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ABSTRACT

Motivation: Circular RNAs (circRNAs) are long non-coding RNAs (IncRNAs) often
associated with diseases and considered potential biomarkers for diagnosis and
treatment. Among other functions, circRNAs have been shown to act as microRNA
(miRNA) sponges, preventing the role of miRNAs that repress their targets.
However, there is no pipeline to systematically assess the sponging potential of
circRNAs.

Results: We developed circRNA-sponging, a nextflow pipeline that (1) identifies
circRNAs via backsplicing junctions detected in RNA-seq data, (2) quantifies their
expression values in relation to their linear counterparts spliced from the same gene,
(3) performs differential expression analysis, (4) identifies and quantifies miRNA
expression from miRNA-sequencing (miRNA-seq) data, (5) predicts miRNA binding
sites on circRNAs, (6) systematically investigates potential circRNA-miRNA sponging
events, (7) creates a network of competing endogenous RNAs, and (8) identifies
potential circRNA biomarkers. We showed the functionality of the circRNA-sponging
pipeline using RNA sequencing data from brain tissues, where we identified two
distinct types of circRNAs characterized by a specific ratio of the number of the
binding site to the length of the transcript. The circRNA-sponging pipeline is the first
end-to-end pipeline to identify circRNAs and their sponging systematically with raw
total RNA-seq and miRNA-seq files, allowing us to better indicate the functional
impact of circRNAs as a routine aspect in transcriptomic research.

Availability: https://github.com/biomedbigdata/circRNA-sponging

Contact: markus.daniel.hoffmann@tum.de; markus.list@tum.de

Supplementary Material: Supplementary data are available at Bioinformatic
Advances online.

INTRODUCTION

Circular RNAs (circRNAs) are classified as long non-coding RNAs (IncRNAs), even
though a few have been reported to encode proteins [1]. circRNAs are characterized
by their loop structure, which makes them less prone to degradation [2,3]. The
biogenesis of circRNAs is explained by the occurrence of a backsplicing event (see
Suppl. Fig. 1) during the alternative splicing process of precursor messenger RNA
(pre-mRNA), where the 5’ terminus of an upstream exon and the 3’ terminus of a
downstream exon are covalently joined [2]. The difference between circRNAs and
linear RNAs is the lack of a 5" cap and a 3’ polyadenylation (poly(A)) tail along with
its circular shape, which makes circRNAs more stable and, in most cases, resistant
to exonuclease activity [4—6]. These circular molecules can be made up of exonic
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and intronic regions of its spliced pre-mRNA and are thus found in a variety of sizes,
ranging from 100 to >4,000 nucleotides [4,7]. circRNAs are conserved across
species, and their expression is tissue- and disease-specific [3,8,9]. Hence, they can
play an important role as biomarkers and therapeutic targets [9—11]. Another type of
non-coding RNA is microRNA (miRNA) which plays a role in post-transcriptional
gene regulation [12,13] and is involved in many biological processes and diseases
[14]. miRNAs bind their target genes via the RNA-induced silencing complex causing
their degradation or preventing their translation [15].
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Figure 1: Overview of the individual steps of the pipeline. total RNA-seq data
processing is shown on top, and miRNA-seq processing on the bottom. In the
miRNA sponging step, these results are integrated for network analysis and
biomarker detection.

The possible interplay between circRNAs, miRNAs, messenger RNAs (mRNAs) that
code for proteins, and other types of RNA that share miRNA binding sites gives rise
to a large regulatory network. Salmena et al. proposed that any RNA that carries
miRNA binding sites (e.g., mRNAs, circRNAs, pseudogenes, transcripts of 3’
untranslated regions (UTRs), and IncRNAs) can act as a competing endogenous
RNA (ceRNA) [16] that competes for the limited pool of available miRNAs in a cell.
As a result of this competition, an overexpressed RNA can sponge away miRNAs
required for the regulation of other RNAs, which can explain why non-coding RNAs,
such as circRNAs, can be implicated in a phenotype.

The enhanced stability of circRNAs might allow them to work as buffers for miRNAs
by binding them until sufficient miRNAs are present to outnumber the circRNA
binding sites [9]. The regulatory function of circRNAs and their alleged association
with diseases are the main reasons why identifying sponging activity between
circRNAs and miRNAs is of particular interest. The presence of an interaction
between miRNAs and circRNAs has been repeatedly proven, and several circRNAs
(e.g., CDR1as/CiRS-7, SRY [17], and circNCX1 [18]) have been recognized as
miRNA sponges. Even though individual studies confirmed the existence of circRNA
sponges, further studies are needed to elucidate the role of circRNAs in
miRNA-mediated gene regulation.

From a computational point of view, the detection of circRNAs is difficult due to their
circular shape and the lack of poly(A) tail, which makes it unlikely to observe them in
poly(A)-enriched RNA sequencing (RNA-seq) libraries [7]. Hence, circRNAs can only
be robustly detected in libraries without poly(A) enrichment, such as ribosomal RNA
(rRNA) depleted RNA-seq and total RNA-sequencing (total RNA-seq), which do not
deplete circRNAs [7]. ldentification of circRNAs relies on the detection of
backsplicing junctions among the unmapped reads, which allows for the estimation
of circRNA abundance. By focusing on the backsplicing junction alone, the
expression of circRNAs in relation to their linear counterparts is typically
underestimated [19].
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Several approaches for circRNA analysis have been proposed. Chen et al. reviewed
100 existing circRNA-related tools for circRNA detection, annotation, downstream
analysis, as well as network analysis [20]. They list a total of 44 circRNA
identification tools including, but not limited to, CIRCexplorer [21,22], find_circ [23],
CIRI [24], KNIFE [25], and circRNA_finder [26]. They also present a total of 14
circRNA annotation databases collecting circRNA information from the literature,
such as circBase [27] and CIRCpedia [21,28]. Other circRNA-related tools include
databases for feature collection and storing circRNA information related to disease
and biomarkers. In addition, circRNA network identification tools model the
interactions between circRNAs and miRNAs, IncRNAs, or RNA-binding proteins.
Other tools for downstream analysis of circRNAs cover alternative splicing detection,
circRNA assembly, and structure prediction and visualization [20]. To the best of our
knowledge, none of the tools provides a comprehensive and automated circRNA
sponging analysis integrating identification and quantification of both circRNAs and
miRNAs, a systematic investigation of potential circRNA-miRNA sponging events,
and a ceRNA network analysis. We developed “circRNA-sponging”, a nextflow
pipeline integrating state-of-the-art methods to (1) detect circRNAs via identifying
backsplicing junctions from total RNA-seq data, (2) quantify their expression values
relative to linear transcripts, (3) perform differential expression analysis, (4) identify
and quantify miRNA expression from miRNA-sequencing (miRNA-seq) data, (5)
predict miRNA binding sites on circRNAs, (6) systematically investigate potential
circRNA-miRNA sponging events, (7) create a ceRNA network, and (8) identify
potential circRNA biomarkers using the ceRNA network (Fig. 1).

We demonstrate the potential of the circRNA-sponging pipeline on matched
rRNA-depleted RNA-seq and miRNA-seq data from mouse brain tissues.
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Figure 2: Workflow of the circRNA-sponging pipeline. The pipeline consists of
three modules: (1) the circRNA module, (2) the miRNA module, and (3) the
sponging module. In (1), we detect circRNAs via identifying backsplicing junctions
from total RNA-seq data, quantify their expression values, perform a differential
expression analysis, and predict miRNA binding sites on circRNAs using a majority
vote between three state-of-the-art methods. In (2), we either detect and quantify
miRNAs in raw miRNA-seq or directly process miRNA expression data. In (3), we
systematically investigate circRNA-miRNA sponging events, create a ceRNA
network and use it to identify potential circRNA biomarkers.

MATERIALS AND METHODS

Data

Using circRNA-sponging, we processed a total of 23 samples of matched single-end
rRNA-depleted RNA-seq and miRNA-seq data for four brain regions (cerebellum,
cortex, hippocampus, olfactory bulb). Samples include 3 replicates for wild-type (WT)
and 2-3 CDR1 knock-out (KO) mouse replicates (GEO accessions: GSE100265,
GSE93129) [29]. (see Suppl. Table 1). We use the mm10 genome version for
mapping.

Pipeline Architecture

The circRNA-sponging pipeline is implemented in R (v. 4.2.0) and Python (v. 3.8.12)
and wrapped with nextflow version 22.04.0.5697. The pipeline is hosted on
dockerhub and will pull the required docker image when executed. The relevant
image was built under docker version 22.06. It follows the nf-core guidelines [30] and
encompasses several state-of-the-art techniques organized into three modules: (1)
the circRNA module, (2) the miRNA module, and (3) the sponging module, the latter
of which can only be performed if both other modules have been executed (Fig. 2).
In the following, we provide a deeper insight into each module and highlight
important components of the pipeline.

(1) The circRNA module addresses the identification, quantification, and miRNA
binding site prediction of circRNAs. For read mapping, we employ the STAR [31]
aligner, which provides support for the detection of splice-junction and fusion reads.
The resulting unmapped split-reads are used by CIRCexplorer2, which uses a
combination of methods (i.e., a de novo assembly approach to identify novel
circRNA and a reference-based approach, which uses known exon-exon junctions to
map backsplicing events to known genes) to increase the accuracy of its predictions
[21] to identify backsplicing events. We could confirm the excellent performance of
CIRCexplorer2 using data simulated with polyester [32] from the linear mouse
reference genome GRCm38 at varying sequencing depth, where we rarely detect
false positive backsplicing junctions and zero false positive circRNAs (Suppl. Fig.
2a). Next, raw read counts are normalized with DESeq2 [33], and circRNAs with low
expression levels are excluded to reduce false positives. By default, only circRNAs
with a normalized read count >5 in at least 20% of samples are retained. Database
annotation is performed using circBase [27], which covers curated circRNAs with
experimental evidence of several model organisms.

We use psirc [19] to quantify circRNA expression levels, as the detection of
backsplicing junctions alone does not reflect circRNA expression levels in relation to
the gene’s expression. To mitigate this, psirc employs kallisto [34] and considers
both linear and circular transcripts in the expectation-maximization step to produce
comparable expression values. psirc corrects for various sequencing biases that can
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affect circRNA detection, such as coverage bias, mapping bias, read length bias,
and alternative splicing bias. Yu et al. showed that psirc provides a more accurate
identification of circRNA expression levels by validating their method with
experimental data [19]. If the data has been sampled from different conditions (e.g.,
case and control), the quantified linear transcripts and circRNAs can be used to
perform a differential expression analysis using DESeq2 [33]. The pipeline generates
heatmaps, volcano plots, and principal component analysis (PCA) of the circRNAs
and linear transcripts between conditions. We analyze alternative splicing between
circular and linear transcripts on a gene level using SUPPA2 [35]. In order to
integrate circular transcripts, we construct a merged gene annotation file consisting
of both linear and circular transcripts. Based on this input, we generate percent
spliced-in (PSI) values for linear and circular isoforms with the SUPPA2 step
psiPerlsoform [35]. We, additionally, normalized the linear and circular PSI values for
a gene by their sample-wise mean to account for differences in overall linear and
circular splicing frequencies. Both non-normalized and normalized PSI values are
automatically visualized. To boost reliability, we predict circRNA-miRNA binding sites
using a majority voting between miRanda [36], PITA [37], and TarPmiR [38] since
each method has a distinct approach for predicting miRNA binding sites. Testing
these tools with random miRNA sequences shows that up to 25% of the reported
binding sites may be false positives (Suppl. Fig. 2b-d), which aligns with previous
findings [39]. Thus, we consider a circRNA-miRNA binding site as relevant if it is
predicted by at least two out of the three methods. miRanda considers seed
matching, conservation, and free energy, and we consider predictions with a score
above the 25% quantile. PITA additionally considers site accessibility and target-site
abundance. TarPmiR further integrates machine learning to improve results for
supported organisms [38]. We further incorporate experimentally validated target
sites from DIANA-LncBase v3 [40], miRTarBase [41,42], and miRWalk3.0 [43].

(2) The miRNA module covers the quantification and processing of miRNA
expression. miRDeep2 [44] is used to obtain miRNA counts. Alternatively, already
mapped miRNA expression data can be provided. Raw counts are normalized with
DESeq2 [33] followed by a filtering step, where by default, miRNAs with a
normalized read count > 5 in at least 20% of samples are retained.

(3) The sponging module is used for the identification of crosstalk between
circRNAs, miRNAs as well as ceRNA interactions of circRNAs with other transcripts.
To identify potential sponging activityy, we perform a correlation analysis of
circRNA-miRNA pairs, where a negative correlation coefficient indicates a sponging
relationship. For all circRNA-miRNA pairs (i.e., a circRNA that harbors at least one
binding site for the miRNA), we compute a Pearson correlation coefficient along with
the normalized residual sum of squares and the adjusted p-value after the
Benjamini-Hochberg correction. Pairs are filtered (e.g., p-adjusted < 0.05, RMSE <
1.5, and optionally by the number of binding sites) and are considered potential
sponging candidates. We further construct a ceRNA network using SPONGE [12] on
matched gene and miRNA expression data. Finally, we apply spongEffects [45] to
extract ceRNA modules consisting of circRNAs with a high node centrality score in
the ceRNA network and their direct neighbors. For each module, spongEffects
computes a sample-specific enrichment score (i.e., the spongEffects enrichment
scores are calculated using one of three gene set enrichment approaches: Gene Set
Enrichment Analysis (ssGSEA) and Gene Set Variation analysis (GSVA) algorithms
as implemented in the GSVA package (version 1.34.0) [46], or Overall Expression
(OE) [47]. These approaches can calculate spongEffects scores even if some genes
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in the ceRNAs modules are missing. The resulting module-by-sample score matrices
can be used for further analysis. No major differences were observed between the
three methods, and the choice of the optimal tool depends on the specific task and
dataset [45], such as differential analysis between groups or supervised machine
learning. The spongEffects scores are then used for training and testing a random
model classifier to distinguish between groups of samples (e.g., healthy and control)
[48]. The prediction power is then measured by a 5-fold cross-validation and a
comparison to random modules (i.e., sampling modules of the same size as the ones
predicted while preserving the size distribution of the real modules). In our example
data set, we used 16 samples for training (four samples for cerebellum, cortex,
hippocampus, and olfactory bulb) and eight samples for testing (two samples for
cerebellum, cortex, hippocampus, and olfactory bulb).

RESULTS AND DISCUSSION

circRNAs are highly abundant and conserved in the mammalian brain [49,50]. To
demonstrate the capabilities of the circRNA-sponging pipeline, we analyzed a public
RNA-seq data set from the mouse brain. We focused on the sponging capacity of
circRNAs and their potential role as ceRNAs.

Comparing circRNA and host gene expression reveals changes in
circRNA splicing

In total, we detected 46,380 and 27,390 circRNAs before and after filtering,
respectively. This number aligns with the known high abundance of circRNAs in
brain tissue [49,50]. We could annotate only 1,027 (~4%) of the circRNAs that
passed the filter (Suppl. Fig. 3a), as comparably few circRNAs have thus far been
annotated in mice using circBase. psirc-estimated expression levels, which take
reads mapping to parts other than the backsplicing junction of the circRNA into
account, are up to 6-fold higher compared to counts derived from backsplicing
junctions only (Fig. 3c, per tissue type: Suppl. Fig. 3d-g). We observed a generally
higher expression of circRNAs in the cerebellum compared to other brain regions,
which could indicate a higher importance of the circRNAs in this brain region (Suppl.
Fig. 3b).

Concerning the miRNA binding sites, we observed that with a higher number of
binding sites, the Pearson correlation increases (Suppl. Fig. 4). Despite the high
number of shared circRNAs across brain regions (Fig. 3a), we observed a brain
region-specific abundance of overall circRNAs levels (Fig. 3b, Suppl. Fig. 3b).
However, expression levels of the circRNAs differ considerably, such that samples
cluster by brain region (Fig. 3b, Suppl. Fig. 3c). Rybak-Wolf et al. reported circRNAs
of twelve host genes (TULP4, RIMS2, ELF2, PHF21A, MYST4, CDR1, STAUZ2,
SVv2B, CPSF6, DYM, RMST, and RTN4) [50]. They speculated on the importance of
circRNAs originating from these genes for brain cell identity, but we posit that a
change in circRNA expression alone does not necessarily imply a functional role as
circRNA expression is coupled to the expression of the host gene, as we expect the
number of reads mapping to the backsplicing junctions to correlate. We detected
nine of the twelve circRNAs (all but TULP4, SV2B, and RMST) in our analysis
(Suppl. Table 2, Suppl. Fig. 5a-b). The difference between KO and WT samples is
negligible, with the exception of the CDR1 region (mmu_hsa_circ_0001878 in
circBase annotation) that was targeted successfully (Suppl. Fig. 5c-d). When
excluding the circRNA of the CDR1, we observed a clear separation between the
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cerebellum and other brain regions, while the cortex and hippocampus are more
similar [51]. Our analysis revealed a total of 33 circRNAs that show significantly
different expression between brain regions (p-adjusted < 0.01, absolute log2 fold
change > 5, Suppl. Table 3). By comparing the expression level of the circRNAs to
the linear transcripts, as facilitated by psirc-quant, we can identify cases where the
expression of circRNAs increases beyond the level suggested by the overall gene
expression. Such cases could offer evidence for the functional importance of a
circRNA. For example, mmu_circ_0000595, a circRNA of host gene RIMS2, shows a
higher expression in the cortex, whereas the expression of the host gene RIMS2
remains stable in this tissue (Fig. 3d, see also Suppl. Fig. 6a-p). We investigate the
output of SUPPA2 to explore the relationship between the quantity of circular and
linear transcripts per shared gene more thoroughly. As expected, the PSI values of
the linear transcripts are mostly close to 100%, whereas circular RNAs are rare and
show overall very low PSI values. However, there are instances where circular
transcripts show high PSI values (Suppl. Fig. 7a). Differential splicing analysis of
circular transcripts revealed that only very few are significantly differentially spliced
between cell types, i.e., pass both filters of a change in PSI >= 25 % and a p-value of
<= 0.01 (Suppl. Fig. 7b). We can observe that two circRNAs
(chr15:34600014-34625031_-  with its host genes HYDIN between
cortex-hippocampus and chr8:110298074-110334816_+ with its host gene NIPAL2
between hippocampus-olfactory-bulb) are considered differentially spliced in (Suppl.
Fig. 7). These results are similar for normalized PSI values (Suppl. Fig. 8), where we
accounted for sample-specific differences. Our results thus suggest that the splicing
ratio of linear to circular RNA expression does not change between different brain
regions.
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Figure 3: circRNA results of the mouse brain regions data set. a) circRNAs shared
between brain regions. b) expression of circRNAs across tissues and experimental
conditions. c¢) Comparison of psirc-quant quantified circRNA counts to
CIRCexplorer2 counts. d) comparison between a circRNA originating from RIMS2
and expression of the linear RIMS2 gene.

A ceRNA network reveals circRNAs acting as miRNA sponges

If matched total RNA and miRNA sequencing data are provided, circRNA-sponging
infers a ceRNA network using the R package SPONGE [12] and visualizes the result
(Fig. 4). Important players in this regulatory network are characterized by a large
node degree, i.e., they indirectly regulate many of the connected RNAs via
sequestering miRNA copies. Since the network inferred by SPONGE does not offer
insights into individual samples or conditions, we subsequently computed
spongEffects [45] enrichment scores which capture the interaction of individual
circRNAs and their target genes. As these scores are sample-specific, they can offer
insights into condition-specific circRNA sponging activity. spongeEffects scores can
also be used as features for machine learning tasks such as classification [45]. Since
the number of available samples for training is rather small here, the random forest
reported subset accuracy drops considerably on the holdout set in ten-fold
cross-validation. While the cortex and hippocampus are difficult to differentiate, the
cerebellum can be robustly distinguished from other brain regions (Suppl. Fig. 9). In
particular, two circRNAs, chr10:9770449-9800068_- and
chr10:79860969-79862010 _+ stand out as distinctive features of the cerebellum
(Suppl. Fig. 10-11). While the inferred ceRNA network shows that circRNAs in the
mouse brain are regulatory active through miRNA sponging, a larger number of
samples is likely needed to fully resolve brain region-specific sponging activity.

T

Legend cicRNA  IncRNA  mRNA  other RNA ® Training A Test

Figure 4: circRNA-ceRNA-subnetwork with the top 25 ceRNA modules ranked by
the number of significant interactions (node degree in the network). For each
ceRNA module consisting of the circRNA and its target genes, we computed
spongEffects enrichment scores and used them as input for a random forest
model. The bottom-right corner shows the subset accuracy of this model in
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distinguishing different brain regions on the training and test set. The results of a
model trained on random modules of the same size show random performance.

Comparing the number of circRNA binding sites with respect to their
length reveals two distinct clusters

miRNA sponging has long been considered a potential function of circRNAs [17]. To
fulfill this function, it would be beneficial for circRNAs to carry a large number of
miRNA binding sites, and indeed, some known circRNAs, such as CDR1as
harboring over 70 miRNA binding sites for miR-7 alone [52], fit the hypothesis well.
To investigate if this is a general property of circRNAs, we systematically compared
the length of a transcript to the number of binding sites, expecting to observe a larger
ratio for circRNAs compared to the 3’ untranslated regions of linear transcripts,
where miRNA binding sites are predominantly located (Fig. 5). While linear
transcripts show a very diverse picture, circRNA length correlates well with the
number of binding sites.

RNA-miRNA number of binding sites distribution
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Figure 5: Number of miRNA binding sites versus transcript length for linear and
circular RNA. For the 3’'UTRs of mRNAs, the number of binding sites was inferred
from miRWalk 3.0. circRNA-miRNA binding sites were counted if they were
reported by two of the three prediction methods employed, i.e., miRanda, TarPmiR,
and PITA. circRNAs form two clusters that can be explained by the different target
site prediction methods used. Linear regression models were fit to each of the
groups to show the trend of the association.

Compared to the prediction in 3' UTRs (also based on TarPmiR), circRNAs show a
comparably high ratio between the number of binding sites and the length. We
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observed two distinct circRNA clusters despite employing the same three miRNA
binding site prediction methods (miRanda, TarPmiR, PITA) for all of them. We only
accept a miRNA binding site for a circRNA if it was predicted by at least two
prediction methods. It appears that all three miRNA binding site prediction tools were
able to identify miRNA binding sites in the circRNAs of the blue cluster, while only
miRanda and PITA, but not TarPmiR, could predict miRNA binding sites of the
circRNAs in the red cluster. This observation was not expected as TarPmiR, in
general, predicts overall more binding sites than miRanda or PITA. An interesting
question is hence if TarPmiR is able to differentiate between circRNAs that are active
miRNA sponges and those that have other functions. Previous research has defined
three types of circular RNAs based on structural features - exonic circular (ecirc)
RNAs, circular intronic RNA (ciRNA), and exon-intron circRNA (EICiRNA) [53-55]. It
has been suggested that ecircRNAs function predominantly through a miRNA
sponging effect in the cytoplasm, whereas other circular RNA forms (e.g., ciRNA and
EIciRNA) function in the nucleus to regulate gene transcription [56-58]. Hence,
circRNAs that are functional in the nucleus could have fewer miRNA binding sites. To
test alternative explanations, we checked if clusters differed by (1) biotype of the
circRNA host gene (i.e., coding or non-coding gene, Suppl. Fig. 12a), (2) genesis,
i.e., the splicing method of the circRNA (EICiRNA, ciRNA, ecircRNA, Suppl. Fig. 12b
[35]), or (3) circRNA expression level (Suppl. Fig. 12c). The observed clusters did
not differ in any of these categories, and further work is needed to elucidate if these
results are related to other structural features. It should also be noted that TarPmiR
was not trained specifically on circRNAs and that a prediction method tailored
towards circRNAs should be developed when suitable experimental data become
available. Additionally, we investigated the relationship between the number of
miRNA binding sites and the SPONGE [12] correlation scores associated with each
circRNA and found that these scores seem to have no apparent correlation to the
number of miRNA binding sites, although a very large number of binding sites seems
to be advantageous for generating more elevated scores (i.e., over 0.5) in
comparison to circRNAs with lower miRNA binding potential, that are only rarely able
to reach comparably high correlation values (Suppl. Fig. 13a-b).

CONCLUSION AND OUTLOOK

We developed a new circRNA processing and analysis pipeline consisting of three
modules harboring multiple current state-of-the-art methods: 1) circRNA detection, 2)
miRNA detection, and 3) detection of sponging events between circRNAs, ceRNAs,
and miRNAs. To the best of our knowledge, it is the first comprehensive circRNA
pipeline to detect, quantify and annotate circRNAs as well as to determine their
sponging activity. The latter allows users to bring circRNAs into a functional context
with other RNAs, such as mRNAs and IncRNAs, through a joint ceRNA network
which is mediated by miRNA sponging. Wen et al. recently highlighted the need for a
further extensive investigation into circRNAs due to their enormous potential to
explain human diseases like cardiovascular, autoimmune, and cancers [59].
circRNAs are also known to be involved in brain development, brain cell
differentiation, and neuronal signaling [29,49]. To demonstrate the capabilities of the
circRNA-sponging pipeline, we hence re-analyzed a public data set where we
investigated circRNAs across different mouse brain regions. Using our pipeline, we
could offer novel insights into circRNA biology across tissues of the brain. We
showed that differences in circRNA splicing could be revealed when considering the
expression of circRNAs relative to the expression of a host gene, similar to how
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alternative splicing events are detected by considering exon or intron inclusion. Our
pipeline is the first to routinely incorporate differential splicing analysis between
linear and circular transcripts of the same genes, allowing to better differentiate
between changes in expression and changes in splicing. We further placed our
findings into the context of miRNA sponging, demonstrating that circRNA exerts
regulatory control over a vast number of transcripts. Finally, we showed that the
number of binding sites in circRNAs correlated well with their length and observed
that TarPmiR’s machine-learning strategy identifies a subset of circRNAs that could
indicate promising candidates for miRNA sponging. Further work is needed to
investigate if these two classes represent structurally different circRNAs, such as
ecircRNAs, ciRNAs, or EIciRNAs, or if this observation can be explained by
differences in the miRNA prediction methods with no biological implication at all.

In the future, we plan to extend the circRNA-sponging pipeline with additional
features. As various functions other than miRNA sponging have been attributed to
circRNAs [60], we see room for expanding the features towards, e.g., investigating
the protein-coding potential of circRNAs [1]. We further seek to integrate
circRNA-sponging into ongoing community efforts such as nf-core [30] to build up
long-term support for maintaining and expanding this pipeline. In summary, the
circRNA-sponging pipeline is a powerful tool to detect, investigate, and analyze
circRNAs and their sponging effects and thus, it helps researchers consider
circRNAs as a routine aspect in RNA-seq and miRNA-seq data analysis.
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