

1 **Novel in-silico predicted matrikines are differential mediators of in vitro and**
2 **in vivo cellular metabolism**

3 Nathan Jariwala^{1,9}, Matiss Ozols^{1,2,3,9}, Alexander Eckersley^{1,4}, Bezaleel Mambwe⁴, Rachel E B Watson⁴,
4 Leo Zeef⁵, Andrew Gilmore⁶, Laurent Debelle^{1,7}, Mike Bell⁸, Eleanor J Bradley⁸, Yegor Doush⁸, Carole
5 Courage⁸, Richard Leroux⁹, Olivier Peschard⁹, Philippe Mondon⁹, Caroline Ringenbach⁹, Laure
6 Bernard⁹, Aurelien Pitois⁹ and Michael J Sherratt^{1*}

7 ¹Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of
8 Biology, Medicine and Health, The University of Manchester, Manchester, UK; ²Department of
9 Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, UK; ³British Heart
10 Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK; ⁴Division of
11 Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, The University
12 of Manchester, Manchester, UK; ⁵Bioinformatics Core Facility, Faculty of Biology, Medicine and
13 Health, The University of Manchester, Manchester, UK; ⁶Wellcome
14 Centre for Cell Matrix Research, Division of Cancer Sciences, Faculty of Biology, Medicine and Health,
15 University of Manchester, UK; ⁷UMR CNRS 7369 MEDyC, Université de Reims Champagne Ardenne,
16 UFR Sciences Exactes et Naturelles, SFR CAP Santé, Moulin de la Housse, 51687 Reims cedex 2,
17 France; ⁸No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK; ⁹Sederma, 29 rue du
18 Chemin Vert, Le Perray en Yvelines, 78612, France; ⁹These authors contributed equally: Nathan
19 Jariwala, Matiss Ozols. *Corresponding Author Email: michael.j.sherratt@manchester.ac.uk

20

21

22 Keywords: extracellular matrix, peptides, matrikines, skin, ageing, proteases, therapeutic discovery

23

24 **Summary**

25 The exogenous application of small peptides can beneficially affect clinical skin appearance
26 (wrinkles) and architecture (collagen and elastic fibre deposition and epidermal thickness). However,
27 the discovery of new bioactive peptides has not been underpinned by any guiding hypothesis. As
28 endogenous extracellular matrix (ECM)-derived peptides produced during tissue remodelling can act
29 as molecular signals influencing cell metabolism, we hypothesised that protease cleavage site
30 prediction could identify putative novel matrikines with beneficial activities. Here, we present an *in*
31 *silico* to *in vivo* discovery pipeline, which enables the prediction and characterisation of peptide
32 matrikines which differentially influence cellular metabolism *in vitro*. We use this pipeline to further
33 characterise a combination of two novel ECM peptide mimics (GPKG and LSVD) which act *in vitro* to
34 enhance the transcription of ECM organisation and cell proliferation genes and *in vivo* to promote
35 epithelial and dermal remodelling. This pipeline approach can both identify new matrikines and
36 provide insights into the mechanisms underpinning tissue homeostasis and repair.

37

38

39 **Introduction**

40 Extracellular matrices (ECMs) of mammalian tissues play important roles in mediating tissue
41 structure, mechanical properties and cellular phenotype (Theocharis et al., 2016). However, aberrant
42 and progressive remodelling of ECM-rich tissues is a key feature in the pathology and ageing of many
43 organs, including articular cartilage (Bolduc et al., 2019), arteries (Lacolley et al., 2018) and skin
44 (Wilkinson and Hardman, 2021). Whilst some ECM proteins, such as newly synthesised collagen I in
45 tendon, are maintained through a circadian cycle (Chang et al., 2020), the longevity of other ECM
46 components makes them vulnerable to oxidative damage (Sander et al., 2002), pathological cross-
47 linking (Moldogazieva et al., 2019) and protease-mediated degradation (Freitas-Rodriguez et al.,
48 2017). In particular, many structural ECM components such as elastin (Shapiro et al., 1991), aggrecan
49 and collagen (Sivan et al., 2006) persist in tissues for decades. The relative susceptibility of individual
50 ECM proteins to degradation may be determined not only by their longevity but also abundance,
51 tissue location (for example in the ultraviolet radiation [UVR]-exposed papillary dermis of photoaged
52 skin (Watson et al., 1999)) and biochemistry (where amino acid composition mediates susceptibility
53 to UVR and oxidation (Hibbert et al., 2015)). Crucially, ECM degradation may not only impair
54 function but also release peptide fragments, known as matrikines, or reveal previously shielded
55 active sites known as matricryptins (Davis et al., 2000) with cell signalling capabilities (Maquart et al.,
56 1999).

57 Early research into the bioactivity of ECM fragments focussed on elastin-derived peptides, which
58 exhibit diverse actions against stromal, endothelial and immune cells (Duca et al., 2004), but it is
59 clear that matrikines can be liberated from multiple ECM proteins. For example, the collagen IV NC1
60 domain fragments canstatin (Kamphaus et al., 2000) and arresten (Nyberg et al., 2008) are anti-
61 angiogenic, tumour suppressive and able to regulate apoptosis. Furthermore, a smaller peptide
62 fragment of canstatin (amino acids 78-86; known as Cans) also demonstrates biological activities,
63 including inhibiting migration and inducing apoptosis in tumour cells (Chamani and Zamani, 2022).
64 The action of matrikines may not always be clinically beneficial, with the collagen-derived matrikine
65 PGP promoting chronic inflammation and pulmonary fibrosis (Bras and Frangogiannis, 2020),
66 although conversely collagen I (C-1158/59 (Lindsey et al., 2015)) and XVIII (endostatin (Isobe et al.,
67 2010)) matrikines have been shown to reduce cardiac fibrosis. These studies, and many others,
68 demonstrate that endogenously generated ECM peptides can act as matrikines, influencing tissue
69 physiology and, ultimately, function. However, they also suggest that the application of exogenous
70 ECM-derived peptides may beneficially affect tissue homeostasis.

71 The accessibility of human skin, which enables characterisation of ageing (den Dekker et al., 2013)
72 and repair (Watson et al., 2009), its susceptibility to molecular damage (Ozols et al., 2021b) and its
73 cellular and extracellular composition, which is similar to other connective tissue-rich organs, make
74 it an excellent system in which to study the action of exogenous peptides in humans. Human skin
75 may be subject to both intrinsic (passage of time) and extrinsic (action of exogenous factors, often
76 ultraviolet radiation; UVR) ageing (Gu et al., 2020). Whilst there are differences in the clinical
77 manifestations of these ageing processes, both affect the epidermis and dermal ECM proteins
78 (Naylor et al., 2011). In our recent review of bioactive peptides used within skin anti-ageing
79 cosmeceuticals (Jariwala et al., 2022), we identified 35 peptides whose sequences were found in at
80 least one human protein. Many of these peptides were short (di- or tri-peptides), and were usually
81 modified with a palmitoyl chain to aid penetration through the skin barrier (Choi et al., 2014).
82 Comparison of relative activity of these putative ECM matrikines is difficult given the disparity of
83 outcome measures and model systems employed in published studies and, in some cases, the
84 inclusion of the peptide in a complex formulation. However, the beneficial effects of such
85 treatments are clear with, for example, enhanced collagen synthesis *in vitro* (Maquart et al., 1988)
86 and enhanced fibrillin-rich microfibril deposition and wrinkle reduction *in vivo* (Watson et al., 2009)
87 being reported for the peptide palmitoyl-GHK. The short amino acid sequence of this peptide, along
88 with that of other biologically active tri-peptides, means that this peptide, and others which show
89 activity, are commonly found in hundreds or thousands of human proteins (Jariwala et al., 2022).
90 Despite the success of some peptides in inducing clinically discernible benefits in aged skin, to date,
91 there has been no published conceptual framework to guide the prediction and characterisation of
92 new bioactive therapeutic peptides. Instead, new peptide discovery has relied on serendipity, or
93 inferences based on protein active sites and the chemical modification of existing peptides (Leroux
94 et al., 2020).

95 In this study, we test the hypothesis that small bioactive peptides (matrikines) can be predicted by
96 the *in silico* digestion of dermal proteins via action of ECM proteases. In contrast to enzymes such as
97 trypsin, where cleavage sites can be predicted with a great deal of certainty (Manea et al., 2007),
98 identifying putative cleavage sites of endogenous tissue ECM proteases (such as members of matrix
99 metalloproteinases [MMPs] and cathepsins) requires the use of machine learning algorithms which
100 can predict cleavage sites in protein sequences (Ozols et al., 2021a; Song et al., 2012). We have
101 established a new discovery pipeline in which potential peptide matrikines were predicted and
102 synthesised (following selection based on size, solubility and suitability for manufacturing; Fig. 1a)
103 and screened for *in vitro* cell culture toxicity and biological activity (targeted immunohistochemical
104 markers, and transcriptome and proteome discovery; Fig. 1b). A peptide combination was then

105 progressed to an *in vivo* occluded patch test in human volunteers that simulates the longer-term skin
106 rejuvenation potential of topically applied compounds (Watson et al., 2008) (Fig. 1c). The
107 identification of new matrikines has the potential not only to provide insights into tissue pathology,
108 but also to translate to actives with utility in skin (Cole et al., 2018) and potentially other diverse
109 tissues (such as brain (Reed et al., 2019), muscle (Pavan et al., 2020), heart (Hardy et al., 2019) and
110 liver (Mohammed et al., 2021)) in which treatment of aberrant ECM-remodelling is a pressing and
111 unmet clinical need.

112

113

114 **Results**

115 **Selecting target proteins which are likely to be sources of matrikines *in vivo*:** As matrikines are
116 most likely to be generated from abundant and/or degradation-susceptible skin proteins we first
117 defined an initial target cohort of 69 extracellular proteins (Fig. 2a and Table S1) drawn from the
118 human skin proteome (Hibbert et al., 2018). In the case of a protease such as trypsin, which only
119 cleaves at the C-terminal side of Lys and Arg (except when followed by Pro) (Manea et al., 2007),
120 prediction of cleavage sites is straightforward. However, cleavage prediction for endogenous tissue
121 proteases (such as MMPs and cathepsins) is determined by multiple factors other than primary
122 amino acid sequence. Therefore, to identify the initial cohort of target proteins, we used an
123 established machine-learning algorithm; PROSPER (Song et al., 2012) was used to predict the
124 cleavage sites of skin-active enzymes (MMPs-2, -3, -7 and -9, cathepsins –G and –K, granzyme B and
125 elastase-2 (Cavarra et al., 2002; Hiebert and Granville, 2012; Quan et al., 2013; Rijken et al., 2005; Xu
126 et al., 2014)) for all human skin ECM proteins, and hence to select the 20 extracellular proteins with
127 the highest proportion of predicted cleavage sites. As photo-oxidation can also degrade ECM
128 components in skin (Berlett and Stadtman, 1997; Fisher et al., 1996; Wells et al., 2015) , we next
129 identified the 20 extracellular human skin proteins with the highest proportion of UVR/ROS
130 susceptible amino acid residues (Hibbert et al., 2015). Finally, the cohort was supplemented with a
131 further 33 ECM proteins (including collagens, elastic fibre associated proteins and proteoglycans)
132 with known roles in dermal function. In order to reduce the computational requirements (of
133 predicting multiple cleavage sites and potential matrikines), each protein in the initial cohort of 69
134 was further reviewed to select proteins with high relative abundance (immune staining on Human
135 Protein Atlas (Hibbert et al., 2018) (Ponten et al., 2008)) and susceptibility to reported age-related
136 remodelling. The final cohort of 27 target proteins included key components of the elastic fibre,
137 system (i.e. elastin, fibrillin-1 and fibulin-1), fibrillar collagens (I and III) and the dermal-epidermal
138 junction basement membrane (collagen IV and laminin-332) which all undergo remodelling in
139 photoaged skin (Fig. 2a).

140 **Prediction and *in vitro* selection of candidate matrikines from target proteins:** Most ECM proteins
141 are susceptible to digestion by multiple proteases and, as a consequence, have many
142 experimentally-validated cleavage sites (Stewart-McGuinness et al., 2022). Therefore, we developed
143 a bespoke algorithm which utilised PROSPER (Song et al., 2012) cleavage probability scores to
144 predict fragmentation and hence the sequence of liberated peptides (Fig. 2b). Having generated a
145 cohort of putative peptide fragments we next selected tetra-peptides for further review, as such
146 small molecules (~500Da or less) are more likely to penetrate the skin barrier (Bos and Meinardi,
147 2000) and may potentially be generated from 10's-100's of proteins. In contrast, penta-peptide

148 homologues are less widely distributed in the skin proteome (Fig. 2ci), whilst di- and tri- peptides
149 homologues are found in 1000's of human proteins and hence may lack specific matrikine activities
150 (Jariwala et al., 2022). Collagens IV, VI and VII are potentially rich sources of liberated matrikines,
151 with between 25-56 unique cleaved tetra-peptide sequences predicted for the alpha chains of
152 COL4A1, COL4A3, COL6A3, COL7A1 (Fig. 2cii). Not only do these collagens (along with COL1A1 and
153 COL3A1) contain multiple predicted cleavage products but, for each alpha chain, the putative
154 matrikines are also predicted (collectively) to be cleaved from over 100 skin proteins, thereby
155 increasing the probability of them being liberated *in vivo*. In addition to the collagens, elastic fibre
156 associated proteins (e.g. EMILIN1, FBN1, LTPB4), the adhesive glycoprotein FN1, and the basement
157 membrane component LAMB3 may also be rich sources of matrikines *in vivo* (Fig. 2cii). This
158 screening process identified 453 putative matrikine tetra-peptides.

159 Ubiquitous peptides may be produced with a higher frequency in damaged tissues, resulting in the
160 promotion of ECM synthesis and tissue repair via multiple pathways. When selecting candidates for
161 synthesis and experimental characterisation, we chose some peptides which were predicted to be
162 cleaved from multiple skin ECM proteins by several proteases (in order to increase the chances of
163 observing biological activity and/or broad-spectrum activity). For example, peptide P1 was predicted
164 to be cleaved from multiple collagen alpha chains as well as ECM glycoproteins and ECM regulators.
165 However, we also included some peptides which were predicted to be cleaved from a smaller and
166 alternative protein cohort (for example P8 which is found predominantly in proteoglycans; Fig. 3a
167 and Table S2). Additional review identified eight (8) peptides (P1: GPKG; P2: GPSG; P3: LSPG; P4:
168 EKGD; P5: QTAV; P6: LSPD; P7: LSVD and P8: ELED) with predicted high solubility, the potential to
169 form hydrogen bonds (which can mediate receptor/ligand interactions), and minimal issues with
170 regards to downstream bulk-scale manufacture (Table S2). These were successfully synthesised and
171 chemically modified with a palmitoyl chain (pal-) to increase penetration into the skin.

172 **Selection of two peptides with promising *in vitro* activities.** Initial toxicity testing (Hoechst 33258)
173 was conducted to determine viable peptide concentrations for *in vitro* testing (Table S3). The ability
174 of the 8 peptides to promote cellular synthesis of selected ECM components essential to dermal
175 integrity (procollagen I, fibronectin, decorin, collagen IV, hyaluronic acid and fibrillin-1) was then
176 assessed *in vitro* on human dermal fibroblast cells (HDFs) via enzyme-linked immunosorbent assays
177 (ELISA) or immunofluorescence (IF) techniques. With the exception of hyaluronic acid, all peptides
178 enhanced the synthesis of at least some of the ECM markers tested (Table S4). These targeted
179 immune-assays were followed by liquid chromatography tandem mass spectrometry (LC-MS/MS)
180 proteomic analysis of HDFs exposed to each peptide. Although peptides P2, P4, P6 and P8
181 upregulated proteins in multiple functional classes (Fig. 3b), their activity was more limited than the

182 other peptides and peptides P3 and P5 were present in few skin proteins. Consequently, two
183 peptides with contrasting activities (P1 and P7) were selected for characterisation of fibrillin-rich
184 microfibril (an early biomarker of both skin ageing and repair (Watson et al., 2008)) deposition. Both
185 peptides induced significant elaboration of a fibrillin-rich microfibril network compared with the
186 DMSO control (Fig. 3ci). P1 was therefore selected for further characterisation due to its ubiquitous
187 distribution within skin proteins and ability to enhance pro-collagen I synthesis (by ELISA) and a
188 broad range of proteins, including fibrillin-rich microfibrils (IF) and basement membrane
189 components (LC-MS/MS; Fig. 3cii). P7 was also chosen as it promoted both fibrillin-1 and decorin
190 synthesis (by IF and ELISA respectively) and showed diverse activity in the LC-MS/MS screen.

191 **Peptides pal-GPKG (P1) and pal-LSVD (P7) act synergistically in vitro.** Primary HDFs from five age-
192 and sex- matched donors (derived from breast skin (n=1), labia (n=2) and buttock(n=2)) were treated
193 with P1, P7, P1+P7 in combination and TGF- β 1 (which acting as a positive control profoundly
194 affected both the cellular transcriptome and proteome; Figure S1ai). Total RNA was extracted after
195 12 hrs (in order to characterise the initial response to peptides) and extracellular proteins after
196 seven days of treatment (to characterise protein deposition). RNA-Seq transcriptome analysis
197 identified over 6,000 genes with peptide-treatment associated fold changes of ≥ 1.2 (Yao et al., 2015)
198 in each of the peptide treatments. Crucially, whilst principal component analysis (PCA)
199 demonstrated strong clustering of samples by body site (Fig. 4ai), PCAs for each individual donor
200 (Fig. 4aii and Figures S1ai-vi) showed that in all cases, peptide treatments modulated the
201 transcriptome compared with untreated controls. Gene Ontology (GO) term enrichment analysis
202 highlighted the diversity of biological processes enriched by the peptides individually (e.g. P1,
203 cellular proliferation and lipid metabolism; P7, ECM remodelling). However, there was a profound
204 synergistic effect, with the peptides in combination (hereby referred to as P1+P7) significantly
205 enriching the transcription of 243 processes (compared with 84 for P1 and 52 for P7 alone). Of
206 these; P1+P7 induced 32 processes involving ECM genes (as defined by the 27 ECM target genes
207 listed in Table S1) compared with 6 for P1 and 11 for P7 (Fig. 4b and Figure S1). In particular, P1+P7
208 enriched processes concerned with ECM assembly and cell adhesion and with cellular proliferation.
209 Proteomics analysis confirmed the transcriptomic clustering by HDF body site origin but identified
210 more separation between untreated control cells and 7 days peptide treatments (Fig. 4c). Again, the
211 peptide combination was most biologically active, upregulating the deposition of over 50 ECM
212 proteins *in vitro* (as defined by Matrisome DB (Shao et al., 2020)) with a fold change ≥ 1.2 (Fig. 4c
213 and d). In particular, the combination enhanced synthesis of ECM regulators and proteoglycans,
214 including serpin peptidase inhibitor, clade E, member 1, and versican core protein.

215 Given the clear synergy between the peptides, the influence of body site on HDF phenotype, and the
216 profound effects of TGF- β 1 on cell phenotype, we next tested the biological activity of the peptide
217 combination against solely buttock-derived primary HDFs (n=3) using a more clinically relevant
218 positive control (all-trans retinoic acid; ATRA). The combination peptide treatment once again
219 significantly enhanced transcription of genes relevant to ECM-rich tissues (ECM organisation,
220 collagen biosynthesis, connective tissue development and wound healing) and lipid/steroid-related
221 processes, but also to peptide response and epithelial processes (Fig. 4e and f and Fig. S2). After 7
222 days' exposure, the peptide combination induced clear clustering by the proteins induced on the PCA
223 plots, which was distinct from both the control and those treated with ATRA (Fig. 4g). Over 20 ECM
224 proteins in each donor dataset were found to be upregulated by the peptide combination treatment,
225 with ECM glycoproteins and regulators being in the majority. Notably, fibronectin, vitronectin,
226 fibromodulin, as well as MMPs-1 and -14 were all found to be upregulated in multiple cell donors.

227 **The peptide combination acts *in vivo* to promote epithelial and dermal remodelling.** Before the
228 peptide combination could be progressed to *in vivo* efficacy testing on human skin, the peptides
229 (500 ppm) were solubilised into a suitable and stable excipient for use in topical formulations and
230 subjected to a range of *in vitro* and *ex vivo* toxicology assessments following Organisation for
231 Economic Co-operation and Development (OECD) guidelines (Development). QSAR and Xenosite
232 analysis, SkinEthic, Epiocular, Uvs spectra, DPRA and keratinosens tests were performed on two
233 peptides (P1 and P7). The peptide formulation (containing 50:50 ratio of P1 and P7) was deemed to
234 be neither a skin sensitizer nor an eye irritant and could, therefore, be safely progressed to *in vivo*
235 efficacy assessment.

236 Chronic UVR exposure results in epidermal thinning and significant remodelling of the underlying
237 dermal ECM, including loss of fibrillin-rich microfibrils (oxytalan fibres) from the superficial papillary
238 dermis and accumulation of dystrophic elastin (solar elastosis) in both the papillary and reticular
239 dermis (Naylor et al., 2011). To determine the efficacy of peptides P1 and P7 in mitigating epidermal
240 and dermal remodelling, the peptide formulation was applied to the photoaged extensor forearm
241 skin of otherwise healthy volunteers, using a validated, occluded patch test assay (Watson et al.,
242 2008) alongside an occluded but untreated area (occluded control), a vehicle control and ATRA (as
243 positive control). In contrast to *in vitro* characterisation, which employed a fibroblast monoculture,
244 the *in vivo* patch test exposed multiple cell types embedded in a complex tissue environment to the
245 peptide combination. In the bulk RNA-Seq analysis, for all donors, the peptide formulation
246 modulated the transcriptome compared with both the occluded and vehicle controls (Fig. 5a).
247 Demonstrating that the peptides exert a significant influence on cell physiology additional to the
248 vehicle. Specifically, GO-term analysis of RNA-Seq data for the top 20 (by q-value) biological

249 processes identified multiple differentially enriched processes against the vehicle control: at 10ppm
250 these included peptide and peptide hormone responses and retinol metabolism. At 30ppm, against
251 the vehicle control, the peptide formulation drove expression of key skin homeostasis and repair
252 processes, including keratinization, cornification, and skin barrier (Fig. 5b). Compared with the
253 occluded control transcriptome, the peptide formulation enhanced transcription of multiple ROS-
254 and ECM-related processes (Fig. 5c). In addition to modulating expression of collagens, laminins and
255 proteoglycans, the peptide formulations enriched transcription of elastic fibre components,
256 including elastin, fibulins and microfibril associated protein 4 (MFAP4). Immunohistochemical
257 analysis demonstrated that compared with the occluded control, the peptide formulation
258 significantly enhanced deposition of fibrillin-rich microfibrils in the papillary dermis (Fig. 6a and b).
259 However, the vehicle control did not significantly affect fibrillin-rich microfibril deposition compared
260 with the occluded control, indicating the role played by the peptides in stimulating elastic fibre
261 remodelling.

262

263 **Discussion**

264 In this study we test the hypothesis that small bioactive peptides (matrikines) can be predicted by
265 the *in silico* digestion of dermal ECM proteins by proteases. Our discovery pipeline: i) provides *in*
266 *vitro* evidence for diverse, sequence-dependent, biological activities induced in cultured HDFs
267 exposed to exogenous tetra-peptides and; ii) shows that the two peptides tested *in vivo*, when
268 applied in combination, can modulate key measures of skin photo-damage. Although the detection
269 of peptides less than 500 Da in a complex proteome is challenging with conventional mass
270 spectrometry, more targeted approaches such as selective or multiple reaction monitoring, could be
271 used to identify previously predicted small peptide sequences in complex protein mixtures extracted
272 from growing or healing tissues. Although there is evidence that some ECM fragments (such as
273 collagen XVIII-derived endostatin (Isobe et al., 2010)) can reduce fibrosis, the role played by
274 endogenous matrikines in mediating self-repair in ageing and/or diseased tissues is an important
275 area for study. The complex nature of ageing and many chronic diseases, where a diverse array of
276 proteases may act on hundreds of proteins to produce thousands of peptides at low concentrations,
277 could explain the lack of evidence for endogenous matrikines in preventing tissue degeneration.
278 Even with a small cohort of ECM derived peptides, our data demonstrates that each sequence
279 (peptides P1-P8) can mediate the expression of numerous and disparate proteins and pathways. By
280 applying relatively high concentrations of a peptide, the cells receive a strong and consistent signal,
281 in contrast to the potential low-level noise of many endogenously derived peptides.

282 Predicting and selecting peptides with specific activities will be challenging. Whilst our data indicates
283 that some peptides (i.e. P3) may act as relatively specific alarm signals prompting cells to primarily
284 synthesise enzyme inhibitors (Fig. 3c). Other peptides (particularly P1, P3, P5 and P7) appear to be
285 non-specific alarm signals, inducing fibroblasts to synthesise a large and varied proteome (Fig.3c).
286 The limited nature of outcome measures assessed for commercially-available skin-active peptides
287 makes it difficult to make comparisons with the transcriptomic and proteomic measures used in this
288 study, but our data confirms previous observations (Jariwala et al., 2022) that ECM-derived peptides
289 promote ECM synthesis. It is possible that longer (and hence protein source-specific) peptide
290 sequences may have more targeted effects but, for use in topical skin treatments, penetration
291 through the *stratum corneum* may be challenging (Jariwala et al., 2022) and smaller peptides (Cans
292 (Chamani and Zamani, 2022)) can exhibit similar activities to the parent molecule (canstatin
293 (Kamphaus et al., 2000)). Relative peptide activity will also be subject to inter-individual variation
294 (Figs. 4-6). In the case of skin, it is well established that even the gold-standard topical treatment
295 ATRA varies in its effectiveness between individuals (Kligman et al., 1986; Watson et al., 2008; Young
296 et al., 2006). The biological effects of exogenous peptides will also be target-cell dependent and

297 therefore single cell transcriptomic and proteomic profiling followed by expression quantitative trait
298 loci (eQTL) analysis on well-characterised cell lines such as HipSci fibroblast lines may provide insight
299 towards personalised treatment approaches(Kumasaka et al., 2021; McCarthy et al., 2020). In
300 common with most previous studies, we have used cultured dermal fibroblasts as the target cell to
301 detect and respond to peptides. It is clear that fibroblasts are responsive to the exogenous peptides,
302 but *in vivo* epidermal cells, and in particular keratinocytes, will be exposed to the highest doses. Our
303 *in vivo* patch test protocol and subsequent transcriptomic characterisation highlights the enrichment
304 of key epithelial processes including skin barrier formation, keratinization and cornification (Hussain
305 and Goldberg, 2007; Puig et al., 2008) indicating that the effects of this peptide combination are not
306 confined to the dermis.

307 By applying an *in silico* to *in vivo* discovery pipeline we have identified and characterised the ability
308 of novel peptides (GPKG and LSVD) to enhance the transcription of ECM organisation and cell
309 proliferation genes and to promote epithelial and dermal remodelling (Fig. 6c). The use of such
310 biomimicry approaches to predict the identity of naturally occurring ECM breakdown products which
311 promote cell signalling could facilitate the development of safe and well-tolerated technologies and
312 therapies. The development of improved techniques for predicting and detecting the cleavage of
313 small peptides and for the localisation of peptide action within organs and target cells will be critical
314 to enabling better understanding of the mechanisms of matrikine-induced tissue repair with both
315 patient and consumer benefits.

316 **Materials and Methods**

317

318 **Discovery pipeline overview:** Beginning with bioinformatic screening of the human skin proteome,
319 the discovery pipeline integrated existing resources (PROSPER protease cleavage prediction server
320 (Song et al., 2012)) with bespoke algorithms to predict cleavage sites and hence potential peptide
321 fragments from 27 target proteins) with matrikine activity. Eight candidate matrikines, selected on
322 the basis of predicted cleavage from multiple source proteins, reported literature involvement in
323 skin ageing and assessments of suitability for manufacturing, were synthesised, modified with a
324 palmitoyl chain and characterised for biological activity in cultured HDFs. Following initial
325 immunological screening with key ECM components as outcome markers, the biological and
326 toxicological effects of two candidate peptides (individually and in combination) were assessed. The
327 peptide combination was subsequently applied in a formulation to the skin of eight human
328 volunteers and the impact on skin histology and transcriptome characterised.

329 **Target protein selection:** Using an adapted systematic review approach, we previously defined the
330 human skin proteome, which includes 205 constituent dermal ECM proteins (Hibbert et al., 2018)
331 (Fig. 1a). In order to identify dermal ECM proteins for matrikine prediction, we first defined a cohort
332 comprising protease- and UVR/ROS-susceptible proteins supplemented with further ECM structural
333 proteins. The 20 most protease-susceptible extracellular proteins within the human skin proteome
334 were predicted by *in silico* digestion (PROSPER) by MMPs-2, -3, -7 and -9, cathepsins –G and –K,
335 granzyme B and elastase-2 (Cavarra et al., 2002; Hiebert and Granville, 2012; Quan et al., 2013;
336 Rijken et al., 2005; Xu et al., 2014). PROSPER uses publicly available data from the MEROPS database
337 including manually curated and experimentally validated protease cleavage consensus sequences
338 (Rawlings et al., 2018). Using a support vector machine learning (SVM) algorithm (Joachims, 1999)
339 PROSPER estimates the likelihood of proteolytic cleavages occurring in particular positions on
340 protein primary sequences. To make predictions more robust, the PROSPER classifier integrates
341 structural properties such as disordered regions (regions that are capable of undergoing structural
342 changes while performing their functions (Uversky, 2013)) as predicted by DISOPRED3 (Jones and
343 Cozzetto, 2015), assessments of protein secondary structure (psipred (Buchan et al., 2013)) and
344 solvent accessibility (ACCpro 4.0 (Cheng et al., 2005)). The 20 most protease-susceptible proteins
345 were defined as those with the greatest number of cleavage sites (with a cleavage probability score
346 (Song et al., 2012) of ≥ 0.9) per protein length. Next, having previously shown that amino acid
347 composition is an important factor in determining the susceptibility of proteins to photodynamic
348 degradation (Hibbert et al., 2015) we calculated the relative proportions of oxidation and UVR-
349 sensitive amino acid residues (Trp, Tyr, His, Met, Cys and Cys=Cys) in each extracellular human skin

350 protein to define a further 20 proteins most at risk of photodynamic degradation. A final tranche of
351 structural collagens (each constituent alpha chain analysed separately), elastic fibre associated
352 proteins and adhesive glycoproteins and proteoglycans was added to define an initial cohort of 69
353 proteins (taking into account proteins identified in more than one category) (Table S1). Following
354 further review of these proteins we identified a sub-cohort of 27 target proteins (Fig. 2a) with
355 relatively high skin abundance (as assessed by immune staining in the Human Protein Atlas (Ponten
356 et al., 2008), and susceptibility to age-related remodelling (as reviewed in the Manchester Skin
357 Proteome (Hibbert et al., 2018)).

358 ***In silico* peptide prediction:** In order to predict the identity of cleavage sites and hence cleavage
359 products for each of the 27 proteins, protein FASTA sequences along with domain information were
360 retrieved from Uniprot and the sequences were digested *in silico* by the same panel of enzymes as
361 used in target protein selection (MMPs-2, -3, -7 and -9, cathepsins –G and –K, granzyme B and
362 elastase-2). We developed a bespoke algorithm (https://github.com/maxozo/Matrikine_Discovery)
363 which to predict the sequence of liberated peptides. This algorithm utilised the PROSPER predictions
364 of protease cleavage sites to predict cleavage sites and hence peptide fragments (where the average
365 N- and C-terminal cleavage probability score was ≥ 0.7) (Fig. 2b). This algorithm was also applied to
366 all remaining proteins in the human skin proteome. Following a homology comparison of predicted
367 tetra-peptide sequences with predicted protein fragments for all human skin proteins, 453 peptides
368 from the 27 target proteins were selected for further review. A solubility score (average
369 hydrophilicity of the constituent amino acid residues) was then calculated for each peptide (Hopp
370 and Woods, 1981) as well as a hydrogen bond score (score of 1 for amino acid residues able to form
371 hydrogen bonds [Met, Lys, Thr, Asp, Glu, Ser, Cys, Tyr, His, Asn, Gln, Arg, Trp] and score of 0 for the
372 remaining residues) (Barrett, 2012). Additionally, a “Potential Problem Score” was assigned to each
373 peptide based on the presence of amino acids susceptible to oxidation, vicinity of highly
374 hydrophobic amino acids and or to avoid side reactions during synthesis or formulation.

375 A cohort of eight peptides was selected for synthesis and for screening. These peptides were
376 predicted to be highly soluble, ability to form hydrogen bonds and to have few potential
377 manufacturing problems with non CMR solvents. The cohort contained peptides which were
378 predicted to be cleaved from a wide range of ECM components (Fig. 3a).

379 **Synthesis and toxicity testing of eight candidate peptides:** All eight peptides were successfully
380 synthesised and chemically modified with a palmitoyl chain to increase penetration into the skin
381 (Choi et al., 2014). Peptides were synthesized via a solid phase synthesis with sequential coupling of
382 Fmoc-amino acids from C-terminal to N-terminal, then, coupling of palmitic acid. Synthesis was

383 performed without any CMR solvents. Pure peptides were obtained with a purity of 99%, assessed
384 by high-performance liquid chromatography–mass spectrometry (HPLC-MS; mass detector 6120
385 quadrupole, HPLC-1200; both from Agilent, USA).

386 *In vitro* toxicity was assessed for each peptide using cultured primary HDFs from juvenile foreskin
387 (Celln TechTM) and the Hoechst 33258 toxicity assay (Labarca and Paigen, 1980) (Table S3). HDFs
388 were cultured for 72 hours in the presence of each peptide (at 3-12.5 ppm)in Dulbecco's modified
389 Eagle's medium (DMEM, Gibco #21969-035) supplemented with 10% fetal bovine serum (FBS, Gibco
390 #10270-098), 100 U/mL penicillin, 100 mg/mL streptomycin (Gibco #15070-063), 1 μ g/mL fungizone
391 (Gibco #15290-026) and 1mM L-glutamine (Gibco #25030-024). HDFs were incubated at 37°C in a
392 humidified 5% CO₂ atmosphere. Cells were rinsed with phosphate-buffered saline (PBS; Gibco
393 #20012027), then, an ultrasound-induced cell lysis was performed. Cell DNA contents were stained
394 using 8 μ g/mL Hoechst 33258 solution in PBS (Sigma #B2883) for 30 min. Cell number evaluation was
395 performed with BMG Omega fluostar (ex/em. 360/460nm) following Labarca and Paigen method
396 allowing the cell viability when exposed to each peptide to be calculated.

397 **Initial activity screens of eight candidate peptides by ELISA, fibrillin-1 immunofluorescence and LC-
398 MS/MS proteomics:** Peptide activity was initially tested by characterising the ability of each peptide
399 to induce synthesis of a panel of dermal ECM markers: pro-collagen I, fibronectin, decorin and
400 collagen IV measured by ELISA (n=2 with five experimental replicates for all proteins apart from
401 collagen IV with four experimental replicates). Primary HDFs from juvenile foreskin (CellnTechTM)
402 were cultured in routine 175cm² flask (FalconTM) with Dulbecco's modified Eagle's medium (DMEM,
403 Gibco #21969-035), 10% FBS (Gibco #10270-098), 100 U/mL penicillin, 100 μ g/mL streptomycin
404 (Gibco #15070-063), 1 μ g/mL fungizone (Gibco #15290-026) and 1mM L-glutamine (Gibco #25030-
405 024), under 5 % CO₂ and 90% humidity atmosphere at 37°C. Medium was renewed every 48h to 72h
406 to allow outgrowth. HDFs were used between passage 5 and 11. Thereafter, HDF cultures were
407 seeded at a density of 2 x 10⁴ cells / cm² in 24 well cell culture plates (Falcon #353226) and were
408 treated with various concentrations of peptides (as determined by prior Hoechst 33258 staining in
409 serum-free media) or solvent (DMSO, 0.1% v/v, Merck) or positive control TGF- β 1 10ng/ml (Sigma,
410 T7039) for 3 days in fresh medium (without FBS due to assay interference). Then, cell culture media
411 were collected for proteins and glycosaminoglycan release measurements using ELISA methods;
412 procollagen type I (Takara #MK101), fibronectin (Takara #MK115), collagen IV (Magnetic Luminex
413 Assay Collagen-IV, R&D System #LXSAHM-1), hyaluronic acid (Corgenix 029-001) and decorin (R&D
414 Systems DY143) assays respectively. ELISA assays were performed as per the manufacturer's
415 instructions. All treatments were run in pentuplicate or tetraplicate (collagen IV) wells per
416 experiment. In parallel, cell viability was estimated using Hoechst 33258 staining (Sigma #B2883) as

417 per Labarca and Paigen's (1980) protocol allowing the quantity of dermal proteins to be weighted to
418 the number of viable cells. One-way analysis of variance (ANOVA) was used to determine whether
419 there was any significant difference between the means of two or more independent groups in the
420 ELISA assays, with p-values of <0.05(*) or <0.01(**) considered statistically significant. Difference
421 between two means with similar variances was performed with Student's t-test.

422 The effects of each candidate peptide on fibrillin-1 synthesis were assessed by immunofluorescence.
423 Primary HDFs from abdominal skin of an adult, Caucasian 29-year-old female (Promocell) were
424 cultured in HDF growth media supplemented with FBS (2% v/v) basic fibroblast growth factor
425 (recombinant human; 1ng/ml) and insulin (5 µg/ml) (all from PromoCell). All cells were grown in a
426 humidified environment at 37°C with 5% CO₂. For treatment and fibrillin IF, cells at passage 3-4 were
427 seeded in to black walled clear bottomed 96 well plates (Pierce, ThermoFisher Scientific) at a density
428 of 7,500 cells per well. After 24 hours, media was removed and cells were cultured for 5 days in the
429 presence of DMSO (0.1% v/v)-supplemented media alone or media supplemented with the novel
430 tetra-peptides solubilised in DMSO (0.1% v/v) at varying concentrations (as determined by prior
431 Hoechst 33258 staining in serum-containing media), changing media every 48 hours. All treatments
432 were run in triplicate wells per experiment. After 5 days, the media was discarded, and cells and
433 surrounding ECM fixed with ice-cold methanol at -20°C for 5 minutes. Following PBS washing and
434 blocking with 5% bovine serum albumin in PBS for 30 minutes, cells were then probed using a
435 primary antibody to extracted fibrillin-rich microfibrils (11C1.3; mouse monoclonal antibody;
436 ThermoFisher Scientific; 1 in 100 dilution overnight) designed to detect intact fibrillin-rich
437 microfibrils, followed by a secondary goat anti-mouse IgG H&L Alexa Fluor 488 (Abcam; 1:1000
438 dilution). Fluorescence was then visualised using an Eclipse 100 microscope (Nikon, Japan).. Images
439 were taken at a set exposure time Image-J software was used to quantify the fibrillin-1 coverage (%)
440 in each image using a set threshold per experiment. To test for statistical significance, a repeated
441 measures one-way ANOVA using Dunnett correction for multiple comparisons was performed,
442 where adjusted p-values of <0.05(*) or <0.01(**) considered statistically significant.

443 The impact of each candidate peptide on the HDF proteome as assessed by LC-MS/MS. Primary HDFs
444 from abdominal skin of adult, Caucasian females aged between 23-33 years were cultured in
445 Dulbecco's Modified Eagle Medium (DMEM) with 4.5 g/l D-Glucose and L-Glutamine supplemented
446 with 10% FBS, 100 µg/ml penicillin, 100 µg/ml streptomycin and 2 mM Gibco[®] GlutaMAX[™] (an
447 alternative L-glutamine supplement). All cells were grown in a humidified environment at 37°C with
448 5% CO₂. Cell media (secretome) was collected and the matrix decellularised (using EDTA).
449 Secretome samples were added to the decellularised ECM left behind in the plate and proteins were
450 denatured (in urea), reduced (in dithiothreitol), alkylated (in iodoacetamide) and mechanically

451 disassociated (using ultrasonication) prior to overnight digestion with the SMART Digest kit as per
452 optimised protocol. Samples were run on a an UltiMate® 3000 Rapid Separation Liquid
453 Chromatographer coupled to a Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer in
454 DDA mode (200 ng injected at 90-minute runs per sample).

455 **In vitro characterisation of cell transcriptomes in response to peptides 1, 7 and 1+7 in
456 combination:** The effects of the two candidate peptides was assessed by RNA-Seq analysis. Primary
457 HDFs from adult Caucasian females aged between 23-33 (taken from a range of skin sites: buttock
458 (n=3), labia (n=2) and breast (n=1)) were seeded within appropriate cell densities into tissue culture
459 plates in assay medium – Fibroblast Basal medium-2 (phenol red-free; PromoCell, C-23225)
460 containing 2% FBS, 0.001% basic human fibroblast growth factor (hbFGF) and 0.005% insulin
461 (Fibroblast growth medium 2 supplement pack; PromoCell, C39320)). After two days of culture in a
462 humidified environment at 37°C with 5% CO₂, once cells had reached confluence, cells were treated.
463 Treatments included 8 parts per million (ppm) P1, 8ppm P7, a combination of P1 and P7 at 8 ppm
464 each, 0.2 nM TGF-β1 (Gibco, PHG9214) and 1 μM ATRA (Sigma-Aldrich, R2625).

465 For analysis of cellular transcriptomes, RNA was extracted 12 hours following the treatment using
466 the RNeasy Mini Kits (74104, Qiagen) according to the manufacturer's instructions. Briefly, lysis
467 buffer was added to the samples, followed by precipitation of nucleic acids and desalting by addition
468 of 70% ethanol. The resulting mixture was added to the RNeasy Mini Spin Columns and centrifuged
469 to bind total RNA to the membrane. Samples were then washed, first with buffer RW1 to remove
470 biomolecules such as carbohydrates, proteins and fatty acids which may have bound non-specifically
471 to the membrane. The membrane was then washed twice with buffer RPE to remove salts from
472 previous steps of the method. Finally, using RNase-free water, total RNA was eluted from the spin
473 columns. All extraction steps were performed on ice, with pre-chilled solutions. Following RNA
474 extraction, RNA sample concentration was measured using a NanoDrop™ Spectrophotometer
475 (ThermoFisher Scientific). All samples were stored at -80°C, and repetitive freeze-thaw cycles were
476 avoided by aliquoting RNA samples. RNA samples were analysed as described below.

477 Total RNA was submitted to the Genomic Technologies Core Facility, Faculty of Biology, Medicine
478 and Health, University of Manchester. Quality and integrity of the RNA samples were assessed using
479 a 4200 TapeStation (Agilent Technologies) and then libraries generated using the Illumina® Stranded
480 mRNA Prep. Ligation kit (Illumina, Inc.) according to the manufacturer's protocol. Briefly, total RNA
481 (typically 0.025-1ug) was used as input material from which polyadenylated mRNA was purified
482 using poly-T oligo-attached, magnetic beads. Next, the mRNA was fragmented under elevated
483 temperature and then reverse transcribed into first strand cDNA using random hexamer primers and

484 in the presence of Actinomycin D (thus improving strand specificity whilst mitigating spurious DNA-
485 dependent synthesis). Following removal of the template RNA, second strand cDNA was then
486 synthesized to yield blunt-ended, double-stranded cDNA fragments. Strand specificity was
487 maintained by the incorporation of deoxyuridine triphosphate (dUTP) in place of dTTP to quench the
488 second strand during subsequent amplification. Following a single adenine (A) base addition,
489 adapters with a corresponding, complementary thymine (T) overhang were ligated to the cDNA
490 fragments. Pre-index anchors were then ligated to the ends of the double-stranded cDNA fragments
491 to prepare them for dual indexing. A subsequent PCR amplification step was then used to add the
492 index adapter sequences to create the final cDNA library. The adapter indices enabled the
493 multiplexing of the libraries, which were pooled prior to cluster generation using a cBot instrument.
494 The loaded flow-cell was then paired-end sequenced (76 + 76 cycles, plus indices) on an Illumina
495 HiSeq4000 instrument. Finally, the output data was demultiplexed and BCL-to-Fastq conversion
496 performed using Illumina's bcl2fastq software, version 2.20.0.422.

497 Unmapped paired-end sequences were tested by FastQC version 0.11.3
498 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Sequence adapters were removed,
499 and reads were quality trimmed using Trimmomatic_0.39 (Bolger et al., 2014). The reads were
500 mapped against the reference human genome (hg38) and counts per gene were calculated using
501 annotation from GENCODE 31 (<http://www.gencodegenes.org/>) using STAR_2.7.7a (Dobin et al.,
502 2013). Normalisation, Principal Components Analysis, and differential expression was calculated with
503 DESeq2_1.36.0 (Love et al., 2014).

504

505 ***In vitro* characterisation of cell proteomes in response to peptides 1, 7 and 1+7 in combination:** In
506 parallel with the transcriptome analysis, cells were treated for a total 7 days prior to protein
507 extraction. Media and treatments were replenished every other day, with the media being replaced
508 by serum-free media for the final two days of treatment prior to protein extraction and analysis.
509 Serum-free media containing the secretome and detached matrix was first collected, then cells were
510 briefly washed with PBS, followed by incubation with 20 mM EDTA for 1hr at 37°C to dissociate cells
511 from the plate-attached matrix without cleavage. A protease inhibitor cocktail (P83401-1ML, Sigma),
512 and phosphatase inhibitor cocktail 3 (P0044-1ML, Sigma) were added to the secretome and
513 detached matrix mixture, and this sample was kept at 4°C throughout. The cell suspension was then
514 collected, and protease and phosphatase inhibitors added as above. This suspension was centrifuged
515 at 5000 RCF for five minutes. The detached matrix-containing supernatant was added to the
516 secretome mixture, while the cell pellet was snap-frozen in liquid nitrogen. PBS and protease and
517 phosphatase inhibitors were added to the plate-attached matrix, and this was stored at 4°C.

518 Meanwhile, the secretome and detached matrix were dialysed using Slide-A-Lyzer MINI Dialysis
519 Devices (88403, ThermoFisher Scientific) according to manufacturer's instructions. This was then
520 frozen at -80°C for 30 minutes, then freeze-dried overnight.

521 An 8 M urea buffer, containing 25 mM DTT to reduce samples, was used to resuspend the freeze-
522 dried detached matrix and secretome. The same buffer was used separately to resuspend the cell
523 pellet. These samples were then ultrasonicated using the Covaris LE220-plus (500 Watts peak power,
524 20% duty factor, 200 cycles per burst, 180 second duration). Following ultrasonication, PBS was
525 removed from the plate-attached matrix, and the detached matrix and secretome were added to
526 these wells, forming the total ECM proteome. All samples were brought to 10 mM iodoacetamide
527 and kept at room temperature in the dark for 30 minutes to alkylate samples. Urea in the sample
528 was diluted to 2 M by addition of a solution containing 25 mM ammonium bicarbonate and 1.3 mM
529 calcium chloride. Trypsin SMART Digest Beads (60109-101, ThermoFisher Scientific) were added to
530 all samples, then incubated overnight at 37°C to digest samples.

531 Trypsin SMART Digest Beads were removed using TELOS filtration tips (900-0010-096MP, Kinesis).
532 Samples were acidified using 5 µl of 10% formic acid. Samples were mixed vigorously with ethyl
533 acetate, to remove surfactants, glycation products, and contamination from polyethylene glycol and
534 plastic products, then centrifuged. The upper layer was removed, and this step was repeated. The
535 resulting aqueous bottom phase was then vacuum dried to a minimal volume. Injection solution (5%
536 acetonitrile in 0.1% formic acid) was added to make the peptides up to 200 µl. The concentration of
537 peptides was measured by a Direct Detect Spectrophotometer (Merck, Darmstadt, Germany), and
538 solutions were made up to 100 µg in 100 µl of injection solution prior to desalting.

539 OLIGO R3 beads (1-339-03, Applied Biosystems) were mixed with an equal volume of 50%
540 acetonitrile, and were added to a 96-well filter plate with 0.2 µm polyvinylidene difluoride (PVDF)
541 membrane (3504, Corning). These were washed, first with more 50% acetonitrile, then with 0.1%
542 formic acid (wash solution). The digested protein samples were then added, followed by washing
543 twice with the wash solution. Samples were then eluted with a solution of 50% acetonitrile and 0.1%
544 formic acid. Desalting samples were then vacuum-dried to minimal solution, and submitted to the
545 Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine and Health, University of
546 Manchester.

547 **Proteomic data analysis:** LC-MS/MS was used to analyse all peptide treatment samples. This was
548 performed by the Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine and
549 Health, University of Manchester according to their protocols. Samples were run through the
550 ThermoFisher Scientific Orbitrap Elite Mass Spectrometer, or through the ThermoFisher Scientific Q

551 Exactive HF Mass Spectrometer. Following LC-MS/MS, peptide and protein identification was
552 performed using either Progenesis QI, or Proteome Discoverer.

553 Progenesis QI (Nonlinear Dynamics, Waters, Newcastle, UK) was used to relatively quantify protein
554 abundance for the initial proteomic screens of eight candidate peptides (Fig. 3) and the first
555 proteomic analysis of P1, P7 and P1+P7 (Fig. 4c and d). Raw mass spectra files were imported and ion
556 intensity maps were generated. Ion outlines were automatically aligned to a single reference run
557 using default settings. Ion peaks and their relative abundances were then automatically picked
558 without filtering and normalised to a single reference run using default settings. Data were then
559 exported and searched using Mascot v2.5.1. Mascot was set up to search the Swiss-Prot database
560 (selected for *Homo sapiens*, version 2022-08-03, 207,304 entries) assuming the digestion enzyme
561 was trypsin. Mascot was searched with a fragment ion mass tolerance of 0.02 Da and a parent ion
562 tolerance of 10.0 ppm. The Mascot search included peptides of charges 2+ and 3+, and a maximum
563 of one missed cleavage site. Carbamidomethyl of cysteine was specified in Mascot as a fixed
564 modification, while oxidation of methionine, lysine, proline and arginine were specified in Mascot as
565 variable modifications. This was then re-imported back into Progenesis QI, where identified peptide
566 ions were matched. Normalised abundance for each protein was calculated as the sum of each
567 matched peptide ion abundance. Normalised protein abundances, compared between treatments,
568 were statistically analysed within Progenesis QI using a paired (repeated measured) ANOVA test.

569 Relative quantification of protein abundance for the final *in vitro* proteome study (Fig. 4g) was
570 performed using Proteome Discoverer (version 2.5.0.400; ThermoFisher Scientific, Waltham,
571 Massachusetts, United States). Raw mass spectra files were imported, and underwent an initial
572 processing step, using Sequest HT to identify peptides within the spectra, searching the Swiss-Prot
573 database (selected for *Homo sapiens*, version 2022-08-03, 207,304 entries), and assuming the
574 digestion enzyme was trypsin. The Sequest HT search was performed with a fragment mass
575 tolerance of 0.02 Da, and a precursor mass tolerance of 10 ppm. Carbamidomethyl of cysteine was
576 specified as a fixed modification. Oxidation of methionine, lysine, proline and arginine were specified
577 as variable modifications. Following the processing step, peptide spectrum matches (PSMs) were
578 assigned confidences based on target false discovery rates (with confidence thresholds for false
579 discover rates set to 0.01 (strict) and 0.05 (relaxed), and adjusted p values were calculated. In
580 parallel, protein abundances were calculated from ion intensities, and normalised abundances
581 between treatments were compared using a pairwise ratio based t-test.

582

583 **Toxicology assessments:** Prior to testing for *in vivo* effects in humans the peptide blend was
584 solubilised into an excipient for use in topical formulations (water, pentylene glycol and
585 propanediol). The peptides (at a concentration of 500ppm) in this excipient were then assessed in a
586 range of *in vitro* and *ex vivo* toxicology assessments required for novel cosmetic compounds,
587 following OECD guidelines (Development). These included a direct Peptide Reactivity Assay (DPRA)
588 and KeratinoSens™ (Andreas et al., 2011) to assess potential skin sensitisation (OECD No. 442C
589 and 442D respectively), SkinEthic™ (Alépée et al., 2010) to determine the potential skin irritation
590 (OECD No. 439) and EpiOcular™ (Kaluzhny et al., 2011) to assess potential eye irritation (OECD
591 No.492).

592 ***In vivo* patch test of peptide combination:** The peptide formulation was constituted by
593 dissolving 1% w/w of a 50:50 mixture of P1 (500ppm) and P7 (500ppm) in a suitable vehicle to give
594 final total peptide concentrations of either 10ppm or 30ppm. The vehicle was composed of solvent
595 excipients (water, pentylene glycol and propanediol) added to a simple oil in water cosmetic
596 emulsion containing water, glycerine and thickened with ammonium acryloyldimethyltaurate /VP
597 copolymer, xanthan gum and preserved with phenoxyethanol). A vehicle control was also
598 formulated with identical composition, including the excipients but without the peptides. Eight
599 healthy, white but photoaged volunteers with visible signs of photoageing were recruited
600 (Fitzpatrick skin phototype I-III; 3 male, 5 female, age range: 72-84 years old) and subjected to an
601 extended 12-day patch test as described by Watson et al. 2008 (Watson et al., 2008). The assay uses
602 occlusion to carry actives into the skin, so mimicking long-term use (Watson et al., 2008). The
603 peptide formulation was applied for twelve-days, with reapplication every 4-days, alongside a
604 vehicle control and an occluded but untreated area (baseline). The vehicle and peptide formulations
605 (30 µl) were applied separately to the extensor photoaged forearm under standard 6mm diameter
606 Finn Chambers (Epitest Ltd). All-*trans* retinoic acid (0.025%; Retin-A) was applied to skin for the final
607 4-days only (to avoid potential complications of irritation from extended occlusion) as a positive
608 control.

609 On day 12, the Finn chambers were removed and 3mm punch biopsies obtained under 1% lignocaine
610 local anaesthesia from each test site. Biopsies were embedded in optimal cutting temperature
611 compound (Miles Laboratories, Elkhart, IN, USA), snap frozen in liquid nitrogen and stored at -80°C,
612 prior to cutting at 10µm thickness. The study was conducted in accordance with the principles of the
613 Declaration of Helsinki, with written informed consent (Manchester University Research Ethics
614 Committee reference: 2020-7062-13677). Immunofluorescence analysis was performed to assess
615 fibrillin-rich microfibril abundance (a dermal repair marker).

616 Fibrillin-rich microfibril abundance was quantified from sections fixed with 4% paraformaldehyde
617 (PFA) for 10 minutes, hydrated with Tris-buffered saline (TBS; 100 mM Tris, 150 mM NaCl) and
618 blocked with primary antibody diluent (Life Technologies) for 30 minutes at room temperature.
619 Monoclonal mouse anti-human fibrillin-rich microfibril (clone 11C1.3) antibody (MA5-12770;
620 Invitrogen) was applied overnight at 4°C. The sections were washed with TBS and incubated with
621 VectaFluor™ Excel Amplified Anti-mouse IgG Dylight™ 488 secondary antibody (DK-2488, Vector
622 Laboratories) for 30 minutes at room temperature. Microfibrils were visualised with the Olympus pE-
623 300 microscope. Using ImageJ software, an area 30µm from the DEJ into the papillary dermis was
624 analysed by thresholding the image and measuring the percentage coverage of positive fibrillin-rich
625 microfibril staining. Differences between the test conditions were compared and analysed by
626 repeated measures analysis of variance (RM one-way ANOVA) with Dunnett's test where significance
627 was p < 0.05 with GraphPad Prism software (version 9.3.1).

628 For extraction of biopsy RNA, once obtained, biopsies were immediately stored in RNAProtect Tissue
629 Reagent (76104, Qiagen) to stabilise RNA. Biopsies were incubated at 37°C for one hour with 20mM
630 EDTA, then the epidermis was separated from the dermis using forceps. Epidermal and dermal
631 samples were then processed for RNA extraction using the RNeasy Fibrous Tissue Mini Kit (74704,
632 Qiagen) according to manufacturer's instructions. Briefly, samples were removed from the
633 RNAProtect Tissue Reagent, and added to appropriate volumes of buffer RLT and homogenised at 50
634 Hz for 5 minutes using the TissueLyser LT (Qiagen), until all tissue was homogenised. Samples were
635 then incubated with Proteinase K at 55°C for 10 minutes, prior to centrifugation to remove debris. A
636 half-volume of ethanol was added, then samples were transferred to spin columns, where they were
637 washed with buffer RW1. DNase I was then added to spin columns, and incubated at room
638 temperature for 15 minutes. Samples underwent three further wash steps, once with buffer RW1,
639 and the final two with buffer RPE. RNase-free water was then used to elute RNA samples. Epidermal
640 and dermal RNA samples were then combined and further processed to concentrate RNA and
641 remove protein contaminants using RNeasy Mini Kit as above. Total RNA was then submitted to the
642 Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of
643 Manchester, and processed and analysed as previously.

644

645 **Acknowledgments**

646 This work was supported by a programme grant from No7 Beauty Company, Walgreens Boots
647 Alliance to MJS, and REBW. We thank Leo Zeef and Andy Hayes of the Bioinformatics and Genomic
648 Technologies Core Facilities at the University of Manchester for providing support with regard to

649 RNA-Seq. We would also like to thank the Biological Mass Spectrometry Core Research Facility in the
650 Faculty of Biology, Medicine, and Health at The University of Manchester (RRID: [SCR_020987](#)).

651

652 **Author contributions**

653 M.J.S., M.B. and EB conceptualized and managed this study. M.O. developed the bioinformatics
654 pipeline. N.J., M.O., A.E., B.M., Y.D., C.R., L.B. and A.P., carried out the experiments. N.J., M.O., A.E.,
655 B.M., L.Z., E.B., Y.D., C.C., R.L., O.P., P.M. and M.J.S analysed the data. N.J., M.J.S., M.O., A.E., E.B.,
656 B.Z., R.E.B.W. and M.B. drafted and edited the manuscript. L.D., R.L., O.P., P.M. and C.C. edited the
657 manuscript.

658

659 **Competing interests**

660 The results published in this article are covered by patents: EP4000595-A1, WO2022106054-A1;
661 EP4000596-A1, WO2022106055-A1; EP4000597-A1, WO2022106056-A1; EP4000598-A1,
662 WO2022106057-A1 (licensed to Boots Co. Plc. With M.B, E.J.B., Y. D, A.E, M.O. and M.J.S as authors).
663 M.B. ,E.J.B, Y. D., and C. C. are employees of the No7 Beauty Company, Walgreens Boots Alliance,
664 O.P., P.M, C.R. L.B. and A.P. are employees of Sederma and are bound by confidentiality agreements
665 that prevent them from disclosing their competing interests in this work. L.D., A.G and L.Z. declare
666 no competing interests.

667

668 **Additional information**

669 The identity of proteins significantly up- or down-regulated by peptides P1 and P7 in the initial in
670 vitro proteomics screen are reported in Supplementary Item 1. The GO-term processes for all
671 transcriptomics screens are reported in Supplementary Item 2.

672

673 Proteomics data are available via ProteomeXchange.

674 "Prediction, screening and characterisation of novel bioactive, tetra-peptide matrikines - 8
675 peptides", Accession: PXD039941, DOI: 10.6019/PXD039941, Reviewer account: Username:
676 reviewer_pxd039941@ebi.ac.uk, Password: yhg6WW3T;

677 "Prediction, screening and characterisation of novel bioactive, tetra-peptide matrikines - 2 peptides
678 and combo" Accession: PXD039929, DOI: 10.6019/PXD039929, Reviewer account: Username: :
679 reviewer_pxd039929@ebi.ac.uk, Password: tRg1OMZT.

680 "Prediction, screening and characterisation of novel bioactive, tetra-peptide matrikines - peptide
681 combination, n=3", " Accession: PXD039960, DOI: 10.6019/PXD039960, Reviewer account:
682 Username: reviewer_pxd039960@ebi.ac.uk, Password: 6FhWHe5r.

683

684 The three transcriptomics data sets (E-MTAB-12711, E-MTAB-12710 and E-MTAB-12704) can be
685 found at ArrayExpress (<https://www.ebi.ac.uk/biostudies/arrayexpress>).

686 The peptide prediction code can be found at: https://github.com/maxozo/Matrikine_Discovery.

687

688

689 **References**

690 Alépée, N., Tornier, C., Robert, C., Amsellem, C., Roux, M.H., Doucet, O., Pachot, J., Méloni, M., and
691 de Brugerolle de Fraissinette, A. (2010). A catch-up validation study on reconstructed human
692 epidermis (SkinEthic™ RHE) for full replacement of the Draize skin irritation test. *Toxicology in Vitro*
693 24, 257-266.

694 Andreas, N., Caroline, B., Leslie, F., Frank, G., Kimberly, N., Allison, H., Heather, I., Robert, L., Stefan,
695 O., Hendrik, R., *et al.* (2011). The intra- and inter-laboratory reproducibility and predictivity of the
696 KeratinoSens assay to predict skin sensitizers *in vitro*: results of a ring-study in five laboratories.
697 *Toxicology in Vitro* 25, 733-744.

698 Barrett, G. (2012). *Chemistry and Biochemistry of the Amino Acids* (Springer Netherlands).

699 Berlett, B.S., and Stadtman, E.R. (1997). Protein oxidation in aging, disease, and oxidative stress.
700 *Journal of Biological Chemistry* 272, 20313-20316.

701 Bolduc, J.A., Collins, J.A., and Loeser, R.F. (2019). Reactive oxygen species, aging and articular
702 cartilage homeostasis. *Free Radical Biology and Medicine* 132, 73-82.

703 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
704 sequence data. *Bioinformatics* 30, 2114-2120.

705 Bos, J.D., and Meinardi, M. (2000). The 500 Dalton rule for the skin penetration of chemical
706 compounds and drugs. *Exp Dermatol* 9, 165-169.

707 Bras, L.E.D., and Frangogiannis, N.G. (2020). Extracellular matrix-derived peptides in tissue
708 remodeling and fibrosis. *Matrix Biology* 91-92, 176-187.

709 Buchan, D.W.A., Minneci, F., Nugent, T.C.O., Bryson, K., and Jones, D.T. (2013). Scalable web services
710 for the PSIPRED Protein Analysis Workbench. *Nucleic acids research* 41, W349-W357.

711 Cavarra, E., Fimiani, M., Lungarella, G., Andreassi, L., de Santi, M., Mazzatorta, C., and Ciccoli, L.
712 (2002). UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal
713 fibroblasts: A possible contribution to the remodeling of elastotic areas in sun-damaged skin.
714 *Biological Chemistry* 383, 199-206.

715 Chamani, R., and Zamani, F. (2022). Novel Anti-angiogenic Peptide Derived from Canstatin Induces
716 Apoptosis *In Vitro* and *In Vivo*. *International Journal of Peptide Research and Therapeutics* 28.

717 Chang, J., Garva, R., Pickard, A., Yeung, C.Y.C., Mallikarjun, V., Swift, J., Holmes, D.F., Calverley, B., Lu,
718 Y.H., Adamson, A., *et al.* (2020). Circadian control of the secretory pathway maintains collagen
719 homeostasis. *Nature Cell Biology* 22, 74-+.

720 Cheng, J., Randall, A.Z., Sweredoski, M.J., and Baldi, P. (2005). SCRATCH: a protein structure and
721 structural feature prediction server. *Nucleic acids research* 33, W72-W76.

722 Choi, Y.L., Park, E.J., Kim, E., Na, D.H., and Shin, Y.H. (2014). Dermal Stability and *In Vitro* Skin
723 Permeation of Collagen Pentapeptides (KTTKS and palmitoyl-KTTKS). *Biomolecules & therapeutics*
724 22, 321-327.

725 Cole, M.A., Quan, T.H., Voorhees, J.J., and Fisher, G.J. (2018). Extracellular matrix regulation of
726 fibroblast function: redefining our perspective on skin aging. *Journal of Cell Communication and*
727 *Signaling* 12, 35-43.

728 Davis, G.E., Bayless, K.J., Davis, M.J., and Meininger, G.A. (2000). Regulation of tissue injury
729 responses by the exposure of matricryptic sites within extracellular matrix molecules. *American*
730 *Journal of Pathology* 156, 1489-1498.

731 den Dekker, M.A.M., Zwiers, M., van den Heuvel, E.R., de Vos, L.C., Smit, A.J., Zeebregts, C.J.,
732 Oudkerk, M., Vliegenthart, R., Lefrandt, J.D., and Mulder, D.J. (2013). Skin Autofluorescence, a Non-
733 Invasive Marker for AGE Accumulation, Is Associated with the Degree of Atherosclerosis. *PLoS One* 8.

734 Development, O.f.E.C.-o.a. OECD Guidelines for the Testing of Chemicals, Section 4

735 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
736 Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21.

737 Duca, L., Floquet, N., Alix, A.J.P., Haye, B., and Debelle, L. (2004). Elastin as a matrikine. *Critical
738 Reviews in Oncology Hematology* 49, 235-244.

739 Fisher, G.J., Datta, S.C., Talwar, H.S., Wang, Z.Q., Varani, J., Kang, S., and Voorhees, J.J. (1996).
740 Molecular basis of sun-induced premature skin ageing and retinoid antagonism. *Nature* 379, 335-
741 339.

742 Freitas-Rodriguez, S., Folgueras, A.R., and Lopez-Otin, C. (2017). The role of matrix
743 metalloproteinases in aging: Tissue remodeling and beyond. *Biochimica Et Biophysica Acta-
744 Molecular Cell Research* 1864, 2015-2025.

745 Gu, Y.P., Han, J.X., Jiang, C.P., and Zhang, Y. (2020). Biomarkers, oxidative stress and autophagy in
746 skin aging. *Ageing Research Reviews* 59.

747 Hardy, S.A., Mabotuwana, N.S., Murtha, L.A., Coulter, B., Sanchez-Bezanilla, S., Al-Omary, M.S.,
748 Senanayake, T., Loering, S., Starkey, M., Lee, R.J., *et al.* (2019). Novel role of extracellular matrix
749 protein 1 (ECM1) in cardiac aging and myocardial infarction. *PLoS One* 14.

750 Hibbert, S.A., Ozols, M., Griffiths, C.E.M., Watson, R.E.B., Bell, M., and Sherratt, M.J. (2018). Defining
751 tissue proteomes by systematic literature review. *Scientific Reports* 8.

752 Hibbert, S.A., Watson, R.E., Gibbs, N.K., Costello, P., Baldock, C., Weiss, A.S., Griffiths, C.E., and
753 Sherratt, M.J. (2015). A potential role for endogenous proteins as sacrificial sunscreens and
754 antioxidants in human tissues. *Redox Biol* 5, 101-113.

755 Hiebert, P.R., and Granville, D.J. (2012). Granzyme B in injury, inflammation, and repair. *Trends in
756 Molecular Medicine* 18, 732-741.

757 Hopp, T.P., and Woods, K.R. (1981). Prediction of protein antigenic determinants from amino-acid-
758 sequences. *Proceedings of the National Academy of Sciences of the United States of America-
759 Biological Sciences* 78, 3824-3828.

760 Hussain, M., and Goldberg, D.J. (2007). Topical manganese peptide in the treatment of
761 photodamaged skin. *Journal of Cosmetic and Laser Therapy* 9, 232-236.

762 Isobe, K., Kuba, K., Maejima, Y., Suzuki, J., Kubota, S., and Isobe, M. (2010). Inhibition of
763 Endostatin/Collagen XVIII Deteriorates Left Ventricular Remodeling and Heart Failure in Rat
764 Myocardial Infarction Model. *Circulation Journal* 74, 109-119.

765 Jariwala, N., Ozols, M., Bell, M., Bradley, E., Gilmore, A., Debelle, L., and Sherratt, M.J. (2022).
766 Matrikines as mediators of tissue remodelling. *Advanced drug delivery reviews* 185, 114240.

767 Joachims, T. (1999). Making Large-Scale (SVM) Learning Practical. In *Advances in Kernel Methods -
768 Suport Vector Learning*, B. Schölkopf, Burges, C., Smola, A., ed. (MIT Press), pp. 169-184.

769 Jones, D.T., and Cozzetto, D. (2015). DISOPRED3: precise disordered region predictions with
770 annotated protein-binding activity. *Bioinformatics* 31, 857-863.

771 Kaluzhny, Y., Kandárová, H., Hayden, P., Kubilus, J., d'Argembeau-Thornton, L., and Klausner, M.
772 (2011). Development of the EpiOcular™ eye irritation test for hazard identification and labelling of
773 eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH
774 legislation. *Alternatives to Laboratory Animals* 39, 339-364.

775 Kamphaus, G.D., Colorado, P.C., Panka, D.J., Hopfer, H., Ramchandran, R., Torre, A., Maeshima, Y.,
776 Mier, J.W., Sukhatme, V.P., and Kalluri, R. (2000). Canstatin, a novel matrix-derived inhibitor of
777 angiogenesis and tumor growth. *Journal of Biological Chemistry* 275, 1209-1215.

778 Kligman, A.M., Grove, G.L., Hirose, R., and Leyden, J.J. (1986). Topical tretinoin for photoaged skin.
779 *Journal of the American Academy of Dermatology* 15, 836-8.

780 Kumasaka, N., Rostom, R., Huang, N., Polanski, K., Meyer, K.B., Patel, S., Boyd, R., Gomez, C., Barnett,
781 S.N., Panousis, N.I., *et al.* (2021). Mapping interindividual dynamics of innate immune response at
782 single-cell resolution. *bioRxiv*, 2021.2009.2001.457774.

783 Labarca, C., and Paigen, K. (1980). Simple, rapid, and sensitive DNA assay procedure. *Analytical
784 Biochemistry* 102, 344-352.

785 Lacolley, P., Regnault, V., and Avolio, A.P. (2018). Smooth muscle cell and arterial aging: basic and
786 clinical aspects. *Cardiovascular Research* 114, 513-528.

787 Leroux, R., Ringenbach, C., Marchand, T., Peschard, O., Mondon, P., and Criton, P. (2020). A new
788 matrikine-derived peptide up-regulates longevity genes for improving extracellular matrix
789 architecture and connections of dermal cell with its matrix. *International Journal of Cosmetic Science*
790 42, 53-59.

791 Lindsey, M.L., Iyer, R.P., Zamilpa, R., Yabluchanskiy, A., DeLeon-Pennell, K.Y., Hall, M.E., Kaplan, A.,
792 Zouein, F.A., Bratton, D., Flynn, E.R., *et al.* (2015). A Novel Collagen Matricryptin Reduces Left
793 Ventricular Dilation Post-Myocardial Infarction by Promoting Scar Formation and Angiogenesis.
794 *Journal of the American College of Cardiology* 66, 1364-1374.

795 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
796 RNA-seq data with DESeq2. *Genome biology* 15, 550.

797 Manea, M., Mezo, G., Hudecz, F., and Przybylski, M. (2007). Mass spectrometric identification of the
798 trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides. *Journal of peptide science*
799 : an official publication of the European Peptide Society 13, 227-236.

800 Maquart, F.-X., Simeon, A., Pasco, S., and Monboisse, J.-C. (1999). Regulation of cell activity by
801 extracellular matrix: The concept of matrikines. *Journal de la Societe de Biologie* 193, 423-428.

802 Maquart, F.X., Pickart, L., Laurent, M., Gillery, P., Monboisse, J.C., and Borel, J.P. (1988).
803 STIMULATION OF COLLAGEN-SYNTHESIS IN FIBROBLAST-CULTURES BY THE TRIPEPTIDE-COPPER
804 COMPLEX GLYCYL-L-HISTIDYL-L-LYSINE-CU-2+. *Febs Letters* 238, 343-346.

805 McCarthy, D.J., Rostom, R., Huang, Y., Kunz, D.J., Danecek, P., Bonder, M.J., Hagai, T., Lyu, R.,
806 Kilpinen, H., Goncalves, A., *et al.* (2020). Cardelino: computational integration of somatic clonal
807 substructure and single-cell transcriptomes. *Nature Methods* 17, 414-421.

808 Mohammed, S., Thadathil, N., Selvarani, R., Nicklas, E.H., Wang, D.W., Miller, B.F., Richardson, A.,
809 and Deepa, S.S. (2021). Necroptosis contributes to chronic inflammation and fibrosis in aging liver.
810 *Aging Cell* 20.

811 Moldogazieva, N.T., Mokhsoev, I.M., Mel'nikova, T.I., Porozov, Y.B., and Terentiev, A.A. (2019).
812 Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging
813 and Age-Related Diseases. *Oxidative Medicine and Cellular Longevity* 2019.

814 Naylor, E.C., Watson, R.E., and Sherratt, M.J. (2011). Molecular aspects of skin ageing. *Maturitas* 69,
815 249-256.

816 Nyberg, P., Xie, L., Sugimoto, H., Colorado, P., Sund, M., Holthaus, K., Sudhakar, A., Salo, T., and
817 Kalluri, R. (2008). Characterization of the anti-angiogenic properties of arresten, an alpha 1 beta 1
818 integrin-dependent collagen-derived tumor suppressor. *Experimental Cell Research* 314, 3292-3305.

819 Ozols, M., Eckersley, A., Platt, C.I., Stewart-McGuinness, C., Hibbert, S.A., Revote, J., Li, F., Griffiths,
820 C.E.M., Watson, R.E.B., Song, J., *et al.* (2021a). Predicting Proteolysis in Complex Proteomes Using
821 Deep Learning. *International journal of molecular sciences* 22.

822 Ozols, M., Eckersley, A., T., M.K., Mallikarjun, V., Warwood, S., O'Cualain, R., Knight, D., Watson,
823 R.E.B., Griffiths, C.E.M., Swift, J., *et al.* (2021b). Peptide location fingerprinting reveals modification-
824 associated
825 biomarker candidates of ageing in human tissue proteomes. *Aging Cell*.

826 Pavan, P., Monti, E., Bondi, M., Fan, C.L., Stecco, C., Narici, M., Reggiani, C., and Marcucci, L. (2020).
827 Alterations of Extracellular Matrix Mechanical Properties Contribute to Age-Related Functional
828 Impairment of Human Skeletal Muscles. *International Journal of Molecular Sciences* 21.

829 Ponten, F., Jirstrom, K., and Uhlen, M. (2008). The Human Protein Atlas - a tool for pathology. *J
830 Pathol* 216, 387-393.

831 Puig, A., Antón, J.M.G., and Mangues, M. (2008). A new decorin-like tetrapeptide for optimal
832 organization of collagen fibres. *International Journal of Cosmetic Science* 30, 97-104.

833 Quan, T.H., Little, E., Quan, H.H., Qin, Z.P., Voorhees, J.J., and Fisher, G.J. (2013). Elevated Matrix
834 Metalloproteinases and Collagen Fragmentation in Photodamaged Human Skin: Impact of Altered
835 Extracellular Matrix Microenvironment on Dermal Fibroblast Function. *J Invest Dermatol* 133, 1362-
836 1366.

837 Rawlings, N.D., Alan, J., Thomas, P.D., Huang, X.D., Bateman, A., and Finn, R.D. (2018). The MEROPS
838 database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with
839 peptidases in the PANTHER database. *Nucleic acids research* 46, D624-D632.

840 Reed, M.J., Damodarasamy, M., and Banks, W.A. (2019). The extracellular matrix of the blood-brain
841 barrier: structural and functional roles in health, aging, and Alzheimer's disease. *Tissue Barriers* 7.

842 Rijken, F., Kiekens, R.C.M., and Bruijnzeel, P.L.B. (2005). Skin-infiltrating neutrophils following
843 exposure to solar-simulated radiation could play an important role in photoageing of human skin.
844 *British Journal of Dermatology* 152, 321-328.

845 Sander, C.S., Chang, H., Salzmann, S., Muller, C.S.L., Ekanayake-Mudiyanselage, S., Elsner, P., and
846 Thiele, J.J. (2002). Photoaging is associated with protein oxidation in human skin in vivo. *J Invest
847 Dermatol* 118, 618-625.

848 Shao, X.H., Taha, I.N., Clauser, K.R., Gao, Y., and Naba, A. (2020). MatrisomeDB: the ECM-protein
849 knowledge database. *Nucleic acids research* 48, D1136-D1144.

850 Shapiro, S.D., Endicott, S.K., Province, M.A., Pierce, J.A., and Campbell, E.J. (1991). Marked longevity
851 of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear-
852 weapons related radiocarbon. *Journal of Clinical Investigation* 87, 1828-1834.

853 Sivan, S.S., Tsitron, E., Wachtel, E., Roughley, P., Sakkee, N., Van Der Ham, F., DeGroot, J., and
854 Maroudas, A. (2006). Age-related accumulation of pentosidine in aggrecan and collagen from normal
855 and degenerate human intervertebral discs. *Biochemical Journal* 399, 29-35.

856 Song, J.N., Tan, H., Perry, A.J., Akutsu, T., Webb, G.I., Whisstock, J.C., and Pike, R.N. (2012). PROSPER:
857 An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. *PLoS One* 7, 23.

858 Stewart-McGuinness, C., Platt, C.I., Ozols, M., Goh, B., Griffiths, T.W., and Sherratt, M.J. (2022).
859 Defining the Protease and Protease Inhibitor (P/PI) Proteomes of Healthy and Diseased Human Skin
860 by Modified Systematic Review. *Biomolecules* 12.

861 Theocharis, A.D., Skandalis, S.S., Gialeli, C., and Karamanos, N.K. (2016). Extracellular matrix
862 structure. *Advanced drug delivery reviews* 97, 4-27.

863 Uversky, V.N. (2013). A decade and a half of protein intrinsic disorder: Biology still waits for physics.
864 Protein Science 22, 693-+.

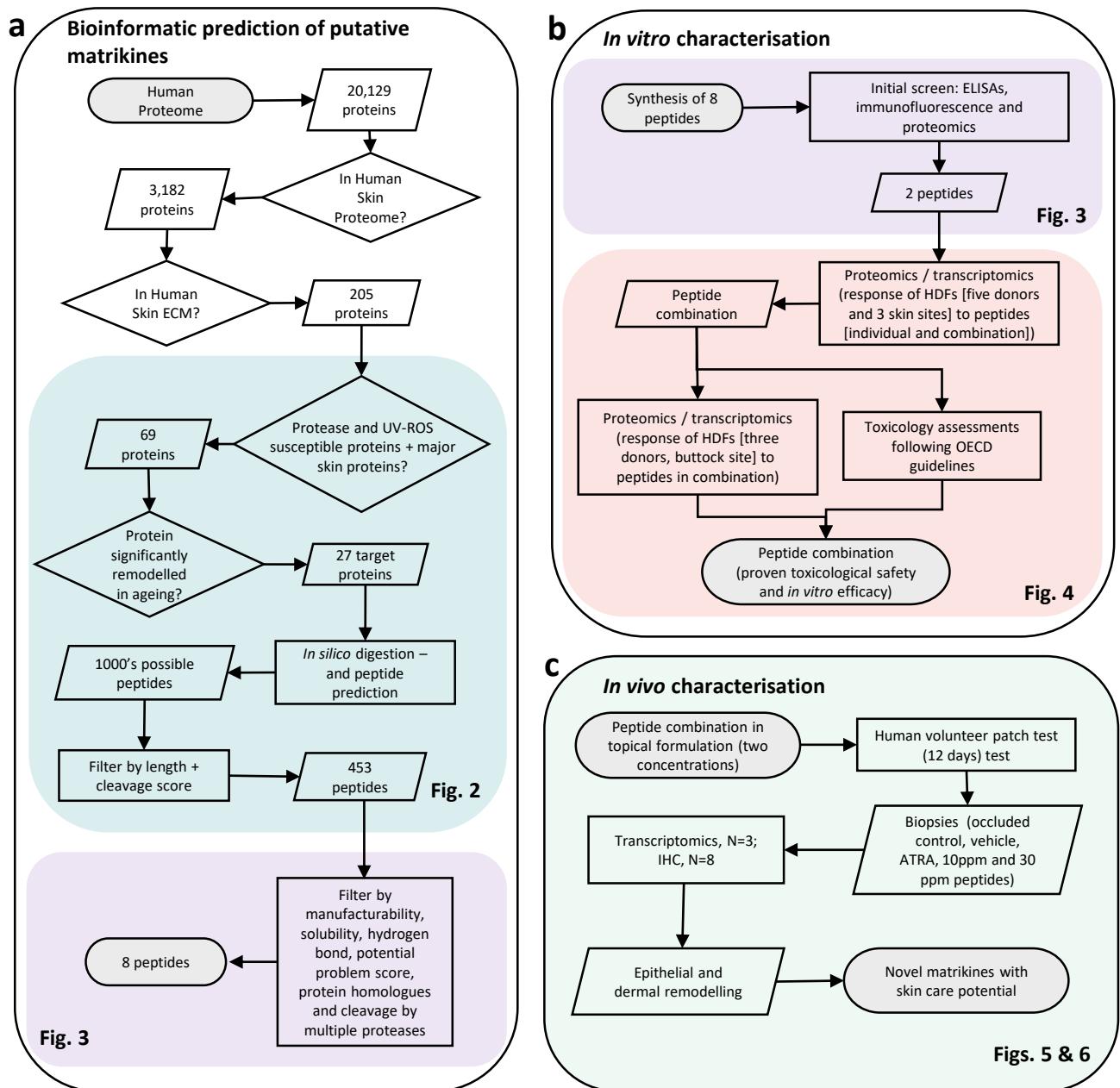
865 Watson, R.E., Griffiths, C.E., Craven, N.M., Shuttleworth, C.A., and Kiely, C.M. (1999). Fibrillin-rich
866 microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. J Invest
867 Dermatol 112, 782-787.

868 Watson, R.E.B., Long, S.P., Bowden, J.J., Bastrilles, J.Y., Barton, S.P., and Griffiths, C.E.M. (2008).
869 Repair of photoaged dermal matrix by topical application of a cosmetic 'antiageing' product. British
870 Journal of Dermatology 158, 472-477.

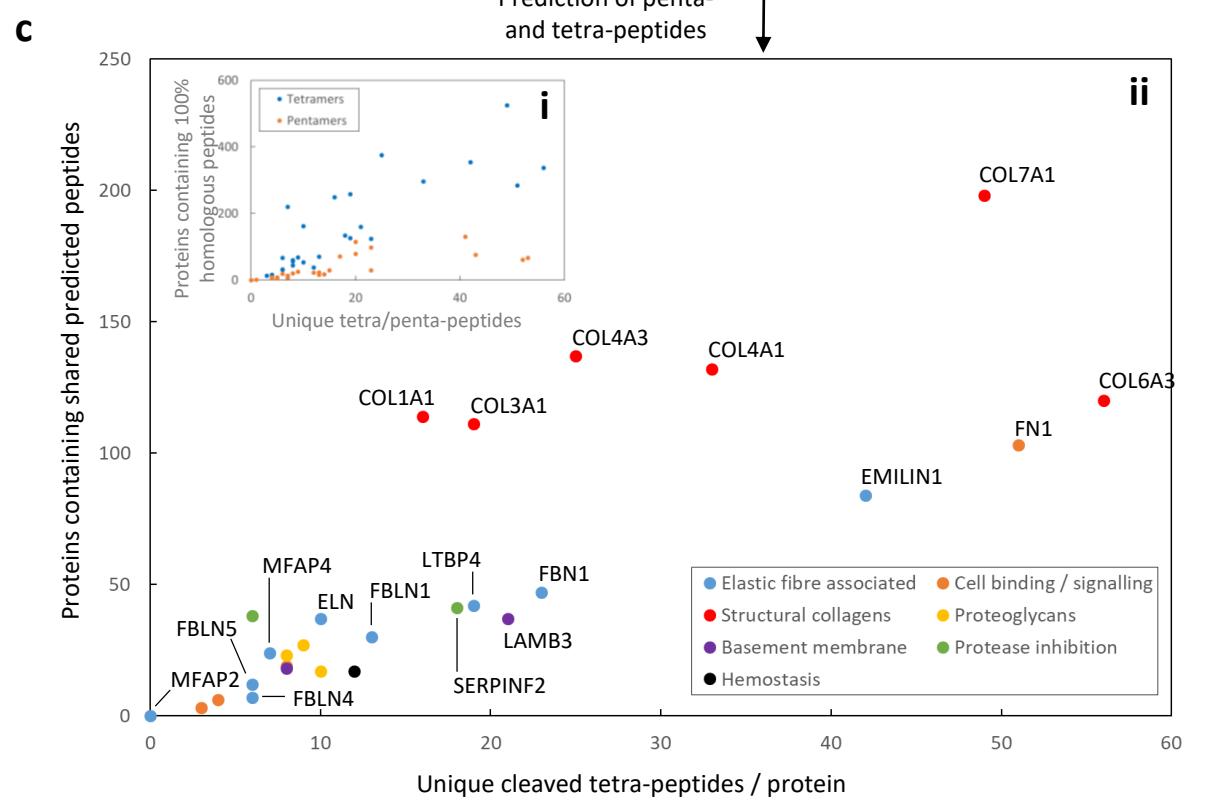
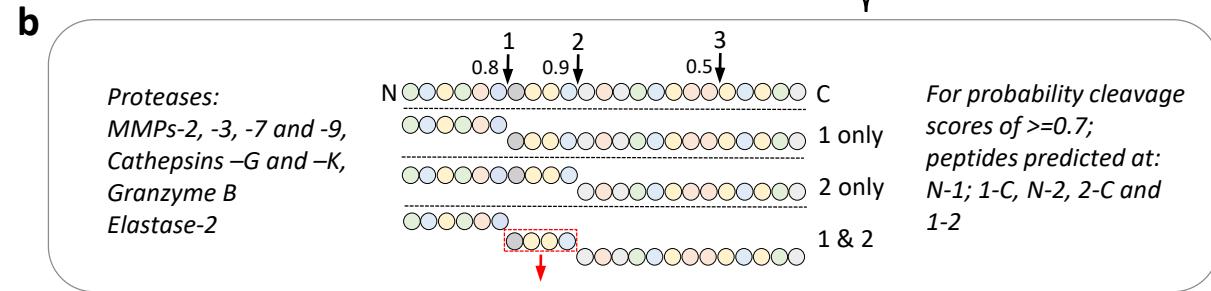
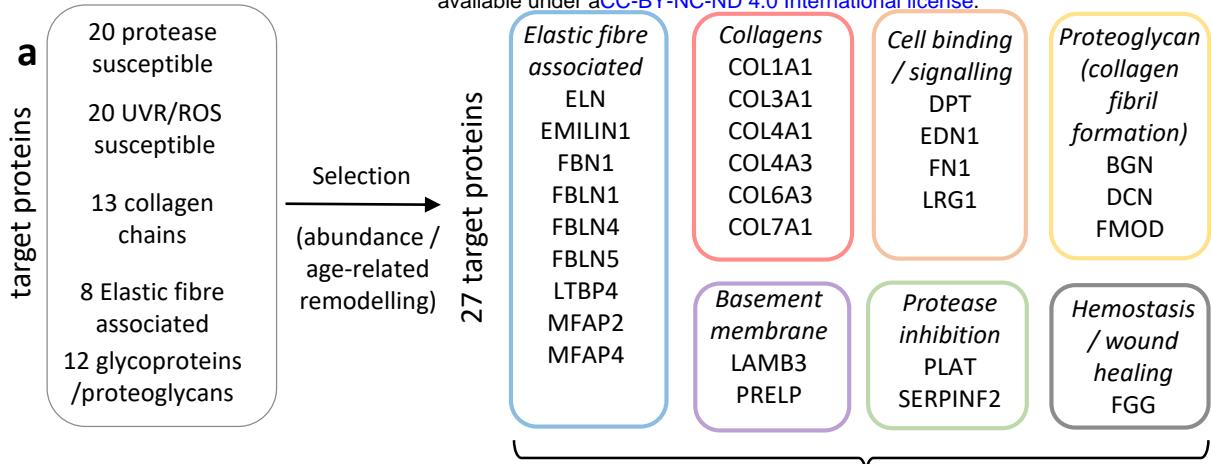
871 Watson, R.E.B., Ogden, S., Cotterell, L.F., Bowden, J.J., Bastrilles, J.Y., Long, S.P., and Griffiths, C.E.M.
872 (2009). A cosmetic 'anti-ageing' product improves photoaged skin: a double-blind, randomized
873 controlled trial. British Journal of Dermatology 161, 419-426.

874 Wells, J.M., Gagger, A., and Blalock, J.E. (2015). MMP generated matrikines. Matrix Biology 44-46,
875 122-129.

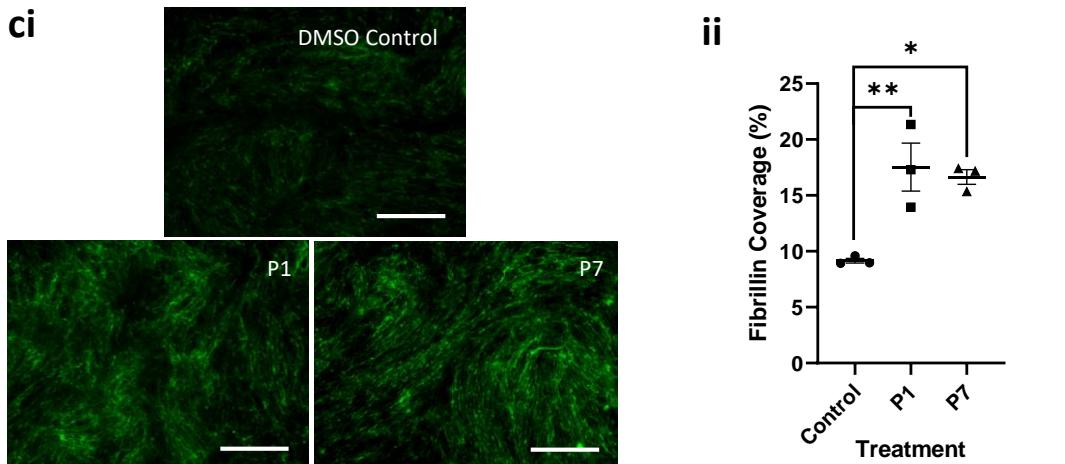
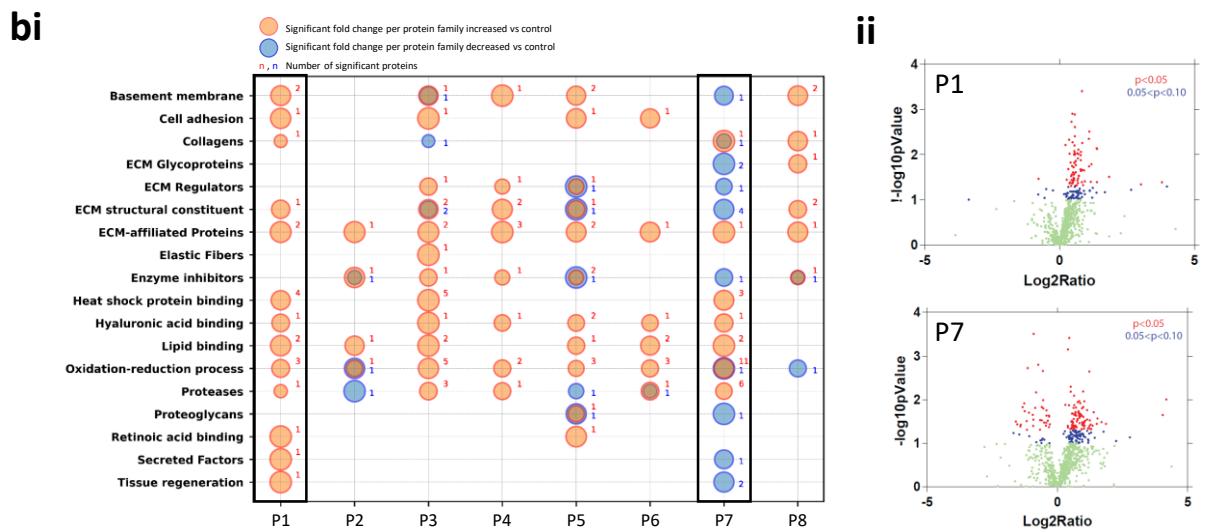
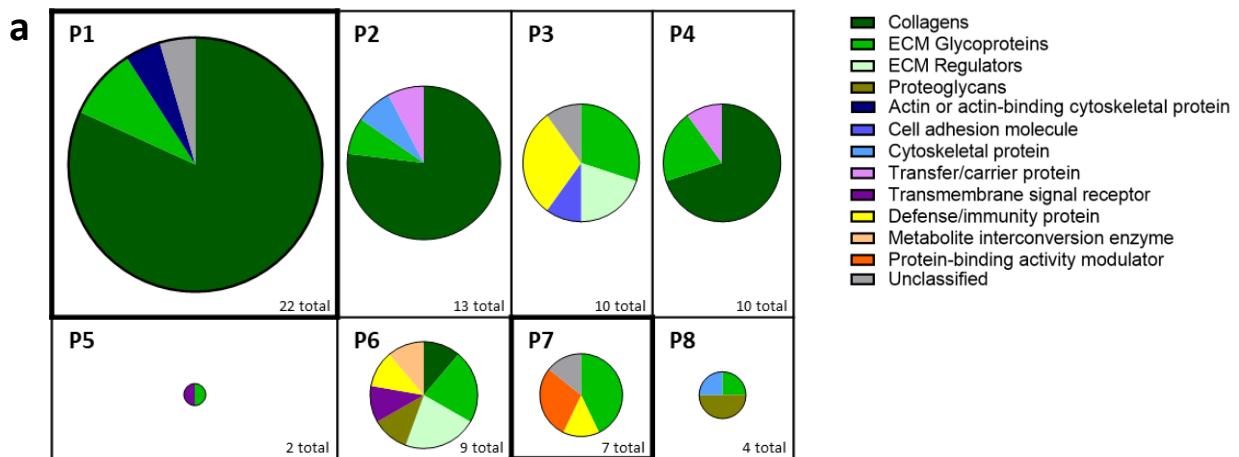
876 Wilkinson, H.N., and Hardman, M.J. (2021). A role for estrogen in skin ageing and dermal
877 biomechanics. Mech Ageing Dev 197.

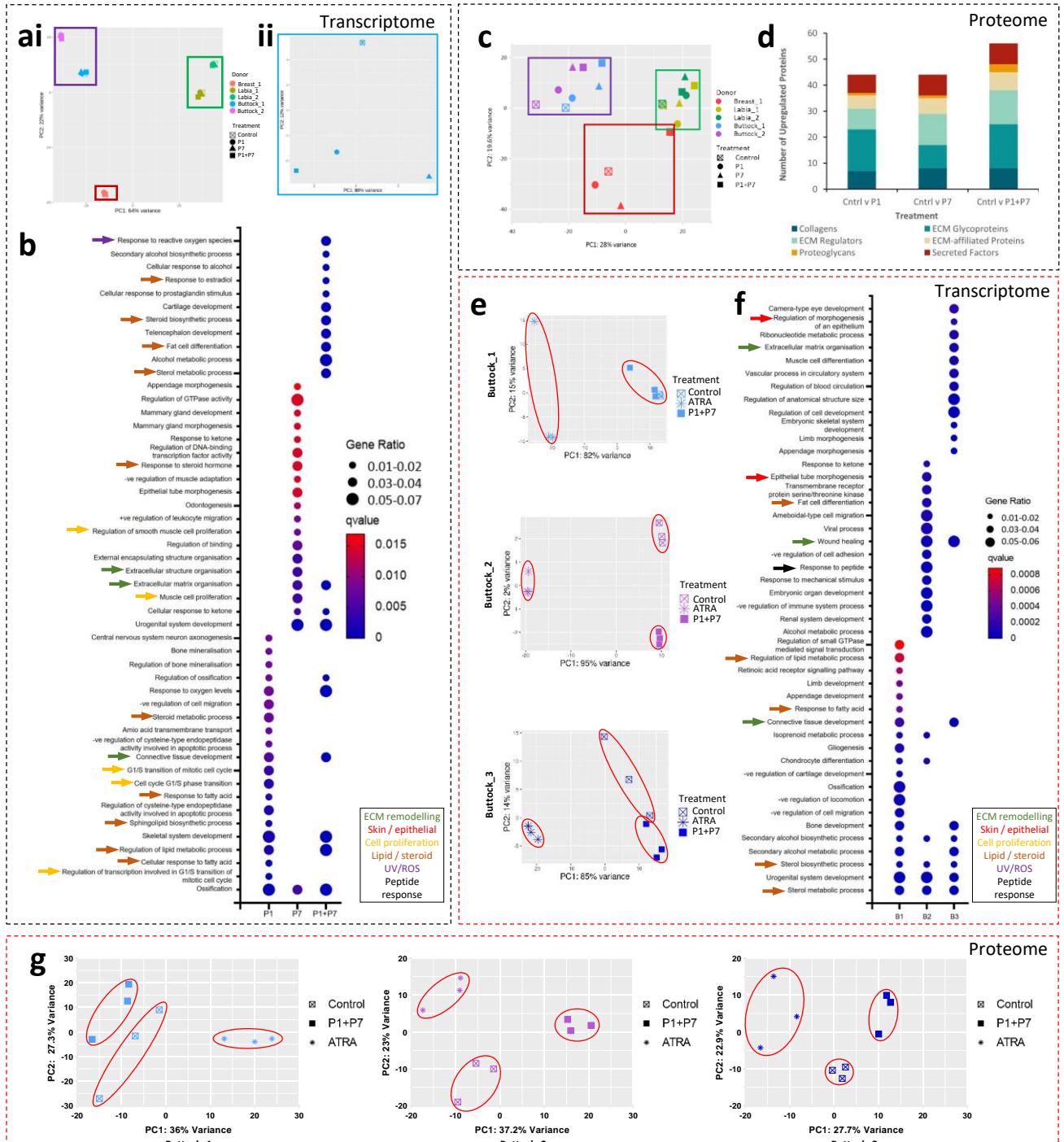

878 Xu, Q.F., Hou, W., Zheng, Y., Liu, C., Gong, Z.J., Lu, C., Lai, W., and Maibach, H.I. (2014). Ultraviolet A-
879 Induced Cathepsin K Expression Is Mediated via MAPK/AP-1 Pathway in Human Dermal Fibroblasts.
880 PLoS One 9.

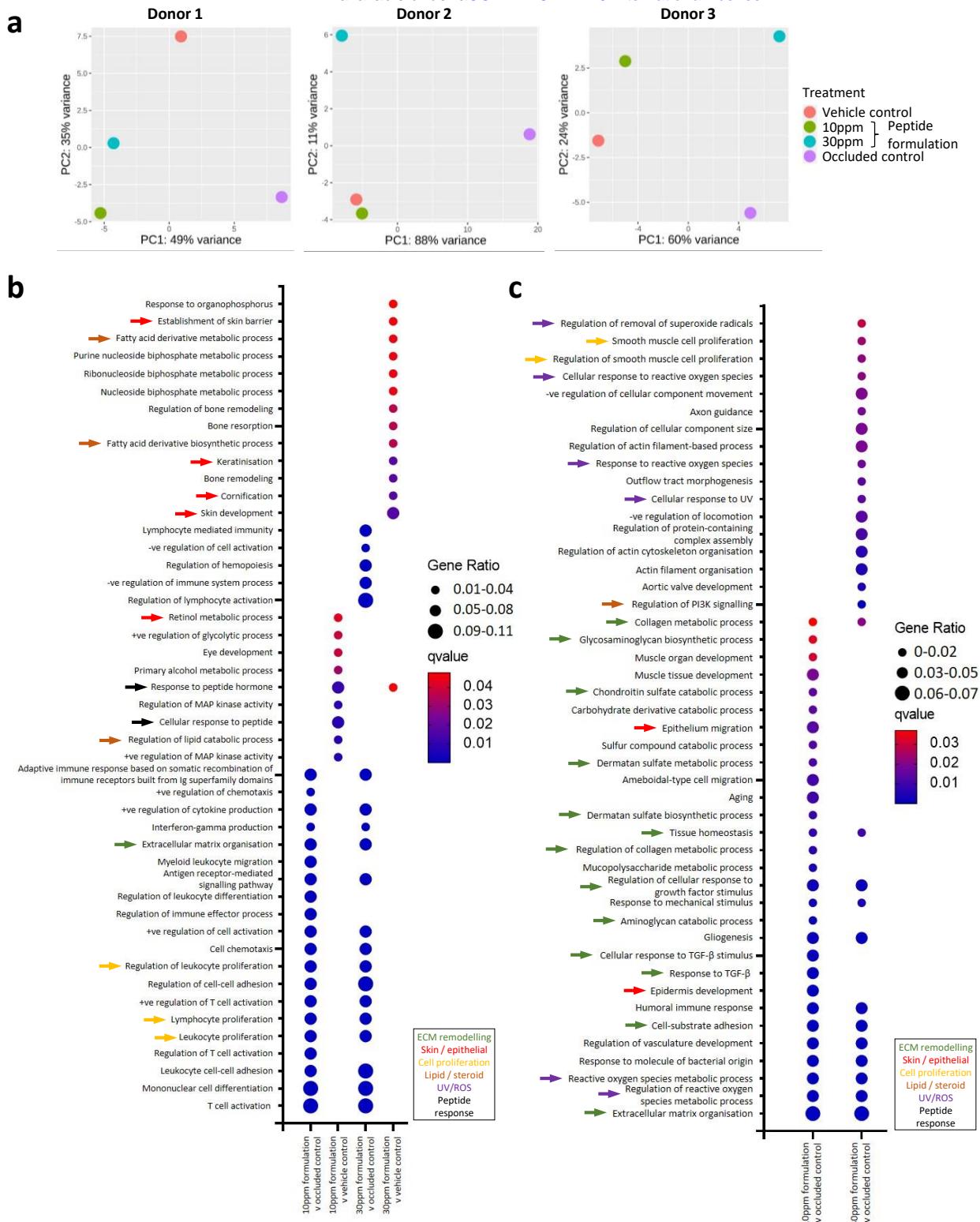
881 Yao, L., Li, Y.C., Knapp, J., and Smith, P. (2015). Exploration of Molecular Pathways Mediating Electric
882 Field-Directed Schwann Cell Migration by RNA-Seq. Journal of Cellular Physiology 230, 1515-1524.




883 Young, H.S., Summers, A.M., Read, I.R., Fairhurst, D.A., Plant, D.J., Campalani, E., Smith, C.H., Barker,
884 J.N.W.N., Detmar, M.J., Brenchley, P.E.C., *et al.* (2006). Interaction between Genetic Control of
885 Vascular Endothelial Growth Factor Production and Retinoid Responsiveness in Psoriasis. J Invest
886 Dermatol 126, 453-459.

887




888


Figure 1. In silico to in vivo discovery pipeline. (a) Bioinformatic prediction of putative matrikines. The entire human proteome was filtered to identify 205 human skin ECM proteins. An initial protein cohort (key structural ECM and/or higher predicted susceptibility to proteases and UVR/ROS) was further filtered based on reported age-related remodelling to a target cohort of 27 proteins. This cohort was subjected to *in silico* digestion and peptide prediction. The 453 tetrapeptides were then assessed for potential issues with manufacture yielding 8 peptides for synthesis and characterisation. (b) *In vitro* characterisation. The activity of these 8 peptides was assessed by immunological and proteomic screens and 2 peptides were selected for further characterisation. Two rounds of proteomic and transcriptomic assays established that these peptides induced differential and synergistic effects on cell physiology. Toxicological assessment established the safety of the peptide combination in a formulation for topical *in vivo* testing in human skin. (c) Human volunteers were treated with a positive control (ATRA), the vehicle and the peptide formulation at two concentrations (10ppm and 30ppm) for 12 days. Histological, immunohistochemical and transcriptomic analysis established that the peptide combination exerted beneficial effects on key biomarkers of skin photoageing and upregulated expression pathways. Experimental data relating to each step in the discovery pipeline is indicated by colour-coded regions for each figure.


Figure 2. Bioinformatic prediction and selection of candidate peptides. (a) Defining protein targets for *in silico* protease cleavage. An initial cohort of 69 proteins (unique protease and UVR/ROS-susceptible and key structural ECM components) was filtered to identify 27 abundant and/or skin ageing-susceptible target proteins classified into seven categories. (b) *In silico* prediction of protease cleavage sites and liberated small peptides. Each of the 27 proteins was screened using a bespoke Python algorithm interacting with the PROSPER protease cleavage server to identify cleavage sites with a probability cleavage scores of ≥ 0.7 . In this hypothetical example a single tetra peptide (red dotted box) would be liberated. (ci) Comparable numbers of penta- (429) and tetra- (482) peptides were predicted to be cleaved from the target cohort but penta-peptide homologues (orange) were less widely distributed in skin proteins. (cii) For each protein, the number of unique cleaved tetra-peptides is plotted against the number of proteins which share predicted cleaved peptides with that protein. For example, COL7A1 harbours 49 predicted cleaved matrikines, which, collectively, are predicted to be cleaved from 198 skin proteins. In contrast, ELN contains 10 unique cleaved peptides, which are shared with 37 other proteins. In general, structural collagens, followed by some elastic fibre associated proteins and fibronectin, were predicted to be the most likely source of tetra-peptides. Collectively this screening process identified 453 unique putative matrikines.

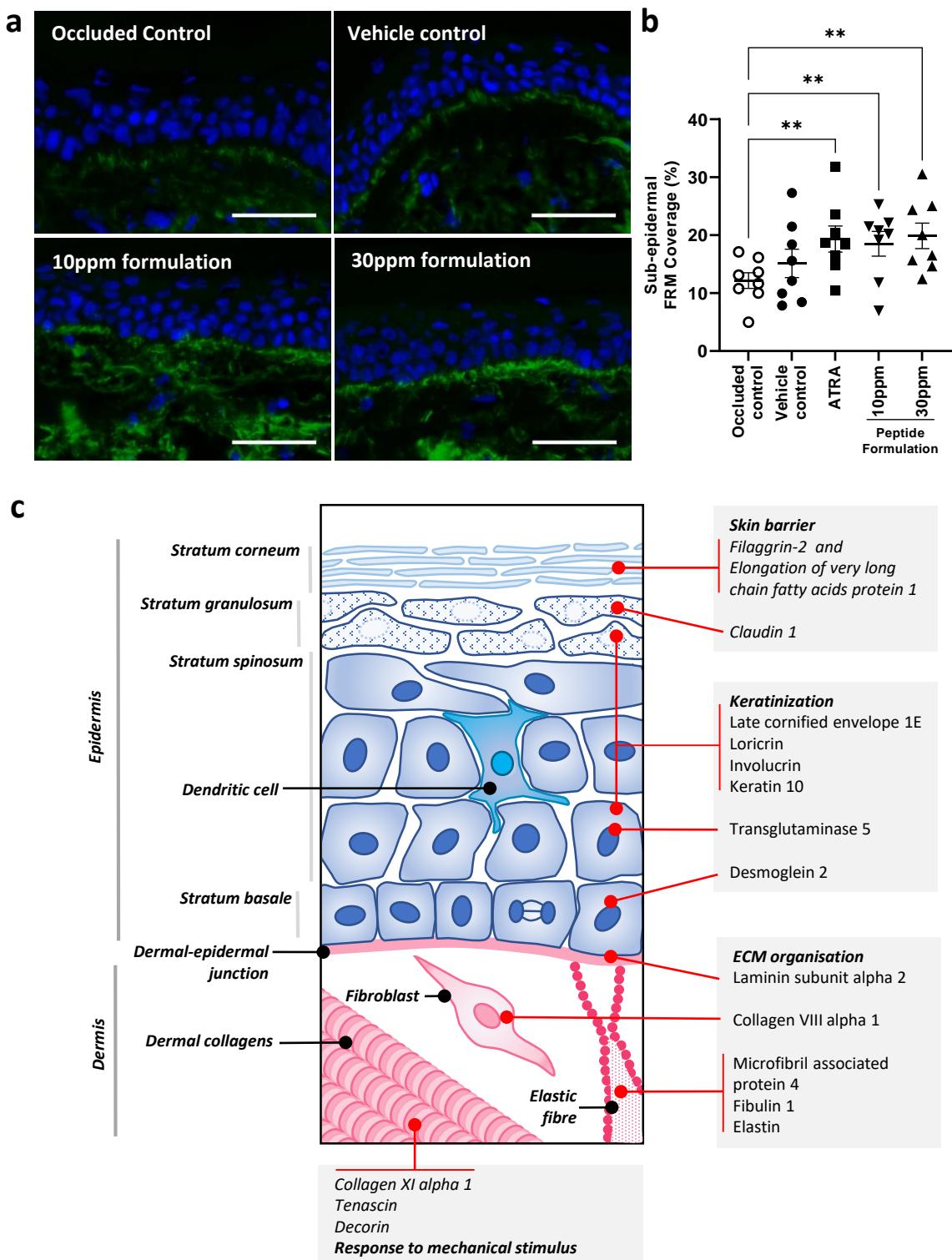


Figure 3. Characterisation of eight potential matrikine peptides. (a) Potential skin protein sources of peptide 1-8. Peptides P1, P2, P3, P4, P5, P6, P7 and P8 were originally identified as putative cleavage products of collagen I, emilin-1, collagen XVII, fibronectin, collagen VI, fibulin-1 and biglycan respectively. However, these peptides also have 100% homology to sequences found in many other skin proteins. Pie charts are sized relative to the number of proteins from which each peptide is predicted to be cleaved (i.e. 22 for P1 and 2 for P5). (b) Influence of peptides on the cultured HDF proteome. Cells were incubated for seven days either without any active added (untreated control), or with each peptide (n= 3 experimental replicates) for analysis of the combined secretome and cell matrix by LC-MS/MS. (bi) All peptides exhibited some ability to influence the cell with P1, P3, P5 and P7 showing the broadest range of activity. P1 significantly enhanced protein synthesis in wide range of protein families (bi and bii volcano plot red points). Whilst P7 induced both significant up- and down-regulation of proteins (bi and bii volcano plot). The identity of proteins up- and down-regulated by P1 and P7 is reported in the supplementary data. (c) Induction of fibrillin-1 synthesis in cultured HDFs (at optimum concentration for each peptide) following 5 days treatment (n = 3 experimental replicates). Both P1 and P7 peptides enhanced deposition of a fibrillin-rich microfibrils network (green stained filaments in ci) compared with the DMSO-treated control Scale bar = 100μm. Fibrillin rich-microfibril deposition was significantly higher for P1 (adjusted p = 0.0069) and P7 (adjusted p = 0.0117) by one-way ANOVA using Dunnett correction for multiple comparisons (cii).

Figure 4. In vitro characterisation of the biological activities of peptides 1, 7 and the combination. (a-d) In vitro 'omics characterisation of HDFs derived from multiple skin sites exposed to individual peptides and peptides in combination (n= 5 biological replicates per treatment). (ai) Principal component analysis (PCA) of RNA-Seq data for peptide exposed HDFs. Gene expression clustered by cell donor and by cell donor site (i). However, for each individual donor (a(ii): example PCA for buttock 1) there was clear separation between treatments. (b) GO-term enrichment analysis of RNA-Seq data for the top 20 (q-value) enriched biological processes. Both P1 and P7 treatments enriched multiple yet distinct processes but the peptides in combination acted synergistically to upregulate a wider range of processes with lower q values and higher gene ratios. (c) Proteomic analysis: PCA of LC-MS/MS data. After 7 days exposure to treatments, whilst protein synthesis remained clustered by skin site, the influence of the peptides was more readily discernible. (d) Upregulated ECM proteins with a fold change ≥ 1.2 . Of the 700 proteins upregulated by the peptide combination, over 50 were ECM components. (e-g) Characterisation of buttock-derived HDFs exposed to the peptide combination with ATRA as a positive control (n= 3 biological replicates with 3 experimental replicates per treatment). (e) PCAs of individual donor RNA-Seq data. Both ATRA and peptide treatments induced clear and distinct clustering compared to the control. (f) In the top 20 (q-value) enriched biological processes, sterol biosynthesis (yellow arrows) was enhanced in all three donors and ECM-related tissue development/repair processes in 2/3 donors. (g) PCAs of proteomic data. Peptide treatment induced clear clustering in all three donors, which was distinct from the control and ATRA treated cells.

Figure 6. Peptide-treated skin: immunohistological characterisation and impact on biological processes. (a) Immunofluorescence staining of fibrillin-rich microfibrils, following 12-day patch test with occluded control, vehicle and 10ppm and 30ppm peptide blends. A 4-day occluded ATRA patch test was included as a positive control (n = 8 biological replicates per treatment). (b) Analysis of immunofluorescence of fibrillin-rich microfibrils. Sub-epidermal microfibril coverage was measured as a percentage of area covered with microfibrils within an area 30 μ m immediately below the epidermis. Repeated Measures one-way ANOVA was used for statistical analysis with where significance *p < 0.05 **p < 0.005. Error bars represent mean \pm SEM (n=8). (c) Exposure to the peptide formulation enhances biological processes key to skin health including the epidermal maturation of keratinocytes and development of a skin barrier and the expression of dermal ECM components involved in elastic fibre deposition and modulation of tissue biomechanical properties.