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A 3D Clinical Face Phenotype Space of Genetic Syndromes using a
Triplet-Based Singular Geometric Autoencoder
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Abstract— Clinical diagnosis of syndromes benefits strongly
from objective facial phenotyping. This study investigates facial
dysmorphism of genetic syndromes by building and investigating
a low-dimensional metric space referred to as the clinical face
phenotypic space (CFPS). As a facial matching tool for clinical
genetics, such CFPS can enhance clinical diagnosis. It helps to
interpret facial dysmorphisms of a subject by placing them within
the space of known dysmorphisms. In this paper, a triplet loss-
based autoencoder developed by geometric deep learning (GDL) is
trained using multi-task learning, which combines supervised and
unsupervised learning approaches. Experiments are designed to
illustrate the following properties of CFPSs that can aid clinicians
in narrowing down their search space: A CFPS can 1) classify and
cluster syndromes accurately, 2) generalize to novel syndromes,
and 3) preserve the relatedness of genetic diseases, meaning
that clusters of phenotypically similar disorders reflect functional
relationships between genes. This model is composed of three
main components: 1) an encoder based on GDL that optimize
distances between individuals in the CFPS therefore adding to
the classifier’s power. 2) a decoder that improves both classifi-
cation and clustering performance by reconstructing a face from
an embedding in a CFPS, 3) a singular value decomposition layer
to maintain orthogonality and optimal variance distribution across
dimensions. This allows for the selection of an optimal number of
CFPS dimensions as well as improving the classification, recon-
struction, and generalization capabilities of the CFPS.
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Fig. 1: The complete model consists of three main components: a
triplet-based encoder, a singular value decomposition (SVD) layer,
and a decoder. Projection function pSGE for geometric model
(alternatively pLDA for baseline) projects a facial mesh f into a
facial embedding e in the CFPS. A facial mesh f ′ is reconstructed
from the embedding e with decoding function pSGD . Note that
the reconstruction is not possible within the baseline. Classification
from the embedding space into syndrome groups is performed by
a classification function g, which in this work constitutes a simple
K-nearest-neighbor classifier.

I. INTRODUCTION

Many genetic syndromes are associated with mild to severe facial
dysmorphism. Observations from studies on the human phenome sug-
gest that similar phenotypes are related to functionally related genes
[1]. As first introduced by Ferry et al. [2], facial dysmorphisms can be
modeled in a lower dimensional latent space or metric space, known
as a Clinical Face Phenotype Space (CFPS), using metric learning
techniques. A CFPS has three main properties. First, distances in
a CFPS are a measure of phenotypic similarity, and patients’ faces
are clustered based on diagnostically relevant phenotypic features.
Second, a well-trained CFPS generalizes to dysmorphic syndromes
that were not used in the training, and therefore it can be used to
explore or cluster novel syndromes or smaller groups of similar pa-
tients [3]. Third, a CFPS recapitulates known relationships of genetic
diseases, meaning that clusters of phenotypically similar disorders
reflect functional relationships among the genes involved [3]. With
these properties, individuals without a confirmed diagnosis can be
rapidly compared to each other and to known phenotypic groupings
in the space, positioning them in the spectrum of known relationships
between the phenotype and clinical and molecular diagnosis. Thus,
the space can be used to propose hypothetical clinical and molecular
diagnoses (e.g., by classification from embedding coordinates). This
can facilitate variant interpretation in a genome wide NGS analysis
or direct towards targeted sequencing as part of a clinical diagnostic
workup [4].
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Multiple challenges are involved in constructing a CFPS based
on metric learning or classification. On the one hand, there is
considerable overlap between different syndromes with the same
or similar dysmorphic features being present in related [5] and
ostensibly unrelated disorders. For example hypertelorism is a feature
of both Apert and Wolf-Hirschhorn syndrome [6], [7]. On the other
hand, there can be substantial phenotypic variation within a particular
syndrome [1], [8]–[10]. Therefore, encoding facial shape into a
metric space with a minimum overlap between syndromes and small
variations within syndromes is a complicated task. To tackle this
challenge, the first component of our proposed model is a supervised
(deep) metric learner based on triplet loss function that optimize
such a CFPS directly to discriminate different groups by learning the
between-group dissimilarities and within-group similarities. However,
by solely focusing on discriminating clues, information about general
facial topology is overlooked. Therefore, the second challenge is
encoding general facial similarity irrespective of the syndrome group.
To address this issue, we aim to simultaneously preserve the facial
topology in the space: following unsupervised dimensionality reduc-
tion techniques such as autoencoders, we combine the metric learning
encoder with a facial decoder as the second component of our model.
In essence, facial structure and similarity are learned by the combina-
tion of supervised (metric learning) and unsupervised (dimensionality
reduction) learning paradigms. The intention is that, in combination,
this should yield a space that prioritizes diagnostically relevant facial
features (by virtue of the metric learning) and also can meaningfully
represent inter-patient variation in general (by virtue of the decoder).
This latter property is essential to meaningfully encode patients from
unseen syndromes. Another advantage of the decoder is the ability
to reconstruct a face from a sampled embedding from the CFPS.
However, since no structure is imposed on the space during training
such encoder-decoder, sampling from the resulting latent space is
not reliably done. To facilitate sampling, we incorporate the third
component, a singular value decomposition (SVD) layer, with which
the dimensions of the CFPS are transformed to an orthonormal basis.
This SVD layer was first introduced in [11] to impose orthogonality
and optimal distribution of variance across dimensions of the latent
space learned by an autoencoder, with their extra power in modeling
non-linearity and performing additional tasks.
Related works fall into one or both of the following categories: 1)
syndrome classification and 2) building and/or experimenting with
clinical face phenotype spaces (CFPSs) . The majority of approaches
for syndrome classification use 2D photographs (recent reviews
are available in [12]–[14]) because of their availability. The most
popular 2D classification tool among clinicians today is Face2Gene
(DeepGestalt), introduced by the company Facial Dysmorphology
Novel Analysis (FDNA). This technology comprises multiple deep
convolutional neural networks (DCNNs) designed for classification,
each applied to and specialized for different facial regions. The
outputs of all specialized classifiers are combined to give a ranked
list of candidate disorders [15]. The tool is supported by a large
and diverse training data set, which is continuously expanded as it
is contributed to by users and currently supports the identification of
approximately 300 disorders [16]. However, as opposed to 3D images,
2D images only encode information about 3D shapes indirectly. The
importance of 3D photographs has been emphasized in the field
[17]–[20] and they are becoming more popular with the increased
accessibility of 3D imaging devices [21]. The recent acquisition of
large-scale 3D image datasets of participants with genetic syndromes
[22] have allowed some attempts at large-scale learning from 3D
photographs. Hallgrimsson et al. [23] classified 63 genetic syndromes
using linear classifiers and sparse anatomical landmarks as features.
Bannister et al. [24] classified 47 genetic syndromes from facial

surface scans using a normalizing flow architecture. Mahdi et al. [25]
introduced a multi-scale part-based metric learner for classification of
14 syndromes form surface scans represented by ∼8000 landmarks.
The concept of CFPS was first introduced in [2] where principal
component (PC) scores, representing variation in landmark coordi-
nates and local pixel intensity variation around the landmarks, were
derived from 2D images of 8 disorders and subjected to the linear
largest margin nearest neighbor metric learner. They investigated the
relationship between phenotypic distance in the space and genetic
distance (based on protein-to-protein interaction networks) and found
the magnitude of the relationship to be non-zero, demonstrating to
some extent the space recapitulates the functional relationships among
the involved genes. The largest CFPS to date is ‘GestaltMatcher’ [16],
which utilizes the same underlying architecture as Face2Gene but
interprets the extracted feature representations directly as a location
in a CFPS. Until recently the limited availability of 3D images
has hampered work in 3D. To the best of our knowledge the only
other 3D CFPS [24], used an invertible normalizing flow model to
produce the first non-gaussian 3D facial CFPS. They report mean
sensitivity of 43% across 48 syndromes as well as generating modal,
randomly sampled, and counterfactual 3D faces using demographic
information. Alternatively, in this work, we aim to learn a CFPS
from dense 3D meshes of patients from 51 syndrome groups and
a group of controls. In contrast to Bannister et al., we use spiral
convolutional operators to allow learning directly from 3D data [26],
[27], instead of first transforming the data into principal component
scores. We first develop a triplet loss-based encoder to learn a non-
linear low dimensional metric in a supervised manner [28], [29],
and we further extend this model by attaching a decoder block
and an SVD layer to the network to enable unsupervised facial
reconstruction and orthonormal basis. We validate the properties of
the CFPS by first, investigating the clustering performance of the
space using classification and clustering metrics. We show that the
components added to the encoder both contribute to the classification
performance. Second, we show the capacity of the decoder to generate
realistic-looking synthetic faces by generating faces at the center
of syndrome clusters whereby it can be visually assessed if they
display the known facial gestalt of certain disorders. Extending the
validation efforts of previous CFPSs, we implement and execute an
extensive test of the generalization to novel syndromes in which
a CFPS is trained based on a subset of syndromes, and then the
clustering characteristics of the projection of the left-out syndromes
are assessed and compared with existing 3D linear metric learning
techniques. We prove a better generalization of our complete model
compared to the linear baseline and also compared to the models
without the SVD layer. We also assess whether classification and
clustering performance conforms to prior clinical knowledge about
the presence of facial dysmorphism and we bring evidence for the
recapitulation of the phenotypic relationship among related genetic
diseases.

II. MATERIALS AND METHODS

A. Data
3D facial images of the dataset used in this project were sourced

from:
1) The FaceBase repository1, ”Developing 3D Craniofacial Mor-

phometry Data and Tools to Transform Dysmorphology,
FB00000861”, collected at patient support groups in the USA,
Canada, and the UK [22], [23].

2) The Western Australian Health Department. This collection
is from the database of the Health Department of Western

1www.facebase.org
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TABLE I: Data demographics: Syndrome group name, sample size (N), mean and standard deviation of age (M±SD), the female/male ratio
(F/M), and the category .

Name Size Age Range Sex Ratio Category Name Size Age Range Sex Ratio Category
Williams 221 17.57 ± 13.9 0.46 A BBS 87 26.33 ± 14.78 0.48 C
22q11 2 Del 180 10.74 ± 6.03 0.49 A Neurofibromatosis 85 20.18 ± 18.01 0.54 C
Wolf Hirschhorn 155 11.03 ± 9.42 0.57 A Loeys Dietz 84 25.38 ± 17.15 0.57 C
Smith Magenis 129 14.32 ± 9.09 0.55 A Joubert 75 10.57 ± 8.58 0.48 C
Down 117 21.64 ± 11.14 0.49 A Ectodermal Dysplasia 71 15.09 ± 15.32 0.28 C
Prader Willi 96 19.34 ± 13.24 0.51 A Rett 70 13.32 ± 10.54 0.89 C
Fragile X 77 17.65 ± 12.56 0.3 A Cardiofaciocutaneous 59 12.21 ± 8.55 0.53 C
Achondroplasia 70 22.62 ± 18.34 0.59 A Klinefelter 57 22.91 ± 14.58 0 C
Rubinstein Taybi 63 13.54 ± 11.73 0.52 A Mucopolysaccharidosis 57 21.51 ± 13.51 0.47 C
Costello 58 12.39 ± 9.24 0.66 A Alstrom 52 21.28 ± 9.4 0.54 C
Cohen 33 18.27 ± 10.46 0.52 A Fibrodysplasia Ossificans Progressiva 50 21.81 ± 12.37 0.56 C
Pitt Hopkins 29 8.53 ± 5.7 0.62 A Fabry 48 32.37 ± 16.53 0.44 C
Pallister Killian 23 9.59 ± 7.19 0.26 A Sotos 45 17.92 ± 12.22 0.49 C
Crouzon 22 10.22 ± 6.27 0.55 A Russell Silver 44 10.18 ± 10.32 0.34 C
Smith Lemli Opitz 19 11.75 ± 7.05 0.32 A Cockayne 41 12.15 ± 7.37 0.44 C
Apert 13 14.55 ± 10.73 0.62 A Pseudoachondroplasia 35 28.06 ± 20.53 0.51 C
Coffin Lowry 12 13.76 ± 9.16 0.08 A Osteogenesis Imperfecta 31 16.72 ± 14.61 0.68 C
Cornelia de Lange 183 12.1 ± 9.14 0.54 B 1p36 Del 29 8.82 ± 7.83 0.62 C
Noonan 155 14.06 ± 12.51 0.45 B Trisomy 18 27 8.79 ± 8.71 0.85 C
Angelman 106 9.97 ± 7.57 0.47 B Beckwith Wiedemann 26 9.68 ± 6.66 0.42 C
Stickler 45 22.31 ± 17.45 0.62 B EED CLP 20 23.24 ± 17.71 0.65 C
Treacher Collins 39 18.48 ± 13.5 0.49 B Vander Woude 16 10.16 ± 4.75 0.56 C
Kabuki 37 12.09 ± 6.62 0.65 B Goltz 14 9.4 ± 5.03 0.86 C
Coffin Siris 16 12.08 ± 9.65 0.63 B Rhizo Chondro Punct 13 7.57 ± 5.53 0.69 C
Marfan 153 26.34 ± 16.85 0.58 C Zellweger Syndrome 11 7.33 ± 9.49 0.09 C
Turner 102 24.25 ± 19.03 0.98 C Controls 100 30.94 ± 11.64 0.72 CONTROL

(a) (b)

Fig. 2: (a) Covariance matrix of the scores for the 150-dimensional
space learned by the triplet-based singular autoencoder. (b) Recon-
struction error as a function of dimensionality of the space learned by
singular autoencoder. The reconstruction error reported here is based
on the normalized faces of the training data.

Australia. Images were collected between 2009 and 2018, and
were recruited primarily through the Genetic Services of Western
Australia, but also at complementary sites including Australian
hospitals and patient support groups. [30]

3) Peter Hammond’s legacy 3D dysmorphology dataset hosted at
the KU Leuven, Belgium. Patients were recruited at patient
support groups across the United States, UK and Italy between
2002 and 2013. At initial recruitment, diagnosis was as reported
by families and/or suggested by clinical geneticists attending the
meetings; some patients were in contact over several years and
molecular diagnoses were reported by parents or by collaborat-
ing clinical geneticists. [31]

From these three collections combined, groups with a minimum of
10 individuals were selected. Approximately, 59%, 40%, and <1%
of the data used in this work are collected by the first, second, and
the third listed source respectively. In total, the dataset comprised
3,285 3D facial images of 51 different syndromes and one group of
138 control individuals that are unrelated to the patients with known
genetic syndromes. Demographic characteristics of the dataset are

given in Table I. According to clinical knowledge and based on
clinical assessment of the available images, the syndromic groups
were assigned to one of the following categories by two clinical
experts (co-authors HP and MV):
(a) Genetic conditions that can be diagnosed based on typical

facial characteristics and that are genetically homogeneous, i.e.
they are caused by one single gene or recurrent chromosomal
anomaly.

(b) Genetic conditions that can be diagnosed based on typical
facial characteristics and that are to some extend genetically
heterogeneous, i.e. more than one gene for this clinical condition
is known.

(c) Genetic conditions that are usually not diagnosed based on facial
features, i.e. for these conditions facial features are not typical.

For syndromes in categories A and B, the facial features direct the
clinician towards the molecular diagnosis. So, we expect subjects
within these groups to have a distinct facial phenotype in general.
However, in contrast to A, the genetic heterogeneity in disorders of
category B introduces uncertainty to the relationship between the
typical face and the underlying gene. In practical terms, based on
known genotype-phenotype correlations these disorders may be more
phenotypically diverse than A. Category C includes syndromes that
in clinical practice are not diagnosed based on the facial features but
based on other clinical symptoms. However, for these syndromes,
clinicians do not claim that there is no recognizable gestalt. Therefore,
in contrast to A and B, the presence of a distinctive facial gestalt
is unclear, but not necessarily absent. This study was approved by
the ethical review board of KU Leuven and University Hospitals
Gasthuisberg, Leuven (S56392, S60568).

B. Preprocessing
For pre-processing, after cleaning the raw image by removing hair

and ears, a 3D face template was non-rigidly registered to each face
using Meshmonk [21]. Each 3D face shape is therefore described as a
manifold triangle mesh F = (V, E ,Φ) , where V = {vi}i = 18,321

is a 8, 321 × 3 dimensional matrix, containing 8,321 3D vertices
vi = (xi, yi, zi) defining the mesh geometry, E and Φ are set of
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edges and faces which define the mesh topology. E and Φ are fixed
Since all our meshes have the same topology as the template.

C. Pipeline Design

As a first and the baseline approach towards learning a CFPS,
we used Linear Discriminant Analysis (LDA), which is a supervised
linear metric learner and classifier. Alternatively, we proposed a
multi-component metric learner based on geometric deep models that
consist of the following components: 1) a triplet-loss encoder, 2) a
decoder, and 3) an SVD layer. Fig. 1 shows the main components
constructing the model. A triplet-based encoder is a supervised deep-
metric learner that relates individuals in terms of group membership
and consists of three identical encoder networks. Such encoders are
trained with triplets of the data comprising an anchor (fa), positive
(fp), and negative sample (fn). In each triplet, the anchor and
positive samples are from the same class, while the anchor and
negative samples are from different classes. The output of the network
for a given triplet is a lower dimensional embedding of each element
of the triplet (ea, ep, en) = (pGE(fa), pGE(fp), pGE(fn)). A
decoder (pGD) then reconstructs the image data from the embed-
dings (f ′a, f

′
p, f ′n) = (pGD(ea), pGD(ep), pGD(en)). To keep

the power of this triplet-based autoencoder (encoder-decoder) in
modeling non-linearity and at the same time to obtain orthogonal
dimensions and optimal distribution of variance across different CFPS
dimensions, an SVD layer was added. These three components were
combined, and spiral-based geometric architectures were used to form
our triplet-based singular geometric autoencoder (TB-SGAE).

1) CFPS based on Linear Discriminant Analysis (LDA): LDA
maximizes the distance between the mean of all faces in each class
(between-class scatter Sb) and minimizes the spreading within the
class itself (within-group scatter Sw). Since our original meshes were
densely sampled and had much higher dimensions thanare repre-
sented by many more variables than the number of training examples,
we first applied principal component analysis (PCA) to the original
meshes to reduce the dimensions as to avoid overfitting during LDA.
The first 100 dimensions (preserving 99.16% of datavariation) were
used as input to LDA. The lower-dimensional space projection for

LDA was constructed by Fisher’s criterion argmax
a

|aTSba|
|aTSwa| , where a

is considered as the lower-dimensional space projection matrix, also
called Fisher’s criterion. A projected embedding of a facial shape f
in the resulting CFPS was then calculated as:

pLDA : F −→ E, pLDA(f) = ePCA.a (1)

Fig. 3: The architecture of a singular geometric autoencoder (SGAE)
with a singular value decomposition (SVD) layer. λ contains right
singular vectors of the SVD. Once trained, the geometric encoder
constitutes the projection function pSGE , and the geometric decoder
constitutes the decoding function pSGD .

We took the maximum number of dimensions for LDA which is equal
to the number of classes -1 (=51).

2) Triplet-Based Geometric Encoder (TB-GE): A geometric
encoder (GE) refers to a 3D face to a CFPS encoder that uses spiral
convolutional operators. In a triplet-based geometric encoder (TB-
GE) the feature representations of patients within the same syndrome
group are situated closer to each other than patients from a different
syndrome group. Once trained, a GE learns a function pGE that
maps an input mesh f ∈ F to a low dimensional embedding e ∈ E
in CFPS:

pGE : F −→ E, e = pGE(f) (2)

The triplet-loss loss function for training the TB-GE is:

t = max
(
∥ ea − ep ∥22 − ∥ ea − en ∥22 +α, 0

)
(3)

Where α is the margin between paired positive and negative samples
of the triplet and following [32], it was set to 0.2. Changing this
parameter did not significantly change the outcomes (data not shown).

3) Decoder: The geometric decoder (GD) function pGD recon-
structs a facial mesh f ′ from an encoder e:

pGD : E −→ F, f ′ = pGD(e) (4)

The geometric autoencoder (GAE) function can therefore be formu-
lated as:

pGAE : F −→ F, f ′ = pGD(pGE(f)) (5)

For 3D facial shapes as image data, the reconstruction loss function
was the mean absolute error or the absolute difference between vi,
vertices of the input shape f, and v′i, the corresponding vertices of
the reconstructed output f ′, averaged over all data samples:

rf =
1

Ndataset

Ndataset∑
j=1

mean(Dj), (Dj = mean|v′i − vi|
8,321
i=1 )

(6)
For a triplet of anchor, positive, and negative within a batch, the
reconstruction loss was therefore calculated as:

r = mean(ra, rp, rn) (7)

Where ra, rp, rn are the reconstructions of the anchor, positive, and
negative samples respectively. The final loss function used for training
the GAE was:

l = r + λ× t (8)

Where λ is the weight given to the triplet loss t from 3 to regularize
the scale of the two loss values. Increasing λ puts more emphasis
on the triplet loss and less on the reconstruction loss and vice versa.
With λ = 1, the triplet loss t was about 10 times larger than the
reconstruction loss. Therefore, we rebalanced the total loss by setting
λ = 0.1, so that both losses had an equal contribution. To train
the network, data was provided in triplets selected by random triplet
mining from all possible triplets within a training batch.

4) SVD layer: decorrelation of the CFPS dimensions: To
ensure orthogonal dimensions, they were calculated from a set of
low dimensional embeddings E by singular value decomposition of
E : USΛT = E, where S is a diagonal matrix of singular values in
descending order of magnitude, U contains left singular vectors and
Λ contains right singular vectors. Individual facial embeddings with
orthogonal dimensions were then calculated as part of the projection
function pSGE defined as:

pSGE : F −→ E, e = pGE(f).Λ (9)

The decoder and the autoencoder functions were then re-defined as:

pSGD : E −→ F, f ′ = . pGD(ΛT .e) (10)
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pSGAE : F −→ F ′, f ′ = pSGAE(f) = pSGD(pSGE(f)) (11)

This added SVD layer facilitated the selection of the number of CFPS
dimensions which is the main bottleneck of the model and affects
the capacity of the learned space. Therefore, it was important to
define the smallest number of dimensions that was large enough for
reconstructing syndromic and normal facial variation. To do so, we
trained an autoencoder with the SVD layer using a reconstruction
loss only and called it a singular autoencoder (SAE). An SAE is
composed of an autoencoder with the last layer of the encoder and
the first layer of the decoder replaced by a low-rank singular value
decomposition [33]. The same architecture as our TB-SGAE encoders
and a large dimensional latent channel (=200) was used. Training
data included all syndromic and control groups. As observed in [11]
the covariance matrix in Fig. 2a, the variance was distributed over
the different dimensions in such a way that for any given number
of dimensions, the explained amount of variance was maximized.
Therefore, to select the proper dimension, we calculated and plotted
the reconstruction loss as a function of the latent dimension in Fig.
2b. Based on this, 100 dimensions were close to saturation for the
reconstruction of the original faces.

5) Spiral-based SAE Architecture : We used geometric deep
learning to learn directly from the 3D facial meshes and efficiently
leverage the underlying geometry by using spiral convolution opera-
tors [34]. The architecture of our GE is illustrated in Fig. 3. The spiral
convolutional (Sconv) layer in this figure consists of first, convolving
spirals on vertices of the mesh in the current layer, and second, down-
or up-sampling the current mesh to obtain input for the next layer.
Each Sconv layer is followed by an exponential linear unit (ELU). A
spiral convolution is a filter consisting of learned weights w, which
is applied to a sequence of neighborhood vertices. That means,

∀v ∈ V , h′(v) =
∑

wT
i h(Si(v)) (12)

where h(v) is the input representation of vertex v, h′(v) the output
representation, and Si(v) the ith neighbor of v in the spiral [27].
The sequence was defined as a spiral around a central vertex, starting
in an arbitrary direction and then proceeding in a counterclockwise
direction until a fixed length was reached.
In a geometric encoder based on spiral convolutions, aside from
the convolution operator, a pooling operator for meshes must be
incorporated. Established mesh decimation techniques used in many
geometric deep learning methods reduce the number of vertices
such that a good approximation of the original shape remains,
but they result in irregularly sampled meshes at different steps of
resolution. In contrast we used a 3D mesh down and up-sampling
scheme that retains the property of equidistant mesh sampling as
defined in [35]. Starting from five initial points, the refinement is
done with loop subdivision by splitting each triangular face of the
mesh into four smaller triangles by connecting the midpoints of the
edges. The last up-sampled mesh has 8,321 vertices and an average
resolution of 2mm, meaning that the average edge length is 2mm. For
our geometric encoder, the five highest levels of resolution (shown
in Fig. 3) are kept, and their output is passed through the fully
connected layers of our encoder. In-house experiments showed that
other sampling schemes are equally effective and can be used instead.
The number of spirals in each layer was chosen empirically based on
the previous and related works [?], [35], as well as in other in-house
projects where similar facial data structures are used. The length of
the spiral filters was set to 19 for the first two layers with the highest
resolution, and a length of 6 was chosen for the following layers
with lower resolution. These choices were made such that for higher
resolution meshes two-ring neighbors (=19 vertices) and for lower
resolution meshes one-ring neighbors (=6 vertices) are covered by

a spiral filter. Larger spiral lengths were initially tested for the first
layers in a geometric autoencoder and no significant improvement
in reconstruction performance was observed. A shorter spiral length,
covering one-ring neighbors ( 9 vertices), was also tested for the
first layers, and the difference in performance was not significant.
Therefore, to decrease the computation cost, one can choose a spiral
length of nine over 16. Since we have a fixed topology enforced
on all faces, the spirals were determined only once, on the template
mesh.

6) Classification: To take advantage of the CFPS as a classifi-
cation tool, and to compare the CFPS obtained from SGAE with
the one obtained from LDA as dimensionality reduction (baseline),
a K-nearest neighbor (KNN) classifier with K=10 was applied to
the projection of individuals into the CFPSs based on TB-SGAE
and baseline (Equations 12 and 1 respectively). A KNN algorithm
computes the distances between a test image and all the examples in
the projected training set and then selects the K closest to the test
image and votes for the most frequent label. We set K=10, since it
is the minimum group size in our dataset.

7) Training: All models were trained on an NVIDIA GeForce
RTX 2080 Ti, 64 GB RAM, with PyTroch 1.1.0. The Adam optimizer
was used for 600 epochs with a batch size of 30 (limited by the
maximum GPU memory), an initial learning rate of 1e-4 chosen based
on experiments ran for a range of (1e-1,1e-8), and a decay rate of
0.99 was applied after each epoch.

D. Experiments

A core assumption underpinning the development of a CFPS is that
they define a clinically meaningful and useful model of the variation
within and among classes. Therefore, we designed a series of four
experiments, investigating different and complementary aspects of
the CFPSs obtained. The complete network is TB-SGAE, and the
utility of each component was tested by comparing performance to
performance of networks with specific components removed. These
are TB-SGE without the decoder and TB-GAE without the SVD
layer.
First, experiment 1, evaluated and compared clustering and classi-
fication capacity of our CFPSs and that of the linear baseline. A
5-fold cross-validation was performed. In each of five folds, 20% of
data for each group separately was selected randomly and devoted
to the test set, and the remaining 80% was used for training the
CFPS followed by the classifier when needed. The classification
performance was assesses as well as clustering assessed by the
within-group variance (WGV), and between-group distances (BGD).
The classification measures are:

• Sensitivity = true positives
true positives + false negatives , measuring how

well the classifier can identify true positives,
• Specificity = true negatives

true negatives + false positives , measuring
how well the classifier can identify true negatives,

• Balanced accuracy = Sensitivity + Specificity
2 , the mean of

sensitivity and specificity which is especially useful when the
classes are imbalanced,

• Adjusted Rand Index, compares two categorizations of the data:
one based on the true labels and one based on the labels
predicted by the classifier.

WGV and BGD are two distance-based measures of the variance
within the space. WGV is defined as the median embedding distance
of all individuals in each group to the average embedding of the
group and BGD is defined as the median of distances between the
average embedding of a syndrome and all other syndromes in the
data. Therefore, in a well-clustered space, lower WGV and higher
BGD is expected. Generally, in comparison of the two methods, the
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difference between these metrics in terms of statistical significance
is measured using a paired two-tailed Wilcoxon signed rank test. To
be able to compare BGD of different models, the distance scales of
all embeddings are normalized for each model. We assessed whether
categories A, B, and C relate to the classification performance of our
CFPS, to assess if the space recapitulates clinical knowledge of the
syndrome groups.
Furthermore, we expected that, in general, phenotypic characteristics
being syndrome uniqueness (the median of distances between the
average shape of a syndrome to all other average syndrome shapes),
cohesion (the median shape distance, measured on landmarks, of
all individuals in each group to the average shape of the group),
and severity (the average shape distance between the subjects with
a syndrome and the mean shape for controls [23]) should predict
accuracy to a substantial degree, and this may also be impacted by
sample size. Given the correlations among the phenotypic predictors,
it is difficult to investigate their effects independently. To do so,
predictors were combined into a single latent variable using a PLS
regression of accuracy (in each space) onto the phenotypic predictors
and sample size, with one latent component.
Second, experiment 2, investigated the ability to reconstruct faces
from the CFPS using the training and out-of-fold (OOF) error of
reconstruction. The training error is the same as the reconstruction
loss and is computed based on the samples in the trainset. This error
explains the ability of a model to efficiently capture shape variation
in a compact representation for a given number of dimensions. The
OOF error describes the model’s capability to capture shape variance
in unseen, or non-training data. Therefore, it is computed as the mean
absolute error for all samples from the test set. To investigate the
effect of SVD layer, the training and OOF error for a model without
this layer (TB-GAE) were measured.
Third, experiment 3, investigated the ability to generalize into the
clustering of syndrome groups not used for building the CFPS. For
this purpose, six syndrome groups with various recognizable pheno-
typic features were left out during training. Once trained, individuals
in these groups were projected to the space. Then, the BGD, WGV
and clustering improvement factor (CIF) CIF was computed and
compared between various spaces. The CIF, first introduced in [2],
determines the improvement in clustering over randomly distributed
faces, and therefore measures structure in the CFPS controlling for
the composition of the database. Considering a syndrome with Np
positive and Nn negative instances in the space, the CIF is defined as
the expected rank (r) of nearest positive match under random ranking
over observed average rank (r) of nearest positive match:

CIF =
E(r)

O(r)
(13)

To measure the effect of each component, the results for the complete
model (TB-SGAE) were compared with same architectures without
the decoder (TBS-GE) and without the SVD layer (TB-GAE). Fur-
thermore, to investigate the added value of metric learning, we made
a comparison to an unsupervised and linear baseline being the spaces
spanned by principal components only.
The syndrome groups that were left out for this experiment are:

• Apert syndrome is a condition caused by a single gene char-
acterized by typical craniofacial dysmorphism present in all
patients.These individuals are all expected to be significantly
different from controls.

• Cockayne syndrome is a condition where the facial features
are mainly determined by a progressive loss of facial fatty and
muscular tissue. This means that more typical faces are expected
in adolescents and adult patients.

• Stickler syndrome is genetically heterogenous and character-

ized by midfacial hypoplasia which can be mild and therefore
sometimes hard to recognize or to distinguish from normal
facial variation. Therefore the range of severity in Stickler is
broader than for example in Apert syndrome which can always
be recognized in every single patient. Stickler is expected to
cluster, but probably not as tight as Apert however the patients
with Stickler syndrome in our dataset belong to the more severe
end of the spectrum of dysmorphism.

• Cohen syndrome is a condition caused by a single gene charac-
terized by typical dysmorphic features that may be variable in
severity.

• Fragile X syndrome is an X linked condition caused by a single
gene characterized by typical dysmorphic features that may be
variable in severity. The male patients are usually recognized
from a combination of typical behavior, intellectual disability,
and sometimes dysmorphism.

• Coffin-Siris syndrome is genetically heterogenous and character-
ized by a combination of facial and other physical features. The
facial dysmorphism is expected to be different from controls
in analyses, although the group may not form a tight cluster
because of phenotypic and genetic heterogeneity. This group is
expected to be the least recognizable in this selection.

In experiment 4, known relationships between specific syndrome
groups were verified in the CFPS. We investigated the positioning
of four syndrome groups that are known to show considerable
phenotypic similarity and overlap. Noonan, Costello, Cardiofaciocu-
taneous syndrome, and Neurofibromatosis Type I (NF1) are members
of an etiologically related group of disorders, collectively known
as the RASopathies [36]. These syndromes are all caused by the
overactivation of the RASMAPK pathway. To determine if these four
groups were closer to each other than expected by chance, a p-value
was calculated for the average distance between cluster centers within
an empirical null distribution estimated by recalculating the statistic
1000 times, each time randomly selecting 4 groups from the dataset.
To gain visual feedback on the CFPS structure, a 2-dimensional
visualization of the 100-dimensional CFPS was generated using the
Uniform Manifold Approximation and Projection (UMAP) algorithm
[37].

III. RESULTS

For the first experiment, Table II reports the average and the
standard error of the classification and clustering measures over the
five cross-validation folds. The results in the first and the second
row are based on the CFPS obtained by TB-SGAE and the baseline
being PCA+LDA, respectively. The distributions of metrics, averaged
within each syndrome group over the five folds are shown using
boxplots in Fig. 4a. The p-value of the statistical test comparing TB-
SGAE and the baseline is reported on top for each metric. According
to the results, the performance of the TB-SGAE was significantly
higher than the baseline (p-value <0.05) for balanced accuracy, speci-
ficity, ARI, and syndromes within the space showed increased BGD,
and reduced WGV. For sensitivity, the results were not significantly
different. To investigate the effect of the additional components of the
model (decoder and SVD layer), Fig. 4a also compares a TB-SGAE
with a TB-SGE and a TB-GAE to investigate the contribution of the
decoder and the SVD layer respectively. The decoder significantly
improved the classification measures: specificity, balanced accuracy,
and ARI, while the sensitivity was not significantly different. At
the same time, BGDs were significantly higher and WGVs were
significantly lower, consistent with improved clustering. Removing
the SVD layer significantly decreased all performance indicators but
sensitivity. Fig. 4b shows the distributions of metrics, averaged within
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(a)

(b)

Fig. 4: (a) The average group-level metrics reported for complete
model (TB-SGAE), model without the SVD layer (TB-GAE), model
without the decoder (TB-SGE) and baseline (PCA+LDA). Classifica-
tion and clustering measures are based on KNN classifier with K=10.
(b) The average group-level metrics for all groups in category A, B,
and C based on TB-SGAE.

each syndrome group over the five folds, stratified by the clinical
categorization (A, B, or C). Syndromes in categories A and B had
a higher median sensitivity, specificity, balanced accuracy, and ARI
than those in category C, with B showing slightly lower values than
A. Furthermore, in line with the previous observation, and consistent
with clinical expectation categories A and B have higher BGDs
and lower WGVs, indicating in general they are in more isolated
regions of the space than the syndromes in group C and have lower
internal variation. Fig. 5a shows the 2D visualization of the CFPS
obtained from TB-SGAE using the UMAP algorithm. The projection
of individuals in the train set (smaller dots) and test set (larger dots)
are colored by their categorization. The PLS regression of accuracy
onto phenotypic predictors and sample size is shown in Fig. 6. The
standardized coefficients of the linear combination and the regression
of accuracy onto the derived latent variable are shown in Fig. 6.
Accuracy in the CFPS of the TB-SGAE is significantly predicted
by the phenotypic measures and sample size. The training and
OOF error of reconstruction for TB-SGAE were 0.1597 and 0.1705
respectively. Reconstruction error per vertex is shown in Fig. 7a.
The error bar is scaled in millimeters. The average error per vertex
was less than 1 mm. Nevertheless, the heatmaps indicate that regions
around the mouth, nose, and eyes had relatively higher errors. The lips
and mouth regions are sensitive to expression variation, introducing

(a) (b)

Fig. 5: (a) 2D UMAP visualization of the trainset (smaller dots, and
test set (larger dots) into the space, colored by categories. (b) Colored
2D UMAP visualization of the four RASopathies together with the
rest of the trainset (smaller dots) and test set (larger dots) colored in
black.

Fig. 6: PLS regression of accuracy onto phenotypic predictors and
sample size. The bottom row plots the standardized coefficients of the
linear combination defining the latent variable. The top row plots the
regression of accuracy onto the latent variable. Columns correspond
to the different spaces.

extra complexity for the model to learn. The training and OOF of
the model without the SVD layer (TB-GAE) were 0.1650 and 0.1710
respectively, which is slightly more than that of the complete model.
To visually assess the precision and smoothness of the reconstructions
from the CFPS of the complete model, the average test-set projections
can be reconstructed. Fig. 7b shows recunstructions for four groups of
Achondroplasia, Wolf Hirschhorn, Apert and williams from Category
A syndromes.
The next experiment investigated the ability of the space to generalize
to unseen syndromes. Six groups of syndromes were left out from the
train set and the CFPS was trained based on the 47 remaining groups.
The unseen groups and the test set were merged and projected to the
space. Based on these projections the BGD, WGV, and the CIF were
computed. Fig. 8 shows the average results for TB-SGAE and the
baseline (PCA+LDA) over five folds of data. The median BGD of
novel syndromes was significantly higher and the median WGV was
significantly lower in TB-SGAE than in the baseline, and CIF was
higher for five out of the six syndromes for TB-SGAE. Fig. 8 addi-
tionally compares TB-SGAE with TB-SGE (without decoder), TB-
GAE (without the SVD layer), the space obtained from PCA+LDA
baseline and the first 100 principal components. BGD and WGV
and CIF were not significantly different with or without the decoder
(P<0.005). However, there was a considerable improvement in all

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2022. ; https://doi.org/10.1101/2022.12.27.521999doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.27.521999
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

TABLE II: The comparison of discriminating metrics computed for both TB-SGAE (+LDA for classification measures) and the linear baseline
comprising of PCA + LDA. Reported metrics are: sensitivity, specificity, balanced accuracy (acc), adjusted rand index (ARI), embedding
between-group distance (BGD), and within-group variance (WGV).

Model Sensitivity Specificity Balanced acc ARI BGD WGV
TB-SGAE 0.9987 ± 0.0003 0.2454 ± 0.0361 0.6221 ± 0.018 0.2454 ± 0.0361 0.857 ± 0.0148 0.7598 ± 0.0094
BASELINE 0.9998 ± 0.0001 0.1464 ± 0.0265 0.5731 ± 0.0133 0.1464 ± 0.0265 0.7761 ± 0.0175 0.8305 ± 0.0105

(a) (b)

Fig. 7: (a) The training error of reconstruction (left) and out-of-fold
error of reconstruction (right) (b) The reconstruction of the average
embedding of individuals with Achondroplasia, Wolf Hirschhorn,
Apert and williams using the geometric decoder.

three metrics when the SVD layer was added to the TB-GAE. The
space of principal components had generalization power higher than a
random performance. In addition, applying the LDA transformation
to the PCA scores increased the CIF of all the syndrome groups
but Cohen syndrome. Note that the maximum dimensionality of the
LDA-based CFPS was bounded by the maximum number of classes
in the training set minus one (i.e. 46 in this study). Therefore, we
further investigated and compared the CIF results using a TB-SGAE
space with 100 dimensions (used before and determined based on an
SAE, see above) and 46 dimensions (equivalent to the LDA-based
baseline), and observed no statistical difference (p=0.84). This is not
entirely unexpected thanks to the SVD layer, which results in the
most variance being coded the lower components, making it easier
to reduce dimensionality, with the minimum loss of data information.
For the last experiment, The UMAP plot in Fig. 5b shows the RA-
Sopathies grouped in the upper corner which confirms the proximity
of these groups in the CFPS. The statistical test also indicated that
within the CFPSs based on TB-SGAE, TB-SGE, and the baseline
(PCA+LDA), the average distance between RASopathies cluster
centers in the normalized CFPSs were lower than 99.7%, 99.6%,
and 99.5% (respectively) of random selections of four groups.

IV. DISCUSSION

In this work, we build a CFPS that models the range of fa-
cial dysmorphism present in 51 syndromes alongside general facial
variations from a group of controls. To this end, we proposed a
triplet-based singular geometric autoencoder for multi-task learning,
to simultaneously learn facial shape variation and reconstruction, in
an unsupervised way, and group discriminations with the supervision
of syndrome labels.
The existing CNNs for syndrome classification or building CFPSs are
mostly based on large-scale 2D photographs of patients with genetic
syndromes. By now, large-scale databases of 3D photographs of clini-

cal populations have been collected. Considering the expected growth
in the popularity and accessibility of portable 3D imaging hardware,
building systems that are applicable to this imaging modality is
essential so as to fully exploit the 3D shape information contained
in such images. With the recently developed field of GDL, CNNs
are now directly applicable to 3D images. This eliminates the need
for any domain transformation. Therefore, in this work, we aimed for
building a CFPS based on 3D facial images using spiral convolutional
operators with which we facilitate both syndrome classification and
facial reconstruction. Once learned, we evaluated the main properties
of the CFPS, being clustering of syndromes, generalization to novel
syndromes, and the recapitulation of related genetic diseases. We also
assessed the reconstruction precision from the CFPS and investigated
the phenotypic shape predictors of the classification. We compared
the performance of our space to a linear baseline which consists of
PCA for dimensionality reduction and LDA, a linear metric learner.
Similar work on 2D data [2], estimates the factor by which clustering
is improved compared to random chance (CIF). Compared to such
random performance, LDA is a much more difficult baseline to match
or improve on. In fact, for statistical shape analysis, LDA and its
regularized variants were and still are strong and popular methods
that are also used and outperformed many other classifiers in the 3D
syndrome classification published in [23].
Our proposed model consists of three main components. The first
is a triplet-based encoder which was used in the recent syndrome
classification work in [25] to optimize the distances among indi-
viduals belonging to different syndrome groups. In the triplet-loss
function, the focus is on learning the CFPS such that the distances
are a measure of similarity and group membership and therefore it
contributes to the classification and clustering power of the space. The
second component is a decoder that not only allows the reconstruction
of a face from an embedding in a CFPS but also improves the
classification and clustering performance of the system. The decoder
does not diminish (nor improve) the generalization capacity of the
CFPS. The third component, being an SVD layer, makes it simpler
to select the dimensionality of the space without retraining and also
improves the classification, reconstruction, and generalization aspects
of the CFPS.
We showed that the CFPS built based on the complete model (TB-
SGAE) outperforms the classification and the clustering performances
of the linear model which consists of PCA for dimensionality reduc-
tion and LDA for metric learning. We then compared the results to a
TB-SGE and observed higher BGD and lower WGV in the encoding,
which was not surprising since the network’s attention during learning
is expanded away from these aspects only. Interestingly, this property
not only did not diminish the classification and clustering perfor-
mance, but it improved them, illustrating the use of coding general
facial variation and similarity beyond simple supervised learning of
the CFPS. In other words, two facially similar individuals belonging
to different groups are embedded closer together in the CFPS that
preserves the topology, while this information is overlooked when
the CFPS that only focuses on the phenotypic features that are
related to group discrimination. Although a direct comparison with
the state-of-the-art 3D syndrome diagnosis in [16] is not available,
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Fig. 8: The comparison of the between-group distance, within-group variance (WGV), and clustering improvement factor (CIF) for individuals
in the six left-out groups of the experiment 3, projected to the CFPSs obtained by TB-SGAE, TB-GAE, TB-SGE, PCA+LDA (baseline) and
PCA. Error bars indicate the standard error of the mean over five folds.

the classification results are competitive. It is important to note that
our classification results are affected by sample size which is due to
the data imbalance (some groups have as low as 10 individuals). We
believe that this can improve with an expanded dataset.
Furthermore, we investigated whether the CFPS is inline with the
expectations of clinicians. Experts in clinical genetics categorized
syndromes into three classes. Two include syndromes that are phe-
notypically distinctive (A and B) and the third class of syndromes
that are not necessarily phenotypically distinctive (C). All the clas-
sification and clustering metrics but the WGV differ in the expected
direction significantly for the phenotypically distinctive categories A
and B, compared to C. Groups in category C show smaller WGV,
contrary to expectation, however this is highly variable depending on
the syndrome. Hence, the CFPS largely conformed to expectation.
Graphically, this is shown in the UMAP visualization (Fig. 5a) which
shows that syndromes in categories A and B generate more isolated
and clear clusters around the corners while category C groups show
less clear cluster boundaries and are positioned close together around
the center of the mapped embeddings. Category A and B are also
more distant from controls than category C.
With the ability to construct a face from an embedding, we can
visualize and hence explain and understand the embeddings better.
The decoder component facilitates the reconstruction of encoded
facial shapes with less than 1 mm error. In addition, thanks to the
orthonormal dimensions, we have a coordinate system in the space
that properly spans every vector and thus allows us to explore and
interpolate the space more structurally. In other words, one can
manipulate one dimension without changing the values on other
dimensions, this is a property of a vector basis or coordinate system
which is not available in a default autoencoder.
Furthermore, we evaluated the clustering generalization onto novel
syndromes that have not been included in the training set. The novel
syndromes projected into the CFPS are significantly more unique and
cohesive in our complete network than that of the linear baseline. We
also computed and compared the CIF for the novel syndromes. This
comparison shows that the clustering improves from a random chance
for both baseline and TB-SGAE. Compared to the linear baseline,
the improvement is stronger for five out of six novel syndromes
within our CFPS. Moreover, results of the comparison between the
CFPS built by the same models with and without the SVD layers
indicated that the added structure imposed on the latent space by

adding the SVD layer makes it significantly more generalizable to
novel syndromes. The comparison between TB-SGAE and the TB-
SGE shows that the generalization performance is not affected by
adding the decoder. However, it still is a solid addition that further
enables the ability to visualize and therefore interpret the metric space
by generating faces. The comparison of the generalization power
between the supervised linear metric learning approach (PCA+LDA)
and that of the unsupervised and linear PCA shows that in five out of
six left out groups supervised learning improves the performance. The
group that has superior performance with PCA (Cohen syndrome) is
known to be clinically difficult to recognize from the face, and this
observation suggests that the supervision of metric learning has less
influence on groups that have little to no facial clues for diagnosis.
It also worth mentioning that the CIF obtained by PCA suggests that
despite the unsupervised nature of this method, it still is powerful
enough to improve the clustering factor considerably compared to
random performance.
Finally, we tested for expected low distance among the four RA-
Sopathies, an etiologically related group of disorders caused by
mutations in genes encoding the RAS/MAPK pathway. Results of
the statistical test indicated that the four groups are significantly
closer together in the CFPS of TB-SGAE, TB-SGE, and the linear
baseline compared to random selections of other four syndrome
groups in each of these spaces. This test provided us with one
piece of evidence towards the recapitulation of the relatedness in
the CFPS, although it does not demonstrate any improvement of the
deep metric learners over the linear baseline, in which our measure of
this recapitulation was already close to ceiling. When genetic data are
available, more comprehensive tests, correlating measures of genetic
similarity to phenotypic distance should be performed. For example
genetic similarity can be based on protein-to-protein interaction as
per Ferry et al. [2] or distance based on patterns of DNA methylation
[38].
The proposed clinical face phenotype space can facilitate interpreta-
tion of facial dysmorphism of a subject by positioning them within the
space of known facial dysmorphisms. The generalization and classi-
fication improvements of the space demonstrate the space prioritizes
facial variations that are disturbed by genetic anomalies, facilitating
the assessment of dysmorphism for new subjects even when they do
not belong to one of the groups used to learn the metric space. In this
way, the CFPS can contribute to the identification of novel genetic
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disorders by matching individuals with facial dysmorphism caused by
the same rare and novel disorder. These clusteres are prime targets
for genetic investigations to unravel the etiology of novel genetic
disorders, as illustrated by [3]. This work can also be technically
expanded by implementing other existing geometric deep learning
methods, aside from the spiral convolutions used in this work, such
as PointNet++ [39], which enable learning from unstructured 3D
data. This makes it possible to learn directly from the original 3D
scans and shortcuts the pre-processing steps of the pipeline used
in this work. However, a steeper learning curve is expected since
extensive data normalization is less trivial to implement. Additionally,
inspired by [24] we can combine normalizing flow architecture with
our geometric deep learning-based approach to possibly improve
the performance and flexibility of the CFPS. For our deep learning
framework, further improvement is expected with additional data
which will be collected and processed in the future. Finally, designing
more in-depth experiments on genotype-phenotype correlation can
reveal valuable information for clinicians and experts in the field.

V. CONCLUSION

In this work, we proposed a CFPS learner based on 3D facial
images and GDL techniques for large-scale syndrome analysis. The
proposed model consists of the base component being a geometric
encoder, which is further expanded by our additional components
being a geometric decoder, with which high-precision facial shapes
are reconstructed from an embedding in the CFPS, and a singular
value decomposition layer to encode a structured facial mesh into an
orthonormal 100-dimensional CFPS. We used a multi-task learning
approach to train the model in an end-to-end manner. The loss
function combines the supervised triplet-loss function with the unsu-
pervised reconstruction-loss. In summary, we showed that supervised
and unsupervised learning strategies both improve the clustering
factor compared to a random performance. Moreover, supervised
learning leads to superior performance compared to unsupervised
learning only. Lastly, the proposed GDL-based model learns a CFPS
that outperforms the linear metric learning baseline (consisting of
PCA and LDA), in both syndrome classification or clustering and
generalization to novel syndromes. We proved the contribution of
each added component in the classification, reconstruction, and
generalization capacity of the CFPS. More precisely, we showed that
the attached decoder not only facilitated the ability to reconstruct
patient faces and generate synthetic faces but also improved the
classification performance of the model. In addition, the orthonormal
base of the CFPS facilitated by the SVD layer has considerably
impacted the classification, reconstruction, and more importantly the
generalization capacity of the space. We also showed that the space
strongly replicates clinical expectations such that the classification
and clustering measures obtained from the CFPS relate to the catego-
rization of syndromes. Further the proximity of the four RASopathies,
characterized by mutations in functionally-related genes is reflected in
the CFPS. The resulting CFPS can potentially narrow the search space
for diagnosing new instances of the syndromes that are represented
in the space, objectively assess facial similarity between undiagnosed
patients who share a rare and novel disorder, and facilitate targeted
sequencing of genomic regions to identify causal variants.
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“GestaltMatcher: Overcoming the limits of rare disease matching using
facial phenotypic descriptors,” preprint, Genetic and Genomic Medicine,
Jan. 2021.

[17] “The use of 3D face shape modelling in dysmorphology,” Archives of
Disease in Childhood, vol. 92, pp. 1120–1126, Dec. 2007.

[18] J. Cox-Brinkman, A. Vedder, C. Hollak, L. Richfield, A. Mehta, K. Or-
teu, F. Wijburg, and P. Hammond, “Three-dimensional face shape in
Fabry disease,” European Journal of Human Genetics, vol. 15, pp. 535–
542, May 2007.

[19] J. Meulstee, L. Verhamme, W. Borstlap, F. Van der Heijden, G. De Jong,
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