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Abstract

Muscle-invasive bladder cancer (BLCA) is an aggressive disease. Consensus BLCA
transcriptomic subtypes have been proposed, with two major Luminal and Basal subgroups,
presenting distinct molecular and clinical characteristics. However, how these distinct subtypes
are regulated remains unclear. We hypothesized that epigenetic activation of distinct super-
enhancers could drive the transcriptional programs of BLCA subtypes.

Through integrated RNA-sequencing and epigenomic profiling of histone marks in primary
tumours, cancer cell lines, and normal human urothelia, we established the first integrated
epigenetic map of BLCA and demonstrated the link between subtype and epigenetic control. We
identified the repertoire of activated super-enhancers and highlighted Basal, Lumina and
Normal-associated SEs. We revealed the super-enhancer-regulated networks of candidate master
transcription factors for Luminal and Basal subgroups including FOXA1l and ZBED2
respectively. FOXA1 CRISPR-Cas9 mutation triggered a shift from Luminal to Basal phenotype,
confirming its role in Lumina identity regulation and induced ZBED2 overexpression. In
parallel, we showed that both FOXAl and ZBED2 play concordant roles in preventing
inflammatory response in cancer cells through STAT2 inhibition.

Our study furthers the understanding of epigenetic regulation of muscle-invasive BLCA and
identifies a co-regulated network of super-enhancers and associated transcription factors

providing potential targets for the treatment of this aggressive disease.

Abbreviation

SE, Super-enhancer

TF, Transcription Factor

NMIBC, non-muscle-invasive bladder carcinoma
MIBC, muscle-invasive bladder carcinoma
BLCA, Bladder Cancer Carcinoma

Ba/Sq, basal/squamous

LumU, luminal unstable

LumNS, luminal non-specified

LumP, luminal papillary
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Bladder cancer is the tenth most common cancer worldwide, accounting for nearly two thousand
cancer-related deaths globally in 2018 (1). Urothelial carcinoma is classified as non-muscle-
invasive bladder cancer (NMIBC comprising carcinoma in situ, and the pTa and pT1 stages) or
the aggressive muscle-invasive bladder cancer (MIBC, stages pT2 to pT4), depending on the
level of invasion into the bladder wall (2). Molecular classifications of bladder carcinomas have
been established using mainly gene expression profiling studies (3-8). A recent consensus
classification of MIBC presents six subtypes, from which tumours can be coarsely divided into
two subgroups: the Luminal and the non-Luminal subgroups. Luminal subgroup comprises three
Luminal subtypes (LumU, LumNS and LumP) whereas Basal-Squamous subtype (Ba/Sq)
constitutes the major part of the non-luminal subgroup (3). Luminal tumours, accounting for
about 50% of MIBCs, present high expression of urothelial differentiation markers (GATAS3,
FOXA1, KRT20, uroplakins) and are enriched in activating mutations of FGFR3. Basal tumours
also called Basal/Squamous are particularly aggressive and account for ~35% of MIBCs (3).
They are characterized by the overexpression of markers of the basal layer of the urothelium
(including KRT5, KRT6), the under-expresson of markers of luminal differentiation and
activation of EGFR (9). Concerning the NMIBC tumours, the recent UROMOL studies group
them into 4 classes including Class 1 associated with luminal differentiation and good prognosis,
and a Class 2a comprising high risk tumours (7, 8). One hypothesis to explain the establishment
of the different subtypes and their potential plasticity, is that each subtype harbours a regulatory
network in which various upstream genomic and epigenomic alterations lead to the activation of
a core set of master transcription factors (TFs) that then determine a transcriptomic downstream
program. While transcriptional regulators of urothelial differentiation, such as FOXAL, GATAS3
and PPARG, have been established as key regulators of the Luminal phenotypes, the essential
transcription regulators driving the Ba/'Sg subtype have not been elucidated (10-14).

Recent studies have demonstrated that altered enhancer activity drives changes in cell identity
and oncogenic transformation, notably through large clusters of highly active enhancers called
super-enhancers (SEs) (15-17). Indeed, targeting SE-driven oncogenesis has become a novel
therapeutic approach with the advent of BRD4 inhibitors, which inhibit SE activation (18). By



regulating the expression of a small number of master TFs, SEs can orchestrate cell- or cancer-
specific transcriptional programs. The gold standard for identifying SEs is histone mark profiling
(17). The ENCODE roadmap, that profiled histone marks in normal and cancer cell lines, has
become a valuable source of information to uncover chromatin organisation, ateration, and
subsequent regulation of master regulators but did not include bladder models (19). Recently, two
studies provided new insights with the profiling of particular histone marks in bladder cancer
samples and cell lines (20, 21). Here, we further characterized bladder cancer epigenetic by
integrating transcriptomic and epigenomic profiling of multiple histone marks in human bladder
tumours, bladder cancer cell lines, and primary cultures from normal urothelia to produce a
comprehensive bladder cancer epigenetic map. With this map, we demonstrated the link between
molecular subtype and the underlying epigenetic landscape. Through H3K27ac analysis, we
established a repertoire of SEs that are specific to distinct subgroups (Luminal, Ba/Sq subtypes,
as well as Normal primary cells), highlighting SE-associated genes with subgroup-specific
clinical relevance. From there, we identified the core SE-regulated networks of master TFs that
distinguish luminal and basal subgroups, including known and new candidate master TFs.
Finally, through functional knock-down and knock-out experiments, we revealed that one of
these master TFs (FOXAL) is akey factor in subtype determination antagonized by ZBED2, and
that both FOXA1 and ZBED2 present the ability to dampen inflammatory response. Overall, this
work provides new data characterizing epigenetic regulation in bladder cancer. We reveal
important genes that can be essentials for maintenance of bladder cancer cell identity and present

potential new targets to treat aggressive bladder cancers.



Results

Integrated bladder cancer chromatin landscape

To elucidate the contribution of chromatin landscape in bladder cancer biology, we generated
ChIP-seq for active (H3K27ac) and repressive histone marks (H3K27me3, H3K9me3) in 24
bladder samples (Fig.1). In order to distinguish features of the non-cancerous stromal cells and of
normal urothelia cells, we used not only human primary tumours (n=15) from the CIT (Carte
d’ Identité des Tumeurs) cohort (9, 22), but also cellular models (7 bladder cancer cell lines) and
patient-derived Normal Human Urothelium in proliferation (NHU, n=2). Of note, tumors were
macrodissected to enrich for bladder cancer content (Fig. 1, Fig. S1A). Of the 15 primary
tumours, we included 13 MIBCs and 2 NMIBCs to assess the stage-dependence of our results
(Fig. 1A, Fig. S1A, and Table S1). With the aim of identifying subtype-specific epigenetic
alterations/characteristics, we coupled our ChiP-seq with RNA-seq from the same extraction and
classified them according to the current consensus subtypes (3). Of the 13 MIBCs, 2 classified as
stroma-rich, 4 classified as basal/squamous (Ba/lSg) and 7 as luminal, including 1 luminal
papillary (LumP), 3 luminal unstable (LumU) and 2 luminal non-specified (LUmNS). Of the 7
cell lines, 3 were classified Ba/Sq, 3 LumP and one could not be classified (Table S1)(23). Using
the recent UROMOL classifier, the two NMIBC samples classified as class 3 (7, 8). Further
analysis using subtype deconvolution (WISP, (24)), and previously described regulatory
signatures (3, 7), revealed that one of the tumours originaly classified as Ba/Sq (T391) was
composed of a mixed population of LumP and Ba/Sq cells (Fig. S1B, S1C). Knowing it's
important intra-tumoral heterogeneity, tumour T391 was excluded from differential analyses
between subgroups. Peak calling using MACS showed that ChlP-seq for H3K27ac gave the most
homogeneous and highest number of peaks across the 24 samples (Fig. S1D).

We integrated our multi-factorial ChiP-seq profiles using ChromHMM (25), reporting the first
integrated epigenetic map in bladder cancer in both primary tumour samples and cdll lines (Fig.
2A). Six chromatin states (E1-E6) were assigned according to histone mark enrichments, as
previously described (ENCODE, Roadmap project (19)), where H3K27ac-enriched regions
correspond to active promoters and enhancers (E2), H3K27me3 and H3K9me3-enriched states
associate with repression (E4) or heterochromatin (E6), and regions enriched in both active and

repressive marks define bivalent enhancers or promoters (E3). Regions without any marks or



only weak H3K9me3 enrichment were designated as quiescent/no marks (E1) or
quiescent/weakly repressed (ES5), respectively (Fig. 2A, Fig. S2A, B). Analysis of associated
RNA-seq data confirmed that gene expression correlates with the expected chromatin states (Fig.
2B). Briefly, genes with transcription start stes (TSSs) in E2 states (active enhancers /
promoters) have the highest expression levels, followed by those in E3 states (bivalent enhancers

/ promoters). Minimal expression was noted for genes with TSSsin the remaining states.

Chromatin states classify bladder cancers by transcriptomic subgroups

Next, we sought to classify our samples based on chromatin states for comparison with molecular
subtypes. To do thiswe first performed an unsupervised analysis to select the most distinguishing
features from the chromatin profiles (see methods, Fig. S2C) and plotted all samples by multiple
correspondence analysis on the most varying regions (MCA, Fig. S2D). Similar to Principal
Component Analysis (PCA), but adapted for categorical data, this method of dimensionality
reduction separates samples in 2D space by proximity according to the primary (Dim 1) and
secondary (Dim 2) dimensions. Thus, greater differences in chromatin profiles are represented by
greater distances in the 2D plot. Dim 1 distinguished primary tumour samples from cell lines,
which could be indicative of chromatin changes associated with cell culture or stroma content.
Interestingly, Dim 2 distinguished Non-basal from Basal subgroups. To confirm this distinction
of molecular subtypes, we re-assessed the data with an alternative dimensionality reduction
method (MDS), coupled to a batch effect-like correction (MNN), which eiminated most of the
cell line vs primary tumour differences while maintaining and strengthening the distinction
between Non-Basal and Basal subgroups along Dim 2 (Fig. 2C). Therefore, we identified two
clusters derived from differencesin chromatin state that are associated with molecular subtypes; a
“basal cluster” containing all Ba/Sg samples (except the mixed T391), and a “non-basal cluster”
including all luminal, stroma-rich and NMIBC samples (Fig. 2C). Interestingly, NHU cells were
located at the border between the two groups (Fig. 2C). To explore the biological pathways
associated with the chromatin profiles that could distinguish Luminal from Basal bladder cancers,
we ranked genes based on the MCA outputs for Dim 2 and performed Gene Set Enrichment
Analysis (GSEA (26, 27), Fig. 2D). As expected, for the basal cluster, we found that active
chromatin (E2) was strongly enriched at genes involved in decreased Luminal differentiation,
while repressive chromatin (E4) was strongly depleted for these genes (Fig. 2D). Interestingly,



genes involved in increased tumour aggressiveness, stemness, extracellular matrix, epithelial-
mesenchymal transition and invasion were also enriched in active chromatin and depleted for
repressive chromatin in the basal cluster (Fig. 2D). Taking an aternative approach, we derived
Basal and Luminal gene signatures from an independent publicly available scRNA-seq dataset
(GSM4307111) and compared these genes with the chromatin states associated with the basal and
non-basal clusters identified in Fig. 2C (Fig. 2E, see methods). Lumina signature genes were
enriched in active state in the non-basal chromatin cluster while Basal signature genes were
enriched in active state in the basal chromatin cluster, suggesting epigenetic regulation of
signature genes involved in urothelial differentiation. We further illustrate this relationship with
two well-described markers of bladder cancer subtypes. FOXAL and KRT6A (Fig. 2F). FOXA1
expression is higher in Luminal than Basal tumours (11, 14, 28, 29). In agreement, our results
showed that FOXA1 was marked with active (E2) chromatin in Luminals (including LumP,
LumNS and LumU), NMIBC samples, and even NHU cells, but harboured repressive chromatin
in Ba/Sq tumour samples (Fig. 2F). On the other hand, KRT6A, commonly expressed in Basal
tumours (3), had active chromatin marks in seven out of eight Ba/Sq samples, as well as NHU,
but not in any Luminal sample. Taken together, these results demonstrate the importance of

histone marks in the regulation of gene expression driving cell identity in bladder cancer.

I dentification of the bladder super-enhancer repertoire and subtype specificities

To determine if chromatin profiles identify SEs that could control bladder cancer subtype, we
determined and annotated typical enhancer and SE regions in our samples using the ROSE
algorithm (Table S2), which calls enhancers and particularly super enhancers according to
H3K27ac signal (18, 30). Despite signal correction using input, the number of called SEs was
notably lower in samples with gene amplification, owing to very high H3K27ac signal in
amplified regions, thus creating a bias in the ranked enhancer plot (Fig. S3A). To correct for the
copy-number bias, we set a threshold and defined the top 1000 enhancer regions in each sample
as SEs for all downstream analyses, approximately representing the mean number of SES per
sample (mean = 956 SEs, Table S2).

To gain insight into subtype-specific enhancer alterations and assess sample similarity based on
these SE profiles, we determined the global repertoire of SEs in bladder by extracting a
consensus set of 2887 SEs present in at least 2 of our 24 samples (Table S3). Using PCA of



H3K27ac signal corresponding only to the consensus SE regions, we again found that samples
were grouped according to molecular subgroup, separating Basals from Luminas, NMIBC
segregating with differentiated tumors (Fig. 3A). This revedls that the variability in SE profiles
reflects the differences in Basal and Luminal transcriptional programs. We also performed PCA
using H3K27ac, H3K27me3 and H3K9me3 independently for peaks located inside the SE
consensus regions for the tumour samples alone (Fig. S3B). Interestingly, all three profiles
separated the Ba/Sq tumors from the other samples, indicating that all three histone marks are
likely linked to SE regulation of bladder cancer molecular subtypes.

We sought to further explore the functional pathway enrichment of SE-regulated genes. We first
assigned SEs to ther closest and most transcriptionally correlated genes (see methods). For
example, a large SE mapped close to KLF5, whose expression was correlated with SE activity
mostly in Luminal samples, as previously reported (31) (Fig. 3B). In contrast, KLF7 was
regulated by a SE mostly active in Basal samples (Fig. 3B). We then performed pairwise
differential analyses between subtypes (Fig. 3C, S3C). The comparison between Basal and
Lumina samples identified 369 subgroup-specific SEs (Fig. 3C, Table S3). By comparing the
differential SEs to RNA-seq differential expression analysis, we confirmed that luminal-gained
SEs showed significantly higher expression levels in Luminal samples relative to Basal samples
and vice-versa for basal-gained SEs (Fig. 3D). We then validated the subgroup-specific SE-
associated genes identified in our samples in a larger dataset, leveraging the gene expression
profiles of the TCGA-BLCA MIBC cohort across molecular subtypes (n=406) (32, 33).
Hierarchical clustering of TCGA samples using the genes associated to the most differentialy
regulated SESin our consensus repertoire recovered the molecular classification (Fig. S3D, Table
S3). Strikingly, differential analysis between Basal and Luminal SEs revealed that Luminal-
specific SEs were attributed to known transcriptional drivers of the luminal phenotype, namely
GATA3, PPARg, FOXA1 (14, 22). Luminal-gained SEs were associated with “Signalling by
TGF-beta family members’, notably due to SEs annotated close to negative regulators of TGF-
beta signalling such as the E3 Ubiquitin ligase SMURF1 or SVIAD6 (Fig. 3C, E, Table $4). In
contrast, SE regions significantly bound at higher levels in the Basal tumours were associated
with genes known to contribute to Basal cancer biology such as EGFR, but also less
characterized genes with regards to bladder cancer biology, such as genes related to inflammation



and FOXO signalling (IL7R, FBX032), signalling by Interleukin or signaling by MET, the
activation of which is often correlated with BLCA progression (34) (Fig. 3E). We also identified
genes encoding membrane receptors (IL7R, OSMIR, EGFR) and transcriptional regulators (BNC2,
HMGA2, KLF7, NR3C1) as enriched in Basal tumours (Fig. 3C). Taking advantage of the NHU
samples in our cohort, we extracted differential SEs in three comparisons (Ba/'Sq vs NHU vs
Luminals, Fig. S3C, Fig. 3F). This analysis validated the identification of genes that could be
specific to cancer biology, such as IL7R, OSMR, JUN, NR3C1 in Ba/Sq subtype, or NPA2,
FOXQ1, GRHL3 in Luminal samples (Fig. 3F). Overall, we established a first SE repertoire for
bladder cancer, highlighting subgroup-specific, cancer-specific SE activation coupled with gene

expression.

Super-enhancer s regulate a network of candidate master transcription factors for bladder
cancer subgroups

SEs often regulate the expression of master TFs, forming autoregulatory loops and correlated
networks (35, 36). Having established the SE landscape in bladder cancer, we next sought to
determine which master regulators control the subtype-specific transcriptional programs. To this
end, we overlaid the genomic coordinates of subgroup-specific peaks insde SEs with publicly
available ChlP-seq datasets (37, 38). Our analysis revealed that Luminal-specific SEs were
significantly enriched in several TF binding sites (Fig. 4A, Table S5), including known regulators
of Luminal subtypes FOXA1, GATA3, and ESR1 (3, 14, 32). Basal-specific SEs were enriched
in binding sites of a different set of regulators, including components of the AP-1 complex
(FOSL1, FOSL2, JUND, JUNB), as well as SMAD2/3, NFkB, and STAT3. Further DNA motif
enrichment analysis comparing Basal differential peaks inside subgroup-specific SEs over
Luminal ones, again identified AP-1 as a potential regulator of Basal SEs, as well as FOXAL,
FOXALAR, GATA, and GRHL1/2/3 for Luminal SEs (Fig. 4B, Table S5, Homer (39)).
However, motif binding and ChlP-seq data are not available for all known TFs. To overcome this
issue, we designed a method to identify subgroup-associated TFs and their co-regulated networks
based on our differential SEs and the large transcriptomic cohort from the TCGA (32) (Fig. 4C).
We selected TFs that were regulated by differential SEs (Basal vs Luminal), according to
annotations from Lambert et al. (40), and that were differentially expressed in TCGA Ba/Sq vs
Lumina subgroups. Then, we used ARACNe (41) and VIPER (42) analysis to identify and



evaluate the regulons (group of genes regulated in response to one transcription regulator) of the
75 resulting TFs. Hierarchical clustering of the resulting TF regulons clustered scores into three
groups, which were respectively associated with Luminal, Ba/Sq or Stroma-Rich subtypes (Fig.
4D, E). Since master TFs form interconnected networks with highly correlated levels of
expression, we selected only TFs whose expression was correlated with that of at least one of the
other TF in TCGA-BLCA data (Pearson correlation coefficient >0.5, n=55), and built the top
correlated network based on subtype-specific SE-associated TFs (Fig. 4F) (see methods). This
strategy identified a large module of Luminal TFs, including known Luminal-associated TFs
(e.g., FOXAL/GATA3/PPARG), as well as TFs with yet unexplored roles in Luminal bladder
cancer biology (e.g., HES1, FOXQ1, ZBTB7C, MECOM, GRHL2/3 and TBX3). Unlike for
Luminals, few TFs have been characterized as key regulators of Basal tumours. Our analysis
revealed a network of TFs whose activity could be essential to Basal bladder cancer biology,
including HMGA2, KLF7, NR3C1 and ZBED2. Notably, ZBED2 has recently been associated
with basal identity in keratinocytes (43) and regulation of inflammation in pancreatic cancer (44).
Combining analyses of tumour and cell lines SEs should avoid the identification of master TFs
expressed by the stroma. In fact, we found that TFs associated with the Luminal network showed
strong expression correlation in TCGA-BLCA and in CCLE bladder cell cohorts (45) (Fig. 4A,
B) while expression correlations of Stroma-Rich or Basal-associated TFs (e.g., ZEB1, SPI1) in
the TCGA were lower for urothdlial cell lines in the CCLE (46) (Fig. S4A, B). This indicates
that expression of those TFs could be dependent on growing conditions and/or interactions with
the tumour microenvironment.

To validate our Luminal- and Basal-specific TF networks, we analysed public single-cell RNA-
seq data of a tumour presenting both a Luminal and a Basal cell population (GSM4307111, Fig.
HAC). The Luminal-associated TFs FOXA1, GATA3 and PPARG were mostly expressed in the
Luminal cell cluster, whereas ZBED2, HMGAZ2, and KLF7, newly identified as part of the Basal
TF network, were mostly expressed in the Basal cell clusters (Fig. 4G), validating our subgroup-
specific networks. Together, these analyses identified a targeted subset of interconnected
candidate master TFs that could represent key regulators of bladder cancer subgroup identity.



FOXA1 binds subgroup-specific bladder super-enhancers and correlates with their
activation

We identified FOXAL as one of our candidate master TFs for the Luminal bladder cancer
subgroup. FOXA1 is a known pioneer factor with a demonstrated impact on Luminal bladder
cancer biology (29, 32, 47), though the mechanism for how FOXA1 regulates cell identity is
unknown. To better assess the role of FOXAL in the regulation of bladder cancer SEs, we
mapped FOXA1, CTCF (Insulator/enhancers) and H3K4me3 (Promoter) binding by ChiP-seq in
two bladder cancer cdl lines: SD48 (LumP) and 5637 (Ba/Sq). FOXAL binding was mostly
found outside promoters (Fig. S5A), with 61,083 FOXA1 peaks detected in SD48 cells and
39,445 in 5637, an expected variation as FOXA1 was more abundant in Luminal cells. Despite
such differences, we identified three classes of FOXA1 peaks. SD48-specific peaks, peaks
overlapping in the two cell lines, and 5637-specific peaks (Fig. 5A, Fig. S5B), which suggests
that FOXAL has specific targets in each cell line and subtype. Interestingly, when analysing TF
binding sites from publicly available ChiP-seq data, SD48-specific FOXAL peaks were highly
enriched not only for FOXA1 binding sites, but also GATA3 binding sites (Fig. 5B), which could
indicate a functional partnership between FOXA1 and GATAS3 for regulation of the Luminal
program, as suggested by Warrick et al. and described in breast cancer (14, 48). Surprisingly,
5637-specific FOXAL peaks were mostly enriched at AP-1 binding sites and not FOXAL sites
(Fig. 5B, Fig. S5B). Both enrichments were confirmed by Homer motif analysis of SD48-specific
peaks versus 5637-specific peaks or vice and versa (Fig. S5C and D, (39)). Ontology comparison
of genes associated with the three classes of FOX A1 peaks showed that 5637-specific peaks were
enriched in terms associated with Ba/Sq super-enhancers (e.g. Signalling by Tyrosine Kinase,
Signalling by MET, Signalling by Interleukin), indicating that FOXA1 might be involved in the
regulation of both Luminal and Basal bladder cancer subtypes (Fig. 5C). Indeed, FOXA1 binding
in the two cell lines overlapped with most (87%) of the total repertoire of bladder SEs (Fig. 5D)
and correlated strongly with H3K27ac levels at these loci (Fig. 5E, F), in line with arole for its
regulation of these SEs. Notably, FOXAL1 bound at SEs associated with genes involved in
regulating urothelial differentiation and strongly correlated with increased H3K27ac at these loci.
This could clearly be observed for the Luminal-specific SEs associated with GATA3 or PPARG
in the Luminal SD48 cells and in both cell lines for the non-specific PPARG SE. But we also



found FOXAL1 binding associated with high H3K27ac at certain Basal-specific SEs in the Basal
5637 cells, such as TGFB2 (Fig. 5G). Thisimplies that FOXA1, even if expressed at alow level
asin Ba/Sq cells, could play an important role in BLCA biology, through enhancer/SE regulation.
In summary, FOXA1 may regulate bladder cell identity through binding of subgroup-specific
bladder SEs with partners such as GATA3 in Luminal cellsand AP-1in Basal célls.

FOXAZ1 regulatesinflammation and celular identity

To better understand FOXAL function, we performed short-term (<72h) knock-down in both
Luminal and Basal models. Knock-down of FOXAL1 by ssiRNA decreased clonogenicity and
proliferation of both Lumina and Basal cells (Fig. S6A, B) and it reduced cell viability in both
RT112 (LumP subtype) and SCaBER (Ba/Sq) cells, with a stronger impact in RT112 (Fig. 6A).
Furthermore, FOXA1 knock-down in RT112 and SCaBER cdll lines dramatically altered gene
expression (Fig. 6B, Table S6). The downregulated genes were related to cell cycle and
checkpoint pathways, consistent with the reductions in viability and proliferation upon FOXA1
knock-down. Surprisingly, the upregulated genes in both cell lines were strongly associated with
inflammatory signalling and interferon response (Fig. 6C, Fig. S6D). Notably, FOXA1 knock-
down induced upregulation of master interferon response TFs, STAT1 and STATZ2, and key
genes involved in the regulation of inflammation in human cancer, including the immune
checkpoint modulator CD274 (PD-L1) (Fig. 6D), which we also identified as a downregulated SE
in both Luminal and Basal vs NHU cells (see earlier Fig. 3F). While our FOXA1 ChiP-seq in
Luminal and Basal cdl lines showed FOXAL binding at many interferon responsive genes, we
did not observe strong FOXA1 enrichment on STAT1, STAT2 or CD274 promoters or enhancers
(Fig. S6E). This suggests that the upregulation of these genes upon FOXA1 knock-down is
independent of FOXAL binding of their regulatory elements, in agreement with recent work
showing that FOX AL directly binds and inhibits the STAT2 protein to dampen inflammation in a
chromatin-independent manner (49). Interestingly, if FOXAL1 knock down triggered interferon
response in both Luminal and Basal models, its depletion affected the Luminal network of co-
regulated TFs only in RT112 cells and not in SCaBER (Fig. 6E). PCA projection of TCGA-
BLCA transcriptomes together with that of our knock down cells on our scRNA-seg-derived
Basal/Luminal signature space confirmed that FOXA1 acute depletion induced a small but
consistent shift from Luminal towards Basal subtype only in RT112 cels (Fig. S6F, see



methods). Therefore, in agreement with a previous study (14), short-term knock-down of FOXA1
showed a consistent but mild impact on cell identity, not sufficient to majorly alter the subtype of
the luminal cells.

Altering the epigenetic landscape could indeed take a longer time. To determine if FOXAL,
through its binding to the SE repertoire, regulates the bladder cancer epigenetic landscape and
subsequently cellular identity, we produced FOXA1 CRISPR mutant clones alowing long-term
FOXAL inactivation in two Lumina cedl lines (SD48 and RT112, Fig. S6G). Despite
fundamental differences between RT112 and SD48 cellular models and heterogeneity between
clones due to clonal selection, transcriptomic analysis of 3' RNA-seq data by PCA distinguished
CRISPR FOXAL mutant clones from wildtype (WT) (Fig. S6H). Importantly, PCA projection of
TCGA-BLCA transcriptomes together with that of our WT and mutant clones on the
Basal/Luminal signature space showed that mutation of FOXAL induced a strong shift from the
Luminal cluster to the Basal cluster (Fig. 6F). GSEA analysis confirmed that FOXAL mutants
were enriched for our Basal signature and depleted for our Luminal signature (Fig. S61)(26, 27).
GSVA anaysis further revealed that FOXA1 mutant clones were less differentiated than WT
controls (Fig. 6G, (11)) and tended to express higher levels of TFs associated with the Basal TF
network (Fig. 6H, Fig. 4F). Differential gene expression analysis revealed 1040 and 1102
Differentially Expressed Genes (DEGs) in RT112 and SDA48, respectively, when comparing
FOXA1 mutant clones to WT (Fig. S6J). FOXA1 mutant DEGs were associated with EMT,
KRAS signalling and the inflammatory response pathway (Fig. 6l), al linked to Basa
phenotypes. Intriguingly, differential analysis of FOXA1 mutants vs WT revealed increased
expression of NR3C1 and ZBED2 in the mutants, two of the candidate master TFs identified in
our Basal TF network (Fig. 6J, Table S7). In summary, our results demonstrate that loss of
FOXAL promotes a clear shift from Luminal to Basal cell identity.

ZBED2, a novel Basal-associated TF involved in inflammation dampening

To further explore the interconnected network of candidate master TFs, we chose to examine
ZBED2 as one of the TFs in the Basal network since it was upregulated by FOXA1 CRispR
inactivation, and because of recent work in keratinocytes that identified arole for ZBED2 in the
basal phenotype (43). ZBED2 expression in the TCGA-BLCA cohort is upregulated in the Ba/Sq
subtype (Fig. 7A) and correlates with poor survival prognosis (Fig. S7A). ZBED2 expression is



negatively correlated with FOXA1 expression in the TCGA cohort (Fig. 7B), but more
interestingly scRNA-seq in CCLE bladder cell lines shows that FOXA1 and ZBED2 expression
are often mutually exclusive (Fig. 7C). As little is known about the ZBED2 TF, we used
ARACNE/VIPER agorithms to identify the ZBED2 regulon based on TCGA-BLCA expression
data. Interestingly, FOXA1 was predicted as a ZBED2 target, with the most negative weight,
whereas two genes associated with Basal-specific SEs (IL7R and CAV1) were in the top 10
positive ZBED2 regulon weights (Fig. S7B). Using ZBED2 ChIP-seq data from pancreatic
cancer cell lines (44) (the only ZBED2 ChiIP-seq reported so far), we found a high confidence
ZBED2 peak in the FOXAL promoter (Fig. 7D, left). Analysis of the RNA-seq data from the
same study revealed that ZBED2 overexpression triggered downregulation of FOXAL (Fig. S7C,
p=0.004). In our data, we found that the ZBED2 SE was highly enriched in FOXAL1 binding in
SD48 luminal cells, whereas FOXA1 binding was significantly decreased in 5637 Ba/Sq cedlls,
and negatively correlated with ZBED2 expression (Fig. 7D, right). Overal, these findings
suggest that FOXA1 and ZBED2 could negatively regulate each other to promote or maintain
Luminal or Basal identity, respectively.

On the other hand, ZBED2 has been shown to inhibit STAT2 and dampen inflammation by direct
competition with IRF1 for Interferon Responsive Element binding in the pancreas (44). We
therefore sought to determine if ZBED2 isinvolved in the downregulation of interferon signalling
in bladder cancer, potentially through interfering with FOXAl-activated pathways. Intriguingly,
ZBED2 expression in the TCGA-BLCA cohort positively correlated with interferon gamma
associated gene expression (Fig. S7D), which could be an indication that ZBED2 increases in
response to inflammation at the cell population level, or vice versa. We then examined the
correlation between ZBED2 expression and different cellular pathways at the single-cell level
using publicly available scRNA-seq data (50). Our analysis revealed that ZBED2 expression anti-
correlates with interferon response and positively correlates with cell cycle progression and E2F
targets within the same cell (Fig. 7E), suggesting that the positive correlation with interferon
response in the bulk RNA-seq data reflects increased levels of ZBED2 expression and interferon
response genes in different subpopulations of cells. To test this association further, we knocked
down ZBED2 by siRNA and performed bulk 3 RNA-seq in two BLCA cell lines. Strikingly,
downregulation of ZBED?2 increased expression of interferon response genes and decreased
expression of cell cycle progression and E2F target genes (Fig. 7F). Furthermore, SsZBED2 in



both RT112 and SCaBER célls increased gene expression of STAT2 and CD274 (Fig. 7G) and
tended towards decreased cell viability (Fig. S7E). Therefore, ZBED2 directly dampens
interferon response in bladder cancer, in agreement with its reported role in the pancreas (44).
Notably, SRNA of FOXAL induced strong STAT2 and CD274 expression, while double knock-
down of both FOXAL and ZBED2 partially dampened this response compared to ssSFOXA1 alone
(Fig. 7G), suggesting that the inflammatory response resulting from FOXA1 knock-down is
partially dependant on ZBED?2 target genes. In concluson, both FOXA1 and ZBED2 inhibit
inflammatory response and promote bladder cancer cell survival.



Discussion:

Epigenetic mechanisms are essential for the establishment and maintenance of cellular identity
notably through SE regulation of master transcriptional regulators (17). Bladder cancer has been
extensively studied at the transcriptomic level, but until two recent studies, very little was known
about its epigenetic landscape (21).

Here, we report a large epigenetic profiling of both bladder cancer primary tumours and bladder
cancer cell lines representative of the main molecular subtypes, as well as NHU cultures, using
three histone marks ChiP-seq and paired RNA-seq. Using integrative analyses, we established a
comprehensive chromatin state map of bladder cancer and showed that Basal and Lumina
subgroups can be distinguished by their chromatin profiles. This map can be used to identify new
genes or regulatory regions for diagnostic, prognostic or pharmacological targeting.

We characterized the bladder SE repertoire, and through differential analysis identified subgroup-
specific and cancer-specific SE activation. Our study corroborates and expands the two recently
reported enhancer landscapes of bladder cancer (20, 21). Consistent with prior reports, Luminal-
activated SEs were located in proximity to known key regulators of the Lumina phenotype,
namely FOXAL, GATA3, and PPARG (3, 14, 21), and to new Luminal-associated genes, such as
NPAS2 and GRHL2 — also identified by lyyanki et al. (20) — or KLF5, recently characterized as
activated through super-enhancer amplification in various sgquamous cell carcinomas (31).
Importantly, based on our data for 7 Ba/lSq samples, we were able to identify higher enhancer
activity associated with potential key genes in Basal tumour biology, including cell surface
receptors (IL7R, OSMR, EGFR, MET) and transcriptional regulators (BNC2, HMGA2, KLF7,
NR3C1).

We further characterized subgroup-associated master regulators and co-regulated networks for
both Luminal and Ba/Sq subgroups using two complementary approaches, in order to overcome
issues linked to low expression, unknown binding motifs or multi-partner complexes. First, we
identified TFs with enriched binding sites or DNA motifs in subgroup-specific SEs. Second, we
combined SE activity in our cohort with regulon analysis of TCGA data to identify master
regulator networks for Luminal and Basal subgroups. The first approach, based on public ChiP-
seq data, validated the role of TFs involved in urothelial differentiation in Luminal SE activity,
namely FOXA1 and GATA3, but also revealed that the AP-1 complex regulates Basal SEs. AP-1

has been shown to drive reprogramming of breast cancer cells from a Lumina to a Basal



phenotype during treatment resistance acquisition through high-order assemblies of transcription
factors (48). Thus, arole for AP-1 in driving Basal enhancers and cell identity in bladder cancer
suggests AP-1 inhibitors as potential therapeutic options for this aggressive disease. Interestingly,
our mapping of FOXA1 binding stes in two different cell models indicated that the pioneer
factor binds most bladder-associated SEs, even if its DNA binding motif is mostly found in the
Luminal-specific SEs. The mapping of FOXA1 binding also confirmed that FOXA1 binding sites
in Basal enhancers are associated with AP-1 localisation, suggesting that AP-1 could play an
important role in the regulation of Basal regulatory regions through FOXA1L recruitment—or
trapping—at discrete chromatin loci. By combining the ChiP-seq approach with regulon analysis,
we were able to highlight new Luminal-associated TFs, in addition to known Luminal master
regulators (FOXAL, GATAS, PPARG) and the recently identified NPAS2 (20). Importantly, we
also identified a Basal TF network, including ZBED2, KLF7, HMGA2, NR3C1 as maor
regulators, whose expression was restricted to the basal component of tumours, according to
scRNA-seq data. To our knowledge, the role of these TFs has not been investigated in bladder
cancer biology.

With regards to ZBED2, a scRNA-seq study revealed that it promotes basal cell identity of
keratinocytes (43). Another study demonstrated that in pancreatic cancer, ZBED2 represses
differentiation and dampens STAT2-mediated inflammatory response through IRES binding
competition with IRF1 (44). Previous work showed that the three master Luminal TFs (FOXAL,
GATA3, and PPARG) had to be perturbed simultaneously to induce a cell identity switch from
luminal to basal (14). However, we found that while short term knock-down of FOXAL had a
mild effect on cell identity, the long-term inactivation of FOXA1 aone through CRISPR
mutation was sufficient to induce a shift from Luminal to Basal subgroup in luminal cells,
highlighting the role of FOXAL1 in the regulation of cell fate. Moreover, we demonstrated that
this mgjor shift is accompanied by activation of one of our newly identified Basal network TFs,
ZBED2. Despite its known role as an activator of transcription, FOXA1 has also been associated
to direct repression of transcription (51). ZBED?2 is described as a transcriptional repressor (44).
Therefore, FOXAL and ZBED2 could repress each other, defining a new cell identity regulatory
loop. Through functional knock-down and knock-out experiments, we verified that FOXA1 and
ZBED2 have antagonistic but interconnected functions in cell identity. However, ZBED2 is
expressed at a very low level and additional experiments, including overexpression models are



needed to validate its repressive function on FOXAL, or vice versa, and its potential role in
Luminal to Basal plasticity.

Finally, our work also uncovers a role for both FOXA1 and ZBED2 in the regulation of
inflammation in bladder cancer. While they play antagonistic roles in the regulation of cell
identity, we found that they share a common function in inhibiting inflammation. Short term loss
of either FOXAL1 or ZBED?2 triggers an inflammatory response, identified through STAT2
overexpression, in agreement with the study of ZBED2 function in the pancreas [44]. The low
FOXAL binding enrichment at STAT2 in our FOXAl ChIP-Seq experiments suggest that
FOXAL could have a repressive function of inflammation presumably independent of its
chromatin binding. These conclusions are in accordance with the recent work of He et al. [57]
characterizing a chromatin independent function of FOXA1L, which, by direct binding of STAT2
protein, inhibited STAT2-mediated inflammation. This could explain the limited infiltrate of
luminal tumours, expressing high levels of FOXAL.

Therefore, given the dua role of FOXA1 and ZBED2 in the regulation of cell identity and
inflammation, it will be important to study their link with tumour plasticity and in response to
immunotherapy. Although direct inhibitors do not yet exist, targeting FOXAL1/ZBED2 or the
upstream or downstream signaling pathways, may improve sensitivity to immune-based
therapies. Similarly, it will be worth studying the effect of interferon treatment on FOXA1 and
ZBED?2 inhibited inflammation as it could be used to overcome the inflammation inhibition
induced by these two master regulators.

If FOXA1 and ZBED?2 revealed promising features, our study identified numerous other super
enhancers, associated genes and master regulators that could be explored for pharmacological
targeting.

General targeting of SEs with BRD4 inhibitors has shown efficiency, in particular in cancers with
specific SE single mutation alterations or with the activation of MYC SE in leukemia or
lymphoma (18, 52, 53). However, those treatments show mild efficiency in solid tumours and
enhancer rewiring has been associated to resistance to treatment. Identification of SEs associated
with bladder cancer and subgroups may pave the way for further research into targeting activated
master regulators, upstream/downstream activated pathways or even with the advent of RNA and
CRISPR technology, directly targeting SEs.



Conclusions

We provide an integrated epigenomic and transcriptomic map of bladder cancer constituting a
new comprehensive tool to study epigenetic regulation of muscle-invasive bladder cancer. We
revealed Luminal and Basal coregulated networks of super-enhancers and associated
transcription factors as new potential targets with important clinical relevance. Our findings and
functional assays on FOXA1 and ZBED2 demonstrate that the SEs and TF networks identified
herein represent prime targets for further pre-clinical investigation for bladder cancer treatment.



MATERIALSand METHODS

Biological Resour ces

Cdll linesand culture

The human bladder cancer derived cell lines RT112, 5637, KK47, and SCaBER were obtained
from DSMZ (Heidelberg, Germany). MGH-U3, KK47 and SD48 cell lines were provided by
Yves Fradet (CRC, Quebec), Jennifer Southgate laboratory (previously of Cancer Research
Unit, &t James' s University Hospital, Leeds, UK), and Henri Mondor Hospital (Créteil, France),
respectively. The L1207 cdll line was derived from tumour T1207 (25). RT112 and 5637 cells
were cultured in RPMI medium, L1207 were cultured in DMEM-F12 and all the other cell lines
were cultured in DMEM medium. All cell media were supplemented with 10% fetal bovine
serum (FBS). Norma human urothelium (NHU) cells were obtained from normal ureter
urothelium from healthy kidney donors from Foch hospital and were cultured as previously
described (26). All cells were cultured at 37°C in an aimosphere of 5% CO2 and were routinely
tested for mycoplasma contamination.

Patient tumour tissue processing

We selected human tumours with an available OCT-compound frozen block from our CIT (Carte
d ldentité des Tumeurs) cohort (9, 22). Each block was frozen-sectioned and stained with
hematoxylin and eosin. Pathology review was performed to confirm the tumour stage and to
select tumour areas, in order to enhance neoplastic content (estimated at 30 to 95%, median
tumour cell content = 65%). For tumours with sufficient material, tumour-enriched areas were
macrodissected from the frozen block and manually finely ground in amortar. Frozen ground
tumour tissue was kept at -80°C until further processing.

The characteristics of the tumours are shown in Table 1.

CRispR vectors, SRNA

siIRNA and CrispR vectors used in the study are referenced in supplemental information file.

Chromatin immunopr ecipitation and sequencing
Tumour chromatin cross-linking and extraction
In order to obtain efficiently disrupted tissue, the frozen ground materia (15mg) was further

homogenized using a tube pestle or the TissueLyser |1 system (Qiagen). Disrupted tissue was



then processed using the reagents from the iDeal ChiP-seq Kit for Histones (Diagenode),
according to the manufacturer’ s instructions. Briefly, the tissue was homogenized and washed in
1ml PBS-protease inhibitor cocktail. DNA-protein cross-linking was ensured with an 8-minute
incubation in 1% formaldehyde then quenched with 0.125 M glycine for 5 minutes. Cells were
then washed and lysed. Centrifuged cell lysates were resuspended in shearing buffer and
sonicated using the Pico Bioruptor device (Diagenode) for 15 minutes (30s ON/30s OFF).
Following a centrifugation at 16000g for 10 minutes, an aliquot was reserved to control the
sonication and the remaining supernatant was stored at -80°C. Sonication efficiency was
controlled for each sample on the aliquot of sheared chromatin by overnight reverse cross-
linking, DNA was purified using the phenol-chloroform method and 2% agarose ge
electrophoresis was used to determine DNA fragment size.

Tumours Chl P-seq

Tumour samples with optimal chromatin fragment size (200-500 bp) were immunoprecipitated
using the iDeal ChiP-seq Kit for Histones (Diagenode). Magnetic immunoprecipitation of
sheared DNA-chromatin complexes (500ng) was performed overnight using a rabbit polyclonal
histone H3K27acetyl ChIP Grade antibody (ab4729, Abcam), H3K27me3 (Active Motif, ref.
39155), and H3K9me3 (Active Matif, ref. 39161). Magnetic immunoprecipitation beads were
washed the following day. The captured chromatin as well as non-immunoprecipitated input
chromatin underwent elution and reverse cross-linking steps. DNA purification was performed
using iPure magnetic beads. Immunoprecipitation (IP) efficiency was verified by gPCR
according to the manufacturer’s protocol. Library preparation from I[P DNA and input DNA was
performed using the Diagenode MicroPlex Library Preparation kit v2. The resulting amplified
libraries were assessed using the Bioanalyzer system 2100 (Agilent) and sequenced using the
HiSeq 4000 platform (Illumina) as single-read 50 base reads, following lllumina’s instructions.
Reads were aligned to the reference genome (Hg19) using Bowtie 1.0.0.

Cell line ChlP-seq

Cdll lines cultures were crosslinked directly in the growing medium with formaldehyde 1% for
10 minutes at room temperature. The reaction was stopped by adding Glycine with a final
concentration of 0.125M for 10 minutes at room temperature. Fixed cells were rinsed 3 times
with PBS containing protease inhibitors, pelleted, and resuspended in lysis buffer (10mM EDTA,
pH8, 50mM Tris-HCI pH8, SDS 1%). After centrifugation, the ChlP was performed using ChlP-



IT High Sensitivity kit (Active Maotif, Carlsbad, CA, USA), following the manufacturer's
ingtructions. Chromatin was sonicated in a bioruptor Pico device (Diagenode) for 10 min (30s
ON/30s OFF). Sheared chromatin was immunoprecipitated usng an H3K27ac antibody (Abcam
ab4729). Sheared chromatin was used as input-DNA control.

ChIP-seq libraries were prepared usng NEXTflex ChIP-Seq Kit (#5143-02, Bioo Scientific)
following the manufacturer's protocol (V12.10) with some modifications. Briefly, 10 ng of ChIP
enriched DNA were end-repaired using T4 DNA polymerase, Klenow DNA polymerase and T4
PNK, then size selected and cleaned-up using Agencourt AMPure XP beads (#A63881,
Beckman). A single ‘A’ nucleotide was added to the 3’ ends of the blunt DNA fragments with a
Klenow fragment (3' to 5'exo minus). The ends of the DNA fragments were ligated to double
stranded barcoded DNA adapters (NEXTflex ChlP-Seq Barcodes - 6, #514120, Bioo Scientific)
using T4 DNA Ligase. The ligated products were enriched by PCR and cleaned-up using
Agencourt AMPure XP beads. Prior to sequencing, DNA libraries were checked for quality and
guantified using a 2100 Bioanalyzer (Agilent). The libraries were sequenced on the Illumina Hi-
Seq 2500 as single-end 50 base reads following Illumina's instructions. Sequence reads were

mapped to reference genome hgl9 using Bowtie 1.0.0.

ChlP-seq data analysis and integration

Peak detection was performed using MACS2 (mode-based anaysis for ChiP-seq
v2.1.0.20140616) software under settings where input samples were used as a negative control.
We used a default cutoff and -B option for broad peaks.

To identify enhancer regions in each tumour we used ROSE (Ranked Ordering of Super-
Enhancers) algorithm (18, 30), with the following parameters: 12.5kb stitching distance,
exclusion of promoter regions 2500 bp around TSS. For each sample, stitched enhancer regions
are normalized, ranked and plotted. The regions above the inflexion point are considered super-
enhancers by the algorithm. However, the number of called super-enhancers was notably lower in
cases with a known amplified gene. The very high H3K27ac signal in the amplified region likely
created a bias in the plot of ranked enhancers. To correct for this bias, we set a threshold to the
top 1000 ranked enhancers to select candidate super-enhancer regions.

Heatmaps and PCA of ChiP-seq signal were performed using Diffbind R package (version
2.16.0) or Easeq (54). For super-enhancers analysis, the top 1000 SE regions of either tumours or



cell lines were merged for a consensus using Diffbind. Then, H3K27ac signal was calculated in
the consensus peak for each sample. Differential analysis between molecular subtypes was
performed with Diffbind and DESeq2 default parameters using both IP and input bam files, and a
file containing the consensus super enhancer regions evaluated for differential analysis as input.
Regions with an pval <0.05 were considered differentially bound.

Genomic annotation and pathway enrichment analyses were performed using ChiPseeker,
clusterProfiler and GREAT (28).

Chromatin Binding enrichment analysis

Factor binding analyses were performed using public data available in Cistrome DB Toolkit (37,
38). DNA binding motif analysis was performed using HOMER known motif function (39).
Genomic annotation of the SE regions and cis-regulatory genes

SE activity and gene expression was jointly analysed to determine the cis-regulatory between the
SE and genes on proximity. In brief, the overlap / proximal genes corresponding to each SE were
annotated using GREAT/ROSE tools, as the candidate proximal genes regulated by the SE (30,
55). The spearman correlation coefficients between SE activity (H3K27ac read counts,
log2RPKM normalized) and the expression of the candidate genes (RLE normalized) were
calculated in the tumours. The gene whose expression showing the highest correlation with the
activity of the corresponding SE was determined as the gene most likely regulated by the SE. The
SE-gene relationships within the top 1% were also given, not limited to the proximal genes. The
number of germline single nucleotide polymorphisms (SNPs) within a given SE as well as their
association with bladder cancer (median —og10 p-value) was provided based on the UK biobank
GWAS summary statistics (Neale lab Round 2, ukb-d-C67, extracted from the MRC IEU
OpenGWAS database) (56). The germline SNPs falling within the SEs and with published
GWAS-level association with BCa or with -{oglOP.value > 5 in GWAS summary statistics
(PhenoScanner v2 database) were provided as GWAS SNPs within the SEs (57). For the genes
most likely regulated by a given SE, we provided their median CERES dependency score of all
and urothelial cancer cells from the Cancer Dependency Map database (45), as well as the p-
value for difference between the two. We checked if any bias compared to the background in
mutation type (missense, non-sense, synonymous, etc.) for the protein coding genes by Chi-
square test. We checked if they were within the list of established cancer genes, including the
COSMIC Cancer Gene Census and Network of Cancer Genes 6 (58, 59).



Chromatin state analysis and correlation with expression

ChromHMM was used to identify chromatin states. The genome was analyzed at 1000 bp
intervals and the tool was used to learn models from the 3 histone marks ChlP-seq reads files and
corresponding Input controls. A model of 6 states was selected and applied on all samples. The 6
states identified were then given functional annotation based on histone marks enrichment and
ENCODE published chromatin states.

We checked the genome-wide association between gene expression and chromatin states of the
TSS, in both tumour and cell line samples. In each tumour / cél line, we classified the genes
according to the chromatin states of the TSS. For genes with multiple TSS, the chromatin states
showing frequency dominance was considered. We then calculated the median expression of the
genes by their TSS categories in each sample, and assessed the distribution of the median
expression by chromatin state across al tumour and cell line samples.

ChromHMM output files were concatenated using the unionbed function from BEDTools, by
which a consensus sample-by-states matrix was created, where in each cell the chromatin state
corresponding to the column’s chromosome region in the row’s sample, excluding regions from
sexual chromosomes, with all samplesincluded (n = 24, including 15 tumours and 9 cell lines).
We next performed unsupervised analysis of the integrated chromatin states in tumour and cell
line samples.

Selection of most informative features

We first looked for the most informative features in the consensus sample-by-states matrix where
in each cell the chromatin state corresponding to the column’s chromosome region in the row’s
sample, excluding regions from sexual chromosomes, with all samples included (n = 24,
including 15 tumours and 9 cell lines). We excluded genome regions of 'no mark' state to enrich
our feature selection with active regions and filtered features with top 1% Shannon’s entropy.
Then to further select informative feature, we signed-rank transformed the data: For each state,
given the congtitution of the histone marks and association with gene expression, we performed a
numeric transformation of the categorical states by assigning numeric values to categorical states,
as 3 to E2 (Active Enhancer / Promoter), -3 to E4 (Repressed Chromatin), 2 to E3 (Bivalent
Enhancer / Promoter), -2 to E6 (Heterochromatin / ZNF/ Repeats), 1 to E1 (Quiescent / No
mark), and -1 to E5 (Quiescent / Weak repression). This alow to further increased the selection



power as the top 1% features by variance ranking. We then used these top 1% variable features
for subsequent analysis.

Dimension reduction and functional ontology analysis

We performed dimension reduction and visualization taking directly the categorical format of the
above described selected features using multiple correspondence analysis (MCA). To explore the
biological significance of the regions that contributed to the dimension that distinguishes the non-
basal and basal clusters, the chromosome segments’ loading estimates to the Dim 2 were
extracted from the MCA outputs and regions with a p-value < 0.05 for the loading estimate were
included (n = 12,198). Genes mapped to Dim 2 contributing regions were pre-ranked by loading
estimates for gene-set enrichment analysis (GSEA) by which we identified multiple biological
gene sets / ontologies associated with Dim 2. The gene sets collections were retrieved from the
Broad Institute Molecular Signature Database, spanning the H (hall mark gene sets), C2 (curated
gene sets, eg. pathways), C3 (regulatory target gene sets), C5 (ontology gene sets, eg. Gene
Ontology), C6 (oncogenic signature gene sets), and C8 (cell type signature gene sets) categories,
using the msigdbr R package (27, 60).

As complementary exploration, we in the meantime performed dimensional reduction to the
numeric transformed data of the selected features, using MDS. Similar to what was observed in
MCA, the Dim 2 represents the dimension that distinguishes the basal versus non-basal samples,
and Dim 1 separates cell lines from tumours, suggesting potential batch effect and/or in vitro
culture-specific effect. We then adjusted for these latent effects to obtain a refined clustering
(basically on Dim 2), using the MNN algorithm implemented in the fastMNN function of the
batchelor R Bioconductor package (61).

We then calculated for the chromosomal segments (ie. features of the consensus sample-by-states
matrix), the difference in the numeric chromatin state scores between basal and non-basal groups,
named chromatin state score difference basal vs non-basal. A negative score difference indicates
stronger activation in the non-basal group, and a positive one indicates stronger activation in the
basal group. For subsequent function analysis, we performed expression quantitative trait locus
(eQTL) mapping to refine the segments to the ones significantly linked with associated gene
expression, and limited the analysis to the significant eQTL pairs (p-value < 0.05, n = 4,377). We
then analysed the distribution of the chromatin state score difference of the segments
corresponding to the luminal and basal cell type signature genes.



Cell treatments, cell viability assay

For SIRNA trestments, cells were reverse transfected using Lipofectamine RNAiI max
(Invitrogen) using 10 ng of SIRNA (siRNA table in additional information).

For CRispR mutant cell lines production, RT112 and SD48 cells were plated at 80% confluence
and the day after transfected with vectors expressing Cas9 an gRNA (VectorBuilder, see
additional information) using Fugene HD transfection reagent. 48h post transfection, cells were
selected using Puromycin (2ug/uL) during 4 days. After 2 weeks, clonal selection was performed
using clonal dilution. FOXA1 mutation was assessed by Western Blot (anti-FOXA1 Abcam
ab23738), PCR and genomic DNA sequencing.

Cdl Viahility was assessed in 96 well plates using CellTiter-Glo® Luminescent Cell Viability
Assay (Promega).

RNA extraction and sequencing

RNA extraction

Cdl lines RNA were extracted using Qiagen RNeasy kit coupled with DNAse treatment.
Tumours RNA were extracted using Triple extraction protocol.

Tumours RNA sequencing

RNA sequencing libraries: Kit Nugen. The pool of libraries was quantified using a g°PCR method
(KAPA library quantification kit, Roche). The sequencing was carried out using paired-end mode
(PE100) on alllumina Novaseq 6000 instrument, using a custom primer (provided into the Nugen
kit) to initiate the Read 1 sequencing. The target number of reads was about 50 million paired-
reads per sample.

Cdll lines RNA sequencing

RNA sequencing libraries were prepared from 1ug of total RNA using the Illumina TruSeq
Stranded mMRNA Library preparation kit (Illumina) which allows to perform a strand specific
RNA sequencing. A first step of polyA selection using magnetic beads is done to focus
sequencing on polyadenylated transcripts. After fragmentation, cDNA synthesis was performed
and resulting fragments were used for dA-tailing and then ligated to the TruSeq indexed adapters.
PCR amplification was finally achieved to create the final cDNA library (12 cycles). The
resulting barcoded libraries were then equimolarly pooled and quantified using a gPCR method



(KAPA library quantification kit, Roche). The sequencing was carried out using paired-end mode
(PE100) on a lllumina HiSeg2000 instrument. The sequencing configuration was set to reach an
average of 100 million paired-reads per sample.

Cell lines 3'RNA-seq (Lexogen 3'Seq )

RNA sequencing libraries were prepared from 200ng of total RNA using the QuantSeq FWD
3I'MRNA Seq LEXOGEN Standard (CliniSciences). Libraries were prepared according to the
manufacturer’ s recommendations. The first step enables the synthesis of double strand cDNA, by
revers transcription, using oligo dT priming. A gPCR optimization step was performed in order to
estimate the most appropriate number of PCR cycles for library amplification. The resulting
amplified and barcoded libraries were then equimolarly pooled and quantified using a gqPCR
method (KAPA library quantification kit, Roche). The sequencing was carried out using single-
read mode (SR100) on an Illumina Novaseq 6000 instrument. The sequencing configuration was

set to reach an average of 10 million reads per sample.

RNA-seq analysis

RNAseq were aligned on genome hgl9 using STAR with default parameters. Our RNA-seq as
well as RNA-seq from public data repository integrated using Deseq2 default parameters and
VST normalisation. 3'RNA-seq were analysed with Deseg2 and RPM normalisation.

Assignment of MIBC and NMIBC subtypes

Gene expression data of the most tumour cases was previously generated and published (9, 22).
We assigned consensus classes using the previously generated gene expression data using
ConsensusMIBC (v1.1.0) R package (3) (Table S1). Given potentia intra-tumour molecular
heterogeneity, we also to verify the subtype in our ChlP-seq sampled tumour area using RNAseq
from the same powder using the same ConsensusMIBC (v1.1.0) R package.

NMIBC samples (n=2) were classified using classfyNMIBC R Package (7).

Regulons
The regulatory network was reverse engineered by ARACNe-AP (41) from human urothelial
cancer tissue datasets profiled by RNA-seq from TCGA. ARACNe was run with 100 bootstrap



iterations using all probe-clusters mapping to a set of 1,740 transcription factors. Parameters used
were standard parameters, with Mutual Information p-value threshold of 108,
The VIPER (Virtua Inference of Protein-activity by Enriched Regulon analysis) (42) (R package
viper 1.24), using the regulatory network obtained from ARACNE on urothelial cancer, and we
computed the enrichment of each regulon on the gene expression signature using different
implementations of the analytic Rank-based Enrichment Analysis algorithm.

SE Correlation Networ k

To build SE driven correlation network, we first selected genes regulated by SE defined as TF in
Lambert et al. (40). Next using TCGA regulon VIPER score, we calculated the mean regulon
score by subtype (Luminal, Ba/Sq or Stroma-Rich and kept TFs with mean regulon > 2 or < -2
(n=75). We further restricted the list to TFs with a minimum expression correlation of 0.5 in
TCGA to build correlation network using igraph.

General bioinformatics, statistical analyses and public data

Plots and statistical analyses were performed in R software version 3.6.1, using ggpubr package.
Wilcoxon and Kruskal-Wallis tests were used to test the association between continuous and
categorical variables, for 2 categories or >2 categories, = respectively. P-values <0.05 were
considered statistically significant. Pairwise correlation of gene expression was calculated using
Pearson coefficient and plotted using complexHeatmap R package. All gene expression heatmaps
show mean-centered log2-transformed normalized counts of each represented gene.
TCGA-BLCA MIBC RNA-seqdata were downloaded from TCGA data portal
using TCGADbiolinks package (R), raw counts were normalized to account for different library
size and the variance was stabilized with VST function in the DESeg2 R-package (62). TCGA-
BLCA samples (n=404) were classified using the consensus system using consensusMIBC R
package.

CCLE urinary tract cell line gene expression were downloaded from the DepMap portal
(https://depmap.org/portal/download/). For consensus classification of CCLE bladder cancer cell

lines, we adapted this classification considering only genes expressed by both tumours and cell
lines. Ten cell lines were classified as Ba/Sq, all other were grouped as non-Ba/Sq.
MGHUS3 RNA-seq bulk data were download from GEO (accession number, GSE171129).



Survival analysis

For Kaplan Meier survival analyses testing the association of gene expression and overall
survival, we used http://tumorsurvival.org/index.ntml tool and divided the samples based on
mean +/- sd. Log-rank P values were calculated to test the association between overall survival
and low vs high expression groups.

Public sScRNA-seg and Basal/Luminal signature

We downloaded the log2 TPM normalized gene expression of single cells from a Ba/Sq subtype
MIBC tumour from the GEO database (accession number, GSM4307111). Initial quality control
excluded genes expressed in less than 3 cells and cells with less than 200 genes. The top 2000
variable genes were used as features for subsequent PCA and the first 9 principal components
were used for cell clustering and visualization by uniform manifold approximation and projection
(UMAP) embedding. The marker genes of the luminal and basal tumour cells were calculated
with Wilcoxon test based approach. The single cell RNA-seq data analyses were performed using
the Seurat v4 package with default parameters unless otherwise specified.

Given the single-cell derived lumina and basal tumour cell signature was based on single-cell
sequencing of primary in vivo tumour sample, and the FOXA1 knock-out perturbation signature is
likely limited to the genes regulated by FOXAL in an in vitro setting, it is important to adopt the
cell subtype signatures to refine to the marker genes regulated by FOXAL, as a FOXA1-depdent
luminal-basal plasticity signature which could be then used for further analyses involving in vitro
transcriptomes. We first compared the perturbation and single-cell signatures by GSEA
(perturbation DEG effect for ranking, and luminal / basal signatures as gene sets of interest) and
found that in RT112 cell line, there was both significant enrichment of luminal signaturein genes
down-regulated in FOXAL KO clones and significant enrichment of basal signature in genes up-
regulated in FOXAL KO clones. We then took the leading edge genes as the adopted FOXA1-
depdent plagticity signature. As validation, this adopted signature showed similar enrichment in
RT112 FOXAL KD assays and SD48 FOXAL KO assays, while the original cell type signature
failed.
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Figure 1. Methodology/Wor kflow

Figure 2: Chromatin states classify bladder cancersby subgroups

A.

B.
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ChromHMM principle example and emission order dividing genome in 6 states based on
combination of H3K27ac, H3K27me3 and H3K9me3 marks.

Expression level association with each chromatin state and each sample.

Two chromatin state clusters revealed by unsupervised analysis of top 1% varying regions
using MDS for dimension reduction plus MNN for batch effect correction.

GSEA functional enrichment analysis of the genes mapped to the MCA Dim2 contributing
features. A negative NES indicates significant enrichment in lower Dim2 coordinates (basal
direction), and the reverseisin higher Dim2 coordinates (Luminal direction).

Luminal versus basal tumour cell signature genes identified with single cell RNA-seq analy-
sis showing concordant enrichment in chromatin state clusters.

Genome Browser view of chromatin states a8 FOXA1 and KRT6 loci with corresponding
RNAseq (VST normalized scaled expression).

Figure 3: Identification of the bladder super-enhancer repertoire and subtype specificities

A.
B.

mn

PCA of H3K27ac signal inside ROSE consensus SE (n=2887) for all samples.

Representative examples of H3K27ac signal in Ba/Sg, Stroma-Rich, Luminal and NMIBC
tumors with corresponding RNA-seq gene expression. Orange boxes represent SE localisa-
tion.

Fold Change plots for differentially bound SES between Ba/Sq and Luminals samples. Sig-
nificance by p-value <0.05.

Plot comparing expression LogFC between Ba/Sq and Luminal samples for genes assigned
to subgroup-enriched SE.

Reactome pathway enrichment analysis of genes associated with Ba/Sq vs Luminal SEs.
Venn diagram comparing 3 differential analyses of SE. NHU-enriched SEs are enriched in
NHU vs Lumina or NHU vs Basal (pink circle). Basal-enriched SEs are enriched in Basal vs
NHU or Basal vs Luminal (red circle). Luminal-enriched SEs are enriched in Luminal vs
NHU or Luminal vs Basal (green circle).

Figure 4: Super-enhancersregulate a network of candidate master transcription factorsfor
bladder cancer subgroups

A.
B.

C.

Cistrome analysis of LumP and Ba/Sq specific SE.

Homer motif enrichment analysis in H3K27ac differential peaks inside differential SE in
Luminal vs Basal and Basal vs Luminal.

Methodology to identify key coregulated SE-associated TFs.

Heatmap of the top 75 TFs with high regulon score. Clustering identified 3 major clusters.
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Heatmap of thetop 75 TFs expression in TCGA-BLCA.

Correlation network of the top 55 TFs with an expression correlation coefficient of min 0.51in
TCGA-BLCA cohort.

Single cell RNA-seq analysis of one Bladder Cancer tumors with both Basal and Luminal
Population (GSM4307111) Right panel, associated expression for key TF in each compart-
ment.

Figure 5. FOXAL binds subgroup-specific bladder super-enhancers and correlates with
their activation

A.

B.

Venn diagram comparing FOXA1 ChlP-seq peaksin SD48 and 5637 cdll line. Heatmap for 3
categories of peaks and associated mean profiles.

Cistrome analysis of motif enrichment analysis in SD48-specific and 5637-specific FOXA1
peaks.

Reactome pathway analysis of genes associated to the 3 categories of FOX AL peaks.

Pie chart showing proportion of SE with an overlapping FOXAL peak (merge of FOXAL
peaks in SD48 and 5637).

Correlation between H3K27ac peaks versus FOXA1 peaksinside SE.

Heatmap of FOXAL1 and H3K27ac reads on FOXA1 peaks overlapping Super-enhancers
ranked by FOXA1 reads ration in SD48 vs 5637.

Genome browser view of GATA3, PPARg and TGFB2 associated SE. SE are highlighted
with orange boxes.

Figure 6: FOXA1 regulatesinflammation and cellular identity

A.
B.
C.

Cdll viability in RT112 and SCaBER under SSRNA treatment against FOXA1
Venn diagram comparing differentially expressed genesin RT112 and SCaBER FOXA1 KD.
GSEA plot of Msig Hallmark GSEA Analysis of genes differentially regulated in RT112 and
SCaBER cdll lines upon FOXA1 siRNA (2 independent SIRNA, 2 replicates)

. Heatmap of genesin Hallmark interferon gamma response genes that are differentialy regu-

lated in FOXA1 KD vs Ct (min Fold Change = 1,5).

Heatmap of Top Luminal TFs expression in RT112 and SCaBER cdll lines upon FOXA1
KD.

PCA projection of TCGA tumors and CRispR mutant clones on the Basal/Luminal signa-
tures.

GSVA analysis of FOXA1 CRispR mutant clones on Urothelial differentiation signature
from Eriksson et .

. GSVA anaysis of FOXA1 CRispR mutant clones on Basal TFsidentified in Fig. 4F

Overrepresentation analysis of DEG in FOXA1 mutant vs Controls.
Volcano plot of Deseg2 RNA-seq analysis comparing pooled CRispR mutant FOXA1 clones
in SD48 and RT112 versus controls.

Figure 7: ZBED2, a novel Basal-associated TF also involved inflammation dampening
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TCGA expression of ZBED2 by Subtypes.

TCGA expression Heatmap of ZBED2 and FOXA1 and TCGA correlation between ZBED2
and FOXA1.

Expression of FOXA1 and ZBED2 in single-cell transcriptomics from bladder cancer cell
lines in the Cancer Cell Line Encyclopedia (CCLE), highlighting the nearly mutually exclu-
Sive expression of these genes.

Genome browser view of ZBED2 and FOXAL1 loci in SD48 and 5637 cell lines

GSEA analysis (Halmarlk) of ZBED2 correated genes in basal cells population of
GSM 4307111 scRNAseq tumor.

GSEA analysis (Hallmarlk) of gene expression upon siZBED2 KD in RT112 (siZBED2-1
and SsZBED2-2).

3'seq STAT2 and CD274 (PD-L1) expression in RT112 and SCaBER after ssZBED2 and
SIFOXA1.
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Chromatin State score difference “basal” vs “non basal” cluster

Figure 2: Chromatin states classify bladder cancers by subgroups
(A) ChromHMM principle example and emission order dividing genome in 6 states based on combination of H3K27ac,
H3K27me3 and H3K9me3 marks. (B) Expression level association with each chromatin state and each sample. (C)
Two chromatin state clusters revealed by unsupervised analysis of top 1% varying regions using MDS for dimension
reduction plus MNN for batch effect correction. (D) GSEA functional enrichment analysis of the genes mapped to the
MCA Dim2 contrib-uting features. A negative NES indicates significant enrichment in lower Dim2 coordi-nates (basal
direction), and the reverse is in higher Dim2 coordinates (Luminal direction). (E) Luminal versus basal tumour cell
signature genes identified with single cell RNA-seq analysis showing concordant enrichment in chromatin state clus-
ters. (F) Genome Browser view of chromatin states at FOXA1 and KRT6 loci with corresponding RNAseq (VST
normalized scaled expression).
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Figure 3: Identification of the bladder super-enhancer repertoire and subtype specificities
(A) PCA of H3K27ac signal inside ROSE consensus SE (n=2887) for all samples.(B) Representative examples of
H3K27ac signal in Ba/Sq, Stroma-Rich, Luminal and NMIBC tumors with corresponding RNA-seq gene expression.
Orange boxes represent SE localisation.(C) Fold Change plots for differentially bound SEs between Ba/Sq and Lumi-
nals samples. Significance by p-value <0.05.(D) Plot comparing expression LogFC between Ba/Sq and Luminal
samples for genes as-signed to subgroup-enriched SE.(E) Reactome pathway enrichment analysis of genes associat-
ed with Ba/Sq vs Luminal SEs.(F) Venn diagram comparing 3 differential analyses of SE. NHU-enriched SEs are
enriched in NHU vs Luminal or NHU vs Basal (pink circle). Basal-enriched SEs are enriched in Basal vs NHU or Basal
vs Luminal (red circle). Luminal-enriched SEs are enriched in Luminal vs NHU or Luminal vs Basal (green circle).
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Figure 4: SE regulate a network of candidate master transcription factors for bladder cancer subgroups

(A) Cistrome analysis of LumP and Ba/Sq specific SE.(B) Homer motif enrichment analysis in H3K27ac differential
peaks inside differential SE in Luminal vs Basal and Basal vs Luminal.(C) Methodology to identify key coregulated
SE-associated TFs.(D) Heatmap of the top 75 TFs with high regulon score. Clustering identified 3 major clusters.(E)
Heatmap of the top 75 TFs expression in TCGA-BLCA.(F) Correlation network of the top 55 TFs with an expression
correlation coefficient of min 0.5 in TCGA-BLCA cohort.(G) Single cell RNA-seq analysis of one Bladder Cancer
tumors with both Basal and Luminal Population (GSM4307111) Right panel, associated expression for key TF in each

compartment.
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Figure 5: FOXA1 binds subgroup-specific bladder super-enhancers and correlates with their
activation
(A) Venn diagram comparing FOXA1 ChlIP-seq peaks in SD48 and 5637 cell line. Heatmap for 3 catego-
ries of peaks and associated mean profiles. (B) Cistrome analysis of motif enrichment analysis in
SD48-specific and 5637-specific FOXAL peaks.(C) Reactome pathway analysis of genes associated to
the 3 categories of FOXAL peaks.(D) Pie chart showing proportion of SE with an overlapping FOXA1
peak (merge of FOXAL peaks in SD48 and 5637).(E) Correlation between H3K27ac peaks versus
FOXA1 peaks inside SE. (F) Heatmap of FOXA1 and H3K27ac reads on FOXA1 peaks overlapping
Super-enhancers ranked by FOXA1 reads ration in SD48 vs 5637.(G) Genome browser view of GATAS,
PPARg and TGFB2 associated SE. SE are highlighted with orange boxes.
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Figure 6: FOXA1 regulates inflammation and cellular identity
(A) Cell viability in RT112 and SCaBER under siRNA treatment against FOXAL. (B) Venn diagram com-
paring differentially expressed genes in RT112 and SCaBER FOXA1 KD.(C) GSEA plot of Msig Hallmark
GSEA Analysis of genes differentially regulated in RT112 and SCaBER cell lines upon FOXA1 siRNA (2
independent siRNA, 2 replicates) (D) Heatmap of genes in Hallmark interferon gamma response genes
that are differentially regulated in FOXA1 KD vs Ct (min Fold Change = 1,5). (E) Heatmap of Top Luminal
TFs expression in RT112 and SCaBER cell lines upon FOXAL KD. (F) PCA projection of TCGA tumors
and CRispR mutant clones on the Basal/Luminal signatures.(G) GSVA analysis of FOXA1 CRispR mutant
clones on Urothelial differentiation signature from Eriksson et al. (H) GSVA analysis of FOXAL1 CRispR
mutant clones on Basal TFs identified in Fig. 4F . (I) Overrepresentation analysis of DEG in FOXAl
mutant vs Controls. (J) Volcano plot of Deseq2 RNA-seq analysis comparing pooled CRispR mutant
FOXAL clones in SD48 and RT112 versus controls.
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Figure 7: ZBEDZ2, a novel Basal-associated TF also involved inflammation dampening

(A) TCGA expression of ZBED2 by Subtypes. (B) TCGA expression Heatmap of ZBED2 and FOXA1 and
TCGA correlation between ZBED2 and FOXAL. (C) Expression of FOXA1 and ZBED?2 in single-cell tran-
scriptomics from bladder cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE), highlighting the
nearly mutually ex-clusive expression of these genes. (D) Genome browser view of ZBED2 and FOXAL1 loci
in SD48 and 5637 cell lines. (E) GSEA analysis (Hallmarlk) of ZBED2 correated genes in basal cells popula-
tion of GSM4307111 scRNAseq tumor. (F) GSEA analysis (Hallmarlk) of gene expression upon siZBED2 KD
in RT112 (siZBEDZ2-1 and siZBED2-2). (G) 3'seq STAT2 and CD274 (PD-L1) expression in RT112 and
SCaBER after siZBED2 and siFOXAL.



