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Abstract

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and
selectively sensitive to immune checkpoint inhibition (ICl). Established histopathology paradigms like
nuclear grade have baseline prognostic relevance for ccRCC, although whether existing or novel
histologic features encode additional heterogeneous biological and clinical states in ccRCC is
uncertain. Here, we developed spatially aware deep learning models of tumor- and immune-related
features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSI) in
untreated and treated contexts (n = 1102 patients). We discovered patterns of nuclear grade
heterogeneity in WSI not achievable through human pathologist analysis, and these graph-based
“microheterogeneity” structures associated with PBRM1 loss of function, adverse clinical factors, and
selective patient response to ICI. Joint computer vision analysis of tumor phenotypes with inferred
tumor infiltrating lymphocyte density identified a further subpopulation of highly infiltrated,
microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of
ccRCC, microheterogeneity associated with greater PD1 activation in CD8+ lymphocytes and
increased tumor-immune interactions. Thus, our work reveals novel spatially interacting tumor-immune
structures underlying ccRCC biology that can also inform selective response to ICI.

Background

Renal cell carcinoma (RCC) is among the 10 most common cancers worldwide and is
comprised of several histological subtypes’. The clear cell histological subtype (ccRCC) is the most
common form of RCC and accounts for the vast majority (75-80%) of metastatic cases’. In addition to
highly recurrent mutations in hypoxia (VHL) and chromatin regulator genes (e.g. PBRM1, BAP1,
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SETD?2), ccRCC exhibits extensive genomic intratumoral heterogeneity (ITH)?, which was correlated
with worse progression free survival in both the TRACERx and TCGA-KIRC cohorts®*®. Nuclear grade,
an established histopathologic score of tumor nuclei dedifferentiation, is a primary prognostic feature in
ccRCC and can provide a histologic description of ITH® to pinpoint cell structures enriched for
metastatic potential”. In addition, high nuclear grade has been associated with increased tumor-
infiltrating lymphocytes (TILs) in ccRCC?®, though whether molecular ITH or its relationship to histologic
properties (e.g. grade, TILs) inform immunoresponsive tumor states in ccRCC is uncertain. Indeed,
while immune checkpoint inhibitors (ICls) are a standard therapy in ccRCC, this tumor type defies many
conventions about molecular features that associate with selective ICI response identified in other solid
tumors'®'"-'3 and both the underlying biology and clinical biomarkers to stratify patients for ICI in
ccRCC remain elusive.

Current approaches to simultaneously quantify tumor-intrinsic heterogeneity and its potential
relationship to immune microenvironmental interactions in patients are hamstrung by (i) lack of spatial
resolution in molecular sequencing, (ii) difficulty with simultaneous multiregional measurements of
tumor and immune molecular properties in sufficient cohort sizes, and (iii) practical limitations related to
pathologists being incapable of manually perform such measurements from histopathology data at
scale. However, by leveraging biologically guided deep learning applied to WSiIs, highly detailed
evaluation of both established pathology features (e.g. nuclear grade) and novel spatial structures that
arise from these features are possible at a scale otherwise intractable via manual pathologist
review'*"®. Thus, we hypothesized that spatially aware deep learning models of ccRCC WSlIs could
provide a unified understanding of distinct tissue structures that dictate biological and clinical states in
ccRCC, and we examined this hypothesis in multiple clinical ccRCC cohorts.

Results
Development of a deep learning framework for ccRCC diagnostic images

We first developed prediction models that provide high resolution, quantitative, and human-
understandable representations of ccRCC hematoxylin & eosin (H&E) WSis to identify established
pathology features like tumor tissue and nuclear grade at scale'®"” (Fig. 1A; Methods, Extended Data
Figures 1-8). After quality control analysis, we examined WSIs from 1102 ccRCC patients (n = 421
TCGA-KIRC, 439 CM-025, 208 DFCI-PROFILE, 21 multiblock nephrectomy cases, 13 paired mIF
ccRCC cases; Methods). We next trained a second CNN classifier to distinguish low (G2) from high
(G4) grade cases in the DFCI-PROFILE cohort, achieving high accuracy at the patient level when
evaluated on the TCGA-KIRC dataset using an ensemble of four models (AUROC=0.88; Fig. 1B,
Extended Data Fig. 1A). In addition to this binary prediction performance, we also compared the
stratification capabilities of continuous nuclear grading to classical pathologist-assigned grades in
TCGA-KIRC. We first discretized continuous grade scores into tercile bins to mirror G2/G3/G4
categories, which produced significant patient stratifications for both progression-free interval (PFI) and
overall survival (OS) (Fig. 1C, Extended Data Fig. 1B, p <1e-5 [PFI], p < 1e-5 [OS], multivariate log-
rank test). Thus, a deep learning computer vision model could both mimic and refine clinically standard
categorical nuclear grade assignments in ccRCC.

Then, to represent each patient slide compactly, we formed region adjacency graphs (RAGs)
that describe where regions of distinct tumor and grade prediction phenotypes occur in a slide, as well
as whether these regions directly or indirectly contact one another (Methods). In aggregate, this
framework produces a multi-layered, information rich latent representation of ccRCC patient tumor
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images. Moreover, by condensing the local predictions made by each model, we also represent spatial
patterns that arise between these image-derived features.

Spatial microheterogeneity in ccRCC

Upon inspection of the model representations, we observed a distinct heterogeneity
phenomenon in continuous nuclear grade prediction graphs: Some WSIs demonstrated co-occurrence
of different grade phenotypes within the same slide, while others were markedly homogeneous. This
co-occurrence, which we termed “microheterogeneity”, can be described in two primary (but not
mutually exclusive) forms: (i) “proximal”, wherein heterogeneity occurred between tumor tissues that
directly contacted one another (Fig. 2A), and (ii) “distal”, wherein stromal barriers or separation in the
slide image interrupted the differing tumor tissues (Fig. 2B). We identified microheterogeneity (any
proximal or distal occurrences) in 40.6% of TCGA-KIRC cases, and 34.7% of CM-025 (Fig. 2C-D,
Extended Data Fig. 9). WSI microheterogeneity was present in varying frequencies within pathologist-
assigned grade labels in each cohort, without any consistent pattern between pathologist grade label
groups (Fig. 2D, frequency of microheterogeneity = 0.36/0.494/0.317 [G2/G3/G4, TCGA-KIRC],
0.524/0.333/0.230 [G2/G3/G4, CM-025]). To produce a continuous measurement of the amount of
microheterogeneity in a single WSI among slides that had microheterogeneity, we calculated the
weighted sum of the number of heterogeneous contacts (RAG edges) per WSI, where larger weights
are given to contacts with similar tumor region areas (Methods). In two independent ccRCC cohorts,
tumors exhibited a wide distribution of microheterogeneity abundance per WSI (Fig. 2E, Extended Data
Fig. 10). Thus, in ccRCC WSis, distinct nuclear grade patterns create microheterogeneity structures
that can be quantitatively represented as graphs for further investigation.

Establishing the Linkage Between Micro- and Macro-level Heterogeneity

Given the distribution of microheterogeneity abundance per WSI, we then examined how this
local, slide-level microheterogeneity related to variation throughout a whole tumor
(“macroheterogeneity”). We evaluated a cohort of multiple spatially separated tumor blocks from the
same nephrectomy specimen (Fig. 3A-B, Extended Data Fig. 11). For a given patient’s tumor, the
maximum microheterogeneity abundance in any single WSI correlated with the presence of
microheterogeneity across all WSI from that tumor, and this correlation was not driven by patient
sample size (Fig. 3C, Extended Data Fig. 12A-B). In contrast, variation in image-derived grade scores
did not correlate with sample size or frequency of microheterogeneity (Fig. 3D; Extended Data Fig.
12C-D). Moreover, subsequent predictive modeling demonstrated that a single WSI could predict
microheterogeneity for the remaining WSIs from the same patient (min. log10(Bayes factor) = 3.04;
Extended Data Fig. 13; Methods). These findings indicate that observing a single reference slide is
predictive of macro-level tumor phenotypes, particularly when that reference slide contains higher
grade phenotypes, and that a single ccRCC WSI encodes latent information regarding spatial
structures present throughout the tumor.

Molecular correlates of microheterogeneity in ccRCC

Since certain somatic mutations have been associated with macro-level tumor heterogeneity,
we subsequently evaluated whether computationally derived microheterogeneity structures from a
single WSI were associated with recurrent somatic driver mutations in ccRCC, even though direct
prediction of mutations from ccRCC images without multi-layered analysis has thus far been limited'®°.
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WSis from tumors with somatic PBRM1 loss of function (LOF), previously associated with molecular
ITH, were also associated with a higher frequency of microheterogeneity compared to WSIs from non-
LOF tumors (Extended Data Fig. 14). We also examined other common driver mutations in ccRCC and
found a similar trend of higher microheterogeneity frequency in SETD2 LOF mutants, but inconclusive
trends for BAP1 and PTEN (Extended Data Fig. 14). Regarding somatic copy number alterations,
tumors with 9p21.3 deletions, a molecular feature previously implicated in ccRCC oncogenesis 222,
were enriched for microhomogeneity patterns (Extended Data Fig. 14). Thus, microheterogeneity
patterns also encoded features related to recurrent somatic alterations in ccRCC.

Prognostic relevance of microheterogeneity

Since certain somatic mutations have prognostic value in ccRCC, we assessed whether
computationally derived microheterogeneity from WSIs contained additional prognostic information
beyond pathologist derived nuclear grade. We compared univariate Cox Proportional Hazards models,
using either pathologist assigned grade or computationally inferred continuous grade, to bivariate
models that introduced a binary indicator of whether microheterogeneity was observed. In both
univariate and bivariate models in TCGA-KIRC, continuous grade had a stronger concordance index
(C-Index) for progression free interval (PFI), but not for overall survival (OS) (Extended Data Fig. 15).
Within bivariate models for both survival contexts and grading types, the presence of
microheterogeneity was negatively correlated with survival (hazard ratios all above 1), most notably in
the continuous grade model (Extended Data Fig. 16). Thus, the presence of microheterogeneity in a
single localized, untreated ccRCC WSI can identify tumors with poor prognosis and greater metastatic
potential, consistent with phenomena previously described through using multi-region molecular
profiling’.

Microheterogeneity and response to ICI

In addition to prognostic clinical value, we assessed whether this computer vision derived
feature may be predictive for certain ccRCC therapeutics. We assessed spatial microheterogeneity
patterns within both treatment arms of CM-025, a phase Ill randomized clinical trial cohort that
compared anti-PD1 blockade (nivolumab) to mTOR inhibition (everolimus) in anti-angiogenic refractory
metastatic ccRCC patients (Methods)'*?3. Presence of microheterogeneity was associated with
improved OS and PFS in the ICI arm, but not in the mTOR inhibitor arm (Fig. 4A; Extended Data Fig.
17). Given that continuous grade score correlated with OS for each trial arm, we also examined
whether microheterogeneous cases correlated with changes in survival due to having lower overall
grade scores. However, within microheterogeneous cases in the ICl arm, grade score did not contribute
statistically significant predictive signal for PFS or OS, though it trended toward significance for OS
(Fig. 4B, Extended Data Fig. 18). Thus, in CM-025, microheterogeneity was selectively associated with
improved response to ICl even though it was a poor prognostic marker in the primary, untreated setting.

High immune infiltration combined with grade microheterogeneity identifies a further population
of ICl responders

Immune infiltration as measured by CD8 immunofluorescence was not associated with
response to ICI'*?*, despite its predictive value in other immune-responsive cancers. We hypothesized
that TIL patterns may still be relevant for predicting response to ICIl in ccRCC, but joint inference of
tumor spatial heterogeneity with TIL patterns are required for adequate context. Thus, we inferred TILs
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in the CM-025 WSiIs and related these features to microheterogeneity (Fig. 5A; Methods). In WSIs with
microheterogeneity, highly infiltrated cases associated with improved OS only in the ICI arm (Fig. 5B;
p=0.0220, log-rank test). This subset of ICI-treated patients also demonstrated a consistent trend in
improved PFS, but did not reach statistical significance (Fig. 5B; p=0.0662, log-rank test).

We also compared the performance of predictive models that exclusively use image-derived or
previously nominated molecular features'. For OS in the ICI arm of CM-025, models using computer
vision features had similar performance to those only using genomic features (PBRM1 LOF, 9p21.3
deletion) (Extended Data Figures 19-28; Methods). Moreover, combining these features resulted in net
improvements while retaining consistent parameter associations (i.e., PBRM1 LOF and
microheterogeneity each retained positive coefficient weights). We lastly introduced clinical risk
covariates into a full parameter model, which produced further improvements to c-index metrics
(Extended Data Figures 21, 25; Methods). Taken together, tandem consideration of tumor-intrinsic
spatial microheterogeneity and TIL features in WSIs learned by the computer vision models captured
meaningful representations of selective ICI response.

Tumor-immune interactions are more extensive and involve greater CD8+ PD-1 activation in
advanced ccRCC

To more precisely understand the tumor-immune spatial interactions identified from WSIs and
linked to selective ICI response, we evaluated advanced ccRCC tumors with paired H&E and multiplex
immunofluorescence (mIF) images derived from the same tissue (markers = {PAX8, CD8, DAPI, PD1,
PDL1, FOXP3})*2¢. To describe spatial phenotypes, we built a nearest-neighbor graph of CD8+ and
tumor cells, and classified cells as “tumor-immune interacting” if they were adjacent to a distinct cell
type in the graph (Methods). Through analysis of regions with high tumor-immune interaction density
from each patient (Methods), we observed that microheterogeneous tumors had higher CD8+ cell
density, while tumor cell density was similar between heterogeneous and homogeneous cases
(Extended Fig. Data 31-33). The frequency of tumor cells adjacent to CD8+ cells was higher in
heterogeneous cases, suggesting a greater presence of “desert’-like regions of non-infiltrated tumor
tissue in homogeneous cases (Fig. 6C, p=0.00215 [Tumor+, tumor-immune], Wilcoxon Rank-Sum test).
In contrast, the frequency of CD8+ cells adjacent to tumor cells was similar between heterogeneous
and homogeneous cases (Fig. 6C, p=0.418 [CD8+ tumor-immune]). Thus, the observed increase in
tumor-immune interaction frequency in microheterogeneous tumors resulted from increased infiltration
deeper within tumor-dense regions, rather than a uniform increase across the tumor microenvironment.

We lastly asked whether any of these observed differences related to tumor-immune cell
subtypes, specifically PD1 low/high CD8+ and PDL1 low/high tumor cells. In general, PD1 high CD8+
cells were common, and PDL1 high tumor cells were sparser (PD1 median freq. = 0.480, PDL1 median
freq. = 0.150; Extended Data Fig. 33). Within CD8+ cells engaged in a tumor interaction,
microheterogeneous cases had a higher frequency of PD1 high cells compared to homogeneous cases
(Fig. 6D, p = 0.00908, Wilcoxon Rank-Sum test). Thus, spatial microheterogeneity structures in ccRCC,
which exhibited enrichment for ICI response, may foster an immune compartment that is both more
tumor experienced and abundant.

Discussion
Simultaneous quantitative measurements of key tumor and microenvironmental properties that
represent distinct modes of oncogenesis, evolution, and immune evasion may unlock new insights in
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ccRCC biology and potential modes of patient stratification. To this end, we developed a series of
biologically informed neural network models to perform spatially aware computer vision analysis on
multiple independent ccRCC cohorts. In doing so, we produced a continuous, quantitative, and
automated grading approach that reproduces existing manual histological assessments of nuclear
grade and provides comparable prognostic value without interobserver variability. More importantly, by
formalizing tumor phenotype predictions into spatial maps and subsequent region adjacency graphs
using a single WSI per patient, we discovered histological intratumoral heterogeneity properties not
feasibly measurable by manual review that were informative for multiple phenomena, and represented
patterns present throughout a patient’s tumor. Namely, the graph-based microheterogeneity feature
contained additional prognostic value beyond established pathology scores, as well as predictive value
specifically for response to ICl in CM-025. Furthermore, this feature correlated with a series of
molecular characteristics, such as PBRM1 LOF, and thus may provide a unified histological
representation for connecting clinically relevant molecular features. Upon simultaneously integrating
tumor and immune microenvironmental features, we identified a subset of ICI responders enriched for
microheterogeneity and a higher degree of TILs. Moreover, microheterogeneity in advanced ccRCC
associated with greater PD1 activation in CD8+ lymphocytes and a greater extent of tumor-immune
interaction, suggesting a more active tumor-immune interaction landscape that is more likely to respond
to ICI. Taken together, these findings suggest that tumor and immune features of ccRCC can be jointly
considered in a spatially aware manner to guide biological and clinical investigations using widely
available H&E WSiIs.

There are several challenges and limitations to this analysis. The histological data analyzed
from CM-025 consisted of pre-treatment primary tumor samples, and thus may differ from the tumor
state at the time of trial accrual due to ongoing tumor evolution. As such, the specimens we analyzed
may be uncoupled from eventual metastatic progression. Similarly, larger sample sizes in additional
clinical cohorts are necessary to generalize these findings to the evolving combination treatment
landscapes of ccRCC, and additional histologic features could be added to our model framework (e.g.
necrosis, TIL subtypes). While we were able to provide an orthogonal glimpse at the specific cell
populations that might underlie the tumor-immune phenotypes associated with microheterogeneity, our
analysis of paired mIF and H&E data also had key limitations. In particular, the sample size was small
and composed of varying biopsy sites, and larger paired cohorts representing diverse biopsy sites will
guide extensions of these observations.

Taken together, we propose spatially aware deep learning models that build upon inference of
known histological features (e.g. nuclear grade) to learn interacting new features (graph-based
microheterogeneity) and reveal distinct oncogenic paths and ICI response phenotypes in ccRCC. The
occurrence of microheterogeneity and its predictive capacity for PFS and OS in ICI warrants further
study, including via model systems, to unravel how this phenomenon influences tumor evolution and
anti-tumor immunity. Broadly, the use of biologically guided computer vision strategies for cancer
histopathology to automatically infer tumor and microenvironmental features, their respective higher-
order interactions, and their relationship to molecular and clinical states may have general utility across
tumor types and therapeutic modalities.
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Methods

Clinical Cohorts

Three distinct patient cohorts were used in the analysis: TCGA-KIRC, the CheckMate 025 (CM-025)
phase Il clinical trial (NCT01668784), and the DFCI-PROFILE of ccRCC patients from the Dana-Farber
Cancer Institute (also under DFCI IRB #20-293 and 20-376). Additional datasets include a set of multi-
block nephrectomy samples from Dana-Farber/Brigham (under DFCI IRB #20-293 and 20-376), and
multiplexed immunofluorescence data from Dana-Farber/Brigham the ImmunoProfile project (under
DFCI IRB #20-293 and 20-376).

Data Acquisition

For the TCGA-KIRC cohort, we obtained clinical data, and normalized bulk RNA and genomic
sequencing from the GDC PanCanAtlas (https://gdc.cancer.gov/about-data/publications/pancanatlas),
and downloaded whole-slide H&E stained diagnostic images from the ISB-CGC mirror of TCGA data.
For the CheckMate 025 cohort, we directly obtained H&E stained diagnostic images from the Signoretti
Lab via an established Bristol Myers Squibb IION agreement, and used clinical and molecular data
previously generated by Braun et al., 2020 (European Genome-Phenome Archive: EGAS00001004290,
EGAS00001004291, EGAS00001004292). DFCI-PROFILE images were obtained via the Dana-
Farber/Brigham and Women’s PROFILE project. Multiplexed Immunofluorescence (and accompanying
H&E images) were obtained via the Dana-Farber/Brigham and Women’s ImmunoProfile project. Multi-
block nephrectomy images were obtained from the Signoretti Lab. These images are available upon
request with provision of IRB and adherence to institutional policies regarding storage security and
other parameters.

Truncating mutation categorization

When considering somatic alterations, we consider mutations only if they are truncating (likely loss of
function). Within MAF annotation data, this comprised the following variant categories:
{'Nonsense_Mutation', 'Frame_Shift_Ins', 'Frame_Shift_Del', 'Splice_Site'}.

Image Quality Control

Quality control of H&E whole-slide images was performed using the HistoQC?’ toolkit. A full set of
modules used is available as a ".ini" file. Custom examples used to train pen detection modules are
available in a forked repository (https://github.com/jmnyman/HistoQC)]. Following HistoQC filtration, we
further removed small slide images with fewer than 500 tiles (512px at 20X resolution).

Cross Validation

Training and validation were performed in the DFCI-PROFILE cohort, with additional testing done in the
TCGA-KIRC and CM-025 cohorts. In subsequent finetuning experiments for tumor and grade
classification, we utilized 4-fold cross-validation. Each dataset was split into folds at the patient level to
ensure no patient-level information bled between training and validation contexts. Datasets were then
subsampled to ensure a balanced label composition. Following balanced patient-level fold creation, we
then sample a fixed number (per specified hyperparameters) of 512 pixel tiles (20X) from each patient
slide to create folds that were label-balanced.
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Tumor Classification

A model to classify general renal cell carcinoma tumor tissue versus adjacent normal stromal tissue
was trained using pixel-level pathologist annotations from the DFCI-PROFILE cohort (n=36 slides).
Following quality control, training data slides were split into 512 pixel tiles (20X), and assigned labels
according to pathologist annotations (ie, whether a region contained tumorous tissue or not). A
pretrained ResNet-50 neural network model was then finetuned using color jitter, and the highest
performing model in a series of 4-fold cross validation was selected for subsequent inference. All neural
network architecture and training code used the PyTorch and PyTorch-Lightning libraries, and 1-2
NVIDIA Tesla V100 GPU units on Google Cloud VM instances ?4%°. Hyperparameters used for training
are available in the project repository.

Tumor Grading

A second finetuned ResNet-50 neural network model was trained to distinguish low (G2) from high (G4)
ccRCC cases from the DFCI-PROFILE cohort (n=190 slides). This cohort contained samples collected
prior to and following the adoption of the WHO/ISUP grading changes, and as such contains both
Fuhrman and WHO/ISUP grades °. These conventions share significant overlap and are generally
highly concordant *. Additionally, manual review for sarcomatoid and rhabdoid (S/R) tumor content
was previously performed, and cases with S/R content were upgraded to G4 if previously assigned a
lower grade to ensure greater concordance with WHO/ISUP guidelines. Following quality control,
training data slides were again split into 512 pixel tiles (20X), and tiles were assigned labels according
to pathologist annotation of the source slide. Tiles were only considered for model training if their
predicted probability of containing tumor tissue was >= 0.7, and slides were restricted to those with at
least 500 putative tumor-containing tiles. A pretrained ResNet-50 neural network model was again
finetuned using heavy color jitter. An ensemble composed of each model trained in 4-fold cross
validation was then used for subsequent inference, taking the average across all model softmax
outputs to make predictions. All neural network architecture and training code used the PyTorch and
PyTorch-Lightning libraries, and 1-2 NVIDIA Tesla V100 GPU units on Google Cloud VM instances
2.2 Hyperparameters used for training are available in the project repository.

Inference Post-Processing

Following tumor and grade inference, tile-level model scores were smoothed using uniform nearest
neighbor averaging (n=4 nearest tiles). For grade score smoothing, we considered tiles if their
predicted probability of containing tumor tissue was >= 0.5. Smoothed tumor and grade scores were
used for all downstream analysis.

Phenotype Segmentation

Regions of tumor tissue were identified using watershed segmentation in scikit-image *'. We first
performed segmentation on smoothed tumor prediction scores, and classified regions as “tumor” if their
average segment score was >= 0.7. Following an initial watershed segmentation, regions were merged
if they were similar (region score difference < 0.2). These putative tumor regions were then considered
for secondary segmentation using smoothed grade scores to identify regions of distinct grade.
Furthermore, a slide-average grade score was obtained using the average grade score across all
putative tumor area.
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Adjacency Descriptions

Following watershed segmentation of tumor and grade scores, we represented each slide as a region
adjacency graph®? (RAG) to describe the connectivity of each region produced, wherein directly
contacting regions are assigned an edge in the graph. Small area nodes were removed (n < 50 total
tiles) following RAG construction. Subsequently, we performed a series of segmentation expansions to
recover missing connectivity locally (e.g., regions that are visually in contact, but are separated by a
thin layer of non-tumor predicted area), and also to describe long-range differences (e.g., regions that
are distinct in grade score, but separated by 10+ tiles). RAG edges forming either directly or at an
expansion distance of 1 tile were classified as “proximal”, and those forming at an expansion distance
of up to 25 tiles were classified as “distal”. In analyses using TIL predictions, we only considered edges
containing at least one node with an average grade score above 0.8 (see Tumor Infiltration
Classification).

Heterogeneity Description

Patients with at least one proximal or distal RAG edge were classified as “heterogeneous”, and those
lacking any edges as “homogeneous”. In analyses using TIL predictions, we only considered
proximal/distal edges containing at least one node with an average grade score above 0.8 (see Tumor
Infiltration Classification). To describe microheterogeneity continuously, we derived two related metrics.
First was a “total-weighted” heterogeneity score (t-HS), we calculated a weighted sum of the number of
RAG edges, wherein each edge was weighted by the total fractional tumor area occupied by the node
pair involved in that edge (e.g., if two nodes comprise nearly all of the tumor area, that edge is highly
weighted, while smaller regions contribute less to the sum). The second score was “f-weighted” (f-HS),
and instead used the harmonic mean of the area fractions of each node in an edge to produce a
weight, which describes both the contribution scale and balance of the nodes involved in that edge.

Reference Slide Modeling

Null models were configured for each case based on the number of blocks available for a given patient
(1 H&E stained slide per block, n=21 patients, minimum 3 blocks, average = 4.57 blocks, median = 4
blocks, max = 10 blocks), and a Beta prior was set according to the empirical observations of
microheterogeneity in the CM-025 cohort (prior parameters: a=148, b=279). Alternative models for each
patient were configured by first setting a uniform prior (a=1, b=1), and then updating based on the
microheterogeneity status of a reference slide (e.g., {a=2, b=1} when observing microheterogeneous
reference). We selected the reference slide based on grade score in 4 different ways: highest slide-
average, highest by segment, highest by segment (with 10% area minimum), and highest by segment
(with 25% area minimum). We also considered near-ties, considering a tie if two candidate grade
scores were within 0.01 of each other, taking the average log likelihood of the competing alternative
models for a given patient when comparing to the null in downstream testing. Comparison testing was
done with a log-likelihood ratio test. Bayes factors were calculated analytically under beta-binomial
distributions.

Tumor Infiltrating Lymphocyte Inference

A HoVerNet model trained on the PanNuke dataset was used for nuclei segmentation "3, We
leveraged the implementation and pretrained model from the PathML toolkit * for computational
pathology (https://github.com/Dana-Farber-AlOS/pathml). While this pretrained model produces
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accurate nucleus segmentation, its subtype classification notably fails on clear cell renal carcinoma,
likely due to a near-absence of this histology within PanNuke. Consequently, we finetuned the
classification head of the model to predict tumor-context vs stromal-context nuclei using a pseudo-
labeling scheme; nuclei in a tile were randomly assigned “tumor nuclei” labels proportionally to the
predicted probability produced by the tumor classifier (ex., 90% of nuclei randomly assigned “tumor
nuclei” if tumor score == 0.9). Following inference, we further stratified nuclei predicted to be “tumor-
context nuclei” to distinguish tumor cells from infiltrating lymphocytes (TILs) using heuristic cutoffs
chosen via manual pathologist review; lymphocytes were selected by a combined criteria of increased
circularity, smaller area, and darker pixels.

Tumor Infiltration Classification

Following nuclei inference, we aggregated nuclei calls at the tile-level, and classified a tile as
“infiltrated” if it contained 14 or more TILs, a cutoff selected by maximizing concordance with
pathologist annotations for the presence of lymphocytes in a given tile (Extended Data Fig. 4;
bootstrapped AUROC comparing “infiltrated” vs “non-infiltrated” tile-level labels). We then considered
region-level descriptions of infiltration, describing the proportion of tiles above the “infiltrated” cutoff as
the “area infiltration fraction”. Next, we binarized samples into “low” versus “high” infiltration by splitting
at the median area infiltration fraction value (cutoff = 15.16%). This was restricted to high-grade regions
(grade score >= 0.8) to avoid excessive false positive infiltration calls, as lower-grade ccRCC nuclei can
be visually ambiguous from TILs, even to expert pathologists (n=256 patient slides post filtration) (See
Extended Data Figures 5-7). Area infiltration fraction as determined by H&E-inference showed general
agreement with CD8+ immunofluorescence measurements where overlap existed (See Extended Data
Fig. 7).

Survival Analysis

Survival analysis in the TCGA-KIRC And CM-025 cohorts was performed using the python package
Lifelines *°. Kaplan-Meier regression and plotting was performed using the KaplanMeierFitter function
with default parameters, and multivariate Cox Proportional Hazards regression was performed using
the CoxPHFitter function with moderate regularization (L1 ratio = 0.1 [multivariate models], L1 ratio = 0
[univariate models], penalizer scale = 0.1 [multivariate models], penalizer = 0.0 [univariate models]). We
also further excluded slide images with fewer than 200 tiles predicted to contain tumor tissue. We
considered only slides obtained from primary biopsy sites, excluding metastatic biopsies to remain
consistent between cohorts. When annotations were available, we excluded Grade 1 (G1) cases due to
their rarity. We only considered cases where watershed segmentation successfully produced at least
one segment containing 50 or more tiles with an average tumor score >= 0.7. When describing TIL
infiltration content in CM-025 in Kaplan-Meier curves, we used binary (lower/higher) groups as
described above, and continuous area infiltration fraction for Cox modeling.

Image Registration

We adapted PathFlow MixMatch, displacing an input H&E image against a fixed mIF image at 1.25X,
and using GPU acceleration (Tesla V100) when learning each case’s alignment/displacement tensor.
Learned displacement tensors were then used to shift H&E-based grade segmentation maps into the
same coordinate space as mlIF data. These aligned maps were then used in K-nearest neighbors
regression to assign cell predictions in the mIF data to a grade segmentation label. Since the image
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pairs are not from the same exact tissue section, alignments were assessed visually via overlay to
assess quality, resulting in 13 total passing cases. Within successful alignments, putative tumor regions
were manually reviewed, resulting in omission of two false-positive regions (adjacent metastatic tissue
misclassified as “tumor”).

Multiplexed Immunofluorescence Image Preprocessing

To first predict cellular locations, we used a pretrained Mesmer model *, which produced a candidate
mask of cell segmentations for each mIF WSI. We used DAPI as the “nuclear channel”, and PAX8 with
CD8 as the “membrane channels”. Full resolution (20X) mIF images were broken into 10,000 pixel
bands as batch inputs to Mesmer using GPU acceleration (Tesla V100). A subset of images (3) that
failed this batch procedure were re-run with 2500 pixel square tiles as batched inputs. To quantify area-
normalized cellular expression, we used the Ark analysis toolkit’s “create_marker_count_matrix’
function ", which produces a description of each predicted cell segmentation that contains both
morphological and arcsinh-transformed, area-normalized expression values.

Cell Phenotype Calling

Following expression quantification, we inspected the histograms of each case’s channel values, as
well as the ratio of CD8+ : Autofluorescence, and determined manual cutoffs to gate each primary cell
population (CD8+ vs Tumor+ vs ungated). These cutoffs were then used to make a coarse-grained
estimate of each cell subpopulation. We then performed an orthogonal clustering analysis, using cell
expression and morphology features produced by the Ark toolkit ({centroid_dif, num_concavities,
convex_hull_resid, major_axis_equiv_diam_ratio, perim_square_over_area, arcsinh(Cell Area)}) and
the Louvain method for community detection in scanpy (number of principal components = 5, nearest
neighbors=15, cluster resolution=10) 3**°, Cells with low DAPI (<7 arcsinh units) were also excluded.
Clusters with outlier morphology (>50% of its cells having 3+ features outside of 5th/95th percentile
values), or high autofluorescence-to-CD8+ signal (>35% below case-specific CD8+ : Autofluorescence
ratio cutoffs) were excluded. Remaining clusters were assigned to “CD8+” or “Tumor+” identities if at
least 60% of a cluster’s cells were assigned that label when using purely manual cutoffs. Remaining
cells were labeled “ungated” and excluded from downstream analysis. To determine cell
subpopulations, we subsetted each primary cell population (CD8+, Tumor+), and fit a linear regression
model of autofluorescence vs submarker expression, using the resulting residuals as a noise-corrected
expression value. Resulting submarker distributions (PDL1 for Tumor+ cells and PD1 for CD8+ cells)
were inspected, and binary cutoffs were chosen for each case individually. We lastly performed a
filtering of false-positive tumor cell predictions which exhibited high PAX8 and high DAPI (likely to be B
cell lineage), and again used manual histogram inspection to remove the DAPI-high subpopulation.

Cell graph construction

To construct a graph of cell-interactions, we first removed ungated cells, and then performed Delaunay
triangulation with a maximum radius of 100px to form a parsimonious nearest neighbor graph. We then
defined “self’ interactions as edges between cells of the same type (e.g. CD8+), and “tumor-immune”
interactions as those occurring between CD8+ and Tumor+ cells. Cells disconnected from the graph
were deemed “isolated”, and grouped with “self” interactions for downstream analysis.
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Immune Hotspot Analysis

To select regions of interest with high tumor-immune activity, we split full resolution mIF WSI data into
tiles 2000px (approx 1mm) wide, and further selected for regions with at least 50% area overlap with
H&E-inferred tumor region predictions. We then filtered for regions with at least 50 CD8+ and 50
Tumor+ cells that were engaged in tumor-immune interactions. From each patient slide, we sampled up
to 10 hotspots, selecting those with the most CD8+ density involved in tumor-immune interactions
(min=2 samples, mean=9.0 samples; 42 total microheterogeneous samples [n=5 slides], 57 total
microhomogeneous samples [n=6 slides]) (See Extended Data Figures 28-29). Two patients lacked
any hotspots and were excluded from this analysis.

Statistical Testing

All statistical analysis was performed using python 3. For comparison of group counts, Fisher's Exact
test was used via the scipy function fisher_exact *°. Other continuous, score-based comparisons were
performed using a two-sided Wilcoxon rank-sum (Mann-Whitney U) test using the statannotations
package to directly annotate Seaborn plots with p-value results *'#?. For survival analyses, cohort
subgroup survival distributions were compared using the log-rank test using the
multivariate_logrank_test and pairwise_logrank_test functions in Lifelines. For Cox models, the
concordance index (C-Index) and (Log) Likelihood Ratio Test (LLRT) were used to evaluate goodness
of fit. When comparing continuous to categorical grade, the relative likelihood was estimated using the
partial AIC produced for each Cox model, and interpreted as the probability one model minimizes the
AIC of the other. Barplot error bars indicated standard error. Boxplot elements are as follows: center
line, median; box limits, upper and lower quartiles; whiskers, 1.5 interquartile range (IQR); points,
outliers past 1.5 IQR. Violinplot dotted interior lines indicate median, and upper and lower quartiles.

Data Availability

Restrictions apply to the availability of the raw in-house and external data, which were used with
institutional permission through IRB approval for the current study, and are thus not publicly available.
Please email all requests for academic use of raw and processed data to DFCI Contracts Team
(ContractsTeam@DFCI.HARVARD.EDU). All requests will be evaluated based on institutional and
departmental policies to determine whether the data requested is subject to intellectual property or
patient privacy obligations. Data can only be shared for non-commercial academic purposes and will
require a formal Data Use Agreement.

Code Availability
Code used to perform the analyses described in this study will be made available in a public github
repository upon publication.
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Figure 1: A spatially aware deep learning framework for studying ccRCC. A. Our approach builds a series of biologically relevant prediction
models to provide both high resolution and readily human-understandable representations of ccRCC slide images. The first two models identify tumor
tissue and grade phenotype within predicted tumor regions, each using a finetuned ResNet-50 convolutional neural network (CNN). A third model
identifies tumor infiltrating lymphocytes (TILs) using a finetuned HoVerNet CNN. Local predictions are grouped via watershed segmentation and
assembled into graph representations for slide-level description of patients. Computationally inferred patient representations capture both clinically
relevant, and biologically informative characteristics of ccRCC. B. Comparison of assigned pathologist grade and grade score on held-out cohorts
(TCGA-KIRC, CM-025) in-house training set used for tumor and grade classifier development (DFCI-PROFILE). C. Kaplan-Meier curves for

progression free interval (PF1) in TCGA-KIRC based on tercile bins of computationally inferred continuous grade score (left) and assigned pathologist
grade (right).
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Figure 2: Computationally inferred phenotypic variation in ccRCC. A. Representative example of proximally occurring grade microheterogeneity
(dashed line indicating interface of region contact). B. Representative example of distally occurring grade microheterogeneity. C-E: Summary statistics
surrounding microheterogeneity in the TCGA-KIRC and CM-025 cohorts. C: Number of patients with/without microheterogeneity. D. Frequency of
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progression free survival (PFS) and overall survival (OS) in both arms of the CM-025 trial based on the groups demonstrated in (a). Significance values
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Extended Data Figure 1: Evaluation of grade neural network model. A. Receiver operator
characteristic curve (ROC) for evaluating performance of a grade classifier on TCGA-KIRC (AUROC:
area under ROC curve statistic; TPR: true positive rate; FPR: false positive rate). B Kaplan-Meier curves
for overall survival (OS) in TCGA-KIRC based on tercile bins of computationally inferred continuous
grade score (left) and assigned pathologist grade (right). C. The average area of predicted tumor nuclei
versus grade score (GS), aggregated over distinct tumor regions per WSI. D. Dichotomizing regions
based on high grade designation (average score above 0.8).
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Inferred tumor infiltrating lymphocyte density in high grade foci is consistent with CD8+ immunofluorescence
data collected for a subset in the same cohort (Braun et al., 2020). B. QQ-plot comparison of CD8+ IF tumor
center cell density versus H&E-inferred TIL infiltrated area fraction. C. Area infiltration fraction in CM-025 versus
microheterogeneity status (within edges containing a high grade node [score >= 0.8]). Area infiltration fraction:

proportion of tiles above the “infiltrated” cutoff (14 TIL/tile).
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from a single patient tumor. B. Actual data analyzed.
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Extended Data Figure 12: Aggregate continuous heterogeneity scores. A. Case-wise frequency of
microheterogeneity versus the maximum observed f-weighted or total-weighted heterogeneity score. B.
Case-wise block count versus the maximum observed f-weighted or total-weighted heterogeneity score.
Statistics aggregated within a given patient’s set of scanned tissue blocks (1 slide per block). Pearson’s
Rho p-values calculated via exact distribution.
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Extended Data Figure 12 (continued): Aggregate grade score descriptions. C. Case-wise
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calculated via relative likelihood.
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Extended Data Figure 16: Coefficients for univariate and bivariate Cox proportional hazards
models for OS/PFI in TCGA-KIRC. A: pathologist grade. B: continuous grade.
“‘Base”: single covariate type(s). “MH”: microheterogeneity binary presence.
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Extended Data Figure 16 (continued): Coefficients for univariate and bivariate Cox proportional

hazards models for OS/PFIl in TCGA-KIRC. C: pathologist grade. D: continuous grade. P-values calculated
via log-rank test.
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Extended Data Fig. 17: Kaplan-Meier curves for low versus high grade score within each arm of the
CM-025 trial. Top row: progression free survival (PFS). Bottom row: overall survival (OS). Stratification based
on the median inferred grade score in the CM-025 cohort. Table: log-rank test p-values for shown curves.
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Extended Data Fig. 18: Likelihood ratio test evaluation of univariate Cox proportional hazards
models using continuous grade score in the ICl arm of CM-025. Columns: subset of data; rows: survival
endpoint modelled.
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Extended Data Fig. 19: Cox model coefficients for models in the CM-025 cohort, limited to
genomic and clinical features ("WES + C”). LLRT: loglikelihood ratio test. C-Index: concordance

index. WES: whole-exome sequencing.
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Extended Data Fig. 20: Cox model coefficients for models in the CM-025 cohort, limited to
H&E/computer vision and clinical features ("H&E + C”). LLRT: loglikelihood ratio test. C-Index:
concordance index. "any_diff_edge’: microheterogeneity categorical variable. GS: continuous grade

score.
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Extended Data Fig. 21: Cox model coefficients for models in the CM-025 cohort, limited to
genomic, H&E/computer vision and clinical features ("H&E + WES + C”). LLRT:
loglikelihood ratio test. C-Index: concordance index. ‘any_diff_edge’: microheterogeneity
categorical variable. WES: whole-exome sequencing. GS: continuous grade score.
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Extended Data Fig. 22 Cox model coefficients for models in the CM-025 cohort, using all
available covariate types (genomic, H&E/computer vision, clinical, risk). LLRT: loglikelihood
ratio test. C-Index: concordance index. ‘any_diff_edge’: microheterogeneity categorical variable.
GS: continuous grade score. MSKCC: MSKCC risk group (categorical)."'n_prior_therapy': number

of lines of therapies administered prior to the trial.
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Extended Data Fig. 23: Cox model coefficients for models in the CM-025 cohort, limited to genomic

and clinical features, restricted to subset where TIL are evaluable ("WES + C”). LLRT: loglikelihood
ratio test. C-Index: concordance index. "any_diff_edge’: microheterogeneity categorical variable.
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Extended Data Fig. 24: Cox model coefficients for models in the CM-025 cohort, limited to
H&E/computer vision [TIL included] and clinical features ("H&E + C”). LLRT: loglikelihood ratio test.
C-Index: concordance index. "any_hg_diff_edge’: microheterogeneity categorical variable (high-grade
node involved in RAG edge required). GS: continuous grade score. Global: area infiltration fraction across
evaluated tumor area (fraction tiles above minimum TIL count).
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Extended Data Fig. 25: Cox model coefficients for models in the CM-025 cohort, limited to
genomic, H&E/computer vision [TIL included] and clinical features ("H&E + WES + C”). LLRT:

loglikelihood ratio test. C-Index: concordance index. ‘any_hg_diff_edge’: microheterogeneity categorical

variable (high-grade node involved in RAG edge required). GS: continuous grade score. Global: area
infiltration fraction across evaluated tumor area (fraction tiles above minimum TIL count).
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Extended Data Fig. 26: Cox model coefficients for models in the CM-025 cohort, using all available
covariate types (genomic, H&E/computer vision [TIL included], clinical, risk). LLRT: loglikelihood
ratio test. C-Index: concordance index. "any_hg_diff_edge’: microheterogeneity categorical variable (high-
grade node involved in RAG edge required). GS: continuous grade score. Global: area infiltration fraction
across evaluated tumor area (fraction tiles above minimum TIL count). MSKCC: MSKCC risk group
(categorical). 'n_prior_therapy : number of lines of therapies administered prior to the trial.
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Extended Data Figure 27: Comparison of different immune-context specifications when fitting
Cox proportional hazards models for overall survival in CM-025, ICI arm. A. Concordance
Index. B. Relative Likelihood. Colors indicate the form of infiltration covariate used. HG Edge: edge
involving a high-grade node (average score above 0.8). Global: Using all evaluable tumor area for
infiltration fraction description. Disconnected: Using nodes that are disconnected from RAG. Proximal
or Distal: infiltration specific to a proximal or distal edge, respectively.

G: Grade Score

E: Heterogeneity/RAG Edge Variable

I: Infiltration Variable

C: Clinical Base Info (Sex, Age)

R: Clinical Risk/Performance Info (MSKCC Risk group, Num. prior lines Tx before trial)

(E:l'is shorthand for [E + E*I], where E:l is an interaction term between variables E and I)



Binary

Microheterogeneity

F-Weighted
Heterogeneity Score

Total-Weighted
Heterogeneity Score

OS: PBRM1 LOF 0.982 0.947 0.346
OS: PBRM1 WT 0.0154 0.0338 0.0219
PFS: PBRM1 LOF 0.355 0.461 0.767
PFS: PBRM1 WT 0.960 0.234 0.826

Extended Data Fig. 28: Comparison of Cox model LLRT p-values under different PBRM1 states
in the ICl arm of CM-025.

LOF: loss of function (truncating mutation present).
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® CD8+ : Self/lsolated

® CD8+ : Tumor-Immune Interaction
Tumor+ : Self/Isolated

® Tumor+ : Tumor-immune Interaction

Extended Data Figure 29: mIF data and cell graphs for immune hotspots: examples from two
microhomogeneous cases. Edges are drawn between CD8+ and tumor cells that are adjacent in a
nearest neighbor graph.
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® Tumor+ : Tumor-Iimmune Interaction

Extended Data Figure 30: mIF data and cell graphs for immune hotspots: examples from two
microheterogeneous cases. Edges are drawn between CD8+ and tumor cells that are adjacent in a

nearest neighbor graph.
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Extended Data Fig. 31: Cell densities by type and microheterogeneity status in immune hotspots. Y-axis:
log10 density (cells per 2000px window; approx. Tmm) Rows: different data removal strategies. Significance
calculated by Wilcoxon rank sum test (MWW).
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Extended Data Fig. 32: Cell densities by type, context, and microheterogeneity status in immune
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hotspots. Y-axis: log10 density (cells per 2000px window; approx. 1mm) Rows: different data removal strategies.
Significance calculated by Wilcoxon rank sum test (MWW). “TI”: tumor-immune interacting cell context. “Self”:
self-interacting cell context.
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Extended Data Fig. 33: Cell densities by cell subtype and microheterogeneity status in immune hotspots.

Y-axis: log10 density (cells per 2000px window; approx. 1mm) Rows: different data removal strategies.

Significance calculated by Wilcoxon rank sum test (MWW).
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