlations, and (d) distribution of the
number of mutants per sequence obtained from the MSA (E1 in left panels and E2 in right panels of each
subfigure) and those predicted by the inferred IM. Samples were generated from the inferred model using
the MCMC method [1].

Fig. S2: Robustness of the fraction of compensatory E1E2 inter-protein interactions (Fig. 4) to the
number of top inter-protein couplings selected. Top pairs of E1E2 inter-protein couplings were ranked
by the absolute values of Jij from Eq. 1. Fraction of compensatory interactions were calculated by the
number of negative values of Jij divided by top x pairs of inter-protein couplings considered.
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Fig. S3: Correlation between infectivity measurements and predictions obtained from a site-
independent model. The site-independent model was inferred using only single mutant probabilities (see
Methods for details). Legend shows the references from which fitness measurements were compiled [2]–
[17].

Fig. S4: E2-only model inferred in our previous study [18] reproduces statistics of the MSA based
on the latest E2 sequence data. The model in [18] was inferred using HCV E2 sequence data up until
September 2017. Comparison of the (a) single mutant probabilities, (b) double mutant probabilities, (c)
connected correlations, and (d) distribution of the number of mutants per sequence obtained from the
MSA and those predicted by the previous E2-only model. Samples were generated from the previous
E2-only model using the MCMC method [1]. Pearson correlation coefficient and the associated p-value is
shown for each subfigure.
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Fig. S5: Comparison of the fitness prediction of the E2-only model inferred in this work (left panel)
and in our previous study [18] (right panel). The model in [18] was inferred using HCV E2 sequence
data up until September 2017. Normalized energies computed from both models correlate strongly with
E2-only experimental fitness measurements. Legend shows the references from which E2-only fitness
measurements were compiled [2]–[12].

Fig. S6: Estimate of the true entropy. 〈Snaive(M)〉 vs. 1
M (shown as circles) can be well fit by 〈Snaive(M)〉 =

Strue + S1

M + S2

M2 (shown as dashed line), where S1 and S2 are constants [19], [20]. The y-intercept of the
fit provides an estimate for the true entropy, Strue (see Methods for details).
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Fig. S7: Entropy calculated from different models for the E1E2 protein. Sind denotes the entropy of a
site-independent model of E1E2 protein, where we considered choosing amino acids at each residue of
the E1E2 protein independently with the observed frequencies. SIM and SJM are entropies calculated from
the inferred IM and the JM (calculated over 10 instances of MCMC runs), and Strue is the estimated true
entropy (see Methods for details).

Fig. S8: Binary classifier designed to determine the optimal cut-off for escape time based on
experimentally or clinically identified escape mutations. The classifier used a Receiver Operating
Characteristic (ROC) curve to identify known E2 escape mutations (listed in Supplementary Table S2)
using the escape time metric. The optimal cut-off value was determined by maximizing the F1 score and
the Matthews Correlation Coefficient (MCC). In this classification, E2 residues with known escape mutations
were considered as true positives, while all remaining residues were considered true negatives.
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Supplementary Tables617

TABLE S1: List of functional regions of E1 and E2 proteins along with the statistical significance
of enrichment of strongly-coupled residues in each region.

Regions of E1 p-value Regions of E2 p-value
Putative fusion peptides of E1
(Fusion E1, residue 265-296)

0.7736
Hypervariable region 1
(HVR1, residue 384-410)

7.5e-8

Stem region of E1
(Stem E1, residue 309-349)

0.8251
Hypervariable region 2
(HVR2, residue 460-482)

3.0e-4

Transmembrane domain of E1
(TMD E1, residue 350-381)

0.5719
Intergenotypic variable region
(igVR, residue 570-580)

0.5848

N-terminal domain of E1
(NTD E1, residue 192-239)

0.7233
Stem region of E2
(Stem E2, residue 662-717)

0.9991

Other regions of E1
(Other E1)

0.0776
Transmembrane domain of E2
(TMD E2, residue 718-742)

0.9961

Other regions of E2
(Other E2)

0.9858

TABLE S2: List of known escape mutations from E2-specific HmAbs.

Escape residues HmAbs Reference
408 HC33-4 [21]
384, 386, 388, 390, 391, 393, 394,
395, 396, 397, 398, 399, 400, 401,
402, 403, 404, 405, 407, 410

HmAbs targeting HVR1 [22]

431 CBH-2 [23]
431, 435, 444, 446, 466, 482, 501,
528, 531, 538, 580, 610, 636, 713

CBH-8C, CBH-2, CBH-5, HC-2,
HC-11

[7]

391, 394, 401, 415, 417, 434, 444,
608 HCV1 [24]
416, 422, 424, 431, 433, 438, 442,
446, 453, 456, 461, 475, 482, 520,
524, 531, 533, 557, 558, 560

CBH-2, CBH-5, HC84-22, HC84-26,
AR3A, AR3B, AR3C, AR3D

[25]

431, 438, 442 AR3A [26]
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