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Abstract  

 

Muscle-invasive bladder cancer (BLCA) is an aggressive disease. Consensus BLCA 

transcriptomic subtypes have been proposed, with two major Luminal and Basal subgroups, 

presenting distinct molecular and clinical characteristics. However, how these distinct subtypes 

are regulated remains unclear. We hypothesized that epigenetic activation of distinct super-

enhancers could drive the transcriptional programs of BLCA subtypes.  

Through integrated RNA-sequencing and epigenomic profiling of histone marks in primary 

tumours, cancer cell lines, and normal human urothelia, we established the first integrated 

epigenetic map of BLCA and demonstrated the link between subtype and epigenetic control. We 

identified the repertoire of activated super-enhancers and highlighted Basal, Luminal and 

Normal-associated SEs. We revealed the super-enhancer-regulated networks of candidate master 

transcription factors for Luminal and Basal subgroups including FOXA1 and ZBED2 

respectively. FOXA1 CRISPR-Cas9 mutation triggered a shift from Luminal to Basal phenotype, 

confirming its role in Luminal identity regulation and induced ZBED2 overexpression. In 

parallel, we showed that both FOXA1 and ZBED2 play concordant roles in preventing 

inflammatory response in cancer cells through STAT2 inhibition. 

Our study furthers the understanding of epigenetic regulation of muscle-invasive BLCA and 

identifies a co-regulated network of super-enhancers and associated transcription factors 

providing potential targets for the treatment of this aggressive disease. 

Abbreviation 

SE, Super-enhancer  

TF, Transcription Factor 

NMIBC, non-muscle-invasive bladder carcinoma 

MIBC, muscle-invasive bladder carcinoma 

BLCA, Bladder Cancer Carcinoma 

Ba/Sq, basal/squamous 

LumU, luminal unstable 

LumNS, luminal non-specified 

LumP, luminal papillary 



Introduction  

 

Bladder cancer is the tenth most common cancer worldwide, accounting for nearly two thousand 

cancer-related deaths globally in 2018 (1). Urothelial carcinoma is classified as non-muscle-

invasive bladder cancer (NMIBC comprising carcinoma in situ, and the pTa and pT1 stages) or 

the aggressive muscle-invasive bladder cancer (MIBC, stages pT2 to pT4), depending on the 

level of invasion into the bladder wall (2). Molecular classifications of bladder carcinomas have 

been established using mainly gene expression profiling studies (3–8). A recent consensus 

classification of MIBC presents six subtypes, from which tumours can be coarsely divided into 

two subgroups: the Luminal and the non-Luminal subgroups. Luminal subgroup comprises three 

Luminal subtypes (LumU, LumNS and LumP) whereas Basal-Squamous subtype (Ba/Sq) 

constitutes the major part of the non-luminal subgroup (3). Luminal tumours, accounting for 

about 50% of MIBCs, present high expression of urothelial differentiation markers (GATA3, 

FOXA1, KRT20, uroplakins) and are enriched in activating mutations of FGFR3. Basal tumours 

also called Basal/Squamous are particularly aggressive and account for ~35% of MIBCs (3). 

They are characterized by the overexpression of markers of the basal layer of the urothelium 

(including KRT5, KRT6), the under-expression of markers of luminal differentiation and 

activation of EGFR (9). Concerning the NMIBC tumours,  the recent UROMOL studies group 

them into 4 classes including Class 1 associated with luminal differentiation and good prognosis, 

and a Class 2a comprising high risk tumours (7, 8). One hypothesis to explain the establishment 

of the different subtypes and their potential plasticity, is that each subtype harbours a regulatory 

network in which various upstream genomic and epigenomic alterations lead to the activation of 

a core set of master transcription factors (TFs) that then determine a transcriptomic downstream 

program. While transcriptional regulators of urothelial differentiation, such as FOXA1, GATA3 

and PPARG, have been established as key regulators of the Luminal phenotypes, the essential 

transcription regulators driving the Ba/Sq subtype have not been elucidated (10–14).  

 

Recent studies have demonstrated that altered enhancer activity drives changes in cell identity 

and oncogenic transformation, notably through large clusters of highly active enhancers called 

super-enhancers (SEs) (15–17). Indeed, targeting SE-driven oncogenesis has become a novel 

therapeutic approach with the advent of BRD4 inhibitors, which inhibit SE activation (18). By 



regulating the expression of a small number of master TFs, SEs can orchestrate cell- or cancer-

specific transcriptional programs. The gold standard for identifying SEs is histone mark profiling 

(17). The ENCODE roadmap, that profiled histone marks in normal and cancer cell lines, has 

become a valuable source of information to uncover chromatin organisation, alteration, and 

subsequent regulation of master regulators but did not include bladder models (19). Recently, two 

studies provided new insights with the profiling of particular histone marks in bladder cancer 

samples and cell lines (20, 21). Here, we further characterized bladder cancer epigenetic by 

integrating transcriptomic and epigenomic profiling of multiple histone marks in human bladder 

tumours, bladder cancer cell lines, and primary cultures from normal urothelia to produce a 

comprehensive bladder cancer epigenetic map. With this map, we demonstrated the link between 

molecular subtype and the underlying epigenetic landscape. Through H3K27ac analysis, we 

established a repertoire of SEs that are specific to distinct subgroups (Luminal, Ba/Sq subtypes, 

as well as Normal primary cells), highlighting SE-associated genes with subgroup-specific 

clinical relevance. From there, we identified the core SE-regulated networks of master TFs that 

distinguish luminal and basal subgroups, including known and new candidate master TFs. 

Finally, through functional knock-down and knock-out experiments, we revealed that one of 

these master TFs (FOXA1) is a key factor in subtype determination antagonized by ZBED2, and 

that both FOXA1 and ZBED2 present the ability to dampen inflammatory response. Overall, this 

work provides new data characterizing epigenetic regulation in bladder cancer. We reveal 

important genes that can be essentials for maintenance of bladder cancer cell identity and present 

potential new targets to treat aggressive bladder cancers.  

 

  



Results 

 

Integrated bladder cancer chromatin landscape 

To elucidate the contribution of chromatin landscape in bladder cancer biology, we generated 

ChIP-seq for active (H3K27ac) and repressive histone marks (H3K27me3, H3K9me3) in 24 

bladder samples (Fig.1). In order to distinguish features of the non-cancerous stromal cells and of 

normal urothelial cells, we used not only human primary tumours (n=15) from the CIT (Carte 

d’Identité des Tumeurs) cohort (9, 22), but also cellular models (7 bladder cancer cell lines) and 

patient-derived Normal Human Urothelium in proliferation (NHU, n=2). Of note, tumors were 

macrodissected to enrich for bladder cancer content (Fig. 1, Fig. S1A). Of the 15 primary 

tumours, we included 13 MIBCs and 2 NMIBCs to assess the stage-dependence of our results 

(Fig. 1A, Fig. S1A, and Table S1). With the aim of identifying subtype-specific epigenetic 

alterations/characteristics, we coupled our ChIP-seq with RNA-seq from the same extraction and 

classified them according to the current consensus subtypes (3). Of the 13 MIBCs, 2 classified as 

stroma-rich, 4 classified as basal/squamous (Ba/Sq) and 7 as luminal, including 1 luminal 

papillary (LumP), 3 luminal unstable (LumU) and 2 luminal non-specified (LumNS). Of the 7 

cell lines, 3 were classified Ba/Sq, 3 LumP and one could not be classified (Table S1)(23).  Using 

the recent UROMOL classifier, the two NMIBC samples classified as class 3 (7, 8). Further 

analysis using subtype deconvolution (WISP, (24)), and previously described regulatory 

signatures (3, 7), revealed that one of the tumours originally classified as Ba/Sq (T391) was 

composed of a mixed population of LumP and Ba/Sq cells (Fig. S1B, S1C). Knowing it's 

important intra-tumoral heterogeneity, tumour T391 was excluded from differential analyses 

between subgroups. Peak calling using MACS showed that ChIP-seq for H3K27ac gave the most 

homogeneous and highest number of peaks across the 24 samples (Fig. S1D).  

We integrated our multi-factorial ChIP-seq profiles using ChromHMM (25), reporting the first 

integrated epigenetic map in bladder cancer in both primary tumour samples and cell lines (Fig. 

2A). Six chromatin states (E1–E6) were assigned according to histone mark enrichments, as 

previously described (ENCODE, Roadmap project (19)), where H3K27ac-enriched regions 

correspond to active promoters and enhancers (E2), H3K27me3 and H3K9me3-enriched states 

associate with repression (E4) or heterochromatin (E6), and regions enriched in both active and 

repressive marks define bivalent enhancers or promoters (E3). Regions without any marks or 



only weak H3K9me3 enrichment were designated as quiescent/no marks (E1) or 

quiescent/weakly repressed (E5), respectively (Fig. 2A, Fig. S2A, B). Analysis of associated 

RNA-seq data confirmed that gene expression correlates with the expected chromatin states (Fig. 

2B). Briefly, genes with transcription start sites (TSSs) in E2 states (active enhancers / 

promoters) have the highest expression levels, followed by those in E3 states (bivalent enhancers 

/ promoters). Minimal expression was noted for genes with TSSs in the remaining states.  

 

Chromatin states classify bladder cancers by transcriptomic subgroups 

Next, we sought to classify our samples based on chromatin states for comparison with molecular 

subtypes. To do this we first performed an unsupervised analysis to select the most distinguishing 

features from the chromatin profiles (see methods, Fig. S2C) and plotted all samples by multiple 

correspondence analysis on the most varying regions (MCA, Fig. S2D). Similar to Principal 

Component Analysis (PCA), but adapted for categorical data, this method of dimensionality 

reduction separates samples in 2D space by proximity according to the primary (Dim 1) and 

secondary (Dim 2) dimensions. Thus, greater differences in chromatin profiles are represented by 

greater distances in the 2D plot. Dim 1 distinguished primary tumour samples from cell lines, 

which could be indicative of chromatin changes associated with cell culture or stroma content. 

Interestingly, Dim 2 distinguished Non-basal from Basal subgroups. To confirm this distinction 

of molecular subtypes, we re-assessed the data with an alternative dimensionality reduction 

method (MDS), coupled to a batch effect-like correction (MNN), which eliminated most of the 

cell line vs primary tumour differences while maintaining and strengthening the distinction 

between Non-Basal and Basal subgroups along Dim 2 (Fig. 2C). Therefore, we identified two 

clusters derived from differences in chromatin state that are associated with molecular subtypes; a 

“basal cluster” containing all Ba/Sq samples (except the mixed T391), and a “non-basal cluster” 

including all luminal, stroma-rich and NMIBC samples (Fig. 2C). Interestingly, NHU cells were 

located at the border between the two groups (Fig. 2C). To explore the biological pathways 

associated with the chromatin profiles that could distinguish Luminal from Basal bladder cancers, 

we ranked genes based on the MCA outputs for Dim 2 and performed Gene Set Enrichment 

Analysis (GSEA (26, 27),  Fig. 2D). As expected, for the basal cluster, we found that active 

chromatin (E2) was strongly enriched at genes involved in decreased Luminal differentiation, 

while repressive chromatin (E4) was strongly depleted for these genes (Fig. 2D). Interestingly, 



genes involved in increased tumour aggressiveness, stemness, extracellular matrix, epithelial-

mesenchymal transition and invasion were also enriched in active chromatin and depleted for 

repressive chromatin in the basal cluster (Fig. 2D). Taking an alternative approach, we derived 

Basal and Luminal gene signatures from an independent publicly available scRNA-seq dataset 

(GSM4307111) and compared these genes with the chromatin states associated with the basal and 

non-basal clusters identified in Fig. 2C (Fig. 2E, see methods).  Luminal signature genes were 

enriched in active state in the non-basal chromatin cluster while Basal signature genes were 

enriched in active state in the basal chromatin cluster, suggesting epigenetic regulation of 

signature genes involved in urothelial differentiation. We further illustrate this relationship with 

two well-described markers of bladder cancer subtypes: FOXA1 and KRT6A (Fig. 2F). FOXA1 

expression is higher in Luminal than Basal tumours (11, 14, 28, 29). In agreement, our results 

showed that FOXA1 was marked with active (E2) chromatin in Luminals (including LumP, 

LumNS and LumU), NMIBC samples, and even NHU cells, but harboured repressive chromatin 

in Ba/Sq tumour samples (Fig. 2F). On the other hand, KRT6A, commonly expressed in Basal 

tumours (3), had active chromatin marks in seven out of eight Ba/Sq samples, as well as NHU, 

but not in any Luminal sample. Taken together, these results demonstrate the importance of 

histone marks in the regulation of gene expression driving cell identity in bladder cancer. 

 

Identification of the bladder super-enhancer repertoire and subtype specificities 

To determine if chromatin profiles identify SEs that could control bladder cancer subtype, we 

determined and annotated typical enhancer and SE regions in our samples using the ROSE 

algorithm (Table S2), which calls enhancers and particularly super enhancers according to 

H3K27ac signal (18, 30). Despite signal correction using input, the number of called SEs was 

notably lower in samples with gene amplification, owing to very high H3K27ac signal in 

amplified regions, thus creating a bias in the ranked enhancer plot (Fig. S3A). To correct for the 

copy-number bias, we set a threshold and defined the top 1000 enhancer regions in each sample 

as SEs for all downstream analyses, approximately representing the mean number of SEs per 

sample (mean = 956 SEs, Table S2).  

To gain insight into subtype-specific enhancer alterations and assess sample similarity based on 

these SE profiles, we determined the global repertoire of SEs in bladder by extracting a 

consensus set of 2887 SEs present in at least 2 of our 24 samples (Table S3). Using PCA of 



H3K27ac signal corresponding only to the consensus SE regions, we again found that samples 

were grouped according to molecular subgroup, separating Basals from Luminals, NMIBC 

segregating with differentiated tumors (Fig. 3A). This reveals that the variability in SE profiles 

reflects the differences in Basal and Luminal transcriptional programs. We also performed PCA 

using H3K27ac, H3K27me3 and H3K9me3 independently for peaks located inside the SE 

consensus regions for the tumour samples alone (Fig. S3B). Interestingly, all three profiles 

separated the Ba/Sq tumors from the other samples, indicating that all three histone marks are 

likely linked to SE regulation of bladder cancer molecular subtypes.  

 

We sought to further explore the functional pathway enrichment of SE-regulated genes. We first 

assigned SEs to their closest and most transcriptionally correlated genes (see methods). For 

example, a large SE mapped close to KLF5, whose expression was correlated with SE activity 

mostly in Luminal samples, as previously reported (31) (Fig. 3B). In contrast, KLF7 was 

regulated by a SE mostly active in Basal samples (Fig. 3B). We then performed pairwise 

differential analyses between subtypes (Fig. 3C, S3C). The comparison between Basal and 

Luminal samples identified 369 subgroup-specific SEs (Fig. 3C, Table S3). By comparing the 

differential SEs to RNA-seq differential expression analysis, we confirmed that luminal-gained 

SEs showed significantly higher expression levels in Luminal samples relative to Basal samples 

and vice-versa for basal-gained SEs (Fig. 3D). We then validated the subgroup-specific SE-

associated genes identified in our samples in a larger dataset, leveraging the gene expression 

profiles of the TCGA-BLCA MIBC cohort across molecular subtypes (n=406) (32, 33). 

Hierarchical clustering of TCGA samples using the genes associated to the most differentially 

regulated SEs in our consensus repertoire recovered the molecular classification (Fig. S3D, Table 

S3). Strikingly, differential analysis between Basal and Luminal SEs revealed that Luminal-

specific SEs were attributed to known transcriptional drivers of the luminal phenotype, namely 

GATA3, PPARg, FOXA1 (14, 22). Luminal-gained SEs were associated with “Signalling by 

TGF-beta family members”, notably due to SEs annotated close to negative regulators of TGF-

beta signalling such as the E3 Ubiquitin ligase SMURF1 or SMAD6 (Fig. 3C, E, Table S4). In 

contrast, SE regions significantly bound at higher levels in the Basal tumours were associated 

with genes known to contribute to Basal cancer biology such as EGFR, but also less 

characterized genes with regards to bladder cancer biology, such as genes related to inflammation 



and FOXO signalling (IL7R, FBX032), signalling by Interleukin or signalling by MET, the 

activation of which is often correlated with BLCA progression (34) (Fig. 3E). We also identified 

genes encoding membrane receptors (IL7R, OSMR, EGFR) and transcriptional regulators (BNC2, 

HMGA2, KLF7, NR3C1) as enriched in Basal tumours (Fig. 3C). Taking advantage of the NHU 

samples in our cohort, we extracted differential SEs in three comparisons (Ba/Sq vs NHU vs 

Luminals, Fig. S3C, Fig. 3F). This analysis validated the identification of genes that could be 

specific to cancer biology, such as IL7R, OSMR, JUN, NR3C1 in Ba/Sq subtype, or NPAS2, 

FOXQ1, GRHL3 in Luminal samples (Fig. 3F). Overall, we established a first SE repertoire for 

bladder cancer, highlighting subgroup-specific, cancer-specific SE activation coupled with gene 

expression. 

 

Super-enhancers regulate a network of candidate master transcription factors for bladder 

cancer subgroups 

SEs often regulate the expression of master TFs, forming autoregulatory loops and correlated 

networks (35, 36). Having established the SE landscape in bladder cancer, we next sought to 

determine which master regulators control the subtype-specific transcriptional programs. To this 

end, we overlaid the genomic coordinates of subgroup-specific peaks inside SEs with publicly 

available ChIP-seq datasets (37, 38). Our analysis revealed that Luminal-specific SEs were 

significantly enriched in several TF binding sites (Fig. 4A, Table S5), including known regulators 

of Luminal subtypes FOXA1, GATA3, and ESR1 (3, 14, 32). Basal-specific SEs were enriched 

in binding sites of a different set of regulators, including components of the AP-1 complex 

(FOSL1, FOSL2, JUND, JUNB), as well as SMAD2/3, NFkB, and STAT3. Further DNA motif 

enrichment analysis comparing Basal differential peaks inside subgroup-specific SEs over 

Luminal ones, again identified AP-1 as a potential regulator of Basal SEs, as well as FOXA1, 

FOXA1:AR, GATA, and GRHL1/2/3 for Luminal SEs (Fig. 4B, Table S5, Homer (39)).  

However, motif binding and ChIP-seq data are not available for all known TFs. To overcome this 

issue, we designed a method to identify subgroup-associated TFs and their co-regulated networks 

based on our differential SEs and the large transcriptomic cohort from the TCGA (32) (Fig. 4C). 

We selected TFs that were regulated by differential SEs (Basal vs Luminal), according to 

annotations from Lambert et al. (40), and that were differentially expressed in TCGA Ba/Sq vs 

Luminal subgroups. Then, we used ARACNe (41) and VIPER (42) analysis to identify and 



evaluate the regulons (group of genes regulated in response to one transcription regulator) of the 

75 resulting TFs. Hierarchical clustering of the resulting TF regulons clustered scores into three 

groups, which were respectively associated with Luminal, Ba/Sq or Stroma-Rich subtypes (Fig. 

4D, E). Since master TFs form interconnected networks with highly correlated levels of 

expression, we selected only TFs whose expression was correlated with that of at least one of the 

other TF in TCGA-BLCA data (Pearson correlation coefficient ≥0.5, n=55), and built the top 

correlated network based on subtype-specific SE-associated TFs (Fig. 4F) (see methods). This 

strategy identified a large module of Luminal TFs, including known Luminal-associated TFs 

(e.g., FOXA1/GATA3/PPARG), as well as TFs with yet unexplored roles in Luminal bladder 

cancer biology (e.g., HES1, FOXQ1, ZBTB7C, MECOM, GRHL2/3 and TBX3). Unlike for 

Luminals, few TFs have been characterized as key regulators of Basal tumours. Our analysis 

revealed a network of TFs whose activity could be essential to Basal bladder cancer biology, 

including HMGA2, KLF7, NR3C1 and ZBED2. Notably, ZBED2 has recently been associated 

with basal identity in keratinocytes (43) and regulation of inflammation in pancreatic cancer (44).  

Combining analyses of tumour and cell lines SEs should avoid the identification of master TFs 

expressed by the stroma. In fact, we found that TFs associated with the Luminal network showed 

strong expression correlation in TCGA-BLCA and in CCLE bladder cell cohorts (45) (Fig. S4A, 

B) while expression correlations of Stroma-Rich or Basal-associated TFs (e.g., ZEB1, SPI1) in 

the TCGA  were lower for urothelial cell lines in the CCLE (46) (Fig. S4A, B). This indicates 

that expression of those TFs could be dependent on growing conditions and/or interactions with 

the tumour microenvironment.  

To validate our Luminal- and Basal-specific TF networks, we analysed public single-cell RNA-

seq data of a tumour presenting both a Luminal and a Basal cell population (GSM4307111, Fig. 

S4C). The Luminal-associated TFs FOXA1, GATA3 and PPARG were mostly expressed in the 

Luminal cell cluster, whereas ZBED2, HMGA2, and KLF7, newly identified as part of the Basal 

TF network, were mostly expressed in the Basal cell clusters (Fig. 4G), validating our subgroup-

specific networks. Together, these analyses identified a targeted subset of interconnected 

candidate master TFs that could represent key regulators of bladder cancer subgroup identity.  



 

FOXA1 binds subgroup-specific bladder super-enhancers and correlates with their 

activation 

We identified FOXA1 as one of our candidate master TFs for the Luminal bladder cancer 

subgroup. FOXA1 is a known pioneer factor with a demonstrated impact on Luminal bladder 

cancer biology (29, 32, 47), though the mechanism for how FOXA1 regulates cell identity is 

unknown. To better assess the role of FOXA1 in the regulation of bladder cancer SEs, we 

mapped FOXA1, CTCF (Insulator/enhancers) and H3K4me3 (Promoter) binding by ChIP-seq in 

two bladder cancer cell lines: SD48 (LumP) and 5637 (Ba/Sq). FOXA1 binding was mostly 

found outside promoters (Fig. S5A), with 61,083 FOXA1 peaks detected in SD48 cells and 

39,445 in 5637, an expected variation as FOXA1 was more abundant in Luminal cells. Despite 

such differences, we identified three classes of FOXA1 peaks: SD48-specific peaks, peaks 

overlapping in the two cell lines, and 5637-specific peaks (Fig. 5A, Fig. S5B), which suggests 

that FOXA1 has specific targets in each cell line and subtype. Interestingly, when analysing TF 

binding sites from publicly available ChIP-seq data, SD48-specific FOXA1 peaks were highly 

enriched not only for FOXA1 binding sites, but also GATA3 binding sites (Fig. 5B), which could 

indicate a functional partnership between FOXA1 and GATA3 for regulation of the Luminal 

program, as suggested by Warrick et al. and described in breast cancer (14, 48). Surprisingly, 

5637-specific FOXA1 peaks were mostly enriched at AP-1 binding sites and not FOXA1 sites 

(Fig. 5B, Fig. S5B). Both enrichments were confirmed by Homer motif analysis of SD48-specific 

peaks versus 5637-specific peaks or vice and versa (Fig. S5C and D, (39)). Ontology comparison 

of genes associated with the three classes of FOXA1 peaks showed that 5637-specific peaks were 

enriched in terms associated with Ba/Sq super-enhancers (e.g. Signalling by Tyrosine Kinase, 

Signalling by MET, Signalling by Interleukin), indicating that FOXA1 might be involved in the 

regulation of both Luminal and Basal bladder cancer subtypes (Fig. 5C). Indeed, FOXA1 binding 

in the two cell lines overlapped with most (87%) of the total repertoire of bladder SEs (Fig. 5D) 

and correlated strongly with H3K27ac levels at these loci (Fig. 5E, F), in line with a role for its 

regulation of these SEs. Notably, FOXA1 bound at SEs associated with genes involved in 

regulating urothelial differentiation and strongly correlated with increased H3K27ac at these loci. 

This could clearly be observed for the Luminal-specific SEs associated with GATA3 or PPARG 

in the Luminal SD48 cells and in both cell lines for the non-specific PPARG SE. But we also 



found FOXA1 binding associated with high H3K27ac at certain Basal-specific SEs in the Basal 

5637 cells, such as TGFB2 (Fig. 5G). This implies that FOXA1, even if expressed at a low level 

as in Ba/Sq cells, could play an important role in BLCA biology, through enhancer/SE regulation. 

In summary, FOXA1 may regulate bladder cell identity through binding of subgroup-specific 

bladder SEs with partners such as GATA3 in Luminal cells and AP-1 in Basal cells. 

 

FOXA1 regulates inflammation and cellular identity 

To better understand FOXA1 function, we performed short-term (<72h) knock-down in both 

Luminal and Basal models. Knock-down of FOXA1 by siRNA decreased clonogenicity and 

proliferation of both Luminal and Basal cells (Fig. S6A, B) and it reduced cell viability in both 

RT112 (LumP subtype) and SCaBER (Ba/Sq) cells, with a stronger impact in RT112 (Fig. 6A). 

Furthermore, FOXA1 knock-down in RT112 and SCaBER cell lines dramatically altered gene 

expression (Fig. 6B, Table S6). The downregulated genes were related to cell cycle and 

checkpoint pathways, consistent with the reductions in viability and proliferation upon FOXA1 

knock-down. Surprisingly, the upregulated genes in both cell lines were strongly associated with 

inflammatory signalling and interferon response (Fig. 6C, Fig. S6D). Notably, FOXA1 knock-

down induced upregulation of master interferon response TFs, STAT1 and STAT2, and key 

genes involved in the regulation of inflammation in human cancer, including the immune 

checkpoint modulator CD274 (PD-L1) (Fig. 6D), which we also identified as a downregulated SE 

in both Luminal and Basal vs NHU cells (see earlier Fig. 3F). While our FOXA1 ChIP-seq in 

Luminal and Basal cell lines showed FOXA1 binding at many interferon responsive genes, we 

did not observe strong FOXA1 enrichment on STAT1, STAT2 or CD274 promoters or enhancers 

(Fig. S6E). This suggests that the upregulation of these genes upon FOXA1 knock-down is 

independent of FOXA1 binding of their regulatory elements, in agreement with recent work 

showing that FOXA1 directly binds and inhibits the STAT2 protein to dampen inflammation in a 

chromatin-independent manner (49). Interestingly, if FOXA1 knock down triggered interferon 

response in both Luminal and Basal models, its depletion affected the Luminal network of co-

regulated TFs only in RT112 cells and not in SCaBER (Fig. 6E).  PCA projection of TCGA-

BLCA transcriptomes together with that of our knock down cells on our scRNA-seq-derived 

Basal/Luminal signature space confirmed that FOXA1 acute depletion induced a small but 

consistent shift from Luminal towards Basal subtype only in RT112 cells (Fig. S6F, see 



methods). Therefore, in agreement with a previous study (14), short-term knock-down of FOXA1 

showed a consistent but mild impact on cell identity, not sufficient to majorly alter the subtype of 

the luminal cells.  

Altering the epigenetic landscape could indeed take a longer time. To determine if FOXA1, 

through its binding to the SE repertoire, regulates the bladder cancer epigenetic landscape and 

subsequently cellular identity, we produced FOXA1 CRISPR mutant clones allowing long-term 

FOXA1 inactivation in two Luminal cell lines (SD48 and RT112, Fig. S6G). Despite 

fundamental differences between RT112 and SD48 cellular models and heterogeneity between 

clones due to clonal selection, transcriptomic analysis of 3’ RNA-seq data by PCA distinguished 

CRISPR FOXA1 mutant clones from wildtype (WT) (Fig. S6H). Importantly, PCA projection of 

TCGA-BLCA transcriptomes together with that of our WT and mutant clones on the 

Basal/Luminal signature space showed that mutation of FOXA1 induced a strong shift from the 

Luminal cluster to the Basal cluster (Fig. 6F). GSEA analysis confirmed that FOXA1 mutants 

were enriched for our Basal signature and depleted for our Luminal signature (Fig. S6I)(26, 27). 

GSVA analysis further revealed that FOXA1 mutant clones were less differentiated than WT 

controls (Fig. 6G, (11)) and tended to express higher levels of TFs associated with the Basal TF 

network (Fig. 6H, Fig. 4F). Differential gene expression analysis revealed 1040 and 1102 

Differentially Expressed Genes (DEGs) in RT112 and SD48, respectively, when comparing 

FOXA1 mutant clones to WT (Fig. S6J). FOXA1 mutant DEGs were associated with EMT, 

KRAS signalling and the inflammatory response pathway (Fig. 6I), all linked to Basal 

phenotypes. Intriguingly, differential analysis of FOXA1 mutants vs WT revealed increased 

expression of NR3C1 and ZBED2 in the mutants, two of the candidate master TFs identified in 

our Basal TF network (Fig. 6J, Table S7). In summary, our results demonstrate that loss of 

FOXA1 promotes a clear shift from Luminal to Basal cell identity. 

 

ZBED2, a novel Basal-associated TF involved in inflammation dampening   

To further explore the interconnected network of candidate master TFs, we chose to examine 

ZBED2 as one of the TFs in the Basal network since it was upregulated by FOXA1 CRispR 

inactivation, and because of recent work in keratinocytes that identified a role for ZBED2 in the 

basal phenotype (43). ZBED2 expression in the TCGA-BLCA cohort is upregulated in the Ba/Sq 

subtype (Fig. 7A) and correlates with poor survival prognosis (Fig. S7A). ZBED2 expression is 



negatively correlated with FOXA1 expression in the TCGA cohort (Fig. 7B), but more 

interestingly scRNA-seq in CCLE bladder cell lines shows that FOXA1 and ZBED2 expression 

are often mutually exclusive (Fig. 7C). As little is known about the ZBED2 TF, we used 

ARACNE/VIPER algorithms to identify the ZBED2 regulon based on TCGA-BLCA expression 

data. Interestingly, FOXA1 was predicted as a ZBED2 target, with the most negative weight, 

whereas two genes associated with Basal-specific SEs (IL7R and CAV1) were in the top 10 

positive ZBED2 regulon weights (Fig. S7B). Using ZBED2 ChIP-seq data from pancreatic 

cancer cell lines (44) (the only ZBED2 ChIP-seq reported so far), we found a high confidence 

ZBED2 peak in the FOXA1 promoter (Fig. 7D, left). Analysis of the RNA-seq data from the 

same study revealed that ZBED2 overexpression triggered downregulation of FOXA1 (Fig. S7C, 

p=0.004). In our data, we found that the ZBED2 SE was highly enriched in FOXA1 binding in 

SD48 luminal cells, whereas FOXA1 binding was significantly decreased in 5637 Ba/Sq cells, 

and negatively correlated with ZBED2 expression (Fig. 7D, right). Overall, these findings 

suggest that FOXA1 and ZBED2 could negatively regulate each other to promote or maintain 

Luminal or Basal identity, respectively. 

On the other hand, ZBED2 has been shown to inhibit STAT2 and dampen inflammation by direct 

competition with IRF1 for Interferon Responsive Element binding in the pancreas (44). We 

therefore sought to determine if ZBED2 is involved in the downregulation of interferon signalling 

in bladder cancer, potentially through interfering with FOXA1-activated pathways. Intriguingly, 

ZBED2 expression in the TCGA-BLCA cohort positively correlated with interferon gamma 

associated gene expression (Fig. S7D), which could be an indication that ZBED2 increases in 

response to inflammation at the cell population level, or vice versa. We then examined the 

correlation between ZBED2 expression and different cellular pathways at the single-cell level 

using publicly available scRNA-seq data (50). Our analysis revealed that ZBED2 expression anti-

correlates with interferon response and positively correlates with cell cycle progression and E2F 

targets within the same cell (Fig. 7E), suggesting that the positive correlation with interferon 

response in the bulk RNA-seq data reflects increased levels of ZBED2 expression and interferon 

response genes in different subpopulations of cells. To test this association further, we knocked 

down ZBED2 by siRNA and performed bulk 3’ RNA-seq in two BLCA cell lines. Strikingly, 

downregulation of ZBED2 increased expression of interferon response genes and decreased 

expression of cell cycle progression and E2F target genes (Fig. 7F). Furthermore, siZBED2 in 



both RT112 and SCaBER cells increased gene expression of STAT2 and CD274 (Fig. 7G) and 

tended towards decreased cell viability (Fig. S7E). Therefore, ZBED2 directly dampens 

interferon response in bladder cancer, in agreement with its reported role in the pancreas (44). 

Notably, siRNA of FOXA1 induced strong STAT2 and CD274 expression, while double knock-

down of both FOXA1 and ZBED2 partially dampened this response compared to siFOXA1 alone 

(Fig. 7G), suggesting that the inflammatory response resulting from FOXA1 knock-down is 

partially dependant on ZBED2 target genes. In conclusion, both FOXA1 and ZBED2 inhibit 

inflammatory response and promote bladder cancer cell survival. 

 

  



Discussion:  

Epigenetic mechanisms are essential for the establishment and maintenance of cellular identity 

notably through SE regulation of master transcriptional regulators (17). Bladder cancer has been 

extensively studied at the transcriptomic level, but until two recent studies, very little was known 

about its epigenetic landscape (21).  

Here, we report a large epigenetic profiling of both bladder cancer primary tumours and bladder 

cancer cell lines representative of the main molecular subtypes, as well as NHU cultures, using 

three histone marks ChIP-seq and paired RNA-seq. Using integrative analyses, we established a 

comprehensive chromatin state map of bladder cancer and showed that Basal and Luminal 

subgroups can be distinguished by their chromatin profiles. This map can be used to identify new 

genes or regulatory regions for diagnostic, prognostic or pharmacological targeting.  

We characterized the bladder SE repertoire, and through differential analysis identified subgroup-

specific and cancer-specific SE activation. Our study corroborates and expands the two recently 

reported enhancer landscapes of bladder cancer (20, 21). Consistent with prior reports, Luminal-

activated SEs were located in proximity to known key regulators of the Luminal phenotype, 

namely FOXA1, GATA3, and PPARG (3, 14, 21), and to new Luminal-associated genes, such as 

NPAS2 and GRHL2 – also identified by Iyyanki et al. (20) – or KLF5, recently characterized as 

activated through super-enhancer amplification in various squamous cell carcinomas (31). 

Importantly, based on our data for 7 Ba/Sq samples, we were able to identify higher enhancer 

activity associated with potential key genes in Basal tumour biology, including cell surface 

receptors (IL7R, OSMR, EGFR, MET) and transcriptional regulators (BNC2, HMGA2, KLF7, 

NR3C1).  

We further characterized subgroup-associated master regulators and co-regulated networks for 

both Luminal and Ba/Sq subgroups using two complementary approaches, in order to overcome 

issues linked to low expression, unknown binding motifs or multi-partner complexes. First, we 

identified TFs with enriched binding sites or DNA motifs in subgroup-specific SEs. Second, we 

combined SE activity in our cohort with regulon analysis of TCGA data to identify master 

regulator networks for Luminal and Basal subgroups. The first approach, based on public ChIP-

seq data, validated the role of TFs involved in urothelial differentiation in Luminal SE activity, 

namely FOXA1 and GATA3, but also revealed that the AP-1 complex regulates Basal SEs. AP-1 

has been shown to drive reprogramming of breast cancer cells from a Luminal to a Basal 



phenotype during treatment resistance acquisition through high-order assemblies of transcription 

factors (48). Thus, a role for AP-1 in driving Basal enhancers and cell identity in bladder cancer 

suggests AP-1 inhibitors as potential therapeutic options for this aggressive disease. Interestingly, 

our mapping of FOXA1 binding sites in two different cell models indicated that the pioneer 

factor binds most bladder-associated SEs, even if its DNA binding motif is mostly found in the 

Luminal-specific SEs. The mapping of FOXA1 binding also confirmed that FOXA1 binding sites 

in Basal enhancers are associated with AP-1 localisation, suggesting that AP-1 could play an 

important role in the regulation of Basal regulatory regions through FOXA1 recruitment—or 

trapping—at discrete chromatin loci. By combining the ChIP-seq approach with regulon analysis, 

we were able to highlight new Luminal-associated TFs, in addition to known Luminal master 

regulators (FOXA1, GATA3, PPARG) and the recently identified NPAS2 (20). Importantly, we 

also identified a Basal TF network, including ZBED2, KLF7, HMGA2, NR3C1 as major 

regulators, whose expression was restricted to the basal component of tumours, according to 

scRNA-seq data. To our knowledge, the role of these TFs has not been investigated in bladder 

cancer biology.  

With regards to ZBED2, a scRNA-seq study revealed that it promotes basal cell identity of 

keratinocytes (43). Another study demonstrated that in pancreatic cancer, ZBED2 represses 

differentiation and dampens STAT2-mediated inflammatory response through IRES binding 

competition with IRF1 (44). Previous work showed that the three master Luminal TFs (FOXA1, 

GATA3, and PPARG) had to be perturbed simultaneously to induce a cell identity switch from 

luminal to basal (14). However, we found that while short term knock-down of FOXA1 had a 

mild effect on cell identity, the long-term inactivation of FOXA1 alone through CRISPR 

mutation was sufficient to induce a shift from Luminal to Basal subgroup in luminal cells, 

highlighting the role of FOXA1 in the regulation of cell fate. Moreover, we demonstrated that 

this major shift is accompanied by activation of one of our newly identified Basal network TFs, 

ZBED2. Despite its known role as an activator of transcription, FOXA1 has also been associated 

to direct repression of transcription (51). ZBED2 is described as a transcriptional repressor (44). 

Therefore, FOXA1 and ZBED2 could repress each other, defining a new cell identity regulatory 

loop. Through functional knock-down and knock-out experiments, we verified that FOXA1 and 

ZBED2 have antagonistic but interconnected functions in cell identity. However, ZBED2 is 

expressed at a very low level and additional experiments, including overexpression models are 



needed to validate its repressive function on FOXA1, or vice versa, and its potential role in 

Luminal to Basal plasticity.   

Finally, our work also uncovers a role for both FOXA1 and ZBED2 in the regulation of 

inflammation in bladder cancer. While they play antagonistic roles in the regulation of cell 

identity, we found that they share a common function in inhibiting inflammation. Short term loss 

of either FOXA1 or ZBED2 triggers an inflammatory response, identified through STAT2 

overexpression, in agreement with the study of ZBED2 function in the pancreas [44]. The low 

FOXA1 binding enrichment at STAT2 in our FOXA1 ChIP-Seq experiments suggest that 

FOXA1 could have a repressive function of inflammation presumably independent of its 

chromatin binding. These conclusions are in accordance with the recent work of He et al. [57] 

characterizing a chromatin independent function of FOXA1, which, by direct binding of STAT2 

protein, inhibited STAT2-mediated inflammation. This could explain the limited infiltrate of 

luminal tumours, expressing high levels of FOXA1. 

Therefore, given the dual role of FOXA1 and ZBED2 in the regulation of cell identity and 

inflammation, it will be important to study their link with tumour plasticity and in response to 

immunotherapy. Although direct inhibitors do not yet exist, targeting FOXA1/ZBED2 or the 

upstream or downstream signaling pathways, may improve sensitivity to immune-based 

therapies. Similarly, it will be worth studying the effect of interferon treatment on FOXA1 and 

ZBED2 inhibited inflammation as it could be used to overcome the inflammation inhibition 

induced by these two master regulators.  

If FOXA1 and ZBED2 revealed promising features, our study identified numerous other super 

enhancers, associated genes and master regulators that could be explored for pharmacological 

targeting.  

General targeting of SEs with BRD4 inhibitors has shown efficiency, in particular in cancers with 

specific SE single mutation alterations or with the activation of MYC SE in leukemia or 

lymphoma (18, 52, 53). However, those treatments show mild efficiency in solid tumours and 

enhancer rewiring has been associated to resistance to treatment. Identification of SEs associated 

with bladder cancer and subgroups may pave the way for further research into targeting activated 

master regulators, upstream/downstream activated pathways or even with the advent of RNA and 

CRISPR technology, directly targeting SEs.  



Conclusions 

We provide an integrated epigenomic and transcriptomic map of bladder cancer constituting a 

new comprehensive tool to study epigenetic regulation of muscle-invasive bladder cancer. We 

revealed Luminal and Basal coregulated networks of super-enhancers and associated 

transcription factors as new potential targets with important clinical relevance. Our findings and 

functional assays on FOXA1 and ZBED2 demonstrate that the SEs and TF networks identified 

herein represent prime targets for further pre-clinical investigation for bladder cancer treatment. 

  



MATERIALS and METHODS 

 

Biological Resources 

Cell lines and culture 

The human bladder cancer derived cell lines RT112, 5637, KK47, and SCaBER were obtained 

from DSMZ (Heidelberg, Germany). MGH-U3, KK47 and SD48 cell lines were provided by 

Yves Fradet (CRC, Quebec), Jennifer Southgate laboratory (previously of Cancer Research   

Unit, St   James’s University Hospital, Leeds, UK), and Henri Mondor Hospital (Créteil, France), 

respectively. The L1207 cell line was derived from tumour T1207 (25). RT112 and 5637 cells 

were cultured in RPMI medium, L1207 were cultured in DMEM-F12 and all the other cell lines 

were cultured in DMEM medium. All cell media were supplemented with 10% fetal bovine 

serum (FBS). Normal human urothelium (NHU) cells were obtained from normal ureter 

urothelium from healthy kidney donors from Foch hospital and were cultured as previously 

described (26). All cells were cultured at 37°C in an atmosphere of 5% CO2 and were routinely 

tested for mycoplasma contamination. 

Patient tumour tissue processing 

We selected human tumours with an available OCT-compound frozen block from our CIT (Carte 

d’Identité des Tumeurs) cohort (9, 22). Each block was frozen-sectioned and stained with 

hematoxylin and eosin. Pathology review was performed to confirm the tumour stage and to 

select tumour areas, in order to enhance neoplastic content (estimated at 30 to 95%, median 

tumour cell content = 65%). For tumours with sufficient material, tumour-enriched areas were 

macrodissected from the frozen block and manually finely ground in a mortar. Frozen ground 

tumour tissue was kept at -80°C until further processing. 

The characteristics of the tumours are shown in Table 1. 

CRispR vectors, siRNA  

siRNA and CrispR vectors used in the study are referenced in supplemental information file. 

 

Chromatin immunoprecipitation and sequencing 

Tumour chromatin cross-linking and extraction 

In order to obtain efficiently disrupted tissue, the frozen ground material (15mg) was further 

homogenized using a tube pestle or the TissueLyser II system (Qiagen). Disrupted tissue was 



then processed using the reagents from the iDeal ChIP-seq Kit for Histones (Diagenode), 

according to the manufacturer’s instructions. Briefly, the tissue was homogenized and washed in 

1ml PBS-protease inhibitor cocktail. DNA-protein cross-linking was ensured with an 8-minute 

incubation in 1% formaldehyde then quenched with 0.125 M glycine for 5 minutes. Cells were 

then washed and lysed. Centrifuged cell lysates were resuspended in shearing buffer and 

sonicated using the Pico Bioruptor device (Diagenode) for 15 minutes (30s ON/30s OFF). 

Following a centrifugation at 16000g for 10 minutes, an aliquot was reserved to control the 

sonication and the remaining supernatant was stored at -80°C. Sonication efficiency was 

controlled for each sample on the aliquot of sheared chromatin by overnight reverse cross-

linking, DNA was purified using the phenol-chloroform method and 2% agarose gel 

electrophoresis was used to determine DNA fragment size.  

Tumours ChIP-seq 

Tumour samples with optimal chromatin fragment size (200-500 bp) were immunoprecipitated 

using the iDeal ChIP-seq Kit for Histones (Diagenode). Magnetic immunoprecipitation of 

sheared DNA-chromatin complexes (500ng) was performed overnight using a rabbit polyclonal 

histone H3K27acetyl ChIP Grade antibody (ab4729, Abcam), H3K27me3 (Active Motif, ref. 

39155), and H3K9me3 (Active Motif, ref. 39161). Magnetic immunoprecipitation beads were 

washed the following day. The captured chromatin as well as non-immunoprecipitated input 

chromatin underwent elution and reverse cross-linking steps. DNA purification was performed 

using iPure magnetic beads. Immunoprecipitation (IP) efficiency was verified by qPCR 

according to the manufacturer’s protocol. Library preparation from IP DNA and input DNA was 

performed using the Diagenode MicroPlex Library Preparation kit v2. The resulting amplified 

libraries were assessed using the Bioanalyzer system 2100 (Agilent) and sequenced using the 

HiSeq 4000 platform (Illumina) as single-read 50 base reads, following Illumina’s instructions. 

Reads were aligned to the reference genome (Hg19) using Bowtie 1.0.0. 

Cell line ChIP-seq 

Cell lines cultures were crosslinked directly in the growing medium with formaldehyde 1% for 

10 minutes at room temperature. The reaction was stopped by adding Glycine with a final 

concentration of 0.125M for 10 minutes at room temperature. Fixed cells were rinsed 3 times 

with PBS containing protease inhibitors, pelleted, and resuspended in lysis buffer (10mM EDTA, 

pH8, 50mM Tris-HCl pH8, SDS 1%). After centrifugation, the ChIP was performed using ChIP-



IT High Sensitivity kit (Active Motif, Carlsbad, CA, USA), following the manufacturer’s 

instructions. Chromatin was sonicated in a bioruptor Pico device (Diagenode) for 10 min (30s 

ON/30s OFF). Sheared chromatin was immunoprecipitated using an H3K27ac antibody (Abcam 

ab4729). Sheared chromatin was used as input-DNA control. 

ChIP-seq libraries were prepared using NEXTflex ChIP-Seq Kit (#5143-02, Bioo Scientific) 

following the manufacturer's protocol (V12.10) with some modifications. Briefly, 10 ng of ChIP 

enriched DNA were end-repaired using T4 DNA polymerase, Klenow DNA polymerase and T4 

PNK, then size selected and cleaned-up using Agencourt AMPure XP beads (#A63881, 

Beckman). A single ‘A’ nucleotide was added to the 3’ ends of the blunt DNA fragments with a 

Klenow fragment (3' to 5'exo minus). The ends of the DNA fragments were ligated to double 

stranded barcoded DNA adapters (NEXTflex ChIP-Seq Barcodes - 6, #514120, Bioo Scientific) 

using T4 DNA Ligase. The ligated products were enriched by PCR and cleaned-up using 

Agencourt AMPure XP beads. Prior to sequencing, DNA libraries were checked for quality and 

quantified using a 2100 Bioanalyzer (Agilent). The libraries were sequenced on the Illumina Hi-

Seq 2500 as single-end 50 base reads following Illumina’s instructions.  Sequence reads were 

mapped to reference genome hg19 using Bowtie 1.0.0. 

 

ChIP-seq data analysis and integration 

Peak detection was performed using MACS2 (model-based analysis for ChIP-seq 

v2.1.0.20140616) software under settings where input samples were used as a negative control. 

We used a default cutoff and -B option for broad peaks.  

To identify enhancer regions in each tumour we used ROSE (Ranked Ordering of Super-

Enhancers) algorithm (18, 30), with the following parameters: 12.5kb stitching distance, 

exclusion of promoter regions 2500 bp around TSS. For each sample, stitched enhancer regions 

are normalized, ranked and plotted. The regions above the inflexion point are considered super-

enhancers by the algorithm. However, the number of called super-enhancers was notably lower in 

cases with a known amplified gene. The very high H3K27ac signal in the amplified region likely 

created a bias in the plot of ranked enhancers. To correct for this bias, we set a threshold to the 

top 1000 ranked enhancers to select candidate super-enhancer regions.  

Heatmaps and PCA of ChIP-seq signal were performed using Diffbind R package (version 

2.16.0) or Easeq (54). For super-enhancers analysis, the top 1000 SE regions of either tumours or 



cell lines were merged for a consensus using Diffbind. Then, H3K27ac signal was calculated in 

the consensus peak for each sample. Differential analysis between molecular subtypes was 

performed with Diffbind and DESeq2 default parameters using both IP and input bam files, and a 

file containing the consensus super enhancer regions evaluated for differential analysis as input. 

Regions with an pval <0.05 were considered differentially bound.  

Genomic annotation and pathway enrichment analyses were performed using ChIPseeker, 

clusterProfiler and GREAT (28). 

Chromatin Binding enrichment analysis 

Factor binding analyses were performed using public data available in Cistrome DB Toolkit (37, 

38). DNA binding motif analysis was performed using HOMER known motif function (39). 

Genomic annotation of the SE regions and cis-regulatory genes 

SE activity and gene expression was jointly analysed to determine the cis-regulatory between the 

SE and genes on proximity. In brief, the overlap / proximal genes corresponding to each SE were 

annotated using GREAT/ROSE tools, as the candidate proximal genes regulated by the SE (30, 

55). The spearman correlation coefficients between SE activity (H3K27ac read counts, 

log2RPKM normalized) and the expression of the candidate genes (RLE normalized) were 

calculated in the tumours. The gene whose expression showing the highest correlation with the 

activity of the corresponding SE was determined as the gene most likely regulated by the SE. The 

SE-gene relationships within the top 1% were also given, not limited to the proximal genes. The 

number of germline single nucleotide polymorphisms (SNPs) within a given SE as well as their 

association with bladder cancer (median –log10 p-value) was provided based on the UK biobank 

GWAS summary statistics (Neale lab Round 2, ukb-d-C67, extracted from the MRC IEU 

OpenGWAS database) (56).  The germline SNPs falling within the SEs and with published 

GWAS-level association with BCa or with –log10P.value > 5 in GWAS summary statistics 

(PhenoScanner v2 database) were provided as GWAS SNPs within the SEs (57). For the genes 

most likely regulated by a given SE, we provided their median CERES dependency score of all 

and urothelial cancer cells from the Cancer Dependency Map database (45), as well as the p-

value for difference between the two. We checked if any bias compared to the background in 

mutation type (missense, non-sense, synonymous, etc.) for the protein coding genes by Chi-

square test. We checked if they were within the list of established cancer genes, including the 

COSMIC Cancer Gene Census and Network of Cancer Genes 6 (58, 59). 



Chromatin state analysis and correlation with expression 

ChromHMM was used to identify chromatin states. The genome was analyzed at 1000 bp 

intervals and the tool was used to learn models from the 3 histone marks ChIP-seq reads files and 

corresponding Input controls. A model of 6 states was selected and applied on all samples. The 6 

states identified were then given functional annotation based on histone marks enrichment and 

ENCODE published chromatin states. 

We checked the genome-wide association between gene expression and chromatin states of the 

TSS, in both tumour and cell line samples. In each tumour / cell line, we classified the genes 

according to the chromatin states of the TSS. For genes with multiple TSS, the chromatin states 

showing frequency dominance was considered. We then calculated the median expression of the 

genes by their TSS categories in each sample, and assessed the distribution of the median 

expression by chromatin state across all tumour and cell line samples.  

ChromHMM output files were concatenated using the unionbed function from BEDTools, by 

which a consensus sample-by-states matrix was created, where in each cell the chromatin state 

corresponding to the column’s chromosome region in the row’s sample, excluding regions from 

sexual chromosomes, with all samples included (n = 24, including 15 tumours and 9 cell lines).  

We next performed unsupervised analysis of the integrated chromatin states in tumour and cell 

line samples. 

Selection of most informative features 

We first looked for the most informative features in the consensus sample-by-states matrix where 

in each cell the chromatin state corresponding to the column’s chromosome region in the row’s 

sample, excluding regions from sexual chromosomes, with all samples included (n = 24, 

including 15 tumours and 9 cell lines). We excluded genome regions of 'no mark' state to enrich 

our feature selection with active regions and filtered features with top 1% Shannon’s entropy. 

Then to further select informative feature, we signed-rank transformed the data: For each state, 

given the constitution of the histone marks and association with gene expression, we performed a 

numeric transformation of the categorical states by assigning numeric values to categorical states, 

as 3 to E2 (Active Enhancer / Promoter), -3 to E4 (Repressed Chromatin), 2 to E3 (Bivalent 

Enhancer / Promoter), -2 to E6 (Heterochromatin / ZNF/ Repeats), 1 to E1 (Quiescent / No 

mark), and -1 to E5 (Quiescent / Weak repression). This allow to further increased the selection 



power as the top 1% features by variance ranking. We then used these top 1% variable features 

for subsequent analysis. 

Dimension reduction and functional ontology analysis 

We performed dimension reduction and visualization taking directly the categorical format of the 

above described selected features using multiple correspondence analysis (MCA). To explore the 

biological significance of the regions that contributed to the dimension that distinguishes the non-

basal and basal clusters, the chromosome segments’ loading estimates to the Dim 2 were 

extracted from the MCA outputs and regions with a p-value < 0.05 for the loading estimate were 

included (n = 12,198). Genes mapped to Dim 2 contributing regions were pre-ranked by loading 

estimates for gene-set enrichment analysis (GSEA) by which we identified multiple biological 

gene sets / ontologies associated with Dim 2. The gene sets collections were retrieved from the 

Broad Institute Molecular Signature Database, spanning the H (hall mark gene sets), C2 (curated 

gene sets, eg. pathways), C3 (regulatory target gene sets), C5 (ontology gene sets, eg. Gene 

Ontology), C6 (oncogenic signature gene sets), and C8 (cell type signature gene sets) categories, 

using the msigdbr R package (27, 60). 

As complementary exploration, we in the meantime performed dimensional reduction to the 

numeric transformed data of the selected features, using MDS. Similar to what was observed in 

MCA, the Dim 2 represents the dimension that distinguishes the basal versus non-basal samples, 

and Dim 1 separates cell lines from tumours, suggesting potential batch effect and/or in vitro 

culture-specific effect. We then adjusted for these latent effects to obtain a refined clustering 

(basically on Dim 2), using the MNN algorithm implemented in the fastMNN function of the 

batchelor R Bioconductor package (61).  

We then calculated for the chromosomal segments (ie. features of the consensus sample-by-states 

matrix), the difference in the numeric chromatin state scores between basal and non-basal groups, 

named chromatin state score difference basal vs non-basal. A negative score difference indicates 

stronger activation in the non-basal group, and a positive one indicates stronger activation in the 

basal group. For subsequent function analysis, we performed expression quantitative trait locus 

(eQTL) mapping to refine the segments to the ones significantly linked with associated gene 

expression, and limited the analysis to the significant eQTL pairs (p-value < 0.05, n = 4,377). We 

then analysed the distribution of the chromatin state score difference of the segments 

corresponding to the luminal and basal cell type signature genes. 



 

Cell treatments, cell viability assay 

For siRNA treatments, cells were reverse transfected using Lipofectamine RNAi max 

(Invitrogen) using 10 ng of siRNA (siRNA table in additional information).  

For CRispR mutant cell lines production, RT112 and SD48 cells were plated at 80% confluence 

and the day after transfected with vectors expressing Cas9 an gRNA (VectorBuilder, see 

additional information) using Fugene HD transfection reagent.  48h post transfection, cells were 

selected using Puromycin (2µg/µL) during 4 days. After 2 weeks, clonal selection was performed 

using clonal dilution. FOXA1 mutation was assessed by Western Blot (anti-FOXA1 Abcam 

ab23738), PCR and genomic DNA sequencing.  

Cell Viability was assessed in 96 well plates using CellTiter-Glo® Luminescent Cell Viability 

Assay (Promega). 

 

RNA extraction and sequencing 

RNA extraction 

Cell lines RNA were extracted using Qiagen RNeasy kit coupled with DNAse treatment. 

Tumours RNA were extracted using Triple extraction protocol.  

Tumours RNA sequencing 

RNA sequencing libraries: Kit Nugen. The pool of libraries was quantified using a qPCR method 

(KAPA library quantification kit, Roche). The sequencing was carried out using paired-end mode 

(PE100) on a Illumina Novaseq 6000 instrument, using a custom primer (provided into the Nugen 

kit) to initiate the Read 1 sequencing. The target number of reads was about 50 million paired-

reads per sample. 

Cell lines RNA sequencing 

RNA sequencing libraries were prepared from 1µg of total RNA using the Illumina TruSeq 

Stranded mRNA Library preparation kit (Illumina) which allows to perform a strand specific 

RNA sequencing. A first step of polyA selection using magnetic beads is done to focus 

sequencing on polyadenylated transcripts. After fragmentation, cDNA synthesis was performed 

and resulting fragments were used for dA-tailing and then ligated to the TruSeq indexed adapters. 

PCR amplification was finally achieved to create the final cDNA library (12 cycles). The 

resulting barcoded libraries were then equimolarly pooled and quantified using a qPCR method 



(KAPA library quantification kit, Roche). The sequencing was carried out using paired-end mode 

(PE100) on a Illumina HiSeq2000 instrument. The sequencing configuration was set to reach an 

average of 100 million paired-reads per sample. 

Cell lines 3’RNA-seq (Lexogen 3’Seq ) 

RNA sequencing libraries were prepared from 200ng of total RNA using the QuantSeq FWD 

3’mRNA Seq LEXOGEN Standard (CliniSciences). Libraries were prepared according to the 

manufacturer’s recommendations. The first step enables the synthesis of double strand cDNA, by 

revers transcription, using oligo dT priming. A qPCR optimization step was performed in order to 

estimate the most appropriate number of PCR cycles for library amplification. The resulting 

amplified and barcoded libraries were then equimolarly pooled and quantified using a qPCR 

method (KAPA library quantification kit, Roche). The sequencing was carried out using single-

read mode (SR100) on an Illumina Novaseq 6000 instrument. The sequencing configuration was 

set to reach an average of 10 million reads per sample. 

 

RNA-seq analysis 

RNAseq were aligned on genome hg19 using STAR with default parameters. Our RNA-seq as 

well as RNA-seq from public data repository integrated using Deseq2 default parameters and 

VST normalisation. 3’RNA-seq were analysed with Deseq2 and RPM normalisation. 

 

Assignment of MIBC and NMIBC subtypes 

Gene expression data of the most tumour cases was previously generated and published (9, 22). 

We assigned consensus classes using the previously generated gene expression data using 

ConsensusMIBC (v1.1.0) R package (3) (Table S1). Given potential intra-tumour molecular 

heterogeneity, we also to verify the subtype in our ChIP-seq sampled tumour area using RNAseq 

from the same powder using the same ConsensusMIBC (v1.1.0) R package.  

NMIBC samples (n=2) were classified using classifyNMIBC R Package (7). 

 

Regulons 

The regulatory network was reverse engineered by ARACNe-AP (41) from human urothelial 

cancer tissue datasets profiled by RNA-seq from TCGA. ARACNe was run with 100 bootstrap 



iterations using all probe-clusters mapping to a set of 1,740 transcription factors. Parameters used 

were standard parameters, with Mutual Information p-value threshold of 10-8.  

The VIPER (Virtual Inference of Protein-activity by Enriched Regulon analysis) (42) (R package 

viper 1.24), using the regulatory network obtained from ARACNE on urothelial cancer, and we 

computed the enrichment of each regulon on the gene expression signature using different 

implementations of the analytic Rank-based Enrichment Analysis algorithm.   

 

SE Correlation Network  

To build SE driven correlation network, we first selected genes regulated by SE defined as TF in 

Lambert et al. (40). Next using TCGA regulon VIPER score, we calculated the mean regulon 

score by subtype (Luminal, Ba/Sq or Stroma-Rich and kept TFs with mean regulon > 2 or < -2 

(n=75). We further restricted the list to TFs with a minimum expression correlation of 0.5 in 

TCGA to build correlation network using igraph. 

 

General bioinformatics, statistical analyses and public data 

Plots and statistical analyses were performed in R software version 3.6.1, using ggpubr package. 

Wilcoxon and Kruskal-Wallis tests were used to test the association between continuous and 

categorical variables, for 2 categories or >2 categories, respectively. P-values <0.05 were 

considered statistically significant. Pairwise correlation of gene expression was calculated using 

Pearson coefficient and plotted using complexHeatmap R package. All gene expression heatmaps 

show mean-centered log2-transformed normalized counts of each represented gene. 

TCGA-BLCA MIBC RNA-seq data were downloaded from TCGA data portal 

using TCGAbiolinks package (R), raw counts were normalized to account for different library 

size and the variance was stabilized with VST function in the DESeq2 R-package (62). TCGA-

BLCA samples (n=404) were classified using the consensus system using consensusMIBC R 

package. 

CCLE urinary tract cell line gene expression were downloaded from the DepMap portal 

(https://depmap.org/portal/download/). For consensus classification of CCLE bladder cancer cell 

lines, we adapted this classification considering only genes expressed by both tumours and cell 

lines. Ten cell lines were classified as Ba/Sq, all other were grouped as non-Ba/Sq. 

MGHU3 RNA-seq bulk data were download from GEO (accession number, GSE171129). 



Survival analysis 

For Kaplan Meier survival analyses testing the association of gene expression and overall 

survival, we used http://tumorsurvival.org/index.html tool and divided the samples based on 

mean +/- sd. Log-rank P values were calculated to test the association between overall survival 

and low vs high expression groups.  

Public scRNA-seq and Basal/Luminal signature 

We downloaded the log2 TPM normalized gene expression of single cells from a Ba/Sq subtype 

MIBC tumour from the GEO database (accession number, GSM4307111). Initial quality control 

excluded genes expressed in less than 3 cells and cells with less than 200 genes. The top 2000 

variable genes were used as features for subsequent PCA and the first 9 principal components 

were used for cell clustering and visualization by uniform manifold approximation and projection 

(UMAP) embedding. The marker genes of the luminal and basal tumour cells were calculated 

with Wilcoxon test based approach. The single cell RNA-seq data analyses were performed using 

the Seurat v4 package with default parameters unless otherwise specified. 

Given the single-cell derived luminal and basal tumour cell signature was based on single-cell 

sequencing of primary in vivo tumour sample, and the FOXA1 knock-out perturbation signature is 

likely limited to the genes regulated by FOXA1 in an in vitro setting, it is important to adopt the 

cell subtype signatures to refine to the marker genes regulated by FOXA1, as a FOXA1-depdent 

luminal-basal plasticity signature which could be then used for further analyses involving in vitro 

transcriptomes. We first compared the perturbation and single-cell signatures by GSEA 

(perturbation DEG effect for ranking, and luminal / basal signatures as gene sets of interest) and 

found that in RT112 cell line, there was both significant enrichment of luminal signature in genes 

down-regulated in FOXA1 KO clones and significant enrichment of basal signature in genes up-

regulated in FOXA1 KO clones. We then took the leading edge genes as the adopted FOXA1-

depdent plasticity signature. As validation, this adopted signature showed similar enrichment in 

RT112 FOXA1 KD assays and SD48 FOXA1 KO assays, while the original cell type signature 

failed. 
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Figures legends 

 

Figure 1: Methodology/Workflow 
 

Figure 2: Chromatin states classify bladder cancers by subgroups 

A. ChromHMM principle example and emission order dividing genome in 6 states based on 
combination of H3K27ac, H3K27me3 and H3K9me3 marks. 

B. Expression level association with each chromatin state and each sample. 
C. Two chromatin state clusters revealed by unsupervised analysis of top 1% varying regions 

using MDS for dimension reduction plus MNN for batch effect correction. 
D. GSEA functional enrichment analysis of the genes mapped to the MCA Dim2 contributing 

features. A negative NES indicates significant enrichment in lower Dim2 coordinates (basal 
direction), and the reverse is in higher Dim2 coordinates (Luminal direction). 

E. Luminal versus basal tumour cell signature genes identified with single cell RNA-seq analy-
sis showing concordant enrichment in chromatin state clusters.  

F. Genome Browser view of chromatin states at FOXA1 and KRT6 loci with corresponding 
RNAseq (VST normalized scaled expression). 

Figure 3: Identification of the bladder super-enhancer repertoire and subtype specificities  
A. PCA of H3K27ac signal inside ROSE consensus SE (n=2887) for all samples. 
B. Representative examples of H3K27ac signal in Ba/Sq, Stroma-Rich, Luminal and NMIBC 

tumors with corresponding RNA-seq gene expression. Orange boxes represent SE localisa-
tion. 

C. Fold Change plots for differentially bound SEs between Ba/Sq and Luminals samples. Sig-
nificance by p-value <0.05. 

D. Plot comparing expression LogFC between Ba/Sq and Luminal samples for genes assigned 
to subgroup-enriched SE. 

E. Reactome pathway enrichment analysis of genes associated with Ba/Sq vs Luminal SEs. 
F. Venn diagram comparing 3 differential analyses of SE. NHU-enriched SEs are enriched in 

NHU vs Luminal or NHU vs Basal (pink circle). Basal-enriched SEs are enriched in Basal vs 
NHU or Basal vs Luminal (red circle). Luminal-enriched SEs are enriched in Luminal vs 
NHU or Luminal vs Basal (green circle). 

Figure 4: Super-enhancers regulate a network of candidate master transcription factors for 
bladder cancer subgroups 
A. Cistrome analysis of LumP and Ba/Sq specific SE. 
B. Homer motif enrichment analysis in H3K27ac differential peaks inside differential SE in 

Luminal vs Basal and Basal vs Luminal. 
C. Methodology to identify key coregulated SE-associated TFs. 
D. Heatmap of the top 75 TFs with high regulon score. Clustering identified 3 major clusters. 



E. Heatmap of the top 75 TFs expression in TCGA-BLCA. 
F. Correlation network of the top 55 TFs with an expression correlation coefficient of min 0.5 in 

TCGA-BLCA cohort. 
G. Single cell RNA-seq analysis of one Bladder Cancer tumors with both Basal and Luminal 

Population (GSM4307111) Right panel, associated expression for key TF in each compart-
ment. 

Figure 5: FOXA1 binds subgroup-specific bladder super-enhancers and correlates with 
their activation  
A. Venn diagram comparing FOXA1 ChIP-seq peaks in SD48 and 5637 cell line. Heatmap for 3 

categories of peaks and associated mean profiles.  
B. Cistrome analysis of motif enrichment analysis in SD48-specific and 5637-specific FOXA1 

peaks. 
C. Reactome pathway analysis of genes associated to the 3 categories of FOXA1 peaks. 
D. Pie chart showing proportion of SE with an overlapping FOXA1 peak (merge of FOXA1 

peaks in SD48 and 5637). 
E. Correlation between H3K27ac peaks versus FOXA1 peaks inside SE. 
F. Heatmap of FOXA1 and H3K27ac reads on FOXA1 peaks overlapping Super-enhancers 

ranked by FOXA1 reads ration in SD48 vs 5637. 
G. Genome browser view of GATA3, PPARg and TGFB2 associated SE. SE are highlighted 

with orange boxes. 
 

Figure 6: FOXA1 regulates inflammation and cellular identity 
A. Cell viability in RT112 and SCaBER under siRNA treatment against FOXA1  
B. Venn diagram comparing differentially expressed genes in RT112 and SCaBER FOXA1 KD. 
C. GSEA plot of Msig Hallmark GSEA Analysis of genes differentially regulated in RT112 and 

SCaBER cell lines upon FOXA1 siRNA (2 independent siRNA, 2 replicates)  
D. Heatmap of genes in Hallmark interferon gamma response genes that are differentially regu-

lated in FOXA1 KD vs Ct (min Fold Change = 1,5). 
E. Heatmap of Top Luminal TFs expression in RT112 and SCaBER cell lines upon FOXA1 

KD.  
F. PCA projection of TCGA tumors and CRispR mutant clones on the Basal/Luminal signa-

tures. 
G. GSVA analysis of FOXA1 CRispR mutant clones on Urothelial differentiation signature 

from Eriksson et al. 
H. GSVA analysis of FOXA1 CRispR mutant clones on Basal TFs identified in Fig. 4F  
I. Overrepresentation analysis of DEG in FOXA1 mutant vs Controls.  
J. Volcano plot of Deseq2 RNA-seq analysis comparing pooled CRispR mutant FOXA1 clones 

in SD48 and RT112 versus controls. 
 
Figure 7: ZBED2, a novel Basal-associated TF also involved inflammation dampening   



 
A. TCGA expression of ZBED2 by Subtypes. 
B. TCGA expression Heatmap of ZBED2 and FOXA1 and TCGA correlation between ZBED2 

and FOXA1. 
C. Expression of FOXA1 and ZBED2 in single-cell transcriptomics from bladder cancer cell 

lines in the Cancer Cell Line Encyclopedia (CCLE), highlighting the nearly mutually exclu-
sive expression of these genes.  

D. Genome browser view of ZBED2 and FOXA1 loci in SD48 and 5637 cell lines 
E. GSEA analysis (Hallmarlk) of ZBED2 correated genes in basal cells population of 

GSM4307111 scRNAseq tumor.  
F. GSEA analysis (Hallmarlk) of gene expression upon siZBED2 KD in RT112 (siZBED2-1 

and siZBED2-2). 
G. 3’seq STAT2 and CD274 (PD-L1) expression in RT112 and SCaBER after siZBED2 and 

siFOXA1. 
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(A) ChromHMM principle example and emission order dividing genome in 6 states based on combination of H3K27ac, 
H3K27me3 and H3K9me3 marks. (B) Expression level association with each chromatin state and each sample. (C) 
Two chromatin state clusters revealed by unsupervised analysis of top 1% varying regions using MDS for dimension 
reduction plus MNN for batch effect correction. (D) GSEA functional enrichment analysis of the genes mapped to the 
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Figure 3: Identification of the bladder super-enhancer repertoire and subtype specificities 
(A) PCA of H3K27ac signal inside ROSE consensus SE (n=2887) for all samples.(B) Representative examples of 
H3K27ac signal in Ba/Sq, Stroma-Rich, Luminal and NMIBC tumors with corresponding RNA-seq gene expression. 
Orange boxes represent SE localisation.(C) Fold Change plots for differentially bound SEs between Ba/Sq and Lumi-
nals samples. Significance by p-value <0.05.(D) Plot comparing expression LogFC between Ba/Sq and Luminal 
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Figure 4: SE regulate a network of candidate master transcription factors for bladder cancer subgroups
(A) Cistrome analysis of LumP and Ba/Sq specific SE.(B) Homer motif enrichment analysis in H3K27ac differential 
peaks inside differential SE in Luminal vs Basal and Basal vs Luminal.(C) Methodology to identify key coregulated 
SE-associated TFs.(D) Heatmap of the top 75 TFs with high regulon score. Clustering identified 3 major clusters.(E) 
Heatmap of the top 75 TFs expression in TCGA-BLCA.(F) Correlation network of the top 55 TFs with an expression 
correlation coefficient of min 0.5 in TCGA-BLCA cohort.(G) Single cell RNA-seq analysis of one Bladder Cancer 
tumors with both Basal and Luminal Population (GSM4307111) Right panel, associated expression for key TF in each 
compartment.
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Figure  5: FOXA1 binds subgroup-specific bladder super-enhancers and correlates with their 
activation 
(A) Venn diagram comparing FOXA1 ChIP-seq peaks in SD48 and 5637 cell line. Heatmap for 3 catego-
ries of peaks and associated mean profiles. (B) Cistrome analysis of motif enrichment analysis in 
SD48-specific and 5637-specific FOXA1 peaks.(C) Reactome pathway analysis of genes associated to 
the 3 categories of FOXA1 peaks.(D) Pie chart showing proportion of SE with an overlapping FOXA1 
peak (merge of FOXA1 peaks in SD48 and 5637).(E) Correlation between H3K27ac peaks versus 
FOXA1 peaks inside SE. (F) Heatmap of FOXA1 and H3K27ac reads on FOXA1 peaks overlapping 
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PPARg and TGFB2 associated SE. SE are highlighted with orange boxes.
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Figure 6: FOXA1 regulates inflammation and cellular identity
(A) Cell viability in RT112 and SCaBER under siRNA treatment against FOXA1. (B) Venn diagram com-
paring differentially expressed genes in RT112 and SCaBER FOXA1 KD.(C) GSEA plot of Msig Hallmark 
GSEA Analysis of genes differentially regulated in RT112 and SCaBER cell lines upon FOXA1 siRNA (2 
independent siRNA, 2 replicates) (D) Heatmap of genes in Hallmark interferon gamma response genes 
that are differentially regulated in FOXA1 KD vs Ct (min Fold Change = 1,5). (E) Heatmap of Top Luminal 
TFs expression in RT112 and SCaBER cell lines upon FOXA1 KD. (F) PCA projection of TCGA tumors 
and CRispR mutant clones on the Basal/Luminal signatures.(G) GSVA analysis of FOXA1 CRispR mutant 
clones on Urothelial differentiation signature from Eriksson et al. (H) GSVA analysis of FOXA1 CRispR 
mutant clones on Basal TFs identified in Fig. 4F . (I) Overrepresentation analysis of DEG in FOXA1 
mutant vs Controls. (J) Volcano plot of Deseq2 RNA-seq analysis comparing pooled CRispR mutant 
FOXA1 clones in SD48 and RT112 versus controls.
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 R = − 0.56,  p. < 2.2e-16
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Figure 7: ZBED2, a novel Basal-associated TF also involved inflammation dampening 
(A) TCGA expression of ZBED2 by Subtypes. (B) TCGA expression Heatmap of ZBED2 and FOXA1 and 
TCGA correlation between ZBED2 and FOXA1. (C) Expression of FOXA1 and ZBED2 in single-cell tran-
scriptomics from bladder cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE), highlighting the 
nearly mutually ex-clusive expression of these genes. (D) Genome browser view of ZBED2 and FOXA1 loci 
in SD48 and 5637 cell lines. (E) GSEA analysis (Hallmarlk) of ZBED2 correated genes in basal cells popula-
tion of GSM4307111 scRNAseq tumor. (F) GSEA analysis (Hallmarlk) of gene expression upon siZBED2 KD 
in RT112 (siZBED2-1 and siZBED2-2). (G) 3’seq STAT2 and CD274 (PD-L1) expression in RT112 and 
SCaBER after siZBED2 and siFOXA1.


