

A method for polyclonal antigen-specific T cell-targeted genome editing (TarGET) for adoptive cell therapy applications

Darya Palianina*¹, Raphaël B. Di Roberto*², Rocío Castellanos-Rueda^{2,3}, Fabrice Schlatter², Sai T. Reddy² and Nina Khanna^{1,4†}

¹Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland

²Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland

³Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland

⁴Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, 4031 Basel, Switzerland

*Co-equal contributors

†To whom correspondence should be addressed. Hebelstrasse 20, 4056 Basel, Switzerland; Tel: +41 61 328 73 25; Email: nina.khanna@usb.ch

1 ABSTRACT

2 Adoptive cell therapy of donor-derived, antigen-specific T cells expressing native T cell
3 receptors (TCRs) is a powerful strategy to fight viral infections in immunocompromised
4 patients. Determining the fate of T cells following patient infusion hinges on the ability
5 to track them *in vivo*. While this is possible by genetic labeling of parent cells, the
6 applicability of this approach has been limited by the non-specificity of the edited T
7 cells.

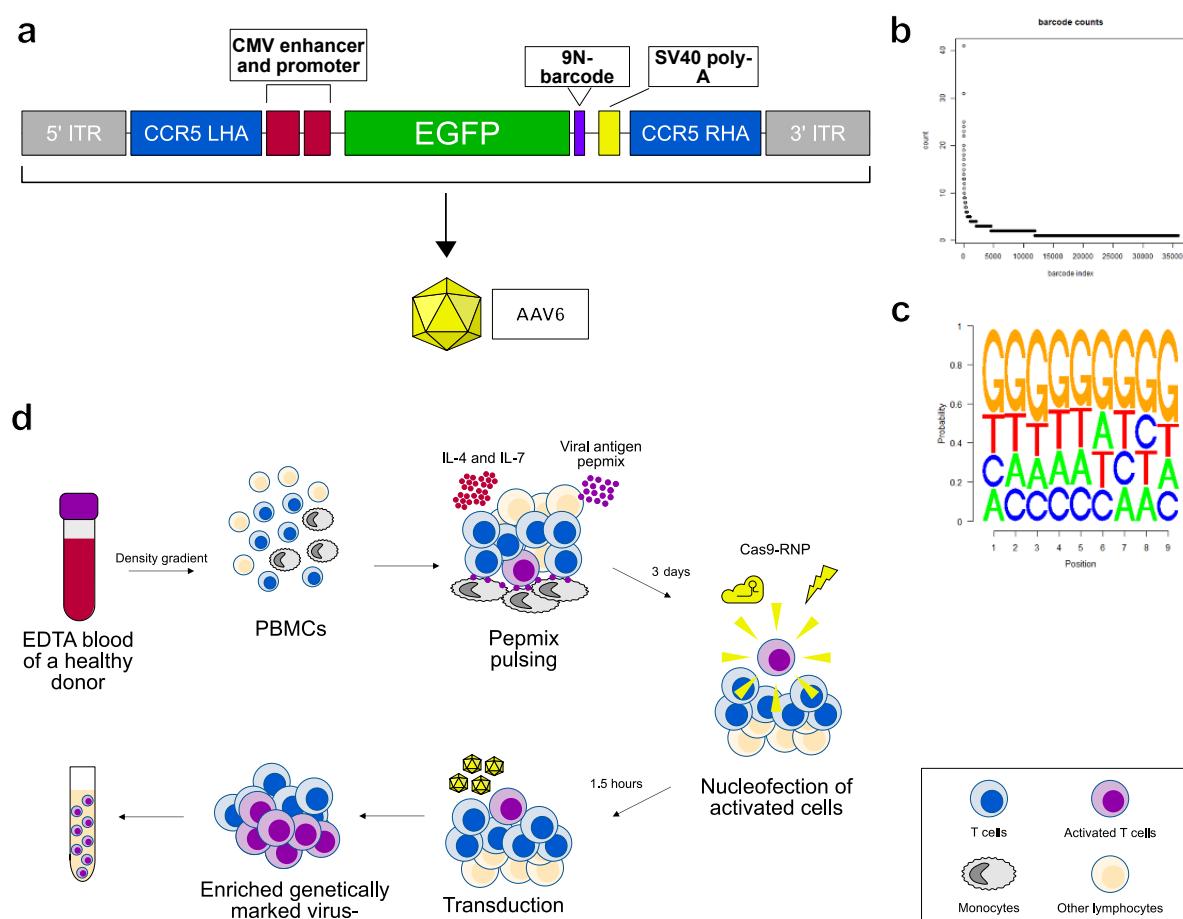
8 Here, we devised a method for CRISPR-targeted genome integration of a barcoded
9 gene into Epstein-Barr virus-antigen-stimulated T cells and demonstrated its use for
10 exclusively identifying expanded virus-specific cell lineages. Our method facilitated the
11 enrichment of antigen-specific T cells, which then mediated improved cytotoxicity
12 against EBV-transformed target cells. Single-cell and deep sequencing for lineage
13 tracing revealed the expansion profile of specific T cell clones and their corresponding
14 gene expression signature. This method has the potential to enhance the traceability
15 and the monitoring capabilities during immunotherapeutic T cell regimens.

16
17 **INTRODUCTION**

18 Adoptive cell transfer of donor-derived antigen-specific T cells expressing native T cell
19 receptors (TCRs) with defined specificities is an attractive immunotherapy strategy or
20 clinical indications where polyclonality is beneficial. T cell therapies against cancer
21 based on engineered TCRs or chimeric antigen receptors (CARs) typically only target
22 a single antigen, reducing their applicable scope and making them vulnerable to
23 relapses via antigen escape ². In contrast, a polyclonal and polyspecific T cell
24 population can target multiple antigens, potentially enhancing the overall effectiveness
25 of an adoptive cell therapy ^{3, 4}. The feasibility of this strategy has been demonstrated
26 with virus-specific polyclonal T cells enriched from seropositive donors via stimulation
27 with genetically-modified or Epstein-Barr virus (EBV)-transformed antigen-presenting
28 cells (e.g., lymphoblastoid cell lines, or LCLs) ⁵ or rapidly expanded from peripheral
29 blood mononuclear cells (PBMCs) using peptide pools as stimuli ^{4, 6}, (manuscript in
30 preparation). In this approach, single cell antigen specificity and phenotype
31 characterization can be assessed prior to transfer through methods such as flow
32 cytometry, ELISPOT and TCR RNA- or transcriptome-sequencing. These
33 assessments become especially important during treatment. Beyond monitoring
34 needs, the ability to identify the most therapeutically-relevant clones and phenotypes
35 is of significant interest, particularly for long term efficacy. Recently, it was shown that
36 CAR T cells can persist in patients as many as 10 years after infusion ⁷. While CAR T
37 cells are readily identifiable, non-engineered therapeutic T cells are difficult to
38 distinguish from naïve T cells. Genome-based lineage tracing of adoptively transferred
39 lymphocytes has been proposed for facilitating follow-up studies ^{8, 9}. For example, LCL-
40 stimulated EBV-specific cells transduced with the *neo*-containing G1Na vector could
41 be traced up to 9 years after adoptive transfer ^{10, 11}. However, the use of retroviral
42 vectors is associated with safety risks ¹² due to the largely random nature of vector
43 integration into the genome. Targeted gene editing by CRISPR/Cas9 is a superior
44 approach and has been successfully used to knock out genes connected to exhaustion
45 and checkpoint inhibition (e.g., PD-1) ¹³ or resist administered immunosuppressants
46 (e.g., tacrolimus) ¹⁴. However, this approach has limitations, particularly for integrating
47 a gene of interest, known as homology-directed repair (HDR). HDR is cell-cycle
48 dependent and restricted to actively dividing cells ¹⁵. To date, CRISPR-based HDR
49 approaches in T cells have relied on strong and nonspecific activation through anti-
50 CD3 antibodies or coated beads. This approach is not compatible with a polyclonal T
51 cell therapy where only target-specific cells are desired.

52 Here, we describe a novel approach for targeted CRISPR/Cas9-based genome editing
53 and lineage tracing of virus-specific T cells. Notably, our approach combines
54 autologous peptide presentation for T cell stimulation and editing, as well as the use
55 of a barcoded GFP cassette library to enable the detailed characterization of clonal
56 expansion. Using antigen-presenting cells and T cells directly from donor-derived
57 PBMCs we generated a pool of uniquely barcoded EBV-specific T cells. By leveraging
58 the cell cycle dependence of HDR, we used GFP integration as a marker of EBV
59 specificity for enrichment by fluorescence-activated sorting (FACS). Sorted GFP-
60 positive populations were devoid of unreactive cells as shown by single-cell RNA
61 sequencing. This high purity resulted in an increased EBV-specificity and cytotoxicity
62 against target cells (EBV-LCLs). Our method has a range of scientific and clinical
63 applications: e.g., the possibility for sophisticated follow up after adoptive transfer on a
64 single cell level, lineage tracing, the specific integration of therapy-enhancing genes
65 such as a safety switch ¹⁶ or cytokines ¹⁷.

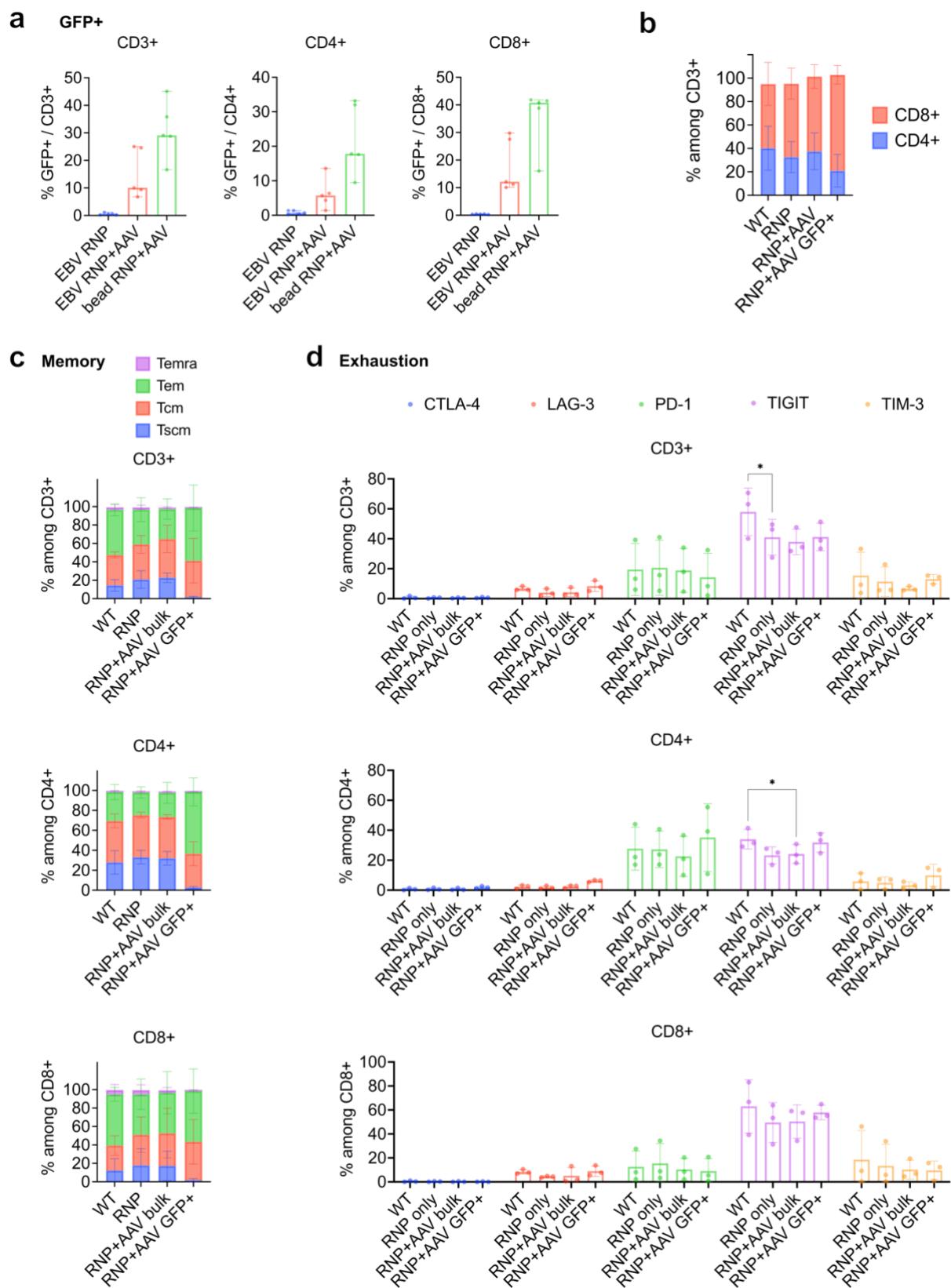
66


67 **RESULTS**

68 Library design and peptide-based T cell expansion

69 In order to fluorescently label and barcode reactive T cells in a single step, we designed
70 an AAV vector encoding 1) inverted terminal repeats (ITRs); 2) homology arms for
71 targeted insertion into the CCR5 safe harbor locus ¹⁸; 3) the cytomegalovirus (CMV)
72 constitutive promoter; 4) the GFP open reading frame (ORF) ; and 5) a 9-nucleotide
73 barcode (Fig. 1a). Although the diversity of our library could theoretically encompass
74 262 144 unique barcodes, we restricted its size to 50000 colony-forming units.
75 Sequencing of this cloned library identified 36030 unique barcodes (Fig. 1b) and no
76 major bias (Fig. 1c). The repair template library was packaged into AAV6 capsid
77 commercially and subsequently used for HDR following transfection.

78 To expand EBV-specific T cells from human PBMCs, we adapted an established
79 protocol for rapid expansion of virus-specific cytotoxic T cells (CTLs) ¹⁹ and used the
80 PepTivator EBV Consensus peptide pool as stimulus for display by native monocytes
81 ⁴. This mixture covers 41 lytic and latent EBV antigens. It was previously shown that
82 HDR is generally restricted to the S/G2 phases of the cell ²⁰. Thus, proliferative
83 activated T cells will preferentially undergo HDR following genome editing. We
84 hypothesized that a population of pepmix-activated virus-specific T cells could be
85 selected on the basis of successful HDR editing. To identify the optimal time-point for


86 gene editing, we characterized the T cell proliferation and activation profiles of PBMCs
 87 from two healthy EBV seropositive donors with whole-cell staining and intracellular
 88 cytokine staining (ICC) every second day following EBV pepmix re-stimulation. No
 89 proliferation was observed among bulk T cells (Supplemental Fig. 1a) and EBV-
 90 responsive T cells (Supplemental Fig. 1b) by day 3, while daughter cells were present
 91 at day 5 and an abundant fraction of these were EBV-specific T cells. This lag between
 92 stimulation and expansion provided us with an opportune window for transfection. By
 93 transfecting prior to exponential cell expansion, we aimed to edit as many parent cells
 94 as possible. As such, we opted to transfect our barcoded library during this lag time,
 95 i.e., on day 3.

96
 97 **Fig. 1: Library cloning and genome editing procedure.** **a**, Library vector and repair template DNA
 98 design. Next generation sequencing (NGS) library analysis: **b**, sequencing visualization and **c**,
 99 sequence logo plots of the cloned library; **d**, Schematic of the cell culture and gene editing procedures.
 100 ITR – inverted terminal repeat, LHA and RHA – left and right homology arms, respectively; CCR5 - C-C
 101 chemokine receptor type 5, CMV – cytomegalovirus, SV40 polyA – simian vacuolating virus 40
 102 polyadenylation signal, AAV6 – adeno-associated virus serotype 6, EDTA - ethylenediaminetetraacetic
 103 acid, PBMCs – peripheral blood mononuclear cells; RNP – ribonuclear protein.

105 Efficient transduction of peptide-stimulated T cells

106 In order to induce the genomic integration of a library in EBV-specific T cells, we
107 devised the following strategy (Figure 1d). Following PBMC isolation from a healthy
108 donor, cells were pulsed with EBV-pepmix or stimulated with anti-CD3/CD28
109 dynabeads in the presence of IL-4/IL-7. On day 3, cells were transfected with
110 CRISPR/Cas9 ribonucleoprotein (RNP) and transduced with AAV6 particles carrying
111 the barcoded GFP library. An RNP-only sample was included to serve as an HDR-
112 negative control. On day 10, we analyzed cell type counts as well as GFP positivity.
113 All samples including AAV-transduced were highly CD3+-enriched, confirming the
114 efficiency of the pepmix and cytokines conditions for T cell enrichment (Supplemental
115 Fig. 2). Cells transduced with the library showed GFP expression in both pepmix-
116 stimulated and CD3/CD28 dynabeads-stimulated cells (Fig. 2a). Editing efficiency was
117 donor-specific, ranging from 6.8% up to 25.0% for pepmix-stimulated cells and from
118 16.6% to 45.1% for bead-stimulated ones. For pepmix-stimulated product, we
119 observed a higher proportion of GFP-positive T cells within the CD8+ population
120 (median 12.5%) compared to those within the CD4+ one (median 5.7%), and we
121 observed a similar trend for bead-activated T cells (medians 40.8% for CD8+ and
122 17.8% for CD4+). We also saw enrichment of CD8+ T cells in the AAV-transduced
123 GFP-positive EBV-activated T cells compared to the bulk transduced ones (pepmix-
124 stimulated but untransfected) product ($p<0.05$, 2-way ANOVA) (Fig. 2b).

125

126

127 **Fig. 2: Transduction efficiencies and phenotype differences between expanded cells.** a,

128 Transduction efficiencies for pepmix-stimulated vs. anti-CD3/CD28 dynabeads-stimulated T cells for

129 bulk CD3+, CD4+ and CD8+ cells, respectively; n=5, shown medians with range. b, CD4 vs. CD8

130 proportions within different populations of expanded pepmix-stimulated T cells; n=5, shown means with

131 SD. **c**, memory phenotypes and **d**, exhaustion marker expression of expanded pepmix-stimulated T
132 cells among WT, RNP-only transfected and transduced bulk CD3+, CD4+ and CD8+ cells; n=3. WT
133 stands for wild type. Asterisk represent statistically significant differences (p<0.05, 2-way ANOVA).
134 ANOVA – analysis of variance, EBV – Epstein-Barr virus, WT – wild type, RNP – ribonucleoprotein, AAV
135 – adeno-associated virus; Temra – terminally differentiated, Tem – effector memory, Tcm – central
136 memory, Tscm – stem cell memory T cells.

137

138 Next, we analyzed the memory phenotype of the generated EBV-CTLs (Fig. 2c). While
139 untransfected samples showed an even mixture of stem cell memory (T_{SCM}), central
140 memory (T_{CM}) and effector memory cells (T_{EM}) with only a small minority of terminally
141 differentiated (T_{EMRA}) cells, we observed a depletion of T_{SCM} in GFP-positive T cells
142 which comprised almost exclusively T_{CM} and T_{EM}. This effect could be explained by
143 low initial number of early-differentiated (T_{SCM} -like) EBV-CTLs in PBMCs due to EBV
144 re-activation ²¹. Alternatively, early differentiated EBV-specific T cells might not be
145 activated enough to enable HDR. Generally, CD4+ cells had a less differentiated
146 phenotype compared to CD8+ in all conditions except among those GFP+-gated.
147 Interestingly, among CD4+ GFP+ cells, there was a significantly higher proportion of
148 T_{EM} compared to bulk transduced cells (p<0.05, 2way ANOVA).

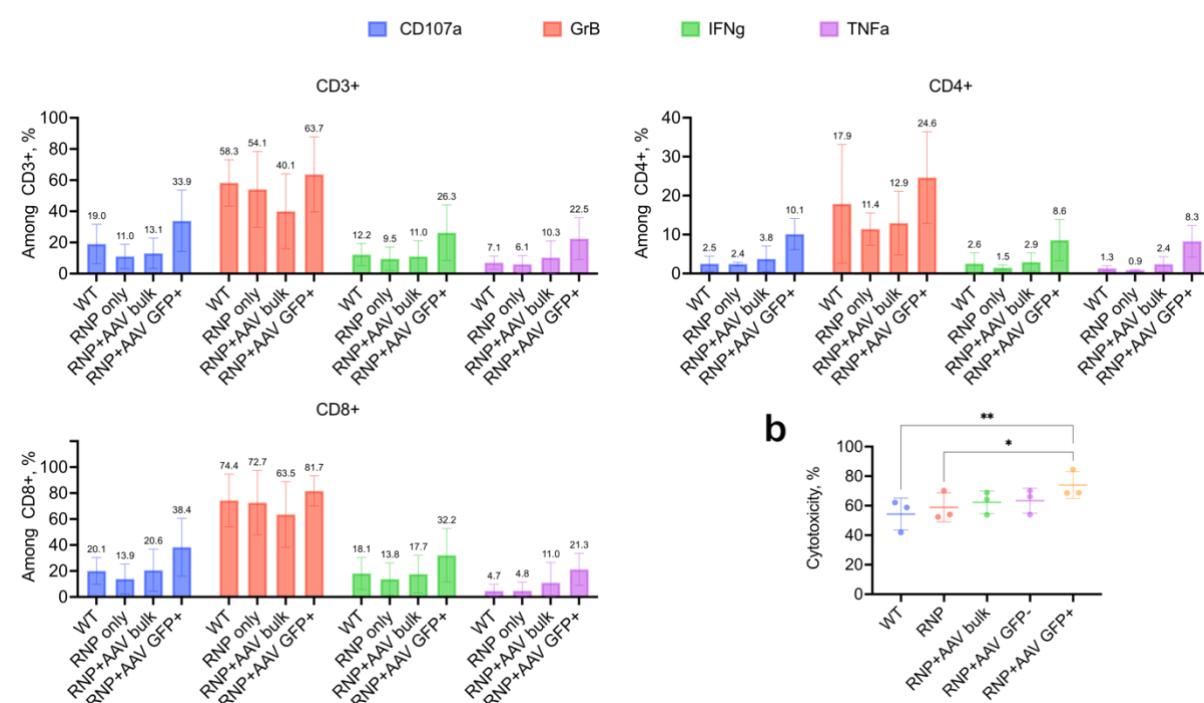
149 We then assessed the expression of several exhaustion markers: CTLA-4, LAG-3, PD-
150 1, TIGIT and TIM-3 (Fig. 2d). CTLA-4 was almost absent in all conditions, LAG-3 and
151 TIM-3 were expressed at very moderate levels, slightly more among CD8+ cells
152 compared to CD4+. PD-1 was overall also low but more present in CD4+ populations
153 decreasing in AAV-transduced cells. On the contrary, TIGIT was expressed at high
154 levels in CD8+ cells but less abundant in CD4+, decreasing further with both AAV
155 transduction and RNP-only transfection. The decrease of TIGIT in transfected cells
156 could be due to the death of exhausted cells following the transfection procedure.
157 Together, these results indicate that unique expansion and genome editing protocol
158 efficiently integrated GFP in a population of activated T cells and did not markedly
159 interfere with cell phenotype.

160

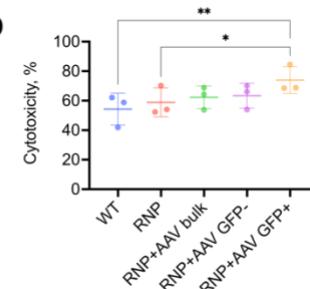
161

162 **HDR-based sorting enriches for EBV-CTLs and improves their anti-EBV
163 response**

164 In order to measure the EBV specificity and activation potential of the transduced bulk
165 and GFP-positive cells, we re-stimulated expanded cells with pepmix and analyzed the


166 expression of key cytotoxic T cell markers such as CD107a (LAMP-1), Granzyme B,
167 IFN γ and TNF α using flow cytometry. While RNP-only transfected and bulk AAV-
168 transduced cells did not show elevated cytotoxic marker expression compared to
169 untransfected, within the GFP-positive T cell populations we saw elevated production
170 of most markers (CD107a, IFN γ and TNF α) corresponding to at least a 2-fold increase
171 in EBV specificity for CD8+ cells and 4-fold for CD4+ cells compared to wild type (Fig.
172 3a).

173 In order to assess target-specific functionality, we sorted GFP-positive and GFP-
174 negative fractions of transduced EBV-CTLs and assessed their *in vitro* cytotoxicity
175 against autologous EBV-transformed LCL and compared it to that of the other samples
176 (Fig. 3b). Although we observed a slight increase of cytotoxicity in the RNP-only
177 samples as well as the GFP-negative sorted fractions, this was less significant than
178 that of the sorted GFP-positive cells highlighting the efficacy-enhancing potential of
179 HDR-based selection.


180 These findings show that the designed HDR-based selection of EBV-CTLs leads to an
181 increased antigen specificity and target-specific toxicity.

182

a Specificity ad Cytotoxicity

b

183

184

185 **Fig. 3: Specificity and functionality of pepmix-stimulated and expanded transduced T cells. a,**
186 Production of cytotoxicity markers and cytokines (CD107a, Granzyme B, IFN γ and TNF α) among bulk
187 CD3+, CD4+ and CD8+ populations in response to EBV-pepmix-restimulation, n=3, means with

188 standard deviation (SD). **b**, 6-hour cytotoxicity assay against autologous EBV-transformed LCLs
189 (effector/target = 20:1), means of triplicates with SD for 3 donors, 2way ANOVA mixed effects analysis,
190 **=0.0043, *=0.0405, α =0.05. ANOVA – analysis of variance, EBV – Epstein-Barr virus, WT – wild type,
191 RNP – ribonucleoprotein, AAV – adeno-associated virus, GrB – granzyme B.

192

193 **GFP barcoding and selection provide expansion and enrichment statistics,
194 respectively**

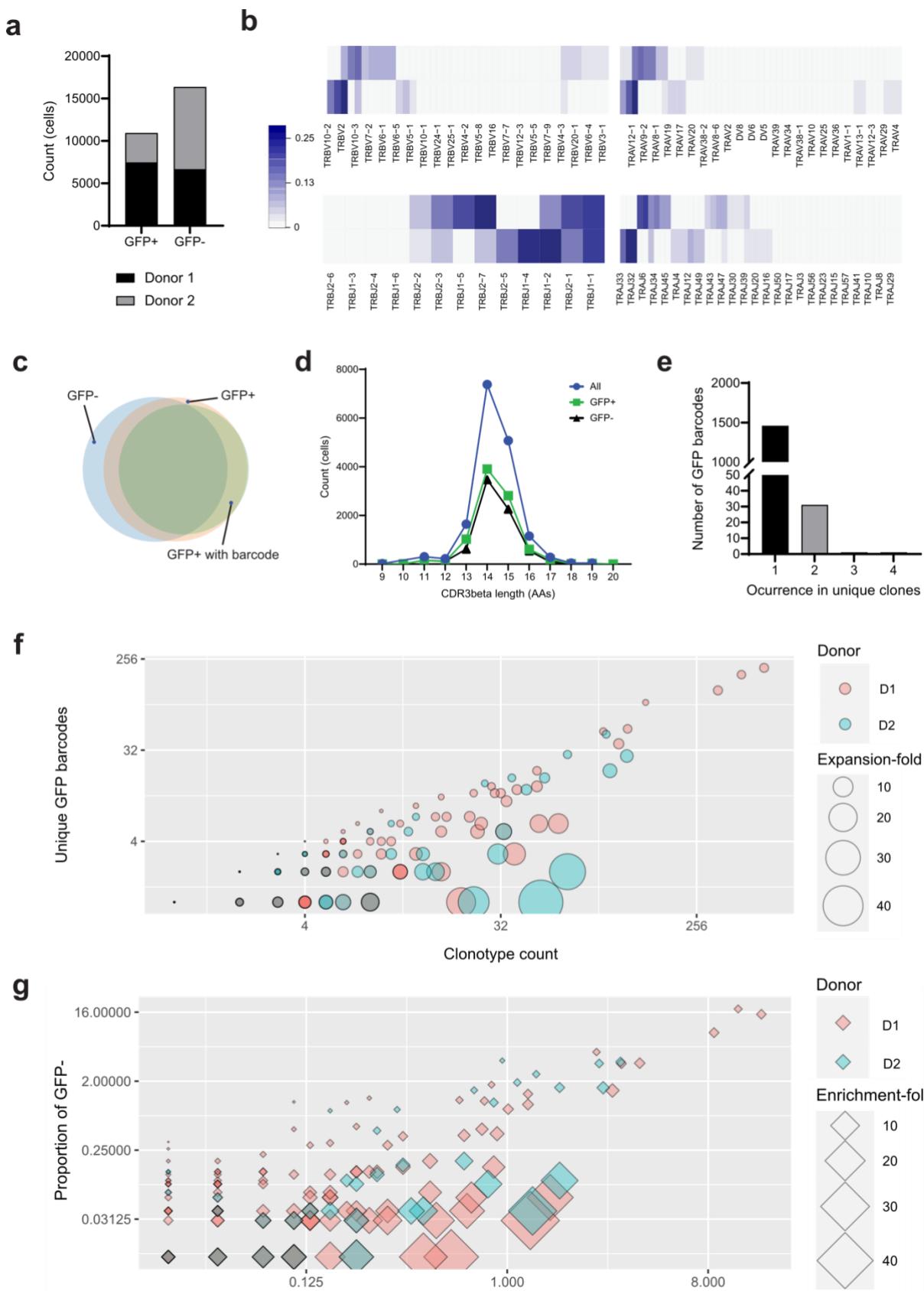
195 Ten days following peptide pulsing, we sequenced 38 908 cells across two donors and the two
196 sorting conditions (GFP-positive and GFP-negative) from which 27 283 had a properly
197 annotated TCR (Fig. 4a). Single cell sequencing provided us with three layers of data for both
198 edited and unedited T cells: 1) TCR clonal identity; 2) GFP barcode clonal identity; and 3)
199 Gene expression (transcriptome) profiles. Among all cells, 295 unique TCR clonotypes
200 appeared at least three times. One highly represented clonotype, representing 45% and 65%
201 of the GFP-positive and -negative datasets for Donor 2, respectively, was omitted for TCR
202 identity analysis as a likely indiscriminately-expanding clone. Of the remaining clonotypes,
203 none were shared between donors, while V and J gene usage diversity was also distinct (Fig.
204 4b).

205 We next compared the GFP-positive and -negative sorted samples. Clonotype overlap
206 between samples was high (Fig. 4c), while CDR3 length distribution were a close match (Fig.
207 4d, Supplemental Fig. 3a). To better distinguish between clonotypes, we investigated post-
208 GFP integration fold-expansion (cell proliferation after day 3) and fold-enrichment (selection
209 efficiency). For expansion, we performed a lineage tracing analysis through deep sequencing
210 of the GFP gene to specifically link cell and GFP barcodes. We obtained GFP barcodes for
211 44% of the sequenced GFP-positive cells, representing 1491 unique barcodes. Only a minor
212 fraction of these (2%) were associated with more than one TCR clonotype (Fig. 4e) and were
213 excluded from subsequent analyses. Using the ratio of GFP barcodes to cell barcode, we
214 calculated the mean fold-expansion of 209 individual T cell clonotypes (Fig. 4f). While the
215 highest expansion was 49-fold (with one GFP barcode), the middle 50% of clones ranged
216 between 1- and 3-fold. Interestingly clonotypes with the highest post-GFP integration fold
217 expansion did not correlate with the clonotypes that had overall the highest number of cells,
218 revealing interesting clonotype expansion dynamics.

219

220 In addition to fold-expansion, we calculated fold-enrichment for the 170 clonotypes that were
221 assigned to a GFP-barcode and had cells in both GFP-negative and -positive samples, based
222 on their enrichment across samples (Fig. 4g). Selection on this basis resulted in enrichment
223 as high as 43-fold, or in depletion as high as 12-fold. Fold-expansion and fold-enrichment

224 showed a significant correlation ($P < 0.0001$) though perhaps driven by a handful of clonotypes
225 (Supplemental Fig. 3b).


226 We submitted the beta chains' V gene, J gene and CDR3 for TCRs with barcoded GFP to
227 TCRex, a tool designed for querying TCR identity in public databases ([TCRex](#)
228 ([biodatamining.be](#))). Fourteen clones within eleven clonotypes were classified as EBV-
229 specific, three of which showed enrichment and expansion both above one (Table 1). Of these,
230 two are perfect matches by CDR3 β to dominant clones highlighted in previous work ²²⁻²⁴, while
231 clonotype 110 is a close match (Levenshtein distance of 3). EPLPQGQLTAY and
232 GLCTLVAML correspond to peptides from BMLF1 and BZLF1 lytic EBV proteins while
233 HPVGEADYFEY (EBNA1) and IVTDFSVIK (EBNA4) correspond to the latent ones. Overall,
234 we have high confidence that we identified multiple EBV-specific TCRs for which we have
235 lineage tracing data.

236

237 **Table 1: EBV-specific TCR clones within GFP-positive and barcoded dataset as**
238 **predicted by TCRex**

TRBV gene	CDR3 beta	TRBJ gene	Enrichment	Expansion	Epitope	TCRex score	
TRBV10-03	CATGTGDSNQPQHF	TRBJ01-05	0.76	2.13	EPLPQGQLTAY	0.99	
TRBV03-01	CATSTGDSNQPQHF	TRBJ01-05	1.86	1.86	EPLPQGQLTAY	0.99	
TRBV14	CASSQSPGGIQYF	TRBJ02-04	1.81	1.00	GLCTLVAML	0.99	
TRBV09	CASSARSGEELFF	TRBJ02-02	0.19	2.00	HPVGEADYFEY	0.99	
TRBV11-02	CASSWGGGSNYGYTF	TRBJ01-02	0.83	6.60	IVTDFSVIK	0.97	
TRBV10-03	CAAGTGDSNQPQHF	TRBJ01-05	0.76	2.13	EPLPQGQLTAY	0.95	
TRBV20-01	CSARDRGIGNTIYF	TRBJ01-03	1.21	1.00	GLCTLVAML	0.95	
TRBV03-01	CASATGDSNQPQHF	TRBJ01-05	1.86	1.86	EPLPQGQLTAY	0.92	
TRBV02	CASSASSGGYYNEQFF	TRBJ02-01	0.55	3.00	IVTDFSVIK	0.89	
TRBV02	CASSEYAGGYYNEQFF	TRBJ02-01	0.55	3.00	IVTDFSVIK	0.80	
TRBV07-08	CASSLGQAYEQYF	TRBJ02-07	1.65	5.10	GLCTLVAML	0.78	
TRBV02	CASTQSAGGFYNEQFF	TRBJ02-01	7.24	1.60	IVTDFSVIK	0.74	
TRBV10-03	CASGTGPDNSNQPQHF	TRBJ01-05	0.20	1.00	EPLPQGQLTAY	0.66	
239	TRBV07-06	CASSLEPGRNEKLFF	TRBJ01-04	0.62	2.30	IVTDFSVIK	0.64

240

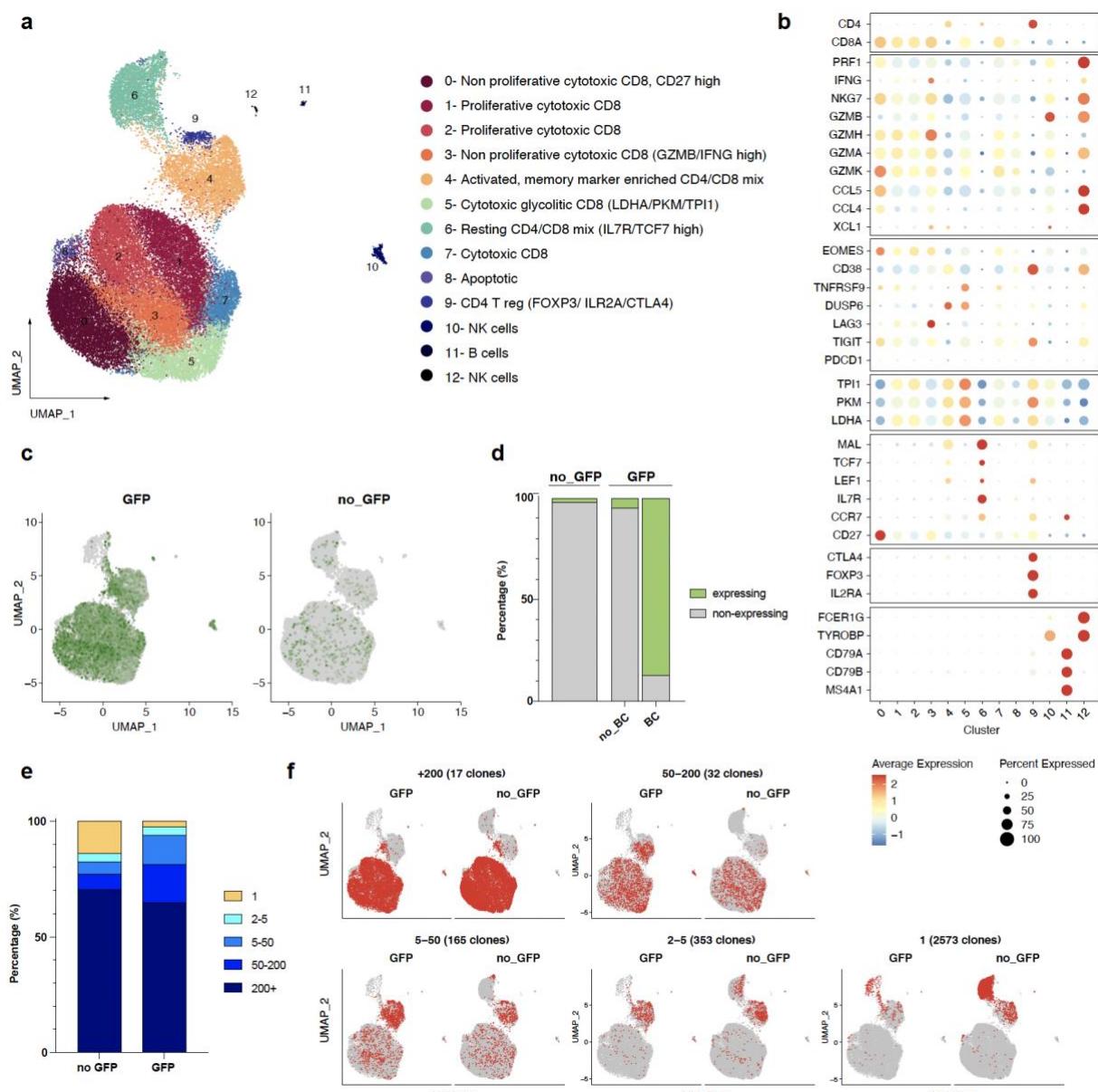
241
242 **Fig. 4: Lineage tracing and enrichment analysis of single-cell sequencing data reveals highly-**
243 **expanded and highly-enriched TCR clones. a, Sequenced cell counts and their sample and donor**
244 **origin. Each donor was used in a single expansion, genome editing, sorting and sequencing workflow.**
245 **Cells were sorted for the presence (GFP+) or absence (GFP-) of GFP fluorescence. b, Heatmaps**

246 comparing the sequenced alpha and beta TCR chains and their V- and J-gene usage for each donor.
247 Donors showed markedly different gene usage profiles. **c**, Venn diagram of the membership of TCR
248 clonotypes across GFP-positive and GFP-negative samples. The high overlap between the samples
249 enabled the downstream calculation of enrichment statistics. **d**, Distributions of the CDR3 beta lengths
250 for GFP+ and GFP- samples. The distributions do not differentiate between samples. **e**, Frequencies of
251 identical GFP barcodes found in more than one T cell clone, based on TCR identity. The vast majority
252 of GFP barcodes were associated with only a single clone, confirming that the barcode library was
253 sufficient. **f**, and **g**, Scatter plots of the fold-expansion and fold-enrichment respectively for individual
254 clonotypes. Fold-expansion was calculated from the ratio of GFP barcodes to clonotype count. Fold-
255 enrichment was calculated from the ratio of proportions within libraries, from GFP- to GFP+. Grey data
256 points show perfect overlap across donors. Both statistics enable clonotype comparisons.

257

258 Single-cell transcriptome sequencing confirms the enrichment of reactive 259 T cell phenotypes in GFP-positive sorted cells

260 Using single-cell transcriptomics, we explored the phenotypic landscape of EBV-CTLs.
261 Unsupervised cell clustering divided all cells into 13 main clusters (Fig. 5a-b and Supplemental
262 Fig. 4a-c). With few exceptions, CD4/CD8 identity, cell cycle phase, cytotoxicity and memory
263 markers were the main drivers of cluster separation. CD8 clusters 0,1,2,3,5,7 and 8 describe
264 a homogeneous population of activated cytotoxic CD8 cells enriched in the expression of
265 NKG7, GZMK, GZMA, GZMH, PRF1, HLA-DRA, and EOMES. Clustering resolves cycling cells
266 (clusters 1 and 2), non-proliferative CD27/CCL4/CCL5-high and GZMB/LAG3-high cells
267 (clusters 0 and 3 respectively), glycolytic cells (cluster 5) and apoptotic cells (cluster 8). Cluster
268 4 is a CD4-enriched cluster of moderately proliferative cells presenting an activated phenotype
269 and retaining the expression of memory markers such as TCF7, LEF1 and CD7. T reg CD4
270 cells are found in cluster 9 enriched in FOXP3/ ILR2A and lastly, cluster 6 describes a
271 CD4/CD8 population of resting cells enriched in memory and resting cell markers such as
272 IL7R, CCR7 and TCF7 which present a phenotype of unreactive T cells. Clusters 10, 11 and
273 12 show small populations of NK and B cells remaining from the initial whole-PBMC
274 population.


275 The detection of GFP transcripts at single cell level was used to confirm the correct CRISPR-
276 Cas9 genome integration of the GFP-Barcode transgene (Fig. 5c-d). About 45% of GFP-
277 positive sorted cells showed detectable GFP transcript, compared to just 2% for the GFP-
278 negative sample. Moreover, 87% of the GFP-positive sorted cells that were assigned to a
279 correctly annotated GFP barcode by deep sequencing also expressed GFP transcripts, further
280 demonstrating the accuracy of our GFP barcode readout.

281 When comparing the enrichment of GFP-positive and -negative cells across clusters, GFP-
282 positive cells were strongly depleted in cluster 6 (unreactive T cells) and enriched in activated
283 T cell clusters 1 through 5 (Fig. 5c and Supplemental Fig. 5a-b). In addition, we saw different

284 patterns of enrichment when looking at the expansion of TCR clonotypes within these two
285 sample groups. Cells sorted for absence of GFP were enriched for non-expanded (only one
286 cell per clone) and highly expanded (more than 200 cells per clone) clonotypes as opposed to
287 GFP sorted cells, which were enriched in highly expanded and also moderately expanded
288 clonotypes (5-200 cells per clone; Fig. 5e-f). Cluster enrichment across TCR expansion bins
289 and the top expanded clonotypes showed that overlooking moderately expanded clonotypes
290 restricted the diversity of T cell phenotypes (Supplemental Fig. 6a-b). On the other hand, our
291 results showed that this could be avoided by using our targeted GFP-positive selection; while
292 most TCR expanded clonotypes clustered around the same phenotypes, the expansion of our
293 GFP-barcode was distributed more homogeneously across activated T cell phenotypes
294 (Supplemental Fig. 7).

295 These results illustrate how our method can be more effective in identifying highly but also
296 moderately expanded reactive T cells across any activated phenotype for both the CD4 and
297 CD8 compartments.

298

299

300 **Fig. 5: Single cell transcriptomics and TCR sequencing reveals a broader enrichment of EBV
301 reactive T cell phenotypes in GFP sorted cell samples. a, UMAP embedding and unsupervised cell
302 clustering of 38908 EBV pulsed T cells. b, Dot plot showing the expression of a selection of T cell marker
303 genes across clusters found in A. c, Feature plots showing the distribution of GFP expression across
304 cells from GFP positive and GFP negative sorted samples. d, Enrichment of GFP positive and GFP
305 negative sorted sample groups in GFP expressing cells. GFP positive sample group is further divided
306 into cells that did or did not have a correctly annotated GFP-barcode. e, Enrichment of GFP positive and
307 GFP negative sorted sample groups in 5 different TCR clonotype expansion bins. f, Projection of cells
308 from 5 different TCR clonotype expansion bins on to the transcriptomic UMAP embedding. Cells from
309 GFP positive and GFP negative sorted sample groups are shown in separate UMAP plots. BC –
310 barcode.**

311

312 **DISCUSSION**

313 Adoptive T cell therapy is a highly versatile treatment option due to the involvement of T cell
314 immunity in a variety of indications such as autoimmunity²⁵, blood²⁶ and solid²⁷ cancers,
315 infectious diseases^{28, 29} and diabetes³⁰, to name but a few. While CAR-T cells are becoming
316 a standard-of-care treatment for some hematological malignancies, patients with other
317 challenging indications would benefit from alternative options with enhanced efficacy and
318 persistence or with a broader targeting spectrum such as those afforded by the use of isolated
319 antigen-specific T cells with native TCR, as shown for virus-associated malignancies¹⁸.
320 Here, we present an efficient and polyvalent method of targeted gene delivery into antigen-
321 specific T cells using a CRISPR protocol adapted to the use of peptide antigens as HDR-
322 enabling stimuli in contrast to the commonly used nonspecific anti-CD3/CD28 stimulation of T
323 cells. Although we focused on EBV-CTLs as a proof of concept, we note that this method does
324 not depend on the specifics of this model, and can therefore also be applied to other antigen
325 targets such as anti-tumor WT1-reactive T cell enrichment for anti-leukemic activity³¹.
326 The use of genome editing for cell engineering offers notable advantages, in particular the
327 precision of DNA construct integration. This ensures minimal disruption of cell function, as
328 evidenced by our post-transfection phenotypic analysis, as well as long-term lineage tracing.
329 While a typical weakness of CRISPR-induced HDR lies in its efficiency, we were able to
330 achieve rates of integration suitable for a substantial DNA barcode library. Coupled with the
331 permanence of genome editing, DNA barcodes may soon become standard procedure in cell
332 therapies³², making next-generation sequencers a likely soon-to-be essential tool in the clinic.
333 In order to assess the quality of the barcoded and selected EBV-CTLs, we combined our
334 methodology with scRNA-seq, another tool that is revolutionizing cell engineering and
335 immunotherapies³³. Single-cell barcode sequencing, coupled with TCR clonotype information,
336 provided an unprecedented level of detail on clonal expansion. In addition, scRNA-seq can
337 link lineages to specific T cell phenotypes. The heterogeneity of stimulated T cell populations
338 is essential to the development of effective immunity, and our genome editing protocol does
339 not interfere with phenotype diversity. For instance, beyond the cytotoxic potential of CD8 T
340 cells, it has been clearly shown that CD4+ T cells are crucial for sustaining anti-viral memory
341 and effector functions^{34, 35}. We observed that antigen-specific T cell stimulation combined with
342 genome editing-based selection enabled the enrichment of EBV-CTLs with both CD4 and CD8
343 populations showing increased production of CD107a and cytotoxic molecules such as
344 Granzyme B, IFN γ and TNF α among GFP-positive cells. Memory composition is another
345 critical parameter of an effective therapeutic T cell product³⁶. Early differentiated memory
346 phenotypes such as stem cell memory and central memory are superior in the sustaining long-
347 term anti-tumor responses^{37, 38}. Generally, we had high proportions of central memory
348 population among the GFP-positive cells and a good enrichment of memory markers in the
349 transcriptomics of the GFP-sorts. Interestingly, we observed a decrease of naïve-like/stem cell

350 memory like CD62L+CD45RA+ population in contrast to bulk transduced or wild type cells
351 which could be explained either by a slower activation of early-differentiated cells compared to
352 central and effector memory cells and as a result lower level of HDR, or by initially low amount
353 of EBV-specific T cells among early-differentiated cells due to a high frequency of EBV (CTL-
354 cell-controlled) reactivation in humans ²¹. Functionally, we noted that GFP-positive sorted T
355 cells exhibited enhanced antigen specificity and improved cytotoxicity against autologous EBV-
356 transformed LCLs.

357 Our work constitutes the first instance of the precise introduction of a genetic marker targeting
358 selected donor-derived antigen-specific T cells. The method and these data combined should
359 help establish the next generation of cell therapies combining *in-vitro* and *in-vivo* lineage
360 tracing and the functional enrichment of antigen-specific T cells.

361

362 **METHODS**

363

364 *Plasmid library construction*

365 The barcoded GFP library was encoded in a plasmid constructed in two steps. First, the pCMV-
366 GFP and homology arms were designed *in silico* and synthesized externally (Twist
367 Bioscience). Second, the GFP was barcoded using oligonucleotide F1(RB203)* (Supplemental
368 Table 1) with 9 degenerate “N” nucleotides and flanking regions homologous to the end of the
369 GFP open reading frame and the start of the polyA signal. The oligonucleotide was used with
370 primer R1(RB202)* in a NEBuilder assembly reaction (NEB). The resulting plasmid was
371 transformed in electro-competent *E. coli* DH5α cells which were then grown in Luria-Bertani
372 broth with 50 µg/ml ampicillin. An aliquot was plated to assess the transformation efficiency.

373

374 *Peripheral blood mononuclear cell (PBMC) extraction and cell culture.*

375 EDTA blood collected from adult healthy donors was used for peripheral blood mononuclear
376 cell (PBMC) extraction. The study was approved by the Ethical Committee of Northwestern
377 and Central Switzerland (PB_ 2018-00081), and written informed consents were obtained.
378 PBMCs were isolated as previously published³⁹. All cells were cultured at 37°C, 5% CO₂.
379 T cells were cultured in cytotoxic T cell line medium (CTLm) composed of RPMI (Gibco), 5%
380 human serum and 10,000 U/mL Penicillin-Streptomycin (ThermoFisher). PBMCs were
381 stimulated with either anti-CD3/CD28 Dynabeads (ThermoFisher) according to manufacturer's
382 instructions or with EBV pepmix (PepTivator EBV Consensus peptide pool (Miltenyi Biotec)),
383 at a final concentration of 60 pmol/peptide/mL in CTLm supplemented with 400 U/mL IL-4 and
384 10 ng/mL IL-7 (R&D Systems) for three days. After that, cells were washed, transfected and
385 cultured n CTLm with cytokines or cultured without transfection.

386 EBV-transformed LCLs were generated using the B95.8 EBV strain as previously published
387 ⁴⁰.

388

389 *Cell proliferation assay*

390 1.5×10^7 PBMCs were stained with CellTraceTM Violet (CTV) Cell Proliferation Kit according to
391 manufacturer's protocol, stimulated with the EBV pepmix and cultured in 6-well GRex plates
392 (Wilson Wolf) and cultured for 9 days. Every second day starting day 3 of culture cells were
393 gently resuspended and a fraction of cells was taken for immunocytochemistry and cell
394 proliferation tracing by flow cytometry.

395

396 *Genome editing of EBV-specific T cells*

397 PBMCs were genome-edited using a combination of CRISPR/Cas9 ribonucleoprotein (RNP)
398 and adeno-associated viral particles (AAV) after three days of culture with or without
399 stimulation. The RNP was assembled by first duplexing the CRISPR RNA (crRNA, sequence
400 TGACATCAATTATTATACAT CGG ⁴¹) and trans-activating CRISPR RNA (trcrRNA) (IDT)
401 through co-incubation at 95°C for 5 minutes and cooling to room temperature. The duplexed
402 RNA molecules were then complexed with 25 µg (153 pmol) of Cas9 protein (IDT) at room
403 temperature for 20 minutes. The AAV particles were produced externally (Vigene Biosciences)
404 by packaging the repair template DNA encoding the pCMV-barcoded GFP construct in a AAV6
405 capsid. From the PBMC cultures, cells in suspension were gently extracted without a detaching
406 agent. The culture wells, which retained adherent monocytes, were gently washed and topped
407 with serum-free CTL and set aside during the transfection procedure. Suspension cells were
408 centrifuged to remove the culture medium and resuspended in 100 µL P3 nucleofection buffer
409 (Lonza), to which 6.5 µL of RNP were mixed in. Cells were transferred to nucleocuvettes and
410 shocked using a 4D-Nucleofector (Lonza) with protocol EO-115. Cells were then gently diluted
411 in 600 µL of warm serum-free CTL medium. After 30 minutes, the transfected cells were placed
412 in their original well after emptying them again without detaching monocytes. After two hours
413 of incubation, 20 µL of AAV particles at 2.25×10^{13} particles/mL (for a target MOI of 2×10^5
414 particles/cell) were added to the cultures. After 24 hours, the cultures were diluted 1:1 with
415 human serum-supplemented CTL medium.

416

417 *Fluorescence activated cell sorting (FACS) of GFP+ cells*

418 Expanded EBV-stimulated and transduced T cells were sorted based on GFP fluorescence
419 after 10 days of culture. Cells in suspension were gently extracted without a detaching agent
420 and centrifuged to remove the culture medium. Cells were then washed in DPBS (Gibco),
421 sorted using SH800 cell sorter (Sony Biotechnology) into CTL medium. For specificity and

422 cytotoxicity analysis, cells were recovered for three days in CTLm supplemented with IL-4 and
423 IL-7.

424

425 *Staining for flow cytometry analysis of surface markers*

426 Cells were stained with Zombie Aqua viability dye (Biolegend) in PBS, washed in FACS buffer
427 and stained with the cocktail of monoclonal antibodies for CD3-BUV395 (clone UCHT1), CD4-
428 BUV496 (SK3), CD8-BUV805 (SK1), TIM-3-BV480 (7D3), PD1-BB700 (EH12.2H7) (all BD
429 Biosciences); CD45RA-APC (MEM-56, Thermo Fisher Scientific); CD45RO-Alexa Fluor 700
430 (UCHL1), CD62L-BV650 (SK11), CD27-BV421 (M-T271), CTLA-4-BV785 (L3D10), LAG-3-
431 BV711 (11C3C65, Biolegend) and TIGIT-BV605 (A15153G, Biolegend).

432

433 *Intracellular cytokine staining (ICC)*

434 Cells in a pure CTLm as a negative control and cells stimulated with EBV pepmix were seeded
435 into a U-bottom 96-well plate containing pure CTLm as a negative control, or CTLm with 500x-
436 diluted pepmix, respectively. Cross-linked costimulatory anti-CD28/CD49d monoclonal
437 antibodies (BD Biosciences), 1 µg/ml each, and anti-CD107a-BV510 (H4A3, Biolegend) were
438 added, and cells were incubated at 37°C, 5% CO₂ for 1 hour. Next, cell transport was blocked
439 by 10 µg/ml Brefeldin A (Sigma). 5-hour incubation was followed by intracellular staining for
440 flow cytometry analysis.

441 Cells were stained for viability with Zombie UV dye (Biolegend) according to manufacturer's
442 instructions. Next, cells were washed with FACS buffer (2% sterile filtered FBS and 0.1% NaN₃
443 in PBS), stained with surface monoclonal antibodies (all from BD Biosciences) for CD3-
444 BUV395 (UCHT1), CD4-BUV496 (SK3), CD8-BUV805 (SK1) in FACS buffer, washed, fixed
445 with fixation buffer (Biolegend), washed with permeabilization buffer (Biolegend) and stained
446 for 30 min with the cytokine antibodies for (all Biolegend): IFN γ -APC/Cy7 (B27), TNF α -PE/Cy7
447 (MAb11) and Granzyme B-PE/Cy5 (QA16A02).

448

449 *Cytotoxicity assay*

450 T cells were incubated with autologous LCLs (Effector:Target = 20:1) for 5 h 30 min, stained
451 for apoptosis with CellEvent Caspase-3/7 (Thermo Fisher), incubated for additional 30 min,
452 washed in PBS, stained for dead cells with Zombie Aqua (Biolegend), then stained for CD3+
453 and CD19+ in FACS buffer and analyzed by flow cytometry. LCLs incubated without T cells
454 were used as a control. The analysis was performed as previously published ⁴. The formula
455 used to define cytotoxicity was: % specific lysis = 100 - ([V_{test}/V_{control}]*100), where V is
456 percentage of viable cells (double-negative for ZombieAqua and CellEvent).

457

458 *Flow cytometry analysis*

459 Samples were acquired on Cytek Aurora using SpectroFlo software. Data were processed
460 using FlowJo.

461

462 *Statistical analysis of flow cytometry data*

463 Data were analyzed in Prism (GraphPad) using ANOVA or 2way ANOVA via statistical
464 methods whichever were applicable.

465

466 *Genomic PCR*

467 Genomic DNA from 10^4 to 10^5 T cells was was extracted using QuickExtract buffer (Lucigen).
468 The resulting product was used as a DNA template for a first PCR amplification reaction
469 using primers F2(RB198)* and R2(RB199)* primers (Supplemental Table 1). The 3 kbp
470 product was extracted by gel agarose electrophoresis and used as template for a second PCR
471 amplification using primers F3(RB214)* and R3(RB215)*. The final amplimers were purified
472 and sequenced externally by Illumina paired-end sequencing (GENEWIZ).

473

474 *Single-cell sequencing*

475 Single-cell sequencing was done according to the 10X Genomics pipeline and the
476 manufacturer' instructions as previously described ⁴². Briefly, for each donor, 20000 GFP-
477 expressing cells and 20000 GFP-negative cells were sorted as described above and
478 processed for single-cell sequencing using a Chromium Next GEM Single Cell 5' Library & Gel
479 Bead Kit v1.1, a Chromium Next GEM Chip G Single Cell Kit and a Chromium Controller. The
480 gene expression (GEX) and the fragmented TCR VDJ targeted enrichment libraries were
481 prepared using a Chromium Single Cell 5' Library Construction Kit and a Chromium Single Cell
482 V(D)J Enrichment Kit, Human T Cell. For GFP targeted enrichment, the primers F4(RB200)*
483 and R4(RB222)* were used in a PCR amplification reaction. The resulting product was used
484 as template for a second PCR amplification using an indexing primer and primer R5(RB201)*.
485 All libraries were indexed using primers from a Chromium i7 Multiplex Kit and sequenced by
486 the Genomics Facility Basel using an Illumina Novaseq and a single lane of a S4 flow cell.

487

488 *Analysis of scRNA-seq GEX data*

489 The raw scRNA-seq data was aligned to the human genome (GRCh38) using Cell Ranger
490 (10x Genomics, version 6.0.0). In the first place a custom reference human genome,
491 incorporating the GFP gene, was created using the *mkref* function, then the *count* function was
492 used to obtain the raw gene expression matrix. Downstream analysis was carried out using
493 the Seurat R package (version 4.0.1). As quality control, cells presenting low and high number
494 of detected UMIs ($200 < \text{nFeature_RNA} < 7,000$) and high percentage of mitochondrial genes

495 (Percentage_MT < 20% of total reads) were removed. In addition, TCR genes were removed
496 to avoid clonotype from guiding the subsequent clustering.

497

498 After QC a total of 38908 cells were used for downstream transcriptomic analysis. All samples
499 were merged, normalized and scaled using 2000 variable features (GFP gene was removed
500 to avoid its influence in downstream clustering analysis) while also regressing out cell cycle
501 scores. Dimensionality reduction was done using the *RunPCA* function and batch effect was
502 removed by performing harmony integration. Finally unsupervised cell clustering and
503 differential gene expression was used to find marker genes used for cluster annotation. Results
504 were then visualized using UMAP dimensionality reduction and ggplot2 R package.

505

506 *Paired TCR repertoire analysis*

507 Raw TCR scRNA-seq data was aligned to the VDJ-GRCh38-alts-ensembl (5.0.0) using Cell
508 Ranger (10x Genomics, version 3.1.0). As quality control, only cells retaining a productive
509 alpha and a productive beta chain were used. Downstream analysis was done using the R
510 programming language and common packages (code available upon request). Cluster
511 definition was performed as previously described by ⁴² and the comparisons of V and J gene
512 usage was done using the package bcRep ⁴³.

513

514 *Analysis of scRNA-seq GFP barcode data*

515 The GFP barcodes were linked to single cells through the 10X Genomics barcode. Where two
516 GFP barcodes were identified (likely bi-allelic integration), they were concatenated and treated
517 as one. For EBV-specificity predictions using TCRex, V- and J-gene information, along with
518 CDR3 beta sequences, were queried against all available EBV epitopes. The output was then
519 re-linked to clonotype identity.

520

521 **ACKNOWLEDGEMENTS**

522 We thank the Genomics Facility Basel and FACS Core facility of the Department of
523 Biomedicine, University Hospital of Basel, for excellent support and assistance
524 throughout this study. Acknowledgements go to the blood donors, and to Dr. Glenn
525 Bantug for providing the EBV strain. This work was supported by the Swiss National
526 Foundation Grant 32003B_204944 (to N.K.), NCCR Antiresist Grant No. 180541,
527 Switzerland (to N.K.), Bangerter–Rhyner Stiftung (to N.K.), ETH Zurich Post-doctoral
528 Fellowship, Switzerland (to R.B.D.R.), Helmut Horten Stiftung, Switzerland (to S.T.R.)
529 and NCCR Molecular Systems Engineering, Switzerland (to S.T.R.).

530

531 **AUTHOR CONTRIBUTIONS**

532 D.P., R.B.D.R, S.T.R. and N.K. designed the study; D.P., R.B.D.R. and R.C.R. performed
533 experiments; R.C.R. and F.S. analyzed the sequence data. D.P., R.B.D.R. and N.K. discussed
534 results. D.P., R.B.D.R. and R.C.R. wrote the manuscript with input and commentaries from all
535 authors.

536

537 **COMPETING INTERESTS**

538 There are no competing interests to declare.

539

540 **DATA AVAILABILITY**

541 The raw FASTQ files from deep sequencing that support the findings of this study will be
542 deposited (following peer-review and publication) in the Sequence Read Archive (SRA) with
543 the primary accession code(s) <code(s) (<https://www.ncbi.nlm.nih.gov/sra>)>. Additional data
544 that support the findings of this study are available from the corresponding author upon
545 reasonable request. The raw and processed sc-RNAseq data generated in this study will be
546 deposited in the Gene Expression Omnibus under accession number ---.

547 **REFERENCES**

- 548 1. Abbott, R.C., Hughes-Parry, H.E. & Jenkins, M.R. To go or not to go? Biological logic gating
549 engineered T cells. *J Immunother Cancer* **10** (2022).
- 550 2. Sterner, R.C. & Sterner, R.M. CAR-T cell therapy: current limitations and potential strategies.
551 *Blood Cancer J* **11**, 69 (2021).
- 552 3. Houghtelin, A. & Bolland, C.M. Virus-Specific T Cells for the Immunocompromised Patient.
553 *Front Immunol* **8**, 1272 (2017).
- 554 4. Nowakowska, J. et al. T cells specific for different latent and lytic viral proteins efficiently
555 control Epstein-Barr virus-transformed B cells. *Cytotherapy* **17**, 1280-1291 (2015).
- 556 5. Leen, A.M. et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and
557 produce clinically relevant effects in immunocompromised individuals. *Nat Med* **12**, 1160-
558 1166 (2006).
- 559 6. Vasileiou, S. et al. Rapid generation of multivirus-specific T lymphocytes for the prevention
560 and treatment of respiratory viral infections. *Haematologica* **105**, 235-243 (2020).
- 561 7. Melenhorst, J.J. et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T
562 cells. *Nature* **602**, 503-509 (2022).
- 563 8. Buchholz, V.R., Schumacher, T.N. & Busch, D.H. T Cell Fate at the Single-Cell Level. *Annu Rev*
564 *Immunol* **34**, 65-92 (2016).
- 565 9. Al Khabouri, S. & Gerlach, C. T cell fate mapping and lineage tracing technologies probing
566 clonal aspects underlying the generation of CD8 T cell subsets. *Scand J Immunol* **92**, e12983
567 (2020).
- 568 10. Heslop, H.E. et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-
569 related lymphoproliferative disease in transplant recipients. *Blood* **115**, 925-935 (2010).
- 570 11. Rooney, C.M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-
571 Barr-virus-related lymphoproliferation. *Lancet* **345**, 9-13 (1995).
- 572 12. Anson, D.S. The use of retroviral vectors for gene therapy-what are the risks? A review of
573 retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. *Genet*
574 *Vaccines Ther* **2**, 9 (2004).
- 575 13. Zhao, Z. et al. CRISPR knock out of programmed cell death protein 1 enhances anti-tumor
576 activity of cytotoxic T lymphocytes. *Oncotarget* **9**, 5208-5215 (2018).
- 577 14. Amini, L. et al. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced
578 Adoptive Immunotherapy in Transplant Recipients. *Mol Ther* **29**, 32-46 (2021).
- 579 15. Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual
580 shift between DNA repair mechanisms and a maximal use of HR in mid S phase. *Mol Cell* **47**,
581 320-329 (2012).
- 582 16. Gargett, T. & Brown, M.P. The inducible caspase-9 suicide gene system as a "safety switch" to
583 limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. *Front Pharmacol* **5**,
584 235 (2014).
- 585 17. Pegram, H.J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic
586 tumors without need for prior conditioning. *Blood* **119**, 4133-4141 (2012).
- 587 18. Papapetrou, E.P. & Schambach, A. Gene Insertion Into Genomic Safe Harbors for Human
588 Gene Therapy. *Mol Ther* **24**, 678-684 (2016).
- 589 19. Gerdemann, U. et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the
590 prophylaxis and treatment of viral infections. *Mol Ther* **20**, 1622-1632 (2012).
- 591 20. Cox, D.B., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. *Nat*
592 *Med* **21**, 121-131 (2015).
- 593 21. Maurmann, S. et al. Molecular parameters for precise diagnosis of asymptomatic Epstein-
594 Barr virus reactivation in healthy carriers. *J Clin Microbiol* **41**, 5419-5428 (2003).
- 595 22. Miconnet, I. et al. Large TCR diversity of virus-specific CD8 T cells provides the mechanistic
596 basis for massive TCR renewal after antigen exposure. *J Immunol* **186**, 7039-7049 (2011).
- 597 23. Koning, D. et al. CD8+ TCR repertoire formation is guided primarily by the peptide
598 component of the antigenic complex. *J Immunol* **190**, 931-939 (2013).

599 24. Miles, J.J. et al. CTL recognition of a bulged viral peptide involves biased TCR selection. *J*
600 *Immunol* **175**, 3826-3834 (2005).

601 25. Baeten, P., Van Zeebroeck, L., Kleinewietfeld, M., Hellings, N. & Broux, B. Improving the
602 Efficacy of Regulatory T Cell Therapy. *Clin Rev Allergy Immunol* **62**, 363-381 (2022).

603 26. Majzner, R.G. & Mackall, C.L. Clinical lessons learned from the first leg of the CAR T cell
604 journey. *Nat Med* **25**, 1341-1355 (2019).

605 27. Kirtane, K., Elmariyah, H., Chung, C.H. & Abate-Daga, D. Adoptive cellular therapy in solid
606 tumor malignancies: review of the literature and challenges ahead. *J Immunother Cancer* **9**
607 (2021).

608 28. Kaeuferle, T., Krauss, R., Blaeschke, F., Willier, S. & Feuchtinger, T. Strategies of adoptive T -
609 cell transfer to treat refractory viral infections post allogeneic stem cell transplantation. *J*
610 *Hematol Oncol* **12**, 13 (2019).

611 29. Walti, C.S., Stuehler, C., Palianina, D. & Khanna, N. Immunocompromised host section:
612 Adoptive T-cell therapy for dsDNA viruses in allogeneic hematopoietic cell transplant
613 recipients. *Curr Opin Infect Dis* **35**, 302-311 (2022).

614 30. Ben-Skowronek, I. et al. Potential Therapeutic Application of Regulatory T Cells in Diabetes
615 Mellitus Type 1. *Int J Mol Sci* **23** (2021).

616 31. Chapuis, A.G. et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity
617 and persist in post-transplant patients. *Sci Transl Med* **5**, 174ra127 (2013).

618 32. Masuyama, N., Mori, H. & Yachie, N. DNA barcodes evolve for high-resolution cell lineage
619 tracing. *Curr Opin Chem Biol* **52**, 63-71 (2019).

620 33. Castellanos-Rueda, R., Di Roberto, R.B., Schlatter, F.S. & Reddy, S.T. Leveraging Single-Cell
621 Sequencing for Chimeric Antigen Receptor T Cell Therapies. *Trends Biotechnol* **39**, 1308-1320
622 (2021).

623 34. Pourghheysari, B. et al. Early reconstitution of effector memory CD4+ CMV-specific T cells
624 protects against CMV reactivation following allogeneic SCT. *Bone Marrow Transplant* **43**,
625 853-861 (2009).

626 35. Novy, P., Quigley, M., Huang, X. & Yang, Y. CD4 T cells are required for CD8 T cell survival
627 during both primary and memory recall responses. *J Immunol* **179**, 8243-8251 (2007).

628 36. Busch, D.H., Frassle, S.P., Sommermeyer, D., Buchholz, V.R. & Riddell, S.R. Role of memory T
629 cell subsets for adoptive immunotherapy. *Semin Immunol* **28**, 28-34 (2016).

630 37. Wang, F., Cheng, F. & Zheng, F. Stem cell like memory T cells: A new paradigm in cancer
631 immunotherapy. *Clin Immunol* **241**, 109078 (2022).

632 38. Klebanoff, C.A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior
633 antitumor immunity compared with effector memory T cells. *Proc Natl Acad Sci U S A* **102**,
634 9571-9576 (2005).

635 39. Rauser, G. et al. Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for
636 adoptive transfer into recipients of allogeneic stem cell transplants. *Blood* **103**, 3565-3572
637 (2004).

638 40. Merlo, A. et al. Virus-specific cytotoxic CD4+ T cells for the treatment of EBV-related tumors.
639 *J Immunol* **184**, 5895-5902 (2010).

640 41. Kang, H. et al. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides
641 Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. *Mol Ther Nucleic Acids* **4**,
642 e268 (2015).

643 42. Bieberich, F. et al. A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and
644 Transcriptomes Reveals Age-Related Differences in Convalescent COVID-19 Patients. *Front*
645 *Immunol* **12**, 701085 (2021).

646 43. Bischof, J. & Ibrahim, S.M. bcRep: R Package for Comprehensive Analysis of B Cell Receptor
647 Repertoire Data. *PLoS One* **11**, e0161569 (2016).