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Abstract

The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a noncovalent heterodimer with E2, the main
target of neutralizing antibodies. How E1-E2 interactions influence viral fithess and contribute to resistance
to E2-specific antibodies remains largely unknown. We investigate this problem using a combination of
fitness landscape and evolutionary modelling. Our analysis indicates that E1 and E2 proteins collectively
mediate viral fitness, and suggests that fitness-compensating E1 mutations may accelerate escape from
E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies
that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing

directions for robust HCV vaccine development.

Keywords: Hepatitis C virus, envelope protein E1, envelope protein E2, fitness landscape, evolutionary

model, statistical inference, inter-protein interactions, broadly neutralizing antibodies.
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l. Introduction

Hepatitis C virus (HCV), a single-stranded RNA virus, is the major cause of liver-associated disease and
liver cancer. Currently, an estimated 58 million people are chronically infected with HCV [1]. Although direct-
acting antivirals (DAAs) have been developed and offer promising treatments for chronic HCV infections,
their high cost and low rates of HCV diagnosis limit their accessibility to a subset of infected individuals
only [1], [2]. Additionally, the efficacy of DAAs is limited by their inability to prevent reinfection and the
emergence of drug-resistant viral strains [3], [4]. Therefore, developing an effective vaccine is crucial for
eradication of HCV.

HCV encodes a single polyprotein, which is further cleaved by cellular and viral proteases into three
structural proteins (core, E1, and E2) and seven non-structural proteins (NS1, NS2, NS3, NS4A, NS4B,
NS5A, and NS5B). The envelope protein E2 is vital for viral entry into liver cells (hepatocytes), and it is
the major target of neutralizing antibodies elicited against HCV [5]. Studies have shown that E2 alone can
induce a potent humoral immune response and serve as a promising vaccine candidate [6]-[8]. However,
the other envelope protein E1, which forms noncovalent heterodimers with E2 [5], has a function that
has been shown to be inter-dependent with E2 [9]-{14]. For instance, E1 helps E2 maintain its functional
conformation and regulates E2’s interaction with HCV receptors CD81 and SR-B1 [10]-[13], and both E1
and E2 are needed for interaction with CLDN1 [13], a key factor in HCV entry. E1 has also been shown to
modulate the folding of E2 [15], [16]. While preliminary experiments suggest that specific mutations in E1
and E2 may jointly modulate viral infectivity [13], a comprehensive analysis of the role of E1E2 inter-protein
interactions in mediating viral fitness is still lacking. Moreover, fithess of HCV is closely related to its ability
to escape from antibody responses [17], [18]. Therefore, investigating the effect of E1 on escape from
E2-specific neutralizing antibodies is of particular interest.

To study the role of E1E2 inter-protein interactions in mediating viral fithess and antibody evasion, we
develop a computational fitness landscape model, the joint model (JM), that considers interactions between
E1 and E2 proteins. Comparing JM with a model that considers E1 and E2 proteins independently, named
the independent model (IM), we find that JM captures more correlated structure in the E1E2 protein
sequence data, providing a statistical quantification of the mutational interactions between E1 and E2.
Comparing with the available in-vitro infectivity data, JM is found to be a better representative of the intrinsic
fitness landscape of E1E2 compared to IM. These results suggest that E1 and E2 proteins collectively
mediate infectivity of the virus. Based on the JM, we find that the strong E1E2 inter-protein interactions
might be compensatory instead of antagonistic.

To investigate the role of E1 on E2 in antibody evasion, we incorporate the JM into an in-host evolutionary
model and assess antibody escape dynamics. We predict that the residues with known escape mutations
would be easier to escape according to the JM compared with an E2-only model [19]. This points to the
potential role of E1 in facilitating escape from E2-targeting antibodies. We use the evolutionary model to
study the efficacy of human monoclonal antibodies (HmAbs) known for HCV, and compare the results

with those obtained from the E2-only model. We find, again, that E1 may facilitate the virus to escape
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specific HmAbs targeting E2. Our analysis also reveals potentially escape-resistant HmAbs against the

E1E2 complex, offering directions for the development of an effective vaccine against HCV.

Il. Results

A. Inference and statistical validation of the joint model for the E1E2 protein

We developed a computational model, termed JM, for the entire E1E2 protein using the sequence data
available for subtype 1a . This model uses a maximum entropy approach to estimate the probability of

observing a virus with a specific E1E2 protein sequence . In this model, the probability of any sequence

X = [z1,%2,...,xN] is given by
e’E(x) N—-1 N N
Poi(x) = —— where E(x) = 2 Z;l Jij (x4, m5) + z;h (i), (1)
=1 j=1 1=

where N is the length of the sequence, and Z = )" e~ Fn3(¥) is a normalization factor which ensures
the probabilities sum to one. The fields h and couplings J parameters represent the effect of mutations at
a single residue and interactions between mutations at two different residues, respectively. F(x) denotes
the energy of sequence x, which is inversely related to its prevalence. Inference of a maximum entropy
model involves choosing the fields and couplings such that the model can reproduce the single and double
mutant probabilities observed in the E1E2 sequence data.

We inferred the E1E2 maximum entropy model using the GUI-based software implementation of MPF-
BML [20] (see Methods for details), an efficient inference framework introduced in [21]. The single and
double mutant probabilities obtained from the JM matched well with the E1E2 sequence data (Fig. 1a, b).
Although not explicitly included in model inference, additional statistics including the connected correlations
and the distribution of the number of mutations computed from the model also agreed well with those
obtained from the E1E2 sequence data (Fig. 1c, d), demonstrating the predictive power of the inferred

model. Overall, these results indicate that the inferred E1E2 JM captures well the statistics of the data.

B. E1E2 inter-protein interactions are important in mediating viral fitness

While some studies have considered E2 alone (i.e., independent of E1) [6]-[8], multiple studies have
reported that these two proteins are functionally inter-dependent [10]-[13]. This suggests that interactions
between E1 and E2 may be critical. Previously, we had investigated E2 alone wherein we had inferred
a fitness landscape model for E2 and used it to explore HCV escape dynamics from neutralizing
antibodies [19], [22]. Here, to investigate the importance of E1E2 inter-protein interactions on virus fithess
and immune escape, we compared the inferred JM with a model that considers E1 and E2 proteins to be
independent (see Methods for details). We refer to it as the independent model (IM). In this model, the
energy of an E1E2 protein sequence x = [xg1, Xg2] is given by the sum of the energies of its E1 and E2

parts, xg1 and xg», respectively:

E(x) = E(Xgy) + E(Xgy)- @
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Here, E(xg,) and E(xg,) are computed separately using inferred E1-only and E2-only maximum entropy
models, respectively (see Methods for details). Both the E1-only and E2-only models capture well the
statistics of the respective sequence data (Supplementary Fig. S1).

Equipped with the JM and IM models, we first investigated whether E1 and E2 proteins can be considered
statistically independent. This can be quantified by comparing the fraction of the correlated structure (FCS)
of the E1E2 protein complex captured by the two models [23]. FCS captured by a model can be estimated
using the entropy of the synthetic sequence data generated by the inferred model and comparing it with
the entropy of an independent model and the estimated true entropy of the data (see Methods for details).
If FCSs captured by both the JM and IM models are similar, it will be suggestive of E1 and E2 to be
independent. Based on our analysis, the average FCS of the E1E2 protein complex captured by the JM
(63%) was 22% more than that captured by the IM (41%) (p = 9.1 x 107°; Fig. 2), suggesting that E1 and
E2 proteins are not statistically independent. Thus, there seem to be significant inter-protein correlations
that are not captured by the IM.

We next investigated if the additional correlations captured by the JM, compared to IM, make it a
better representative of the intrinsic E1E2 fitness landscape. Maximum entropy models have been shown
previously to be good representatives of the underlying fitness landscapes for multiple individual viral
proteins of HCV (polymerase [24] and E2 [19], [22]) and HIV [21], [25]-[28]. To test this for JM and IM, we
compared the predictions of both models using the in-vitro infectivity measurements available for E1E2.
We compiled a total of 156 in-vitro infectivity measurements for E1E2 from 16 studies [13], [29]-[43]. We
found that the JM provided a stronger negative Spearman correlation (7 = —0.70; see Methods for details)
between the predicted sequence energies (inversely related to prevalence) and experimental fitness values
(Fig. 3) than the IM (7 = —0.54; Fig. 3, inset). This result suggests that JM is a better representative of
the E1E2 fitness landscape. It also indicates the potential importance of E1E2 inter-protein interactions in

mediating viral fithess.

C. Majority of strong E1E2 inter-protein interactions are compensatory

The couplings of the inferred maximum entropy model (J;; in Eq. 1) are informative of the type of
interactions between residues [44], [45]. When the value of J;; is large and positive, it signifies a strong
antagonistic interaction or negative epistasis between residues ¢ and j. This results in a decrease in the
fitness of double mutants and makes it harder for new mutations to occur [46]. On the other hand, when
the value of J;; is large and negative in Eqg. 1, it indicates a strong compensatory interaction or positive
epistasis between residues ¢ and j. This signifies improved replication of double mutants, allowing the virus
to acquire diverse mutations.

Analyzing the top 300 pairs of inter-protein couplings (listed in Supplementary Data 1), i.e., with large
absolute values of J;;, we found that the majority (70%) were negative (Fig. 4). This suggests that the
top inter-protein couplings are largely compensatory, and that simultaneous mutations in the two proteins

may assist in maintaining a viable virus. This result was robust to the number of top inter-protein couplings
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considered (Supplementary Fig. S2). A recent study reported E1E2 as a highly fragile complex, with 92%
of alanine mutations introduced independently at each residue severely impacting virus fitness [43]. The
strong compensatory interactions identified in our analysis indicate a potential mechanism by which E1
and E2, the most variable HCV proteins, may make multiple mutations while maintaining viral fitness.
We further quantified whether the strongly-coupled residues (those associated with top 300 pairs of
inter-protein couplings) were enriched in any known functional region of E1 and E2 proteins (see Methods
for details). We observed that the strongly-coupled residues were statistically significantly enriched in
hypervariable region 1 (HVR1) and hypervariable region 2 (HVR2) of E2 (Supplementary Table S1),
suggesting that these regions may be involved in interactions with E1. This is also consistent with the
literature that has shown that HVR2 is essential for the formation of the E1E2 heterodimer [47], and
epistatic interactions exist between E1 and HVR1 of E2 [48]. As their names suggest, these two regions
are highly variable, and are known to modulate viral escape from neutralizing antibodies [49]. Hence, the
potential compensatory interactions between E1 and these two E2 regions may contribute to viral immune

evasion.

D. Evolutionary simulations suggest the E1 protein contributes to escape from

E2-specific antibody responses

To gain a deeper understanding of the impact of E1 on viral escape dynamics from E2-specific antibody
responses, we quantified and compared the average time it takes for E2 residues to escape with and
without the influence of E1. To achieve this, we utilized an in-host evolutionary model that takes into
account the stochastic dynamics of viral evolution within the host including virus-host interactions, virus-
virus competition, and escape pathways that the virus may employ to evade immune pressure. Similar
models have been used previously for simulating in-host viral evolution for HIV [27] and HCV [19], [22].
Here, we incorporated the inferred JM into a population genetics model, similar to the well-established
Wright-Fisher model [50]. By doing so, we were able to predict the average number of generations, referred

to as “escape time”, for each E2 residue to escape selective pressure (see Methods for more details). To
determine escape times of these residues without the influence of the E1 protein, we utilized the E2-only
model developed in our previous work [19].

Previously, the E2-only model has been shown to be capable of predicting known escape mutations
from multiple E2-specific HmADbs [34], [51]-[55] (listed in Supplementary Table S2), where these mutations
were shown to be associated with lower escape times compared to mutations at other residues [19] as
they enable the virus to evade the associated antibody pressure. We found that this was also true for the
inferred JM (p = 9.9 x 10~24; Fig. 5a), suggesting the JM to be capable of distinguishing E2 residues
associated with low and high escape times.

Further comparing the escape times of E2 residues inferred from these two models, we found that

the escape times of residues associated with escape mutations inferred from the JM were marginally

significantly lower (p = 0.077; Fig. 5b, left panel) than those from the E2-only model. In contrast, there
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was not much difference between the escape times of the remaining E2 residues (p = 0.525; Fig. 5b, right
panel). This suggests that the E1 protein may assist in viral escape from E2-specific antibodies. In addition,
we found that the strongly-coupled inter-protein residues (Fig. 4) were statistically significantly enriched in
escape mutations (p = 5.4 x 10~'; Fig. 5c). This further corroborates the potential role of E1 in mediating

viral escape from neutralising antibodies.

E. For multiple E2-specific HmAbs, E1 is predicted to provide accelerated escape

dynamics

Previously, we utilized the E2-only model to assess the efficacy of each known E2-specific HmAb based
on the minimum escape time predicted for its binding residues [19], [22] (see Methods for details). Our
analysis above suggests that E1 may potentially assist E2 in antibody evasion, hence we further studied
how this would impact the efficacy of known HmAbs predicted by the JM in comparison to the E2-only
model. We first employed a binary classifier [19] to determine an optimal cut-off value ({ = 96 generations)
for identifying escape-resistant residues based on the JM. This binary classifier utilized known escape
mutations (listed in Supplementary Table S2) as true positives and the remaining E1E2 residues as true
negatives, as detailed in Methods. We subsequently evaluated each antibody by comparing the minimum
escape time predicted for its binding residues with the corresponding optimal cut-off value ¢ for each model.
For this analysis, we focused on 32 HmAbs for which binding residues have been determined using global
alanine scanning experiments [37], [38], [56].

Based on our previous predictions using the E2-only model, we had identified 21 E2-specific HmAbs
that appear relatively easy for the virus to escape. These predictions were also consistent with the JM
(Fig. 6). Among these HmADbs, studies have shown that AR1A, AR1B, AR2A, CBH-4B, CBH-4D, CBH-4G,
CBH-20, CBH-21, and CBH-22 were non-neutralizing or isolate-specific [57]-[59], which further supports
our predictions for both models. The remaining eight E2-specific HmAbs (212.15, 212.25, CBH-7, CBH-23,
HC-1, HC33-1, HC84-20 and HCV1) were predicted to be escape-resistant by the E2-only model. However,
only four (212.15 and 212.25, HC33-1, and HCV1) among these were predicted to be escape-resistant
by JM (Fig. 6). The predictions of JM for these HmADbs align well with literature reports. For instance,
HmAbs 212.25 and 212.15, isolated from patients who had spontaneously cleared HCV, were found to be
cross-neutralizing [56]. HC33-1 and HCV1 have also been reported as potentially escape-resistant broadly
neutralizing antibodies in multiple studies [37], [60]-[62]. On the other hand, of the four HmAbs (HC84-20,
CBH-23, HC-1 and CBH-7) predicted to be escape-resistant by the E2-only model but not by the JM,
studies have observed escape for strains isolated from patients who underwent liver transplantation for
HmAbs CBH-23 and HC-1, while HmAb CBH-7 was obtained from a patient with chronic HCV infection
[56], [63]. These findings suggest that E1 may play a role in facilitating HCV escape from these antibodies.
Notably, the JM enabled identification of one HmAb, IGH526, that targets the E1 protein and may be
escape resistant. Multiple studies have reported that IGH526 is cross-neutralizing and can target various

HCYV isolates from different genotypes [64], [65].
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lll. Discussion

E1 and E2 are envelope proteins of HCV that form noncovalent heterodimers. While E2 is the major
target of HmAbs and a promising vaccine candidate, E1 is also important for HCV entry and assembly,
and it interacts with E2. Comparing a joint model (JM) that takes into account E1E2 interactions with
an independent model (IM) that does not, we have determined that these interactions are important in
mediating virus infectivity and immune escape. The top E1E2 inter-protein interactions are compensatory
and enriched in HVR1 and HVR2 of E2. Further using in-host evolutionary modelling, our analysis suggests
that E1 may facilitate HCV in escaping E2-specific antibody responses. We have identified potentially
escape-resistant HmAbs against the E1E2 complex, which could aid in the development of a robust
prophylactic vaccine against HCV.

By comparing the correlation between in-vitro infectivity measurements and predictions of the JM and
IM (Fig. 3), our study highlighted the importance of E1E2 inter-protein interactions in mediating viral fitness.
This was further reinforced by comparing the predictions of the JM with those of a site-independent E1E2
fithess landscape model (see Methods for details), which showed that the correlation between the JM
predictions and in-vitro fitness measurements was much higher than that of the site-independent model (7 =
—0.54; Supplementary Fig. S3). These findings are consistent with previous studies that have emphasized
the importance of considering interactions when inferring protein fithess landscapes [19], [21], [22], [24],
[25], [27], [28], [66], [67] and for identifying networks of residues that play crucial roles in protein structure
and function of viruses [68]-[72].

A recent experimental study has shown that E1E2 is a fragile protein complex wherein even a single
alanine mutation at 92% of positions abrogates replicative capacity of the virus [43]. Therefore, our finding
that 70% of the top 300 pairs of mutations (ranked by absolute values of J;;) between E1 and E2 are
compensatory suggests that these interactions may play a significant role in mediating viral fitness. To
further investigate this experimentally, it would be helpful to conduct assays that quantify the change in
replicative fithess by site-directed mutagenesis of the pairs of mutations identified to be associated with
strong compensatory interactions (e.g., top 10) individually and simultaneously (Supplementary Data 1).

Comparing the JM and the E2-only model, we found ten residues that were predicted to be escape-
resistant by the E2-only model but easy to escape according to the JM. Interestingly, four of these (residues
424, 437, 537 and 538) are known antibody binding residues, which suggests that the E1 protein may
interact with these residues during antibody evasion. This motivates experimental studies for investigating
the interactions between these four residues in the E2 and the E1 protein. One approach could involve
longitudinal experiments [73], where the virus is allowed to infect cells in the presence of antibodies
that specifically target these four residues, and changes in these residues as well as the E1 protein are
monitored over time. By doing so, it could be determined if mutations arise at these residues in response to
antibody pressure, and if simultaneous mutations are also observed in the E1 protein. This would provide
important insights into the mechanisms by which the virus evolves to evade immune responses [74], which

could ultimately inform the design of an effective vaccine against HCV.
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By applying the JM and the E2-only model to evaluate the efficacy of known HmAbs, we identified 25
HmAbs with consistent predictions for both models (Fig. 6). Among these, four HmAbs were predicted
to be escape-resistant, while the other 21 HmAbs were not. This motivates investigating the differences
in escape dynamics [75] between these two sets of HmAbs. For instance, experimentally quantifying the
average time (number of generations) it takes for the virus to escape from HmAbs 212.15, 212.25, HC33-1
or HCV1 (escape-resistant HmADbs) in comparison to HmAbs AR3A, AR3C or AR3D (non-escape-resistant
HmAbs) would be a helpful follow up study.

Four HmAbs (HC-1, CBH-23, CBH-7 and HC84-20) were associated with different predictions based
on the JM compared to the E2-only model (Fig. 6). We found that the different predictions for these
HmAbs were due to the differences in escape times of two specific binding residues 437 and 537 by
these two models, which are shared by these HmAbs. Intriguingly, these two residues are also CD81
binding residues [76]. Experiments to study the interactions between E1 and CD81 binding residues may

be beneficial for discovering their potential roles in compensating viral infectivity or mediating viral entry.

IV. Methods

A. Inference of computational models for the E1E2 protein

To explore the role of E1E2 inter-protein interactions, we considered two types of computational models
for the E1E2 protein: One taking into account the E1E2 inter-protein interactions, named the joint model
(JM), and the other without the E1E2 inter-protein interactions, named the independent model (IM).

1) Joint model (JM)

To infer a maximum entropy (least-biased) model for the whole E1E2 protein jointly, we downloaded
8,021 aligned E1 subtype 1a and 6,225 aligned E2 subtype 1a sequences from the HCV-GLUE database
(http://hev.glue.cvr.ac.uk) [77], [78], both with genome coverage > 99%. We constructed the MSA of the
whole E1E2 protein by stitching together E1 and E2 sequences based on the information in their headers,
yielding 6,198 E1E2 sequences. We conducted a principal component analysis (PCA) on the pair-wise
similarity matrix (6198 x 6198) of the sequences [79], where the (¢, j)th entry of the similarity matrix
represents the fraction of residues that are identical in sequence 7 and 7, to remove any outlier sequences.
We considered a sequence as an outlier if its corresponding value in the first PC was more than 3 scaled
median absolute deviations [80] from the median of the first PC. We also excluded 264 sequences for which
patients’ information was not available. After these filtering procedures, we had M = 5867 sequences from
W = 871 patients. Moreover, we excluded 21 fully-conserved E1E2 residues to improve the quality of the
residues. Hence, the processed MSA was composed of M = 5867 sequences (listed in Supplementary
Data 2) and N = 534 residues. We constructed a least-biased maximum entropy model for the E1E2
protein that can reproduce the single and double mutant probabilities of this processed MSA (Eq. 1).

To infer parameters (h and J) of the maximum entropy model, we used the GUI realization of MPF-
BML [20], an efficient inference framework introduced in [21]. This software requires an MSA as input and

a vector comprising the patient weight of each sequence included in the MSA. Patient weight is computed
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as the inverse of the number of sequences associated with each patient. The MPF-BML parameters used
for inferring the model parameters (fields h and couplings J) are: (i) L1 regularization parameters were
set to 5 x 10~ for both fields and couplings. (ii) L. regularization parameters were set to 0.05 for fields,
and 125 for couplings respectively and (iii) all other parameters were set to their default values. The first
and second order statistics of the inferred JM matched well with those of the MSA (Fig. 1).

2) Independent model (IM)

The independent model comprised of two maximum entropy models, one for the E1 protein and the
other for the E2 protein. The maximum entropy models for E1 protein and E2 protein were inferred using
the E1 part and the E2 part of the E1E2 processed MSA, respectively. Specifically, the MSA of both
E1 and E2 consisted of M = 5867 sequences from W = 871 patients, where each sequence contains
N = 187 residues (5 fully conserved ones were excluded) for E1 and IV = 347 residues (16 fully conserved
ones were excluded) for E2. The MSA and the patient weights were further set as the input of the MPF-
BML software using the same parameters as the JM except both L; and Lo regularization parameters
were set to 50 for couplings for E1 and 15 for E2, and 5 x 10~ for fields for both E1 and E2. Both the
statistics of the inferred E1-only model and E2-only model lined up well with those of the respective MSAs
(Supplementary Fig. S1). The final IM was a linear combination of these two models, where the energy of

a full E1E2 sequence x = [xg1, Xgo] is given by

E(x) = E(Xgy) + E(Xgy)- ©)

Here, E(xg,) and E(xg,) represent the energy of the E1 part xg1 and E2 part xg» of sequence x calculated
from each E1-only or E2-only model according to Eq. (1).

As we had inferred a maximum entropy E2-only model in a previous study [19], we further investigated
if our previous E2-only model (inferred from 3363 sequences of E2 available at that time) was capable of
capturing the statistical variations in the E2 MSA we curated in this study (5867 sequences). Our results
support that this is indeed the case (Supplementary Fig. S4), suggesting that both these E2-only models
are equally representative of the variations in the E2 protein sequence data. In addition, the correlation of
both models with in-vitro infectivity measurements was also similar, suggesting that both E2-only models

are also equally good representatives of the E2 fitness landscape (Supplementary Fig. S5).

B. Calculation of the fraction of the correlated structure (FCS) captured by each model

FCS of the E1E2 protein complex captured by a model is given by Imegei/I. Here I reflects the
overall strength of correlations in the protein complex [23], quantified by the difference between the site-
independent model entropy (Sing) and the true entropy of the protein complex (Syue). In contrast, Imogel
represents the strength of correlations captured by a model, calculated by the difference between the
site-independent model entropy (Sing) and the inferred model entropy (Smodel)- Below we describe how we

calculated these different entropies.
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Sing Was computed by considering amino acids at each E1E2 residue independently with the observed

frequencies, which is given by

Sna = Z fi(a)In f;(a), where Q = {A,R,...,V,—} (the 20 amino acids and the gap).  (4)
a€eN i=1

Strue Was estimated using the procedure described in [23], [81] that involves incrementally sub-sampling
the data and measuring its entropy. Specifically, we first randomly chose M sequences and calculated the
the “naive estimate” of the entropy Shaive(M) through

Snave(M) = > —f(x)In f(x), M =500, 1000, ... (5)

x€Msequences
where f(x) is the frequency of sequence x. We repeated this procedure 100 times with different random
seeds for M sequences (M = 500, 1000, ...) and took the mean of Shave(M), denoted by (Snaive(M)),
over these iterations for each given M. As shown in [81], the naive estimate of the entropy can be well fit
by

S1 S

<Snaive(M>> = Strue M + W: (6)

where S; and S, are constants that depend on the distribution of the data. They account for the bias and
variance that arise due to finite sample size effects. When M — +oo, these correction terms vanish, and
the naive estimate converges to the true entropy Syue. By plotting (Shave(M)) against -, we can observe
the quadratic relationship between the two variables (Supplementary Fig. S6). Extrapolating the y-intercept
(when ﬁ — 0) from this plot provides an estimate for Siye.

We calculated Smogel, the entropy predicted by the inferred models, using sequence ensemble generated
by a Markov Chain Monte Carlo (MCMC) procedure [23]. For the JM, the sequence ensemble comprised
99,990 full E1E2 sequences, and the model entropy was calculated as Syv = —), f(x)In f(x).
For the IM, a sequence ensemble of 99,990 sequences was generated for each of the E1 and
E2 protein separately using their respective individual models. The entropy for IM was calculated as
Sm = —ZxEl f(xg,)In f(xg,) — ZXE2 f(xg,)In f(xg,), where xg, and xpg, are sequences from the
E1 and E2 sequence ensemble, respectively. Entropies were calculated over ten instances of MCMC runs

for both JM and IM. All entropies calculated above are shown in Supplementary Fig. S7.

C. Fitness verification

We used in-vitro experimental infectivity measurements compiled from the literature [13], [29]-{35], [37],
[40]43] (listed in Supplementary Data 3) to investigate if our inferred models for E1E2 (JM and IM) are
capable of capturing the infectivity of the virus. As experiments were conducted under different lab settings,
we considered the weighted average of Spearman correlation coefficients from different experiments. This

can be written as

Qexp
_ i=1 zrz

Qexp Q
7
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where r; is the Spearman correlation coefficient obtained from experiment i, and @Q; is the number of

measurements. gexp is the total number of experiments.

D. Identification of strongly-coupled residues in the E1 and E2 proteins

To identify strongly-coupled pairs of mutations (top inter-protein couplings) between the E1 and E2
proteins, we constructed “null models” to determine a threshold [67], [82]. Specifically, to maintain the
observed single mutant probabilities but to break any pair-wise correlations in the E1E2 sequence data,
we first constructed a “null MSA” by choosing amino acids at each residue with the observed frequencies
while keeping the same number of sequences (M = 5867) and number of residues (N = 534). We then
used the “null MSA” to infer a maximum entropy model, i.e, a null model. This procedure was repeated
ten times, and the threshold was set as the top 0.1 percentile of the absolute mean value of J;; of these
ten null models, which corresponds to roughly choosing about top 300 pairs of inter-protein couplings
in the JM model. The residues that are present in these 300 inter-protein couplings are referred to as

“strongly-coupled residues” throughout the manuscript.

E. Statistical significance testing

We calculated the statistical significance of the number of strongly-coupled residues (identified by our
model) in each functional regions of E1 and E2 proteins, as well as in known escape mutations (listed
in Supplementary Table S2), using a p-value. For a given set of residues in a protein region, this p-value
corresponds to the probability of observing at least i residues out of j strongly-coupled residues in that
region, where there are n total residues in that protein region out of IV total residues of a protein (187 for

E1 and 347 for E2). These can be written as

o IN(N—J
Al <Q> (n - Q>
p= Y o4l 7)

=0

A p-value less than 0.05 for a protein region indicates statistically significant enrichment of residues of that

region within the strongly coupled E1E2 inter-protein interactions.

F. Visualization of interactions between strongly-coupled pairs of mutations

To visualize the interactions between strongly-coupled pairs of mutations, we utilized a Circos plot. The
E1E2 residues were evenly distributed along the outer edge of the circles in Fig. 4 and Fig. 5¢c. The
numbering of the residues was started at 192 (corresponding to the first residue of E1 according to the
H77 sequence) at the 3 o’clock position and progressed in a counter-clockwise direction. Each link within

the circle represents a pair of strongly-coupled mutations (ranked by the absolute values of J;; from Eq. 1).

G. Evolutionary simulation

To quantify the average time it takes for each residue in E2 to escape with the effect of the E1 protein, we

considered a viral in-host population genetics evolutionary model incorporated with the inferred JM similar


https://doi.org/10.1101/2023.04.03.535505
http://creativecommons.org/licenses/by-nc-nd/4.0/

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.03.535505; this version posted April 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license. 12

to [19]. We used the “escape time” metric to represent the number of generations it takes on average
for the virus with a mutation at a given residue to reach majority (frequency > 0.5) in a fixed-sized viral
population under targeted immune pressure.

To be specific, we used a well-established Wright-Fisher model [50], where in each generation, the virus
population undergoes mutation, selection, and random sampling steps. The virus population size was fixed
at M. = 2000, in line with the effective HCV population size in in-host evolution [83]. For each residue ¢
of the E2 protein, we formed the initial viral population with duplicates of a sequence with the consensus
amino acid at residue . In the mutation step, the nucleotide of each sequence was mutated randomly to
another nucleotide at a fixed mutation rate © = 10~%, consistent with the known HCV mutation rate [84],
[85]. In the selection step, each sequence was selected based on its fithess predicted from the inferred

JM. Specifically, we calculated the survival probability of a virus with sequence x by:

 gmi(x)
fh,J (X) - Zy Ih.J (Y) ) (8)

where gy, 3(x) is a function that maps the predicted energy of sequence x smoothly to a value between 0

and 1. This function is defined as:

eB(E—En 3(x))
14 eB(E—Ens(x)’

In,3(x) 9)

where E is the average energy of the current sequence population, while 3 ~ 0.1 was chosen based on
the slope between predicted sequence energies and in-vitro infectivity measurements [19]. To model the
immune pressure at residue i, the fitness of all sequences having the consensus amino acid at residue
1 was decreased by a fixed value b, thereby providing a selective advantage to the sequences having
a mutation at this residue. The value of b was set according to the largest value of the field parameter
in the inferred landscape. Next, the subsequent generation of virus population was generated through a
standard multinomial sampling process parameterized by M, and fy, 3(x). This procedure was continued
until the mutations at residue ¢ reached a frequency > 0.5. The number of generations at this iteration
was recorded. This process was repeated 100 times with the same initial sequence and 25 distinct initial
sequences as well. The final escape time ¢ of residue i was the mean number of generations over all
these runs of simulation.

To perform a fair comparison between the escape times predicted by the JM and those by the E2-only
model in [19], we set the same simulation parameters for both models, including the fitness penalty factor
b (10), the number of generations (500), the number of distinct sequences forming the initial population (25)
for each residue, and the number of runs of simulation (100) for each distinct initial sequence. The mean

escape time predicted for each residue by JM and E2-only model is provided in Supplementary Data 4.

H. Identification of escape-resistant residues

We ran the evolutionary simulation using the JM for all E1E2 residues following the same procedure

described above. We employed a binary classifier that utilized known escape mutations (listed in
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Supplementary Table S2) as true positives and all other residues as true negatives, which achieved an
area under curve (AUC) of 0.92 (Supplementary Fig. S8a). We selected the optimal cut-off value of { ~ 96
for determining whether a residue in the E1E2 protein is relatively escape-resistant or not based on the
maximum F1 score and MCC (Supplementary Figure S8b), commonly used metrics for evaluating binary

classifiers.

I. Evaluation of the efficacy of known HmAbs

To evaluate the efficacy of known HmAbs based on the escape times obtained from the JM or the
E2-only model, we adopted the following criteria. We compared the minimum escape time ™" predicted
for a HmADb’s binding residues [37], [38], [56] with the cut-off value (¢) for each model. If t™" of a HmADb
was greater than ¢ for a model, that HmAb was characterized as relatively escape-resistant by that model,

and vice versa.

J. Site-independent model

In order to compare JM with a model that ignores all interactions between residues, we defined a

site-independent E1E2 fithess landscape model that is characterized solely by the “fields” h as follows

hi(a)zlnl_ifi(a), i=1,2,...,N, (10)

fi(a)

where f;(a) is the frequency of observing amino acid « at residue .

Data and code availability

« All data used in this work is publicly available. Top 300 pairs of inter-protein couplings obtained from the
JM are listed in Supplementary Data 1. Accession numbers of E1E2 sequences used for inferring JM
and IM are listed in Supplementary Data 2. The E1E2 infectivity measurements, used for correlating
with predictions obtained from the inferred JM and IM, are included in Supplementary Data 3. The
mean escape time predicted for each residue by JM and E2-only model is provided in Supplementary
Data 4.

o The GUI-based software implementation of the MPF-BML method [21], used for inferring the fitness
landscape model, is available at https://github.com/ahmedaqg/MPF-BML-GUI [20]. Data and scripts for
reproducing the results of this manuscript are available at https://github.com/hangzhangust/HCVE1E2.

« Any additional information related to the data reported in this paper is available from the lead contact

upon request.
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Fig. 1: Statistical validation of the inferred E1E2 JM. Comparison of the (a) single mutant probabilities,
(b) double mutant probabilities, (¢) connected correlations, and (d) distribution of the number of mutants
per sequence obtained from the MSA and those predicted by the inferred JM. Samples were generated

from the inferred model using the MCMC method [25].
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Fig. 2: Comparison of the fraction of the correlated structure in E1E2 protein captured by the joint
model (JM) and the independent model (IM). Fraction of the correlated structure (FCS) captured by a
model is quantified by Imogei/I. Here, I = Sing — Stue is the multi-information which measures the overall
strength of correlations in the system, where Sj,q denotes the entropy of a site-independent model of E1E2
protein and Sye is the true entropy of the E1E2 complex estimated using the approach in [81] (see Methods
for details). Similar t0 I, Inogel = Sing — Smodel Measures the strength of correlations captured by the JM
or IM model, where Snodel is the entropy predicted by the JM or IM model based on the data generated
using the MCMC method (see Methods for details) [23]. Entropies for the JM and IM were calculated over
10 instances of MCMC runs, and the p-value was calculated using the one-sided Mann-Whitney test.
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Fig. 3: Comparison of the E1E2 fithess prediction by JM and IM. Normalized energies computed from
the inferred JM correlate strongly with the experimental fitness measurements. Conversely, the inferred
IM provided a much lower correlation (inset). Legend shows the references from which fitness/infectivity
measurements were compiled [13], [29]-[43].
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@

Fig. 4: Strong E1E2 inter-protein interactions are largely compensatory. Each pair of mutations between
E1 and E2 proteins was ranked by the absolute values of .J;; from Eq. 1 and top 300 pairs are plotted here.
Compensatory interactions (negative values of J;;) are colored in orange, while antagonistic interactions
(positive values of J;;) are colored in purple. The outer segments of the circle represent E1 (shown in
black, encompassing residues 192-383) and E2 (shown in gray, encompassing residues 384-746) proteins.

a b c
p = 9.9e-24 p =0.077 p = 0.525
500 — 5009  eree
m T
& 200 52
v o
i 1
£ T g . 85
o 3507 b =3 350
g 2 150 H
3 I 3
7] 7} o
w w M
E g
2004 . 100 200
T
-m- o e s
50— F7— 50 : : 50 : T
Escape = Remaining JM E2-only JM E2-only
model model
| | l—J p = 5.4e-19
JM Escape Remaining

Fig. 5: Role of E1 in facilitating viral escape from E2-specific HmADbs. (a) Distribution of escape times
of E2 residues using the inferred JM. Residues were divided into two categories: those with known escape
mutations from E2-specific HmAbs (listed in Supplementary Table S2) and the remaining E2 residues.
P-value was calculated using the one-sided Mann-Whitney test. (b) Comparison of escape times of E2
residues inferred from the JM and the E2-only model for the known E2 escape mutations (left panel)
and the remaining E2 residues (right panel). P-values were calculated using the one-sided Mann-Whitney
test. (c) Circos plot displaying the interactions between strongly-coupled residues (Fig. 4) involving escape
mutations (shown in blue) and the remaining residues (shown in beige). The reported p-value measures
the probability of observing by a random chance at least the observed number of E2 escape mutations
among strongly-coupled residues (see Methods for details).
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Fig. 6: Evaluation of known HmAbs using the escape times inferred from the JM and the E2-
only model. For each HmADb, escape time associated with all binding residues was predicted using both
models. Each circle in the figure represents the minimum escape time associated with the binding residues
of each HmAb predicted by the JM (x-axis) and the E2-only model (y-axis). Global alanine scanning
mutagenesis [37], [38], [56] was used to determine the binding residues of each HmAb, where each
residue of the wild-type sequence was replaced by alanine (or glycine/serine if the residue in the wild-type
was alanine). We defined binding residues of each of these HmAbs as residues with relative binding (the
fraction of the mutant sequence’s binding compared to the wild-type sequence) less than or equal to 20%.
HmAbs predicted to be escape-resistant by both models are colored in red, the ones predicted to be
escape-resistant only by the E2-only model are colored in orange, and the ones predicted to be easy to
escape by both models (HmAbs 212.1.1, 212.10, A27, AR1A, AR1B, AR2A, AR3A, AR3B, AR3C, AR3D,
CBH-4B, CBH-4D, CBH-4G, CBH-5, CBH-20, CBH-21, CBH-22, HC33-4, HC-11, HC84-24, HC84-26) are
colored in blue. The HmAbs having binding residues in E1 (HmAbs AR4A, AR5A and IGH526) are shown
in gray and plotted along the x-axis, since E2-only model could not be used to predict their escape time.
The dashed line denotes the optimal cut-off value { for each model (see Methods for details).
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Fig. S1: Statistical validation of the inferred IM for the E1E2 protein. Comparison of the (a) single
mutant probabilities, (b) double mutant probabilities, (¢) connected correlations, and (d) distribution of the
number of mutants per sequence obtained from the MSA (E1 in left panels and E2 in right panels of each
subfigure) and those predicted by the inferred IM. Samples were generated from the inferred model using

the MCMC method [1].
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Fig. S2: Robustness of the fraction of compensatory E1E2 inter-protein interactions (Fig. 4) to the
number of top inter-protein couplings selected. Top pairs of E1E2 inter-protein couplings were ranked
by the absolute values of J;; from Eq. 1. Fraction of compensatory interactions were calculated by the
number of negative values of J;; divided by top x pairs of inter-protein couplings considered.
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Fig. S4: E2-only model inferred in our previous study [18] reproduces statistics of the MSA based
on the latest E2 sequence data. The model in [18] was inferred using HCV E2 sequence data up until
September 2017. Comparison of the (a) single mutant probabilities, (b) double mutant probabilities, (c)
connected correlations, and (d) distribution of the number of mutants per sequence obtained from the
MSA and those predicted by the previous E2-only model. Samples were generated from the previous
E2-only model using the MCMC method [1]. Pearson correlation coefficient and the associated p-value is

shown for each subfigure.
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Fig. S5: Comparison of the fithess prediction of the E2-only model inferred in this work (left panel)
and in our previous study [18] (right panel). The model in [18] was inferred using HCV E2 sequence
data up until September 2017. Normalized energies computed from both models correlate strongly with
E2-only experimental fitness measurements. Legend shows the references from which E2-only fithess

measurements were compiled [2]-[12].
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Fig. S6: Estimate of the true entropy. (Spaive(M)) vs. ﬁ (shown as circles) can be well fit by (Snaive(M)) =
Strue + % + % (shown as dashed line), where S; and S are constants [19], [20]. The y-intercept of the

fit provides an estimate for the true entropy, Sy (see Methods for details).


https://doi.org/10.1101/2023.04.03.535505
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.03.535505; this version posted April 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license. 27

100 —
i
& 1
=
£ 50—
g f

0 \ | ! \
Sind SIM SJM Strue

Fig. S7: Entropy calculated from different models for the E1E2 protein. Sj,q denotes the entropy of a
site-independent model of E1E2 protein, where we considered choosing amino acids at each residue of
the E1E2 protein independently with the observed frequencies. Sy and Sy, are entropies calculated from
the inferred IM and the JM (calculated over 10 instances of MCMC runs), and Sy is the estimated true
entropy (see Methods for details).
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Fig. S8: Binary classifier designed to determine the optimal cut-off for escape time based on
experimentally or clinically identified escape mutations. The classifier used a Receiver Operating
Characteristic (ROC) curve to identify known E2 escape mutations (listed in Supplementary Table S2)
using the escape time metric. The optimal cut-off value was determined by maximizing the F1 score and
the Matthews Correlation Coefficient (MCC). In this classification, E2 residues with known escape mutations
were considered as true positives, while all remaining residues were considered true negatives.
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s7 Supplementary Tables

TABLE S1: List of functional regions of E1 and E2 proteins along with the statistical significance
of enrichment of strongly-coupled residues in each region.

Regions of E1 p-value Regions of E2 p-value
e oy 0779 et s Tses
(Stom 1, residus 200349 09251 (fvma. roscue doodez) 304
| 0STIS ol St o9 gt
INTD £ rosdue 102239 *7%%(Siom £0, rosidue 6s2-717) 0%
O TS oo sty e o osses

%?;errrg%ons of E2 0.9858

TABLE S2: List of known escape mutations from E2-specific HmAbs.

Escape residues HmAbs Reference
408 HC33-4 [21]

384, 386, 388, 390, 391, 393, 394,

395, 396, 397, 398, 399, 400, 401, HmADbs targeting HVR1 [22]

402, 403, 404, 405, 407, 410

431 CBH-2 [23]

431, 435, 444, 446, 466, 482, 501, CBH-8C, CBH-2, CBH-5, HC-2, 7]

528, 531, 538, 580, 610, 636, 713  HC-11

391, 394, 401, 415, 417, 434, 444,

608 HCVA [24]

416, 422, 424, 431, 433, 438, 442,
446, 453, 456, 461, 475, 482, 520, Cor-2 CBHS, HOB4-22, HCB4-26,

524, 531, 533, 557, 558, 560 AR3A, AR3B, ARSC, ARSD
431, 438, 442 AR3A [26]

(25]
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