

1 **Rewarding capacity of optogenetically activating a giant GABAergic central-brain**
2 **interneuron in larval *Drosophila***

3
4 Abbreviated title: Rewarding capacity of a GABAergic interneuron
5
6 Nino Mancini^{1*}, Juliane Thoener¹, Esmeralda Tafani¹, Dennis Pauls², Oded Mayseless⁴, Martin
7 Strauch⁵, Katharina Eichler⁶, Andrew Champion^{7,8}, Oliver Kobler⁹, Denise Weber³, Edanur
8 Sen¹, Aliće Weiglein¹, Volker Hartenstein¹⁰, Andreas S. Thum³, Astrid Rohwedder³, Michael
9 Schleyer¹, Bertram Gerber^{1,11,12*}

10
11 ¹ Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory,
12 39118 Magdeburg, Germany

13 ² Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig,
14 Germany

15 ³ Department of Genetics, Institute of Biology, Leipzig University, 04103 Leipzig, Germany

16 ⁴ Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001
17 Israel

18 ⁵ RWTH Aachen University, Institute of Imaging and Computer Vision, 52074 Aachen,
19 Germany

20 ⁶ Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan,
21 Puerto Rico 00901

22 ⁷ Department of Physiology, Development and Neuroscience, Cambridge University,
23 Cambridge, CB2 3EL, United Kingdom

24 ⁸ Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA

25 ⁹ Leibniz Institute for Neurobiology (LIN), Combinatorial Neuroimaging Core Facility (CNI),
26 39118 Magdeburg, Germany

27 ¹⁰ University of California, Department of Molecular, Cell and Developmental Biology, CA
28 90095-1606, Los Angeles, USA

29 ¹¹ Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
30 ¹² Institute for Biology, Otto von Guericke University, 39106 Magdeburg, Germany

31

32 *Correspondence to:

33 nino.mancini@mpfi.org

34 bertram.gerber@lin-magdeburg.de

35

36 Number of pages: 84

37 Number of figures: 18, tables: 0, movies: 7

38 Number of words for abstract: 244, introduction: 650, discussion: 1500

39

40 **Competing interests**

41 The authors declare no competing interests.

42

43 **Acknowledgements**

44 This study received institutional support from the Otto von Guericke University Magdeburg
45 (OvGU), the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL), the Leibniz
46 Institute for Neurobiology (LIN), as well as grant support from the Deutsche
47 Forschungsgemeinschaft (DFG-GE 1091/4-1 and FOR 2705 Mushroom body to B.G.;
48 PA1979/3-1 to D.P.; DFG-TH 1584/ 8-1 and DFG-TH 1584/ 7-1 to A.S.T.; NIH Grant R01
49 NS054814 to V.H.). We thank A. Bates (Cambridge) for providing the script allowing
50 compartment boundaries to be generated on the dendograms; H. Tanimoto (U Tohoku), M.
51 Stopfer (NIH), Y. Aso (HHMI Janelia), A. Lin (U Sheffield), O. Schuldiner (Weizmann), C. Duch
52 (U Mainz), G. Tavosanis (U Bonn), A. Khalili (U Göttingen), C. König (LIN), B. Michels (LIN)
53 and N. Toshima (LIN) for discussions; A. Ciuraszkiewicz (LIN), K. Hartung (LIN), M.L.
54 Rodriguez Lopez (LIN), B. Kracht (LIN), T. Niewalda (LIN), M. Paisios (LIN), H. Reim (LIN) and
55 H. Wickborn (LIN) and the workshop team at the LIN for their technical assistance. Current
56 affiliations: N.M.: Max Planck Florida Institute for Neuroscience, 33458 Jupiter, Florida, USA;

57 A.W.: Institute of Anatomy, Otto von Guericke University, 39120 Magdeburg, Germany; O.M.:
58 Biozentrum, University of Basel, 4056 Basel, Switzerland; M. Schleyer: Hokkaido University,
59 Institute for the Advancement of Higher Education, Hokkaido 060-0808, Japan; A.C.:
60 Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom and
61 MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom; K.E.:
62 Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.

63

64 **Author contributions**

65 N.M., M. Schleyer, O.M., K.E., O.K., A.S.T., D.P., M. Strauch, V.H. and B.G. designed
66 research; N.M., J.T., E.T., O.K., A.W., O.M., K.E., A.C., D.W., E.S., D.P., A.R., M. Strauch,
67 and V.H. performed research; A.R. and A.S.T. contributed unpublished reagents/analytic tools;
68 N.M., M. Schleyer, J.T., E.T., O.K., A.W., O.M., K.E., A.C., D.W., E.S., A.R., A.S.T., D.P., M.
69 Strauch, V.H., and B.G. analyzed data; N.M. and B.G. wrote the paper with input from all
70 authors.

71

72 **Abstract**

73 Larvae of the fruit fly *Drosophila melanogaster* are a powerful study case for understanding
74 the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has
75 permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating
76 single, identified neurons allow neural circuit function to be investigated with relative ease and
77 precision. We focus on one of the most complex neurons in the brain of the larva (of either
78 sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic
79 analyses, optogenetics, Ca^{2+} imaging and pharmacology, we study how APL affects
80 associative olfactory memory. We first provide a detailed account of the structure, regional
81 polarity, connectivity, and metamorphic development of APL, and further confirm that
82 optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body
83 Kenyon cells. All these findings are consistent with the previously identified function of APL in
84 the sparsening of sensory representations. To our surprise, however, we found that

85 optogenetically activating APL can also have a strong rewarding effect. Specifically, APL
86 activation together with odor presentation establishes an odor-specific, appetitive, associative
87 short-term memory, whereas naïve olfactory behavior remains unaffected. An acute, systemic
88 inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons
89 impair reward learning through APL activation. Our findings provide a study case of complex
90 circuit function in a numerically simple brain, and suggest a previously unrecognized capacity
91 of central-brain GABAergic neurons to engage in dopaminergic reinforcement.

92

93 Key words: reward, dopamine, mushroom body, optogenetics, olfaction

94

95 **Significance statement**

96 The single, identified giant anterior paired lateral (APL) neuron is one of the most complex
97 neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal
98 activity in the mushroom body, the memory center of insects. We provide the most detailed
99 account yet of the structure of APL in larval *Drosophila* as a neurogenetically accessible study
100 case. We further reveal that, contrary to expectations, the experimental activation of APL can
101 exert a rewarding effect, likely via dopaminergic reward pathways. The present study both
102 provides an example of unexpected circuit complexity in a numerically simple brain, and
103 reports an unexpected effect of activity in central-brain GABAergic circuits.

104

105 **Introduction**

106 Larvae of the fruit fly *Drosophila melanogaster*, which naturally live on overripe fruit, provide a
107 powerful study case for investigating the neurogenetic bases of learning and memory (Gerber
108 and Stocker, 2007; Widmann et al., 2018; Thum and Gerber, 2019; Eschbach and Zlatic,
109 2020). Their small size and low number of neurons have allowed their chemical synapse
110 connectome to be reconstructed, revealing unexpected complexity. In the mushroom body,
111 which is a higher brain structure for sensory integration and memory in insects (Heisenberg,
112 2003), more than half of the classes of synaptic connections had previously escaped attention

113 (Figure 1D; Eichler et al., 2017; Eschbach et al., 2020, 2021; adults: Takemura et al., 2017;
114 Li et al., 2020). For instance, dopaminergic mushroom body input neurons (DANs) not only
115 relay ascending information to local compartments along the elongated axonal fibers of the
116 mushroom body intrinsic Kenyon cells (KCs), but also integrate local information from the KCs
117 and recurrent signals originating from mushroom body output neurons (MBONs; these likewise
118 respect compartmental boundaries). Similar complexity is observed for octopaminergic input
119 neurons (OANs) and for input neurons using as yet unidentified signaling (Eichler et al., 2017;
120 Saumweber et al., 2018; Eschbach et al., 2020, 2021; Schleyer et al., 2020). Collectively, this
121 should prepare us for more surprises regarding mushroom body function. Here we study one
122 of the most complex mushroom body neurons of larvae, the anterior paired lateral (APL)
123 neuron.

124 APL is a hemispherically unique local interneuron and can be identified from the earliest
125 larval stage on, throughout metamorphosis and in adults (Eichler et al., 2017; Mayseless et
126 al., 2018; Saumweber et al., 2018). It receives most of its input from, and provides GABAergic
127 output to, the cholinergic KCs, suggesting a role in sparsening sensory representation within
128 the mushroom body (Masuda-Nakagawa et al., 2014; adults: Honegger et al., 2011; Lin et al.,
129 2014; Amin et al., 2020; Prisco et al., 2021; further insects: Homberg et al., 1987; Grünwald,
130 1999; Papadopoulou et al., 2011). In contrast to most other aspects of mushroom body
131 connectivity, however, there are major differences in APL connectivity between larvae and
132 adults.

133 In adults, APL innervates all 15 mushroom body compartments and the calyx, where the
134 KCs receive input from sensory projection neurons (Tanaka et al., 2008; Aso et al., 2014). In
135 larvae, APL also innervates the calyx, but only six of the 10 compartments (Figure 1B; Eichler
136 et al., 2017; Saumweber et al., 2018).

137 In adults, APL connects reciprocally with the KCs in the calyx and in all the compartments
138 (Wu et al., 2013; Takemura et al., 2017; Zheng et al., 2018; Scheffer et al., 2020), whereas in
139 larvae such reciprocal connections exist only in the calyx, and only KC-to-APL synapses are
140 found otherwise (Masuda-Nakagawa et al., 2014; Eichler et al., 2017; Saumweber et al., 2018).

141 In adults, APL is electrically coupled to the dorsal paired median neuron (DPM), a local
142 interneuron that innervates all the compartments but not the calyx (Pitman et al., 2011; Wu et
143 al., 2011). DPM is serotonergic, co-releases GABA, and can express the amnesiac peptide
144 (Waddell et al., 2000; Lee et al., 2011; Haynes et al., 2015; Turrel et al., 2018). Strikingly, DPM
145 is absent in larvae (Eichler et al., 2017; Saumweber et al., 2018).

146 These differences caution against extrapolating between findings on APL in larvae and
147 adults, since functions of APL other than a sparsening of KC activity have been described in
148 adults (Liu et al., 2007; Liu and Davis, 2009; Ren et al., 2012; Wu et al., 2012; Lin et al., 2014).
149 In this context, we provide a comprehensive account of the structure of the larval APL neuron,
150 the spatial arrangement of its synapses, its physiological effect on KC activity, and its
151 metamorphic development. Investigating its role in Pavlovian conditioning, we discover that,
152 surprisingly, optogenetic activation of APL exerts a rewarding effect. This effect is studied in
153 detail and is shown to involve a dopamine-dependent process.

154

155 **Materials & Methods**

156

157 ***Drosophila* strains**

158 *Drosophila melanogaster* were kept and maintained on standard medium, in mass culture at
159 25°C, 60%–70% humidity, in a 12/12 h light/dark cycle. We used randomly chosen third-instar,
160 feeding-stage larvae of both sexes, aged 5 days (120 h) after egg laying, unless mentioned
161 otherwise. The strains used in this study and their genotypes are listed in Extended Data Table
162 2-1.

163

164 **Full-body fluorescence microscopy**

165 To allow a full-body assessment of transgene expression from the APL-specific split-GAL4
166 SS01671 driver (henceforth APL-GAL4; Saumweber et al., 2018), it was crossed to w⁺; UAS-
167 mCherryCAAX (abbreviated as UAS-mCherry-CAAX; Sens et al., 2010; Bloomington Stock
168 Center no. 59021) to express the mCherry-CAAX reporter. Double-heterozygous third-instar

169 progeny (abbreviated as APL>mCherry-CAAX) were analyzed for fluorescence signals under
170 a light-sheet microscope (see next paragraph). Genetic controls were heterozygous for either
171 the GAL4 element (APL>+) or the UAS element (+>mCherry-CAAX). To obtain the driver
172 control, APL-GAL4 was crossed to y^1w^1 (Bloomington Stock Center no. 1495). As regards the
173 effector control, a strain lacking the GAL4 domains but containing the two split-GAL4 landing
174 sites (attP40/attP2; Pfeiffer et al., 2010) was crossed to UAS-mCherry-CAAX.

175 Experimental procedures follow Kobler et al. (2021). In brief, third-instar larvae were first
176 bleached (4% sodium hypochlorite, Roth, order no. 9062.1) for 10 min at room temperature.
177 After washing (3 x 5 min in distilled water, dH₂O), they were fixed in 4% paraformaldehyde
178 (PFA) in 0.1 M phosphate buffer (PB) at pH 9, with gentle shaking overnight at 4°C. Fixed
179 samples were briefly rinsed 3 x with 0.1 M PB containing 0.2% Triton-X-100 (PBT), then
180 washed 2 x 60 min and left overnight at 4°C in PBT at pH 9. Dehydration the following day
181 used a graded ethanol series (60 min in 10% and 25% ethanol, followed by 30 min in 50%,
182 60%, 80% (all at pH 9), and 2 x 100% ethanol). Samples were then cleared by replacing
183 ethanol with ethyl cinnamate (ECi; Ethyl 3-phenyl-2-propenoate; Sigma-Aldrich, order no.
184 112372-100G). After 30-60 min, the ECi was refreshed once, and the samples stored at room
185 temperature in black boxes in a desiccator.

186 The samples were placed ventral side up in ECi-cleared phytigel blocks (1 x 1 x 1 cm,
187 Sigma-Aldrich, P8169). These were placed in a sample holder, which in turn was fixed on a
188 mounting suspension to fit into a high-precision quartz glass cuvette filled with ECi and optically
189 accessible with an UltraMicroscope II light-sheet microscope (Miltenyi Biotec). The microscope
190 was equipped with a Zyla 4.2 PLUS sCMOS camera (Oxford Instruments, Abingdon-on-
191 Thames, UK) and a tube for infinity-corrected objective lenses. An EXW-12 laser (NKT
192 Photonics, Birkerød, Denmark) was used for excitation through triple-sheet optics to illuminate
193 samples from one side. Excitation and emission filters (AHF Analysentechnik AG) were used
194 as indicated in Figure 2 and Movie 1.

195 Tiled image stacks were acquired with a LVMI-Fluor 12x objective (Miltenyi Biotec) with a
196 format of 2048 x 2048. Using ImSpector software (version 7.1.4, Miltenyi Biotec), a 10%
197 overlap of tiles was set for stitching.

198 Image files were processed with Imaris software (version 9.8, Bitplane), including file
199 conversion, stitching, further processing, and rendering. The *ortho slicer* tool was used to
200 restrict volumes in the z-direction to improve the representation of structures that were
201 otherwise covered in the context of the whole body. All 3D images were generated using the
202 *snapshot* function. 2D maximum-intensity projections were generated in Fiji (Schindelin et al.,
203 2012).

204 Movie 1 was produced in Imaris with the *key frame animation* tool; Adobe Premiere Pro
205 2020 (version 14.9.0, Adobe Inc) was used for cutting and labeling.

206

207 **Immunohistochemistry**

208 All the antibodies used in this study are listed in Extended Data Table 2-1.

209

210 *Transgene expression pattern of the SS01671 driver strain*

211 To validate specific expression in the larval APL neuron of the APL-GAL4 driver strain
212 (Saumweber et al., 2018), it was crossed to UAS-ChR2XXL::tdtomato to express a tomato-
213 tagged version of ChR2XXL (FlyBase ID: FBtp0131815; Saumweber et al., 2018). Double-
214 heterozygous third-instar progeny (abbreviated as APL>ChR2XXL::tdtomato) were dissected
215 in ice-cold Ringer's solution, and the brains were fixed for 30 min in 10% formaldehyde
216 dissolved in phosphate buffered saline (PBS, pH 7.2, P4417, Sigma Aldrich) at room
217 temperature. After consecutive washing steps (3 x 10 min each) in PBT (0.3% Triton-X-100
218 [CAS: 9036-19-5, Roth] in PBS), the brains were blocked in 5% normal goat serum solution
219 (NGS; 005-000-121, Jackson Immunoresearch Laboratories; in PBS) for 2 h at room
220 temperature. To provide a reference staining of fiber tracts (including the mushroom bodies),
221 tissues were incubated overnight at 4°C with a primary monoclonal mouse anti-FASII antibody
222 (AB_528235, DSHB) diluted 1:50 in blocking solution containing 4% NGS in PBS. After six

223 washes (10 min each) in PBS, the tissues were treated overnight at 4°C with a secondary
224 polyclonal goat anti-mouse Alexa Fluor 488 antibody (A11001, Invitrogen) diluted 1:200 in
225 PBS. The brains were then washed in PBS (6 x 10 min each) and mounted in Vectashield
226 (Vector Laboratories Inc) on a cover slip. Signal detection from the tomato-tag of ChR2XXL
227 (labeling the APL neuron) did not require antibodies; rather, the tomato fluorescence signal
228 was detected directly under the microscope. Image z-stacks were acquired with a Leica TCS
229 SP8 confocal microscope (Leica Mikrosysteme Vertrieb GmbH) at a format of 1024 × 1024.
230 Image processing was performed using Imaris software (version 9.72, Bitplane).

231 To visualize the larval APL neuron together with the mushroom bodies, we crossed the
232 APL-GAL4 driver with a recombined effector/enhancer>effector strain that includes a UAS-
233 mIFP-T2A-HO1 effector (abbreviated as mIFP; Yu et al., 2015; Bloomington Stock Center no.
234 64181) recombined with the enhancer>effector construct MB247>mCherry-CAAX (Kobler et
235 al., 2021). Third-instar larval progeny (abbreviated as APL>mIFP/MB247>mCherry-CAAX)
236 were dissected in ice-cold Ca²⁺-free saline solution and fixed for 24 h in 4% paraformaldehyde
237 (PFA; J19943, Alfa Aesar; in PBS) at 4°C. After six washes (3 x brief; 3 x 10 min) in 0.3% PBT,
238 the brains were mounted in Vectashield (Vector Laboratories Inc) on a cover slip. Signal
239 detection from the mCherry-CAAX reporter (labeling the mushroom bodies) and the mIFP
240 reporter (labeling APL) did not require antibodies for signal amplification. The image z-stack
241 was acquired with a Leica TCS SP8 confocal microscope (Leica Mikrosysteme Vertrieb GmbH)
242 at a format of 1024 × 1024. The corresponding Movie 2 was produced in Imaris (version 9.72,
243 Bitplane).

244 To examine the inter-hemispheric symmetry in the morphology of APL, the APL-GAL4
245 driver was crossed to UAS-mCD8::GFP (Lee and Luo, 1999; Bloomington Stock Center no.
246 5137) as the effector. Third-instar larvae were put on ice and dissected in PBS. The brains
247 were fixed in 4% PFA for 20 min at room temperature. After a succession of washing steps (3
248 x brief; 1 x 5 min; 3 x 15 min; 1 x 90 min) in 3% PBT (3% Triton-X-100 [CAS: 9002-93-1, Sigma
249 Aldrich] in PBS) on ice, the brains were blocked with 5% NGS (G9023, Sigma Aldrich) in PBT
250 for 1 h at room temperature and incubated for 48 h with primary antibodies at 4°C. The brains

251 were then washed (2 x brief; 3 x 15 min; 1 x 60 min; on ice; 1 x 30 min at room temperature)
252 in 3% PBT before application of the secondary antibodies for at least 24 h at 4°C. After a final
253 set of washing steps (3 x brief; 3 x 5 min; 2 x 15 min) in 3% PBT, the brains were mounted on
254 poly-L-lysine-coated cover slips (following the Janelia FlyLight recipe), dehydrated by a series
255 of increasing concentrations of ethanol (EtOH) (1x brief in distilled water; 1 x 10 min 30% EtOH;
256 1 x 10 min 50% EtOH; 1 x 10 min 75% EtOH; 1 x 10 min 95% EtOH; 3 x 10 min 100% EtOH)
257 and cleared (3 x 5 min) in xylene (247642, CAS: 1330-20-7, Sigma Aldrich). Finally, the brains
258 were mounted in DPX mounting medium (dibutyl phthalate in xylene; 06522, Sigma Aldrich)
259 and left in darkness for at least 24 h before imaging.

260 The primary antibody mixture consisted of (i) 2% NGS diluted 1:25 in 3% PBT, (ii) a
261 polyclonal rabbit anti-GFP antibody (A6455, Life Technologies) diluted 1:1000 in 3% PBT (for
262 APL staining), (iii) a monoclonal mouse 4F3 anti-DLG antibody (AB_528203, Developmental
263 Studies Hybridoma Bank) diluted 1:200 in 3% PBT (for mushroom body staining), and (iv) a
264 monoclonal rat anti-N-Cadherin antibody (DN-Ex #8-s, Developmental Studies Hybridoma
265 Bank) diluted 1:50 in 3% PBT (for neuropil staining).

266 The secondary antibody mixture consisted of (i) 2% NGS diluted 1:25 in 3% PBT, (ii)
267 polyclonal goat anti-rabbit Alexa Fluor 488 (A11008, Life Technologies), (iii) polyclonal goat
268 anti-mouse Alexa Fluor 568 (A10037, Life Technologies), and (iv) polyclonal goat anti-rat Alexa
269 Fluor 647 (712-605-153, Jackson ImmunoResearch), all diluted 1:500 in 3% PBT. Confocal
270 microscopy was conducted on a Zeiss LSM800 confocal laser scanning microscope with ZEN
271 2.3 software. Image z-stacks were acquired with a LSM800 confocal microscope (Zeiss) at a
272 format of 1024 × 1024. Image processing was performed using Imaris software (version 9.72,
273 Bitplane).

274 To compare the coverage of the mushroom body compartments between the APL neuron
275 of each hemisphere, mean pixel intensities were measured using ImageJ (version 1.53c, Fiji
276 ImageJ). Grayscale maximum intensity projections of the GFP-channel (labeling APL
277 membranes) were created, whereas the DLG-channel (labeling the mushroom body) served

278 as a template for orientation. The mushroom body compartments were selected using the ROI
279 Manager function; mean gray values are documented in Extended Data Figure 3-1.

280 To validate the expression of the ChR2XXL effector protein used for activating APL, the
281 APL-GAL4 driver was crossed to the UAS-ChR2XXL effector (Dawydow et al., 2014;
282 Bloomington Stock Center no. 58374). Following the procedure of Schleyer et al. (2020), brains
283 of third-instar larval progeny (abbreviated as APL>ChR2XXL) were dissected in ice-cold Ca^{2+} -
284 free saline solution and fixed in Bouin's solution (HT10132, Sigma-Aldrich) for 7 min at room
285 temperature. After six successive washing steps (3 x brief; 3 x 15 min) in 0.2% PBT, the brains
286 were incubated overnight at 4°C with a primary monoclonal mouse anti-ChR2 antibody
287 (610180, ProGen Biotechnik) diluted 1:100 in 0.2% PBT. The brains were then washed (3 x
288 10 min each) in 0.2% PBT and incubated for 1 h at room temperature with a secondary
289 polyclonal donkey anti-mouse Cy3 antibody (715-165-150, Jackson ImmunoResearch
290 Laboratories) diluted 1:300 in 0.2% PBT. Finally, the samples were washed (3 x 10 min each)
291 in 0.2% PBT and mounted in Vectashield (Vector Laboratories Inc) on a cover slip. Image z-
292 stacks were acquired with a Leica TCS SP8 confocal microscope (Leica Mikrosysteme Vertrieb
293 GmbH) at a format of 1024 × 1024. Image processing was performed using Imaris software
294 (version 9.72, Bitplane).

295

296 *GABA staining*

297 To confirm the presence of GABA in APL, the APL-GAL4 driver was crossed to a UAS-
298 CsChrimson::mVenus effector (Klapoetke et al., 2014; Bloomington Stock Center no. 55135),
299 and third-instar progeny (abbreviated as APL>Chrimson) were dissected in PBS. Signal
300 detection from the mVenus tag of the Chrimson transgene allows visualization of APL
301 membranes without antibodies under the fluorescence microscope. The brains were fixed for
302 20 min with 4% PFA in 3% PBT on ice. After successive washing steps (2 x brief; 1 x 5 min; 3
303 x 15 min; 1 x 2 h) in 3% PBT, the brains were blocked for 1-2 h in 2% NGS solution (S-1000,
304 Vector Laboratories Inc; in PBS) on ice. After two overnight incubations at 4°C with the primary
305 antibodies, the brains were rinsed (2 x brief; 1 x 5 min; 3 x 15 min; 1 x 2 h) in 3% PBT and

306 incubated overnight with the secondary antibodies at 4°C. The preparations were finally
307 washed (2 x brief; 1 x 5 min; 5 x 15 min) in 3% PBT, mounted in Vectashield (Vector
308 Laboratories Inc) on a cover slip, and scanned under a LSM510 confocal microscope (Zeiss)
309 at a format of 1024 × 1024. Image processing was performed using Imaris software (version
310 9.72, Bitplane).

311 The primary antibody mixture consisted of (i) 2% NGS diluted 1:25 in 3% PBT, (ii) a
312 monoclonal rat anti-N-Cadherin antibody (DN-Ex #8-s, Developmental Studies Hybridoma
313 Bank) diluted 1:50 in 3% PBT (for neuropil staining), and (iii) a polyclonal rabbit anti-GABA
314 antibody (A2052, Sigma Aldrich) diluted 1:500 in 3% PBT.

315 The secondary antibody mixture consisted of (i) 2% NGS diluted 1:25 in 3% PBT, (ii) a
316 polyclonal Cy3-conjugated goat anti-rat antibody (A10522, Life Technologies) diluted 1:200 in
317 3% PBT, and (iii) a polyclonal Cy5-conjugated goat anti-rabbit antibody (A10523, Life
318 Technologies) diluted 1:200 in 3% PBT.

319

320 *APL regional synaptic polarity*

321 To analyze the regional synaptic polarity of the larval APL neuron, the APL-GAL4 driver was
322 crossed to a double effector with both UAS-Dsyd-1::GFP (Owald et al., 2015) and UAS-
323 DenMark (Nicolai et al., 2010; Bloomington Stock Center no. 33062). Third-instar progeny
324 (abbreviated as APL>Dsyd-1::GFP/DenMark) were dissected, fixed, dehydrated, and mounted
325 as described in the preceding section. Image processing was performed and the
326 corresponding Movie 3 was generated using Imaris software (version 9.72, Bitplane).

327 The primary antibody mixture consisted of (i) 2% NGS diluted 1:25 in 3% PBT, (ii) a
328 monoclonal rat anti-N-Cadherin antibody (DN-Ex #8-s, Developmental Studies Hybridoma
329 Bank) diluted 1:50 in 3% PBT (for neuropil staining), (iii) a polyclonal FITC-conjugated goat
330 anti-GFP antibody (ab 6662, Abcam) diluted 1:1000 in 3% PBT (for visualization of the GFP-
331 tag from Dsyd-1::GFP to label pre-synaptic regions), and iv) a polyclonal rabbit anti-DsRed
332 antibody (632496, Clontech) diluted 1:200 in 3% PBT (for detecting the DenMark signal to
333 label post-synaptic regions).

334 The secondary antibody mixture consisted of (i) 2% NGS diluted 1:25 in 3% PBT, (ii) a
335 polyclonal Cy3-conjugated goat anti-rat antibody (A10522, Life Technologies) diluted 1:200 in
336 3% PBT, and (iii) a polyclonal Cy5-conjugated goat anti-rabbit antibody (A10523, Life
337 Technologies) diluted 1:200 in 3% PBT.

338

339 **Chemical tagging for tracking APL development**

340 Chemical tagging provides an alternative method to immunohistochemistry for labeling specific
341 cells and structures in tissues. The tag-based approach uses genetically driven, enzyme-
342 based protein “tags” that are expressed in specific cells and that covalently bind small
343 fluorescent substrates, resulting in fast and specific tissue staining with low background signals
344 (Kohl et al., 2014; Sutcliffe et al., 2017; Meissner et al., 2018).

345 We used such tagging to track the regional synaptic polarity of APL during development.
346 Specifically, we used the synaptic reporters synaptotagmin fused to the chemical tag SNAPm
347 (Syt1-SNAPm) to label pre-synaptic regions, and telencephalin fused to CLIPm (TLN-CLIPm)
348 to label post-synaptic regions (Kohl et al., 2014). The effectors UAS-Syt1:SNAP (Kohl et al.,
349 2014; Bloomington Stock Center no. 58379), UAS-TLN:CLIP (Kohl et al., 2014; Bloomington
350 Stock Center no. 58382) and UAS-mCD8::GFP (for labeling APL; Lin et al., 2014) were used
351 together with the intersectional driver APLi-GAL4 (NP2631-GAL4, GH146-FLP, tubP-FRT-
352 GAL80-FRT) for specific expression in both larval and adult APL neurons (Lin et al., 2014;
353 Mayseless et al., 2018) – since APL-GAL4 does not cover the adult APL neurons (not shown).

354 Our procedures followed Kohl et al. (2014). In brief, brains of third-instar larvae, pupae (6
355 h or 12 h after puparium formation), and adults of the genotype APLi/Syt1:SNAP>
356 mCD8::GFP/TLN:CLIP were dissected in ice-cold phosphate buffer (PB; 0.1 M) and fixed in
357 4% PFA at room temperature for 20 min. The brains were permeabilized and washed (3 x 10
358 min) in PBT (0.3% Triton-X 100 in PBS). Chemical tag ligands were then applied in a 300 µL
359 volume on a nutator for 15 min, at room temperature. The chemical substrates were SNAP-
360 tag ligands (SNAP surface 549 - BG 549 [NEB, S9112S]) and CLIP-tag ligands (CLIP surface
361 647 - BC 647 [NEB, S9234S]) at final concentrations of 1 µM in 0.3% PBT. To minimize cross-

362 reactivity, the SNAP-tag ligands were applied 10 min before the CLIP-tag ligands. To label
363 APL, the brains were immunostained: three consecutive washing steps (10 min each) in 0.3%
364 PBT were followed by 30 min incubation in blocking solution with 5% NGS (005-000-121,
365 Jackson ImmunoResearch Laboratories) in PBT. The brains were then incubated overnight with
366 a primary antibody mixture consisting of (i) 5% NGS diluted in 0.3% PBT and (ii) a polyclonal
367 chicken anti-GFP antibody (AB_10000240, Aves Labs) diluted 1:500. After five consecutive
368 washing steps (3 x brief; 2 x 20 min) in 0.3% PBT, the brains were incubated for 2 h at room
369 temperature with a polyclonal secondary FITC-conjugated goat anti-chicken antibody
370 (A16055, Invitrogen) diluted 1:300 in 0.3% PBT. The preparations were mounted on slides in
371 SlowFade (Invitrogen), and examined under a confocal microscope (Zeiss LSM 800). Image
372 processing was performed using Imaris software (version 9.2 Bitplane).

373

374 **Volume reconstruction of APL from an EM dataset**

375 We added radial volume annotations to an existing skeleton reconstruction of the APL neuron
376 in both hemispheres (Eichler et al., 2017) from an electron microscopy dataset of a 6 h-old
377 stage 1 larva (Ohyama et al., 2015). More details of the neuron reconstructions can be found
378 in Eichler et al. (2017). Volume annotations were made manually using the web-based
379 software CATMAID (Saalfeld et al., 2009; Schneider-Mizell et al., 2016), which was extended
380 with a tool to allow for rapid graphical annotations of the radii of contiguous cable segments
381 with similar radius. Radial annotations were used to create a volumetric representation of the
382 cells' morphology as conical frustum compartments. The radii were placed so as to preserve
383 the approximate volume of the irregularly shaped processes while accounting for the
384 anisotropic image resolution of 3.8 nm × 3.8 nm × 50 nm. We defined the axon and dendrite of
385 both APL neurons as the two synapse-rich areas along the arbor separated from the neurite
386 by the high Strahler branch point nearest to the cell body. Reconstructed neurons and their
387 synapses were analyzed using the natverse package (<http://natverse.org/>) (Bates et al., 2020)
388 in R (version 3.6.2) and plotted using Blender (version 2.79) with the CATMAID-to-Blender
389 plugin (<https://github.com/schlegelp/CATMAID-to-Blender>; Schlegel et al., 2016).

390

391 **Dendrogram representations of APL synapses and branching**

392 Neuron dendograms are simplified, but topologically correct, two-dimensional representations
393 of neurons with complex morphologies (Strauch et al., 2018). As relative branch lengths and
394 synapse location are preserved, dendograms can be employed to visualize the spatial
395 distribution of synapses in an easily readable way. The APL dendograms are derived from
396 existing electron microscopy reconstructions (Eichler et al., 2017) and were created following
397 established computational methods (Strauch et al., 2018). Additionally, mushroom body
398 compartment boundaries were superimposed onto the dendograms, based on the projection
399 patterns of mushroom body extrinsic neurons (Saumweber et al., 2018). We used the natverse
400 toolbox for R (Bates et al., 2020) and custom code (A. Bates, University of Cambridge) to
401 extract the synaptic coordinates from the CATMAID L1 dataset and to generate an envelope
402 that surrounds the synapses formed by the mushroom body extrinsic neurons belonging to
403 each given compartment. Compartment boundaries were plotted onto the dendograms as
404 hulls around the synapses located within the respective compartment. Compartments that
405 extend across several dendrogram branches are connected by dashed lines.

406 To analyze the relative distribution of APL-to-KC and KC-to-APL synapses in the calyx, we
407 followed a procedure described in detail in Schleyer et al. (2020). In brief, we computed
408 geodesic distances between synapses, i.e. "cable length" distances along the neuron's
409 branches. Based on the geodesic distances, a clustering algorithm served to partition all
410 synapses, regardless of their type, into local synapse clusters, i.e. regions of high synapse
411 density (domains). For each domain, the distances were then evaluated from the APL-to-KC
412 (or KC-to-APL) synapses to the cluster's centroid point, which served as a measure for the
413 spatial distribution of APL-to-KC (or KC-to-APL) within the domain.

414

415 **Functional imaging**

416 The functional imaging methods follow those described in greater detail previously (Selcho et
417 al., 2017; Lyutova et al., 2019). In brief, to monitor intracellular Ca^{2+} levels of KCs in response

418 to optogenetic activation of the APL neuron, the lexA-lexAop system was used to express the
419 fluorescent Ca^{2+} reporter GCaMP6m in KCs (effector lexAOp-GCaMP6m (Chen et al., 2013;
420 Bloomington Stock Center no. 44276); driver R14H06-lexA (Pfeiffer et al., 2013; Bloomington
421 Stock Center no. 52482)), and the GAL4-UAS system was used to express ChR2-XXL in APL
422 (effector UAS-ChR2XXL (Dawydow et al., 2014; Bloomington Stock Center no. 58374); driver
423 R26G02-GAL4 (Saumweber et al., 2018; Bloomington Stock Center no. 48065)). Note that the
424 R26G02-GAL4 driver covers APL plus additional cells outside the mushroom body; it was
425 chosen because the more specific APL-GAL4 driver, as a split-GAL4 strain, could not be
426 combined with the lexA-lexAop system. Using classical genetics, we generated strains that
427 carried a combination of the drivers (R14H06-lexA/R26G02-GAL4) or the effectors (lexAop-
428 GCaMP6m/UAS-ChR2XXL; Lyutova et al., 2019). These strains were crossed, and from the
429 progeny (abbreviated as $\text{APL}_{26G02}>\text{ChR2XXL}$; $\text{KC}>\text{GCaMP6m}$) larval brains were dissected
430 and placed in a Petri dish containing 405 μl hemolymph-like HL3.1 Ringer solution. Images
431 with regions of interest (ROI) around the calyx and KCs were recorded with an Axio Examiner
432 D1 microscope (Zeiss) using a W Plan-Apochromat 20 x 1.0 DIC (UV) VIS-IR objective and a
433 Axiocam 506 camera (Zeiss). We monitored fluorescence intensity upon pulsed 475-nm light
434 (Colibri LED, Zeiss) at an intensity of 1.8 mW/cm^2 for a first observation period, followed by
435 pulses at an intensity of 4.1 mW/cm^2 for a second observation period immediately thereafter.
436 The light pulses were of 80 ms duration and were given at a 2-s onset-onset interval. We used
437 larvae without the APL driver as the genetic control (abbreviated as $+>\text{ChR2XXL}$;
438 $\text{KC}>\text{GCaMP6m}$).

439 To see whether APL activation would be potent enough to reduce the very high intracellular
440 Ca^{2+} levels that result from cholinergic stimulation of the KCs, we used carbamylcholine (CAS:
441 51-83-2, Sigma Aldrich). Specifically, we monitored fluorescence intensity under pulsed 475-
442 nm light as described above for a total of 8 min and after the first 2 min manually bath-applied
443 45 μl carbamylcholine, dissolved in HL3.1 to a final concentration of 10^{-4} M.

444 We present the fluorescence intensity ($\Delta F/F_0$) across the observation period normalized to
445 the values at its beginning (Normalized $\Delta F/F_0$) as the baseline. To analyze the differences

446 between the experimental conditions, we determined, for each calycal ROI/ KC, the maximum
447 difference from the baseline.

448

449 **Behavioral assays**

450 *Experimental setup*

451 Larvae were trained and tested on Petri dishes (9 cm inner diameter; Sarstedt) filled either with
452 1% agarose only (CAS: 9012-36-6, Roth) or with 1% agarose containing 2 mol/L D-fructose
453 (99% purity; CAS: 57-48-7, Roth) as the taste reward (+). Once the contents had solidified, the
454 dishes were covered with their lids and left at 4°C until the experiment started, and for a
455 maximum of 2 weeks.

456 As the odors, *n*-amyl acetate (AM; CAS: 628-63-7, Merck) diluted 1:20 in paraffin oil (CAS:
457 042-47-5, AppliChem) and 1-octanol (OCT, undiluted; CAS: 111-87-5, Sigma Aldrich) were
458 used. The paraffin oil is without behavioral effect as an odor (Saumweber et al., 2011). Before
459 the experiments, 10 µL of the respective odor was added to odor containers (5 mm inner
460 diameter) covered by perforated lids (5-10 holes of 0.5 mm diameter each). Larvae were
461 collected from their food vial with a brush, briefly rinsed in tap water, and used immediately for
462 behavioral experiments.

463 Behavioral assays were carried out in a light-shielded, custom-built box, as described in
464 Schleyer et al. (2020). In brief, the box contained a 24 x 12 LED array light table (Solarox) with
465 a 6-mm-thick Plexiglas diffusion panel placed above it, providing constant light conditions and
466 intensity for the activation of light-gated ion channels expressed in neurons of interest (see
467 section “*Genotypes and methods for optophysiology*”). Larvae in Petri dishes were placed onto
468 the diffusion panel and were surrounded by a translucent polyethylene ring. The ring featured
469 30 infrared LEDs mounted behind to deliver light (invisible to the animals) allowing behavioral
470 recording for offline tracking analysis (see section “*Video recording and tracking of*
471 *locomotion*”).

472

473 *Odor-fructose reward association*

474 A two-group, reciprocal conditioning paradigm was used following standard procedures
475 (Scherer et al., 2003; Neuser et al., 2005; Saumweber et al., 2011; for a detailed manual:
476 Michels et al., 2017). In brief, one group of larvae received the odor presented together with
477 the fructose reward (paired training), whereas a second group received separate presentations
478 of the odor alone and the fructose reward alone (unpaired training).

479 For paired training, a cohort of ~ 30 larvae was placed at the center of a Petri dish filled
480 with agarose that was mixed with fructose as the reward (+). Two containers were filled with
481 the odor (AM+) and placed on opposite sides of the Petri dish. The lid was then closed, and
482 the larvae were allowed to move freely for 2.5 min. The larvae were then removed and placed
483 on a fresh, pure-agarose Petri dish in the presence of two empty containers (EM), the lid was
484 closed, and the larvae could again move freely for 2.5 min. This training cycle was performed
485 once only, unless mentioned otherwise. The sequence of training was alternated across
486 replications; i.e. for half of the cases we started with AM as described above (AM+/EM), and
487 for the other half with EM (EM/AM+). After training, the larvae were tested for their odor
488 preference. Specifically, the animals were transferred to the center of a fresh, pure-agarose
489 Petri dish (i.e. without fructose reward, unless mentioned otherwise) featuring one AM
490 container on one side, and one EM container on the other side. After 3 min, the number of
491 larvae on the AM side (#AM), the EM side (#EM), as well as on the middle “neutral” stripe (10
492 mm), was counted, and the olfactory preference score (PREF) was calculated as:

493

494 (1) $PREF = \frac{\#AM - \#EM}{\#Total}$

495

496 Thus, preference scores may range from 1 to -1, with positive values showing preference for
497 AM, and negative values indicating avoidance of AM. Larvae crawling up onto the lid or onto
498 the odorant containers during the test (< 5%) were discarded from the analysis.

499 For unpaired training, the procedure was the same except that the odor and the reward
500 were presented separately to the animals. That is, after collection the larvae were placed on a
501 fresh, pure-agarose Petri dish in the presence of two containers both filled with AM. Then, the

502 larvae were transferred onto a fresh agarose Petri dish with fructose added, in the presence
503 of two empty containers (EM+). Again, the training sequence started with AM (AM/EM+) in half
504 of the cases, and in the other half of the cases with EM (EM+/AM). The larvae were then tested
505 for their AM preference, and the olfactory preference score was calculated as for the paired
506 group (equation 1).

507 Associative memory is indicated by a difference in preference for AM after paired training
508 compared to the reciprocal, unpaired training. These differences in AM preference were
509 quantified by the associative memory score:

510

511 (2)
$$\text{Memory score} = \frac{\text{PREF (Paired)} - \text{PREF (Unpaired)}}{2}$$

512

513 Thus, memory scores may range from 1 to -1, with positive values indicating appetitive
514 associative memory, and negative values indicating aversive associative memory. These
515 experiments were combined with optogenetic APL activation (see section “*Genotypes and*
516 *methods for optophysiology*”), as mentioned in the Results section.

517

518 *Odor-APL association*

519 Based on early results in this study (see Results section), we suspected that optogenetic
520 activation of the APL neuron might have a rewarding effect. Therefore, the associative learning
521 paradigm described above was modified by using optogenetic APL activation (+) instead of a
522 fructose reward (i.e. no real reward was presented). In the paired group, AM was presented
523 together with continuous 2.5-min light stimulation to activate APL, whereas empty containers
524 were subsequently presented in darkness, also for 2.5 min (AM+/EM). In the unpaired group,
525 the larvae were exposed to odor and light separately (AM/EM+). This training cycle was
526 performed once only, with the training sequence alternated across repetitions as described in
527 the preceding section. After training, the larvae were tested on a fresh, pure-agarose Petri
528 dish, and their odor preference as well as the memory score were calculated as detailed above
529 (equation 1, equation 2).

530 In addition, a differential two-odor version of the paradigm using APL activation as the
531 reinforcer was used. This was performed as described above except that instead of using
532 empty containers (EM), the containers were filled with 1-octanol (OCT, undiluted). Thus,
533 differential conditioning followed the logical structure of training being either AM+/OCT or in
534 the reciprocal case AM/OCT+ (again, the training sequence was alternated across repetitions
535 of the experiments). The larvae were then tested for their choice between AM and OCT on a
536 fresh, pure-agarose Petri dish, and the data were analyzed, with due adjustment, as detailed
537 above (equation 1, equation 2). In this case, positive memory score values thus indicate odor-
538 specific appetitive associative memory, whereas negative memory score values indicate odor-
539 specific aversive associative memory.

540 Whenever variations on the above paradigms were used, these are mentioned in the
541 Results section.

542

543 *Innate olfactory behavior*

544 The odor preference of experimentally naïve larvae was assayed following standard
545 procedures (Saumweber et al., 2011). Cohorts of ~ 30 animals were transferred onto a pure-
546 agarose plate in the presence of one odor-filled container and another empty container placed
547 on opposite sides of the plate. Odor preference was calculated after 3 min following equation
548 (1). To probe whether APL activation has an effect on innate olfactory behavior, the test was
549 carried out either without light stimulation, or with light stimulation.

550

551 *Genotypes and methods for optophysiology*

552 For the experiments on APL activation, we used third-instar transgenic larvae expressing either
553 ChR2XXL or Chrimson in APL. To this end, APL-GAL4 was crossed to UAS-ChR2XXL or to
554 UAS-CsChrimson::mVenus as the effector. Double-heterozygous progeny (abbreviated as
555 APL>ChR2XXL or APL>Chrimson) were used for activation of the APL neuron; larvae
556 heterozygous for either the GAL4 element (APL>+) or the UAS element (+>ChR2XXL or
557 +>Chrimson) were used as the driver and the effector genetic control, respectively. To obtain

558 the driver controls, APL-GAL4 was crossed to w^{1118} (Bloomington Stock Center no. 3605, 5905,
559 6326). As regards the effector controls, a strain lacking the GAL4 domains but containing the
560 two split-GAL4 landing sites (attP40/attP2) was crossed to UAS-ChR2XXL or UAS-
561 CsChrimson::mVenus. For experiments using Chrimson, the flies were raised on food
562 supplemented with all-trans retinal (100 mM final concentration; cat: R2500; CAS: 116-31-4,
563 Sigma Aldrich), unless mentioned otherwise.

564 For the experiments on MBON activation, UAS-ChR2XXL was crossed to one of the three
565 following drivers: (i) R36G04-GAL4, covering the two calyx MBONs in each hemisphere, plus
566 additional cells in the ventral nerve cord (Saumweber et al., 2018; Bloomington Stock Center
567 no. 49940; abbreviated as MBONa1,a2-GAL4); (ii) the split-GAL4 line SS02006, covering only
568 one calyx MBON in each hemisphere (Eschbach et al., 2021; kindly provided by M. Zlatic,
569 University of Cambridge; abbreviated as MBONa1-GAL4); (iii) SS01417, covering one, or in
570 some cases both, of the calyx MBONs in each hemisphere (Extended Data Figure 16-1;
571 Eschbach et al., 2021; kindly provided by M. Zlatic, University of Cambridge; abbreviated as
572 MBONa2-GAL4). Again, double-heterozygous progeny (abbreviated as
573 MBONa1,a2>ChR2XXL, MBONa1>ChR2XXL or MBONa2>ChR2XXL) were used for
574 activating the calyx MBONs; driver and effector control larvae were obtained as detailed in the
575 preceding paragraph.

576 For simultaneous activation of APL and ablation of the pPAM neurons, the lexA-lexAop
577 system was used to express the pro-apoptotic *reaper* gene in the pPAM neurons (effector
578 lexAop-reaper (Herranz et al., 2014); driver R58E02-lexA (Lyutova et al., 2019; Bloomington
579 Stock Center no. 52740)), and the GAL4-UAS system was used to express ChR2-XXL in APL
580 (effector UAS-ChR2XXL (Dawydow et al., 2014; Bloomington Stock Center no. 58374); driver
581 R55D08-GAL4 (Saumweber et al., 2018; Bloomington Stock Center no. 39115)). Note that the
582 R55D08-GAL4 driver covers APL plus additional cells outside the mushroom body; it was
583 chosen because the more specific APL-GAL4 driver, as a split-GAL4 strain, could not be
584 combined with the lexA-lexAop system. Using classical genetics, we generated strains that
585 carried a combination of the drivers (R58E02-lexA/R55D08-GAL4) or the effectors (lexAop-

586 reaper/UAS-ChR2XXL; Lyutova et al., 2019). These strains were crossed, and the progeny
587 obtained (abbreviated as APL_{55D08}>ChR2XXL; pPAM>reaper) were used for the experiment.
588 As regards single effector controls, a strain lacking lexAop-reaper but containing UAS-
589 ChR2XXL was crossed to R58E02-lexA/R55D08-GAL4 (abbreviated as APL_{55D08}>ChR2XXL;
590 pPAM>+). As regards single driver controls, a strain lacking R58E02-lexA but containing
591 R55D08-GAL4 was crossed to lexAop-reaper/UAS-ChR2XXL (abbreviated as
592 APL_{55D08}>ChR2XXL; +>reaper).

593 The above-mentioned custom-built box (see section “Experimental setup”) was equipped
594 for illumination from a blue LED light table when ChR2XXL was used (wavelength: 470 nm;
595 intensity: 120 μ W/cm²; Solarox), or from a red LED light table when Chrimson was used
596 (wavelength: 630 nm; intensity: 350 μ W/cm²; Solarox).

597 For silencing experiments, the light-gated chloride channel GtACR1 was used. Specifically,
598 either APL-GAL4, R36G04-GAL4, SS02006-GAL4 or SS01417-GAL4 were crossed to UAS-
599 GtACR1::YFP (König et al., 2019; Bloomington Stock Center no. 9736; kindly provided by R.
600 Kittel, University of Leipzig). Double-heterozygous progeny (APL>GtACR1,
601 MBONa1,a2>GtACR1, MBONa1>GtACR1 or MBONa2>GtACR1) were used for silencing the
602 respective neurons; driver and effector control larvae were obtained as described in the
603 preceding paragraphs. A green LED light table (wavelength: 520 nm; intensity: 2003 μ W/cm²;
604 Solarox) was used for illumination.

605 In all cases, the timing of illumination is mentioned for each experiment in the Results
606 section. As all effectors are sensitive to daylight, the breeding of all transgenic animals was
607 performed in darkness, effectuated by black covers wrapped around the food vials. All
608 behavioral experiments were carried out in parallel for the respective experimental group and
609 genetic controls; investigators were blind with respect to genotypes.

610

611 *Video recording and tracking of locomotion*

612 For a subset of experiments, larval behavior was videorecorded throughout the test and
613 analyzed as described by Paisios et al. (2017). In brief, four behavioral features were analyzed
614 in relation to odor:

615 First, the olfactory preference (PREF time, in s) was calculated as:

616

617 (3)
$$PREF\ time = \frac{Time\ spent\ on\ AM\ side - Time\ spent\ on\ EM\ side}{Total\ duration}$$

618

619 Thus, preference scores may range from 1 to -1, with positive scores indicating that larvae
620 spent more time on the odor side, and negative values indicating more time spent on the non-
621 odor side, representing approach and avoidance, respectively.

622 Second, the head cast (HC) rate modulation was calculated as:

623

624 (4)
$$HC\ rate\ modulation = \frac{\#HC/s\ (away\ from\ AM) - \#HC/s\ (toward\ AM)}{\#HC/s\ (away\ from\ AM) + \#HC/s\ (toward\ AM)}$$

625

626 Thus, positive scores indicate odor approach; i.e. the larvae make more HCs when crawling
627 away from the odor than when crawling towards it. Conversely, negative scores indicate odor
628 avoidance.

629 Third, the HC reorientation (°) was calculated as:

630

631 (5)
$$HC\ reorientation = abs\ (before\ HC) - abs\ (after\ HC)$$

632

633 The absolute heading angle (abs) indicates how the larva's head is oriented relative to the
634 odor. For instance, at abs 180° or 0° the odor is located behind or in front of the animal,
635 respectively. Thus, positive values indicate odor approach; i.e. the head cast directs the larva
636 towards the odor instead of away from it. Conversely, negative values indicate odor avoidance.

637 Fourth, the run speed modulation was calculated as:

638

639 (6) *Run speed modulation* = $\frac{\text{Run speed toward AM} - \text{Run speed away from AM}}{\text{Run speed toward AM} + \text{Run speed away from AM}}$

640

641 Thus, positive values for run speed modulation indicate that animals slow down whenever they
642 head away from the odor, and speed up whenever they move towards it, indicating approach.
643 Conversely, negative values indicate avoidance.

644

645 **Pharmacological manipulation of dopamine synthesis**

646 To test whether the dopaminergic system is implicated in odor-APL associative learning, a
647 systemic pharmacological approach was used to disrupt dopamine synthesis (Neckameyer,
648 1996; Kaun et al., 2011; Thoener et al., 2020). This approach was combined with behavioral
649 experiments using optogenetic APL activation as the reinforcer (see section “Odor-APL
650 association”) and followed the procedures described in Thoener et al. (2020). In brief, a 0.5
651 mg/ml yeast solution was produced and kept for up to one week at 4 °C. The dopamine-
652 synthesis inhibitor 3-Iodo-L-tyrosine (3IY; CAS: 70-78-0, Sigma Aldrich; concentration: 5
653 mg/ml) was added to samples of 2 ml yeast solution. In the instances mentioned in the Results
654 section, the dopamine precursor 3,4-dihydroxyphenylalanine (L-DOPA; CAS: 59-92-7, Sigma
655 Aldrich; concentration: 10 mg/ml) was added to a yeast solution with or without 3IY. After
656 mixing on a shaker for 1 h, the solutions were transferred into vials containing two pieces of
657 PET mesh. Third-instar progeny of the APL-GAL4 driver crossed to UAS-ChR2XXL
658 (APL>ChR2XXL) were transferred from their food vials to the respective yeast solutions. After
659 a feeding period of 4 h at 25°C and 60-70% relative humidity, the larvae were briefly washed
660 in water and immediately used in behavioral experiments.

661

662 **Experimental design and statistical analyses**

663 The source data and the results of all statistical tests, performed in Statistica 13 unless
664 mentioned otherwise (SCR_014213, StatSoft Inc, Tulsa), are included in Extended Data
665 Figure 3-1. Graphs, figures, and sketches were generated with Statistica 13, Corel Draw 2019

666 (SCR_013674, Corel Corporation), and GraphPad Prism 6 (SCR_002798, GraphPad Software
667 Inc); references are documented in Extended Data Table 2-1.

668 To compare the compartmental coverage between the APL neuron of each hemisphere
669 (see Figure 3E), a Pearson correlation was performed; the data are displayed as a scatter plot.

670 To compare the radii of the neurite, dendrite, and axon of APL in both hemispheres (see
671 Figure 6D), Kruskal-Wallis tests (KW) and Mann-Whitney-Wilcoxon (MWW) tests (total of three
672 MWW tests per APL) were used for multiple and two-group comparisons, respectively (R Core
673 Team, 2016). The Bonferroni-Holm correction was applied to maintain an error rate below 5%
674 (Holm, 1979). The data are displayed as violin plots, the bars showing the mean.

675 The experiments in Figure 5 followed a two-group design with two genotypes
676 (APL_{26G02}>ChR2XXL; KC>GCaMP6m as the experimental genotype and +>ChR2XXL;
677 KC>GCaMP6m as the genetic control). In Figure 5A, C and E, the data for each calycal ROI/
678 KC are plotted over time (showing mean +/- SEM). In Figure 5B, D and F, the data are plotted
679 as the maximum difference from the baseline for each calycal ROI/ KC (showing mean and
680 data-point scatter); MWW tests were performed between genotypes.

681 For the experiments in Figures 7, 9-18 and Extended Data Figure 7-4, the data are
682 displayed as box plots, the middle line showing the median, the box boundaries the 25 and
683 75% quantiles, and the whiskers the 10 and 90% quantiles; outliers are not displayed.

684 To compare the geodesic distances of synapses to the center of their respective center-
685 surround structure on the left-hemisphere APL neuron (see Figure 7D), we performed a MWW
686 test between KC-to-APL and APL-to-KC synapses. Corresponding analyses for the right-
687 hemisphere APL neuron can be found in Extended Data Figure 7-4.

688 For the behavioral results displayed in Figures 9-18, Kruskal-Wallis tests (KW) and MWW
689 tests were used for multiple and two-group comparisons, respectively. For comparisons to
690 chance levels (i.e. to zero), one-sample sign tests (OSS; corresponding to binom.test in R
691 version 3.3.2, R Core Team, 2016) were used. The Bonferroni-Holm correction was applied to
692 maintain an error rate below 5%. Sample sizes (biological replications) were chosen based on
693 previous studies that had revealed moderate to mild effect sizes (Paisios et al., 2017;

694 Saumweber et al., 2018) and are indicated in the figure legends. A sample size of $N = 1$
695 included ~ 30 animals of both sexes for each reciprocally trained group, and ~ 30 animals of
696 both sexes for all innate preference experiments. All behavioral experiments were performed
697 in parallel for the respective experimental group and genetic controls; experimenters were blind
698 to genotypes.

699 The experiments in Figure 9A-B, Figure 12A-B and E, Figure 15A, Figure 16A-B, and
700 Figure 18 followed a three-group design with three genotypes (experimental genotype
701 expressing ChR2XXL or GtACR1 or ChR2XXL/reaper, plus effector and driver controls). In
702 case of significance, a KW test across all groups was followed by pairwise MWW tests between
703 genotypes (three MWW tests in total). Comparisons to chance levels (i.e. to zero) were tested
704 for each group by one-sample sign tests; in Figure 16A-B no one-sample sign tests were
705 performed.

706 The experiments in Figures 9D, F-I and Figure 15D followed a two-group design with two
707 test conditions (the presence or absence of light) for the experimental genotype expressing
708 ChR2XXL (Figure 9D, F-I) or Chrimson (Figure 15D). MWW tests were performed between
709 the two test conditions; no one-sample sign tests were performed.

710 The experiment in Figure 10 followed a six-group design with two test conditions (the
711 presence or absence of the fructose reward) for the experimental genotype expressing
712 ChR2XXL. The animals received paired or unpaired odor-fructose training, either not activating
713 APL during training at all, or activating APL during odor presentation, or in the absence of odor.
714 A KW test across all groups was followed by pairwise MWW tests between groups within the
715 same test condition, as well as between test conditions for a given kind of training regimen
716 (nine MWW tests in total). Differences from chance levels (i.e. from zero) were tested for in
717 each group by one-sample sign tests.

718 The preference scores shown in Figure 11A-C underlie the associative memory scores in
719 Figure 10. The experiment followed a four-group design with two test conditions (the presence
720 or absence of the fructose reward) for the experimental genotype expressing ChR2XXL. A KW
721 test across all groups was followed by pairwise MWW tests between groups that had received

722 paired or unpaired odor-fructose training within the same test condition; in addition, MWW tests
723 were performed between the respectively trained groups that were tested in the absence of
724 fructose and the baseline odor preference scores (four MWW tests in total). Differences from
725 chance levels (i.e. from zero) were tested for in each group by one-sample sign tests.

726 Figure 11D shows pooled preferences from Figure 11A-C and follows a three-group design
727 for the experimental genotype expressing ChR2XXL. A KW test across all groups was followed
728 by pairwise MWW tests between groups (three MWW tests in total); no one-sample sign tests
729 were performed.

730 The experiment in Figure 12C followed a four-group design for the experimental genotype
731 expressing ChR2XXL. After a KW test across all groups, MWW tests were performed between
732 the group tested immediately after training (retention interval 0 min) and the groups tested 5,
733 10 or 20 min after training (three MWW tests in total). Differences from chance levels (i.e. from
734 zero) were tested for in each group by one-sample sign tests.

735 The experiment in Figure 12D followed a nine-group design for the experimental genotype
736 expressing ChR2XXL. A KW test was performed across all groups; no one-sample sign tests
737 were performed.

738 Figure 13B describes the odor preferences of larvae of the experimental genotype
739 expressing ChR2XXL tested after paired or unpaired training, over time. No statistical analyses
740 were performed; rather, the data were collated over time and were statistically compared
741 between the two training groups in Figure 13C (see next paragraph).

742 The experiments in Figure 13C-F, Figure 15B-C and Figure 17C followed a two-group
743 design for the experimental genotype expressing Chrimson (Figure 15B-C) or ChR2XXL
744 (Figures 13C-F, Figure 17C). MWW tests were performed between the two groups. Differences
745 from chance levels (i.e. from zero) were tested for in each group by one-sample sign tests (in
746 Figure 13C-F no one-sample sign tests were performed).

747 The experiments in Figure 14 followed a six-group design with three genotypes
748 (experimental genotype expressing ChR2XXL, effector and driver controls) and two test
749 conditions (the presence or absence of light). A KW test across all the groups was performed

750 first. In case of significance, pairwise MWW tests were performed between genotypes within
751 the same test condition, as well as between test conditions for a given genotype (nine MWW
752 tests in total). In Figure 14A-B differences from chance levels (i.e. from zero) were tested for
753 in each group by one-sample sign tests; in Figure 14C-E no one-sample sign tests were
754 performed.

755 The experiments in Figure 16C-D followed a four-group design with two test conditions (the
756 presence or absence of light) for the experimental genotype expressing GtACR1 (Figure 16C)
757 or ChR2XXL (Figure 16D). A KW test was performed across all groups; no one-sample sign
758 tests were performed.

759 The experiment in Figure 17D followed a four-group design for the experimental genotype
760 expressing ChR2XXL. After a KW test across all groups, MWW tests were performed between
761 the untreated group and (i) the group fed 3IY, (ii) the group fed 3IY plus L-DOPA, and (iii) the
762 group fed L-DOPA; as well as between the group fed 3IY and the group fed 3IY plus L-DOPA
763 (four MWW tests in total). Differences from chance levels (i.e. from zero) were tested for in
764 each group by one-sample sign tests.

765

766 **Results**

767

768 **Organization of the APL neuron**

769 We first investigated the expression pattern of the APL-GAL4 driver in third-instar larvae in the
770 full-body context. This took advantage of a combination of autofluorescence signals with
771 fluorescence from UAS-mCherry-CAAX as the effector. These signals can be detected
772 conveniently under a light-sheet microscope upon clearing the sample (Kobler et al., 2021).
773 Fluorescence signals that can be observed across wavelengths and in both the experimental
774 genotype (APL>mCherry-CAAX) and the genetic controls (+>mCherry-CAAX and APL>+ as
775 the effector and the driver control, respectively) constitute autofluorescence and allow rich
776 bodily detail to be discerned (**Figure 2**). We note that signals from fluorescent food particles
777 contribute to individually-variable signals along the alimentary canal (Kobler et al., 2021).

778 Fluorescence reflecting the expression of mCherry-CAAX, however, was reproducibly seen
779 specifically in a giant pair of cells in the mushroom body region (**Figure 2B''**, **D''**, **F''**) that
780 can be identified as APL (**Movie 1**). Thus, to the extent tested here and in the absence of a
781 standard body against which full-body preparations can be systematically registered at high
782 resolution, the effects observed using the APL-GAL4 driver can be interpreted without
783 reference to transgene expression elsewhere in the body.

784 Combining the APL-GAL4 driver with the UAS-ChR2XXL::tdtomato effector and using the
785 resulting fluorescence signal confirms that within the central nervous system and the
786 mushroom body APL-GAL4 specifically covers APL (**Figure 3A-B''**) (Saumweber et al., 2018).
787 In addition, APL-GAL4 was crossed to UAS-mIFP/MB247>mCherry-CAAX (Kobler et al.,
788 2021) to label APL together with the mushroom body (**Movie 2**). In both cases our results
789 confirm that the primary neurite of APL splits to send projections separately into the calyx and
790 the lobes of the mushroom bodies (**Figure 3B''**, **Movie 2**) (Masuda-Nakagawa et al., 2014;
791 Mayseless et al., 2018; Saumweber et al., 2018). This morphology was seen in 10 out of 11
792 preparations of third-instar larval brains with the APL-driver and UAS-mCD8::GFP as the
793 effector (**Figure 3C-C''**). Only in one preparation did the primary neurite split into three
794 branches in both hemispheres (**Figure 3D-D''**). This made us wonder whether there is any
795 variability in the compartmental coverage of APL in the lobes, in particular in the third-instar
796 larvae that we intended to use later in our behavioral analyses. Across five specimens of third-
797 instar larval brains with the APL-driver and UAS-mCD8::GFP as the effector, coverage of the
798 calyx and of the compartments was similar between the APL neuron of each hemisphere
799 (**Figure 3E**). GFP signals were consistently strong in the calyx, close to absent in the two
800 peduncle compartments, weak in the upper vertical lobe and the shaft of the medial lobe, and
801 moderate to strong in the other compartments (**Figure 3E**). Taking the present data together
802 with previously published data, we conclude that the larval APL innervates the calyx and six of
803 the 10 compartments, namely the lateral appendix, the upper, intermediate, and lower vertical
804 lobe, as well as the upper and lower toe (**Figure 1C**, **Figure 3**; Masuda-Nakagawa et al., 2014;
805 Eichler et al., 2017; Saumweber et al., 2018).

806 We next confirmed that APL is GABAergic (**Figure 4A-B**”; Masuda-Nakagawa et al., 2014)
807 and studied the regional organization of pre- and post-synaptic sites of APL using the APL-
808 GAL4 driver together with the double effector UAS-Dsyd-1::GFP/UAS-DenMark (Owald et al.,
809 2015). Our results show that APL is pre-synaptic in the calyx, whereas it is post-synaptic in
810 both the calyx and the lobes (**Figure 4C-D**”, **Movie 3**), confirming earlier reports (Masuda-
811 Nakagawa et al., 2014; Eichler et al., 2017). Indeed, we also confirm a functionally inhibitory
812 connection from APL to the KCs in the calyx. Combining transgene expression by the GAL4-
813 UAS and the lexA-lexAop systems, we monitored changes in intracellular Ca^{2+} through
814 changes in fluorescence intensity in the KCs of isolated brain preparations of controls
815 (+>ChR2XXL; KC>GCaMP6m) and upon optogenetic activation of APL (APL_{26G02}>ChR2XXL;
816 KC>GCaMP6m). At the relatively lower blue-light intensity (80-ms pulses every 2 s, at 1.8
817 mW/cm²), the control brains showed no specific response to the light; rather, fluorescence
818 intensity decreased slightly across the recording period (**Figure 5A, gray**). Activation of APL
819 resulted in a trend for yet further decreased levels of fluorescence (**Figure 5A-B, blue**). We
820 then exploited the observation that for increased light intensity (4.1 mW/cm²) fluorescence
821 intensity increased under control conditions (**Figure 5C, gray**), reflecting the responsiveness
822 of the KCs themselves or of neurons upstream of the KCs. Relative to these fluorescence
823 signals observed in the controls, signals were reduced by APL activation (**Figure 5D**).
824 Remarkably, even high levels of fluorescence induced by pharmacologically stimulating KCs
825 via the acetylcholine receptor agonist carbamylcholine in control brains (**Figure 5E, gray**) were
826 reduced by simultaneous APL activation (**Figure 5E-F**). Together, these data confirm a
827 functionally inhibitory effect of APL activation on the KCs in the calyx.

828 In terms of the organization of APL, the above results also match the situation in first-instar
829 larvae, as shown here for a volume reconstruction of APL generated from the electron
830 microscopy reconstruction of the mushroom body in Eichler et al. (2017) (**Figure 6A-B, Movie**
831 **4**). Specifically, this volume reconstruction shows that the relatively slender axonal and
832 dendritic branches of APL arise separately from a thicker neurite (**Figure 6C-D**), similar to the
833 locust homologue of APL, called GGN (for giant GABAergic neuron; Papadopoulou et al.,

834 2011; Ray et al., 2020). The electron microscope dataset of Eichler et al. (2017) further allowed
835 the site of the synapses for the different classes of synaptic partners of APL to be mapped
836 onto its volume reconstruction (**Figure 6E-F, Movies 5-6**). Furthermore, the connectomic data
837 allowed dendograms of APL to be derived, that is, two-dimensional representations of APL
838 preserving branch lengths and synaptic locations in a topologically correct manner (**Figure 7**).
839 It can be discerned within such a topology that wherever they coexist, the synapses that APL
840 hosts with mushroom body extrinsic neurons are not segregated from, but are intermingled
841 with, the connections to the mushroom body intrinsic neurons, the KCs (**Figure 7B-C**). In the
842 lobes, the almost exclusively post-synaptic sites of APL are relatively sparse (**Figure 7B-C**)
843 and with some variation in topology between the APL neuron of the left and the right brain
844 hemisphere (for the right hemisphere APL neuron, see **Extended Data Figure 7-1**). In the
845 calyx, an analysis of cable length reveals that reciprocal synapses between APL and the KCs
846 are arranged in four synapse-rich center-surround structures such that APL-to-KC synapses
847 are found towards their center, whereas KC-to-APL synapses are located mainly in the
848 surround (**Figure 7D**).

849

850 **Regional synaptic polarity of APL across metamorphosis**

851 Given the conserved regional synaptic polarity of APL across larval stages (see preceding
852 section) and given that APL persists into adulthood yet in adults is not regionally polarized (Wu
853 et al., 2013; Lin et al., 2014; Mayseless et al., 2018; Saumweber et al., 2018), we examined
854 how APL develops across metamorphosis. To this end, we used genetically encoded protein
855 ‘tags’ coupled with chemical fluorophore ligands (Kohl et al., 2014; Sutcliffe et al., 2017;
856 Meissner et al., 2018). The synaptic reporter synaptotagmin fused to the tag SNAPm (Syt1-
857 SNAPm) allowed us to label pre-synapses, and the reporter telencephalin fused to the tag
858 CLIPm (TLN-CLIPm) allowed us to label post-synapses (Kohl et al., 2014). These constructs
859 were expressed in APL throughout development using the intersectional driver APLi-GAL4,
860 which specifically expresses in APL of both larvae and adults (Lin et al., 2014; Mayseless et
861 al., 2018) (as stated earlier, APL-GAL4 does not express in adult APLs). In addition, UAS-

862 mCD8::GFP was expressed to visualize APL membranes. In third-instar larvae of the genotype
863 APLi/Syt1:SNAP>mCD8::GFP/TLN:CLIP, pre-synaptic staining was mostly found in the calyx
864 (**Figure 8A'**), whereas post-synaptic staining was distributed in the calyx and the lobes (**Figure**
865 **8A''**), consistent with previous observations (**Figure 4**; Masuda-Nakagawa et al., 2014). As
866 early as 6 h after puparium formation, we detected pre-synaptic structures that were more
867 punctate (**Figure 8B'**, **C'**) and observed fewer post-synaptic structures overall (**Figure 8B''**,
868 **C''**), consistent with the previously reported pruning of APL secondary neurites during pupal
869 stages (Mayseless et al., 2018). Interestingly, at 12 h after puparium formation — a stage
870 where APL pruning is almost at its peak (Mayseless et al., 2018) — we could still detect both
871 pre- and post-synaptic structures (**Figure 8D-D''**), although some post-synaptic structures
872 were observed detached from the neurite (**Figure 8D''**, **D'''**; yellow arrowhead). Nonetheless,
873 the polarized organization of APL in third-instar larvae was no longer observed in the adult
874 stage, as we detected both pre- and post-synaptic markers across both the calyx and the lobes
875 of the adult mushroom bodies (**Figure 8E-F''**; Wu et al., 2013; Lin et al., 2014).

876 Taken together, our results indicate that whereas APL is regionally polarized throughout
877 larval stages, it undergoes rearrangement during metamorphosis to give rise to a regionally
878 more diffuse organization. In addition, the DPM neuron, one of the main synaptic partners of
879 APL involved in memory consolidation in adults, does not exist in larvae (Pitman et al., 2011;
880 Wu et al., 2011; Eichler et al., 2017; Saumweber et al., 2018). In light of these differences, and
881 despite the rich insights recently gained into the function of APL in adults (Inada et al., 2017;
882 Zhou et al., 2019; Amin et al., 2020; Apostolopoulou and Lin, 2020; Kanellopoulos et al., 2020;
883 Yamagata et al., 2021), a detailed look into the function of the larval APL neuron seemed
884 warranted.

885

886 **Memory scores are abolished upon activating APL throughout odor-fructose training**

887 We first asked whether the optogenetic activation of APL affects associative memory
888 formation. Third-instar larvae were trained in a standard Pavlovian conditioning paradigm,
889 using an odor (*n*-amyl acetate) as the conditioned stimulus, and a fructose reward as the

890 unconditioned stimulus (Scherer et al., 2003; Neuser et al., 2005; Saumweber et al., 2011;
891 Michels et al., 2017). One group of larvae received the odor presented together with the
892 fructose reward (paired training), whereas a second group received separate presentations of
893 the odor and the fructose reward (unpaired training). After training, both groups were tested
894 for their odor preference. A difference in odor preference between paired and unpaired training
895 thus reflects associative memory, and is quantified by the memory score. According to
896 convention, positive memory scores reflect appetitive associative memory, whereas negative
897 scores reveal aversive memory (equation 2; Materials and Methods section). Notably, paired
898 and unpaired training both establish associative memory, yet of opposite “sign”. After paired
899 training the odor predicts the occurrence of the reward, leading to an associative increase in
900 odor preference. In contrast, unpaired training establishes the odor as a predictor of the non-
901 occurrence of the reward and supports an associative decrease in odor preference (for a
902 detailed discussion, see Schleyer et al., 2018).

903 Repeating an experiment from Saumweber et al. (2018), APL was optogenetically activated
904 throughout odor-fructose training (**Figure 9**). Confirming that report, odor-fructose memory
905 scores in the experimental genotype (APL>ChR2XXL) were reduced to chance levels and
906 were reduced relative to both genetic controls, heterozygous for either only the effector
907 (+>ChR2XXL) or only the driver (APL>+) construct (**Figure 9A**). The same abolishment of
908 memory scores was observed in a shortened, one-trial version of this experiment (**Figure 9B**).
909 For practical reasons, this shortened experimental design was used throughout the rest of the
910 study. In addition, the expression of ChR2XXL in APL was directly confirmed by
911 immunohistochemistry (**Figure 9C, Movie 7**). Critically, the behavior of experimentally naïve
912 larvae toward the odor (i.e. innate odor preference) was unaffected by APL activation (**Figure**
913 **9D**; Saumweber et al., 2018). Further, as shown here from offline analyses of video tracking
914 data, APL activation did not affect the modulation of the patterns of locomotion by which these
915 odor preferences came about (i.e. modulations of head cast rate and direction, but not of run
916 speed: **Figure 9E-I**).

917

918 **Activating APL either in the presence or in the absence of the odor reduces memory**
919 **scores**

920 As argued in Saumweber et al. (2018), the abolishment of memory scores upon activation of
921 APL during the complete training phase (**Figure 9**) may arise because APL provides an
922 inhibitory GABAergic signal onto the KCs (**Figure 5**; Masuda-Nakagawa et al., 2014). Taking
923 the argument to the extreme, the activation of APL would silence the KCs, preventing a proper
924 odor representation in the mushroom body and thereby also preventing odor-fructose memory
925 formation. If so, memory formation should be disrupted when APL is activated while the odor
926 is presented, but should not be disrupted when APL is activated while the odor is not
927 presented. To our surprise, however, *in both cases* odor-fructose memory scores were partially
928 reduced compared to a control condition in which APL was not activated at all (**Figure 10, left**).
929 As regards these residual memory scores, we considered the interpretation of odor-fructose
930 memory as a learned search for the fructose reward (Saumweber et al., 2011; Schleyer et al.,
931 2011). This interpretation implies that memory is behaviorally expressed if the sought-for
932 fructose reward is indeed absent during the test, but that memory is not expressed if the testing
933 is carried out in the presence of the sought-for fructose reward. This was indeed the case in
934 all three conditions, namely (i) when APL was not activated during training at all, and (ii) when
935 APL was activated during odor presentation or (iii) in the absence of odor (**Figure 10, right**);
936 please note that innate olfactory behavior is not changed in the presence of fructose or other
937 tastants: Schleyer et al., 2011). In other words, the residual memory scores after APL
938 activation during either period of the training also reflect a search for the fructose reward.
939

940 **Differential effects of activating APL only in the presence or only in the absence of the**
941 **odor**

942 As mentioned, it was unexpected that odor-fructose memory was impaired by activation of
943 APL during the odor-absent periods of training. In order to understand this result, we separately
944 analyzed the odor preference scores underlying the memory scores from **Figure 10**. In all
945 three cases — (i) when APL was not activated at all during training, (ii) when it was activated

946 while the odor was presented, and (iii) when it was activated while the odor was not presented
947 — odor preference scores after paired vs. unpaired training were indistinguishable from each
948 other when the fructose reward was present during testing (open boxes in **Figure 11A-C**). In
949 other words, in all cases learned search ceased once the sought-for reward was found. As
950 discussed in detail in Schleyer et al. (2018), this allows the odor preferences after paired and
951 unpaired training to be pooled in order to determine baseline levels of odor preference, cleared
952 of associative memory (stippled lines in **Figure 11A-C**). In all three cases, these baseline
953 preference scores were intermediate between the paired-trained and the unpaired-trained
954 animals that were tested in the absence of fructose, consistent with earlier reports (Schleyer
955 et al., 2018). This is adaptive because after paired training the larvae search for fructose where
956 the odor is, whereas after unpaired training they search for fructose where the odor is not, and
957 accordingly in either case their search is suppressed in the presence of the sought-for fructose.
958 Important for the current context, however, is that these baseline levels varied strikingly with
959 the contingency between APL activation and odor presentation (**Figure 11D**): as compared to
960 the control baseline scores when APL was not activated at all (stippled line in **Figure 11A** and
961 plotted in **Figure 11D, left**), the baseline scores were increased when APL was activated in
962 the presence of the odor (stippled line in **Figure 11B**; plotted in **Figure 11D, middle**), and
963 were decreased when APL was activated in the absence of the odor (stippled line in **Figure**
964 **11C**; plotted in **Figure 11D, right**). In other words, activation of APL paired with odor increased
965 odor preferences, whereas activation of APL unpaired from odor presentation decreased odor
966 preferences (**Figure 11D**) — as if, above and beyond the fructose that we intended to be the
967 only reward in these experiments, activation of APL also had a rewarding effect! The next
968 experiment tested this hypothesis.

969

970 **Activating APL has a rewarding effect**

971 To test whether optogenetically activating APL has a rewarding effect, animals were trained
972 such that the odor was presented either paired or unpaired with APL activation instead of with
973 the fructose reward. This established positive memory scores in the experimental genotype,

974 differing from the genetic controls (**Figure 12A**). Thus, APL activation during training has a
975 rewarding effect and can establish appetitive, associative memory. In turn, optogenetically
976 silencing APL leads to an aversive memory (**Figure 12B**). Throughout the rest of the study,
977 we decided to focus on the rewarding effect of APL upon its activation. We found that the
978 resulting appetitive “odor-APL memory” was transient and lasted for less than 10 min (**Figure**
979 **12C**), as is the case for odor-fructose memory after one training trial (Weiglein et al., 2019)
980 and for appetitive olfactory memories formed by optogenetic activation of large sets of KCs
981 (Lyutova et al., 2019). A rewarding effect of APL activation was likewise observed when a brief-
982 stimulation protocol was used (**Figure 12D-E**). In addition, offline analysis of video-recorded
983 larval locomotion revealed that the same aspects of larval locomotion were modulated by odor-
984 APL memory (**Figure 13**) as previously shown for similarly strong odor-taste reward
985 associative memories, namely the rate of head casts and their orientation but not run speed
986 (Schleyer et al., 2015b; Paisios et al., 2017; Saumweber et al., 2018; Thane et al., 2019;
987 Schleyer et al., 2020). Inspired by what has been reported on fructose as a taste reward
988 (Schleyer et al., 2015a; see also **Figure 10**, **Figure 11**), we reasoned that if odor-APL memory
989 scores reflect a learned search for the training reward (which is APL activation in the present
990 case), these memory scores should be abolished if the sought-for reward is present during the
991 test. We therefore repeated the experiment from **Figure 12A** and added an experimental
992 condition whereby APL was also activated during testing. This prevented the behavioral
993 expression of appetitive odor-APL memory (**Figure 14A**; for a similar effect of DAN activation
994 see Schleyer et al., 2020). The same was observed for a two-odor, differential conditioning
995 version of the paradigm, using 1-octanol as the second odor (**Figure 14B**). We indeed find it
996 striking that APL activation is effective as a reward even in differential conditioning, because it
997 implies that an associative, odor-specific representation can be established in the mushroom
998 body under the condition of an optogenetically activated APL neuron. In line with our earlier
999 results from Figure 9D, naïve odor preferences were unaffected by APL activation (**Figure**
1000 **14C-E**). Thus, APL activation has two kinds of effect previously reported for taste rewards: it
1001 both induces associative memory when paired with odor during training (**Figure 12**, **Figure**

1002 **14**; with the same locomotor ‘footprint’ as for taste rewards: **Figure 13**), and it terminates the
1003 search behavior that is based on this memory during the test (**Figure 14**). These two effects
1004 of reward are adaptive because they help the animals to search for the reward, and prevent
1005 them from drifting away from a reward once it is found, respectively. Both of these reward-like
1006 effects of APL activation, plus the lack of any effect of APL activation on naïve odor preference,
1007 were confirmed using Chrimson as the effector (**Figure 15A-D**) – although the effect of APL
1008 activation on search behavior during testing was only partial for Chrimson (**Figure 15C**).
1009

1010 **Manipulating activity in the calyx MBONs has no reinforcing effect**

1011 Considering the circuit mechanisms by which APL activation exerts a rewarding effect, we first
1012 focused on the calyx MBONs to which APL is pre-synaptic (MBONa1 and MBONa2; also
1013 known as “Odd” neurons: **Figure 6F**, **Figure 7B**, **Movie 6**; Slater et al., 2015; Eichler et al.,
1014 2017; Saumweber et al., 2018). We reasoned that if activation of the GABAergic APL neuron
1015 exerts its rewarding effect by inhibiting the calyx MBONs, then optogenetically silencing these
1016 MBONs should also have a rewarding effect. Using the chloride channel GtACR1 as the
1017 effector, however, this was found not to be the case (**Figure 16A**). We then considered the
1018 possibility that, unlike the KCs (**Figure 5**), the calyx MBONs might actually be activated rather
1019 than inhibited by activation of APL, e.g. through GABA-induced chloride spikes as reported for
1020 insect neurons (Ryglewski et al., 2017) or by yet-to-be-identified excitatory transmitters co-
1021 released by APL. We thus repeated the same experiment but this time activated the MBONs:
1022 again, no rewarding effect was observed upon such manipulation (**Figure 16B**). Before ruling
1023 out the involvement of the two calyx MBONs in the rewarding effect of APL, however, it seemed
1024 important to test for the effects of manipulating each of them separately. This is because
1025 activation of MBONa1 and MBONa2 induces approach and avoidance, respectively (Eschbach
1026 et al., 2021). We therefore reasoned that they might exert a rewarding and punishing effect,
1027 respectively, which would sum to zero when both these MBONs were manipulated together.
1028 However, neither silencing nor activating either one of the calyx MBONs yielded evidence of
1029 such oppositely-reinforcing effects (**Figure 16C-D**, **Extended Data Figure 16-1**; we included

1030 groups tested in the presence of light because we reasoned that, similar to what has been
1031 observed for tastant punishment (Gerber and Hendel, 2006; Selcho et al., 2009; Schleyer et
1032 al., 2011; Widmann et al., 2016; Weber et al., 2022), this might promote aversive memory
1033 expression). These results suggest that the rewarding effect of APL activation does not involve
1034 APL-to-MBONa1/a2 connections.

1035 Given the role of dopamine in conveying reward signals in larval *Drosophila* (Selcho et al.,
1036 2009; Rohwedder et al., 2016; Thoener et al., 2020), we next inquired into the dopamine-
1037 dependency of APL's rewarding effect.

1038

1039 **Inhibition of dopamine synthesis impairs odor-APL memory**

1040 We used a systemic pharmacological approach to acutely disrupt dopamine-synthesis. This
1041 was done by inhibiting the enzyme tyrosine hydroxylase (TH), which is rate-limiting for
1042 dopamine synthesis (Neckameyer, 1996; Bainton et al., 2000; Fernandez et al., 2017; Thoener
1043 et al., 2020). The TH-inhibitor 3IY was added to the larval food at a dose which leaves intact
1044 task-relevant behavioral faculties (i.e. innate odor preference and locomotion) (Thoener et al.,
1045 2020). When 4 h later the larvae were trained and tested for odor-APL memory, they exhibited
1046 reduced memory scores (**Figure 17A-C**). In a repetition of this experiment, we showed that
1047 this reduction in memory was rescued in larvae that were additionally fed with the dopamine
1048 precursor L-DOPA (**Figure 17D**; notably, L-DOPA alone did not increase memory scores:
1049 **Figure 17D**). These results suggest that the rewarding effect of APL activation involves a
1050 dopaminergic process.

1051

1052 **Ablation of the dopaminergic pPAM neurons impairs odor-APL memory**

1053 We next sought to identify the dopaminergic neurons that mediate the rewarding effect of APL
1054 activation. Given the role of the dopaminergic pPAM neurons in larval reward learning
1055 (Rohwedder et al., 2016; Saumweber et al., 2018; Schleyer et al., 2020; Thoener et al., 2022),
1056 we combined the GAL4/UAS with the lexA/lexAop systems to optogenetically activate APL
1057 (APL-GAL4>UAS-ChR2XXL) in animals expressing the pro-apoptotic *reaper* gene in the

1058 pPAM neurons, leading to their ablation (pPAM-lexA>lexAop-reaper). Larvae of the
1059 experimental group ($APL_{55D08}>ChR2XXL$; pPAM>reaper) showed reduced odor-APL memory
1060 scores relative to genetic controls that lacked either the reaper effector or the pPAM driver for
1061 ablation ($APL_{55D08}>ChR2XXL$; pPAM>+ and $APL_{55D08}>ChR2XXL$; +>reaper, respectively)
1062 (**Figure 18**). Taken together, these results suggest that the rewarding effect of the activation
1063 of APL comes about, in part, by engaging a dopaminergic and pPAM-dependent process.

1064

1065 **Discussion**

1066

1067 The APL neuron is among the most complex neurons in the brain of both larvae and adults.
1068 The present study consolidates and broadens our knowledge of the morphology of the larval
1069 APL, of its GABAergic nature and its capacity to inhibit mushroom body KCs, of the polarity
1070 and topology of its chemical synapses, its development through metamorphosis, and of the
1071 exquisite specificity of a transgenic driver strain for studying it (**Figures 2-8**; Masuda-
1072 Nakagawa et al., 2014; Eichler et al., 2017; Saumweber et al., 2018). All these findings are
1073 consistent with APL playing a role in the sparsening of neuronal activity across the mushroom
1074 body (Masuda-Nakagawa et al., 2014; adults: Lin et al., 2014; Amin et al., 2020) and establish
1075 APL as the most comprehensively described neuron in the larval mushroom body. The present
1076 study further uncovers unexpected functional complexity by revealing a rewarding effect of
1077 optogenetically activating APL (**Figure 12A**). Our experiments were then designed to ascertain
1078 key features of this effect and investigate how it comes about (**Figures 12C-18**).

1079

1080 **Features of the rewarding effect of APL activation**

1081 Optogenetic activation of APL, using either ChR2XXL or Chrimson as the effector, induces
1082 appetitive memory for an associated odor after only one training trial (**Figures 12-15**). This is
1083 similar to odor-sugar associative learning and to the rewarding effect of activating DAN-i1
1084 (Weiglein et al., 2019; Thoener et al., 2022). Associative learning by APL activation has a
1085 symmetrical ‘temporal fingerprint’, with a fairly narrow temporal window for presenting the odor

1086 (Figure 12D-E). This mirrors what was found for DAN-d1 in the aversive domain (Weiglein et
1087 al., 2021), adding to the heterogeneity of internal reinforcement signals (Saumweber et al.,
1088 2018; Weiglein et al., 2021; Thoener et al., 2022; adults: Aso and Rubin, 2019; König et al.,
1089 2018; Handler et al., 2019).

1090 The appetitive memories established by activating APL decay within a few minutes (Figure
1091 12C), as do memories for odor-fructose, odor-DAN-i1, and odor-KC association (Neuser et al.,
1092 2005; Kleber et al., 2016; Lyutova et al., 2019; Weiglein et al., 2019; Thoener et al., 2022).
1093 Similar to odor-fructose memories and odor-DAN-i1 memories (Paisios et al., 2017; Schleyer
1094 et al., 2020), APL-induced memories are expressed as modulations of turning, but not of run
1095 speed (Figure 13).

1096 In addition to establishing appetitive associative memory during training, the activation of
1097 APL can also terminate learned search behavior during the test (Figure 14A-B, Figure 15C).
1098 This is in line with reports on taste rewards (Schleyer et al., 2015a) and on activation of DAN-
1099 i1 as a reward (Schleyer et al., 2020). Likewise similar to taste rewards and DAN-i1 activation,
1100 activating APL does not affect task-relevant innate olfactory behavior (Figure 14C-E, Figure
1101 15D).

1102 The rewarding effect of the activation of APL offers a new perspective on the result from
1103 Saumweber et al. (2018) showing that activating APL *throughout the complete training phase*
1104 abolishes odor-fructose memory scores, an effect that we replicated (Figure 9A-B). In these
1105 experiments, a fructose reward is presented paired with or unpaired from the odor, and the
1106 protocol of APL activation engages an additional, indeed much stronger reward signal
1107 *throughout training* and thus *regardless of the presence or absence of the odor*, thus overriding
1108 the learning of the relationship between odor and fructose.

1109 Thus, the rewarding effect of activating APL is compatible with the previous results from
1110 Saumweber et al. (2018), and the resulting appetitive, associative memories do not seem at
1111 odds with those established by DANs or taste reinforcement.

1112

1113 **Possible mechanisms of odor-APL learning: notes upfront**

1114 Our results confirm that the larval APL neuron is GABAergic (**Figure 4A-B'**; Masuda-
1115 Nakagawa et al., 2014). Regarding octopamine, acetylcholine and glutamate, negative results
1116 have been reported previously (Masuda-Nakagawa et al., 2014; Eichler et al., 2017). This
1117 matches a recent transcriptome analysis in adults (Aso et al., 2019), whereas two earlier
1118 reports had suggested the presence of GABA, octopamine and glutamate in the adult APL
1119 (Wu et al., 2013; Li et al., 2017). In the absence of evidence suggesting otherwise for the larval
1120 APL, however, the following discussion considers only GABAergic signaling.

1121 GABA binding to ionotropic GABA-A receptors and the ensuing chloride influx confer the
1122 typical inhibitory effect of GABA on post-synaptic neurons. Accordingly, APL activation
1123 reduces activity in KCs (**Figure 5E-F**). However, additional effects of GABA via metabotropic
1124 receptors may be reckoned with. In motoneurons of pupal *Drosophila*, moreover, GABA-
1125 induced spikelets have been observed, arguably because of a relatively positive reversal
1126 potential for chloride during this life stage (Ryglewski et al., 2017; mammals: Ben-Ari, 2002).
1127 While it thus cannot be ruled out that GABA release from APL leads to excitatory effects in a
1128 minority of KCs or in non-KC targets of APL, the discussion below maintains the conventional
1129 notion of GABA as a transmitter with inhibitory effect. However, it seems plausible that upon
1130 the offset of inhibition there may be post-inhibitory rebound activation in the target neurons, a
1131 widely observed physiological phenomenon (Huguenard and McCormick, 2007; for evidence
1132 in adult *Drosophila* after prolonged APL activation: Apostolopoulou and Lin, 2020).

1133 The fact that activation of APL can establish appetitive memory for an associated odor
1134 means that even under conditions of GABAergic, inhibitory input an associable odor
1135 representation can be established across the KCs. Indeed, these odor representations can be
1136 specific enough to allow for differential conditioning (**Figure 14B**). The scenario could be that
1137 under baseline conditions odors activate ‘their’ subset of KCs relatively strongly while the other
1138 KCs are inactive or mildly inhibited; upon optogenetic activation of APL, however, odors only
1139 mildly activate an even sparser set of KCs while most other KCs would be relatively strongly
1140 inhibited. Interestingly, associable odor representations can be established also under
1141 conditions of optogenetically *in*-creased levels of activity across the KCs (Lyutova et al., 2019).

1142 We are not aware of any data suggesting that GABA can have a direct associative memory-
1143 trace-inducing effect. Rather, our results suggest that the rewarding effect of APL activation
1144 comes about, at least in part, by engaging a dopaminergic reward signal from the pPAM
1145 neurons (**Figure 17, Figure 18**). We will therefore focus on plausible pathways from APL
1146 towards the dopaminergic pPAM neurons.

1147

1148 **From APL to dopaminergic pPAM neurons?**

1149 The larval APL hosts pre-synapses only in the calyx (**Figure 4, Figures 6-8, Movie 3**). The
1150 post-synaptic partners of APL include the KCs (see next paragraph) and the two calyx MBONs
1151 (Eichler et al., 2017; Saumweber et al., 2018). One of these calyx MBONs promotes approach
1152 when optogenetically activated (MBON-a1), whereas the other promotes avoidance (MBON-
1153 a2) (Eschbach et al., 2021). Both calyx MBONs give rise to indirect feedback to DANs,
1154 including to the punishing DAN-d1 and the rewarding DAN-i1 neuron of the pPAM cluster
1155 (Eschbach et al., 2020). However, presenting an odor together with activating or silencing the
1156 two calyx MBONs, alone or in combination, did not establish either appetitive or aversive
1157 associative odor memory (**Figure 16**). Thus, although it is a connectomic possibility, there is
1158 no evidence for a reinforcing APL-MBONa1/a2-pPAM loop. What about a loop from APL via
1159 the KCs to the pPAM neurons?

1160 As argued above, odors presented under conditions of APL activation will only mildly
1161 activate a rather sparse, odor-specific set of KCs, while the great majority of the KCs will be
1162 strongly inhibited, directly by APL and possibly by lateral inhibition from the activated KCs in
1163 addition (Manoim et al., 2022). As with the excitatory synapses from KCs to DANs (Lyutova et
1164 al., 2019; adults: Cervantes-Sandoval et al., 2017), this would provide little, if any, drive for the
1165 dopaminergic pPAM neurons. Once the inhibition is lifted, however, post-inhibitory rebound
1166 activation from a large number of previously inhibited KCs might provide a volley of activity
1167 sufficient to activate DANs (Apostolopoulou and Lin, 2020). Indeed, the optogenetic activation
1168 of broad sets of KCs can activate dopaminergic pPAM neurons and exert a rewarding effect
1169 (Lyutova et al., 2019). Thus, such an APL-KC-pPAM loop could account for the rewarding

1170 effects of APL activation. Notably, punishing DANs also receive input from KCs (Eichler et al.,
1171 2017; Eschbach et al., 2020). In addition to the appetitive memories established by activation
1172 of KCs (Lyutova et al., 2019) or APL, therefore, it seems possible that an aversive memory is
1173 established, too, in the compartments innervated by these punishing DANs. Under the test
1174 conditions used by us and by Lyutova et al. (2019), however, the observed result of these
1175 manipulations is appetitive memory. This would suggest either that the appetitive memory is
1176 stronger than the aversive, or that under these test conditions the aversive memory remains
1177 behaviorally silent (Gerber and Hendel, 2006; Schleyer et al., 2011, Schleyer et al., 2015a).

1178 An alternative could be that, similar to the situation in adults for APL and the DPM neuron
1179 (Wu et al., 2011), there is direct signaling from APL to rewarding pPAMs rather than to
1180 punishing DANs via electrical synapses in the lobes (**Figures 3-4, Figures 6-7**).

1181 In summary, we report a case of complex circuit function in a numerically simple brain, and
1182 demonstrate the capacity of a central-brain GABAergic neuron to engage dopaminergic reward
1183 signaling when optogenetically activated.

1184

1185 **References**

1186 Amin H, Apostolopoulou AA, Suárez-Grimalt R, Vrontou E, Lin AC (2020) Localized inhibition
1187 in the *Drosophila* mushroom body. *ELife* 9:e56954.
1188 Apostolopoulou AA, Lin AC (2020) Mechanisms underlying homeostatic plasticity in the
1189 *Drosophila* mushroom body in vivo. *Proc Natl Acad Sci USA* 117:16606-16615.
1190 Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, Dionne H, Abbott LF, Axel R, Tanimoto
1191 H, Rubin GM (2014) The neuronal architecture of the mushroom body provides a logic
1192 for associative learning. *Elife* 3:e04577.
1193 Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo TT, Sharp B, Christoforou C, Hu A,
1194 Lemire AL, Tillberg P (2019) Nitric oxide acts as a cotransmitter in a subset of
1195 dopaminergic neurons to diversify memory dynamics. *Elife* 8:e49257.
1196 Aso Y, Rubin GM (2016) Dopaminergic neurons write and update memories with cell-type-
1197 specific rules. *Elife* 5:e16135.
1198 Bainton RJ, Tsai LTY, Singh CM, Moore MS, Neckameyer WS, Heberlein U (2000) Dopamine
1199 modulates acute responses to cocaine, nicotine and ethanol in *Drosophila*. *Curr Biol*
1200 10:187-194.
1201 Bates AS, Manton JD, Jagannathan SR, Costa M, Schlegel P, Rohlfing T, Jefferis GS (2020)
1202 The *natverse*, a versatile toolbox for combining and analysing neuroanatomical data.
1203 *Elife* 9:e53350.
1204 Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture.
1205 *Nat Rev Neurosci* 3:728-739.
1206 Cervantes-Sandoval I, Phan A, Chakraborty M, Davis RL (2017) Reciprocal synapses between
1207 mushroom body and dopamine neurons form a positive feedback loop required for
1208 learning. *Elife* 6:e23789.

1209 Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA,
1210 Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive
1211 fluorescent proteins for imaging neuronal activity. *Nature* 499:295-300.

1212 Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, Gao S, Fiala A,
1213 Langenhan T, Nagel G, Kittel RJ (2014) Channelrhodopsin-2-XXL, a powerful
1214 optogenetic tool for low-light applications. *Proc Natl Acad Sci USA* 111:13972-13977.

1215 Demerec M, Kaufmann, BP (1940) *Drosophila* guide: introduction to the genetics and cytology
1216 of *Drosophila melanogaster* (Carnegie institution of Washington, Washington, DC).

1217 Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser
1218 A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS,
1219 Zlatic M, Cardona A (2017) The complete connectome of a learning and memory centre
1220 in an insect brain. *Nature* 548:175-182.

1221 Eschbach C, Zlatic M (2020) Useful road maps: studying *Drosophila* larva's central nervous
1222 system with the help of connectomics. *Curr Opin Neurobiol* 65:129-137.

1223 Eschbach C, Fushiki A, Winding M, Afonso B, Andrade IV, Cocanougher BT, Eichler K, Gepner
1224 R, Si G, Valdes-Aleman J, Fetter RD, Gershow M, Jefferis GS, Samuel A, Truman JW,
1225 Cardona A, Zlatic M (2021). Circuits for integrating learned and innate valences in the
1226 insect brain. *Elife* 10:e62567.

1227 Eschbach C, Fushiki A, Winding M, Schneider-Mizell CM, Shao M, Arruda R, Eichler K,
1228 Valdes-Aleman J, Ohyama T, Thum AS, Gerber B, Fetter RD, Truman JW, Litwin-
1229 Kumar A, Cardona A, Zlatic M (2020) Recurrent architecture for adaptive regulation of
1230 learning in the insect brain. *Nat Neurosci* 23:544-555.

1231 Fernandez RW, Akinleye AA, Nurilov M, Feliciano O, Lollar M, Aijuri RR, O'Donnell JM, Simon
1232 AF (2017) Modulation of social space by dopamine in *Drosophila melanogaster*, but no
1233 effect on the avoidance of the *Drosophila* stress odorant. *Biol Lett* 13:20170369.

1234 Gerber B, Hendel T (2006) Outcome expectations drive learned behaviour in larval *Drosophila*.
1235 *Proc Royal Soc B* 273:2965-2968.

1236 Grünwald B (1999) Morphology of feedback neurons in the mushroom body of the honeybee,
1237 *Apis mellifera*. *J Comp Neurol* 404:114-126.

1238 Handler A, Graham TGW, Cohn R, Morantte I, Siliciano AF, Zeng J, Li Y, Ruta V (2019) Distinct
1239 dopamine receptor pathways underlie the temporal sensitivity of associative learning.
1240 *Cell* 178:60-75.

1241 Haynes PR, Christmann BL, Griffith LC (2015) A single pair of neurons links sleep to memory
1242 consolidation in *Drosophila melanogaster*. *Elife* 4:e03868.

1243 Heisenberg M (2003) Mushroom body memoir: from maps to models. *Nat Rev Neurosci* 4:266-
1244 275.

1245 Herranz H, Weng R, Cohen SM (2014) Crosstalk between epithelial and mesenchymal tissues
1246 in tumorigenesis and imaginal disc development. *Curr Biol* 24:1476-1484.

1247 Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain
1248 and suboesophageal ganglion of *Manduca sexta*. *Cell Tissue Res* 248:1-24.

1249 Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution population imaging reveals
1250 robust sparse coding in the *Drosophila* mushroom body. *J Neurosci* 31:11772-11785.

1251 Huguenard JR, McCormick DA (2007) Thalamic synchrony and dynamic regulation of global
1252 forebrain oscillations. *Trends Neurosci* 30:350-6.

1253 Inada K, Tsuchimoto Y, Kazama H (2017) Origins of cell-type-specific olfactory processing in
1254 the *Drosophila* mushroom body circuit. *Neuron* 95:357-367.

1255 Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD,
1256 Giangrande A, Callaerts P, Smit AB, Abrahams BS, Fiala A, Achsel T, Bagni C (2020)
1257 Aralar sequesters GABA into hyperactive mitochondria, causing social behavior
1258 deficits. *Cell* 180:1178-1197

1259 Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U (2011). A *Drosophila* model for alcohol
1260 reward. *Nat Neurosci* 14:612-619.

1261 Klapoetke NC et al. (2014) Independent optical excitation of distinct neural populations. *Nat
1262 Methods* 11:338-346.

1263 Kleber J, Chen Y-c, Michels B, Saumweber T, Schleyer M, Kähne T, Buchner E, Gerber B

1264 (2016) Synapsin is required to 'boost' memory strength for highly salient events. *Learn*
1265 *Mem* 23:9-20.

1266 Kobler O, Weiglein A, Hartung K, Chen YC, Gerber B, Thomas U (2021) A quick and versatile
1267 protocol for the 3D visualization of transgene expression across the whole body of
1268 larval *Drosophila*. *J Neurogenet* 1-14.

1269 Kohl J, Ng J, Cachero S, Ciabatti E, Dolan MJ, Sutcliffe B, Tozer A, Ruehle S, Krueger D,
1270 Frechter S, Branco T, Tripodi M, Jefferis GS (2014) Ultrafast tissue staining with
1271 chemical tags. *Proc Natl Acad Sci USA* 111:E3805-3814.

1272 König C, Khalili A, Ganesan M, Nishu AP, Gomez AP, Niewalda T, Gerber B, Aso Y, Yarali A
1273 (2018) Reinforcement signalling of punishment vs. relief in fruit flies. *Learn Mem*
1274 25:247-257.

1275 König C, Khalili A, Niewalda T, Gao S, Gerber B (2019) An optogenetic analogue of second-
1276 order reinforcement in *Drosophila*. *Biol Lett* 15:20190084.

1277 Lee PT, Lin HW, Chang YH, Fu TF, Dubnau J, Hirsh J, Lee T, Chiang AS (2011) Serotonin-
1278 mushroom body circuit modulating the formation of anesthesia-resistant memory in
1279 *Drosophila*. *Proc Natl Acad Sci USA* 108:13794-13799.

1280 Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function
1281 in neuronal morphogenesis. *Neuron*. 22:451-461.

1282 Li F et al. (2020) The connectome of the adult *Drosophila* mushroom body provides insights
1283 into function. *Elife* 9:e62576.

1284 Li H, Horns F, Wu B, Xie Q, Li J, Li T, Luginbuhl DJ, Quake SR, Luo L (2017) Classifying
1285 *Drosophila* olfactory projection neuron subtypes by single-cell RNA sequencing. *Cell*
1286 171:1206-1220.

1287 Lin AC, Bygrave AM, de Calignon A, Lee T, Miesenböck G (2014) Sparse, decorrelated odor
1288 coding in the mushroom body enhances learned odor discrimination. *Nat Neurosci*
1289 17:559-568.

1290 Liu X, Davis RL (2009) The GABAergic anterior paired lateral neuron suppresses and is
1291 suppressed by olfactory learning. *Nat Neurosci* 12:53-59.

1292 Liu X, Krause WC, Davis RL (2007) GABA_A receptor RDL inhibits *Drosophila* olfactory
1293 associative learning. *Neuron* 56:1090-1102.

1294 Lyutova R, Selcho M, Pfeuffer M, Segebarth D, Habenstein J, Rohwedder A, Frantzmann F,
1295 Wegener C, Thum AS, Pauls D (2019) Reward signaling in a recurrent circuit of
1296 dopaminergic neurons and peptidergic Kenyon cells. *Nat Commun* 10:3097.

1297 Manoim JE, Davidson AM, Weiss S, Hige T, Parnas M (2022) Lateral axonal modulation is
1298 required for stimulus-specific olfactory conditioning in *Drosophila*. *Curr Biol* 32:4438-
1299 4450.

1300 Masuda-Nakagawa LM, Ito K, Awasaki T, O'Kane CJ (2014) A single GABAergic neuron
1301 mediates feedback of odor-evoked signals in the mushroom body of larval *Drosophila*.
1302 *Front Neural Circuits* 8:35.

1303 Mayseless O, Berns DS, Yu XM, Riemensperger T, Fiala A, Schuldiner O (2018)
1304 Developmental coordination during olfactory circuit remodeling in *Drosophila*. *Neuron*
1305 99:1204-1215.

1306 Meissner GW, Grimm JB, Johnston RM, Sutcliffe B, Ng J, Jefferis GS, Cachero S, Lavis LD,
1307 Malkesman O (2018) Optimization of fluorophores for chemical tagging and
1308 immunohistochemistry of *Drosophila* neurons. *PLoS One* 13:e0200759.

1309 Michels B, Saumweber T, Biernacki R, Thum J, Glasgow RDV, Schleyer M, Chen YC,
1310 Eschbach C, Stocker RF, Toshima N, Tanimura T, Louis M, Arias-Gil G, Marescotti M,
1311 Benfenati F, Gerber B (2017) Pavlovian conditioning of larval *Drosophila*: an illustrated,
1312 multilingual, hands-on manual for odor-taste associative learning in maggots. *Front*
1313 *Behav Neurosci* 11:45.

1314 Neckameyer WS, White K (1993). *Drosophila* tyrosine hydroxylase is encoded by the pale
1315 locus. *J Neurogenet* 8:189-199.

1316 Neuser K, Husse J, Stock P, Gerber B (2005). Appetitive olfactory learning in *Drosophila*
1317 larvae: effects of repetition, reward strength, age, gender, assay type and memory
1318 span. *Anim Behav* 69:891-898.

1319 Nicolaï LJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M,
1320 Annaert W, Hassan BA (2010) Genetically encoded dendritic marker sheds light on
1321 neuronal connectivity in *Drosophila*. *PNAS* 107:20553-8.

1322 Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M,
1323 Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M (2015) A
1324 multilevel multimodal circuit enhances action selection in *Drosophila*. *Nature* 520:633-
1325 639.

1326 Owald D, Felsenberg J, Talbot CB, Das G, Perisse E, Huetteroth W, Waddell S (2015) Activity
1327 of defined mushroom body output neurons underlies learned olfactory behavior in
1328 *Drosophila*. *Neuron* 86:417-427.

1329 Paisios E, Rjosk A, Pamir E, Schleyer M (2017) Common microbehavioral “footprint” of two
1330 distinct classes of conditioned aversion. *Learn Mem* 24:191-198.

1331 Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse
1332 encoding of odors by a wide-field interneuron. *Science* 332:721-725.

1333 Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010)
1334 Refinement of tools for targeted gene expression in *Drosophila*. *Genetics* 186:735-755.

1335 Pitman JL, Huetteroth W, Burke CJ, Krashes MJ, Lai SL, Lee T, Waddell S (2011) A pair of
1336 inhibitory neurons are required to sustain labile memory in the *Drosophila* mushroom
1337 body. *Curr Biol* 21:855-861.

1338 Prisco L, Deimel SH, Yeliseyeva H, Fiala A, Tavosanis G (2021) The anterior paired lateral
1339 neuron normalizes odour-evoked activity in the *Drosophila* mushroom body calyx. *Elife*
1340 10:e74172.

1341 R Core Team (2016). R: A language and environment for statistical computing. R Foundation
1342 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

1343 Ray S, Aldworth ZN, Stopfer MA (2020) Feedback inhibition and its control in an insect
1344 olfactory circuit. *Elife* 9:e53281.

1345 Ren Q, Li H, Wu Y, Ren J, Guo A (2012) A GABAergic inhibitory neural circuit regulates visual
1346 reversal learning in *Drosophila*. *J Neurosci* 32:11524-11538.

1347 Rohwedder A, Wenz NL, Stehle B, Huser A, Yamagata N, Zlatic M, Truman JW, Tanimoto H,
1348 Saumweber T, Gerber B, Thum AS (2016) Four individually identified paired dopamine
1349 neurons signal reward in larval *Drosophila*. *Curr Biol* 26:661-669.

1350 Ryglewski S, Vonhoff F, Scheckel K, Duch C (2017) Intra-neuronal competition for synaptic
1351 partners conserves the amount of dendritic building material. *Neuron* 93:632-645.

1352 Saalfeld S, Cardona A, Hartenstein V, Tomancak P (2009) CATMAID: collaborative annotation
1353 toolkit for massive amounts of image data. *Bioinformatics* 25:1984-1986.

1354 Saumweber T, Husse J, Gerber B (2011) Innate attractiveness and associative learnability of
1355 odors can be dissociated in larval *Drosophila*. *Chem Senses* 36:223-235.

1356 Saumweber T, Rohwedder A, Schleyer M, Eichler K, Chen YC, Aso Y, Cardona A, Eschbach
1357 C, Kobler O, Voigt A, Durairaja A, Mancini N, Zlatic M, Truman JW, Thum AS, Gerber
1358 B (2018) Functional architecture of reward learning in mushroom body extrinsic
1359 neurons of larval *Drosophila*. *Nat Commun* 9:1104.

1360 Scheffer LK et al. (2020) A connectome and analysis of the adult *Drosophila* central brain. *Elife*
1361 9:e57443.

1362 Scherer S, Stocker RF, Gerber B (2003) Olfactory learning in individually assayed *Drosophila*
1363 larvae. *Learn Mem* 10:217-225.

1364 Schindelin J et al. Fiji: an open-source platform for biological-image analysis (2012) *Nat
1365 Methods* 9: 676-682.

1366 Schlegel P, Texada MJ, Mirochnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell
1367 CM, Lacin H, Li F, Fetter RD, Truman JW (2016) Synaptic transmission parallels
1368 neuromodulation in a central food-intake circuit. *Elife* 5:e16799.

1369 Schleyer M, Miura D, Tanimura T, Gerber B (2015a) Learning the specific quality of taste
1370 reinforcement in larval *Drosophila*. *Elife* 4:e04711.

1371 Schleyer M, Fendt M, Schuller S, Gerber B (2018) Associative learning of stimuli paired and
1372 unpaired with reinforcement: evaluating evidence from maggots, flies, bees, and rats.
1373 *Front Psychol* 9:1494.

1374 Schleyer M, Reid SF, Pamir E, Saumweber T, Paisios E, Davies A, Gerber B, Louis M (2015b)
1375 The impact of odor-reward memory on chemotaxis in larval *Drosophila*. *Learn Mem*
1376 22:267-277.

1377 Schleyer M, Saumweber T, Nahrendorf W, Fischer B, von Alpen D, Pauls D, Thum A, Gerber
1378 B (2011) A behavior-based circuit model of how outcome expectations organize
1379 learned behavior in larval *Drosophila*. *Learn Mem* 18:639-653.

1380 Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Kantar Weigelt M, Schuller S,
1381 Saumweber T, Eichler K, Rohwedder A, Merhof D, Zlatic M, Thum AS, Gerber B (2020)
1382 Identification of dopaminergic neurons that can both establish associative memory and
1383 acutely terminate its behavioral expression. *J Neurosci* 40:5990-6006.

1384 Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A,
1385 Midgley FM, Fetter RD, Saalfeld S, Cardona A (2016) Quantitative neuroanatomy for
1386 connectomics in *Drosophila*. *Elife* 5:e12059.

1387 Selcho M et al. Central and peripheral clocks are coupled by a neuropeptide pathway in
1388 *Drosophila* (2017) *Nat Commun* 8: 1-13.

1389 Selcho M, Pauls D, Han KA, Stocker RF, Thum AS (2009) The role of dopamine in *Drosophila*
1390 larval classical olfactory conditioning. *PLoS One* 4:e5897.

1391 Sens KL, Zhang S, Jin P, Duan R, Zhang G, Luo F, Parachini L, Chen EH (2010) An invasive
1392 podosome-like structure promotes fusion pore formation during myoblast fusion. *J. Cell
1393 Biol* 191: 1013-1027.

1394 Slater G, Levy P, Chan KL, Larsen C (2015) A central neural pathway controlling odor tracking
1395 in *Drosophila*. *J. Neurosci* 35:1831-1848.

1396 Strauch M, Hartenstein V, Andrade IV, Cardona A, Merhof D (2018) Annotated dendograms
1397 for neurons from the larval fruit fly brain. In: Eurographics workshop on visual
1398 computing for biology and medicine (Puig Puig A, Schultz T, Vilanova A, eds). Goslar:
1399 Eurographics association.

1400 Sutcliffe B, Ng J, Auer TO, Pasche M, Benton R, Jefferis GS, Cachero S (2017) Second-
1401 generation *drosophila* chemical tags: sensitivity, versatility, and speed. *Genetics*
1402 205:1399-1408

1403 Takemura SY et al. (2017) A connectome of a learning and memory center in the adult
1404 *Drosophila* brain. *Elife* 6:e26975.

1405 Tanaka NK, Tanimoto H, Ito K (2008) Neuronal assemblies of the *Drosophila* mushroom body.
1406 *J Comp Neurol* 508:711-755.

1407 Thane M, Viswanathan V, Meyer TC, Paisios E, Schleyer M (2019) Modulations of
1408 microbehaviour by associative memory strength in *Drosophila* larvae. *PLoS One*
1409 14:e0224154.

1410 Thum AS, Gerber B (2019) Connectomics and function of a memory network: the mushroom
1411 body of larval *Drosophila*. *Curr Opin Neurobiol* 54:146-154.

1412 Thoener J, Koenig C, Weiglein A, Toshima N, Mancini N, Amin F, Schleyer M (2020)
1413 Associative learning in larval and adult *Drosophila* is impaired by the dopamine-
1414 synthesis inhibitor 3-Iodo-L-tyrosine. *Biol Open* 10:bio058198.

1415 Thoener J, Weiglein A, Gerber B, Schleyer M (2022) Optogenetically induced reward and
1416 'frustration' memory in larval *Drosophila*. *J Exp Biol* 225:jeb244565.

1417 Turrel O, Goguel V, Preat T (2018) Amnesiac is required in the adult mushroom body for
1418 memory formation. *J Neurosci* 38:9202-9214.

1419 Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG (2000) The amnesiac gene product
1420 is expressed in two neurons in the *Drosophila* brain that are critical for memory. *Cell*
1421 103:805-813.

1422 Weber D, Richter V, Rohwedder A, Großjohann A, Thum AS (2022) The analysis of aversive
1423 olfactory-taste learning and memory in *Drosophila* larvae. *Cold Spring Harb. Protoc.*
1424 doi: 10.1101/pdb.prot108050.

1425 Weiglein A, Gerstner F, Mancini N, Schleyer M, Gerber B (2019) One-trial learning in larval
1426 *Drosophila*. *Learn Mem* 26:109-120.

1427 Weiglein A, Thoener J, Feldbruegge I, Warzog L, Mancini N, Schleyer M, Gerber B (2021).
1428 Aversive teaching signals from individual dopamine neurons in larval *Drosophila* show

1429 qualitative differences in their temporal “fingerprint”. *J Comp Neurol* 529:1553-1570.
1430 Widmann A, Artinger M, Biesinger L, Boepple K, Peters C, Schlechter J, Selcho M, Thum AS
1431 (2016) Genetic dissection of aversive associative olfactory learning and memory in
1432 *Drosophila* larvae. *PLoS Genet* 12:p.e1006378.
1433 Widmann A, Eichler K, Selcho M, Thum AS, Pauls D (2018) Odor-taste learning in *Drosophila*
1434 larvae. *J Insect Physiol* 106:47-54.
1435 Wu Y, Ren Q, Li H, Guo A (2012) The GABAergic anterior paired lateral neurons facilitate
1436 olfactory reversal learning in *Drosophila*. *Learn Mem* 19:478-486.
1437 Wu CL, Shih MF, Lai JS, Yang HT, Turner GC, Chen L, Chiang AS (2011) Heterotypic gap
1438 junctions between two neurons in the *drosophila* brain are critical for memory. *Curr Biol*
1439 21:848-854.
1440 Wu CL, Shih MF, Lee PT, Chiang AS (2013) An octopamine-mushroom body circuit modulates
1441 the formation of anesthesia-resistant memory in *Drosophila*. *Curr Biol* 23:2346-2354.
1442 Yamagata N, Ezaki T, Takahashi T, Wu H, Tanimoto H (2021) Presynaptic inhibition of
1443 dopamine neurons controls optimistic bias. *Elife* 10:e64907.
1444 Yu D, Baird MA, Allen JR, Howe ES, Klassen MP, Reade A, Makhijani K, Song Y, Liu S, Murthy
1445 Z, Zhang SQ (2015) A naturally monomeric infrared fluorescent protein for protein
1446 labeling in vivo. *Nat Methods* 12:763-765.
1447 Zheng Z et al. (2018) A complete electron microscopy volume of the brain of adult *Drosophila*
1448 *melanogaster*. *Cell* 174:730-743.
1449 Zhou M, Chen N, Tian J, Zeng J, Zhang Y, Zhang X, Guo J, Sun J, Li Y, Guo A, Li Y (2019)
1450 Suppression of GABAergic neurons through D2-like receptor secures efficient
1451 conditioning in *Drosophila* aversive olfactory learning. *Proc Natl Acad Sci USA*
1452 116:5118-5125.
1453

1454 **Figure legends**

1455

1456 **Figure 1. Overview of the larval body and brain and connectivity of the APL neuron in**
1457 **the mushroom body**

1458 **(A)** Schematic overview of the larval body, adapted from Demerec and Kaufmann (1940). **(B)**
1459 Sketch of one larval brain hemisphere with the mushroom body, highlighting its intrinsic
1460 Kenyon cells (KCs) and organization in 11 compartments (letters a-k refer to the suffixes used
1461 to indicate the compartments innervated by mushroom body extrinsic neurons): CX: calyx; IP
1462 and LP: intermediate and lower peduncle; LA: lateral appendix; UVL, IVL and LVL: upper,
1463 intermediate, and lower vertical lobe; SHA: shaft; UT, IT, LT: upper, intermediate, and lower
1464 toe of the medial lobe. Adapted from Saumweber et al. (2018). **(C)** The larval anterior paired
1465 lateral (APL) neuron collects input (<) mostly from the KCs both in the calyx and in a subset of
1466 the compartments in the lobes, and delivers output (arrowhead) mostly to KCs and almost
1467 exclusively in the calyx. Adapted from Saumweber et al. (2018). **(D)** Simplified diagram of the
1468 connectivity of APL and of circuits underlying associative odor-reward learning. Within the

1469 calyx (gray-filled circle), a given odor (cloud) leads to the activation of a sparse, odor-specific
1470 pattern of KCs established through input from the projection neurons (PN). Within the lobes
1471 (bottom gray-filled rectangle), modulatory dopaminergic neurons (reward DAN) carry taste
1472 reward signals to the KCs, which send their axonal projection to avoidance-promoting
1473 mushroom body output neurons (avoidance MBON). In addition to its connections with the
1474 KCs, the APL neuron establishes synaptic contacts with the calyx MBONs (MBON-a1 and -
1475 a2) as well as with a subset of PNs (for additional connections between APL and mushroom
1476 body extrinsic neurons that are omitted here see Figures 6-7). During odor-taste reward
1477 associative learning, the coincidence between the odor and the reward signal at the KCs is
1478 thought to lead to a pre-synaptic depression of the synapses between the odor-activated KCs
1479 and avoidance-promoting MBONs, whereas the synapses of these KCs with approach-
1480 promoting MBONs in other compartments remains unchanged (note that the contribution of
1481 MBON-a1/a2 to learned behavior is unclear, as indicated by the stippled lines). Future
1482 processing of the learned odor is thus biased in favor of approach. The same rationale is
1483 thought to apply for odor-punishment learning, occurring at the synapses between the KCs
1484 and approach MBONs (top gray-filled rectangle). The electron microscopy reconstruction of a
1485 first-instar larval nervous system additionally revealed unexpected connections from KCs
1486 towards mushroom body input neurons (MBINs) including DANs, as well as MBIN/DAN-to-
1487 MBON synapses; note that KC-to-KC and MBON-to-MBIN connections are not displayed.
1488 Arrows indicate synaptic contacts between neurons.

1489

1490 **Figure 2: The APL-GAL4 driver does not express outside the brain**

1491 **(A-B'')** Maximum intensity projection of fluorescence signals from an entire larva of the
1492 genotype APL>mCherry-CAAX acquired on a light-sheet microscope using a 12x objective
1493 (top view, rostral to the left). Dashed boxes indicate the central nervous system, shown
1494 enlarged for a volume-restricted view in (B-B''). λ_{exc} and λ_{em} indicate filter band passes used
1495 for excitation and emission, respectively (merged in A'' and B''). CX: mushroom body calyx;
1496 CB: cell body of the APL neuron; vL and mL: innervation of APL in the vertical and medial lobe

1497 of the mushroom body, respectively. Scale bars: 200 μ m (A-A''), 50 μ m (B-B''). See also
1498 Movie 2. **(C-F'')** As in A-B'', but for the effector control (+>mCherry-CAAX) (C-D'') and driver
1499 control (APL>+) (E-F''), respectively. The arrowhead points to autofluorescence signals from
1500 the pharynx (visible also in B-B'' but omitted for clarity).

1501 Fluorescence signals that can be observed across wavelengths and genotypes reflect
1502 autofluorescence (including from food particles in the gut) and allow bodily detail to be
1503 discerned. Fluorescence reflecting the expression of mCherry-CAAX was observed only in the
1504 brain and only the APL neuron (magenta signals in A'', B'', Movie 1) (compare B', D', F').

1505

1506 **Figure 3. Brain expression of the APL-GAL4 driver is restricted to the APL neuron**
1507 **(A-A'')** 3D view of the expression pattern from the APL-GAL4 driver in a third-instar larval brain
1508 visualized using the fluorescence signal from the UAS-ChR2XXL::tdtomato effector
1509 (APL>ChR2XXL::tdtomato; green). Axon-rich regions of the mushroom body peduncle and
1510 lobes can be discerned as references after labeling with a primary monoclonal mouse anti-
1511 FASII antibody and a secondary polyclonal goat anti-mouse Alexa Fluor 488 antibody (anti-
1512 FASII; magenta). Transgene expression is specific to the hemispherically unique APL neuron.
1513 The data were acquired with a 20x glycerol objective; scale bar and grid spacing: 50 μ m. **(B-**
1514 **B'')** As in (A-A''), providing a close-up view of the mushroom bodies. APL sends projections
1515 into the calyx and a subset of the compartments of the medial and vertical lobes. White
1516 arrowheads in (B'') point to the calyx, which is innervated by APL but is largely devoid of the
1517 axonal FASII marker. The data were acquired with a 63x glycerol objective; scale bar and grid
1518 spacing: 20 μ m. **(C-D'')** As in (B-B''), except that the APL-GAL4 driver was crossed to UAS-
1519 mCD8::GFP as the effector. APL membranes can be visualized after labeling with a primary
1520 polyclonal rabbit anti-GFP antibody and a secondary polyclonal goat anti-rabbit Alexa Fluor
1521 488 antibody (anti-GFP; green). The mushroom bodies are labeled by a primary monoclonal
1522 mouse anti-DLG antibody and a secondary polyclonal goat anti-mouse Alexa Fluor 568
1523 antibody (anti-DLG; magenta); neuropils can be discerned as a reference by a primary
1524 monoclonal rat anti-N-Cadherin antibody and a secondary polyclonal goat anti-rat Alexa Fluor

1525 647 antibody (anti-N-Cadherin; blue). Close-up analysis of the APL morphology revealed two,
1526 or in one case three, branches (white arrowheads in C-D, respectively) splitting from the
1527 primary neurite; notably, these numbers of branches do not differ between the two
1528 hemispheres (N = 11 brains). The data were acquired with a 16x glycerol objective; scale bar
1529 and grid spacing: 20 μ m. (E) For each mushroom body compartment, the mean pixel intensities
1530 of APL labeling in the right hemisphere versus the left hemisphere are plotted (compartmental
1531 color code in accordance with the mushroom body schematic). The observed correlation
1532 indicates no inter-hemispheric difference in APL morphology (Pearson correlation (r)= 0.9747;
1533 $p < 0.05$). The sample size (number of brains) is given within the figure. The source data and
1534 results of all statistical tests are documented in Extended Data Figure 3-1.

1535

1536 **Figure 4. The larval APL neuron is GABAergic and is pre-synaptic in the calyx and post-**
1537 **synaptic in both the calyx and the lobes**

1538 (A-A'') 3D view of the expression pattern from the APL-GAL4 driver in the third-instar larval
1539 brain visualized using the fluorescence signal from the Chrimson effector
1540 (APL>CsChrimson::mVenus; green). GABAergic signals can be visualized after labeling with
1541 a polyclonal rabbit anti-GABA antibody and a polyclonal Cy5-conjugated goat anti-rabbit
1542 antibody (anti-GABA; magenta). The white arrowheads in (A'') point to an overlap of the GABA
1543 signal and the fluorescence signal in the APL soma. Neuropil regions are visualized as a
1544 reference by using a primary monoclonal rat anti-N-Cadherin antibody and a secondary
1545 polyclonal goat anti-rat Cy3 antibody (anti-N-Cadherin; blue). The data were acquired with a
1546 63x glycerol objective; scale bar and grid spacing: 20 μ m. (B-B'') As in (A-A''), providing a
1547 close-up view of the APL soma. The white arrowhead in (B') points to the APL soma
1548 surrounded by additional GABAergic cells. The data were acquired with a 63x glycerol
1549 objective; scale bar and grid spacing: 5 μ m. (C-C'') The APL-GAL4 driver was crossed to a
1550 double effector with both UAS-Dsyd-1::GFP and UAS-DenMark to label the pre- and post-
1551 synaptic sites of the APL neuron in third-instar larvae. Pre-synaptic regions of APL can be
1552 visualized after labeling with a polyclonal FITC-conjugated goat anti-GFP antibody (anti-Dsyd-

1553 1::GFP; green). Post-synaptic regions are revealed after labeling with a primary polyclonal
1554 rabbit anti-DsRed antibody and a secondary polyclonal goat anti-rabbit Cy5 antibody (anti-
1555 DenMark; magenta). Neuropil regions are visualized as a reference by using a primary
1556 monoclonal rat anti-N-Cadherin antibody and a secondary polyclonal goat anti-rat Cy3
1557 antibody (anti-N-Cadherin; blue). The pre-synaptic marker Dsyd-1 is mainly restricted to the
1558 calyx, whereas the post-synaptic marker DenMark localizes to both the calyx and a subset of
1559 the compartments in the lobes, confirming the regional synaptic polarities of the larval APL
1560 neuron (Masuda-Nakagawa et al., 2014; Eichler et al., 2017). The data were acquired with a
1561 16x glycerol objective; scale bar and grid spacing: 50 μ m. **(D-D'')** As in (C-C''), providing a
1562 close-up view of the pre- and post-synaptic regions of APL; scale bar and grid spacing: 25 μ m.
1563 For a corresponding movie see Movie 3.

1564

1565 **Figure 5. Optogenetic activation of APL can reduce levels of activity in mushroom body**
1566 **Kenyon cells**

1567 **(A, B)** At relatively low light intensity (from 0 s to 270 s), activation of APL in isolated brain
1568 preparations of APL_{26G02}>ChR2XXL; KC>GCaMP6m larvae (blue) had no significant effect on
1569 intracellular Ca^{2+} signals in the calycal ROIs/ KCs (Normalized $\Delta F/F_0$) relative to genetic
1570 controls (+>ChR2XXL; KC>GCaMP6m) (gray). For each calycal ROI/ KC, the data are
1571 normalized to the beginning of the indicated observation period as a baseline and are plotted
1572 over time in (A) (showing mean +/- SEM). The maximum difference from the baseline for each
1573 calycal ROI/ KC is plotted in (B) (showing mean and data-point scatter). **(C, D)** In contrast,
1574 compared to genetic controls, activation of APL by a more intense light in the same specimen
1575 (from 300 s to 570 s) reduced Ca^{2+} signals in the KCs. **(E, F)** Using the same light intensity as
1576 in (C-D), bath-application of the acetylcholine receptor agonist carbamylcholine (at 120 s)
1577 massively increased Ca^{2+} signals in genetic controls (gray), an effect that was reduced to about
1578 half under conditions of APL activation (blue). Preparation and imaging according to Selcho et
1579 al. (2017) and Lyutova et al. (2019). The number of brains for genetic controls and APL
1580 activation, respectively, was 7 and 9 in (A-D) and 10 and 8 in (E-F); the number of calycal

1581 ROIs/ KCs was 27 and 26 in (A-B), 26 and 25 in (C-D), and 36 and 37 in (E-F). NS and * refer
1582 to MWW comparisons with $p > 0.05$ and $p < 0.05$, respectively. The source data and results of
1583 all statistical tests are documented in Extended Data Figure 3-1.

1584

1585 **Figure 6. Volume reconstruction of the larval APL neuron**

1586 **(A)** Electron microscopy cross-section of the APL neuron in a first-instar larva. Points
1587 connected by lines represent the skeletonized reconstruction of the neuron (for details see
1588 Eichler et al., 2017). Circles represent radius annotations for volume reconstruction; scale bar:
1589 500 nm. **(B)** Reconstructed volume of the left- and the right-hemisphere APL neuron (green)
1590 in the context of the complete central nervous system (left; gray mesh), and in a close-up of
1591 the mushroom body region (right; magenta). For a corresponding movie see Movie 4. **(C)**
1592 Reconstructed volume of both APL neurons separated into axonal (yellow) and dendritic (red)
1593 regions, and the neurite and its branches (green). **(D)** Quantification of the radii of the APL
1594 neurons, showing that the neurite is thicker than the axonal regions (significant only for the
1595 right hemisphere APL neuron), which in turn are thicker than the dendritic regions. The data
1596 are displayed as violin plots; bars represent mean; NS and * refer to MWW comparisons
1597 between the APL regions with a Bonferroni-Holm correction ($p > 0.05$ and $p < 0.05$,
1598 respectively). The source data and results of all statistical tests are documented in Extended
1599 Data Figure 3-1. **(E-F)** Pre- and post-synaptic sites annotated by dots and triangles,
1600 respectively, selectively for different types of connected neuron, namely: (E) single-claw, multi-
1601 claw, and young KCs; (F) neurons with connections in the calyx (top row: olfactory PNs; OAN-
1602 a1/a2; MBON-a1/a2), as well as neurons that have been studied elsewhere in functional
1603 experiments, such as DAN-i1 (Saumweber et al., 2018; Schleyer et al., 2020), DAN-f1
1604 (Eschbach et al., 2020; Weiglein et al., 2021), DAN-k1 (Saumweber et al., 2018). Neurons with
1605 less than two synapses with APL in both hemispheres are shown as “Other”. In (B-C), A:
1606 anterior; D: dorsal; M: medial. Corresponding three-dimensional visualizations can be found in
1607 Movies 4-6.

1608

1609 **Figure 7. Dendrogram analysis of the larval APL neuron**

1610 **(A)** Two-dimensional dendrogram of the APL neuron from the left hemisphere, based on an
1611 electron microscope reconstruction in a first-instar larva (data from Eichler et al., 2017). Branch
1612 lengths are preserved in a topologically correct manner. The colored envelopes indicate the
1613 mushroom body calyx and compartments innervated by APL (see also Figure 1A-B). High-
1614 resolution versions of this figure, for the APL neurons of both hemispheres, can be found in
1615 Extended Data Figure 7-1. **(B)** Synapses at their topologically correct site on the left-
1616 hemisphere APL neuron with the mushroom body extrinsic neurons indicated. Pre- and post-
1617 synaptic sites of APL are annotated with dots and triangles, respectively. For better readability
1618 some symbols were displaced and their true locations indicated by a dashed line. High-
1619 resolution versions of this figure, for the APL neurons of both hemispheres, can be found in
1620 Extended Data Figure 7-2. **(C)** As in (B), but showing synaptic sites with the mushroom body
1621 intrinsic neurons, the Kenyon cells (KCs); dark purple dots and bright purple triangles show
1622 APL-to-KC and KC-to-APL synapses, respectively. High-resolution versions of this figure, for
1623 the APL neurons of both hemispheres, can be found in Extended Data Figure 7-3. **(D)** Cluster
1624 analysis revealed that calycal synaptic sites of the left-hemisphere APL with the KCs are
1625 organized in four clusters (1-4). The accompanying quantification shows geodesic distances
1626 of synapses to the center of their respective center-surround structure on the left-hemisphere
1627 APL neuron. Most of the APL-to-KC synapses (dark purple dots) are observed towards the
1628 center of these clusters (dark square), whereas KC-to-APL synapses (bright purple triangles)
1629 are observed mainly in the surround. The data are displayed as box plots, the middle line
1630 showing the median, the box boundaries the 25 and 75% quantiles, and the whiskers the 10
1631 and 90% quantiles. The sample sizes (number of synapses) are given within the figure. * refers
1632 to MWW comparisons between APL-to-KC and KC-to-APL synapses (* p< 0.05). The source
1633 data and results of all statistical tests are documented in Extended Data Figure 3-1.
1634 Corresponding analyses, in the context of the full dendograms and for the APL neurons of
1635 both hemispheres, can be found in Extended Data Figure 7-4.

1636

1637 **Figure 8. Regional synaptic polarity of APL across metamorphosis**

1638 Confocal maximum projection images of stainings for mCD8::GFP, Syt1::SNAP, and
1639 TLN::CLIP (Kohl et al., 2014), driven by the APL-specific intersectional driver APLi (Lin et al.,
1640 2014; Mayseless et al., 2018) at the following developmental times: **(A-A'')** third-instar larva
1641 (L3); **(B-C'')** 6h after puparium formation (6h APF: calyx: B-B''; lobes: C-C''); **(D-D'')** 12h
1642 APF; **(E-F'')** adult (calyx: E-E''; lobes: F-F''). Brains were stained with a polyclonal chicken
1643 anti-GFP antibody to label the APL neuron (A-F). To label pre-synapses (A'-F') and post-
1644 synapses (A''-F''), the pre-synaptic reporter synaptotagmin was fused to the chemical tag
1645 SNAPm (Syt1-SNAPm), and the post-synaptic reporter telencephalin was fused to CLIPm
1646 (TLN-CLIPm), respectively (Kohl et al., 2014). Merged images are shown in (A''-F''). In the
1647 third-instar larva, pre-synaptic staining was largely restricted to the calyx (A'), whereas post-
1648 synaptic staining was distributed in both the calyx and the lobes (A''). At 6h APF, both pre- and
1649 post-synaptic staining are similarly distributed to that in the larvae (B'-C''); notably, pre-
1650 synaptic structures seem to be more punctate (B', C'), and fewer post-synaptic structures are
1651 detectable (B'', C''). As late as 12h APF, both pre- and post-synaptic structures are still
1652 detectable (D', D''); post-synaptic structures appear to be detached from the neurite (D'', D'';
1653 yellow arrowhead). In adults, both pre- and post-synaptic markers are detectable in both the
1654 calyx and the lobes (E-F''). The data were acquired with a 40x oil objective; scale bars: 20 μ m.
1655

1656 **Figure 9. Memory scores are abolished upon activation of APL throughout training**

1657 **(A)** Larvae were trained such that in one group of animals, the odor *n*-amyl acetate (black
1658 cloud) was paired with the fructose reward (green fill of circle indicating a Petri dish), alternating
1659 with blank trials (open circle), whereas in a reciprocal group, the odor was presented unpaired
1660 from the fructose reward; please note that here and throughout this study, the sequence of
1661 training events was as depicted in half of the cases, and in the reverse order in the other half
1662 of the cases. The APL neuron was optogenetically activated with blue light illumination (blue
1663 rectangle) during the complete training phase. The larvae from both groups were then tested
1664 for their odor preference, and associative memory was quantified by the memory score as the

1665 difference in preference between these reciprocally trained groups of animals. Double-
1666 heterozygous animals of the genotype APL>ChR2XXL were used for APL activation; larvae
1667 heterozygous for either the GAL4 (APL>+) or the effector construct (+>ChR2XXL) were used
1668 as the genetic controls. Optogenetic activation of the APL neuron during the complete training
1669 phase abolished associative memory scores. **(B)** The same effects were observed in a
1670 shortened, one-training-cycle version of this experiment. **(C)** Full projection of the expression
1671 pattern from the APL-GAL4 driver crossed to UAS-ChR2XXL in the third-instar larval brain.
1672 ChR2XXL is visualized by a primary monoclonal mouse anti-ChR2 antibody and a secondary
1673 polyclonal donkey anti-mouse Cy3 antibody. Confirming our results from Figures 2-4, this
1674 reveals strong and reliable transgene expression in the APL neuron of both hemispheres (anti-
1675 ChR2XXL; green). The data were acquired with a 63x glycerol objective; scale bar and grid
1676 spacing: 20 μ m. For a corresponding movie see Movie 7. **(D)** The behavior of experimentally
1677 naïve larvae of the experimental genotype (APL>ChR2XXL) toward *n*-amyl acetate (black
1678 cloud) was tested, without APL being activated during testing or with APL activated (blue
1679 square). Naïve odor preference was unaffected by APL activation. **(E-I)** The behavior of larvae
1680 in (D) was videorecorded and analyzed offline as described by Paisios et al. (2017). (E) shows
1681 a short sample from a video recording of a larva with successive runs and head casts (HCs).
1682 Displayed is the track of the midpoint. Magenta and orange dots indicate right and left HCAs,
1683 respectively. Specifically, three features of locomotion were analyzed in addition to the
1684 olfactory preference (i.e. the time spent by the larvae on the odor and the non-odor side, F):
1685 the HC rate modulation (G), the HC reorientation (H), and the run speed modulation (I). In all
1686 cases APL activation had no effect. The data are displayed as box plots, the middle line
1687 showing the median, the box boundaries the 25 and 75% quantiles, and the whiskers the 10
1688 and 90% quantiles. The sample sizes (number of biological replications) and the genotypes
1689 are given within the figure. In (A-B), different letters refer to significant differences between
1690 groups in MWW comparisons with a Bonferroni-Holm correction ($p < 0.05$), as specified in the
1691 section “Experimental design and statistical analyses”. In (D, F-I), NS refers to the absence of
1692 significance between groups in MWW comparisons (NS $p > 0.05$). In (A-B), [#] refers to OSS

1693 comparisons to chance levels (i.e. to zero), also with a Bonferroni-Holm correction (# p< 0.05).
1694 The source data and results of all statistical tests are documented in Extended Data Figure 3-
1695 1.

1696

1697 **Figure 10. Activation of APL only in the presence or only in the absence of the odor**
1698 **reduces memory scores**

1699 Optogenetic activation of APL (blue square) either only when the odor was presented during
1700 training, or only when the odor was not presented during training, reduced memory scores to
1701 about half the level of control animals that did not receive any APL activation (black-filled box
1702 plots). Testing the animals in the presence of the training reward (i.e. fructose) abolished the
1703 behavioral expression of memory in all cases (green-filled box plots). The sample sizes and
1704 the genotype are given within the figure. # refers to OSS comparisons to chance levels (i.e. to
1705 zero) with a Bonferroni-Holm correction (# p< 0.05); different letters refer to significant
1706 differences between groups in MWW comparisons also with a Bonferroni-Holm correction (p<
1707 0.05). The source data and results of all statistical tests are documented in Extended Data
1708 Figure 3-1. Other details as in Figure 9.

1709

1710 **Figure 11. Activation of APL only in the presence or only in the absence of the odor has**
1711 **differential effects on odor preference**

1712 **(A)** Examination of the preference scores (PREF) underlying the associative memory scores
1713 from Figure 10 reveals that odor preference scores are higher after paired than after unpaired
1714 training with odor and fructose reward (black-line plots to the left), a difference that is abolished
1715 when testing is carried out in the presence of the training reward (right-most colored plots).
1716 This is adaptive because learned search for the reward is obsolete in its presence. These
1717 preference scores can thus be pooled to serve as the baseline odor preference cleared of
1718 associative memory (stippled line). This reveals that odor preference scores are higher than
1719 the baseline after paired training and lower than the baseline after unpaired training. **(B-C)**
1720 shows the same upon activation of APL during training (blue square), whether only during odor

1721 presentation (B), or unpaired from odor presentation (C). Remarkably, baseline levels of odor
1722 preference differ between these three training conditions (D): As compared to the control
1723 condition without APL activation, baseline odor preference scores (Pooled PREF) are
1724 increased when APL is activated together with odor presentation, and decreased when APL is
1725 activated unpaired from odor presentation. The sample sizes and the genotype are given within
1726 the figure. In (A-D), * and NS refer to MWW comparisons between groups with a Bonferroni-
1727 Holm correction (* p< 0.05; NS p> 0.05). In (A-C), # refers to MWW comparisons to baseline
1728 levels of odor preference, also with a Bonferroni-Holm correction (# p< 0.05). The source data
1729 and results of all statistical tests are documented in Extended Data Figure 3-1. Other details
1730 as in Figures 9-10.

1731

1732 **Figure 12. Activating APL has a rewarding effect**

1733 **(A)** Animals were trained by presenting odor either paired with, or unpaired from, activation of
1734 APL using ChR2XXL as the effector through blue light illumination (blue square). The effect of
1735 APL activation as a reward is quantified by positive memory scores, differing significantly from
1736 the genetic controls. **(B)** Procedure as in (A) except that APL was optogenetically silenced
1737 using GtACR1 as the effector through green light illumination (green square). The effect of
1738 APL silencing as a punishment is quantified by negative memory scores, differing significantly
1739 from the genetic controls. **(C)** Larvae of the experimental genotype (APL>ChR2XXL) were
1740 trained as described in (A) and tested either immediately after training (retention interval 0 min)
1741 or 5, 10 or 20 min after training. Expression of odor-APL memory was observed immediately
1742 after training and was still detectable at a 5 min retention interval; it was significantly reduced
1743 compared to immediate testing when assessed at 5, 10 or 20 min retention intervals. **(D)**
1744 Larvae of the experimental genotype (APL>ChR2XXL) were trained as in (A) (i.e. paired or
1745 unpaired) but with modifications of the paradigm in accordance with Weiglein et al. (2020).
1746 Specifically, odor presentation and APL activation lasted for 30 s each with different timings
1747 relative to their onset (inter-stimulus interval, ISI): either the odor was presented *before* the
1748 APL activation (negative ISI values), *during* the APL activation (ISI 0), or *after* the APL

1749 activation (positive ISI values); in all cases reciprocal training involved odor presentation
1750 unpaired from APL activation. Three training trials were performed, followed by the test of odor
1751 preference. Memory scores differed according to the ISI. **(E)** Repetition of the experiment from
1752 (D) for simultaneous presentation of odor and APL activation (ISI 0), including genetic controls.
1753 Positive memory scores for the experimental genotype (APL>ChR2XXL) indicate that a brief
1754 stimulation of APL is sufficient to be rewarding, an effect that was not observed in the genetic
1755 controls. The sample sizes and the genotypes are indicated within the figure. In (A-B, E),
1756 different letters refer to significant differences between groups in MWW comparisons with a
1757 Bonferroni-Holm correction ($p < 0.05$); in (C), * refers to significant differences between groups
1758 in MWW comparisons with a Bonferroni-Holm correction (* $p < 0.05$); in (D), * refers to a KW
1759 multiple-group comparison (* $p < 0.05$); in (A-C, E), # refers to OSS comparisons to chance
1760 levels (i.e. to zero), also with a Bonferroni-Holm correction (# $p < 0.05$). The source data and
1761 results of all statistical tests are documented in Extended Data Figure 3-1. Other details as in
1762 Figures 9-11.

1763

1764 **Figure 13. Locomotor ‘footprint’ of odor-APL memory**

1765 **(A)** The behavior of larvae of the genotype APL>ChR2XXL was videorecorded after paired or
1766 unpaired training with odor and APL activation. **(B)** Larvae showed a higher preference for the
1767 odor after paired training than after unpaired training; dataset split into 100 bins (1.8 s, each),
1768 showing the median of odor preferences across Petri dishes over time. **(C)** Larvae from the
1769 paired group spent more time on the odor side than on the non-odor side during testing,
1770 whereas the contrary was observed for the unpaired group. **(D)** Paired-trained larvae exhibited
1771 more HCs when crawling away from the odor than when moving towards it; the opposite was
1772 observed for the unpaired group. **(E)** Larvae from the paired group oriented their HCs more in
1773 the direction of the odor compared to larvae from the unpaired group. **(F)** The run speed when
1774 heading towards versus when heading away from the odor did not differ between paired- and
1775 unpaired-trained animals. Analyses in (B-F) are based on data available from the experiments
1776 shown in Figure 12A, C and Figure 14A. Similar results were observed using Chrimson as the

1777 optogenetic effector (not shown). The sample sizes (number of biological replications) and the
1778 genotype are given within the figure. In (C-E), * refers to significant differences between groups
1779 in MWW comparisons (* $p < 0.05$). In (F), NS refers to the absence of significance between
1780 groups in MWW comparisons (NS $p > 0.05$). The source data and results of all statistical tests
1781 are documented in Extended Data Figure 3-1. Other details as in Figures 9-12.

1782

1783 **Figure 14. Activation of APL during testing prevents the behavioral expression of**
1784 **appetitive odor-APL memory**

1785 **(A)** Repetition of the experiment from Figure 12A, confirming that APL activation has a
1786 rewarding effect (black-filled box plots). Activating APL during testing as well prevented the
1787 behavioral expression of appetitive odor-APL memory (blue-filled box plots). **(B)** Larvae were
1788 trained and tested as in (A), except that in a differential conditioning protocol, 1-octanol was
1789 used as a second odor (OCT; yellow cloud) in all training trials in which *n*-amyl acetate (AM;
1790 black cloud) was not presented. Presenting one of the two odors paired with APL activation
1791 induced odor-specific appetitive memory; as in (A), testing the animals while activating APL
1792 prevented the behavioral expression of memory. **(C)** The behavior of experimentally naïve
1793 larvae toward *n*-amyl acetate (black cloud) was tested either without APL activation or with
1794 APL activation during the test. Naïve odor preference in the experimental group was unaffected
1795 by APL activation (APL>ChR2XXL) (see also Figure 9D), with the caveat that it did differ from
1796 the effector (+>ChR2XXL), but not from the driver control (APL>+). **(D)** As in (C), except that
1797 OCT was used as a single odor (yellow cloud). Naïve odor preference in the experimental
1798 group was unaffected by APL activation (APL>ChR2XXL), and did not differ from the genetic
1799 controls. **(E)** As in (C-D), except that OCT was used as a second odor (yellow cloud). Again,
1800 naïve odor preference in the experimental group was unaffected by APL activation
1801 (APL>ChR2XXL) and did not differ from the genetic controls. The sample sizes and the
1802 genotypes are given within the figure. In (A-C), # refers to OSS comparisons to chance levels
1803 (i.e. to zero) with a Bonferroni-Holm correction (# $p < 0.05$); different letters refer to significant
1804 differences between groups in MWW comparisons, also with a Bonferroni-Holm correction ($p <$

1805 0.05). In (D-E), NS refers to the absence of significance between groups in KW comparisons
1806 (NS $p > 0.05$). The source data and results of all statistical tests are documented in Extended
1807 Data Figure 3-1. Other details as in Figures 9-13.

1808

1809 **Figure 15. Activating APL with Chrimson has a rewarding effect**

1810 **(A)** The rewarding effect of APL activation was confirmed using Chrimson as the effector and
1811 red light illumination (red square), and quantified through positive memory scores in the
1812 experimental group (APL>Chrimson), differing significantly from the genetic controls.
1813 Transgenic flies were raised on standard food supplemented with retinal (100 mM final
1814 concentration). **(B)** Larvae of the experimental genotype (APL>Chrimson) were trained and
1815 tested after being raised on food either supplemented with retinal (final concentration in ethanol
1816 [EtOH 99.9%] 100 mM), or without retinal (food medium supplemented with EtOH only). The
1817 rewarding effect of APL activation was observed in retinal-fed animals, but was not observed
1818 without retinal feeding. **(C)** The behavioral expression of odor-APL memory was reduced but
1819 not abolished by testing the animals while APL was activated (red-filled box plot). **(D)** The
1820 behavior of experimentally naïve larvae of the genotype APL>Chrimson toward *n*-amyl acetate
1821 (black cloud) was tested, either without APL activation or with APL activated during testing (red
1822 square). Naïve odor preference remained unaffected by APL activation. The sample sizes and
1823 the genotypes are given within the figure. In (A), different letters refer to significant differences
1824 between groups in MWW comparisons with a Bonferroni-Holm correction ($p < 0.05$). In (B-C),
1825 * refers to significant differences between groups in MWW comparisons, also with a
1826 Bonferroni-Holm correction (* $p < 0.05$). In (D), NS refers to the absence of significance
1827 between groups in MWW comparisons (NS $p > 0.05$). In (A-C), # refers to OSS comparisons to
1828 chance levels (i.e. to zero) with a Bonferroni-Holm correction (# $p < 0.05$). The source data and
1829 results of all statistical tests are documented in Extended Data Figure 3-1. Other details as in
1830 Figures 9-14.

1831

1832 **Figure 16. Manipulating activity in the calyx MBONs has no reinforcing effect**

1833 **(A)** Larvae were trained such that odor was presented either paired or unpaired with the
1834 silencing of the two calyx MBONs, using GtACR1 as the effector and green light illumination
1835 (green square). Silencing the two calyx MBONs together was seen to have no rewarding effect,
1836 as larvae of the experimental genotype (MBONa1,a2>GtACR1) did not behave differently from
1837 the genetic controls. **(B)** Activating the two calyx MBONs together likewise had no rewarding
1838 effect. **(C-D)** Silencing (C) or activating (D) the two calyx MBONs separately had no reinforcing
1839 effect, either. The sample sizes and the genotypes are given within the figure. NS refers to the
1840 absence of significance between groups in MWB comparisons (NS p> 0.05). The source data
1841 and results of all statistical tests are documented in Extended Data Figure 3-1. Other details
1842 as in Figures 9-15. Expression patterns of the calyx MBON drivers used in (C-D) are shown in
1843 Extended Data Figure 16-1.

1844

1845 **Figure 17. Inhibition of dopamine synthesis impairs odor-APL memory**

1846 A systemic pharmacological approach was used to disrupt dopamine synthesis (Thoener et
1847 al., 2020). **(A)** Sketch of dopamine biosynthesis. The enzyme tyrosine hydroxylase (TH)
1848 converts the amino acid L-tyrosine to L-3,4- dihydroxyphenylalanine (L-DOPA). In the next
1849 step the enzyme dopa-decarboxylase (DDC) converts L-DOPA to dopamine. Application of 3-
1850 Iodo-L-tyrosine (3IY) inhibits the TH enzyme. **(B)** Third-instar APL>ChR2XXL larvae were
1851 transferred from their food vials to a yeast solution either without 3IY or supplemented with
1852 3IY. After 4 h of such feeding, the animals were trained and tested as in Figure 12A. **(C)**
1853 Relative to control larvae the 3IY-fed larvae exhibited impaired odor-APL memory scores. **(D)**
1854 As in (C) except that the yeast solution was prepared either (i) without additional substances,
1855 (ii) with 3IY added, (iii) with 3IY plus L-DOPA (a dopamine precursor), or (iv) with L-DOPA
1856 only, at the concentrations indicated. Again, relative to control larvae, reduced memory scores
1857 were observed in 3IY-fed larvae; feeding them additionally with L-DOPA rescued that memory
1858 impairment, leading to scores similar to those of the control animals. L-DOPA alone had no
1859 impact on odor-APL memory. The sample sizes and the genotypes are given within the figure.
1860 In (C-D), # refers to OSS comparisons to chance levels (i.e. to zero) with a Bonferroni-Holm

1861 correction (# p< 0.05); * refers to significant differences between groups in MWW comparisons
1862 with a Bonferroni-Holm correction (* p< 0.05). The source data and results of all statistical tests
1863 are documented in Extended Data Figure 3-1. Other details as in Figures 9-16.

1864

1865 **Figure 18. Ablation of dopaminergic pPAM neurons impairs odor-APL memory**

1866 Larvae were trained and tested as in Figure 12A. Optogenetic activation of APL and
1867 simultaneous ablation of the pPAM neurons (APL_{55D08}>ChR2XXL; pPAM>reaper) reduced
1868 odor-APL memory scores relative to genetic controls (APL_{55D08}>ChR2XXL; pPAM>+ and
1869 APL_{55D08}>ChR2XXL; +>reaper). The sample sizes and the genotypes are given within the
1870 figure. Different letters refer to significant differences between groups in MWW comparisons
1871 with a Bonferroni-Holm correction (p< 0.05). # refers to OSS comparisons to chance levels
1872 (i.e. to zero), also with a Bonferroni-Holm correction (# p< 0.05). The source data and results
1873 of all statistical tests are documented in Extended Data Figure 3-1. Other details as in Figures
1874 9-17.

1875

1876 **Extended Data**

1877

1878 **Extended Data Table 2-1.** Word file table containing the key reagents (fly strains, antibodies,
1879 software) used in this study.

1880

1881 **Extended Data Figure 3-1.** Excel file containing the source data presented in Figures 3, 5, 6,
1882 7, 9-18 along with all statistical results. The data for each figure are presented in a separate
1883 sheet, and the statistical results are grouped by figure number, figure panel, and statistical
1884 tests. As regards the behavioral results displayed in Figures 9-18, data are grouped by figure
1885 panel, genotype, food supplementation, and test condition; each sheet includes the odor
1886 preference values underlying the memory scores shown in the main figures.

1887

1888 **Extended Data Figure 7-1. High-resolution dendograms of APL.** The colored envelopes
1889 indicate the mushroom body compartments innervated by the left- and right-hemisphere APL.
1890 Other details as in Figure 7A.

1891
1892 **Extended Data Figure 7-2. High-resolution dendograms of APL showing sites of**
1893 **synapses with mushroom body extrinsic neurons.** Synapses are shown at their
1894 topologically correct site on APL from both hemispheres with the mushroom body extrinsic
1895 neurons indicated. Pre- and post-synaptic sites of APL are annotated with dots and triangles,
1896 respectively. Other details as in Figure 7B.

1897
1898 **Extended Data Figure 7-3. High-resolution dendograms of APL showing sites of**
1899 **synapses with mushroom body intrinsic Kenyon cells.** Synapses with the Kenyon cells
1900 (KCs) are shown at their topologically correct site on APL from both hemispheres. Dark purple
1901 dots and bright purple triangles show APL-to-KC and KC-to-APL synapses, respectively. Other
1902 details as in Figure 7C.

1903
1904 **Extended Data Figure 7-4. Cluster analysis of APL calyca synaptic sites with the KCs.**
1905 Cluster analysis showing that calyca synaptic sites of the left- and right-hemisphere APL with
1906 the KCs are organized in four clusters (1-4). Most of the APL-to-KC synapses (dark purple
1907 dots) are observed towards the center of these clusters (dark square), whereas KC-to-APL
1908 synapses (bright purple triangles) are observed mainly in the surround. Other details as in
1909 Figure 7D.

1910
1911 **Extended Data Figure 16-1. Expression patterns of the calyx MBON drivers used in**
1912 **Figure 16C-D. (A)** Full projection of the expression pattern from the SS02006-GAL4 driver
1913 (MBON-a1) covering only one calyx MBON in each hemisphere (N = 7 brains tested). **(B)** As
1914 in (A), but for SS01417-GAL4 (MBON-a2); in two out of N= 5 brains tested this driver covered
1915 both calyx MBONs (white arrowheads; left: cell bodies overlap one another). The data were

1916 acquired with a 63x glycerol objective; scale bar and grid spacing: 20 μ m. Other details as in
1917 Figure 9C.

1918

1919 **Movie legends**

1920

1921 **Mancini et al., Movie 1.** Volume rendering of fluorescence signals in a third-instar larva of the
1922 genotype APL>mCherry-CAAX at the indicated combinations of excitation and emission
1923 wavelengths (same specimen as in Figure 2A-B’’’). The movie starts in the brain region from
1924 a dorsal view (rostral to the left), and after rotation zooms out to show the full body. The data
1925 were acquired with a 12x objective; grid spacing: 200 μ m.

1926

1927 **Mancini et al., Movie 2.** 3D rendering of the APL neuron (green) and the mushroom bodies
1928 (magenta) in a third-instar larval brain. Genotype: APL>mIFP/MB247>mCherry-CAAX. The
1929 data were acquired with a 40x oil objective; grid spacing: 20 μ m.

1930

1931 **Mancini et al., Movie 3.** 3D rendering and segmentation of pre- (green) and post-synaptic
1932 (magenta) regions of the APL neuron in a third-instar larval brain, based on data shown in
1933 Figure 4C-C’’. Genotype: APL>Dsyd-1::GFP/DenMark. The data were acquired with a 63x
1934 glycerol objective; grid spacing: 20 μ m.

1935

1936 **Mancini et al., Movie 4.** Volume reconstruction of the left- and the right-hemisphere APL
1937 neuron (green) in a first-instar larval brain (CNS; gray), with the focus on APL’s connectivity
1938 within the mushroom bodies (MB; magenta). “X” refers to synapses with any type of partner.
1939 The location of pre- and post-synaptic sites of both APLs is annotated with yellow spheres and
1940 red pyramids, respectively. A: anterior; D: dorsal; M: medial. Based on the dataset from Eichler
1941 et al. (2017). See also Figure 6B.

1942

1943 **Mancini et al., Movie 5.** Volume reconstruction of the left- and the right-hemisphere APL
1944 neuron in a first-instar larva and sites of pre- and post-synapses with different subclasses of
1945 mushroom body intrinsic neurons (Kenyon cells, KCs), namely single-claw, multi-claw, and
1946 young KCs. Pre- and post-synaptic sites of APL are annotated with spheres and pyramids,
1947 respectively. A: anterior; D: dorsal; M: medial. Based on the dataset from Eichler et al. (2017).
1948 See also Figure 6E.

1949

1950 **Mancini et al., Movie 6.** Volume reconstruction of the left- and the right-hemisphere APL
1951 neuron in a first-instar larva and sites of pre- and post-synapses with different types of partner,
1952 separated into all subclasses of mushroom body intrinsic neurons (Kenyon cells, KCs) and the
1953 mushroom body extrinsic neurons indicated. Remaining neurons bearing less than two
1954 synapses with APL in both hemispheres are shown as “Other”; “X” refers to synapses with
1955 non-KCs. Pre- and post-synaptic sites are annotated with spheres and pyramids, respectively.
1956 A: anterior; D: dorsal; M: medial. Based on the dataset from Eichler et al. (2017). See also
1957 Figure 6F.

1958

1959 **Mancini et al., Movie 7.** 3D rendering of the expression pattern of ChR2XXL in APL in a third-
1960 instar larva, based on data shown in Figure 9C. Genotype: APL>ChR2XXL. The data were
1961 acquired with a 63x glycerol objective; grid spacing: 20 μm .

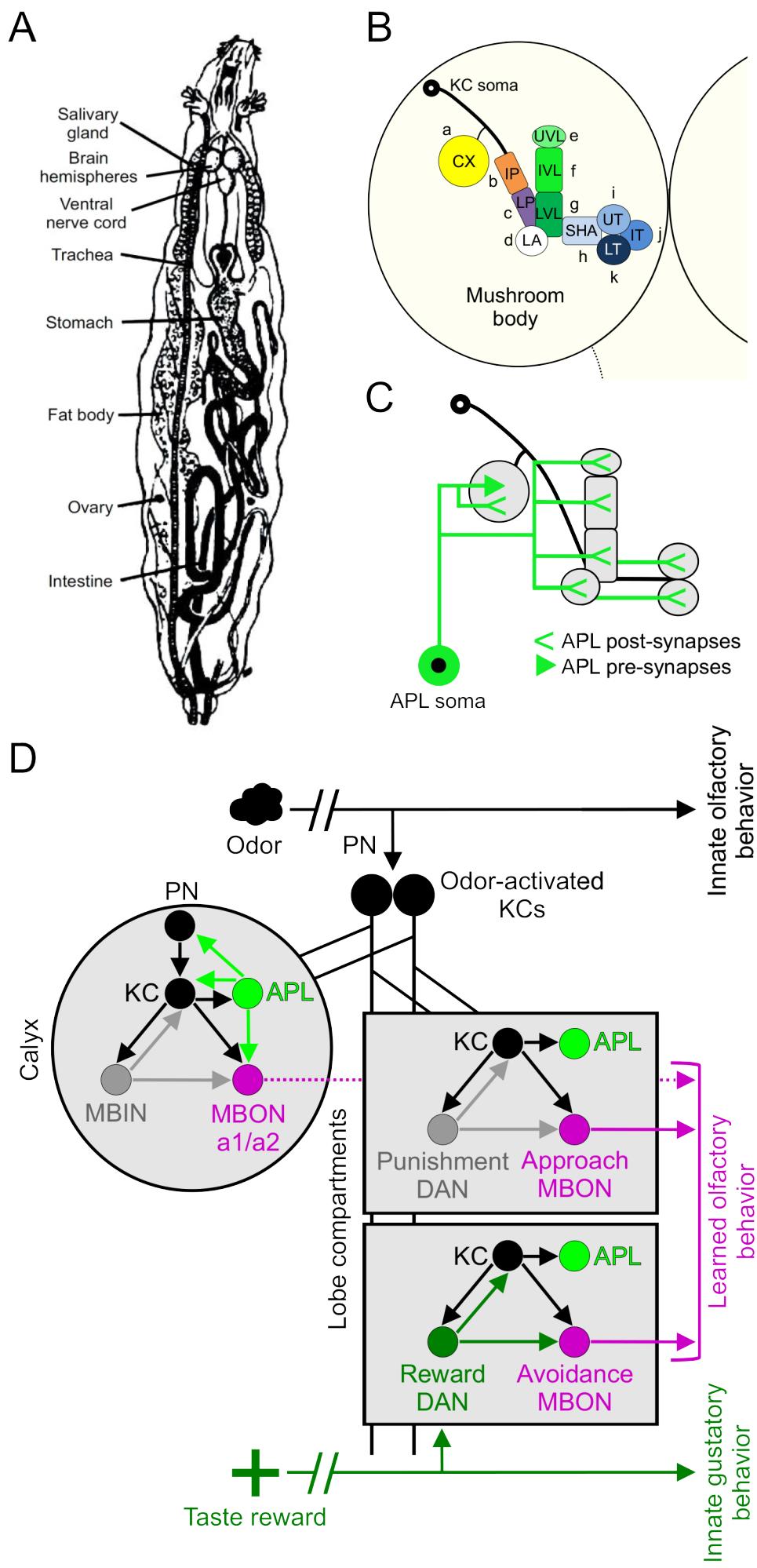


Figure 1

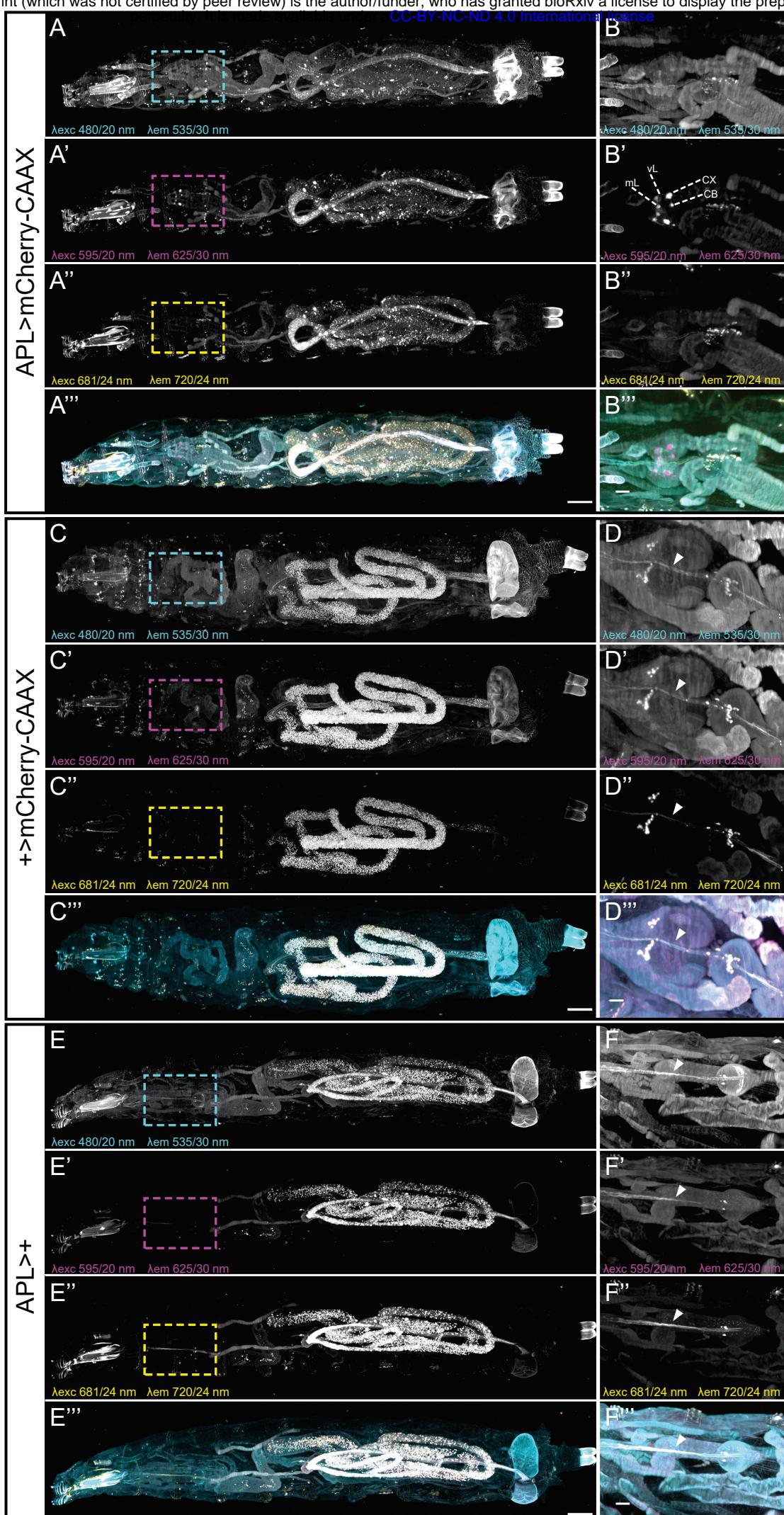


Figure 2

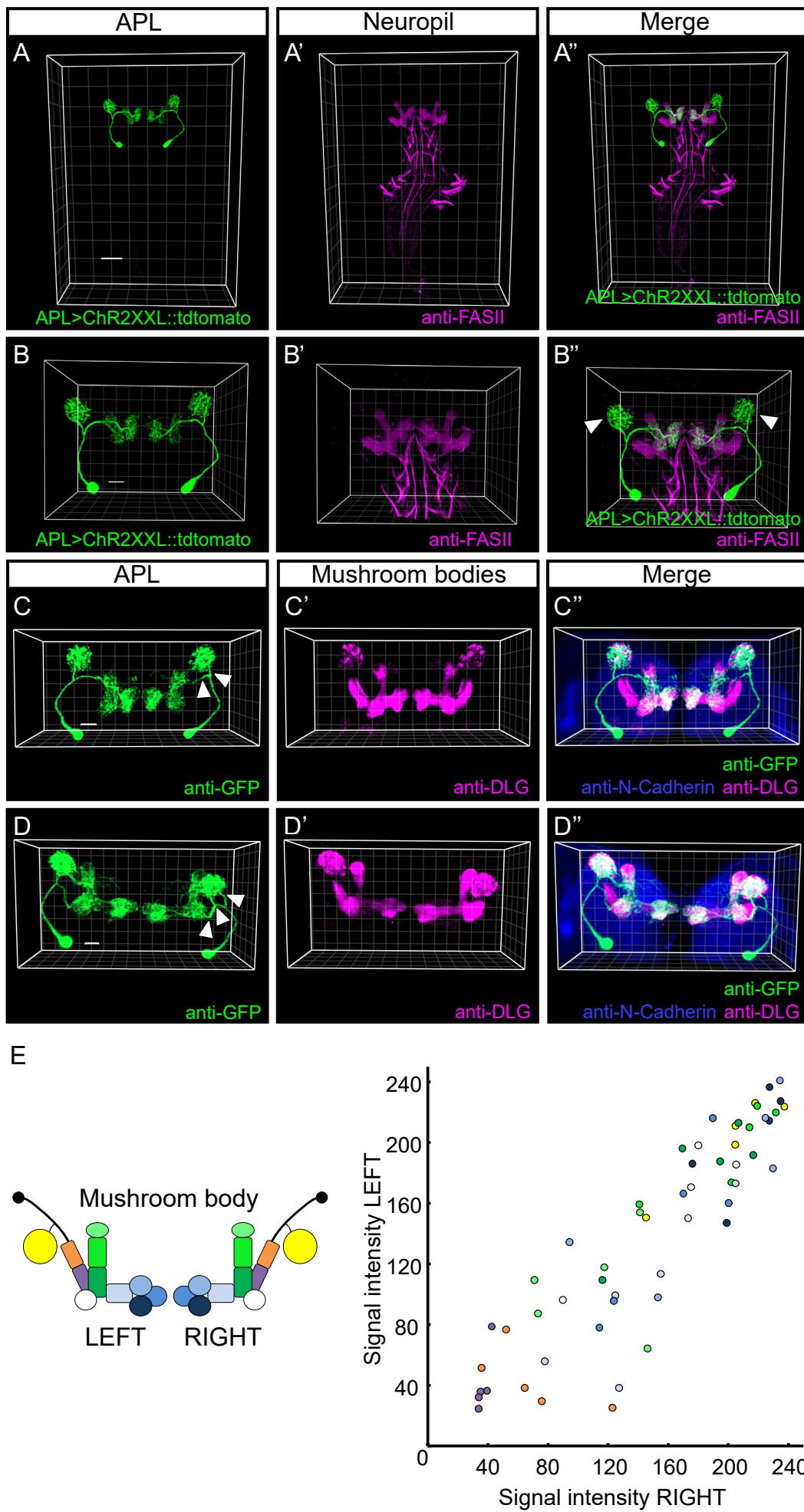


Figure 3

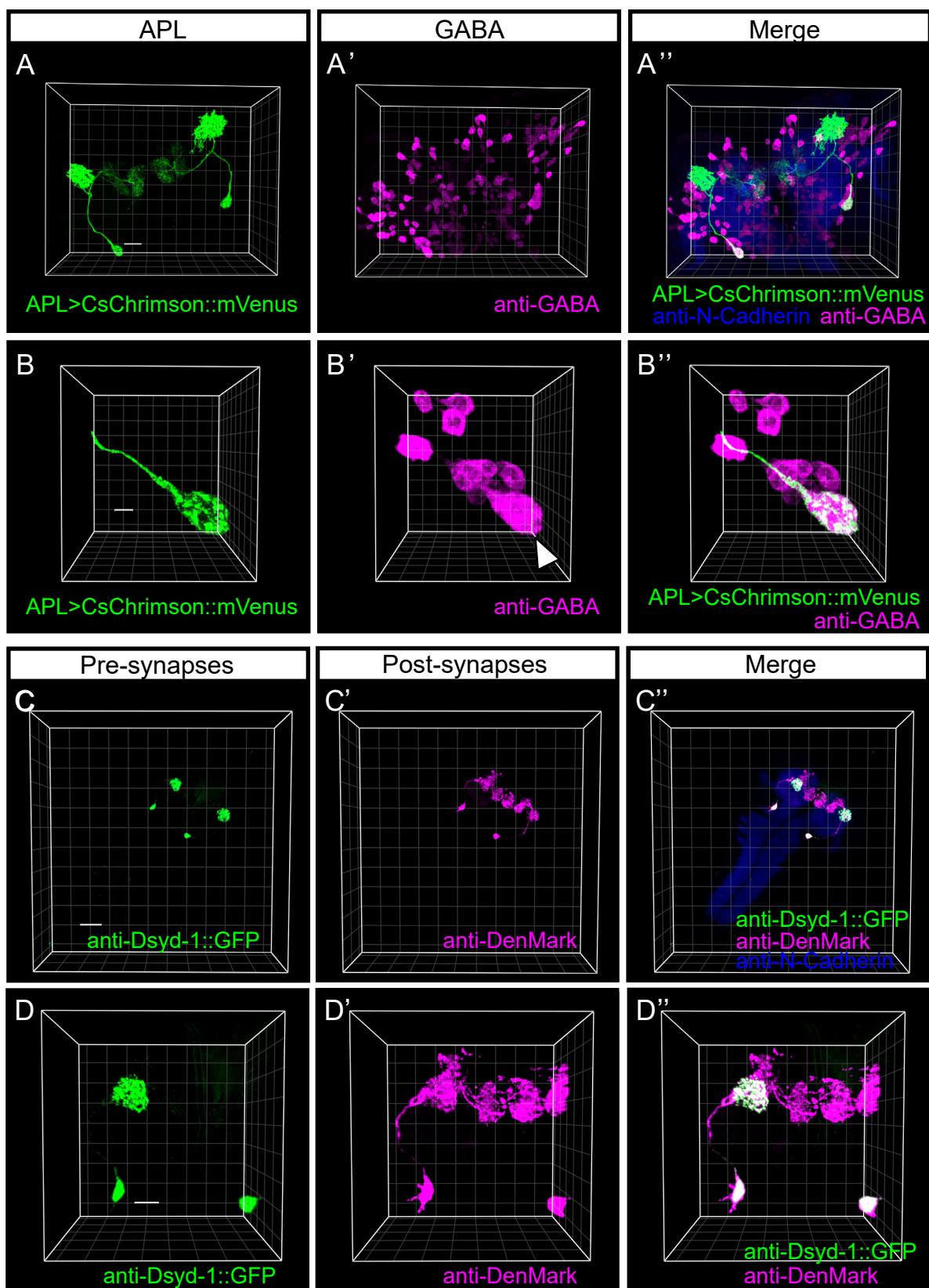
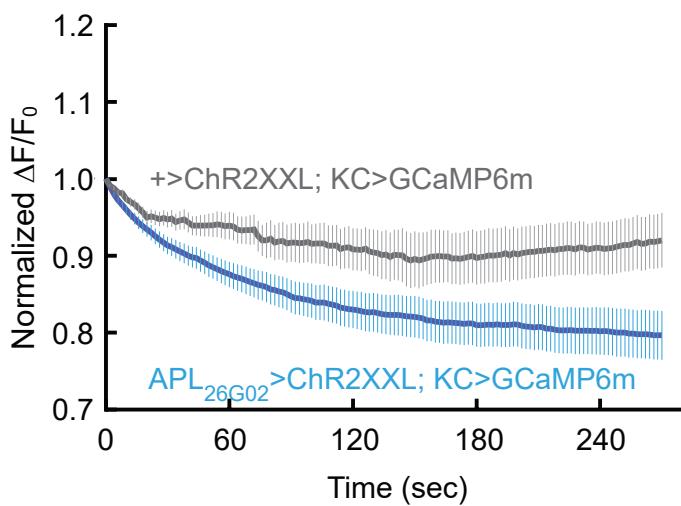
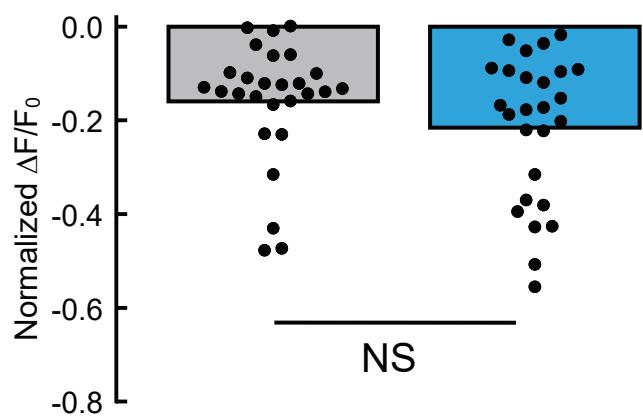
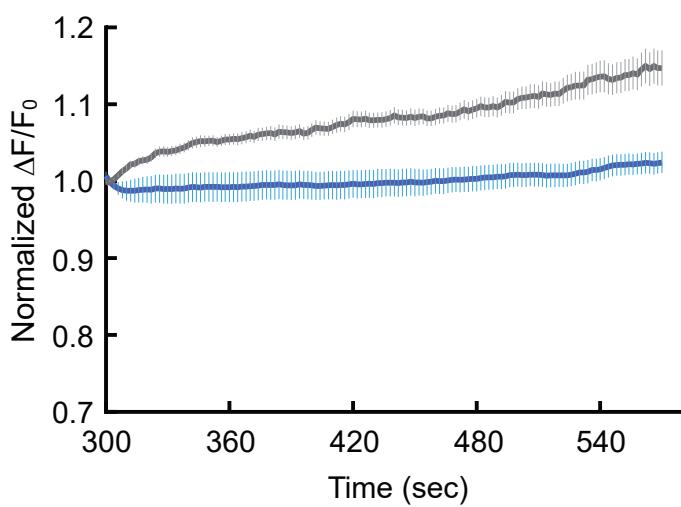
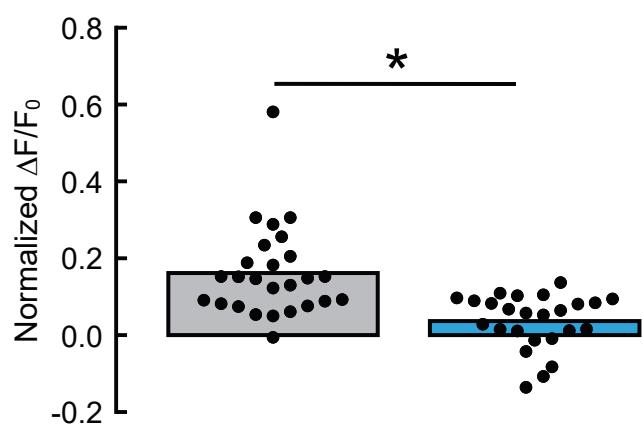
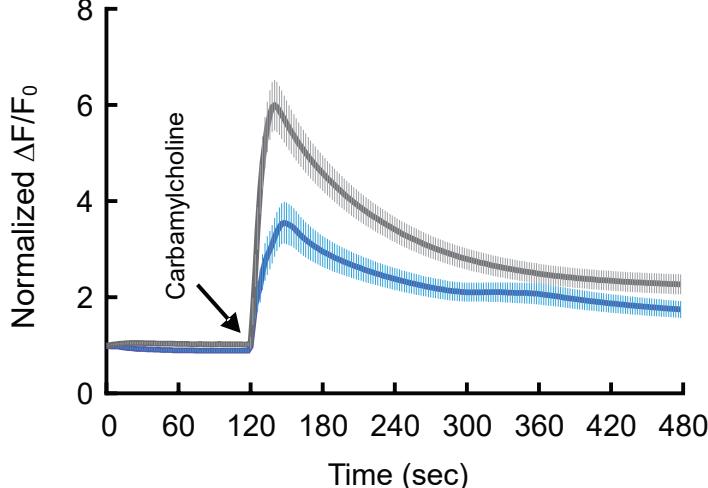




Figure 4


A


B


C

D

E

F

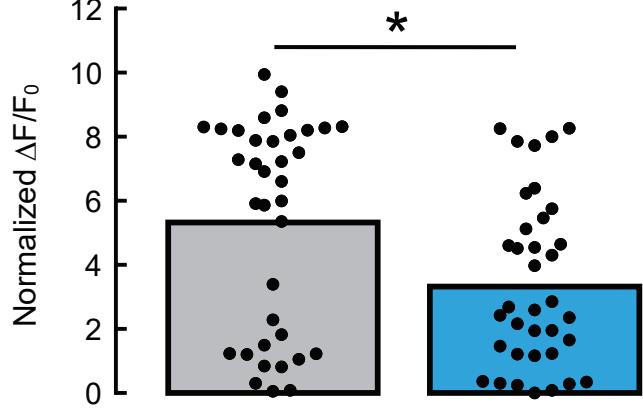


Figure 5

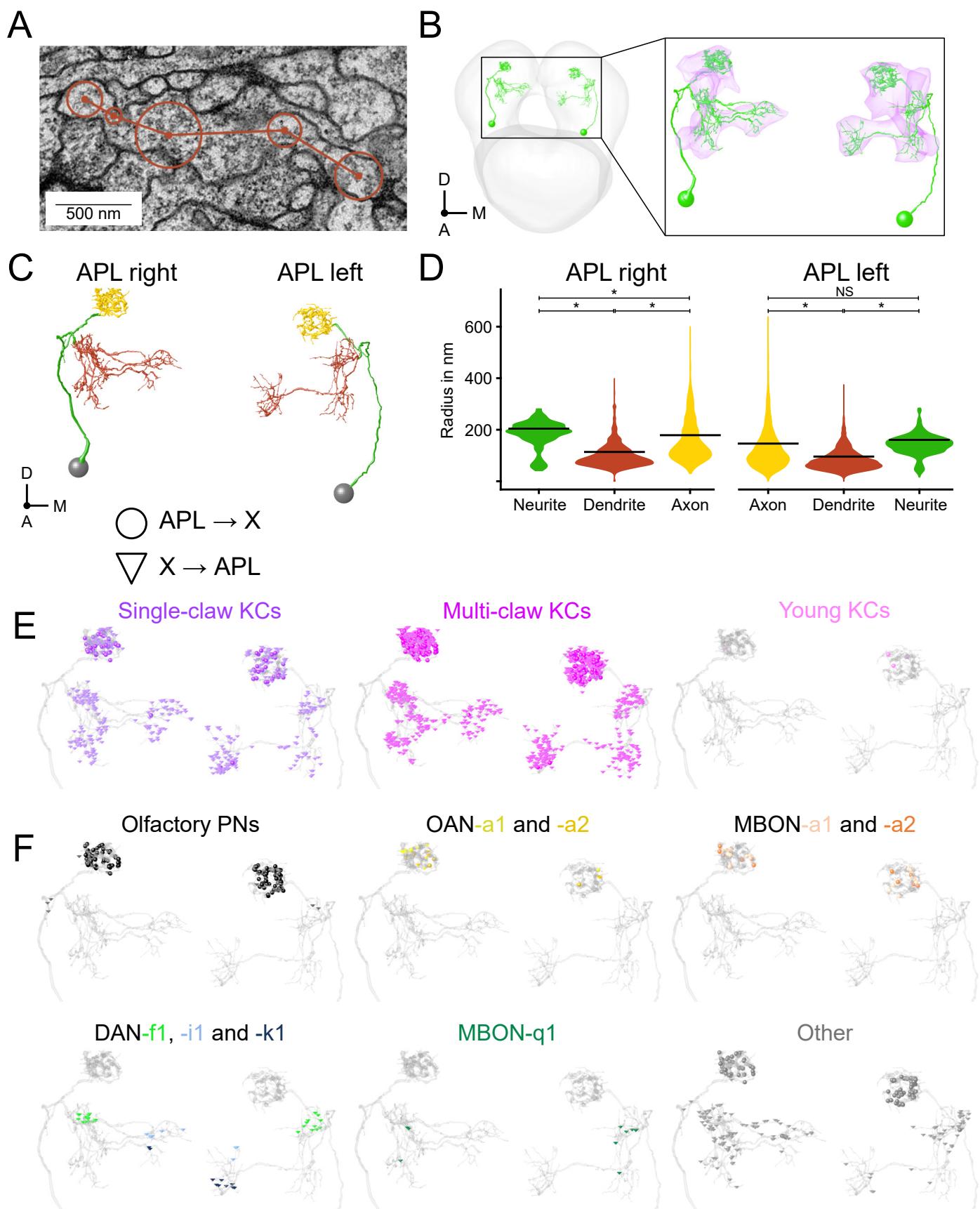


Figure 6

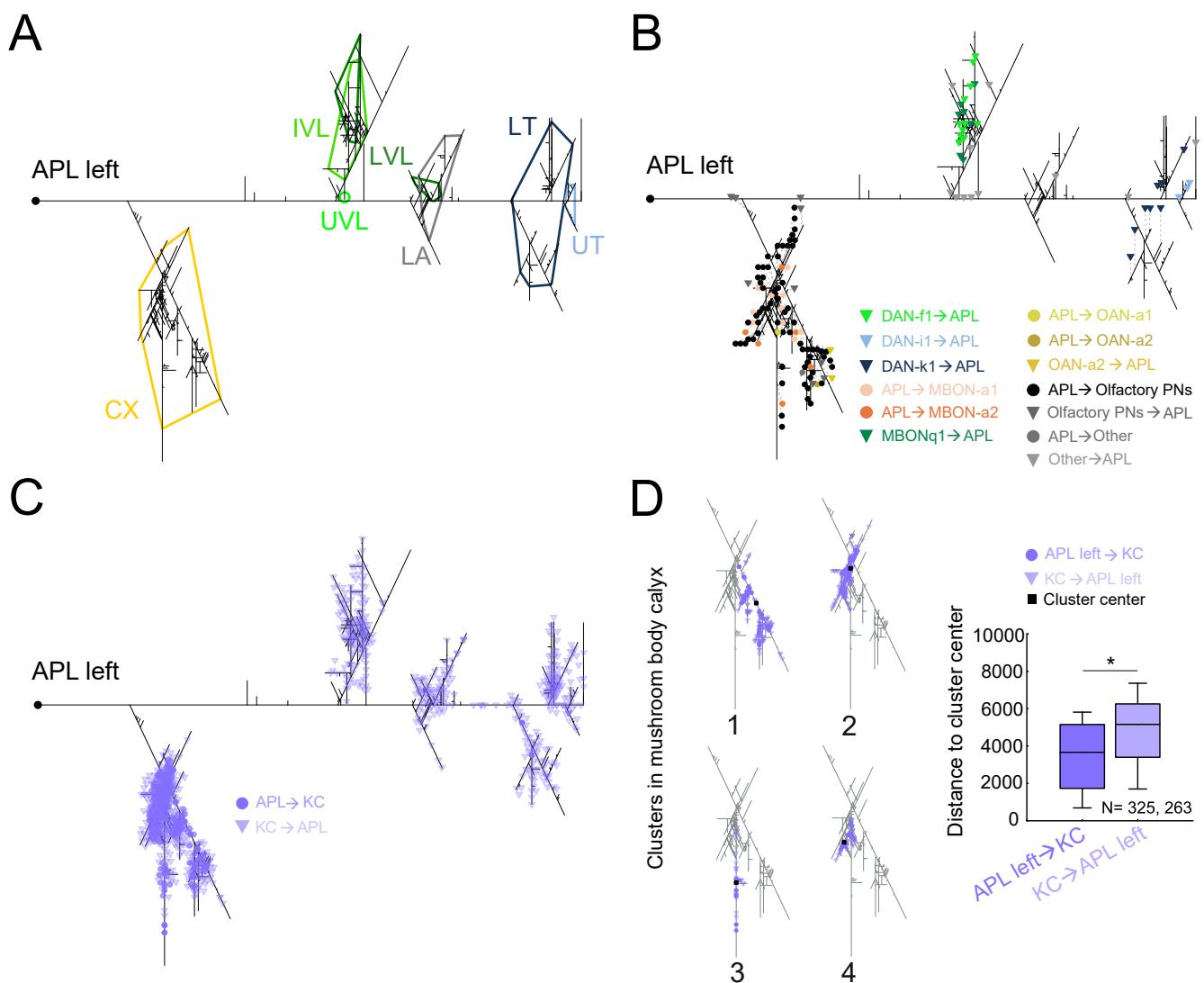


Figure 7

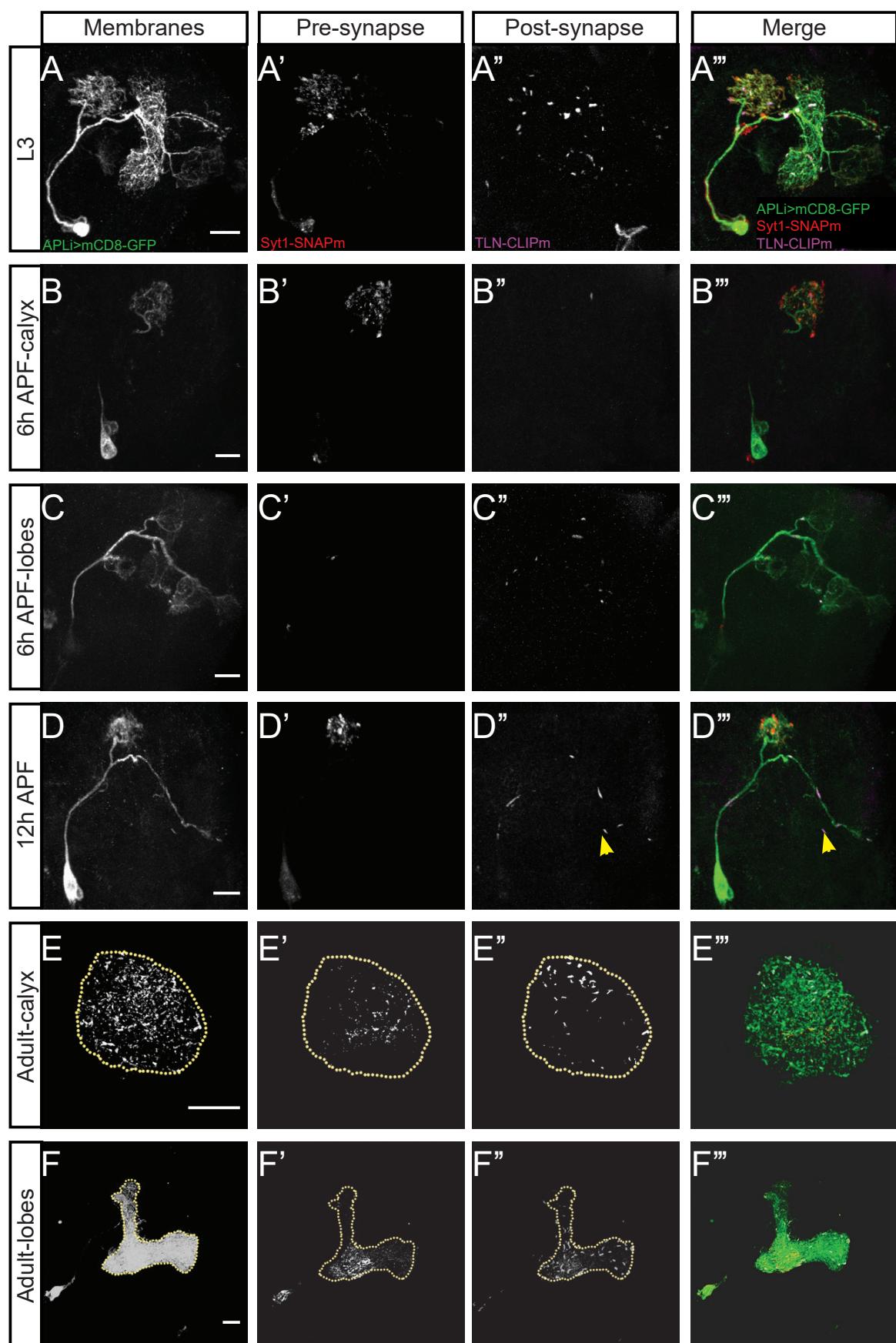


Figure 8

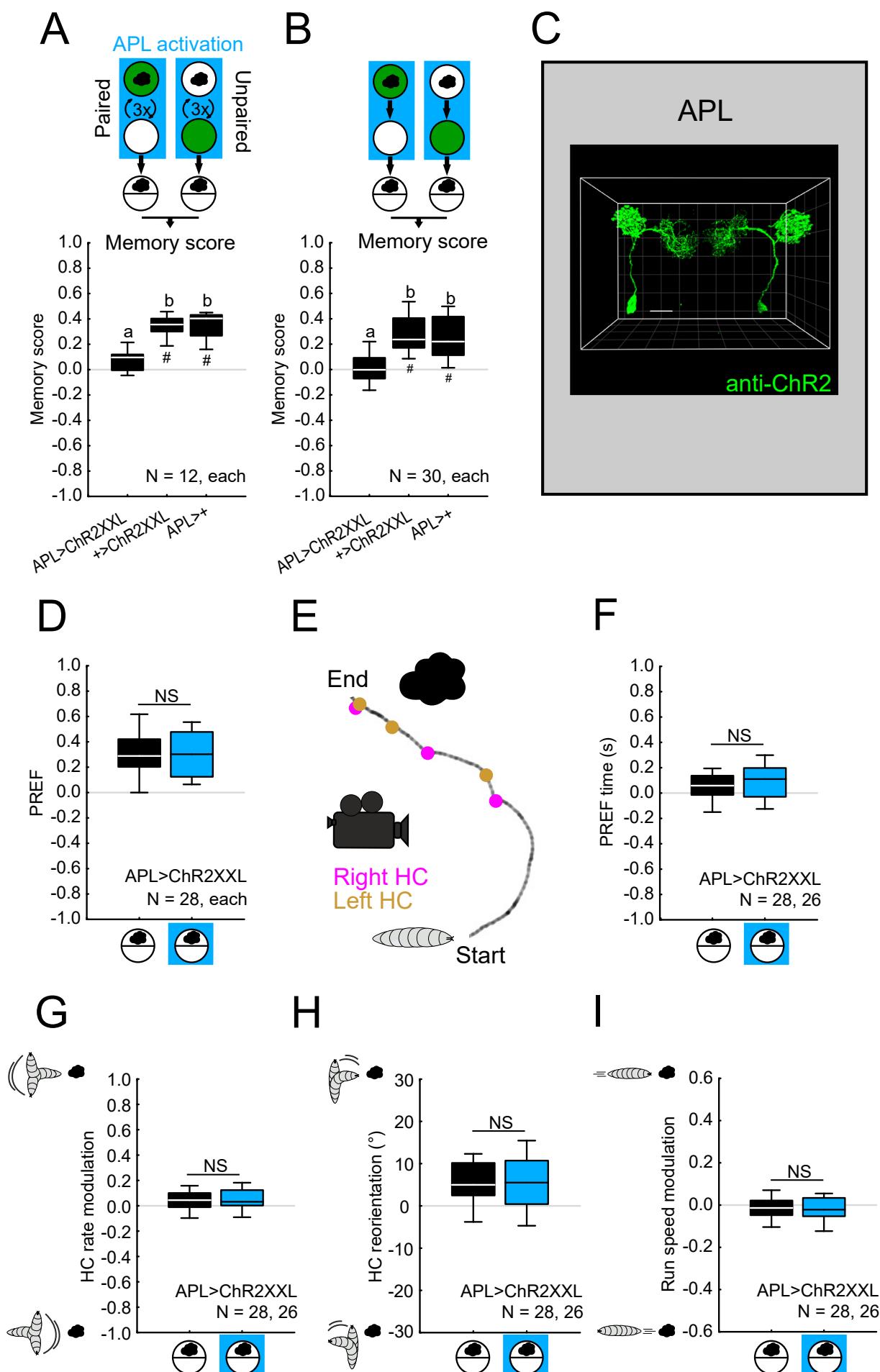


Figure 9

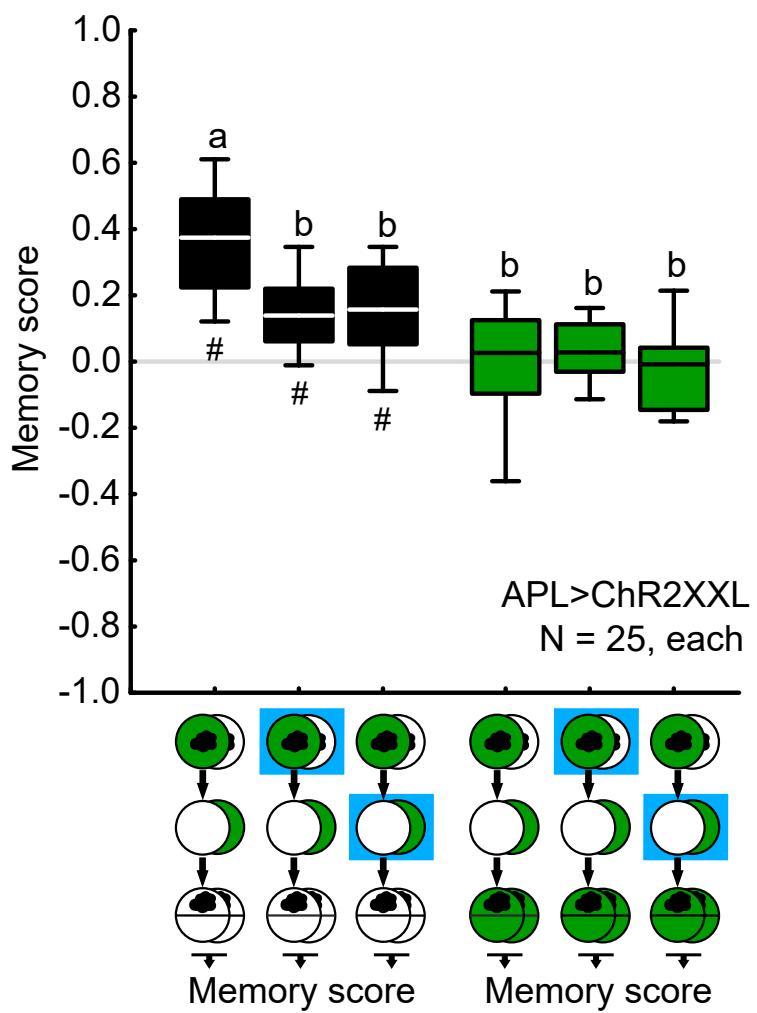


Figure 10

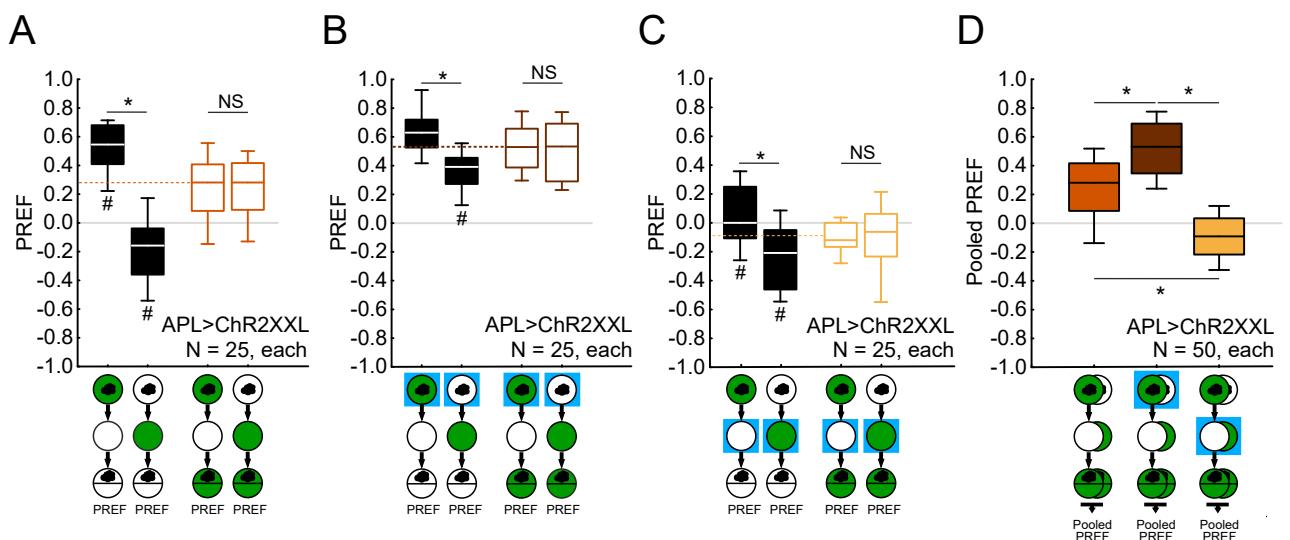


Figure 11

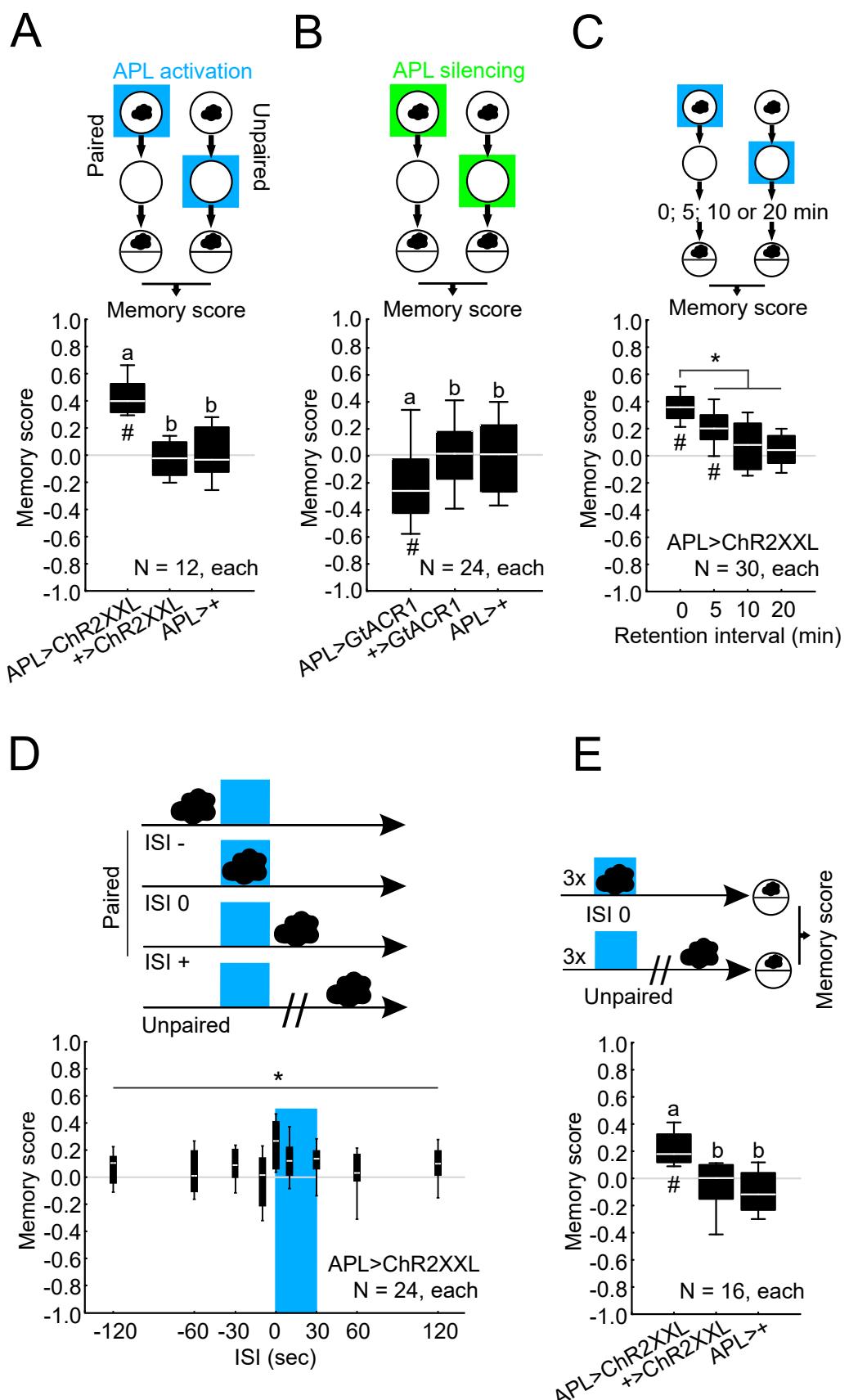


Figure 12

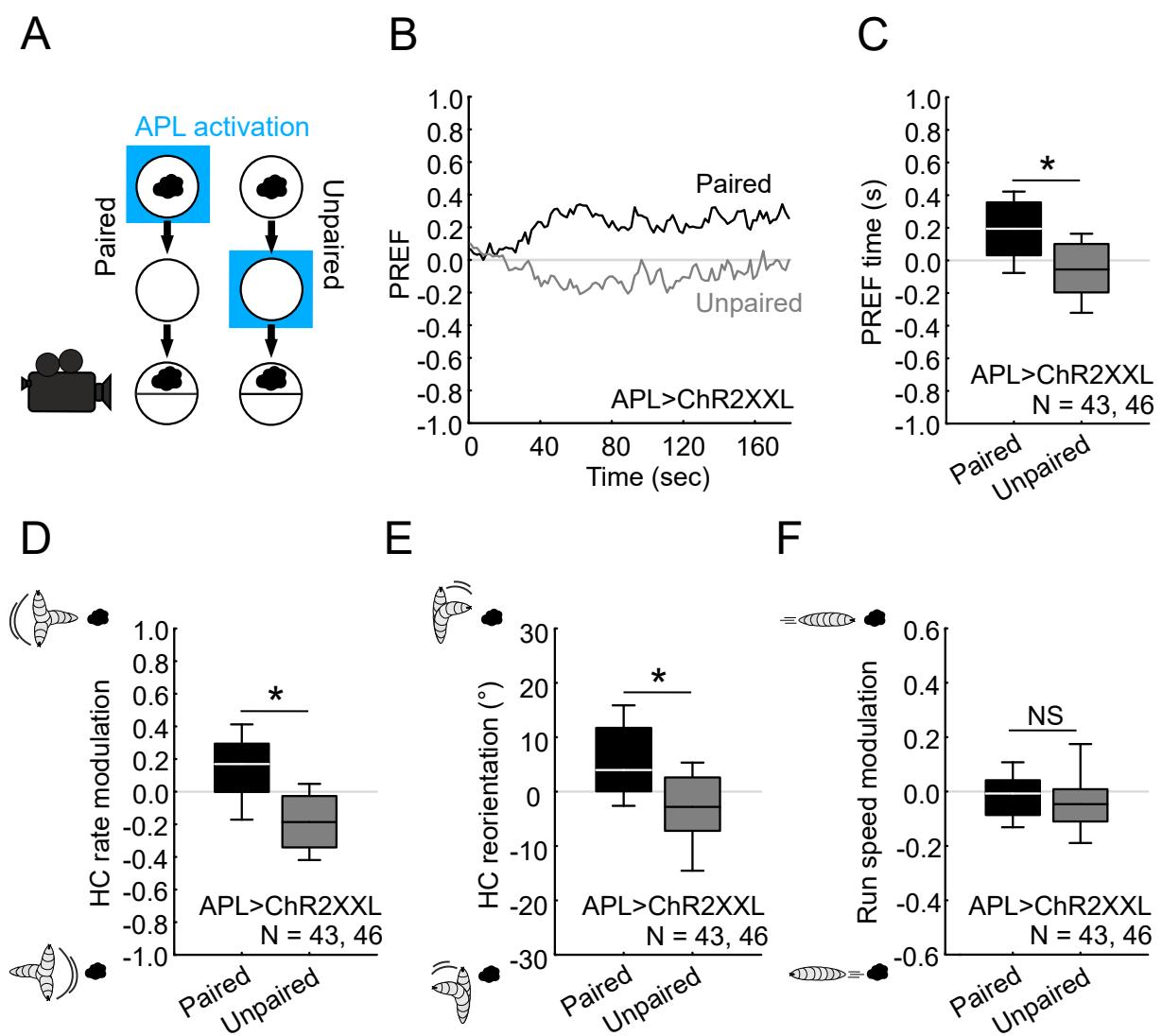


Figure 13

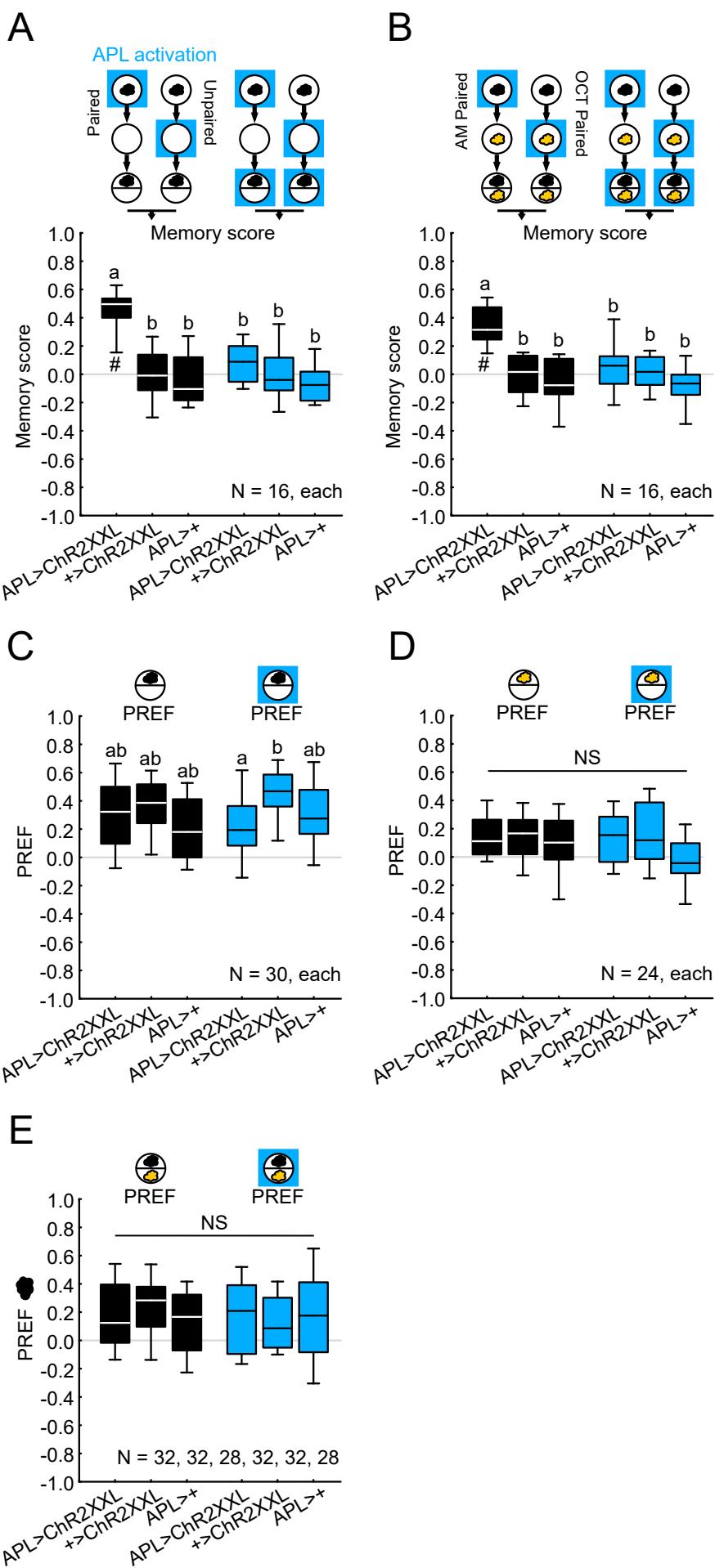


Figure 14

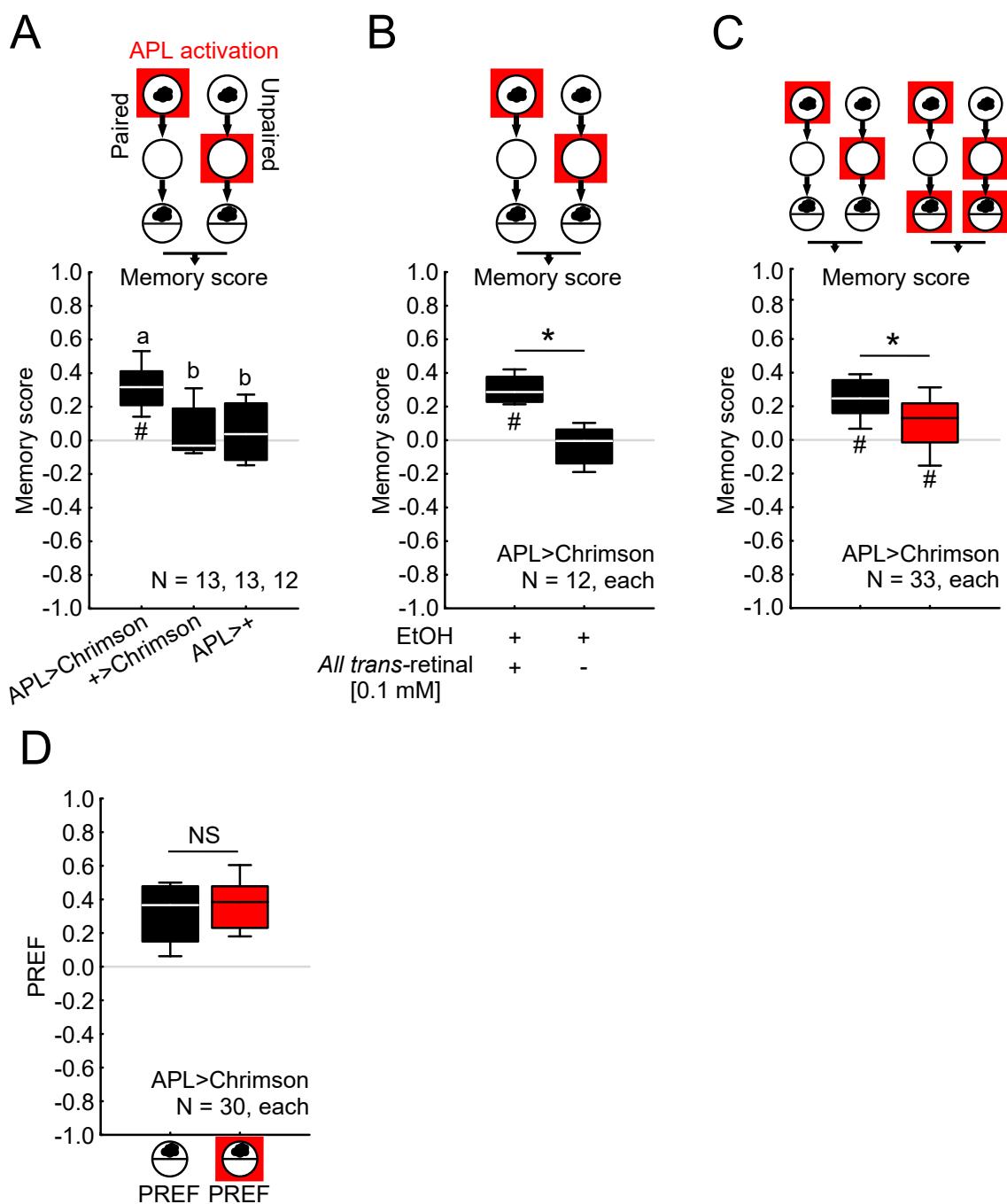


Figure 15

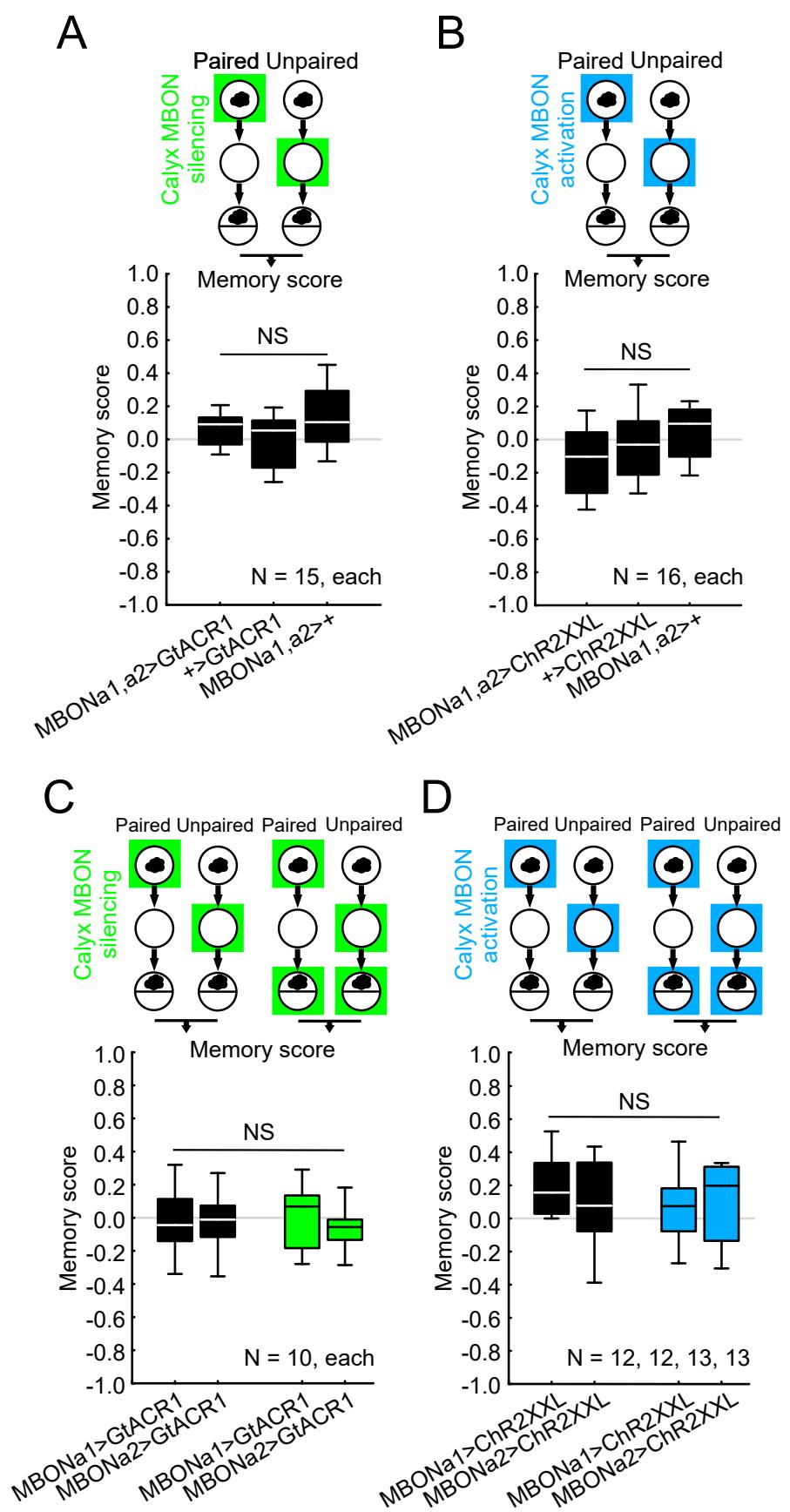


Figure 16

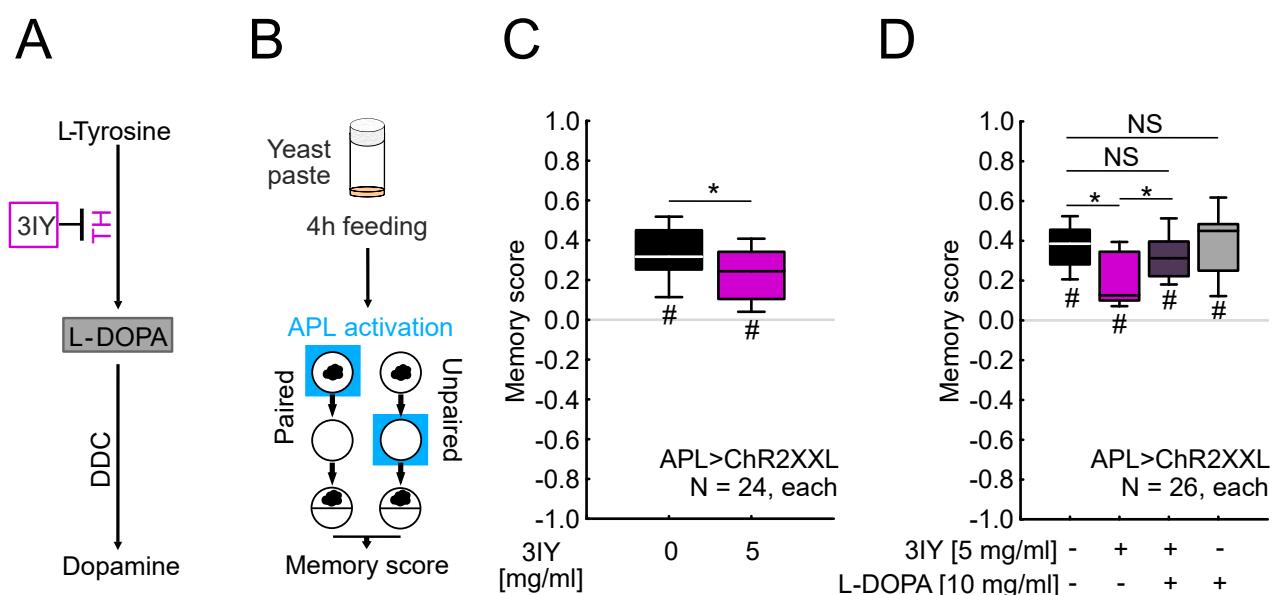


Figure 17

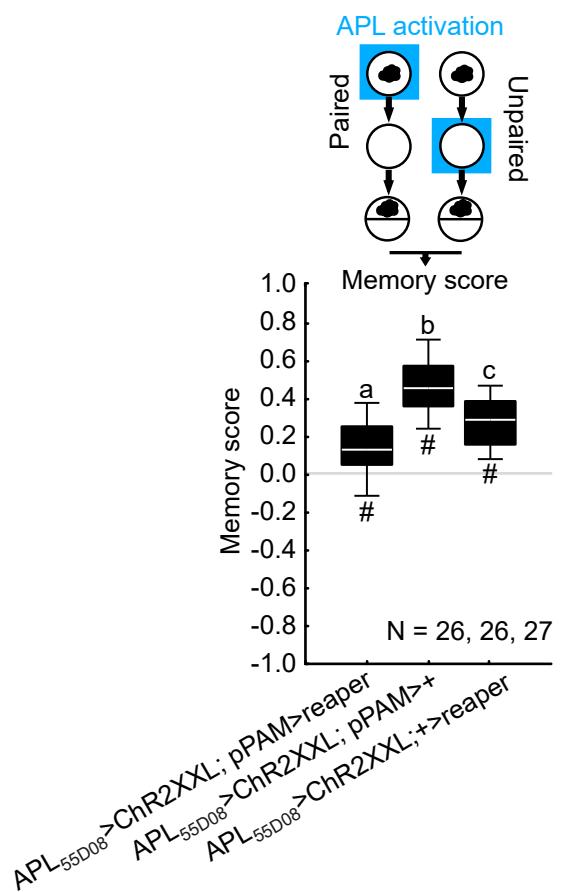


Figure 18