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 36 

ABSTRACT 37 

Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most 38 

of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have 39 

unraveled the first full genomes of the closest algal relatives of land plants; among the first such 40 

species was Mesotaenium endlicherianum. Here, we used fine-combed RNAseq in tandem with 41 

photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and 42 

light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and 43 

~1.5 Tbp (~9.9 billion reads) of data to study combinatory effects of stress response using clustering 44 

along gradients. We describe major hubs in genetic networks underpinning stress response and 45 

acclimation in the molecular physiology of Mesotaenium. Our data suggest that lipid droplet 46 

formation, plastid and cell wall-derived signals denominate molecular programs since more than 600 47 

million years of streptophyte evolution—before plants made their first steps on land. 48 
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 53 

MAIN 54 

Plant terrestrialization changed the face of our planet. It gave rise to land plants (Embryophyta), the 55 

major constituents of Earth’s biomass (Bar-On et al. 2018) and founders of the current levels of 56 

atmospheric oxygen (Lenton et al. 2016). Land plants belong to the Streptophyta, a monophyletic 57 

group that includes the paraphyletic freshwater and terrestrial streptophyte algae and the 58 

monophyletic land plants. Meticulous phylogenomic efforts have established the relationships of land 59 

plants to their algal relatives (Wickett et al. 2014; One Thousand Plant Transcriptomes Initiative, 60 

2019). These data brought a surprise: the filamentous and unicellular Zygnematophyceae—and not 61 

other morphologically more elaborate algae—are the closest algal relatives of land plants. Now the 62 



first three genomes of major orders of Zygnematophyceae (see Hess et al., 2022) are at hand: 63 

Mesotaenium endlicherianum, Spirogloea muscicola (Cheng et al., 2019), and Penium margaritaceum 64 

(Jiao et al., 2020). Using these, we are beginning to redefine the molecular chassis shared by land 65 

plants and their closest algal relatives. Included in this shared chassis will be those genes that 66 

facilitated plant terrestrialization. We here focus on one critical aspect: the molecular toolkit for the 67 

response to environmental challenges. For this, we use the unicellular freshwater/subaerial alga 68 

Mesotaenium endlicherianum. 69 

 Land plants use a multilayered system for the adequate response to environmental cues. This 70 

involves sensing, signaling, and response mainly by the production of, e.g., protective compounds. 71 

Some of the most versatile patterns in land plant genome evolution concerns genes for environmental 72 

adaptation (Golicz et al., 2016; Gordon et al., 2017; Bayer et al., 2020). That said, there is a shared 73 

core of key regulatory and response factors that are at the heart of plant physiology. These include 74 

phytohormones such as abscisic acid (ABA) found in non-vascular and vascular plants (for an 75 

overview, see Umezawa et al., 2010; Bowman et al., 2019), protective compounds resting on 76 

specialized metabolic routes such phenylpropanoid-derived compounds as well as proteins such as 77 

LATE EMBRYOGENESIS ABUNDANT (LEA; Hundertmark and Hincha 2008; Carella et al., 78 

2019). Many of the genes integrated into these stress-relevant metabolic routes have homologs in 79 

streptophyte algae (Rieseberg et al., 2022). Taking angiosperms as reference, such stress-relevant 80 

pathways are often patchy. Whether these are also used under the relevant conditions is currently 81 

unknown. For example, while Zygnematopyhceae have a homolog to the ABA-receptor PYL (de 82 

Vries et al. 2018, Cheng et al., 2019), this homolog works in a different, ABA-independent fashion 83 

(Sun et al., 2019). Thus, it is important to put the genetic chassis that could act under environmental 84 

shifts to the test.  85 

Here, we used a fine grid of a bifactorial gradient for two key terrestrial stressors, variation in 86 

irradiance and temperature, to probe the genetic network that the closest algal relatives of land plants 87 

possess for its responsiveness to abiotic environment. Correlating growth, physiology, and global 88 

differential gene expression patterns from 128 transcriptomes (9,892,511,114 of reads, 1.5 Tbp of 89 

data) across 126 distinct samples covering a temperature range of >20°C and light range of >500 90 

µmol photons m-2 s-1, we pinpoint hubs in the circuits that have been shared along more than 600 91 

million years of streptophyte evolution. 92 

 93 

RESULTS 94 

A physiological grid: co-dependency of eurythermy and euryphoty in Mesotaenium 95 

We studied the genome-sequenced strain SAG 12.97 of the freshwater alga 96 

Mesotaenium endlicherianum, a member of the Zygnematophyceae, the closest algal relatives of land 97 

plants (Cheng et al., 2019; Figure 1a and 1b). We cultivated Mesotaenium in a large-scale setup in 1.5 98 

liters of C medium up to a cell density of 0.33 AU at 680 nm. The culture was distributed across 504 99 

wells (42 twelve well plates; 2.5 mL of culture per well). The well plates were placed on a table with 100 

a temperature gradient from 8.6±0.5 °C to 29.2±0.5 °C on the x-axis. On top of the table, white LED 101 

lamps created an irradiance gradient from 21.0±2.0 to 527.9±14.0 µmol photons m-2 s-1 across the y-102 

axis, thus creating a 2D gradient table (Figure 1b, Suppl. Table 1). The 504 cultures were exposed to 103 

this gradient setup for 65 hours. The physiological status of the algae was assessed by determining the 104 

maximum quantum yield (Fv/Fm) using pulse amplitude modulation fluorometry (PAM; IMAGING 105 

PAM, Walz, Germany); growth was assessed using a microplate reader with absorption at 480 nm, 106 

680 nm, and 750 nm (Figure 1c); the entire procedure was repeated in three successive biological 107 

replicates (i.e. three runs of the table, 504 Fv/Fm and 4,536 absorption measurements per replicate). 108 

The algae showed significant differences (p ≤ 0.001) in growth and gross physiology: Fv/Fm 109 

values as well as absorption values decrease (for Fv/Fm values at 20.5±1.0 °C: from 0.66±0.02 for 110 

I=21.14 µmol photons m-2 s-1 to 0.042±0.04 for I=534.7 µmol photons m-2 s-1) with rising intensities 111 

of irradiance (Figure 1d, Suppl. Fig. 1, Suppl. Table 2). The lowest Fv/Fm values (down to zero) were 112 

recorded at conditions of highest irradiance and lowest temperature. Here, low temperature had a 113 

stronger negative impact on growth and physiology than light (for Fv/Fm values: at 8.6±0.5 °C, 114 

0.011±0.02 at 133±27 µmol photons m-2 s-1 compared to 0.463±0.02 at 29.2±0.5 °C at 118±25 µmol 115 

photons m-2 s-1). Values on growth and physiology clustered by light were less broadly distributed 116 

than if clustered by temperature (Figure 1e, 1f). Even the highest light intensity (527.9±14.0 µmol 117 



photons m-2 s-1) was stressful, but tolerable for the physiology of Mesotaenium at temperatures 118 

between 20.5±0.1°C (Fv/Fm=0.042±0.04) to 25.3±0.1°C (Fv/Fm= 0.045±0.04); more extreme 119 

temperatures resulted in undetectable Fv/Fm values. Thus, eurythermy might establish the foundation 120 

for euryphoty in Mesotaenium endlicherianum. 121 

 122 

Fine-combed global differential gene expression profiles and gene models for Mesotaenium  123 

To shed light on the molecular mechanisms that underpin the switch from tolerable steady-state 124 

conditions to adverse environmental cues in Mesotaenium, we applied global gene expression 125 

analyses using RNAseq. We pooled all twelve wells per plate and extracted RNA from a total of 126 126 

samples (42 plates, three biological replicates). 114 samples yielded usable RNA that was used to 127 

build 128 libraries (with a minimum of three biological replicates and additional technical replicates) 128 

for sequencing on the Illumina NovoSeq6000 platform. We generated a total of 1.5 Tbp of 150 bp 129 

paired read data at an average depth of 37.7 million reads per sample (~9.9 billion reads in total). 130 

Building on this wealth of data, we updated the Mesotaenium gene models. The number of protein-131 

coding mRNAs increased from 11,080 in the original annotation (V1; Cheng et al. 2019) to 40,326 132 

protein-coding mRNA (26,009 high confidence, 14,317 low confidence; including splice variants) in 133 

19,233 genes; an additional 4,408 mRNA (in 4,312 genes) labeled as “predicted gene” in our gene 134 

models (Suppl. Table 3). The new gene models of annotation V2 brings the number of genes in 135 

Mesotaenium closer to other Zygnematophyceae with similar genome sizes; V2 has 43 more BUSCO 136 

genes (+10%; 21 less fragmented, 22 less missing; viridiplantae_odb10) than V1 (Suppl. Fig. 2). 137 

Besides, we calculated Annotation Edit Distance metrics (AED) to assess the congruence (0 to 1, with 138 

0 being the best) between biological evidence and V1 and V2. In the cumulative fraction of annotation 139 

against AED score, V2 has more mRNAs with AED < 0.5. For example, 70% of mRNAs in V1 140 

(7,756 mRNAs) have an AED score < 0.5 compared to 60% in V2 (26,840 mRNAs). This is sensible 141 

since V2 was built based on the same set of evidence used to calculate AED and it shows higher 142 

congruence with them (Suppl. Fig. 3). Thus, we pseudoaligned our data onto the new Mesotaenium 143 

transcriptome V2 (average alignment rate was 87.31%; Suppl. Table 4). 144 

 To understand the gross profile of the gene expression data, we performed principal 145 

component analysis (PCA; Figure 2a). Independent biological replicates from the same condition 146 

clustered in close proximity. The most variation in data was explained by temperature (PC1; describes 147 

35% of variance), followed by irradiance (PC2; describes 18.1% of variance). We evaluated the 148 

distance (Figure 2b) and Spearman correlation (Figure 2c) using all genes to look for trends among 149 

different growth conditions. The data can be grouped into at least three categories: (1) samples with 150 

high light and/or high temperature, (2) a collection of low-temperature (8, 13, 17 °C) samples, and (3) 151 

samples at stead-state. Large clusters included steady-state, high light + heat, and high light. Most 152 

distinct was the cluster formed by samples from the high temperature + high light (Small multiples; 153 

Figure 2d and 2e). 154 

 155 

Plastid-related genes stand out in differential gene expression profiles  156 

For dissecting the differential gene expression responses, we divided the table into nine sectors and, 157 

additionally, a cohort of stressed algae based on Fv/Fm < 0.5 (Figure 3). 36 comparisons were 158 

performed, among which we focused on nine, which additionally included the Fv/Fm-based 159 

comparison. Genes were considered to be differentially expressed between groups at an absolute fold 160 

change ≥ 2 and a Benjamini-Hochberg corrected p ≤ 0.01 (Figure 3a and b). Gross gene expression 161 

profiles were titratable by the intensity of environmental cues, i.e., with increasing disparity between 162 

conditions compared, and overall following the pattern in the PCA (cf. Figure 3b and Figure 2a). The 163 

most differentially regulated genes (6,578) were pinpointed by comparing low light and low 164 

temperature (LLI_LT) versus high light and high temperature (HLI_HT). Enriched GO terms among 165 

regulated genes most frequently included plastid biology-associated genes (Figure 3c). To scrutinize 166 

these data for specific genes that show a robust and universal response to alterations to the 167 

environment, we intersected all 8,157 significantly regulated genes pinpointed by the different 168 

comparisons. 3, 30, and 124 genes overlapped among all 9, 8, and 7 comparisons, respectively. These 169 

concertedly pinpointed genes were mostly light harvesting genes, corroborating the importance of 170 

plastids in the overall cell biology of Mesotaenium (Figure 3d). Indeed, the 30 genes found in all 171 

comparisons included for example reactive oxygen species (ROS)-relevant genes such as ELIP and 172 



fatty acid metabolic genes. To understand whether these genes integrate into the context of molecular 173 

programs, we next looked at gene co-expression.  174 

 175 

Unsupervised gene expression clusters recover genetic programs shaped by physiology 176 

The environmental gradients triggered changes in the expression of gene cohorts. We wanted to 177 

understand their concerted action independent of any prioritization guided by homology to any land 178 

plant genes—solely from the molecular programs that operated in the algae. To do so, we applied 179 

weighted gene co-expression network analysis (WGCNA) for unsupervised clustering (Figure 4). To 180 

then understand the driving forces behind these changes, we turned to the highly connected genes 181 

(nodes) in the network—the hubs (Figure 5). 182 

The 17,905 genes expressed in our samples (and that passed the minimum expression 183 

threshold) were clustered into 26 modules, which we refer to with colors (Figure 4a). Orange is the 184 

smallest module (39 genes), the largest modules are Turquoise, Blue, and Brown with 3568, 3101, 185 

and 1746 genes, respectively. The samples were taken under a range of distinct physiological 186 

conditions. Resulting data are a combined expression of the different environmental cues and the 187 

modulation of the algal physiology. To investigate the biological role of each module, we used their 188 

eigengenes as representatives for the modules’ gene expression profiles and correlated their behavior 189 

with the two environmental cues light intensity and temperature as well as the algal parameters 190 

absorption (culture density and pigmentation) and Fv/Fm (overall physiological status). One of the 191 

foremost general patterns in cellular response to stress are ROS. These act as signals as well as 192 

culprits that, if not quenched, damage biomolecules; this was represented in GO terms of module 193 

Green that positively correlated with light intensity (r = 0.88, p = 6x10-43) and negatively with Fv/Fm 194 

(r = -0.79, p = 6x10-29) (Figure 4d and Suppl. Fig. 4 to 7 and Suppl. Table 5 and 6).   195 

The clusters also recovered the genetic signatures of thriving algae. Module Purple negatively 196 

correlates with increasing light (r = -0.94, p = 3x10-60) and positively with absorption and Fv/Fm (r = 197 

0.67, p = 2x10-18 and r = 0.67, p = 2x10-18). These dense and physiologically healthy cell populations 198 

(experiencing no light stress) ramped up cell division (see Figure 4D and Suppl. Table 6), signified by 199 

homologs of cyclin and TPX2 appearing as hub genes. The 9th most connected hub gene was a 200 

kinesin homologous to important proteins such as PHRAGMOPLAST ORIENTING KINESIN 2 201 

(Figure 5; Suppl. Table 7), which thus is a likely conserved cell division hub of all 202 

Phragmoplastophyta—going back to a common ancestor that lived in the late Cryogenium. 203 

 204 

Conserved hubs for plastid-derived signals 205 

Chloroplasts act as environmental sensors in land plant cells (Kleine et al., 2021). In concert with this, 206 

many of the clusters we identified were associated with plastid biology and/or physiology (Figure 4d, 207 

Suppl. Fig. 4 to 7, Suppl. Table 6). The brown cluster showed many plastid-related terms and 208 

negatively correlates with temperature (r = -0.95, p = 7x10-65) (Suppl. Fig. 5) and showed enrichment 209 

in GO-terms related to plastids, general transcription and translation. Among the top 20 hub genes in 210 

cluster brown, 12 were associated with translation and ribosomes (Suppl. Table 7). The light cyan 211 

cluster positively correlates with increasing light (r = 0.93, p = 10-56) (Suppl. Fig. 6) and negatively 212 

with Fv/Fm (r = -0.67, p = 5x10-18) (Suppl. Fig. 4) whereas the blue cluster negatively correlates with 213 

increasing light (r = -0.76, p = 10-25) and positively with Fv/Fm (r = 0.67, p = 2x10-18). Concomitantly, 214 

the blue module had a high number of enriched GO-terms (Suppl. Fig. 5 and Suppl. Table 6), many of 215 

which were plastid-related terms, cellular signaling, and terms that tie the two together; that is, 216 

signaling processes emanating from the plastid. This was also prominent in the light cyan module, 217 

where several terms related to terpenoid and apocarotenoid metabolism were enriched.  218 

The hubs of many clusters, including those blue, light cyan, and yellow mentioned before, 219 

reflect an association with plastid-related processes. To highlight a few, the second most connected 220 

gene in module Blue was a homolog of GLK1 (Suppl. Fig. 8), a transcriptional factor (TF) that 221 

regulates chloroplast development and the activity of nuclear genes involved in photosynthetic light 222 

reaction and chlorophyll biosynthesis (Rossini et al., 2001; Yasumura et al., 2005; Waters et al., 223 

2009). Blue also featured hydroxypyruvate reductase, important in photorespiration (Timm et al., 224 

2008), as the fourth most connected gene . A CYP450 gene homologous to LUTEIN DEFICIENT 5 225 

(LUT5), was the 7th most connected, suggesting the involvement of pigment-related signaling. 226 

Moreover, a homolog of ABA responsive elements-binding factor 2 (ABF2) was part of cluster Blue, 227 



bolstering previous discussions that parts of the ABA signaling module consist of ancient wires whose 228 

relevance in stress response predate plant terrestrialization and ABA dependency (de Vries et al., 229 

2018; Sun et al., 2019; Fürst-Jansen et al., 2020).  230 

Next to GLK—the most connected TF—other highly connected TFs appeared in Blue. These 231 

included the photomorphogenesis-regulating CONSTANS-like 3 (COL3; 4th most connected TF). 232 

Noteworthily, also a homolog of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) was present 233 

in module Blue; CO/COL and GLKs are both degradation targets of COP1 (Liu et al., 2008; 234 

Sarid�Krebs et al., 2015; Ordoñez-Herrera et al., 2018). Further, the circadian regulator BROTHER 235 

OF LUX ARRHYTHMO (2nd most connected TF). Further, homologs of ETHYLENE-236 

INSENSITIVE3-like 1 (6th most connected TF) and several ERFs were among the most connected 237 

TFs. A link to ethylene is noteworthy, because investigations of the Zygnematophyceae Spirogyra 238 

pratensis (Sp) have shown that SpEIN3 can rescue Arabidopsis ein3-1 mutant plants (Ju et al., 2015). 239 

Furthermore, exogenous application of ethylene on Spirogyra triggers stress-, plastid- and 240 

photosynthesis-associated gene expression responses similar to land plants (Van de Poel et al., 2016). 241 

This speaks to a conserved regulatory framework that involves ethylene-associated factors, and maybe 242 

ethylene itself, in environmental signaling cascades in the common ancestor of and plants and their 243 

closest algal relatives. 244 

Light cyan featured not only hubs related to ROS homeostasis from the thioredoxin 245 

superfamily and other light-induced proteins, but also pigment and apocarotenoid metabolism; these 246 

are the source of important signals from the chloroplast that likely have deep evolutionary roots 247 

(Rieseberg et al., 2022) and are also formed by light dependent oxidative reactions (recently reviewed 248 

by Moreno et al., 2021). Module Yellow correlated positively with light intensity (r = 0.62, p = 10-14) 249 

and negatively with absorption and Fv/Fm (r = -0.79, p = 10-28 and r = -0.81, p = 3x10-31; Figure 3B); 250 

GO terms associated with plastids and proteolytic enzymes (FtsH, ClpP; Kato et al., 2012), 251 

recapitulating well-known ties of protein homeostasis and plastid maintenance. Indeed, cluster yellow 252 

featured five hubs that are homologous to CLP proteases, critical for chloroplast protein homeostasis 253 

(Sjögren et al., 2006; Nishimura et al., 2016), and hubs homologous to genes that orchestrate the 254 

coordination of transcriptional activity between chloroplasts and the nucleus; the latter included 255 

homologs of (i) pTAC6, which is essential for plastid gene expression and thus chloroplast 256 

development in Arabidopsis (Pfalz et al., 2006), and (ii) a homolog of GENOMES UNCOUPLED 2, 257 

one of the foremost genes in the classical plastid–nucleus communication pathway (Susek et al., 258 

1993). Among the TFs in cluster yellow was a homolog of the bZIP light signaling master regulator 259 

ELONGATED HYPOCOTYL 5 (HY5; reviewed in Jiao et al., 2007).  260 

 261 

Of ancient signaling cascades and cell wall perturbance 262 

Mitogen-activated protein kinases (MAPK) constitute environmental response pathways in all 263 

eukaryotes (Chen and Thorner, 2007). In land plants, several abiotic and biotic cues have been 264 

described to trigger MAPK-mediated signaling (Nakagami et al., 2005; Rodriguez et al., 2010; Meng 265 

and Zhang, 2013; Chen et al., 2021); MAPK and phototropin kinases appeared as hubs in cluster 266 

Blue. Moreover, plant MAPK-based signaling is interwoven with wound response and brassinosteroid 267 

signaling (Nakagami et al., 2005). Stress often coincides with a perturbance of plant cell wall 268 

homeostasis. Cluster Pink includes hubs for such wounding and cell-wall derived signals. This was 269 

paired with the GO term brassinosteroid signaling, which balances growth, cell wall homeostasis, and 270 

stress in Arabidopsis (Sun et al., 2010; Planas-Riverola et al., 2019). Among the hubs in cluster Pink 271 

were homologs for (i) diverse receptor kinases known from Arabidopsis to sense alterations in cell 272 

wall integrity (Hématy et al., 2007), and (ii) EXORDIUM (of which Mesotaenium has 12 homologs), 273 

which integrates growth with environmental signaling (Schröder et al., 2009). This was paired with 274 

the COBRA family proteins being the most and third most connected hubs in the module. These 275 

proteins are known to be involved in cell expansion and balancing pathogen response with growth 276 

(Schindelmann et al., 2001; Roudier et al., 2002; Ko et al., 2006). It appears that Mesotaenium bears 277 

parts of a loop that senses physico-chemcial perturbance of cell wall homeostasis; in land plants, these 278 

loops include brassinosteroid signaling (Wolf et al., 2014). 279 

 280 

Lipid droplet formation constitutes a stress response predating plant terrestrialization 281 



In land plants lipid droplet (LD) formation and triacylglycerol (TAG) accumulation is common to 282 

many stress responses, including heat, cold and drought (Higashi et al., 2015; Mueller et al., 2015; 283 

Gidda et al., 2016; Doner et al., 2021; Krawczyk et al., 2022). We observed that cells of Mesotaenium 284 

accumulated inclusions resembling LDs (Figure 6a) upon prolonged exposure to stress. Consistently, 285 

these globular structures were stained by BODIPY™ 493/503 (EM/EX), a common dye for lipid and 286 

oil-rich compartments (Listenberger and Brown, 2007; Kretzschmar et al., 2020). Under different 287 

conditions of temperature and light conditions, counts of LDs per cell showed significant differences 288 

(Figure 6b, Suppl. Table 8). We observed that the CGI-58 homolog was the 10th most connected hub 289 

in cluster green (Figure 5b). CGI-58 is key to lipid homeostasis, causing, if perturbed, the Chanarin-290 

Dorfman syndrome in humans and LD overaccumulation in Arabidopsis (Lass et al., 2006; James et 291 

al., 2010; Figure 5c). Further, differential gene expression profiles pinpointed elevation of transcripts 292 

for characteristic LD protein homologs such as HSD1 and oleosin (OLE7) under high temperature and 293 

moderate light conditions (29 °C, 21 – 130 µmol photons m-2 s-1) and LD-associated protein (LDAP) 294 

and PUX10 under high temperature and light conditions (21-29 °C, 130 – 528 µmol photons m-2 s-1) 295 

(Figure 6c).  296 

To scrutinize whether these structures are comparable to LDs of land plants, we performed 297 

sub-cellular fractionizations, obtained lipid-rich phases, and subjected them to proteomics using liquid 298 

chromatography-mass spectrometry (LC-MS). We identified 739 proteins in the putative LD fraction 299 

and 1574 proteins in the total extract (Suppl. Table 9). Of these, 14 were significantly enriched in the 300 

putative LD fraction (Figure 6 d, volcano plot) including hallmark LD proteins such as OLE, caleosin 301 

(CLO), steroleosin (HSD), and LDAP (Figure 6 d, bar plots). Overall, Mesotaenium responds to stress 302 

conditions by formation of LDs containing signature proteins for embryophytic LDs. 303 

 304 

DISCUSSION 305 

Owing to their plain morphology, Zygnematophyceae emerged as unexpected closest algal relatives of 306 

land plants (Wickett et al., 2014; One Thousand Plant Transcriptomes Initiative, 2019; Hess et al., 307 

2022). That said, the molecular programs of Zygnematophyceae speak of their close relationships to 308 

land plants. These point to a conserved chassis that likely operated in the last common ancestor of 309 

land plants and algae, featuring the proposed action of various hallmark genes (e.g., PYL homologs, 310 

GRAS family TFs and more) that were once considered land plant innovations. Building on the 311 

genomic resources for Mesotaenium, we have here delved into the molecular physiology and genetic 312 

programs of this alga, revealing which programs bear out when challenged with environmental cues. 313 

Recent studies have proposed homology for the chassis of plastid–nucleus communication 314 

upon adverse environmental conditions between land plants and phragmoplastophytic streptophyte 315 

algae (Nishiyama et al., 2018; de Vries et al., 2018; Zhao et al., 2019). The GUN pathway likely has a 316 

conserved role in chloroplast transcription and streptophyte algal GUN1 homologs can rescue 317 

chloroplast retrograde signaling of Arabidopsis Atgun1 mutants (Honkanen and Small, 2022); the 318 

degree of evolutionary conservation in the retrograde signaling pathway across streptophytes remains 319 

obscure (Honkanen and Small, 2022). Signals from damaged chloroplasts inhibit GLK1 expression in 320 

Arabidopsis (Martin et al., 2016). The negative correlation of module Blue (featuring MeGLK) with 321 

high light (leading to damaged chloroplasts) supports a role of MeGLK in operational retrograde 322 

signaling. Our data underscore that the wires between these components in plastid–nucleus 323 

communication are likely shared across more than 600 million years of streptophyte evolution and 324 

correlate with dealing with light regimes and adjustment of photosynthetic performance in the 325 

chloroplast also in the closest relatives of land plants.  326 

One of the special features of plant and algal cells is their cell wall, forming their main 327 

interface with the environment. It is therefore not surprising that the cell wall is woven into a 328 

signaling network for environmental cues. In land plants, brassinosteroid-mediated signaling is part of 329 

a feedback loop for cell wall homeostasis and integrity (Wolf et al., 2014). While the involvement of 330 

brassinosteroids in streptophyte algae is doubtful—as is the case for many other phytohormones—our 331 

data suggest that there is a homologous chassis for a feedback loop for cell wall damage-based 332 

signaling that predates plant terrestrialization. 333 

In land plants, the formation of LDs is known to occur under a variety of adverse 334 

environmental conditions (Gasulla et al., 2013; Mueller et al., 2015; Gidda et al., 2016). Stress-335 

dependent formation of LDs likely evolved before land plants came to be (Li-Beisson et al., 2019; de 336 



Vries et al., 2020; de Vries and Ischebeck, 2020), but their molecular underpinnings outside of land 337 

plants remain unclear. Here, we confirmed the identity of these Mesotaenium LDs using confocal 338 

microscopy, LD-specific staining and proteomics. Our comprehensive transcriptomic data illuminate 339 

co-expressed modules that might constitute a homologous program for stress-dependent LDs that 340 

acted before plants conquered land. 341 

 342 

METHODS 343 

Algal culturing and gradient table setup 344 

We used the axenic and genome-sequenced Mesotaenium endlicherianum SAG 12.97 345 

(https://sagdb.uni-goettingen.de/detailedList.php?str_number=12.97) from the Algal Culture 346 

Collection, Göttingen, Germany (SAG, Friedl and Lorenz 2012, SAG). Mesotaenium was cultivated 347 

in C-Medium (Ichimura, 1971) for an average of 12 days in an aerated culture glass flasks (SCHOTT, 348 

Germany) at 80 µmol photons m-2 s-1. Prior to the experiment, cell density was analyzed using a 349 

LUNA™ Automated Cell Counter (Logos Biosystems, Annandale, VA, USA) and set to 2.03*107 350 

cells/ml (diluting with C-Medium if needed; settings for cell counting: Cell roundness: 60%, 351 

minimum size: 3 µm, maximum size: 60 µm), corresponding to Abs680nm = 0.33 (Epoch 352 

Microplatereader, BioTek Instruments, USA). For the gradient table setup algal suspension was 353 

distributed across 504 wells (42 twelve-well plates [tissue culture testplates 12 No. 92412, TPP, 354 

Switzerland]; 2.5 mL of culture per well). Plates were sealed with Surgical tape, Micropore™ tape 355 

(3M, Germany) to minimize evaporation. The 42 twelve-well plates were then placed on a table that 356 

generates a cross-gradient of temperature (8.6±0.5 °C to 29.2±0.5 °C on the x-axis) and irradiance 357 

(21.0±2.0 to 527.9±14.0 µmol photons m-2 s-1 on the y-axis) (see Suppl. Table 1). The temperature 358 

gradient was generated using a custom-made table (Labio, Czech Republic) equipped with true-359 

daylight LEDs (sTube 2W 120 ver 11:11, Snaggi, Czech Republic) set to a 16:8 L/D cycle (Light 360 

from 6 am to 22 pm, Central European wintertime).  Mesotaenium samples exposed to the 504 361 

different conditions 65 hours (for sampling for RNAseq and physiological measurements) and 89 362 

hours (for detailed light microscopy) on the gradient table. Condensed water at the top of the 12-well 363 

plates lids was removed three times in the 65 hours timespan by lightly tapping the lids twice.    364 

 365 

Plate reader 366 

In vivo Abs480nm, Abs680nm, and Abs750nm of all 42 plates was measured after 65h exposition (4-367 

6 hours after light on) with an absorbance microplate reader Epoch (BioTek Instruments, VT, USA). 9 368 

data points per well were analyzed and averaged using software Gen5 2.0 (Biotek, USA), resulting in 369 

108 measurements per 12-well plate per wavelength. For downstream analyses these values were 370 

averaged resulting in one value per 12-well plate per wavelength (Suppl. Fig. 1). After 89 h exposition 371 

16 plates were chosen from the prominent gradients (the four most extreme conditions in the corners 372 

and a cross of vibrant growth along the two gradients) for analyzing a full absorption spectrum (300-373 

900nm) using the same setup. (Suppl. Fig. 9, Suppl. Table 10).  374 

 375 

Photophysiological measurements 376 

For maximum-quantum yield measurements (Fv/Fm) the maxi version of the IMAGING PAM 377 

(ImagMAX/L, M-series, Walz, Germany) with an IMAG-K5 CCD camera, controlled with the 378 

ImagingWinGigE (V2.32) software, was used. The Mesotaenium cultures in the 12-well plates were 379 

dark adapted for 10-30 min before measurement. Before measurements, the lid was removed. For the 380 

Fv/Fm measurement a short saturation pulse (Intensity 3) was applied. The measurement settings on 381 

the IMAGING PAM were the following: measuring light 1, gain 3, damping 2, mean over AOI (area 382 

of interest) was turned off. No special SP-routine was applied to modify the signal to noise ratio of the 383 

chlorophyll fluorescence measurement.  384 

 385 

Statistical analysis of absorption and Fv/Fm values and temperature/light cluster analysis 386 

Statistical analysis of the absorption and the Fv/Fm values was done using Kruskal-Wallis test with 387 

post hoc test Fisher's least significant difference (Conover, 1999) using R (version 4.1.3). P-values 388 

were Bonferroni corrected and grouped into significant groups using R packages ‘agricolae’ version 389 

1.3-5 and ‘dplyr’ version 1.0.9. For heatmap generation of physiological values plotted against 390 

temperature/light R package ‘pheatmap’ version 1.0.12 was used. For cluster analysis the R package 391 



‘factoextra’ version 1.0.7 was used. Clusters were generated using the eclust function with clustering 392 

function ‘kmeans’, with number of clusters set to six and for hierarchical clustering ‘euclidean’ was 393 

used as distance measure. Clusters were visualized with principal component analysis (PCA) in R.  394 

 395 

RNA extraction and sequencing 396 

After absorption measurements, the twelve-well plates were put back on the table to let cells adjust to 397 

the table conditions again for a minimum of 5 minutes before harvesting them. For RNA extraction 398 

0.4 mL were taken from every well of the 42 twelve-well plates on the table after pipetting the cells 399 

up and down twice to homogenize them. In total 4.8 mL liquid culture was taken per condition on the 400 

table (i.e., pooling 0.4 mL of each 12 wells per each of the 42 conditions). Samples were then 401 

centrifuged for 5 min at 20 °C and 4000 rpm. The supernatant was removed and the pellet was frozen 402 

at -80 °C. To extract RNA the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich Chemie GmbH, 403 

Germany) was used according to the manufacturer’s instructions. For cell disruption samples in lysis 404 

buffer were ultrasonicated for 1 min and vortexed. RNA samples were treated with DNAse I (Thermo 405 

Fisher, Waltham, MA, USA) and shipped on dry ice to Novogene (Cambridge, UK) where they were 406 

quality checked with a Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). Libraries 407 

were built based on total RNA using poly-T oligo-attached magnetic beads. Following fragmentation, 408 

synthesis of the first strand cDNA was carried out using random hexamer primers and second strand 409 

cDNA using dUTP, instead of dTTP. A directional size-selected library was built that included PCR-410 

based amplification. Sequencing adapters were 5' Adapter: 5'-411 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT-3' 412 

and 3' Adapter: 5'-413 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGATGACTATCTCGTATGCCGTCTTCT414 

GCTTG-3'. The library was sequenced on an Illumina NovaSeq6000 platform. 415 

 416 

Quality control of reads 417 

We checked the quality of our raw reads via FastQC (Andrews, Simon 2010) (v0.11.9) and 418 

summarized the results via MultiQC (Ewels et al. 2016) (v1.11). Based on these and the used adapter 419 

sequence, we filtered and trimmed reads via Trimmomatic (Bolger, Lohse, and Usadel 2014) (v 0.36) 420 

with these parameters: ("ILLUMINACLIP: 421 

novogene_adapter_sequences_Trimmomatic.fa:2:30:10:2:True LEADING:26 TRAILING:26 422 

SLIDINGWINDOW:4:20 MINLEN:36"). We checked the quality of the trimmed reads with FastQC 423 

and MultiQC again. 424 

 425 

Genome annotation 426 

The original annotation of M. endlicherianum (Cheng et al., 2019) had a lower number of genes 427 

compared to other Zygnematophyceae algae. We took advantage of our newly generated RNAseq 428 

dataset to improve genome annotation. Trimmed reads were mapped via HISAT2 (Pertea et al. 2016, 429 

2) and assembled via StringTie (Pertea et al. 2016, 2). StringTie results showed many novel isoforms 430 

as well as novel transcripts. We also used BUSCO V5 (Manni et al. 2021) to measure the 431 

completeness of the gene models in annotation V1 independent of StringTie. Although the gene 432 

prediction method which used by BUSCO at the genome level is very efficient, it is not unexpected if 433 

it misses some proteins that were annotated in a genome via experimental, based on bioinformatic 434 

methods and NGS data, or ab-initio based gene prediction methods. Therefore, we expect that the 435 

BUSCO score based on the proteins of a gene model should be equal to or greater than the BUSCO 436 

score of the genome. When we compared the BUSCO score between the genome and protein 437 

sequences for M. endlicherianum with “viridiplantae.odb.10-2020-09-10”, we noticed that they show 438 

similar numbers (Suppl. Fig. 2). Therefore, we decided to re-annotate the genome of M. 439 

endlicherianum with our comprehensive RNA-Seq datasets as well as public protein and genome 440 

sequences published for its close relatives. 441 

We annotated the M. endlicherianum genome using REAT (v0.6.1). Various gene models 442 

were predicted based on different types of evidence and methods. The final gene models and 443 

annotation V2 were based on agreement with the experimental evidence. At the end, we tried to 444 

quantify “completeness” and quality of the new annotation V2 and the old V1. 445 



First, we used RNAseq evidence with REAT’s “Transcriptome Workflow” with HISAT2 446 

(v2.2.1), Scallop (Shao and Kingsford 2017) (v0.10.5) and StringTie (v2.1.5). We also used Portcullis 447 

(Mapleson et al. 2018) (v1.2.4) to identify genuine junctions based on short reads alignments. This 448 

workflow uses Mikado (Venturini et al. 2018) (v2.3.4) to identify the “best” set of transcripts from 449 

multiple transcript assemblies. 450 

Then, we used gene homology information from representative streptophytes in REAT’s 451 

“Homology Workflow”. SPALN (Gotoh 2008a; 2008b) (v2.4.7) was used to align representative 452 

protein sequences onto the M. endlicherianum genome. The representative dataset consisted on 453 

genome, gene models, and protein sequences of Anthoceros agrestis (Oxford strain) (Li et al. 2020), 454 

Arabidopsis thaliana (C.-Y. Cheng et al. 2017), Azolla filiculoides (Li et al. 2018), Chara braunii 455 

(Nishiyama et al. 2018), Chlorokybus melkonianii (Wang et al. 2020), Chlamydomonas reinhardtii 456 

(Merchant et al. 2007) (v5.6), Klebsormidium nitens (Hori et al. 2014), Mesostigma viride (Liang et 457 

al. 2019), Marchantia polymorpha (Montgomery et al. 2020) (v6.1r1), Penium margaritaceum (Jiao 458 

et al. 2020), Physcomitrium patens (Lang et al. 2018) (v3.3), Selaginella moellendorffii (Banks et al. 459 

2011), and Spirogloea muscicola (S. Cheng et al. 2019). We also used the junction file produced by 460 

Portcullis. Since there were no close relatives of M. endlicherianum on the SPALN species-specific 461 

parameter set, we used three different closest possibilities (Angiosp, Chlospec, and MossWorts) and 462 

built three models. These alignments are filtered using a predefined set of criteria (cf. code on 463 

GitHub) including exon length, intron length, internal stop codon, among others. The final gene 464 

models of V2 were prepared by Mikado. 465 

Afterwards, we used REAT’s “Prediction Workflow” to predict gene models ab initio and 466 

based on RNAseq and homology evidence. This uses Augustus (Stanke et al. 2006; Stanke, 467 

Tzvetkova, and Morgenstern 2006; Hoff and Stanke 2019) (v 3.4.0), SNAP (Korf 2004) (version 468 

2006-07-28), Glimmer (Kelley et al. 2012) (v0.3.2), and CodingQuarry (Testa et al. 2015) (v2.0), 469 

which generate different gene models as the raw material for EvidenceModeler (Haas et al. 2008) 470 

(v1.1.1) that chooses the best set of exons and combine them in a gene model using weights (see 471 

GitHub) that could be adjusted for each sort of prediction and evidence. To include UTRs where 472 

possible, the EVM output is then processed by Mikado using UTR-containing gene models from the 473 

transcriptome and homology workflows as inputs, as well gene models classified by REAT as gold, 474 

silver, and bronze based on their agreement with the set of protein sequences from other streptophyte 475 

genomes (streptophyte algae and land plants), transcriptome alignment, homology alignment, and 476 

junctions. To train ab initio predictors, a user-defined number of models are randomly chosen in a 477 

user-defined ratio between (10%) mono-exonic and (90%) multi-exonic. These models were chosen 478 

from best classified models (gold and silver). For Augustus, we performed meta parameter 479 

optimization and train a model with kfold=8. Beside ab initio predictions, we used Augustus to 480 

predict gene models with three different weights for each evidence type as suggested by REAT 481 

authors (cf. code on GitHub). 482 

At last, we used Minos (“Minos - a Gene Model Consolidation Pipeline for Genome 483 

Annotation Projects” [2019] 2022) which is gene model consolidation pipeline and produces external 484 

metrics based on DIAMOND “BLASTp/BLASTx” (Buchfink, Xie, and Huson 2015), Kallisto (Bray 485 

et al. 2016) (v0.46.2) expression quantification, coding potential calculator (CPC2 v0.1) (Kang et al. 486 

2017, 2) and BUSCO assessments. These metrices pass through Mikado in combination with various 487 

gene models produced with different methods (as mentioned above), Minos determines the best gene 488 

model for each region based on user defined criteria (for details, see GitHub) and external metrics. 489 

Minos also put a tag on each gene model to categorize them based on a user defined threshold (we 490 

used default values) for sequence similarity coverage of homologs, BUSCO score, CPC score, TPM 491 

expression, and transcript score into “high confidence”, “low confidence”, and “predicted genes”. 492 

 493 

Genome annotation assessment 494 

We used two methods to compare the quality of the new gene model with the published one. We 495 

compared the BUSCO scores of the annotated protein sequences as well as genome sequence using 496 

the reference “viridiplantae.odb.10-2020-09-10” dataset. We also used maker (Campbell et al. 2014) 497 

(v3.01.04) to calculate the AED (Eilbeck et al. 2009) to evaluate the agreement of the gene models 498 

with external evidences. Maker-P was used to build the M. endlicherianum gene model V1. 499 



Further, we used the maker package to perform functional annotation via InterProScan and 500 

BLAST using agat (Dainat 2020) package (v0.9.2). Additionally, we performed a BLAST search 501 

against A. thaliana protein sequences (Araport11) and reported the best hit for each sequence in 502 

(Suppl. Table 11) and used eggNOGmapper (Huerta-Cepas et al. 2017; 2019) (v2.1.8) to perform 503 

functional annotation. We used DIAMOND (Buchfink, Xie, and Huson 2015) (v2.0.15) with ultra-504 

sensitive mode, e value cutoff of 1e-7 and in an iterative manner. We used the protein sequences as our 505 

inputs and Viridiplantae (33090) as our taxonomy scope. 506 

 507 

RNA-Seq analysis: Pseudoalignment 508 

In order to quantify gene expression, we used Kallisto (Bray et al. 2016) (v0.45.0). We indexed the 509 

transcriptome file with --kmer-size=31 parameter and used --bootstrap-samples 100 and --rf-stranded 510 

to quantify gene expression based on pseudoaligned reads. We used MultiQC to obtain an overview 511 

of alignment for each condition. 512 

 513 

Filtering, normalization, modeling mean-variance relationship, and data exploration 514 

Kallisto quantification files were imported into R (v4.2.0) with tximport (Soneson, Love, and 515 

Robinson 2016) (v1.24.0) to calculate the counts from abundance via “lengthScaledTPM” based on 516 

our study design file (Suppl. Table 12). We used edgeR (Robinson, McCarthy, and Smyth 2010) 517 

(v3.38.1) for filtering and TMM-normalization (Robinson and Oshlack 2010) of the reads (genes with 518 

>1 count per million (CPM) at log2 scale in a least 3 samples—the number of replicates—were kept). 519 

Then, we used the voom function from limma (Ritchie et al. 2015; Phipson et al. 2016; Law et al. 520 

2014; Liu et al. 2015) (v3.52.2) to model mean-variance relationship. The normalized expression table 521 

on the log2 scale is available in (Suppl. Table 13). We performed principal component analysis based 522 

on the expression table output of voom and visualized the result with ggplot2 (Ggplot2 n.d., 2) 523 

(v3.3.6). We visualized the heatmap of distance and Spearman correlation between all samples 524 

considering all genes via pheatmap (v1.0.12) and calculated clusters via the Euclidian method.  525 

 526 

RNA-Seq analysis: Weighted gene co-expression network analysis 527 

We used WGCNA (Langfelder and Horvath 2008; 2012) package (v1.71) with the expression table 528 

produced by limma. We checked for and filtered out outliers as suggested by WGCNA authors 529 

(Suppl. Fig. 10). Then, we visualized the scale free topology model fit (R2) against the soft thresholds 530 

(ßs) to pick a ß for our network construction (Suppl. Fig. 11). We used signed network type and 531 

“bicor” as our correlation function for WGCNA. Based on these results, we picked 16 as our soft 532 

threshold ‘ß’. We experimentally chose a merging threshold if 0.25 after exploring different values 533 

from 0.2 to 0.4 and investigating the relationship between eigengenes and temperature, light intensity, 534 

FvFm, and absorption (Suppl. Fig. 12). We built the gene co-expression network using a merging 535 

threshold of 0.25 for modules, maximum portion of outliers as 0.05 and minimum module size of 30. 536 

Then, we visualized the correlation between each module eigengene and temperature, light intensity, 537 

FvFm, and absorption to identify which modules are more related to each treatment (Figure 4c). We 538 

provided a table for all genes, their module assignment, inter- and intramodular connectivity, gene 539 

significance for temperature and light intensity, correlation with temperature and light intensity, and 540 

their module membership (aka. Signed eigengene-based connectivity) in (Suppl. Table 5). We also 541 

visualized the graphical representation of the topological overlap matrix of our samples (Suppl. Fig. 542 

13). In order to have a visual representation of gene expression in each module, we drew heatmaps for 543 

each module via pheatmap (using Euclidean method for calculating the distance and complete method 544 

clustering) (Suppl. Fig. 14). GO enrichment analysis was performed via clusterProfiler package (Yu et 545 

al. 2012; Wu et al. 2021) (v4.4.4) using the output of eggNOGmapper and adjusted p-value cut-off 546 

0.05 and q-value cut-off of 0.05, considering only genes that are present in our GO term-to-gene table 547 

which was expressed and passed filtering as our background gene universe (Suppl. Table 6). 548 

Determining the proper background gene list has significant importance in enrichment analysis 549 

(Wijesooriya et al. 2022). 550 

To see how A. thaliana’s well-known genes in stress-response mechanisms (downloaded 551 

from TAIR database via keyword search) were distributed across different modules we performed 552 

BLASTp searches against the new M. endlicherianum annotated proteins. We visualized the 553 

distribution of these IDs for different stress-related keywords in (Suppl. Fig. 15) and the expression of 554 



these genes across different samples via pheatmap (Suppl. Fig. 16). We defined as module hubs the 555 

top 20 genes (nodes) with the highest connectivity within each module (Suppl. Table 5 and 14).  556 

 557 

Differential gene expression analysis 558 

We performed differential gene expression analysis using the limma package. We divided samples 559 

into multiple groups as follows: low light intensity (21 and 39 µmol photons m-2 s-1), medium light 560 

intensity (72 and 129 µmol photons m-2 s-1), high light intensity (329 and 527 µmol photons m-2 s-1), 561 

low temperature (8 °C and 12 °C), medium temperature (17 °C, 20 °C, and 23 °C), high temperature 562 

(26 °C and 29 °C; see grid/colored table layout in Figure 3). We performed all-against-all 563 

comparisons and an additional comparison of those samples from an Fv/Fm < 0.5 versus low light 564 

intensity + medium temperature. We used duplicateCorrelation as suggested by Smyth et al. (2005) to 565 

consider technical replicates. We used clusterprofiler for GO-enrichment analysis (Wu et al. 2021) 566 

with adjusted p-value and q-value cutoff of 0.01 and only genes that were expressed and passed 567 

filtering as our background universe. The heatmap of gene expression profiles, dot plot and cnetplot 568 

of enriched GO-terms for each comparison is available in (Suppl. Table 14 and Suppl. Fig. 17 to 25). 569 

 570 

Phylogenetic analyses 571 

We assembled a protein database based on the protein releases from the genomes of: Anthoceros 572 

agrestis BONN (Li et al., 2020), Anthoceros punctatus (Li et al., 2020), Amborella trichopoda 573 

(Amborella Genome Project, 2013), Arabidopsis thaliana (Lamesch et al., 2012), Azolla filiculoides 574 

(Li et al., 2018), Bathycoccus prasinos (Moreau et al., 2012), Brassica oleracea (Liu et al., 2014), 575 

Brassica rapa (Wang et al., 2010), Brachypodium distachyon (The International Brachypodium 576 

Initiative, 2010), Capsella grandiflora (Slotte et al., 2013), Chara braunii (Nishiyama et al., 2018), 577 

Chlorokybus atmophyticus (Wang et al., 2020), Chlamydomonas reinhardtii (Merchant et al., 2007), 578 

Coccomyxa subellipsoidea (Blanc et al., 2012), Gnetum montanum (Wan et al., 2018), Klebsormidium 579 

nitens (Hori et al., 2014), Marchantia polymorpha (Bowman et al., 2017), Mesostigma viride (Wang 580 

et al., 2020), Micromonas pusilla, Micromonas sp. (Worden et al., 2009), Oryza sativa (Ouyang et al., 581 

2007), Picea abies (Nystedt et al., 2013), Physcomitrium patens (Lang et al., 2018), Salvinia cucullata 582 

(Li et al., 2018), Selaginella moellendorffii (Banks et al., 2011), Solanum lycopersicum (The Tomato 583 

Genome Consortium, 2012), Theobroma cacao (Argout et al., 2011), Mesotaenium endlicherianum 584 

(Cheng et al., 2019), Ostreococcus lucimarinus (Palenik et al., 2007), Penium margaritaceum (Jiao et 585 

al., 2020), Spirogloea muscicola (Cheng et al., 2019), Ulva mutabilis (De Clerck et al., 2018), Volvox 586 

carteri (Prochnik et al., 2010). 587 

Homologs for proteins were detected using BLASTp with Arabidopsis and Mesotaenium 588 

proteins as query against the aforementioned proteins as database. Alignments were computed using 589 

MAFFT v7.490 (Katoh and Standley, 2013). All phylogenies were computed with IQ-TREE 590 

multicore version 1.5.5 (Nguyen et al., 2015); their respective best model for protein evolution was 591 

determined using ModelFinder (Kalyaanamoorthy et al., 2017) according to Bayesian Information 592 

Criterion and 1000 ultrafast bootstrap replicates; 1000 ultrafast bootstrap replicates (Hoang et al., 593 

2018) were carried out and 100 Felsenstein bootstraps (Felsenstein, 1985) for the LDAP phylogeny. 594 

 595 

Differential interference contrast and confocal laser scanning microscopy 596 

Differential interference contrast (DIC) imaging was done for all replicates from the table with a 597 

Olympus BX-60 microscope (Olympus, Japan) with a ProgRes C14plus camera and the ProgRes® 598 

CapturePro Software (version 2.9.01) (JENOPTIK AG, Jena, Germany). The morphology of chosen 599 

conditions (see Supplemental Figure 1) of Mesotaenium cells that were 89 h on the table was 600 

analyzed.  601 

For algae that were used for quantifying the abundance of lipid droplet per cell, a ZEISS Axioscope 7 602 

microscope (Carl Zeiss, Germany) was used including the ZEN software (Carl Zeiss, Germany). Lipid 603 

droplet count was carried out in FIJI (Schindelin et al., 2012). For statistical analysis of the lipid 604 

droplet count data, we first used a Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess normality and 605 

used Mann-Whitney U tests (Mann and Whitney, 1947) with R (version 3.6.1) accordingly. 606 

Confocal laser scanning microscope was done on a Zeiss LSM780 (Carl Zeiss) set as in 607 

Müller et al. (2017). For the staining of the LD structures, we used the neutral lipid specific stain 608 

BODIPY™ 493/503 (EM/EX) (Merck). Mesotaenium cells were grown for 22 days on WHM-609 



medium at 70-80 µmol photons m-2 s-1 and 22°C. These cells were ultrasonicated for 1 min with 1:500 610 

BODIPY and incubated on a shaker for 5 min before visualization. 611 

 612 

Lipid droplet isolation and proteomics 613 

For lipid droplet isolation 23 days old Mesotaenium cells grown on WHM-Medium at 70-80 µmol 614 

photons m-2 s-1 and 22 °C were homogenized using a Tenbroeck or potter homogenizer in lipid droplet 615 

isolation buffer (10 mM sodium phosphate buffer pH 7.5, 200 µM PMFS, 0.5 mM DSP, 10 mM N-616 

Ethylmaleimide). The resulting centrifuged supernatant of a 100 x g spin for 1 min was considered as 617 

total extract (TE). After two further high speed centrifugations (SW40 Ti for 1h, 4°C at 100000 x g, 618 

TLA120 for 1h at 100000 x g and 4°C) the floating fat pad was precipitated at -20 °C using 100% 619 

ethanol overnight. The precipitated pellet was washed with 80% ethanol twice, dried and then 620 

suspended in 6M urea. Protein concentration was determined using BCA. An in-gel SDS gel digestion 621 

was done with trypsin adapted from Shevchenko et al. (1996). C18 Stage tip purification was done 622 

according (Rappsilber et al., 2003; 2007). Protein samples were analyses using LC-MS. For this, 623 

peptide samples were reconstituted in 20 µl LC-MS sample buffer (2% acetonitrile, 0.1% formic 624 

acid). 2 µl of each sample were subjected to reverse phase liquid chromatography for peptide 625 

separation using an RSLCnano Ultimate 3000 system (Thermo Fisher Scientific). Therefore, peptides 626 

were loaded on an Acclaim PepMap 100 pre-column (100 µm x 2 cm, C18, 5 µm, 100 Å; Thermo 627 

Fisher Scientific) with 0.07% trifluoroacetic acid at a flow rate of 20 µL/min for 3 min. Analytical 628 

separation of peptides was done on an Acclaim PepMap RSLC column (75 µm x 50 cm, C18, 2 µm, 629 

100 Å; Thermo Fisher Scientific) at a flow rate of 300 nL/min. The solvent composition was 630 

gradually changed within 94 min from 96 % solvent A (0.1 % formic acid) and 4 % solvent B (80 % 631 

acetonitrile, 0.1 % formic acid) to 10 % solvent B within 2 minutes, to 30 % solvent B within the next 632 

58 min, to 45% solvent B within the following 22 min, and to 90 % solvent B within the last 12 min 633 

of the gradient. All solvents and acids had Optima grade for LC-MS (Thermo Fisher Scientific). 634 

Eluting peptides were on-line ionized by nano-electrospray (nESI) using the Nanospray Flex Ion 635 

Source (Thermo Fisher Scientific) at 1.5 kV (liquid junction) and transferred into a Q Exactive HF 636 

mass spectrometer (Thermo Fisher Scientific). Full scans in a mass range of 300 to 1650 m/z were 637 

recorded at a resolution of 30,000 followed by data-dependent top 10 HCD fragmentation at a 638 

resolution of 15,000 (dynamic exclusion enabled). LC-MS method programming and data acquisition 639 

was performed with the XCalibur 4.0 software (Thermo Fisher Scientific). Afterwards the raw 640 

proteome data were analyzed using Max Quant software version 1.6.2.10 (Cox and Mann, 2008). The 641 

database for this analysis was our new V2 gene model data. The data were then further processed by 642 

the Perseus (1.6.2.2) software (Cox et al., 2008; Tyanova et al., 2016).  643 

 644 

Data availability 645 

All RNAseq reads have been uploaded to NCBI SRA and can be accessed under Bioproject 646 

PRJNA832564 and SRA accessions SRR18936040 to SRR18936170. Codes and Data used for 647 

genome re-annotaiton, WGCNA and differential gene expression analysis are available on our GitHub 648 

page https://github.com/deVries-649 

lab/Response_to_a_gradient_of_environmental_cues_in_mesotaenium_endlicherianum. Proteomic 650 

data have been uploaded to PRIDE. Furthermore, data can be interactively explored at 651 

https://mesotaenium.uni-goettingen.de 652 
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 744 

Figure 1: A fine-combed setup for assessing environmental cues in Mesotaenium. (a) Cladogram 745 

of Streptophyta, highlighting that Mesotaenium endlicherianum SAG 12.97 is a representative of the 746 

closest algal relatives of land plants. (b) Mesotaenium endlicherianum grown in C-medium in 42 747 

twelve-well plates on a gradient table that produces a temperature range of 8.6±0.5 °C to 29.2±0.5 °C 748 

on the x-axis and an irradiance gradient of 21.0±2.0 to 527.9±14.0 µmol photons m-2 s-1 on the y-axis. 749 

(c) Overview of the measured maximum quantum yield Fv/Fm as a proxy for gross physiology (blue) 750 

and Absorption (Abs.) at 480 (orange) and 680 nm (green); individual replicates of the biological 751 

triplicates are shown on the left and the average values are shown on the right. (d) Statistical analysis 752 

of the physiological values (Fv/Fm, Abs. 480 nm, Abs. 680 nm). Numbers correspond to 753 

environmental conditions on the table. Biological triplicates were grouped into significant groups (a-754 

u) with R (version 4.1.3) using a Kruskal-Wallis test coupled with Fisher’s least significance; p values 755 

were Bonferroni corrected. Significant differences at p ≤ 0.001 are shown as letters. (e)  Heatmaps 756 

displaying averaged physiological values of the 42 conditions sorted either by (i) temperature or (ii) 757 

light. A cut-off was set (black vertical line) based on the distribution of the highest values, which were 758 

then summed up to determine a positive correlation with temperature or light conditions. (f) Two 759 

principal component analyses (PCA) showing the correlation of light conditions (left) or temperature 760 

conditions (right) to physiological values (Fv/Fm, Abs. 480, 680 nm). Clusters are shown in different 761 

colors, which are also visualized in an overview scheme of the gradient table at the top of the plots.  762 

 763 

Figure 2: Global profiles of environment-governed gene expression response. (a) Principal 764 

component analysis (PCA), visualizing PC1 and PC2. Backgrounds were drawn to highlight our 765 

interpretation of the observed trends; samples are coded by color (temperature) and symbols 766 

(irradiance in µmol photons m-2 s-1). (b) Visualization of Euclidean distances between samples via 767 

heatmap, from red, zero distance, to blue, furthest distance (a distance of 300). (c) Heatmap of 768 

Spearman correlation between samples, from red, maximum correlation (1.0), to blue, least 769 

correlation (< 0.8). The clusters were calculated via the Euclidean distance. (d) PC1 and PC2 770 

scrutinized using a small multiples method of light intensity and (e) temperature. In (d) shades of gray 771 

corresponds to different light intensities. In (e) different colors represent different temperatures and 772 

were mapped with the same colors as (a). 773 

 774 



Figure 3: Stress-titratable global differential gene expression profiles. To perform differential 775 

gene expression analysis, we divided the table into 9 sectors (see scheme of the table); additionally, a 776 

tenth group was raised based on Fv/Fm < 0.5. Linear models were fitted for each gene and empirical 777 

Bayes statistics computed for differentially expressed genes (DEGs) by the limma package. In total, 778 

37 comparisons were made. DEGs were defined as genes with an absolute fold change ≥ 2 and BH-779 

adjusted p value lesser than 0.01. (a) Volcano plots of DEGs for 9 selected comparisons based on the 780 

sectors and the Fv/Fm < 0.5 criterion. (b) Heatmaps of numbers of DEGs for all sector-based 781 

comparisons (blue, downregulation; red, upregulation; yellow, sum of up- and down-regulated genes); 782 

grey bars label the first component (treatment) for calculating the contrasts (treatment vs. control). (c) 783 

Biological theme comparison summarizing all GO-term enrichment analysis with adjusted p-value ≤ 784 

0.01 of DEGs against all genes that were expressed and passed the filtering in our analyses as 785 

background. The size of each circle is proportional to the count of each GO-term. Only the top 30 786 

enriched terms are shown. (d) Wordle of the 124 genes that showed significant regulation across 787 

multiple comparisons shown in Figure 3a; word size correspond to the number of comparisons (based 788 

on (a) ) in which a gene appeared.  789 

 790 

Figure 4: Unsupervised gene expression clusters recover genetic programs separated by 791 

environmental cues. Gene expression clustering into 26 colored modules was performed using 792 

WGCNA; grey is the module of unclustered genes. (a) Hierarchical cluster tree of 17,095 genes. The 793 

heat map below the dendrogram shows the gene significance measure (from red, positive correlation, 794 

to white, no correlation, to blue, negative correlation) for the four different conditions / physiological 795 

parameters. (b) Heat map of the module–trait correlation based on eigengenes (from red, positive 796 

correlation, to white, no correlation, to blue, negative correlation); see Suppl. Fig. 7 (c) Bar plots of 797 

the mean gene significance across modules (given in the corresponding module color) towards the 798 

parameters light intensity, temperature, and Fv/Fm. (d) Enriched GO-terms for eight of the 26 799 

modules; each inset shows the gene expression profiles of all genes in a given module. (e) 800 

Arabidopsis homologs for key processes were mined based on keywords; they were retrieved from a 801 

look-up table of BLASTp hits in a search of Mesotaenium V2 against A. thaliana representative 802 

protein sequences. Bar charts show the percentage of detected Mesotaenium homologs across the 803 

modules relative to the number of all Arabidopsis IDs assigned to the terms. No blast hit was not 804 

depicted. Abbreviations: proc. = process; reg. = regulation; biogen. = biogenesis; develop. = 805 

development; pos. = positive; neg. = negative; init. = initiation; GEP = Gene expression profile; med. 806 

= mediated; dep. = dependent; modif. = modification; conjug. = conjugation; anneal. = annealing; 807 

compl. = complex; synth. = synthesis; resp. = response; transf. = transferring. 808 

 809 

Figure 5: Molecular programs for environmental responses around recurrent plant hubs. 810 

Visualization of the co-expression networks clustered by WGCNA into the modules blue (3,101 811 

genes), yellow (1,427 genes), green (1,220 genes), purple (506 genes), and pink (718 genes). Nodes, 812 

circles representing genes, are connected by edges whose weight is based on a weighted topological 813 

overlap matrix (TOM); weight is shown in a color gradient from light to dark indicating low to high 814 

topological overlap values in the TOM. Brightly colored nodes represent the 20 most connected genes 815 

(hubs) and are annotated; all other nodes are depicted in the corresponding paler color. Hubs are 816 

annotated based on homology. Around the clusters, different protein-coding hub genes are 817 

highlighted, giving information such as predicted domain structures or phylogenetic relationships; 818 

fully-labelled phylogenies are deposited in Supp. Fig. 26. Circles in phylogenies represent ultrafast 819 

bootstrap support, with larger circles represent high/full support; diamond symbols indicate high 820 

(>90) support for branches separating highlighted clades. An alignment of GLK homologs can be 821 

found in Suppl. Fig. 8. 822 

 823 

Figure 6: Lipid droplets accumulate in Mesotaenium upon changing environments. (a) 824 

Differential interference contrast (DIC) and confocal laser scanning micrographs of Mesotaenium 825 

endlicherianum SAG 12.97 cells accumulating lipid droplets (LDs; arrows). Cells were either 826 

subjected to different temperature/light conditions (see abbreviations below) of the gradient table for 827 

89 h or 216 h. For confocal microscopy, algae were cultured independent of table conditions at 75 828 

µmol photons m-2 s-1 and 22°C for 22 days. LDs are visible as distinct globular structures in NIC and 829 



were stained by the lipid stain BODIPYTM (false-colored green; 493 nm excitation; 503 nm emission) 830 

and chlorophyll autofluorescence (false-colored purple). (b) Violin plots of LD quantification after 9 831 

days of exposure to different environmental conditions including statistical analysis using Mann-832 

Whitney U statistics (significance grouping based on p value < 0.05; see also Suppl. Fig. 27) (c) Heat 833 

map of row-scaled z-scores of the expression of homologs for LD biogenesis and function (see also 834 

Suppl. Fig. 28). Temperature/light conditions are displayed at the bottom as symbols in different 835 

colors, Arabidopsis thaliana (AT) identifiers based on BLASTp search are shown on the right (d) 836 

Proteomic investigation into a lipid enriched phase extracted from Mesotaenium endlicherianum SAG 837 

12.97 cells showing enrichment in hallmark proteins of LDs. Volcano plot showing significantly 838 

(FDR<0.05) enriched Mesotaenium proteins in the lipid enriched phase (right side) compared to 839 

proteins of the total extract (left side). Hallmark A. thaliana LD protein identifiers are annotated based 840 

on BLAST. Top bar on the left plot shows the relative, normalized iBAQ values for ten LD signature 841 

protein detected in Mesotaenium. Bottom bar plot shows the log2 enrichment of proteins 842 

characteristic for sub-cellular compartments. (LLI = Low light, LT = low temperature, MLI = 843 

moderate light, MT = moderate temperature, HLI = high light, HT = high temperature). 844 
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