

1 HCV E1 influences the fitness landscape of E2 and may 2 enhance escape from E2-specific antibodies

3 Hang Zhang¹, Rowena A. Bull^{2,3}, Ahmed A. Quadeer^{1,★}, and Matthew R. McKay^{4,5,★}

4 ¹Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology,
5 Clear Water Bay, Hong Kong SAR, China.

6 ²School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney,
7 NSW 2052, Australia.

8 ³The Kirby Institute for Infection and Immunity, Sydney, NSW 2052, Australia.

9 ⁴Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia.

10 ⁵Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of
11 Melbourne, Melbourne, VIC 3000, Australia

12 ★Correspondence: eeaquadeer@ust.hk (A.A.Q.); matthew.mckay@unimelb.edu.au (M.R.M).

13 Abstract

14 The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a noncovalent heterodimer with E2, the main
15 target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance
16 to E2-specific antibodies remains largely unknown. We investigate this problem using a combination of
17 fitness landscape and evolutionary modelling. Our analysis indicates that E1 and E2 proteins collectively
18 mediate viral fitness, and suggests that fitness-compensating E1 mutations may accelerate escape from
19 E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies
20 that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing
21 directions for robust HCV vaccine development.

22 *Keywords:* Hepatitis C virus, envelope protein E1, envelope protein E2, fitness landscape, evolutionary
23 model, statistical inference, inter-protein interactions, broadly neutralizing antibodies.

24 I. Introduction

25 Hepatitis C virus (HCV), a single-stranded RNA virus, is the major cause of liver-associated disease and
26 liver cancer. Currently, an estimated 58 million people are chronically infected with HCV [1]. Although direct-
27 acting antivirals (DAAs) have been developed and offer promising treatments for chronic HCV infections,
28 their high cost and low rates of HCV diagnosis limit their accessibility to a subset of infected individuals
29 only [1], [2]. Additionally, the efficacy of DAAs is limited by their inability to prevent reinfection and the
30 emergence of drug-resistant viral strains [3], [4]. Therefore, developing an effective vaccine is crucial for
31 eradication of HCV.

32 HCV encodes a single polyprotein, which is further cleaved by cellular and viral proteases into three
33 structural proteins (core, E1, and E2) and seven non-structural proteins (NS1, NS2, NS3, NS4A, NS4B,
34 NS5A, and NS5B). The envelope protein E2 is vital for viral entry into liver cells (hepatocytes), and it is
35 the major target of neutralizing antibodies elicited against HCV [5]. Studies have shown that E2 alone can
36 induce a potent humoral immune response and serve as a promising vaccine candidate [6]–[8]. However,
37 the other envelope protein E1, which forms noncovalent heterodimers with E2 [5], has a function that
38 has been shown to be inter-dependent with E2 [9]–[14]. For instance, E1 helps E2 maintain its functional
39 conformation and regulates E2's interaction with HCV receptors CD81 and SR-B1 [10]–[13], and both E1
40 and E2 are needed for interaction with CLDN1 [13], a key factor in HCV entry. E1 has also been shown to
41 modulate the folding of E2 [15], [16]. While preliminary experiments suggest that specific mutations in E1
42 and E2 may jointly modulate viral infectivity [13], a comprehensive analysis of the role of E1E2 inter-protein
43 interactions in mediating viral fitness is still lacking. Moreover, fitness of HCV is closely related to its ability
44 to escape from antibody responses [17], [18]. Therefore, investigating the effect of E1 on escape from
45 E2-specific neutralizing antibodies is of particular interest.

46 To study the role of E1E2 inter-protein interactions in mediating viral fitness and antibody evasion, we
47 develop a computational fitness landscape model, the joint model (JM), that considers interactions between
48 E1 and E2 proteins. Comparing JM with a model that considers E1 and E2 proteins independently, named
49 the independent model (IM), we find that JM captures more correlated structure in the E1E2 protein
50 sequence data, providing a statistical quantification of the mutational interactions between E1 and E2.
51 Comparing with the available in-vitro infectivity data, JM is found to be a better representative of the intrinsic
52 fitness landscape of E1E2 compared to IM. These results suggest that E1 and E2 proteins collectively
53 mediate infectivity of the virus. Based on the JM, we find that the strong E1E2 inter-protein interactions
54 might be compensatory instead of antagonistic.

55 To investigate the role of E1 on E2 in antibody evasion, we incorporate the JM into an in-host evolutionary
56 model and assess antibody escape dynamics. We predict that the residues with known escape mutations
57 would be easier to escape according to the JM compared with an E2-only model [19]. This points to the
58 potential role of E1 in facilitating escape from E2-targeting antibodies. We use the evolutionary model to
59 study the efficacy of human monoclonal antibodies (HmAbs) known for HCV, and compare the results
60 with those obtained from the E2-only model. We find, again, that E1 may facilitate the virus to escape

61 specific HmAbs targeting E2. Our analysis also reveals potentially escape-resistant HmAbs against the
62 E1E2 complex, offering directions for the development of an effective vaccine against HCV.

63 **II. Results**

64 **A. Inference and statistical validation of the joint model for the E1E2 protein**

65 We developed a computational model, termed JM, for the entire E1E2 protein using the sequence data
66 available for subtype 1a. This model uses a maximum entropy approach to estimate the probability of
67 observing a virus with a specific E1E2 protein sequence. In this model, the probability of any sequence
68 $\mathbf{x} = [x_1, x_2, \dots, x_N]$ is given by

$$P_{\mathbf{h}, \mathbf{J}}(\mathbf{x}) = \frac{e^{-E(\mathbf{x})}}{Z}, \text{ where } E(\mathbf{x}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^N J_{ij}(x_i, x_j) + \sum_{i=1}^N h_i(x_i), \quad (1)$$

69 where N is the length of the sequence, and $Z = \sum_{\mathbf{x}} e^{-E_{\mathbf{h}, \mathbf{J}}(\mathbf{x})}$ is a normalization factor which ensures
70 the probabilities sum to one. The fields \mathbf{h} and couplings \mathbf{J} parameters represent the effect of mutations at
71 a single residue and interactions between mutations at two different residues, respectively. $E(\mathbf{x})$ denotes
72 the energy of sequence \mathbf{x} , which is inversely related to its prevalence. Inference of a maximum entropy
73 model involves choosing the fields and couplings such that the model can reproduce the single and double
74 mutant probabilities observed in the E1E2 sequence data.

75 We inferred the E1E2 maximum entropy model using the GUI-based software implementation of MPF-
76 BML [20] (see **Methods** for details), an efficient inference framework introduced in [21]. The single and
77 double mutant probabilities obtained from the JM matched well with the E1E2 sequence data (Fig. 1a, b).
78 Although not explicitly included in model inference, additional statistics including the connected correlations
79 and the distribution of the number of mutations computed from the model also agreed well with those
80 obtained from the E1E2 sequence data (Fig. 1c, d), demonstrating the predictive power of the inferred
81 model. Overall, these results indicate that the inferred E1E2 JM captures well the statistics of the data.

82 **B. E1E2 inter-protein interactions are important in mediating viral fitness**

83 While some studies have considered E2 alone (i.e., independent of E1) [6]–[8], multiple studies have
84 reported that these two proteins are functionally inter-dependent [10]–[13]. This suggests that interactions
85 between E1 and E2 may be critical. Previously, we had investigated E2 alone wherein we had inferred
86 a fitness landscape model for E2 and used it to explore HCV escape dynamics from neutralizing
87 antibodies [19], [22]. Here, to investigate the importance of E1E2 inter-protein interactions on virus fitness
88 and immune escape, we compared the inferred JM with a model that considers E1 and E2 proteins to be
89 independent (see **Methods** for details). We refer to it as the independent model (IM). In this model, the
90 energy of an E1E2 protein sequence $\mathbf{x} = [\mathbf{x}_{E1}, \mathbf{x}_{E2}]$ is given by the sum of the energies of its E1 and E2
91 parts, \mathbf{x}_{E1} and \mathbf{x}_{E2} , respectively:

$$E(\mathbf{x}) = E(\mathbf{x}_{E1}) + E(\mathbf{x}_{E2}). \quad (2)$$

92 Here, $E(\mathbf{x}_{E1})$ and $E(\mathbf{x}_{E2})$ are computed separately using inferred E1-only and E2-only maximum entropy
93 models, respectively (see **Methods** for details). Both the E1-only and E2-only models capture well the
94 statistics of the respective sequence data (Supplementary Fig. S1).

95 Equipped with the JM and IM models, we first investigated whether E1 and E2 proteins can be considered
96 statistically independent. This can be quantified by comparing the fraction of the correlated structure (FCS)
97 of the E1E2 protein complex captured by the two models [23]. FCS captured by a model can be estimated
98 using the entropy of the synthetic sequence data generated by the inferred model and comparing it with
99 the entropy of an independent model and the estimated true entropy of the data (see **Methods** for details).
100 If FCSs captured by both the JM and IM models are similar, it will be suggestive of E1 and E2 to be
101 independent. Based on our analysis, the average FCS of the E1E2 protein complex captured by the JM
102 (63%) was 22% more than that captured by the IM (41%) ($p = 9.1 \times 10^{-5}$; Fig. 2), suggesting that E1 and
103 E2 proteins are not statistically independent. Thus, there seem to be significant inter-protein correlations
104 that are not captured by the IM.

105 We next investigated if the additional correlations captured by the JM, compared to IM, make it a
106 better representative of the intrinsic E1E2 fitness landscape. Maximum entropy models have been shown
107 previously to be good representatives of the underlying fitness landscapes for multiple individual viral
108 proteins of HCV (polymerase [24] and E2 [19], [22]) and HIV [21], [25]–[28]. To test this for JM and IM, we
109 compared the predictions of both models using the in-vitro infectivity measurements available for E1E2.
110 We compiled a total of 156 in-vitro infectivity measurements for E1E2 from 16 studies [13], [29]–[43]. We
111 found that the JM provided a stronger negative Spearman correlation ($\bar{r} = -0.70$; see **Methods** for details)
112 between the predicted sequence energies (inversely related to prevalence) and experimental fitness values
113 (Fig. 3) than the IM ($\bar{r} = -0.54$; Fig. 3, inset). This result suggests that JM is a better representative of
114 the E1E2 fitness landscape. It also indicates the potential importance of E1E2 inter-protein interactions in
115 mediating viral fitness.

116 **C. Majority of strong E1E2 inter-protein interactions are compensatory**

117 The couplings of the inferred maximum entropy model (J_{ij} in Eq. 1) are informative of the type of
118 interactions between residues [44], [45]. When the value of J_{ij} is large and positive, it signifies a strong
119 antagonistic interaction or negative epistasis between residues i and j . This results in a decrease in the
120 fitness of double mutants and makes it harder for new mutations to occur [46]. On the other hand, when
121 the value of J_{ij} is large and negative in Eq. 1, it indicates a strong compensatory interaction or positive
122 epistasis between residues i and j . This signifies improved replication of double mutants, allowing the virus
123 to acquire diverse mutations.

124 Analyzing the top 300 pairs of inter-protein couplings (listed in Supplementary Data 1), i.e., with large
125 absolute values of J_{ij} , we found that the majority (70%) were negative (Fig. 4). This suggests that the
126 top inter-protein couplings are largely compensatory, and that simultaneous mutations in the two proteins
127 may assist in maintaining a viable virus. This result was robust to the number of top inter-protein couplings

128 considered (Supplementary Fig. S2). A recent study reported E1E2 as a highly fragile complex, with 92%
129 of alanine mutations introduced independently at each residue severely impacting virus fitness [43]. The
130 strong compensatory interactions identified in our analysis indicate a potential mechanism by which E1
131 and E2, the most variable HCV proteins, may make multiple mutations while maintaining viral fitness.

132 We further quantified whether the strongly-coupled residues (those associated with top 300 pairs of
133 inter-protein couplings) were enriched in any known functional region of E1 and E2 proteins (see **Methods**
134 for details). We observed that the strongly-coupled residues were statistically significantly enriched in
135 hypervariable region 1 (HVR1) and hypervariable region 2 (HVR2) of E2 (Supplementary Table S1),
136 suggesting that these regions may be involved in interactions with E1. This is also consistent with the
137 literature that has shown that HVR2 is essential for the formation of the E1E2 heterodimer [47], and
138 epistatic interactions exist between E1 and HVR1 of E2 [48]. As their names suggest, these two regions
139 are highly variable, and are known to modulate viral escape from neutralizing antibodies [49]. Hence, the
140 potential compensatory interactions between E1 and these two E2 regions may contribute to viral immune
141 evasion.

142 **D. Evolutionary simulations suggest the E1 protein contributes to escape from
143 E2-specific antibody responses**

144 To gain a deeper understanding of the impact of E1 on viral escape dynamics from E2-specific antibody
145 responses, we quantified and compared the average time it takes for E2 residues to escape with and
146 without the influence of E1. To achieve this, we utilized an in-host evolutionary model that takes into
147 account the stochastic dynamics of viral evolution within the host including virus-host interactions, virus-
148 virus competition, and escape pathways that the virus may employ to evade immune pressure. Similar
149 models have been used previously for simulating in-host viral evolution for HIV [27] and HCV [19], [22].
150 Here, we incorporated the inferred JM into a population genetics model, similar to the well-established
151 Wright-Fisher model [50]. By doing so, we were able to predict the average number of generations, referred
152 to as “escape time”, for each E2 residue to escape selective pressure (see **Methods** for more details). To
153 determine escape times of these residues without the influence of the E1 protein, we utilized the E2-only
154 model developed in our previous work [19].

155 Previously, the E2-only model has been shown to be capable of predicting known escape mutations
156 from multiple E2-specific HmAbs [34], [51]–[55] (listed in Supplementary Table S2), where these mutations
157 were shown to be associated with lower escape times compared to mutations at other residues [19] as
158 they enable the virus to evade the associated antibody pressure. We found that this was also true for the
159 inferred JM ($p = 9.9 \times 10^{-24}$; Fig. 5a), suggesting the JM to be capable of distinguishing E2 residues
160 associated with low and high escape times.

161 Further comparing the escape times of E2 residues inferred from these two models, we found that
162 the escape times of residues associated with escape mutations inferred from the JM were marginally
163 significantly lower ($p = 0.077$; Fig. 5b, left panel) than those from the E2-only model. In contrast, there

164 was not much difference between the escape times of the remaining E2 residues ($p = 0.525$; Fig. 5b, right
165 panel). This suggests that the E1 protein may assist in viral escape from E2-specific antibodies. In addition,
166 we found that the strongly-coupled inter-protein residues (Fig. 4) were statistically significantly enriched in
167 escape mutations ($p = 5.4 \times 10^{-19}$; Fig. 5c). This further corroborates the potential role of E1 in mediating
168 viral escape from neutralising antibodies.

169 **E. For multiple E2-specific HmAbs, E1 is predicted to provide accelerated escape
170 dynamics**

171 Previously, we utilized the E2-only model to assess the efficacy of each known E2-specific HmAb based
172 on the minimum escape time predicted for its binding residues [19], [22] (see **Methods** for details). Our
173 analysis above suggests that E1 may potentially assist E2 in antibody evasion, hence we further studied
174 how this would impact the efficacy of known HmAbs predicted by the JM in comparison to the E2-only
175 model. We first employed a binary classifier [19] to determine an optimal cut-off value ($\zeta = 96$ generations)
176 for identifying escape-resistant residues based on the JM. This binary classifier utilized known escape
177 mutations (listed in Supplementary Table S2) as true positives and the remaining E1E2 residues as true
178 negatives, as detailed in **Methods**. We subsequently evaluated each antibody by comparing the minimum
179 escape time predicted for its binding residues with the corresponding optimal cut-off value ζ for each model.
180 For this analysis, we focused on 32 HmAbs for which binding residues have been determined using global
181 alanine scanning experiments [37], [38], [56].

182 Based on our previous predictions using the E2-only model, we had identified 21 E2-specific HmAbs
183 that appear relatively easy for the virus to escape. These predictions were also consistent with the JM
184 (Fig. 6). Among these HmAbs, studies have shown that AR1A, AR1B, AR2A, CBH-4B, CBH-4D, CBH-4G,
185 CBH-20, CBH-21, and CBH-22 were non-neutralizing or isolate-specific [57]–[59], which further supports
186 our predictions for both models. The remaining eight E2-specific HmAbs (212.15, 212.25, CBH-7, CBH-23,
187 HC-1, HC33-1, HC84-20 and HCV1) were predicted to be escape-resistant by the E2-only model. However,
188 only four (212.15 and 212.25, HC33-1, and HCV1) among these were predicted to be escape-resistant
189 by JM (Fig. 6). The predictions of JM for these HmAbs align well with literature reports. For instance,
190 HmAbs 212.25 and 212.15, isolated from patients who had spontaneously cleared HCV, were found to be
191 cross-neutralizing [56]. HC33-1 and HCV1 have also been reported as potentially escape-resistant broadly
192 neutralizing antibodies in multiple studies [37], [60]–[62]. On the other hand, of the four HmAbs (HC84-20,
193 CBH-23, HC-1 and CBH-7) predicted to be escape-resistant by the E2-only model but not by the JM,
194 studies have observed escape for strains isolated from patients who underwent liver transplantation for
195 HmAbs CBH-23 and HC-1, while HmAb CBH-7 was obtained from a patient with chronic HCV infection
196 [56], [63]. These findings suggest that E1 may play a role in facilitating HCV escape from these antibodies.
197 Notably, the JM enabled identification of one HmAb, IGH526, that targets the E1 protein and may be
198 escape resistant. Multiple studies have reported that IGH526 is cross-neutralizing and can target various
199 HCV isolates from different genotypes [64], [65].

200 III. Discussion

201 E1 and E2 are envelope proteins of HCV that form noncovalent heterodimers. While E2 is the major
202 target of HmAbs and a promising vaccine candidate, E1 is also important for HCV entry and assembly,
203 and it interacts with E2. Comparing a joint model (JM) that takes into account E1E2 interactions with
204 an independent model (IM) that does not, we have determined that these interactions are important in
205 mediating virus infectivity and immune escape. The top E1E2 inter-protein interactions are compensatory
206 and enriched in HVR1 and HVR2 of E2. Further using in-host evolutionary modelling, our analysis suggests
207 that E1 may facilitate HCV in escaping E2-specific antibody responses. We have identified potentially
208 escape-resistant HmAbs against the E1E2 complex, which could aid in the development of a robust
209 prophylactic vaccine against HCV.

210 By comparing the correlation between in-vitro infectivity measurements and predictions of the JM and
211 IM (Fig. 3), our study highlighted the importance of E1E2 inter-protein interactions in mediating viral fitness.
212 This was further reinforced by comparing the predictions of the JM with those of a site-independent E1E2
213 fitness landscape model (see [Methods](#) for details), which showed that the correlation between the JM
214 predictions and in-vitro fitness measurements was much higher than that of the site-independent model ($\bar{r} =$
215 -0.54 ; Supplementary Fig. S3). These findings are consistent with previous studies that have emphasized
216 the importance of considering interactions when inferring protein fitness landscapes [19], [21], [22], [24],
217 [25], [27], [28], [66], [67] and for identifying networks of residues that play crucial roles in protein structure
218 and function of viruses [68]–[72].

219 A recent experimental study has shown that E1E2 is a fragile protein complex wherein even a single
220 alanine mutation at 92% of positions abrogates replicative capacity of the virus [43]. Therefore, our finding
221 that 70% of the top 300 pairs of mutations (ranked by absolute values of J_{ij}) between E1 and E2 are
222 compensatory suggests that these interactions may play a significant role in mediating viral fitness. To
223 further investigate this experimentally, it would be helpful to conduct assays that quantify the change in
224 replicative fitness by site-directed mutagenesis of the pairs of mutations identified to be associated with
225 strong compensatory interactions (e.g., top 10) individually and simultaneously (Supplementary Data 1).

226 Comparing the JM and the E2-only model, we found ten residues that were predicted to be escape-
227 resistant by the E2-only model but easy to escape according to the JM. Interestingly, four of these (residues
228 424, 437, 537 and 538) are known antibody binding residues, which suggests that the E1 protein may
229 interact with these residues during antibody evasion. This motivates experimental studies for investigating
230 the interactions between these four residues in the E2 and the E1 protein. One approach could involve
231 longitudinal experiments [73], where the virus is allowed to infect cells in the presence of antibodies
232 that specifically target these four residues, and changes in these residues as well as the E1 protein are
233 monitored over time. By doing so, it could be determined if mutations arise at these residues in response to
234 antibody pressure, and if simultaneous mutations are also observed in the E1 protein. This would provide
235 important insights into the mechanisms by which the virus evolves to evade immune responses [74], which
236 could ultimately inform the design of an effective vaccine against HCV.

237 By applying the JM and the E2-only model to evaluate the efficacy of known HmAbs, we identified 25
238 HmAbs with consistent predictions for both models (Fig. 6). Among these, four HmAbs were predicted
239 to be escape-resistant, while the other 21 HmAbs were not. This motivates investigating the differences
240 in escape dynamics [75] between these two sets of HmAbs. For instance, experimentally quantifying the
241 average time (number of generations) it takes for the virus to escape from HmAbs 212.15, 212.25, HC33-1
242 or HCV1 (escape-resistant HmAbs) in comparison to HmAbs AR3A, AR3C or AR3D (non-escape-resistant
243 HmAbs) would be a helpful follow up study.

244 Four HmAbs (HC-1, CBH-23, CBH-7 and HC84-20) were associated with different predictions based
245 on the JM compared to the E2-only model (Fig. 6). We found that the different predictions for these
246 HmAbs were due to the differences in escape times of two specific binding residues 437 and 537 by
247 these two models, which are shared by these HmAbs. Intriguingly, these two residues are also CD81
248 binding residues [76]. Experiments to study the interactions between E1 and CD81 binding residues may
249 be beneficial for discovering their potential roles in compensating viral infectivity or mediating viral entry.

250 IV. Methods

251 A. Inference of computational models for the E1E2 protein

252 To explore the role of E1E2 inter-protein interactions, we considered two types of computational models
253 for the E1E2 protein: One taking into account the E1E2 inter-protein interactions, named the joint model
254 (JM), and the other without the E1E2 inter-protein interactions, named the independent model (IM).

255 1) Joint model (JM)

256 To infer a maximum entropy (least-biased) model for the whole E1E2 protein jointly, we downloaded
257 8,021 aligned E1 subtype 1a and 6,225 aligned E2 subtype 1a sequences from the HCV-GLUE database
258 (<http://hcv.glue.cvr.ac.uk>) [77], [78], both with genome coverage $\geq 99\%$. We constructed the MSA of the
259 whole E1E2 protein by stitching together E1 and E2 sequences based on the information in their headers,
260 yielding 6,198 E1E2 sequences. We conducted a principal component analysis (PCA) on the pair-wise
261 similarity matrix (6198×6198) of the sequences [79], where the (i, j) th entry of the similarity matrix
262 represents the fraction of residues that are identical in sequence i and j , to remove any outlier sequences.
263 We considered a sequence as an outlier if its corresponding value in the first PC was more than 3 scaled
264 median absolute deviations [80] from the median of the first PC. We also excluded 264 sequences for which
265 patients' information was not available. After these filtering procedures, we had $M = 5867$ sequences from
266 $W = 871$ patients. Moreover, we excluded 21 fully-conserved E1E2 residues to improve the quality of the
267 residues. Hence, the processed MSA was composed of $M = 5867$ sequences (listed in Supplementary
268 Data 2) and $N = 534$ residues. We constructed a least-biased maximum entropy model for the E1E2
269 protein that can reproduce the single and double mutant probabilities of this processed MSA (Eq. 1).

270 To infer parameters (\mathbf{h} and \mathbf{J}) of the maximum entropy model, we used the GUI realization of MPF-
271 BML [20], an efficient inference framework introduced in [21]. This software requires an MSA as input and
272 a vector comprising the patient weight of each sequence included in the MSA. Patient weight is computed

273 as the inverse of the number of sequences associated with each patient. The MPF-BML parameters used
274 for inferring the model parameters (fields \mathbf{h} and couplings \mathbf{J}) are: (i) L_1 regularization parameters were
275 set to 5×10^{-4} for both fields and couplings. (ii) L_2 regularization parameters were set to 0.05 for fields,
276 and 125 for couplings respectively and (iii) all other parameters were set to their default values. The first
277 and second order statistics of the inferred JM matched well with those of the MSA (Fig. 1).

278 **2) Independent model (IM)**

279 The independent model comprised of two maximum entropy models, one for the E1 protein and the
280 other for the E2 protein. The maximum entropy models for E1 protein and E2 protein were inferred using
281 the E1 part and the E2 part of the E1E2 processed MSA, respectively. Specifically, the MSA of both
282 E1 and E2 consisted of $M = 5867$ sequences from $W = 871$ patients, where each sequence contains
283 $N = 187$ residues (5 fully conserved ones were excluded) for E1 and $N = 347$ residues (16 fully conserved
284 ones were excluded) for E2. The MSA and the patient weights were further set as the input of the MPF-
285 BML software using the same parameters as the JM except both L_1 and L_2 regularization parameters
286 were set to 50 for couplings for E1 and 15 for E2, and 5×10^{-4} for fields for both E1 and E2. Both the
287 statistics of the inferred E1-only model and E2-only model lined up well with those of the respective MSAs
288 (Supplementary Fig. S1). The final IM was a linear combination of these two models, where the energy of
289 a full E1E2 sequence $\mathbf{x} = [\mathbf{x}_{E1}, \mathbf{x}_{E2}]$ is given by

$$E(\mathbf{x}) = E(\mathbf{x}_{E1}) + E(\mathbf{x}_{E2}). \quad (3)$$

290 Here, $E(\mathbf{x}_{E1})$ and $E(\mathbf{x}_{E2})$ represent the energy of the E1 part \mathbf{x}_{E1} and E2 part \mathbf{x}_{E2} of sequence \mathbf{x} calculated
291 from each E1-only or E2-only model according to Eq. (1).

292 As we had inferred a maximum entropy E2-only model in a previous study [19], we further investigated
293 if our previous E2-only model (inferred from 3363 sequences of E2 available at that time) was capable of
294 capturing the statistical variations in the E2 MSA we curated in this study (5867 sequences). Our results
295 support that this is indeed the case (Supplementary Fig. S4), suggesting that both these E2-only models
296 are equally representative of the variations in the E2 protein sequence data. In addition, the correlation of
297 both models with in-vitro infectivity measurements was also similar, suggesting that both E2-only models
298 are also equally good representatives of the E2 fitness landscape (Supplementary Fig. S5).

299 **B. Calculation of the fraction of the correlated structure (FCS) captured by each model**

300 FCS of the E1E2 protein complex captured by a model is given by I_{model}/I . Here I reflects the
301 overall strength of correlations in the protein complex [23], quantified by the difference between the site-
302 independent model entropy (S_{ind}) and the true entropy of the protein complex (S_{true}). In contrast, I_{model}
303 represents the strength of correlations captured by a model, calculated by the difference between the
304 site-independent model entropy (S_{ind}) and the inferred model entropy (S_{model}). Below we describe how we
305 calculated these different entropies.

306 S_{ind} was computed by considering amino acids at each E1E2 residue independently with the observed
 307 frequencies, which is given by

$$S_{\text{ind}} = \sum_{a \in \Omega} \sum_{i=1}^N f_i(a) \ln f_i(a), \text{ where } \Omega = \{A, R, \dots, V, -\} \text{ (the 20 amino acids and the gap).} \quad (4)$$

308 S_{true} was estimated using the procedure described in [23], [81] that involves incrementally sub-sampling
 309 the data and measuring its entropy. Specifically, we first randomly chose M sequences and calculated the
 310 the “naive estimate” of the entropy $S_{\text{naive}}(M)$ through

$$S_{\text{naive}}(M) = \sum_{\mathbf{x} \in M \text{ sequences}} -f(\mathbf{x}) \ln f(\mathbf{x}), \quad M = 500, 1000, \dots \quad (5)$$

311 where $f(\mathbf{x})$ is the frequency of sequence \mathbf{x} . We repeated this procedure 100 times with different random
 312 seeds for M sequences ($M = 500, 1000, \dots$) and took the mean of $S_{\text{naive}}(M)$, denoted by $\langle S_{\text{naive}}(M) \rangle$,
 313 over these iterations for each given M . As shown in [81], the naive estimate of the entropy can be well fit
 314 by

$$\langle S_{\text{naive}}(M) \rangle = S_{\text{true}} + \frac{S_1}{M} + \frac{S_2}{M^2}, \quad (6)$$

315 where S_1 and S_2 are constants that depend on the distribution of the data. They account for the bias and
 316 variance that arise due to finite sample size effects. When $M \rightarrow +\infty$, these correction terms vanish, and
 317 the naive estimate converges to the true entropy S_{true} . By plotting $\langle S_{\text{naive}}(M) \rangle$ against $\frac{1}{M}$, we can observe
 318 the quadratic relationship between the two variables (Supplementary Fig. S6). Extrapolating the y-intercept
 319 (when $\frac{1}{M} \rightarrow 0$) from this plot provides an estimate for S_{true} .

320 We calculated S_{model} , the entropy predicted by the inferred models, using sequence ensemble generated
 321 by a Markov Chain Monte Carlo (MCMC) procedure [23]. For the JM, the sequence ensemble comprised
 322 99,990 full E1E2 sequences, and the model entropy was calculated as $S_{\text{JM}} = -\sum_{\mathbf{x}} f(\mathbf{x}) \ln f(\mathbf{x})$.
 323 For the IM, a sequence ensemble of 99,990 sequences was generated for each of the E1 and
 324 E2 protein separately using their respective individual models. The entropy for IM was calculated as
 325 $S_{\text{IM}} = -\sum_{\mathbf{x}_{E_1}} f(\mathbf{x}_{E_1}) \ln f(\mathbf{x}_{E_1}) - \sum_{\mathbf{x}_{E_2}} f(\mathbf{x}_{E_2}) \ln f(\mathbf{x}_{E_2})$, where \mathbf{x}_{E_1} and \mathbf{x}_{E_2} are sequences from the
 326 E1 and E2 sequence ensemble, respectively. Entropies were calculated over ten instances of MCMC runs
 327 for both JM and IM. All entropies calculated above are shown in Supplementary Fig. S7.

328 C. Fitness verification

329 We used in-vitro experimental infectivity measurements compiled from the literature [13], [29]–[35], [37],
 330 [40]–[43] (listed in Supplementary Data 3) to investigate if our inferred models for E1E2 (JM and IM) are
 331 capable of capturing the infectivity of the virus. As experiments were conducted under different lab settings,
 332 we considered the weighted average of Spearman correlation coefficients from different experiments. This
 333 can be written as

$$\bar{r} = \frac{\sum_{i=1}^{q_{\text{exp}}} Q_i r_i}{\sum_{i=1}^{q_{\text{exp}}} Q_i},$$

334 where r_i is the Spearman correlation coefficient obtained from experiment i , and Q_i is the number of
335 measurements. q_{exp} is the total number of experiments.

336 **D. Identification of strongly-coupled residues in the E1 and E2 proteins**

337 To identify strongly-coupled pairs of mutations (top inter-protein couplings) between the E1 and E2
338 proteins, we constructed “null models” to determine a threshold [67], [82]. Specifically, to maintain the
339 observed single mutant probabilities but to break any pair-wise correlations in the E1E2 sequence data,
340 we first constructed a “null MSA” by choosing amino acids at each residue with the observed frequencies
341 while keeping the same number of sequences ($M = 5867$) and number of residues ($N = 534$). We then
342 used the “null MSA” to infer a maximum entropy model, i.e., a null model. This procedure was repeated
343 ten times, and the threshold was set as the top 0.1 percentile of the absolute mean value of J_{ij} of these
344 ten null models, which corresponds to roughly choosing about top 300 pairs of inter-protein couplings
345 in the JM model. The residues that are present in these 300 inter-protein couplings are referred to as
346 “strongly-coupled residues” throughout the manuscript.

347 **E. Statistical significance testing**

348 We calculated the statistical significance of the number of strongly-coupled residues (identified by our
349 model) in each functional regions of E1 and E2 proteins, as well as in known escape mutations (listed
350 in Supplementary Table S2), using a p -value. For a given set of residues in a protein region, this p -value
351 corresponds to the probability of observing at least i residues out of j strongly-coupled residues in that
352 region, where there are n total residues in that protein region out of N total residues of a protein (187 for
353 E1 and 347 for E2). These can be written as

$$354 p = \sum_{q=i}^{\min(j,n)} \frac{\binom{j}{q} \binom{N-j}{n-q}}{\binom{N}{n}}. \quad (7)$$

355 A p -value less than 0.05 for a protein region indicates statistically significant enrichment of residues of that
356 region within the strongly coupled E1E2 inter-protein interactions.

356 **F. Visualization of interactions between strongly-coupled pairs of mutations**

357 To visualize the interactions between strongly-coupled pairs of mutations, we utilized a Circos plot. The
358 E1E2 residues were evenly distributed along the outer edge of the circles in Fig. 4 and Fig. 5c. The
359 numbering of the residues was started at 192 (corresponding to the first residue of E1 according to the
360 H77 sequence) at the 3 o’clock position and progressed in a counter-clockwise direction. Each link within
361 the circle represents a pair of strongly-coupled mutations (ranked by the absolute values of J_{ij} from Eq. 1).

362 **G. Evolutionary simulation**

363 To quantify the average time it takes for each residue in E2 to escape with the effect of the E1 protein, we
364 considered a viral in-host population genetics evolutionary model incorporated with the inferred JM similar

365 to [19]. We used the “escape time” metric to represent the number of generations it takes on average
366 for the virus with a mutation at a given residue to reach majority (frequency > 0.5) in a fixed-sized viral
367 population under targeted immune pressure.

368 To be specific, we used a well-established Wright-Fisher model [50], where in each generation, the virus
369 population undergoes mutation, selection, and random sampling steps. The virus population size was fixed
370 at $M_e = 2000$, in line with the effective HCV population size in in-host evolution [83]. For each residue i
371 of the E2 protein, we formed the initial viral population with duplicates of a sequence with the consensus
372 amino acid at residue i . In the mutation step, the nucleotide of each sequence was mutated randomly to
373 another nucleotide at a fixed mutation rate $\mu = 10^{-4}$, consistent with the known HCV mutation rate [84],
374 [85]. In the selection step, each sequence was selected based on its fitness predicted from the inferred
375 JM. Specifically, we calculated the survival probability of a virus with sequence x by:

$$f_{h,J}(x) = \frac{g_{h,J}(x)}{\sum_y g_{h,J}(y)}, \quad (8)$$

376 where $g_{h,J}(x)$ is a function that maps the predicted energy of sequence x smoothly to a value between 0
377 and 1. This function is defined as:

$$g_{h,J}(x) = \frac{e^{\beta(\bar{E} - E_{h,J}(x))}}{1 + e^{\beta(\bar{E} - E_{h,J}(x))}}, \quad (9)$$

378 where \bar{E} is the average energy of the current sequence population, while $\beta \sim 0.1$ was chosen based on
379 the slope between predicted sequence energies and in-vitro infectivity measurements [19]. To model the
380 immune pressure at residue i , the fitness of all sequences having the consensus amino acid at residue
381 i was decreased by a fixed value b , thereby providing a selective advantage to the sequences having
382 a mutation at this residue. The value of b was set according to the largest value of the field parameter
383 in the inferred landscape. Next, the subsequent generation of virus population was generated through a
384 standard multinomial sampling process parameterized by M_e and $f_{h,J}(x)$. This procedure was continued
385 until the mutations at residue i reached a frequency > 0.5. The number of generations at this iteration
386 was recorded. This process was repeated 100 times with the same initial sequence and 25 distinct initial
387 sequences as well. The final escape time t_e^i of residue i was the mean number of generations over all
388 these runs of simulation.

389 To perform a fair comparison between the escape times predicted by the JM and those by the E2-only
390 model in [19], we set the same simulation parameters for both models, including the fitness penalty factor
391 b (10), the number of generations (500), the number of distinct sequences forming the initial population (25)
392 for each residue, and the number of runs of simulation (100) for each distinct initial sequence. The mean
393 escape time predicted for each residue by JM and E2-only model is provided in Supplementary Data 4.

394 H. Identification of escape-resistant residues

395 We ran the evolutionary simulation using the JM for all E1E2 residues following the same procedure
396 described above. We employed a binary classifier that utilized known escape mutations (listed in

397 Supplementary Table S2) as true positives and all other residues as true negatives, which achieved an
398 area under curve (AUC) of 0.92 (Supplementary Fig. S8a). We selected the optimal cut-off value of $\zeta \sim 96$
399 for determining whether a residue in the E1E2 protein is relatively escape-resistant or not based on the
400 maximum F1 score and MCC (Supplementary Figure S8b), commonly used metrics for evaluating binary
401 classifiers.

402 **I. Evaluation of the efficacy of known HmAbs**

403 To evaluate the efficacy of known HmAbs based on the escape times obtained from the JM or the
404 E2-only model, we adopted the following criteria. We compared the minimum escape time t_e^{\min} predicted
405 for a HmAb's binding residues [37], [38], [56] with the cut-off value (ζ) for each model. If t_e^{\min} of a HmAb
406 was greater than ζ for a model, that HmAb was characterized as relatively escape-resistant by that model,
407 and vice versa.

408 **J. Site-independent model**

409 In order to compare JM with a model that ignores all interactions between residues, we defined a
410 site-independent E1E2 fitness landscape model that is characterized solely by the “fields” \mathbf{h} as follows

$$h_i(a) = \ln \frac{1 - f_i(a)}{f_i(a)}, \quad i = 1, 2, \dots, N, \quad (10)$$

411 where $f_i(a)$ is the frequency of observing amino acid a at residue i .

412 **Data and code availability**

- 413 All data used in this work is publicly available. Top 300 pairs of inter-protein couplings obtained from the
414 JM are listed in Supplementary Data 1. Accession numbers of E1E2 sequences used for inferring JM
415 and IM are listed in Supplementary Data 2. The E1E2 infectivity measurements, used for correlating
416 with predictions obtained from the inferred JM and IM, are included in Supplementary Data 3. The
417 mean escape time predicted for each residue by JM and E2-only model is provided in Supplementary
418 Data 4.
- 419 The GUI-based software implementation of the MPF-BML method [21], used for inferring the fitness
420 landscape model, is available at <https://github.com/ahmedaq/MPF-BML-GUI> [20]. Data and scripts for
421 reproducing the results of this manuscript are available at <https://github.com/hangzhangust/HCVE1E2>.
- 422 Any additional information related to the data reported in this paper is available from the lead contact
423 upon request.

424 **Conflicts of Interest**

425 The authors declare no conflict of interest.

426 Acknowledgements

427 H.Z. and A.A.Q. were supported by the Hong Kong Research Grants Council (grant number 16204519).
428 A.A.Q. and M.R.M. were supported by the Australian Research Council through Discovery Project (DP
429 230102850). A.A.Q., R.A.B., and M.R.M. were supported by Australia's National Health and Medical
430 Research Council (NHMRC) through IDEAS Project (2020192). M.R.M. is the recipient of an Australian
431 Research Council (ARC) Future Fellowship (project number FT200100928). R.A.B. is a fellow funded by
432 NHMRC.

433 **Figures**

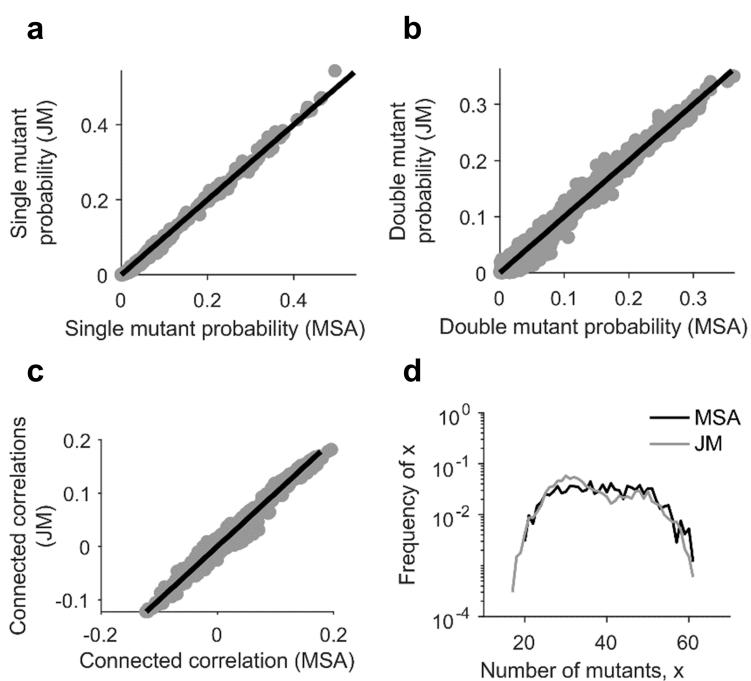


Fig. 1: **Statistical validation of the inferred E1E2 JM.** Comparison of the (a) single mutant probabilities, (b) double mutant probabilities, (c) connected correlations, and (d) distribution of the number of mutants per sequence obtained from the MSA and those predicted by the inferred JM. Samples were generated from the inferred model using the MCMC method [25].

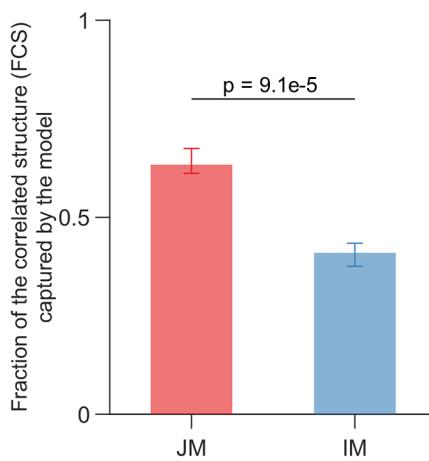


Fig. 2: Comparison of the fraction of the correlated structure in E1E2 protein captured by the joint model (JM) and the independent model (IM). Fraction of the correlated structure (FCS) captured by a model is quantified by I_{model}/I . Here, $I = S_{\text{ind}} - S_{\text{true}}$ is the multi-information which measures the overall strength of correlations in the system, where S_{ind} denotes the entropy of a site-independent model of E1E2 protein and S_{true} is the true entropy of the E1E2 complex estimated using the approach in [81] (see **Methods** for details). Similar to I , $I_{\text{model}} = S_{\text{ind}} - S_{\text{model}}$ measures the strength of correlations captured by the JM or IM model, where S_{model} is the entropy predicted by the JM or IM model based on the data generated using the MCMC method (see **Methods** for details) [23]. Entropies for the JM and IM were calculated over 10 instances of MCMC runs, and the p -value was calculated using the one-sided Mann-Whitney test.

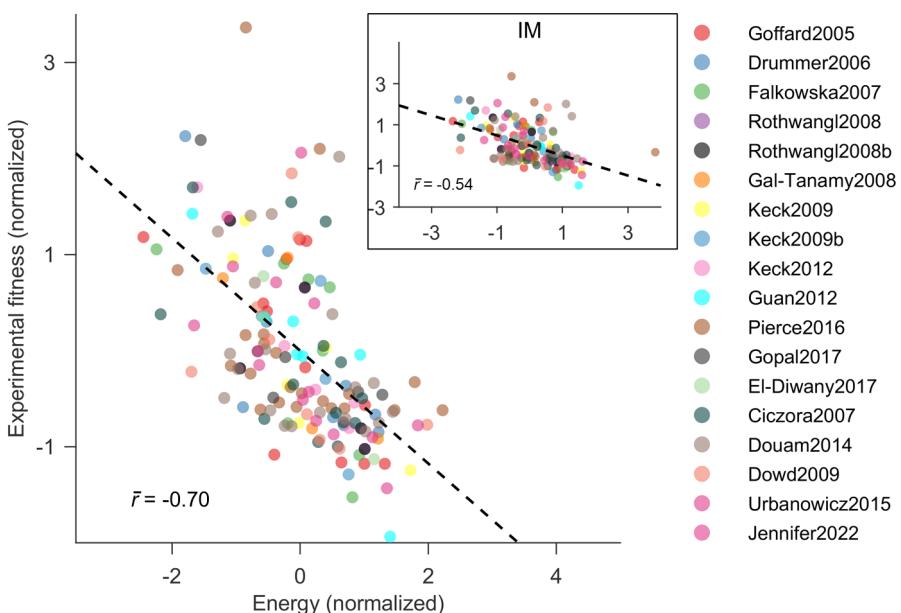


Fig. 3: Comparison of the E1E2 fitness prediction by JM and IM. Normalized energies computed from the inferred JM correlate strongly with the experimental fitness measurements. Conversely, the inferred IM provided a much lower correlation (inset). Legend shows the references from which fitness/infectivity measurements were compiled [13], [29]–[43].

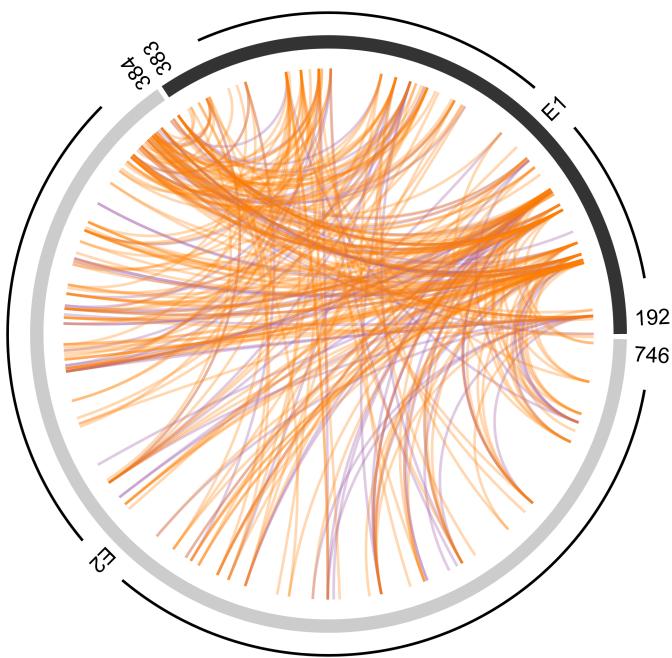


Fig. 4: Strong E1E2 inter-protein interactions are largely compensatory. Each pair of mutations between E1 and E2 proteins was ranked by the absolute values of J_{ij} from Eq. 1 and top 300 pairs are plotted here. Compensatory interactions (negative values of J_{ij}) are colored in orange, while antagonistic interactions (positive values of J_{ij}) are colored in purple. The outer segments of the circle represent E1 (shown in black, encompassing residues 192-383) and E2 (shown in gray, encompassing residues 384-746) proteins.

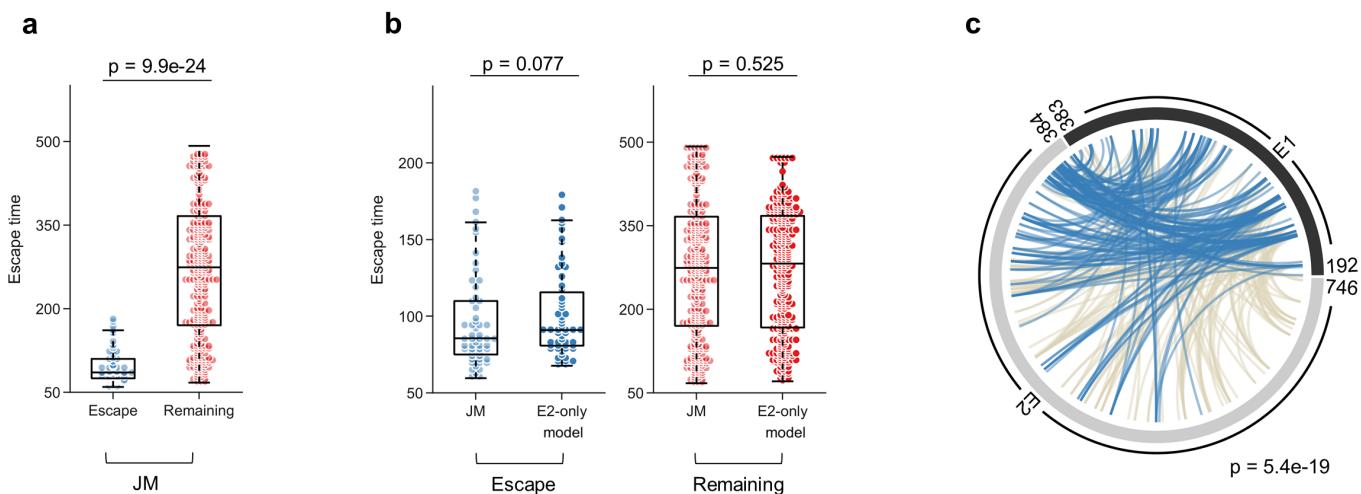


Fig. 5: Role of E1 in facilitating viral escape from E2-specific HmAbs. (a) Distribution of escape times of E2 residues using the inferred JM. Residues were divided into two categories: those with known escape mutations from E2-specific HmAbs (listed in Supplementary Table S2) and the remaining E2 residues. P -value was calculated using the one-sided Mann-Whitney test. (b) Comparison of escape times of E2 residues inferred from the JM and the E2-only model for the known E2 escape mutations (left panel) and the remaining E2 residues (right panel). P -values were calculated using the one-sided Mann-Whitney test. (c) Circos plot displaying the interactions between strongly-coupled residues (Fig. 4) involving escape mutations (shown in blue) and the remaining residues (shown in beige). The reported p -value measures the probability of observing by a random chance at least the observed number of E2 escape mutations among strongly-coupled residues (see **Methods** for details).

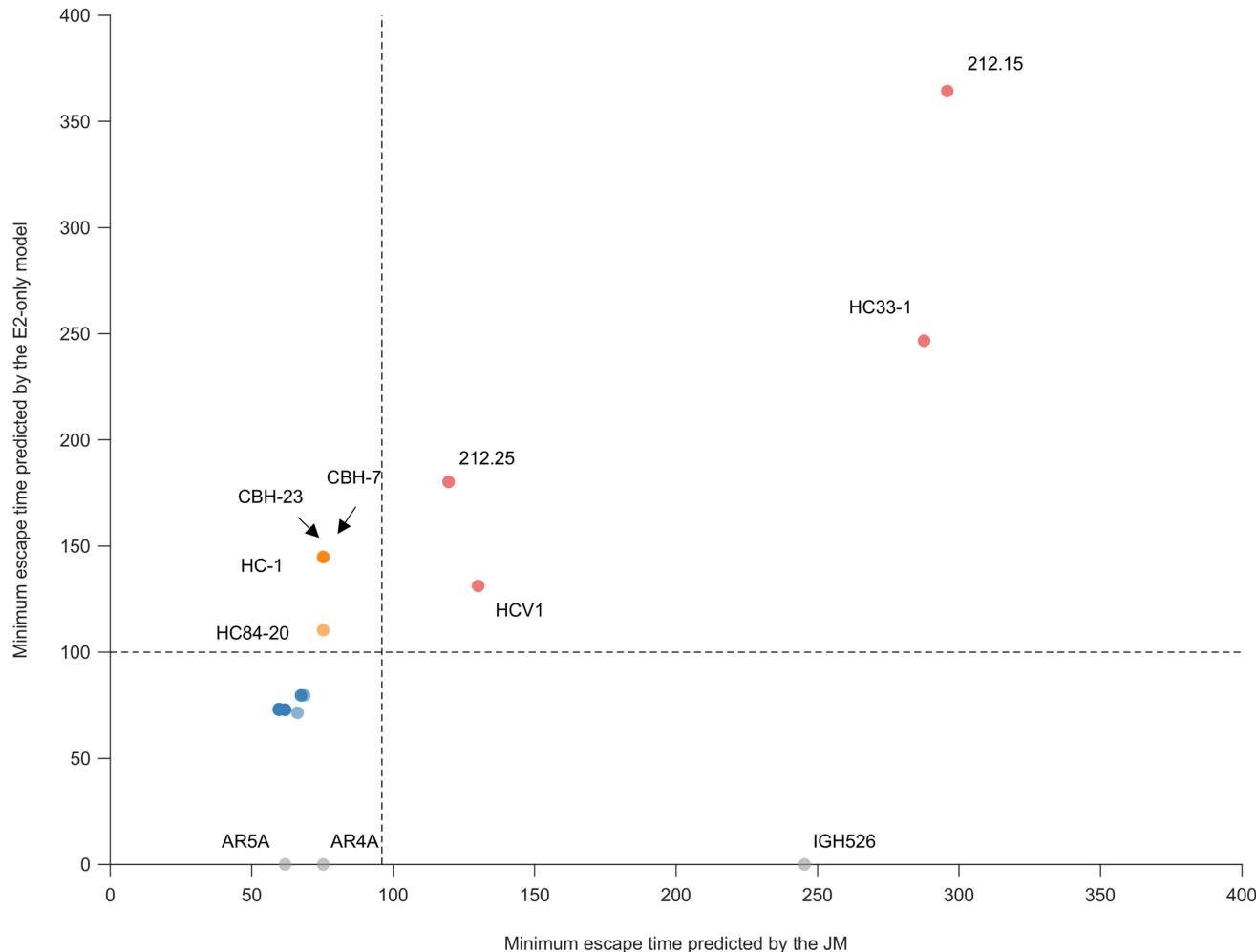


Fig. 6: Evaluation of known HmAbs using the escape times inferred from the JM and the E2-only model. For each HmAb, escape time associated with all binding residues was predicted using both models. Each circle in the figure represents the minimum escape time associated with the binding residues of each HmAb predicted by the JM (x-axis) and the E2-only model (y-axis). Global alanine scanning mutagenesis [37], [38], [56] was used to determine the binding residues of each HmAb, where each residue of the wild-type sequence was replaced by alanine (or glycine/serine if the residue in the wild-type was alanine). We defined binding residues of each of these HmAbs as residues with relative binding (the fraction of the mutant sequence's binding compared to the wild-type sequence) less than or equal to 20%. HmAbs predicted to be escape-resistant by both models are colored in red, the ones predicted to be escape-resistant only by the E2-only model are colored in orange, and the ones predicted to be easy to escape by both models (HmAbs 212.1.1, 212.10, A27, AR1A, AR1B, AR2A, AR3A, AR3B, AR3C, AR3D, CBH-4B, CBH-4D, CBH-4G, CBH-5, CBH-20, CBH-21, CBH-22, HC33-4, HC-11, HC84-24, HC84-26) are colored in blue. The HmAbs having binding residues in E1 (HmAbs AR4A, AR5A and IGH526) are shown in gray and plotted along the x-axis, since E2-only model could not be used to predict their escape time. The dashed line denotes the optimal cut-off value ζ for each model (see [Methods](#) for details).

434 References

435 [1] World Health Organization, "Hepatitis C, Fact sheet," 2022. <https://www.who.int/news-room/fact-sheets/detail/hepatitis-c>

436 [2] E. S. Rosenthal and C. S. Graham, "Price and affordability of direct-acting antiviral regimens for hepatitis C virus in the united states," *Infectious Agents and Cancer*, vol. 11, no. 1, p. 24, 2016.

437 [3] C. Rossi, Z. A. Butt *et al.*, "Hepatitis C virus reinfection after successful treatment with direct-acting antiviral therapy in a large population-based cohort," *Hepatology*, vol. 69, no. 5, pp. 1007–1014, 2018.

438 [4] D. L. Wyles and A. F. Luetkemeyer, "Understanding hepatitis C virus drug resistance: Clinical implications for current and future regimens," *Topics in Antiviral Medicine*, vol. 25, no. 3, pp. 103–109, 2017.

439 [5] V. Deleersnyder, A. Piliez *et al.*, "Formation of native hepatitis C virus glycoprotein complexes," *Journal of Virology*, vol. 71, no. 1, pp. 697–704, 1997.

440 [6] D. Li, M. von Schaewen *et al.*, "Altered glycosylation patterns increase immunogenicity of a subunit hepatitis C virus vaccine, inducing neutralizing antibodies which confer protection in mice," *Journal of Virology*, vol. 90, no. 23, pp. 10486–10498, 2016.

441 [7] Y. Yan, X. Wang *et al.*, "A nanoparticle-based hepatitis C virus vaccine with enhanced potency," *The Journal of Infectious Diseases*, vol. 221, no. 8, pp. 1304–1314, 2019.

442 [8] A. Cerino, M. Bissolati *et al.*, "Antibody responses to the hepatitis C virus E2 protein: Relationship to viraemia and prevalence in anti-HCV seronegative subjects," *Journal of Medical Virology*, vol. 51, no. 1, pp. 1–5, 1997.

443 [9] Y. Tong, D. Lavillette *et al.*, "Role of hepatitis C virus envelope glycoprotein E1 in virus entry and assembly," *Frontiers in immunology*, vol. 9, p. 1411, 2018.

444 [10] A. Wahid, F. Helle *et al.*, "Disulfide bonds in hepatitis C virus glycoprotein E1 control the assembly and entry functions of E2 glycoprotein," *Journal of Virology*, vol. 87, no. 3, pp. 1605–1617, 2013.

445 [11] J. G. Haddad, Y. Rouillé *et al.*, "Identification of novel functions for hepatitis C virus envelope glycoprotein E1 in virus entry and assembly," *Journal of Virology*, vol. 91, no. 8, pp. e00048–17, 2017.

446 [12] R. Moustafa, J. Haddad *et al.*, "Functional study of the C-terminal part of hepatitis C virus E1 ectodomain," *Journal of Virology*, vol. 92, p. e00939–18, 08 2018.

447 [13] F. Douam, V. L. Dao Thi *et al.*, "Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry," *Hepatology*, vol. 59, no. 3, pp. 776–788, 2014.

448 [14] Y. Li and Y. Modis, "A novel membrane fusion protein family in flaviviridae?" *Trends in Microbiology*, vol. 22, no. 4, pp. 176–182, 2014.

449 [15] L. Cocquerel, C. Wychowski *et al.*, "Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins," *Journal of Virology*, vol. 74, no. 8, pp. 3623–3633, 2000.

450 [16] M. Brazzoli, A. Helenius *et al.*, "Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells," *Virology*, vol. 332, no. 1, pp. 438–453, 2005.

451 [17] Z.-Y. Keck, A. Saha *et al.*, "Mapping a region of hepatitis C virus E2 that is responsible for escape from neutralizing antibodies and a core CD81-binding region that does not tolerate neutralization escape mutations," *Journal of Virology*, vol. 85, no. 20, pp. 10451–10463, 2011.

452 [18] R. Velázquez-Moctezuma, E. Augestad *et al.*, "Mechanisms of hepatitis C virus escape from vaccine-relevant neutralizing antibodies," *Vaccines*, vol. 9, p. 291, 03 2021.

453 [19] A. A. Quadeer, R. H. Y. Louie, and M. R. McKay, "Identifying immunologically-vulnerable regions of the HCV E2 glycoprotein and broadly neutralizing antibodies that target them," *Nature Communications*, vol. 10, no. 1, p. 2073, 2019.

454 [20] A. A. Quadeer, M. R. McKay *et al.*, "MPF-BML: A standalone GUI-based package for maximum entropy model inference," *Bioinformatics*, vol. 36, no. 7, pp. 2278–2279, 2019.

455 [21] R. H. Y. Louie, K. J. Kaczorowski *et al.*, "Fitness landscape of the human immunodeficiency virus envelope protein that is targeted by antibodies," *Proceedings of the National Academy of Sciences*, vol. 115, no. 4, pp. E564–E573, 2018.

456 [22] H. Zhang, A. A. Quadeer, and M. R. McKay, "Evolutionary modeling reveals enhanced mutational flexibility of HCV subtype 1b compared with 1a," *iScience*, vol. 25, no. 1, p. 103569, 2022.

480 [23] T. Mora, A. M. Walczak *et al.*, "Maximum entropy models for antibody diversity," *Proceedings of the National Academy of Sciences*, vol. 107, no. 12, pp. 5405–5410, 2010.

481

482 [24] G. R. Hart and A. L. Ferguson, "Empirical fitness models for hepatitis C virus immunogen design," *Physical Biology*, vol. 12, no. 6, p. 066006, 2015.

483

484 [25] A. L. Ferguson, J. K. Mann *et al.*, "Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design," *Immunity*, vol. 38, no. 3, pp. 606–617, 2013.

485

486 [26] J. K. Mann, J. P. Barton *et al.*, "The fitness landscape of HIV-1 Gag: Advanced modeling approaches and validation of model predictions by in vitro testing," *PLoS Computational Biology*, vol. 10, no. 8, p. e1003776, 2014.

487

488 [27] J. P. Barton, N. Goonetilleke *et al.*, "Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable," *Nature Communications*, vol. 7, p. 11660, 2016.

489

490 [28] W. F. Flynn, A. Haldane *et al.*, "Inference of epistatic effects leading to entrenchment and drug resistance in HIV-1 protease," *Molecular Biology and Evolution*, vol. 34, no. 6, pp. 1291–1306, 2017.

491

492 [29] A. Goffard, N. Callens *et al.*, "Role of n-linked glycans in the functions of hepatitis C virus envelope glycoproteins," *Journal of Virology*, vol. 79, no. 13, pp. 8400–8409, 2005.

493

494 [30] H. E. Drummer, I. Boo *et al.*, "A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry," *Journal of Virology*, vol. 80, no. 16, pp. 7844–7853, 2006.

495

496 [31] E. Falkowska, F. Kajumo *et al.*, "Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, cd81 binding, and neutralization," *Journal of Virology*, vol. 81, no. 15, pp. 8072–8079, 2007.

497

498 [32] K. B. Rothwangl, B. Manicassamy *et al.*, "Dissecting the role of putative CD81 binding regions of E2 in mediating hcv entry: Putative CD81 binding region 1 is not involved in CD81 binding," *Virology Journal*, vol. 5, no. 1, p. 46, Mar 2008.

499

500 [33] M. Gal-Tanamy, Z.-Y. Keck *et al.*, "In vitro selection of a neutralization-resistant hepatitis C virus escape mutant," *Proceedings of the National Academy of Sciences*, vol. 105, no. 49, pp. 19 450–19 455, 2008.

501

502 [34] Z.-Y. Keck, S. H. Li *et al.*, "Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity," *Virology*, vol. 83, no. 12, pp. 6149–6160, 2009.

503

504 [35] Z.-Y. Keck, J. Xia *et al.*, "Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate," *PLoS Pathogens*, vol. 8, no. 4, pp. 1–21, 04 2012.

505

506 [36] M. Guan, W. Wang *et al.*, "Three different functional microdomains in the hepatitis C virus hypervariable region 1 (HVR1) mediate entry and immune evasion," *Journal of Biological Chemistry*, vol. 287, no. 42, pp. 35 631–35 645, 2012.

507

508 [37] B. G. Pierce, Z.-Y. Keck *et al.*, "Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design," *Proceedings of the National Academy of Sciences*, vol. 113, no. 45, pp. E6946–E6954, 2016.

509

510 [38] R. Gopal, K. Jackson *et al.*, "Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis," *PLoS Pathogens*, vol. 13, no. 12, p. e1006735, 2017.

511

512 [39] R. El-Diwany, V. J. Cohen *et al.*, "Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1," *PLoS Pathogens*, vol. 13, no. 2, 2017.

513

514 [40] Y. Ciczora, N. Callens *et al.*, "Transmembrane domains of hepatitis C virus envelope glycoproteins: Residues involved in E1E2 heterodimerization and involvement of these domains in virus entry," *Journal of Virology*, vol. 81, no. 5, pp. 2372–2381, 2007.

515

516

517 [41] K. A. Dowd, D. M. Netski *et al.*, "Selection Pressure From Neutralizing Antibodies Drives Sequence Evolution During Acute Infection With Hepatitis C Virus," *Gastroenterology*, vol. 136, no. 7, pp. 2377–2386, 2009.

518

519 [42] R. A. Urbanowicz, C. P. McClure *et al.*, "A diverse panel of hepatitis C virus glycoproteins for use in vaccine research reveals extremes of monoclonal antibody neutralization resistance," *Virology*, vol. 90, no. 7, pp. 3288–3301, 2015.

520

521 [43] J. M. Pfaff-Kilgore, E. Davidson *et al.*, "Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening," *Cell Reports*, vol. 39, no. 8, p. 110859, 2022.

522

523 [44] T. C. Butler, J. P. Barton *et al.*, "Identification of drug resistance mutations in HIV from constraints on natural evolution," *Phys. Rev. E*, vol. 93, p. 022412, 2016.

524

525 [45] T.-h. Zhang, L. Dai *et al.*, "Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease," *PLoS Genetics*, vol. 16, no. 10, pp. 1–22, 10 2020.

526

527 [46] C. Bank, R. T. Hietpas *et al.*, "A systematic survey of an intragenic epistatic landscape," *Molecular Biology and Evolution*,
528 vol. 32, no. 1, pp. 229–238, 2014.

529 [47] K. McCaffrey, H. Gouklani *et al.*, "The variable regions of hepatitis c virus glycoprotein e2 have an essential structural role
530 in glycoprotein assembly and virion infectivity," *Journal of General Virology*, vol. 92, no. 1, pp. 112–121, 2011.

531 [48] R. Velázquez-Moctezuma, A. Galli *et al.*, "Hepatitis c virus escape studies of human antibody ar3a reveal a high barrier to
532 resistance and novel insights on viral antibody evasion mechanisms," *Journal of Virology*, vol. 93, no. 4, 2019.

533 [49] Y. Alhammad, J. Gu *et al.*, "Monoclonal antibodies directed toward the hepatitis C virus glycoprotein E2 detect antigenic
534 differences modulated by the N-terminal hypervariable region 1 (HVR1), HVR2, and intergenotypic variable region," *Journal
535 of Virology*, vol. 89, no. 24, pp. 12245–12261, 2015.

536 [50] W. J. Ewens, "Mathematical population genetics," *Interdisciplinary Applied Mathematics*, 2004.

537 [51] Z.-Y. Keck, C. Girard-Blanc *et al.*, "Antibody response to hypervariable region 1 interferes with broadly neutralizing antibodies
538 to hepatitis C virus," *Virology*, vol. 90, no. 6, pp. 3112–3122, 2016.

539 [52] N. Kato, H. Sekiya *et al.*, "Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70)
540 of hepatitis C virus." *Virology*, vol. 67, no. 7, pp. 3923–3930, 1993.

541 [53] Z.-Y. Keck, O. Olson *et al.*, "A point mutation leading to hepatitis C virus escape from neutralization by a monoclonal antibody
542 to a conserved conformational epitope," *Virology*, vol. 82, no. 12, pp. 6067–6072, 2008.

543 [54] T. J. Morin, T. J. Broering *et al.*, "Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in
544 chimpanzees," *PLoS Pathogens*, vol. 8, no. 8, p. e1002895, 2012.

545 [55] J. R. Bailey, L. N. Wasilewski *et al.*, "Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody
546 resistance," *Journal of Clinical Investigation*, vol. 125, no. 1, pp. 437–447, 2015.

547 [56] Z.-Y. Keck, B. G. Pierce *et al.*, "Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis C
548 virus infections uncover molecular determinants for E2 targeting and vaccine design," *PLoS Pathogens*, vol. 15, no. 5, p.
549 e1007772, 2019.

550 [57] Z.-Y. Keck, T.-K. Li *et al.*, "Analysis of a highly flexible conformational immunogenic domain a in hepatitis C virus E2," *Virology*,
551 vol. 79, no. 21, pp. 13199–13208, 2005.

552 [58] L. Kong, D. E. Lee *et al.*, "Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen," *Proceedings
553 of the National Academy of Sciences*, vol. 113, no. 45, pp. 12768–12773, 2016.

554 [59] M. Law, T. Maruyama *et al.*, "Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge," *Nature
555 Medicine*, vol. 14, no. 1, pp. 25–27, 2008.

556 [60] L. Kong, E. Giang *et al.*, "Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1,"
557 *Proceedings of the National Academy of Sciences*, vol. 109, no. 24, pp. 9499–9504, 2012.

558 [61] T. J. Broering, K. A. Garrity *et al.*, "Identification and characterization of broadly neutralizing human monoclonal antibodies
559 directed against the E2 envelope glycoprotein of hepatitis C virus," *Virology*, vol. 83, no. 23, pp. 12473–12482, 2009.

560 [62] Z.-Y. Keck, A. G. N. Angus *et al.*, "Non-random escape pathways from a broadly neutralizing human monoclonal antibody map
561 to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423," *PLoS Pathogens*,
562 vol. 10, no. 8, pp. 1–13, 2014.

563 [63] I. Fofana, S. Fafi-Kremer *et al.*, "Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing
564 antibodies," *Gastroenterology*, vol. 143, no. 1, pp. 223–233.e9, Jul 2012.

565 [64] L. Kong, R. U. Kadam *et al.*, "Structure of Hepatitis C Virus Envelope Glycoprotein E1 Antigenic Site 314-324 in Complex
566 with Antibody IGH526," *Journal of Molecular Biology*, vol. 427, no. 16, pp. 2617–2628, 2015.

567 [65] J.-C. Meunier, R. S. Russell *et al.*, "Isolation and characterization of broadly neutralizing human monoclonal antibodies to the
568 E1 glycoprotein of hepatitis C virus," *Journal of Virology*, vol. 82, no. 2, pp. 966–973, 2008.

569 [66] M. S. Sohail, R. H. Y. Louie *et al.*, "MPL resolves genetic linkage in fitness inference from complex evolutionary histories,"
570 *Nature Biotechnology*, vol. 39, no. 4, pp. 472–479, 2021.

571 [67] A. A. Quadeer, J. P. Barton *et al.*, "Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness
572 landscape," *Nature Communications*, vol. 11, no. 1, p. 377, 2020.

573 [68] V. Dahirel, K. Shekhar *et al.*, "Coordinate linkage of HIV evolution reveals regions of immunological vulnerability," *Proceedings*
574 *of the National Academy of Sciences*, vol. 108, no. 28, pp. 11530–11535, 2011.

575 [69] A. A. Quadeer, R. H. Y. Louie *et al.*, "Statistical linkage analysis of substitutions in patient-derived sequences of genotype
576 1a hepatitis C virus nonstructural protein 3 exposes targets for immunogen design," *Journal of Virology*, vol. 88, no. 13, pp.
577 7628–7644, 2014.

578 [70] A. A. Quadeer, D. Morales-Jimenez, and M. R. McKay, "Co-evolution networks of HIV/HCV are modular with direct association
579 to structure and function," *PLoS Computational Biology*, vol. 14, no. 9, p. e1006409, 2018.

580 [71] S. F. Ahmed, A. A. Quadeer *et al.*, "Sub-dominant principal components inform new vaccine targets for HIV Gag,"
581 *Bioinformatics*, vol. 35, no. 20, pp. 3884–3889, 2019.

582 [72] G. D. Gaiha, E. J. Rossin *et al.*, "Structural topology defines protective CD8+ T cell epitopes in the HIV proteome," *Science*,
583 vol. 364, no. 6439, pp. 480–484, 2019.

584 [73] Y. M. O. Alhammad, S. Maharajh *et al.*, "Longitudinal sequence and functional evolution within glycoprotein E2 in hepatitis C
585 virus genotype 3a infection," *PLoS ONE*, vol. 10, no. 5, pp. 1–19, 2015.

586 [74] N. Frumento, A. I. Flyak, and J. R. Bailey, "Mechanisms of HCV resistance to broadly neutralizing antibodies," *Current Opinion*
587 *in Virology*, vol. 50, pp. 23–29, 2021.

588 [75] E. H. Augestad, M. Castelli *et al.*, "Global and local envelope protein dynamics of hepatitis C virus determine broad antibody
589 sensitivity," *Science Advances*, vol. 6, no. 35, p. eabb5938, 2020.

590 [76] L. J. Ströh, K. Nagarathinam, and T. Krey, "Conformational flexibility in the CD81-binding site of the hepatitis C virus
591 glycoprotein E2," *Frontiers in Immunology*, vol. 9, p. 1396, 2018.

592 [77] J. B. Singer, E. C. Thomson *et al.*, "GLUE: A flexible software system for virus sequence data," *BMC Bioinformatics*, vol. 19,
593 no. 1, p. 532, 2018.

594 [78] J. Singer, E. Thomson *et al.*, "Interpreting viral deep sequencing data with GLUE," *Viruses*, vol. 11, no. 4, p. 323, 2019.

595 [79] K. Strimmer and A. V. Haeseler, "Genetic distances and nucleotide substitution models," in *The phylogenetic handbook: A
596 practical approach to DNA and protein phylogeny*, P. Lemey, M. Salemi, and A.-M. Vandamme, Eds. Cambridge University
597 Press, 2009, pp. 112–113.

598 [80] C. Leys, C. Ley *et al.*, "Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around
599 the median," *Journal of Experimental Social Psychology*, vol. 49, no. 4, pp. 764–766, 2013.

600 [81] S. P. Strong, R. Koberle *et al.*, "Entropy and information in neural spike trains," *Physical Review Letters*, vol. 80, no. 1, pp.
601 197–200, 1998.

602 [82] J. P. Barton, M. Kardar, and A. K. Chakraborty, "Scaling laws describe memories of host-pathogen riposte in the HIV
603 population," *Proceedings of the National Academy of Sciences*, vol. 112, no. 7, pp. 1965–1970, 2015.

604 [83] R. A. Bull, F. Luciani *et al.*, "Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection," *PLoS
605 Pathogens*, vol. 7, no. 9, pp. 1–14, 2011.

606 [84] J. M. Cuevas, F. Gonzalez-Candelas *et al.*, "Effect of ribavirin on the mutation rate and spectrum of hepatitis C virus in vivo,"
607 *Virology*, vol. 83, no. 11, pp. 5760–5764, 2009.

608 [85] R. Sanjuan, M. R. Nebot *et al.*, "Viral mutation rates," *Virology*, vol. 84, no. 19, pp. 9733–9748, 2010.

609 **Supplementary Information**

610 **HCV E1 influences the fitness landscape of E2 and may enhance escape from**
611 **E2-specific antibodies**

612 **Table of contents**

613 Supplementary Figures S1-S7
614 Supplementary Tables S1-S2
615 Supplementary References

616 **Supplementary Figures**

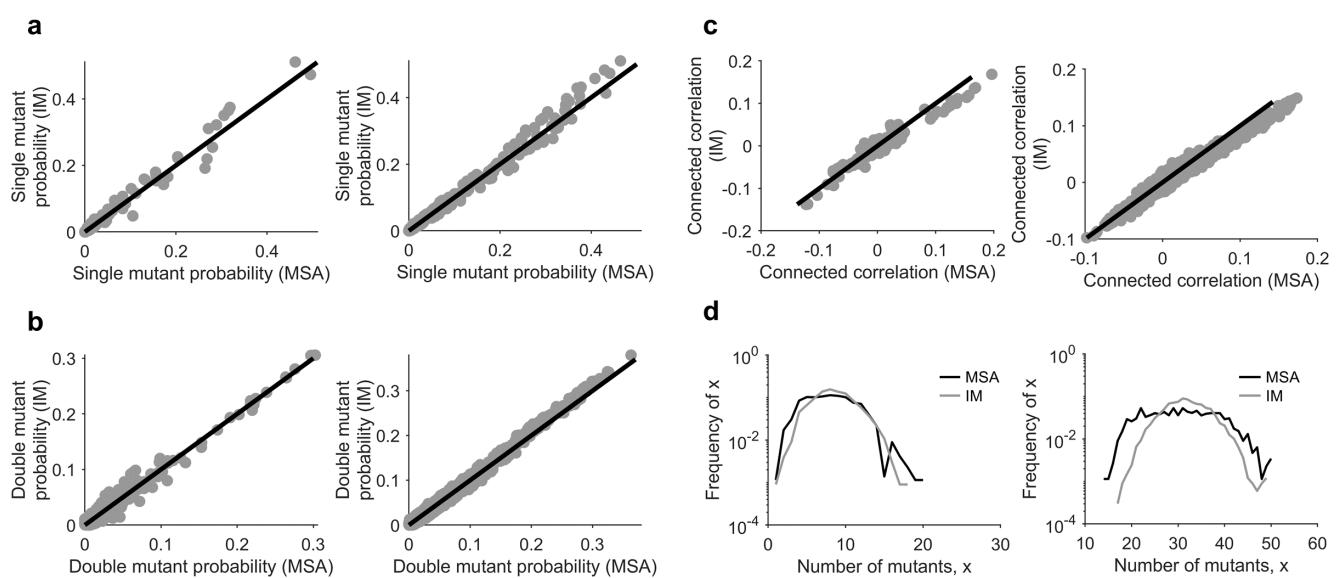


Fig. S1: Statistical validation of the inferred IM for the E1E2 protein. Comparison of the (a) single mutant probabilities, (b) double mutant probabilities, (c) connected correlations, and (d) distribution of the number of mutants per sequence obtained from the MSA (E1 in left panels and E2 in right panels of each subfigure) and those predicted by the inferred IM. Samples were generated from the inferred model using the MCMC method [1].

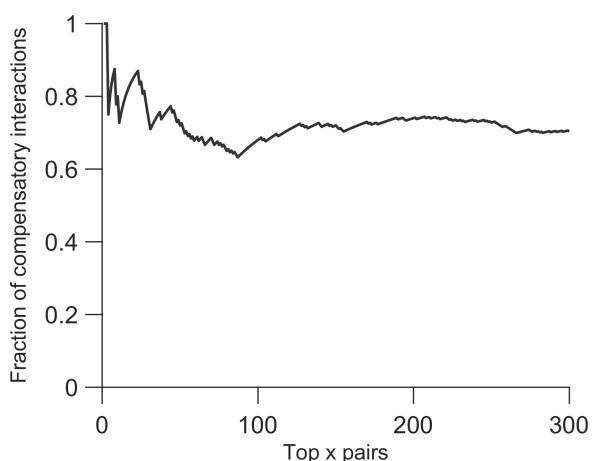


Fig. S2: Robustness of the fraction of compensatory E1E2 inter-protein interactions (Fig. 4) to the number of top inter-protein couplings selected. Top pairs of E1E2 inter-protein couplings were ranked by the absolute values of J_{ij} from Eq. 1. Fraction of compensatory interactions were calculated by the number of negative values of J_{ij} divided by top x pairs of inter-protein couplings considered.

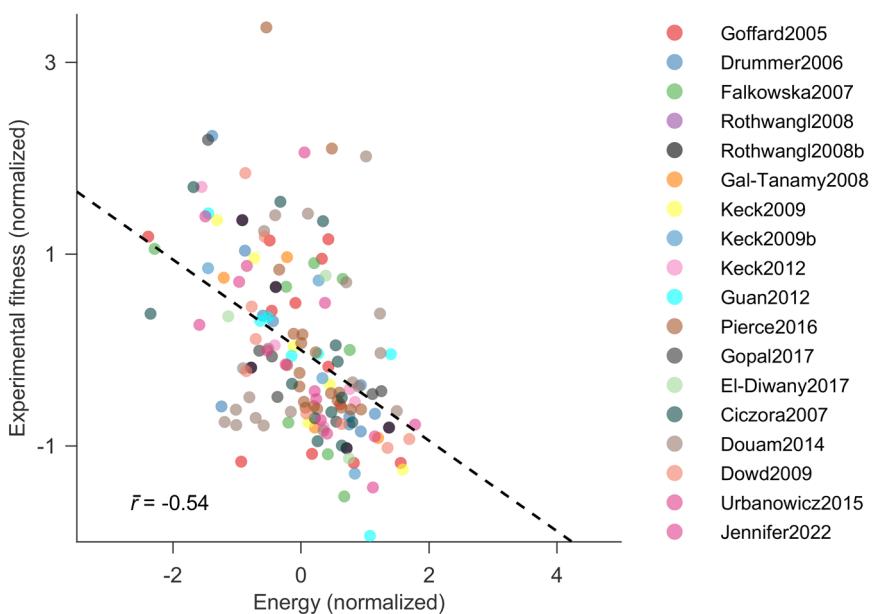


Fig. S3: Correlation between infectivity measurements and predictions obtained from a site-independent model. The site-independent model was inferred using only single mutant probabilities (see [Methods](#) for details). Legend shows the references from which fitness measurements were compiled [2]–[17].

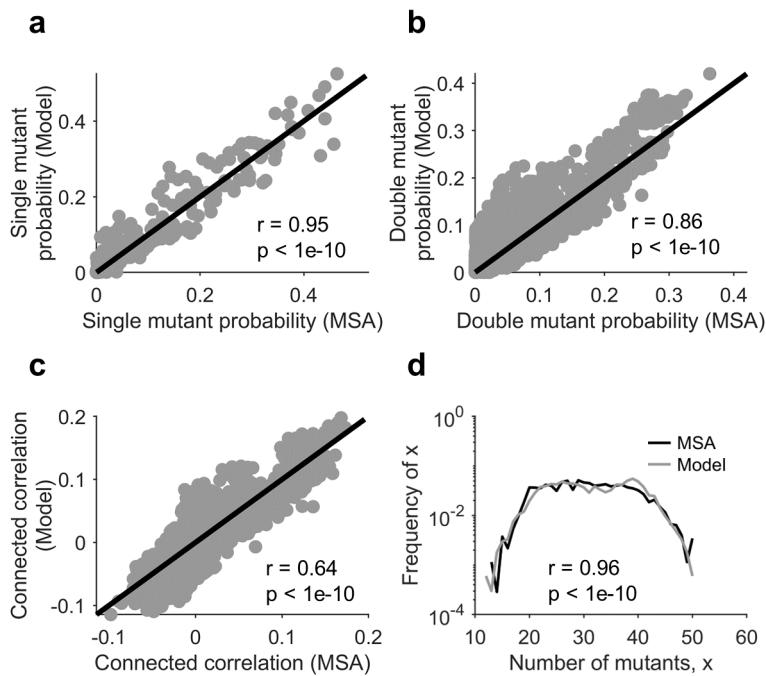


Fig. S4: E2-only model inferred in our previous study [18] reproduces statistics of the MSA based on the latest E2 sequence data. The model in [18] was inferred using HCV E2 sequence data up until September 2017. Comparison of the (a) single mutant probabilities, (b) double mutant probabilities, (c) connected correlations, and (d) distribution of the number of mutants per sequence obtained from the MSA and those predicted by the previous E2-only model. Samples were generated from the previous E2-only model using the MCMC method [1]. Pearson correlation coefficient and the associated p -value is shown for each subfigure.

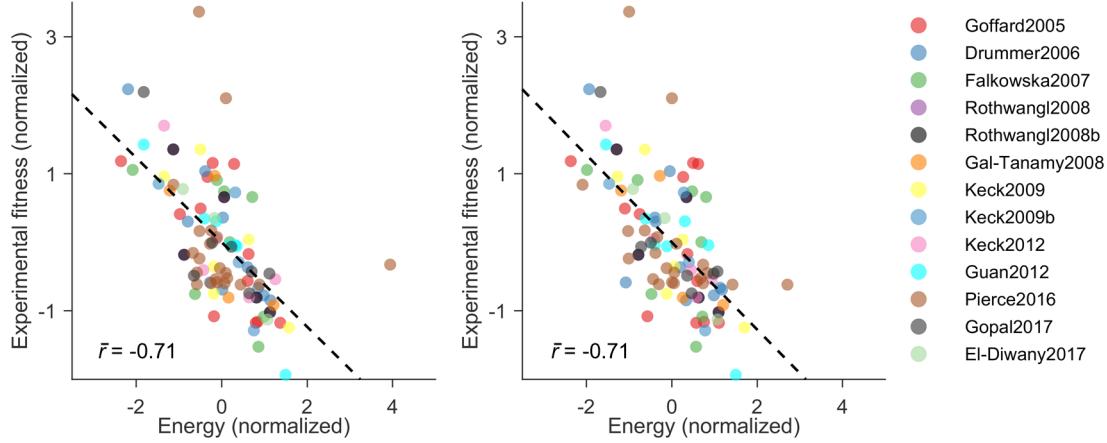


Fig. S5: Comparison of the fitness prediction of the E2-only model inferred in this work (left panel) and in our previous study [18] (right panel). The model in [18] was inferred using HCV E2 sequence data up until September 2017. Normalized energies computed from both models correlate strongly with E2-only experimental fitness measurements. Legend shows the references from which E2-only fitness measurements were compiled [2]–[12].

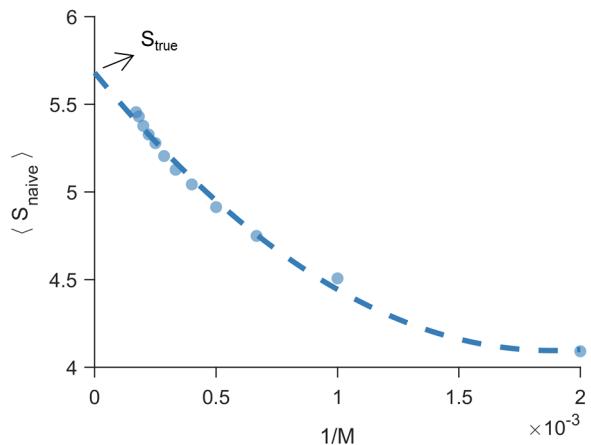


Fig. S6: Estimate of the true entropy. $\langle S_{\text{naive}}(M) \rangle$ vs. $\frac{1}{M}$ (shown as circles) can be well fit by $\langle S_{\text{naive}}(M) \rangle = S_{\text{true}} + \frac{S_1}{M} + \frac{S_2}{M^2}$ (shown as dashed line), where S_1 and S_2 are constants [19], [20]. The y-intercept of the fit provides an estimate for the true entropy, S_{true} (see **Methods** for details).

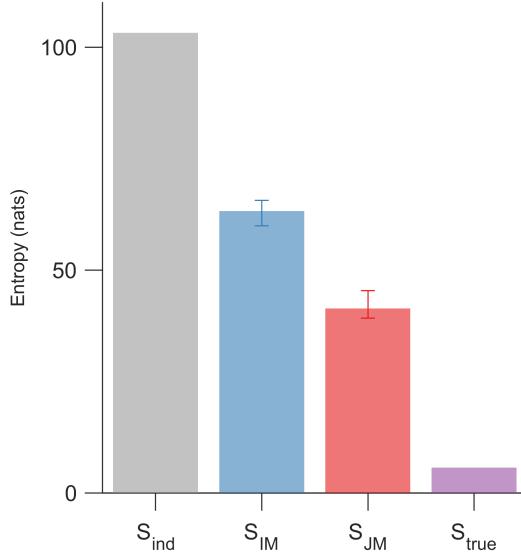


Fig. S7: Entropy calculated from different models for the E1E2 protein. S_{ind} denotes the entropy of a site-independent model of E1E2 protein, where we considered choosing amino acids at each residue of the E1E2 protein independently with the observed frequencies. S_{IM} and S_{JM} are entropies calculated from the inferred IM and the JM (calculated over 10 instances of MCMC runs), and S_{true} is the estimated true entropy (see [Methods](#) for details).

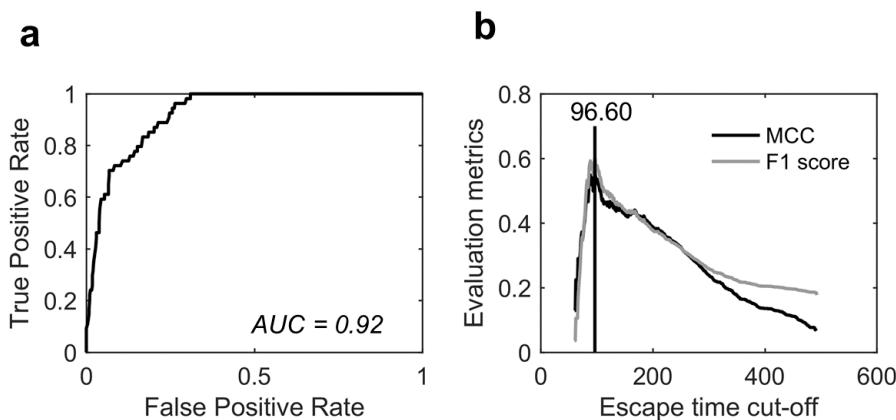


Fig. S8: Binary classifier designed to determine the optimal cut-off for escape time based on experimentally or clinically identified escape mutations. The classifier used a Receiver Operating Characteristic (ROC) curve to identify known E2 escape mutations (listed in [Supplementary Table S2](#)) using the escape time metric. The optimal cut-off value was determined by maximizing the F1 score and the Matthews Correlation Coefficient (MCC). In this classification, E2 residues with known escape mutations were considered as true positives, while all remaining residues were considered true negatives.

617 **Supplementary Tables**

TABLE S1: List of functional regions of E1 and E2 proteins along with the statistical significance of enrichment of strongly-coupled residues in each region.

Regions of E1	p-value	Regions of E2	p-value
Putative fusion peptides of E1 (Fusion E1, residue 265-296)	0.7736	Hypervariable region 1 (HVR1, residue 384-410)	7.5e-8
Stem region of E1 (Stem E1, residue 309-349)	0.8251	Hypervariable region 2 (HVR2, residue 460-482)	3.0e-4
Transmembrane domain of E1 (TMD E1, residue 350-381)	0.5719	Intergenotypic variable region (igVR, residue 570-580)	0.5848
N-terminal domain of E1 (NTD E1, residue 192-239)	0.7233	Stem region of E2 (Stem E2, residue 662-717)	0.9991
Other regions of E1 (Other E1)	0.0776	Transmembrane domain of E2 (TMD E2, residue 718-742)	0.9961
		Other regions of E2 (Other E2)	0.9858

TABLE S2: List of known escape mutations from E2-specific HmAbs.

Escape residues	HmAbs	Reference
408	HC33-4	[21]
384, 386, 388, 390, 391, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 407, 410	HmAbs targeting HVR1	[22]
431	CBH-2	[23]
431, 435, 444, 446, 466, 482, 501, 528, 531, 538, 580, 610, 636, 713	CBH-8C, CBH-2, CBH-5, HC-2, HC-11	[7]
391, 394, 401, 415, 417, 434, 444, 608	HCV1	[24]
416, 422, 424, 431, 433, 438, 442, 446, 453, 456, 461, 475, 482, 520, 524, 531, 533, 557, 558, 560	CBH-2, CBH-5, HC84-22, HC84-26, AR3A, AR3B, AR3C, AR3D	[25]
431, 438, 442	AR3A	[26]

618 Supplementary References

619 [1] A. L. Ferguson, J. K. Mann *et al.*, "Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities
620 for rational immunogen design," *Immunity*, vol. 38, no. 3, pp. 606–617, 2013.

621 [2] A. Goffard, N. Callens *et al.*, "Role of n-linked glycans in the functions of hepatitis C virus envelope glycoproteins," *Journal
622 of Virology*, vol. 79, no. 13, pp. 8400–8409, 2005.

623 [3] H. E. Drummer, I. Boo *et al.*, "A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is
624 a determinant of CD81 binding and viral entry," *Journal of Virology*, vol. 80, no. 16, pp. 7844–7853, 2006.

625 [4] E. Falkowska, F. Kajumo *et al.*, "Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, cd81 binding, and
626 neutralization," *Journal of Virology*, vol. 81, no. 15, pp. 8072–8079, 2007.

627 [5] K. B. Rothwangl, B. Manicassamy *et al.*, "Dissecting the role of putative CD81 binding regions of E2 in mediating hcv entry:
628 Putative CD81 binding region 1 is not involved in CD81 binding," *Virology Journal*, vol. 5, no. 1, p. 46, Mar 2008.

629 [6] M. Gal-Tanamy, Z.-Y. Keck *et al.*, "In vitro selection of a neutralization-resistant hepatitis C virus escape mutant," *Proceedings
630 of the National Academy of Sciences*, vol. 105, no. 49, pp. 19 450–19 455, 2008.

631 [7] Z.-Y. Keck, S. H. Li *et al.*, "Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from
632 broadly neutralizing antibodies but compromise virus infectivity," *Virology*, vol. 83, no. 12, pp. 6149–6160, 2009.

633 [8] Z.-Y. Keck, J. Xia *et al.*, "Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance
634 to neutralization escape in a genotype 2a isolate," *PLoS Pathogens*, vol. 8, no. 4, pp. 1–21, 04 2012.

635 [9] M. Guan, W. Wang *et al.*, "Three different functional microdomains in the hepatitis C virus hypervariable region 1 (HVR1)
636 mediate entry and immune evasion," *Journal of Biological Chemistry*, vol. 287, no. 42, pp. 35 631–35 645, 2012.

637 [10] B. G. Pierce, Z.-Y. Keck *et al.*, "Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications
638 for vaccine design," *Proceedings of the National Academy of Sciences*, vol. 113, no. 45, pp. E6946–E6954, 2016.

639 [11] R. Gopal, K. Jackson *et al.*, "Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput
640 mutagenesis," *PLoS Pathogens*, vol. 13, no. 12, p. e1006735, 2017.

641 [12] R. El-Diwany, V. J. Cohen *et al.*, "Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing
642 antibodies by modulating binding to scavenger receptor B1," *PLoS Pathogens*, vol. 13, no. 2, 2017.

643 [13] Y. Ciczora, N. Callens *et al.*, "Transmembrane domains of hepatitis C virus envelope glycoproteins: Residues involved in
644 E1E2 heterodimerization and involvement of these domains in virus entry," *Journal of Virology*, vol. 81, no. 5, pp. 2372–2381,
645 2007.

646 [14] F. Douam, V. L. Dao Thi *et al.*, "Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties
647 of hepatitis C virus during cell entry," *Hepatology*, vol. 59, no. 3, pp. 776–788, 2014.

648 [15] K. A. Dowd, D. M. Netski *et al.*, "Selection Pressure From Neutralizing Antibodies Drives Sequence Evolution During Acute
649 Infection With Hepatitis C Virus," *Gastroenterology*, vol. 136, no. 7, pp. 2377–2386, 2009.

650 [16] R. A. Urbanowicz, C. P. McClure *et al.*, "A diverse panel of hepatitis C virus glycoproteins for use in vaccine research reveals
651 extremes of monoclonal antibody neutralization resistance," *Virology*, vol. 90, no. 7, pp. 3288–3301, 2015.

652 [17] J. M. Pfaff-Kilgore, E. Davidson *et al.*, "Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening,"
653 *Cell Reports*, vol. 39, no. 8, p. 110859, 2022.

654 [18] A. A. Quadeer, R. H. Y. Louie, and M. R. McKay, "Identifying immunologically-vulnerable regions of the HCV E2 glycoprotein
655 and broadly neutralizing antibodies that target them," *Nature Communications*, vol. 10, no. 1, p. 2073, 2019.

656 [19] T. Mora, A. M. Walczak *et al.*, "Maximum entropy models for antibody diversity," *Proceedings of the National Academy of
657 Sciences*, vol. 107, no. 12, pp. 5405–5410, 2010.

658 [20] S. P. Strong, R. Koberle *et al.*, "Entropy and information in neural spike trains," *Physical Review Letters*, vol. 80, no. 1, pp.
659 197–200, 1998.

660 [21] Z.-Y. Keck, C. Girard-Blanc *et al.*, "Antibody response to hypervariable region 1 interferes with broadly neutralizing antibodies
661 to hepatitis C virus," *Virology*, vol. 90, no. 6, pp. 3112–3122, 2016.

662 [22] N. Kato, H. Sekiya *et al.*, "Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70)
663 of hepatitis C virus," *Virology*, vol. 67, no. 7, pp. 3923–3930, 1993.

664 [23] Z.-Y. Keck, O. Olson *et al.*, “A point mutation leading to hepatitis C virus escape from neutralization by a monoclonal antibody
665 to a conserved conformational epitope,” *Virology*, vol. 82, no. 12, pp. 6067–6072, 2008.

666 [24] T. J. Morin, T. J. Broering *et al.*, “Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in
667 chimpanzees,” *PLoS Pathogens*, vol. 8, no. 8, p. e1002895, 2012.

668 [25] J. R. Bailey, L. N. Wasilewski *et al.*, “Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody
669 resistance,” *Journal of Clinical Investigation*, vol. 125, no. 1, pp. 437–447, 2015.

670 [26] R. Velázquez-Moctezuma, A. Galli *et al.*, “Hepatitis C virus escape studies of human antibody AR3A reveal a high barrier to
671 resistance and novel insights on viral antibody evasion mechanisms,” *Virology*, vol. 93, no. 4, pp. e01909–18, 2019.