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Abstract  

Kinematic analysis of movement following brain damage is key for diagnosing motor 

impairments and for recovery assessment. Advances in computer vision offer novel marker-

less tracking tools that could be implemented in the clinic due to their simple operation and 

affordability. An important question that arises is whether marker-less technologies are 

sufficiently accurate compared to well established marker-based technologies. This study aims 

to perform validation of kinematic assessment using two high-speed cameras and a 3D pose 

estimation model. Four participants performed reaching movements with the upper limb 

between fixed targets, in different velocities. Movement kinematics were simultaneously 

measured using the DeepBehavior model and marker-based optical motion capture (QTM), as 

a gold standard. The differences in corresponding joint angles, estimated from the two different 

methods throughout the analysis, are presented as a mean absolute error (MAE) of the elbow 

angle. Quantitatively, the MAE of all movements was relatively small across velocity and joints 

(~2°). In a condition where the movements were made towards the DeepBehavior cameras, and 

the view of the elbow was occluded in one of the cameras, the errors were higher. In conclusion, 

the results demonstrated that marker-less motion capture is a valid alternative to marker-based 

motion capture. Inaccuracies of the DeepBehavior system could be explained by occlusions of 

key-points and are not associated with failure of the pose estimation algorithm.  
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Introduction 

The study of movement kinematics has taken leaps and bounds in the past decades with the 

emergence of motion capture technologies. Advancements in biological motion tracking have 

been widely utilized in industrial applications, sport, medicine, and science [1]. The leading 

gold standard in the field is camera-based markers tracking technology, which has been proven 

as highly accurate and reliable [2].  

While these tools allow for detailed kinematic analysis of behavior, they require extensive 

expertise, long preparation  times of the subjects, dedicated spaces, and are expensive. These 

limitations have brought into existence other motion capture technologies, at the forefront of 

which stand the utilization of novel object detection deep learning algorithms. These marker-

less tools are trained to detect key points of human pose in 2D images, without the need for 

markers or specialized equipment [3–9]. Combined with transformation methods of 2D data of 

multiple cameras and depth estimation, these models can provide 3D kinematics of human 

motion [10–13].  
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To integrate these systems into research in motor control and in rehabilitation, their accuracy 

with respect to the gold-standard measurements should be determined.  This research has been 

started, focusing primarily on gait analysis [14–17] or full body tasks [11]. The accuracy of 

marker-less pose estimation for upper extremity functions, which are frequently impaired 

following brain damage, has not been established. The aim of this study is to validate kinematic 

assessment of upper limb reaching movements using two high-speed cameras and a 3D pose 

estimation model (DeepBehavior). The validation will focus on the angles of the elbow and the 

shoulder during movements performed perpendicularly and in parallel to the DeepBehavior 

cameras, at three speeds. This validation is an essential step towards integration of marker-less 

pose estimation in the clinical environment for studying and assessing motor performance after 

neural and peripheral damage. 

Materials and methods  

Participants  

Five healthy college-aged subjects participated in the study (4 females, age mean and std: 

28.1±1.49). The study was approved by Ben-Gurion University’s internal reviewing board 

(#1317) and participants signed the approved consent forms. Recordings of one participant 

were excluded due to issues with Qualisys cameras being turned off during the recording 

session.  

Experimental design: Each subject was seated and asked to perform reaching movements with 

their right arm to fixed targets positioned to their right side, or to their front (Fig. 1a-b). Targets 

were positioned 22 cm or 35.8 cm horizontally and 47.5 cm or 58.2 cm vertically from the 

origin point, depending on the task. Duration was controlled using a metronome, dictating 
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movements at three durations: 40, 60 or 80 beats per minute (BPM). Each reaching condition 

was repeated 30 times in each duration. 

Data recording: Movements were recorded simultaneously using (1) a two-camera system for 

DeepBehavior analysis, and (2) multi-camera marker -based motion capture system (Qualisys, 

150 Hz) for a gold standard analysis (Fig. 1a). In addition, we collected data with a low-tech 

phone camera (30 Hz) and an IMU accelerometer. We report here the results of the comparison 

between the DeepBehavior and the Qualisys systems. 

Marker-less motion capture  

As previously reported [10, 18], the tasks were recorded using a custom-made system 

comprising of two high-speed cameras (150 frames per second, 1280x1024 pixels, Blackfly S 

Color 1.3 MP USB3 camera (FLIR Inc) with a Fujinon 1.5MP 6mm C Mount lens), set on a 

custom-designed aluminum camera holder with a 66° angle between their axes. Participants 

were recorded from the frontal angle while facing the cameras, set 2.2 m away from them and 

at the level of shoulders when the subjects were sitting. The data from the two cameras allowed 

us to produce the 3D DeepBehavior kinematic model consisting of 57 body joints (Fig. 1c-d). 

Marker-based motion capture   

Before each session, subjects were fitted with a set of 18 markers on the arms and torso: 7 

markers on each arm (2 on the shoulder, 2 on the elbow, 2 on the wrist and another one on the 

first knuckle), 2 markers on the hips, and 2 markers on the chest and back (Fig. 1b). An infra-

red tracking system composed of 14 motion capture cameras mounted on the walls surrounding 

the subject at an average height of 2.56 m (Qualisys Oqus 5+, 4Mpixel 180Hz) were used to 

detect the markers that are located on the subjects’ body (Fig. 1a). Calibration of the cameras 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.16.532711doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532711
http://creativecommons.org/licenses/by-nd/4.0/


 

was completed before each recording session. 3D positions of the markers were recorded in 

150 Hz using the Qualisys Track Manager recording software. 

Data analysis   

The marker-less 3D model kinematic data was extracted from the raw videos of the two-camera 

system. Each camera footage was processed using the OpenPose toolbox [7]. The two estimates 

were then stereo-triangulated to obtain the 3D positions of the joints using the DeepBehavior 

toolbox [10]. Marker-based 3D data was produced using a customized software of the system: 

Qualisys Track Manager (QTM) for labeling and extracting the 3D position of the markers. 

Data analysis was performed using a custom written code in MATLAB [19]. 

Both systems data sets were smoothed using a Savitzky-Golay filter with a window size of 31 

and a polynomial degree of 3. Then the two models were synchronized for each task recording 

using the alignsignals Matlab function. Movements were segmented in the two models based 

on the tangential velocity profiles of the wrist marker position of the right arm in the marker-

based model. Start and end points of individual movements were defined based on the crossing 

of one standard deviation below the peak velocity mean, before and after the peak velocity, 

respectively. Based on the segmentation of the marker-based 3D data, the marker-less 3D data 

was segmented. 

For the marker-based system, joint position estimation for the shoulder and elbow joints was 

based on the average of the two markers positioned on each joint, while the position of the 

wrist was set as the marker placed on the internal-lateral aspect of the wrist (figure 1b). For the 

marker-less system, joint position estimation was based on the position of the shoulder, elbow 

and wrist extracted from the DeepBehavior model. 
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Joint angle data was calculated in intrinsic (anatomical) coordinate system. Angles were 

calculated in relation to a specific joint: shoulder flexion angle was defined as the angle in 

degrees between the ipsilateral elbow joint, ipsilateral shoulder joint and contralateral shoulder 

joint, projected onto the horizontal plane – defined by the torso and shoulder vectors (defined 

from the chest point to the midhip point and from the right shoulder to the left shoulder, 

respectively). Elbow extension angle was defined as the angle in degrees between the ipsilateral 

wrist, elbow and shoulder joints.  

After joint angles were calculated for the movement trajectories, angle trajectories of the 

marker-based system were normalized so the angle value at the end of the movement is zero. 

The angle trajectories of the marker-less system were then aligned to the marker-based data 

using a minimum MAE criterion. 

Statistical analysis   

In order to study the accuracy of the marker-less system, we calculated the mean absolute error 

(MAE) between the systems by computing the absolute difference between the joint angles in 

each time-point along the movement and averaging across them. ANOVA was then used for 

detecting biases between systems. Pearson correlation was calculated between the angle 

trajectories of the two systems to characterize the correspondence between the systems. 
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Figure 1 Experiment paradigm. (a) Camera setup of the two systems. (b) Marker locations 

and target location diagram. (c) Example frames from the two-camera system depicting the 

OpenPose model of one of the subjects sitting in the starting position. (d) The upper limbs of 

the 3D model of the marker-based system (QTM) and the marker-less system (DeepBehavior). 

Shoulder, elbow and wrist trajectories are plotted in blue, green and magenta respectively. 

Results 

Validity of the model in different velocities and different joints 

The elbow angle trajectories in different velocities are presented in figure 2. Results of the two 

models are very similar for all subjects with very high correlation coefficient values and low 

mean absolute errors (mean and std across participants and velocities 2.01°±0.82°; maximum 

error 3.2°). No significant effect of velocity on MAE was observed. 

Shoulder angle results compared to the elbow angle are presented in figure 3. Mean absolute 

errors for the shoulder are also relatively low in most subjects (mean and std across participants: 

2.02°±1.6°; maximum error 4.3°). No significant effect of joint on MAE was observed. 
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Figure 2 Comparison of elbow angle changes during movement in different velocities. 

Elbow angle averaged across individual movements in the marker-less DeepBehavior model 

(blue) and marker-based QTM model (red). Shaded area represents the standard deviation of 

each data set. Each row represents a single subject and each column represents a different 

velocity (40 BPM, 60 BPM and 80 BPM). Mean average error and Pearson correlation values 

calculated between the two systems are noted. 
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Figure 3 Comparisons of elbow and shoulder angle changes during movement. Elbow and 

shoulder angles averaged across individual movements in the marker-less DeepBehavior model 

(blue) and marker-based QTM model (red). Shaded area represents the standard deviation of 

each data set. Each row represents a single subject. Mean average error and Pearson correlation 

values calculated between the two systems are noted. 

Validity in conditions of occlusion 

After assessing the accuracy of the DeepBehavior system in conditions where the movements 

were parallel to the cameras, we wanted to assess the accuracy of the system in conditions 

where the movement is perpendicular to the main axis of one of the cameras. To do so, we 
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looked at the accuracy of the marker-less model in a task consisting of movement to a target 

presented in front of the subject. Indeed, the deviation of the DeepBehavior system increased 

(Fig 4), showing larger MAEs for all subjects (mean and std across participants and velocities 

7.13°±5.2°; maximum error 12.2°). 

To examine if these inaccuracies are driven by occlusions, we calculated the distance between 

the wrist and elbow joints of the OpenPose 2D model from each camera and compared it to the 

level of inaccuracy between the models of the elbow angle, in the forward target task. As 

expected, recordings that had occlusions (defined as less than 75 pixels (3.36°) between wrist 

and elbow, see figure 5), showed inaccuracies in elbow angle estimation (figure 6). 

Furthermore, for the subject that showed no occlusions, the accuracy of the DeepBehavior 

systems was the highest, with a MAE of 1.2° (subject 4 in figure 6a). 

To quantify the effect of occlusion on accuracy, we compared the of MAE the entire trial with 

the MAE of the trial without the frames with occlusion (i.e., frames where the distance between 

the wrist and elbow joints of the 2D model, from at least one of the cameras, was smaller than 

75 pixels) . The MAE for trajectories without occlusion was smaller for all subjects (mean and 

std across participants 5.87°±2.88°; figure 6b). 
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Figure 4 Elbow angle trajectory mean in conditions of occlusion. Elbow angle averaged 

across individual movements in the marker-less DeepBehavior model (blue) and marker-based 

QTM model (red). Shaded area represents the standard deviation of each data set. Each row 

represents a single subject. The angle trajectories are presented for the movement towards the 

target set to the side (left) and the target set to the front of the subject which included occlusion 

(right). Mean average error and Pearson correlation values calculated between the two systems 

are noted. 
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Figure 5 Example of elbow occlusion in one of the subjects performing reaching for the 

forward target. The 2D OpenPose model for a single subject performing reaching for the 

forward target from camera 1 (left) and camera 2 (right), at the start (a) and middle of the 

movement (b). The occlusion is in panel b, picture on left (camera 1) (the right elbow and wrist 

of the subject are in close proximity in the camera view). 
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Figure 6 Model accuracy in conditions of occlusions. Distance between wrist and elbow 

joints positions in the 2D model of OpenPose in camera 1 )left) and camera 2 (middle) (a).  

Occlusion threshold of 75 pixels is noted in gray dashed horizontal line. Mean absolute error 

(MAE) of angle trajectories of the two 3D models for each subject performing reaching for the 

forward target (b). MAE is presented for individual trials (noted as x in dark gray) and averaged 

across trials (bars in light gray), for the entire trial and for the entire trial excluding the samples 

which had occlusion over a threshold of 75 pixels.  

 

Discussion 

This study aimed to examine the accuracy of the OpenPose-based 3D marker-less motion 

capture model DeepBehavior, through a comparison with an optical marker-based motion 
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capture (Qualisys). From the data presented here, the DeepBehavior model produces kinematic 

variables that are comparable across subjects, velocities (figure 2), and joints (figure 3).  

We calculated the MAE of the elbow angle during movement. Overall, the errors are around 2 

degrees and the correlation coefficients of individual subjects across tasks and velocities are 

close to one. 

To test the accuracy of the system in sub-optimal conditions, we examined its accuracy in a 

task that required subjects to move the arm towards the cameras. We found that that accuracy 

of the system is sensitive to such a manipulation, and that inaccuracies can be explained by 

occlusions (figures 4-6). This has been previously shown as a limitation for a two-camera 

system, that can be solved by either using additional cameras or adjusting the angle of the 

cameras with respect to the movement of the subject [20]. In any case, it suggests that 

inaccuracies are not driven by failure of the pose estimation models, but by the sub-optimal 

input to the DeepBehavior model.  

The results demonstrate that marker-less motion capture is a valid alternative to marker-based 

motion capture when used carefully. This result paves the road towards integrating similar 

systems in clinics and developing kinematic measures for diagnosing motor impairment and 

assessing recovery and response to treatment. A recent round table discussion emphasized the 

importance of kinematic movement quantification for assessing stroke recovery [21]. We 

propose that marker-less kinematics is a feasible and valid approach to achieve that goal. 

Limitations 

This study validated important kinematic measures of upper extremity; however, additional 

validation is needed for estimating the position of the fingers and of the wrist, that are typically 

noisier and more susceptible to occlusions. Additionally, pose estimation in subjects with 
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neural and motor disorders may suffer from inaccuracies due to the untypical postures 

presented by these subjects when compared to the training data set. Thus, validation in specific 

clinical groups may be also needed.  

Conclusions 

We show that an affordable and mobile two-camera system, combined with a pose estimation 

algorithm, can provide accurate pose estimation data and 3D kinematic measures that are 

highly correlated with the results of a gold standard marker-based pose-estimation system. 

Such systems can be positioned in clinics and support diagnosis of motor impairments and 

recovery assessments following injury, and for scaling the research of motor pathologies using 

kinematics.  
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