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ABSTRACT

Plant terregtrialization brought forth the land plants (embryophytes). Embryophytes account for most
of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have
unraveled the firg full genomes of the closest algal relatives of land plants; among the first such
species was Mesotaenium endlicherianum. Here, we used fine-combed RNAseq in tandem with
photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and
light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and
~1.5 Thp (~9.9 billion reads) of data to study combinatory effects of stress response using clustering
aong gradients. We describe mgor hubs in genetic networks underpinning stress response and
acclimation in the molecular physiology of Mesotaenium. Our data suggest that lipid droplet
formation, plastid and cell wall-derived signals denominate molecular programs since more than 600
million years of streptophyte evolution—before plants made their first steps on land.

KEYWORDS
plant evolution; functional genomics; evolutionary genomics; stress physiology; streptophyte algae;
co-expression networks

MAIN

Plant terrestrialization changed the face of our planet. It gave rise to land plants (Embryophyta), the
major condtituents of Earth’s biomass (Bar-On et al. 2018) and founders of the current levels of
amospheric oxygen (Lenton et al. 2016). Land plants belong to the Streptophyta, a monophyletic
group that includes the paraphyletic freshwater and terrestrial sreptophyte algae and the
monophyletic land plants. Meticulous phylogenomic efforts have established the relationships of land
plants to their algal relatives (Wickett et al. 2014; One Thousand Plant Transcriptomes Initiative,
2019). These data brought a surprise: the filamentous and unicellular Zygnematophyceae—and not
other morphologically more elaborate algae—are the closest algal relatives of land plants. Now the
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firg three genomes of maor orders of Zygnematophyceae (see Hess et al., 2022) are at hand:
Mesotaenium endlicherianum, Spirogloea muscicola (Cheng et al., 2019), and Penium margaritaceum
(Jiao et al., 2020). Using these, we are beginning to redefine the molecular chassis shared by land
plants and their closest algal relatives. Included in this shared chassis will be those genes that
facilitated plant terrestrialization. We here focus on one critical aspect: the molecular toolkit for the
response to environmental challenges. For this, we use the unicellular freshwater/subaerial alga
Mesotaenium endlicherianum.

Land plants use a multilayered system for the adequate response to environmental cues. This
involves sensing, signaling, and response mainly by the production of, e.g., protective compounds.
Some of the most versatile patterns in land plant genome evolution concerns genes for environmental
adaptation (Golicz et al., 2016; Gordon et al., 2017; Bayer et al., 2020). That said, there is a shared
core of key regulatory and response factors that are at the heart of plant physiology. These include
phytohormones such as abscisic acid (ABA) found in non-vascular and vascular plants (for an
overview, see Umezawa et al., 2010; Bowman et al., 2019), protective compounds resting on
specialized metabolic routes such phenylpropanoid-derived compounds as well as proteins such as
LATE EMBRYOGENESIS ABUNDANT (LEA; Hundertmark and Hincha 2008; Carella et al.,
2019). Many of the genes integrated into these stress-relevant metabolic routes have homologs in
streptophyte algae (Rieseberg et al., 2022). Taking angiosperms as reference, such stress-relevant
pathways are often patchy. Whether these are also used under the relevant conditions is currently
unknown. For example, while Zygnematopyhceae have a homolog to the ABA-receptor PYL (de
Vries et al. 2018, Cheng et a., 2019), this homolog works in a different, ABA-independent fashion
(Sun et al., 2019). Thus, it is important to put the genetic chassis that could act under environmental
shiftsto the test.

Here, we used afine grid of a bifactorial gradient for two key terrestrial stressors, variation in
irradiance and temperature, to probe the genetic network that the closest algal relatives of land plants
possess for its responsiveness to abiotic environment. Correlating growth, physiology, and global
differential gene expression patterns from 128 transcriptomes (9,892,511,114 of reads, 1.5 Thp of
data) across 126 distinct samples covering a temperature range of >20°C and light range of >500
pmol photons m? s, we pinpoint hubs in the circuits that have been shared along more than 600
million years of streptophyte evolution.

RESULTS
A physiological grid: co-dependency of eurythermy and euryphoty in Mesotaenium
We studied the genome-sequenced strain SAG 1297 of the freshwater aga
Mesotaenium endlicherianum, a member of the Zygnematophyceae, the closest algal relatives of land
plants (Cheng et a., 2019; Figure laand 1b). We cultivated Mesotaeniumin a large-scale setup in 1.5
liters of C medium up to a cell density of 0.33 AU at 680 nm. The culture was distributed across 504
wells (42 twelve well plates; 2.5 mL of culture per well). The well plates were placed on atable with
atemperature gradient from 8.620.5 °C to 29.2+0.5 °C on the x-axis. On top of the table, white LED
lamps created an irradiance gradient from 21.0+2.0 to 527.9+14.0 pmol photons m? s* across the y-
axis, thus creating a 2D gradient table (Figure 1b, Suppl. Table 1). The 504 cultures were exposed to
this gradient setup for 65 hours. The physiological status of the algae was assessed by determining the
maximum quantum yield (F/Fny) using pulse amplitude modulation fluorometry (PAM; IMAGING
PAM, Walz, Germany); growth was assessed using a microplate reader with absorption a 480 nm,
680 nm, and 750 nm (Figure 1c); the entire procedure was repeated in three successive biological
replicates (i.e. three runs of the table, 504 F./F,,and 4,536 absorption measurements per replicate).
The algae showed significant differences (p < 0.001) in growth and gross physiology: F./Fr,
values as well as absorption values decrease (for F./Fr, values at 20.5+1.0 °C: from 0.66+0.02 for
1=21.14 pmol photons m? s* to 0.042+0.04 for 1=534.7 pmol photons m? s*) with rising intensities
of irradiance (Figure 1d, Suppl. Fig. 1, Suppl. Table 2). The lowest F,/F, values (down to zero) were
recorded at conditions of highest irradiance and lowest temperature. Here, low temperature had a
stronger negative impact on growth and physiology than light (for F./Fy, values. a 8.6+0.5 °C,
0.011+0.02 at 133+27 pmol photons m? s* compared to 0.463+0.02 at 29.2+0.5 °C at 118+25 pumol
photons m? s%). Values on growth and physiology clustered by light were less broadly distributed
than if clustered by temperature (Figure le, 1f). Even the highest light intensity (527.9+14.0 umol
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photons m? s') was stressful, but tolerable for the physiology of Mesotaenium at temperatures
between 20.5+0.1°C (F/Fn=0.042+0.04) to 25.3+0.1°C (FJ/Fn= 0.045+0.04); more extreme
temperatures resulted in undetectable Fv/Fm values. Thus, eurythermy might establish the foundation
for euryphoty in Mesotaenium endlicherianum.

Fine-combed global differential gene expression profilesand gene models for Mesotaenium

To shed light on the molecular mechanisms that underpin the switch from tolerable steady-state
conditions to adverse environmental cues in Mesotaenium, we applied global gene expression
analyses using RNAseq. We pooled al twelve wells per plate and extracted RNA from atotal of 126
samples (42 plates, three biological replicates). 114 samples yielded usable RNA that was used to
build 128 libraries (with a minimum of three biological replicates and additional technical replicates)
for sequencing on the Illumina NovoSeg6000 platform. We generated a total of 1.5 Thp of 150 bp
paired read data at an average depth of 37.7 million reads per sample (~9.9 billion reads in total).
Building on this wealth of data, we updated the Mesotaenium gene models. The number of protein-
coding mRNASs increased from 11,080 in the original annotation (V1; Cheng et al. 2019) to 40,326
protein-coding mMRNA (26,009 high confidence, 14,317 low confidence; including splice variants) in
19,233 genes, an additional 4,408 mRNA (in 4,312 genes) labeled as “predicted gene” in our gene
models (Suppl. Table 3). The new gene models of annotation V2 brings the number of genes in
Mesotaenium closer to other Zygnematophyceae with similar genome sizes; V2 has 43 more BUSCO
genes (+10%; 21 less fragmented, 22 less missing; viridiplantae_odbl10) than V1 (Suppl. Fig. 2).
Besides, we calculated Annotation Edit Distance metrics (AED) to assess the congruence (0 to 1, with
0 being the best) between biological evidence and V1 and V2. In the cumulative fraction of annotation
against AED score, V2 has more mRNAs with AED < 0.5. For example, 70% of mRNAs in V1
(7,756 mRNAS) have an AED score < 0.5 compared to 60% in V2 (26,840 mRNAS). Thisis sensible
since V2 was built based on the same set of evidence used to calculate AED and it shows higher
congruence with them (Suppl. Fig. 3). Thus, we pseudoaligned our data onto the new Mesotaenium
transcriptome V2 (average alignment rate was 87.31%; Suppl. Table 4).

To understand the gross profile of the gene expression data, we performed principal
component analysis (PCA; Figure 2a). Independent biological replicates from the same condition
clustered in close proximity. The most variation in data was explained by temperature (PCL; describes
35% of variance), followed by irradiance (PC2; describes 18.1% of variance). We evaluated the
distance (Figure 2b) and Spearman correlation (Figure 2¢) using all genes to look for trends among
different growth conditions. The data can be grouped into at least three categories: (1) samples with
high light and/or high temperature, (2) a collection of low-temperature (8, 13, 17 °C) samples, and (3)
samples at stead-state. Large clusters included steady-date, high light + heat, and high light. Most
distinct was the cluster formed by samples from the high temperature + high light (Small multiples;
Figure 2d and 2€).

Plastid-related genes stand out in differential gene expression profiles

For dissecting the differential gene expression responses, we divided the table into nine sectors and,
additionally, a cohort of stressed algae based on F/F, < 0.5 (Figure 3). 36 comparisons were
performed, among which we focused on nine, which additionally included the F./Fn-based
comparison. Genes were considered to be differentially expressed between groups at an absolute fold
change > 2 and a Benjamini-Hochberg corrected p < 0.01 (Figure 3a and b). Gross gene expression
profiles were titratable by the intensity of environmental cues, i.e., with increasing disparity between
conditions compared, and overall following the pattern in the PCA (cf. Figure 3b and Figure 2a). The
most differentially regulated genes (6,578) were pinpointed by comparing low light and low
temperature (LLI_LT) versus high light and high temperature (HLI_HT). Enriched GO terms among
regulated genes most frequently included plastid biology-associated genes (Figure 3c). To scrutinize
these data for specific genes that show a robust and universal response to alterations to the
environment, we intersected all 8,157 significantly regulated genes pinpointed by the different
comparisons. 3, 30, and 124 genes overlapped among all 9, 8, and 7 comparisons, respectively. These
concertedly pinpointed genes were mostly light harvesting genes, corroborating the importance of
plastids in the overall cell biology of Mesotaenium (Figure 3d). Indeed, the 30 genes found in all
comparisons included for example reactive oxygen species (ROS)-relevant genes such as ELIP and
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fatty acid metabolic genes. To understand whether these genes integrate into the context of molecular
programs, we next looked at gene co-expression.

Unsupervised gene expression cluster srecover genetic programs shaped by physiology

The environmental gradients triggered changes in the expression of gene cohorts. We wanted to
understand their concerted action independent of any prioritization guided by homology to any land
plant genes—solely from the molecular programs that operated in the algae. To do so, we applied
weighted gene co-expression network analysis (WGCNA) for unsupervised clustering (Figure 4). To
then understand the driving forces behind these changes, we turned to the highly connected genes
(nodes) in the network—the hubs (Figure 5).

The 17,905 genes expressed in our samples (and that passed the minimum expression
threshold) were clustered into 26 modules, which we refer to with colors (Figure 4a). Orange is the
smallest module (39 genes), the largest modules are Turquoise, Blue, and Brown with 3568, 3101,
and 1746 genes, respectively. The samples were taken under a range of distinct physiological
conditions. Resulting data are a combined expression of the different environmental cues and the
modulation of the algal physiology. To investigate the biological role of each module, we used their
eigengenes as representatives for the modules' gene expression profiles and correlated their behavior
with the two environmental cues light intensity and temperature as well as the algal parameters
absorption (culture density and pigmentation) and F./Fy, (overall physiological status). One of the
foremost general patterns in cellular response to stress are ROS. These act as signals as well as
culprits that, if not quenched, damage biomolecules; this was represented in GO terms of module
Green that positively correlated with light intensity (r = 0.88, p = 6x10*) and negatively with Fu/Fy,
(r =-0.79, p = 6x10%°) (Figure 4d and Suppl. Fig. 4 to 7 and Suppl. Table 5 and 6).

The clusters also recovered the genetic signatures of thriving algae. Module Purple negatively
correlates with increasing light (r = -0.94, p = 3x10®°) and positively with absorption and Fu/Fr, (r =
0.67, p=2x10"and r = 0.67, p = 2x10™®). These dense and physiologically healthy cell populations
(experiencing no light stress) ramped up cell division (see Figure 4D and Suppl. Table 6), signified by
homologs of cyclin and TPX2 appearing as hub genes. The 9th most connected hub gene was a
kinesin homologous to important proteins such as PHRAGMOPLAST ORIENTING KINESIN 2
(Figure 5; Suppl. Table 7), which thus is a likely conserved cdl divison hub of all
Phragmoplastophyta—going back to a common ancestor that lived in the late Cryogenium.

Conserved hubsfor plastid-derived signals

Chloroplasts act as environmental sensorsin land plant cells (Kleine et al., 2021). In concert with this,
many of the clusters we identified were associated with plastid biology and/or physiology (Figure 4d,
Suppl. Fig. 4 to 7, Suppl. Table 6). The brown cluster showed many plastid-related terms and
negatively correlates with temperature (r = -0.95, p = 7x10%) (Suppl. Fig. 5) and showed enrichment
in GO-terms related to plastids, general transcription and trandation. Among the top 20 hub genesin
cluster brown, 12 were associated with translation and ribosomes (Suppl. Table 7). The light cyan
cluster positively correlates with increasing light (r = 0.93, p = 10°) (Suppl. Fig. 6) and negatively
with Fy/Fy, (r = -0.67, p = 5x10™®) (Suppl. Fig. 4) whereas the blue cluster negatively correlates with
increasing light (r = -0.76, p = 10%) and positively with F,/Fy, (r = 0.67, p = 2x10®). Concomitantly,
the blue module had a high number of enriched GO-terms (Suppl. Fig. 5 and Suppl. Table 6), many of
which were plastid-related terms, cellular signaling, and terms that tie the two together; that is,
signaling processes emanating from the plastid. This was also prominent in the light cyan module,
where several terms related to terpenoid and apocarotenoid metabolism were enriched.

The hubs of many clusters, including those blue, light cyan, and yellow mentioned before,
reflect an association with plastid-related processes. To highlight a few, the second most connected
gene in module Blue was a homolog of GLK1 (Suppl. Fig. 8), a transcriptiona factor (TF) that
regulates chloroplast development and the activity of nuclear genes involved in photosynthetic light
reaction and chlorophyll biosynthesis (Rossini et al., 2001; Yasumura et al., 2005; Waters et al.,
2009). Blue also featured hydroxypyruvate reductase, important in photorespiration (Timm et al.,
2008), as the fourth most connected gene . A CY P450 gene homologous to LUTEIN DEFICIENT 5
(LUTS5), was the 7" most connected, suggesting the involvement of pigment-related signaling.
Moreover, a homolog of ABA responsive elements-binding factor 2 (ABF2) was part of cluster Blue,
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bolstering previous discussions that parts of the ABA signaling module consist of ancient wires whose
relevance in stress response predate plant terrestrialization and ABA dependency (de Vries et d.,
2018; Sun et al., 2019; Firgt-Jansen et al., 2020).

Next to GLK—the most connected TF—other highly connected TFs appeared in Blue. These
included the photomorphogenesis-regulating CONSTANS-like 3 (COL3; 4™ most connected TF).
Noteworthily, also a homolog of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) was present
in module Blugg CO/COL and GLKs are both degradation targets of COP1 (Liu et a., 2008;
SaridJKrebs et a., 2015; Ordofiez-Herrera et al., 2018). Further, the circadian regulator BROTHER
OF LUX ARRHYTHMO (2™ most connected TF). Further, homologs of ETHYLENE-
INSENSITIVE3-like 1 (6™ most connected TF) and several ERFs were among the most connected
TFs. A link to ethylene is noteworthy, because investigations of the Zygnematophyceae Spirogyra
pratensis (§p) have shown that SPEIN3 can rescue Arabidopsis ein3-1 mutant plants (Ju et al., 2015).
Furthermore, exogenous application of ethylene on Spirogyra triggers stress-, plastid- and
photosynthesis-associated gene expression responses similar to land plants (Van de Pod et a., 2016).
This speaksto a conserved regulatory framework that involves ethylene-associated factors, and maybe
ethylene itself, in environmental signaling cascades in the common ancestor of and plants and their
closest algal relatives.

Light cyan featured not only hubs related to ROS homeostasis from the thioredoxin
superfamily and other light-induced proteins, but also pigment and apocarotenoid metabolism; these
are the source of important signals from the chloroplast that likely have deep evolutionary roots
(Rieseberg et al., 2022) and are also formed by light dependent oxidative reactions (recently reviewed
by Moreno et al., 2021). Module Yellow correlated positively with light intensity (r = 0.62, p = 10™%)
and negatively with absorption and F./Fr, (r = -0.79, p = 102 and r = -0.81, p = 3x10*; Figure 3B);
GO terms associated with plastids and proteolytic enzymes (FtsH, ClpP, Kato et a., 2012),
recapitulating well-known ties of protein homeostasis and plastid maintenance. Indeed, cluster yellow
featured five hubs that are homologous to CLP proteases, critical for chloroplast protein homeostasis
(Sogren et a., 2006; Nishimura et al., 2016), and hubs homologous to genes that orchestrate the
coordination of transcriptional activity between chloroplasts and the nucleus; the latter included
homologs of (i) pTAC6, which is essential for plastid gene expression and thus chloroplast
development in Arabidopsis (Pfalz et al., 2006), and (ii) a homolog of GENOMES UNCOUPLED 2,
one of the foremost genes in the classical plastid—nucleus communication pathway (Susek et a.,
1993). Among the TFs in cluster yellow was a homolog of the bZIP light signaling master regulator
ELONGATED HYPOCOTYL 5 (HY5; reviewed in Jiao et al., 2007).

Of ancient signaling cascadesand cell wall perturbance

Mitogen-activated protein kinases (MAPK) constitute environmental response pathways in all
eukaryotes (Chen and Thorner, 2007). In land plants, several abiotic and biotic cues have been
described to trigger MAPK-mediated signaling (Nakagami et al., 2005; Rodriguez et al., 2010; Meng
and Zhang, 2013; Chen et al., 2021); MAPK and phototropin kinases appeared as hubs in cluster
Blue. Moreover, plant MAPK-based signaling is interwoven with wound response and brassinosteroid
signaling (Nakagami et al., 2005). Stress often coincides with a perturbance of plant cell wall
homeostasis. Cluster Pink includes hubs for such wounding and cell-wall derived signals. This was
paired with the GO term brassinosteroid signaling, which balances growth, cell wall homeostasis, and
stress in Arabidopsis (Sun et al., 2010; Planas-Riverola et al., 2019). Among the hubs in cluster Pink
were homologs for (i) diverse receptor kinases known from Arabidopsis to sense aterations in cell
wall integrity (Hématy et al., 2007), and (ii) EXORDIUM (of which Mesotaenium has 12 homologs),
which integrates growth with environmental signaling (Schroder et al., 2009). This was paired with
the COBRA family proteins being the most and third most connected hubs in the module. These
proteins are known to be involved in cell expansion and balancing pathogen response with growth
(Schindelmann et al., 2001; Roudier et al., 2002; Ko et al., 2006). It appears that Mesotaenium bears
parts of aloop that senses physico-chemcial perturbance of cell wall homeostasis; in land plants, these
loops include brassinosteroid signaling (Wolf et al., 2014).

Lipid droplet formation constitutes a stressresponse predating plant terr estrialization
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In land plants lipid droplet (LD) formation and triacylglycerol (TAG) accumulation is common to
many stress responses, including heat, cold and drought (Higashi et al., 2015; Mueller et al., 2015;
Giddaet al., 2016; Doner et a., 2021; Krawczyk et a., 2022). We observed that cells of Mesotaenium
accumulated inclusions resembling LDs (Figure 6a) upon prolonged exposure to stress. Consistently,
these globular structures were stained by BODIPY ™ 493/503 (EM/EX), a common dye for lipid and
oil-rich compartments (Listenberger and Brown, 2007; Kretzschmar et al., 2020). Under different
conditions of temperature and light conditions, counts of LDs per cell showed significant differences
(Figure 6b, Suppl. Table 8). We observed that the CGI-58 homolog was the 10th most connected hub
in clugter green (Figure 5b). CGI-58 is key to lipid homeostasis, causing, if perturbed, the Chanarin-
Dorfman syndrome in humans and LD overaccumulation in Arabidopsis (Lass et al., 2006; James et
al., 2010; Figure 5¢). Further, differential gene expression profiles pinpointed elevation of transcripts
for characteristic LD protein homologs such asHSD1 and oleosin (OLE7) under high temperature and
moderate light conditions (29 °C, 21 — 130 pmol photons m-2 s-1) and LD-associated protein (LDAP)
and PUX 10 under high temperature and light conditions (21-29 °C, 130 — 528 umol photons m? s™)
(Figure 6¢).

To scrutinize whether these structures are comparable to LDs of land plants, we performed
sub-cellular fractionizations, obtained lipid-rich phases, and subjected them to proteomics using liquid
chromatography-mass spectrometry (LC-MS). We identified 739 proteins in the putative LD fraction
and 1574 proteinsin the total extract (Suppl. Table 9). Of these, 14 were significantly enriched in the
putative LD fraction (Figure 6 d, volcano plot) including hallmark LD proteins such as OLE, caleosin
(CLO), steroleosin (HSD), and LDAP (Figure 6 d, bar plots). Overall, Mesotaenium responds to stress
conditions by formation of LDs containing signature proteins for embryophytic LDs.

DISCUSSION

Owing to their plain morphology, Zygnematophyceae emerged as unexpected closest algal relatives of
land plants (Wickett et al., 2014; One Thousand Plant Transcriptomes Initiative, 2019; Hess et al.,
2022). That said, the molecular programs of Zygnematophyceae speak of their close relationships to
land plants. These point to a conserved chassis that likely operated in the last common ancestor of
land plants and algae, featuring the proposed action of various halmark genes (e.g., PYL homologs,
GRAS family TFs and more) that were once considered land plant innovations. Building on the
genomic resources for Mesotaenium, we have here delved into the molecular physiology and genetic
programs of this alga, revealing which programs bear out when challenged with environmental cues.

Recent studies have proposed homology for the chassis of plastid—nucleus communication
upon adverse environmental conditions between land plants and phragmoplastophytic streptophyte
algae (Nishiyamaet al., 2018; de Vries et a., 2018; Zhao et a., 2019). The GUN pathway likely hasa
conserved role in chloroplast transcription and streptophyte algal GUN1 homologs can rescue
chloroplast retrograde signaling of Arabidopsis Atgunl mutants (Honkanen and Small, 2022); the
degree of evolutionary conservation in the retrograde signaling pathway across streptophytes remains
obscure (Honkanen and Small, 2022). Signals from damaged chloroplasts inhibit GLK1 expression in
Arabidopsis (Martin et a., 2016). The negative correlation of module Blue (featuring MeGLK) with
high light (leading to damaged chloroplasts) supports a role of MeGLK in operationa retrograde
signaling. Our data underscore that the wires between these components in plastid—nucleus
communication are likely shared across more than 600 million years of streptophyte evolution and
correlate with dealing with light regimes and adjustment of photosynthetic performance in the
chloroplast aso in the closest relatives of land plants.

One of the special features of plant and agal cells is their cell wall, forming their main
interface with the environment. It is therefore not surprising that the cell wall is woven into a
signaling network for environmental cues. In land plants, brassinosteroid-mediated signaling is part of
afeedback loop for cell wall homeostasis and integrity (Wolf et al., 2014). While the involvement of
brassinogteroids in streptophyte algae is doubtful—as is the case for many other phytohormones—our
data suggest that there is a homologous chassis for a feedback loop for cell wall damage-based
signaling that predates plant terrestrialization.

In land plants, the formation of LDs is known to occur under a variety of adverse
environmental conditions (Gasulla et a., 2013; Mueller et a., 2015; Gidda et d., 2016). Stress-
dependent formation of LDs likely evolved before land plants came to be (Li-Beisson et al., 2019; de
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Vries et a., 2020; de Vries and Ischebeck, 2020), but their molecular underpinnings outside of land
plants remain unclear. Here, we confirmed the identity of these Mesotaenium LDs using confocal
microscopy, LD-specific staining and proteomics. Our comprehensive transcriptomic data illuminate
co-expressed modules that might congtitute a homologous program for stress-dependent LDs that
acted before plants conquered land.

METHODS

Algal culturing and gradient table setup

We used the axenic and genome-sequenced Mesotaenium endlicherianum SAG 12.97
(https://sagdb.uni-goettingen.de/detailedList.php?str_number=12.97) from the Algal Culture
Collection, Gottingen, Germany (SAG, Friedl and Lorenz 2012, SAG). Mesotaenium was cultivated
in C-Medium (Ichimura, 1971) for an average of 12 days in an aerated culture glass flasks (SCHOTT,
Germany) at 80 pumol photons m? s™. Prior to the experiment, cell density was analyzed using a
LUNA™ Automated Cell Counter (Logos Biosystems, Annandale, VA, USA) and et to 2.03*10’
celldml (diluting with C-Medium if needed; settings for cell counting: Cell roundness. 60%,
minimum size: 3 pm, maximum size: 60 pm), corresponding to Abs680nm = 0.33 (Epoch
Microplatereader, BioTek Instruments, USA). For the gradient table setup algal suspension was
distributed across 504 wells (42 twelve-well plates [tissue culture testplates 12 No. 92412, TPP,
Switzerland]; 2.5 mL of culture per well). Plates were sealed with Surgical tape, Micropore™ tape
(3M, Germany) to minimize evaporation. The 42 twelve-well plates were then placed on a table that
generates a cross-gradient of temperature (8.6+0.5 °C to 29.2+0.5 °C on the x-axis) and irradiance
(21.0+£2.0 to 527.9+14.0 pmol photons m? s on the y-axis) (see Suppl. Table 1). The temperature
gradient was generated using a custom-made table (Labio, Czech Republic) equipped with true-
daylight LEDs (sTube 2W 120 ver 11:11, Snaggi, Czech Republic) sat to a 16:8 L/D cycle (Light
from 6 am to 22 pm, Central European wintertime). Mesotaenium samples exposed to the 504
different conditions 65 hours (for sampling for RNAseq and physiological measurements) and 89
hours (for detailed light microscopy) on the gradient table. Condensed water at the top of the 12-well
plates lids was removed three times in the 65 hours timespan by lightly tapping the lids twice.

Platereader

In vivo Abs480nm, Abs680nm, and Abs750nm of all 42 plates was measured after 65h exposition (4-
6 hours after light on) with an absorbance microplate reader Epoch (BioTek Instruments, VT, USA). 9
data points per well were analyzed and averaged using software Gen5 2.0 (Biotek, USA), resulting in
108 measurements per 12-well plate per wavelength. For downstream analyses these values were
averaged resulting in one value per 12-well plate per wavelength (Suppl. Fig. 1). After 89 h exposition
16 plates were chosen from the prominent gradients (the four most extreme conditions in the corners
and a cross of vibrant growth along the two gradients) for analyzing a full absorption spectrum (300-
900nm) using the same setup. (Suppl. Fig. 9, Suppl. Table 10).

Photophysiological measurements

For maximum-quantum yield measurements (F/F) the maxi verson of the IMAGING PAM
(ImagMAX/L, M-series, Wdz, Germany) with an IMAG-K5 CCD camera, controlled with the
ImagingWinGigE (V2.32) software, was used. The Mesotaenium cultures in the 12-well plates were
dark adapted for 10-30 min before measurement. Before measurements, the lid was removed. For the
FJ/Fm measurement a short saturation pulse (Intensity 3) was applied. The measurement settings on
the IMAGING PAM were the following: measuring light 1, gain 3, damping 2, mean over AOI (area
of interest) was turned off. No special SP-routine was applied to modify the signal to noise ratio of the
chlorophyll fluorescence measurement.

Statigtical analysis of absorption and F,/F, values and temperature/light cluster analys's

Statistical analysis of the absorption and the Fv/Fm values was done using Kruskal-Wallis test with
post hoc test Fisher's least significant difference (Conover, 1999) usng R (version 4.1.3). P-values
were Bonferroni corrected and grouped into significant groups using R packages ‘agricolae’ version
1.3-5 and ‘dplyr’ version 1.0.9. For heatmap generation of physiological values plotted against
temperature/light R package ‘pheatmap’ version 1.0.12 was used. For cluster analysis the R package
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‘factoextra’ version 1.0.7 was used. Clusters were generated using the eclust function with clustering
function ‘kmeans’, with number of clusters set to six and for hierarchical clustering ‘euclidean’ was
used as distance measure. Clusters were visualized with principal component analysis (PCA) in R.

RNA extraction and sequencing

After absorption measurements, the twelve-well plates were put back on the table to let cells adjust to
the table conditions again for a minimum of 5 minutes before harvesting them. For RNA extraction
0.4 mL were taken from every well of the 42 twelve-well plates on the table after pipetting the cells
up and down twice to homogenize them. In total 4.8 mL liquid culture was taken per condition on the
table (i.e, pooling 0.4 mL of each 12 wells per each of the 42 conditions). Samples were then
centrifuged for 5 min at 20 °C and 4000 rpm. The supernatant was removed and the pellet was frozen
a -80 °C. To extract RNA the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich Chemie GmbH,
Germany) was used according to the manufacturer’s instructions. For cell disruption samplesin lysis
buffer were ultrasonicated for 1 min and vortexed. RNA samples were treated with DNAse | (Thermo
Fisher, Waltham, MA, USA) and shipped on dry ice to Novogene (Cambridge, UK) where they were
quality checked with a Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). Libraries
were built based on total RNA using poly-T oligo-attached magnetic beads. Following fragmentation,
synthesis of the first srand cDNA was carried out using random hexamer primers and second strand
cDNA using dUTP, ingtead of dTTP. A directional size-selected library was built that included PCR-

based amplification. Seguencing adapters were 5 Adapter: 5-
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT-3'
and 3 Adapter: 5-

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGATGACTATCTCGTATGCCGTCTTCT
GCTTG-3'. The library was sequenced on an |llumina NovaSeq6000 platform.

Quiality control of reads

We checked the quality of our raw reads via FastQC (Andrews, Simon 2010) (v0.11.9) and
summarized the results via MultiQC (Ewels et al. 2016) (v1.11). Based on these and the used adapter
sequence, we filtered and trimmed reads via Trimmomatic (Bolger, Lohse, and Usadel 2014) (v 0.36)
with these parameters: ("ILLUMINACLIP:
novogene _adapter_sequences Trimmomatic.fa:2:30:10:2: True LEADING:26 TRAILING:26
SLIDINGWINDOW:4:20 MINLEN:36"). We checked the quality of the trimmed reads with FastQC
and MultiQC again.

Genome annotation

The original annotation of M. endlicherianum (Cheng et a., 2019) had a lower number of genes
compared to other Zygnematophyceae algae. We took advantage of our newly generated RNAseq
dataset to improve genome annotation. Trimmed reads were mapped via HISAT2 (Pertea et al. 2016,
2) and assembled via StringTie (Pertea et al. 2016, 2). StringTie results showed many novel isoforms
as well as novel transcripts. We also used BUSCO V5 (Manni et a. 2021) to measure the
completeness of the gene models in annotation V1 independent of StringTie. Although the gene
prediction method which used by BUSCO at the genome level isvery efficient, it is not unexpected if
it misses some proteins that were annotated in a genome via experimental, based on bioinformatic
methods and NGS data, or ab-initio based gene prediction methods. Therefore, we expect that the
BUSCO score based on the proteins of a gene model should be equal to or greater than the BUSCO
score of the genome. When we compared the BUSCO score between the genome and protein
sequences for M. endlicherianum with “viridiplantae.odb.10-2020-09-10", we noticed that they show
similar numbers (Suppl. Fig. 2). Therefore, we decided to re-annotate the genome of M.
endlicherianum with our comprehensive RNA-Seq datasets as well as public protein and genome
sequences published for its close relatives.

We annotated the M. endlicherianum genome using REAT (v0.6.1). Various gene models
were predicted based on different types of evidence and methods. The final gene models and
annotation V2 were based on agreement with the experimental evidence. At the end, we tried to
quantify “completeness’ and quality of the new annotation V2 and the old V1.
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Firg, we used RNAseq evidence with REAT’s “Transcriptome Workflow” with HISAT2
(v2.2.1), Scallop (Shao and Kingsford 2017) (v0.10.5) and StringTie (v2.1.5). We also used Portcullis
(Mapleson et al. 2018) (v1.2.4) to identify genuine junctions based on short reads alignments. This
workflow uses Mikado (Venturini et al. 2018) (v2.3.4) to identify the “best” set of transcripts from
multiple transcript assemblies.

Then, we used gene homology information from representative streptophytes in REAT's
“Homology Workflow”. SPALN (Gotoh 2008a; 2008b) (v2.4.7) was used to align representative
protein sequences onto the M. endlicherianum genome. The representative dataset consisted on
genome, gene modds, and protein sequences of Anthoceros agrestis (Oxford gtrain) (Li et al. 2020),
Arabidopsis thaliana (C.-Y. Cheng et al. 2017), Azolla filiculoides (Li et al. 2018), Chara braunii
(Nishiyama et al. 2018), Chlorokybus melkonianii (Wang et al. 2020), Chlamydomonas reinhardtii
(Merchant et al. 2007) (v5.6), Klebsormidium nitens (Hori et al. 2014), Mesostigma viride (Liang et
al. 2019), Marchantia polymorpha (Montgomery et a. 2020) (v6.1r1), Penium margaritaceum (Jiao
et al. 2020), Physcomitrium patens (Lang et al. 2018) (v3.3), Sdaginella moellendorffii (Banks et al.
2011), and Spirogloea muscicola (S. Cheng et al. 2019). We also used the junction file produced by
Portcullis. Since there were no close relatives of M. endlicherianum on the SPALN species-specific
parameter set, we used three different closest possibilities (Angiosp, Chlospec, and MaossWorts) and
built three models. These alignments are filtered using a predefined set of criteria (cf. code on
GitHub) including exon length, intron length, internal stop codon, among others. The final gene
models of V2 were prepared by Mikado.

Afterwards, we used REAT’s “Prediction Workflow” to predict gene models ab initio and
based on RNAseq and homology evidence. This uses Augustus (Stanke et al. 2006; Stanke,
Tzvetkova, and Morgengtern 2006; Hoff and Stanke 2019) (v 3.4.0), SNAP (Korf 2004) (version
2006-07-28), Glimmer (Kelley et al. 2012) (v0.3.2), and CodingQuarry (Testa et al. 2015) (v2.0),
which generate different gene models as the raw material for EvidenceModeler (Haas et al. 2008)
(v1.1.1) that chooses the best set of exons and combine them in a gene model using weights (see
GitHub) that could be adjusted for each sort of prediction and evidence. To include UTRs where
possible, the EVM output is then processed by Mikado using UTR-containing gene models from the
transcriptome and homology workflows as inputs, as well gene models classified by REAT as gold,
silver, and bronze based on their agreement with the set of protein sequences from other streptophyte
genomes (streptophyte algae and land plants), transcriptome alignment, homology alignment, and
junctions. To train ab initio predictors, a user-defined number of models are randomly chosen in a
user-defined ratio between (10%) mono-exonic and (90%) multi-exonic. These models were chosen
from best classified models (gold and silver). For Augustus, we performed meta parameter
optimization and train a model with kfold=8. Beside ab initio predictions, we used Augustus to
predict gene models with three different weights for each evidence type as suggested by REAT
authors (cf. code on GitHub).

At last, we used Minos (“Minos - a Gene Model Consolidation Pipeline for Genome
Annotation Projects’ [2019] 2022) which is gene model consolidation pipeline and produces external
metrics based on DIAMOND “BLASTp/BLASTX” (Buchfink, Xie, and Huson 2015), Kallisto (Bray
et a. 2016) (v0.46.2) expression quantification, coding potential calculator (CPC2 v0.1) (Kang et al.
2017, 2) and BUSCO assessments. These metrices pass through Mikado in combination with various
gene models produced with different methods (as mentioned above), Minos determines the best gene
model for each region based on user defined criteria (for details, see GitHub) and external metrics.
Minos also put a tag on each gene model to categorize them based on a user defined threshold (we
used default values) for sequence similarity coverage of homologs, BUSCO score, CPC score, TPM
expression, and transcript score into “ high confidence”, “low confidence”, and “predicted genes’.

Genome annotation assessment

We used two methods to compare the quality of the new gene modd with the published one. We
compared the BUSCO scores of the annotated protein sequences as well as genome sequence using
the reference “viridiplantae.odb.10-2020-09-10" dataset. We also used maker (Campbell et al. 2014)
(v3.01.04) to calculate the AED (Eilbeck et al. 2009) to evauate the agreement of the gene models
with external evidences. Maker-P was used to build the M. endlicherianum gene model V1.
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Further, we used the maker package to perform functional annotation via InterProScan and
BLAST using agat (Dainat 2020) package (v0.9.2). Additionally, we performed a BLAST search
againgt A. thaliana protein sequences (Araportll) and reported the best hit for each sequence in
(Suppl. Table 11) and used eggNOGmapper (Huerta-Cepas et al. 2017; 2019) (v2.1.8) to perform
functional annotation. We used DIAMOND (Buchfink, Xie, and Huson 2015) (v2.0.15) with ultra-
sensitive mode, e value cutoff of 1€ and in an iterative manner. We used the protein sequences as our
inputs and Viridiplantae (33090) as our taxonomy scope.

RNA-Seqg analysis: Pseudoalignment

In order to quantify gene expression, we used Kallisto (Bray et al. 2016) (v0.45.0). We indexed the
transcriptome file with --kmer-size=31 parameter and used --bootstrap-samples 100 and --rf-stranded
to quantify gene expression based on pseudoaligned reads. We used MultiQC to obtain an overview
of alignment for each condition.

Filtering, normalization, modeling mean-variance r elationship, and data exploration

Kallisto quantification files were imported into R (v4.2.0) with tximport (Soneson, Love, and
Robinson 2016) (v1.24.0) to calculate the counts from abundance via “lengthScaledTPM” based on
our study design file (Suppl. Table 12). We used edgeR (Robinson, McCarthy, and Smyth 2010)
(v3.38.1) for filtering and TMM-normalization (Robinson and Oshlack 2010) of the reads (genes with
>1 count per million (CPM) at log2 scale in a least 3 samples—the number of replicates—were kept).
Then, we used the voom function from limma (Ritchie et al. 2015; Phipson et al. 2016; Law et al.
2014; Liu et al. 2015) (v3.52.2) to model mean-variance relationship. The normalized expression table
on the log2 scale is available in (Suppl. Table 13). We performed principal component analysis based
on the expression table output of voom and visualized the result with ggplot2 (Ggplot2 n.d., 2)
(v3.3.6). We visualized the heatmap of distance and Spearman correlation between all samples
considering all genes via pheatmap (v1.0.12) and calculated clusters via the Euclidian method.

RNA-Seq analyss: Weighted gene co-expression network analysis

We used WGCNA (Langfelder and Horvath 2008; 2012) package (v1.71) with the expression table
produced by limma. We checked for and filtered out outliers as suggested by WGCNA authors
(Suppl. Fig. 10). Then, we visualized the scale free topology model fit (R?) against the soft thresholds
(Bs) to pick a B for our network construction (Suppl. Fig. 11). We used signed network type and
“bicor” as our correlation function for WGCNA. Based on these results, we picked 16 as our soft
threshold ‘3. We experimentally chose a merging threshold if 0.25 after exploring different values
from 0.2 to 0.4 and investigating the relationship between eigengenes and temperature, light intensity,
F.Fm, and absorption (Suppl. Fig. 12). We built the gene co-expression network using a merging
threshold of 0.25 for modules, maximum portion of outliers as 0.05 and minimum module size of 30.
Then, we visualized the correlation between each module eigengene and temperature, light intensity,
F.Fm, and absorption to identify which modules are more related to each treatment (Figure 4c). We
provided a table for all genes, their module assignment, inter- and intramodular connectivity, gene
significance for temperature and light intensity, correlation with temperature and light intensity, and
their module membership (aka. Signed eigengene-based connectivity) in (Suppl. Table 5). We aso
visualized the graphical representation of the topological overlap matrix of our samples (Suppl. Fig.
13). In order to have avisual representation of gene expression in each module, we drew heatmaps for
each module via pheatmap (using Euclidean method for calculating the distance and complete method
clustering) (Suppl. Fig. 14). GO enrichment analysis was performed via clusterProfiler package (Y u et
a. 2012; Wu €t al. 2021) (v4.4.4) using the output of eggNOGmapper and adjusted p-value cut-off
0.05 and g-value cut-off of 0.05, considering only genesthat are present in our GO term-to-gene table
which was expressed and passed filtering as our background gene universe (Suppl. Table 6).
Determining the proper background gene list has significant importance in enrichment analysis
(Wijesooriyaet al. 2022).

To see how A. thaliana's well-known genes in gress-response mechanisms (downloaded
from TAIR database via keyword search) were distributed across different modules we performed
BLASTp searches againgt the new M. endlicherianum annotated proteins. We visualized the
distribution of these IDs for different stress-related keywords in (Suppl. Fig. 15) and the expression of
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these genes across different samples via pheatmap (Suppl. Fig. 16). We defined as module hubs the
top 20 genes (nodes) with the highest connectivity within each module (Suppl. Table 5 and 14).

Differential gene expression analysis

We performed differential gene expression analysis using the limma package. We divided samples
into multiple groups as follows: low light intensity (21 and 39 pmol photons m? s*), medium light
intensity (72 and 129 umol photons m s, high light intensity (329 and 527 pmol photons m? s%),
low temperature (8 °C and 12 °C), medium temperature (17 °C, 20 °C, and 23 °C), high temperature
(26 °C and 29 °C; see grid/colored table layout in Figure 3). We performed all-against-all
comparisons and an additional comparison of those samples from an F./Fn, < 0.5 versus low light
intensity + medium temperature. We used duplicateCorrelation as suggested by Smyth et al. (2005) to
consider technical replicates. We used clusterprofiler for GO-enrichment analysis (Wu et al. 2021)
with adjusted p-value and g-value cutoff of 0.01 and only genes that were expressed and passed
filtering as our background universe. The heatmap of gene expression profiles, dot plot and cnetplot
of enriched GO-terms for each comparison isavailable in (Suppl. Table 14 and Suppl. Fig. 17 to 25).

Phylogenetic analyses

We assembled a protein database based on the protein releases from the genomes of: Anthoceros
agrestis BONN (Li et al., 2020), Anthoceros punctatus (Li et al., 2020), Amborella trichopoda
(Amborella Genome Project, 2013), Arabidopsis thaliana (Lamesch et al., 2012), Azolla filiculoides
(Li et al., 2018), Bathycoccus prasinos (Moreau et al., 2012), Brassica oleracea (Liu et a., 2014),
Brassica rapa (Wang et al., 2010), Brachypodium distachyon (The International Brachypodium
Initiative, 2010), Capsella grandiflora (Slotte et al., 2013), Chara braunii (Nishiyama et al., 2018),
Chlorokybus atmophyticus (Wang et al., 2020), Chlamydomonas reinhardtii (Merchant et al., 2007),
Coccomyxa subellipsoidea (Blanc et al., 2012), Gnetum montanum (Wan et al., 2018), Klebsormidium
nitens (Hori et al., 2014), Marchantia polymorpha (Bowman et al., 2017), Mesostigma viride (Wang
et a., 2020), Micromonas pusilla, Micromonas sp. (Worden et al., 2009), Oryza sativa (Ouyang et al.,
2007), Picea abies (Nystedt et al., 2013), Physcomitrium patens (Lang et al., 2018), Salvinia cucullata
(Li et al., 2018), Selaginella moellendorffii (Banks et a., 2011), Solanum lycopersicum (The Tomato
Genome Consortium, 2012), Theobroma cacao (Argout et al., 2011), Mesotaenium endlicherianum
(Cheng et al., 2019), Ostreococcus lucimarinus (Palenik et al., 2007), Penium margaritaceum (Jiao et
al., 2020), Spirogloea muscicola (Cheng et a., 2019), Ulva mutabilis (De Clerck et al., 2018), Volvox
carteri (Prochnik et al., 2010).

Homologs for proteins were detected using BLASTp with Arabidopsis and Mesotaenium
proteins as query against the aforementioned proteins as database. Alignments were computed using
MAFFT v7.490 (Katoh and Standley, 2013). All phylogenies were computed with 1Q-TREE
multicore version 1.5.5 (Nguyen et al., 2015); their respective best model for protein evolution was
determined using ModelFinder (Kalyaanamoorthy et al., 2017) according to Bayesian Information
Criterion and 1000 ultrafast bootstrap replicates; 1000 ultrafast bootstrap replicates (Hoang et al.,
2018) were carried out and 100 Felsenstein bootstraps (Felsenstein, 1985) for the LDAP phylogeny.

Differential interference contrast and confocal laser scanning microscopy
Differential interference contrast (DIC) imaging was done for all replicates from the table with a
Olympus BX-60 microscope (Olympus, Japan) with a ProgRes C14plus camera and the ProgRes®
CapturePro Software (version 2.9.01) (JENOPTIK AG, Jena, Germany). The morphology of chosen
conditions (see Supplemental Figure 1) of Mesotaenium cells that were 89 h on the table was
analyzed.
For algae that were used for quantifying the abundance of lipid droplet per cell, a ZEISS Axioscope 7
microscope (Carl Zeiss, Germany) was used including the zgy software (Carl Zeiss, Germany). Lipid
droplet count was carried out in FIJl (Schindelin et al., 2012). For datistical analysis of the lipid
droplet count data, we first used a Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess normality and
used Mann-Whitney U tests (Mann and Whitney, 1947) with R (version 3.6.1) accordingly.

Confocal laser scanning microscope was done on a Zeiss LSM780 (Carl Zeiss) set as in
Mdller et al. (2017). For the staining of the LD structures, we used the neutral lipid specific stain
BODIPY™ 493/503 (EM/EX) (Merck). Mesotaenium cells were grown for 22 days on WHM-
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medium at 70-80 umol photons m* s* and 22°C. These cells were ultrasonicated for 1 min with 1:500
BODIPY and incubated on a shaker for 5 min before visualization.

Lipid droplet isolation and pr oteomics

For lipid droplet isolation 23 days old Mesotaenium cells grown on WHM-Medium at 70-80 umol
photons m? s and 22 °C were homogenized using a Tenbroeck or potter homogenizer in lipid droplet
isolation buffer (10 mM sodium phosphate buffer pH 7.5, 200 uM PMFS, 0.5 mM DSP, 10 mM N-
Ethylmaleimide). The resulting centrifuged supernatant of a 100 x g spin for 1 min was considered as
total extract (TE). After two further high speed centrifugations (SW40 Ti for 1h, 4°C at 100000 x g,
TLA120 for 1h at 100000 x g and 4°C) the floating fat pad was precipitated at -20 °C using 100%
ethanol overnight. The precipitated pellet was washed with 80% ethanol twice, dried and then
suspended in 6M urea. Protein concentration was determined using BCA. An in-gel SDS gel digestion
was done with trypsin adapted from Shevchenko et a. (1996). C18 Stage tip purification was done
according (Rappsilber et al., 2003; 2007). Protein samples were analyses using LC-MS. For this,
peptide samples were reconstituted in 20 pl LC-MS sample buffer (2% acetonitrile, 0.1% formic
acid). 2 pl of each sample were subjected to reverse phase liquid chromatography for peptide
separation using an RSLCnano Ultimate 3000 system (Thermo Fisher Scientific). Therefore, peptides
were loaded on an Acclaim PepMap 100 pre-column (100 pm x 2 cm, C18, 5 um, 100 A; Thermo
Fisher Scientific) with 0.07% trifluoroacetic acid at a flow rate of 20 pL/min for 3 min. Analytical
separation of peptides was done on an Acclaim PepMap RSLC column (75 pum x 50 cm, C18, 2 um,
100 A; Thermo Fisher Scientific) at a flow rate of 300 nL/min. The solvent composition was
gradually changed within 94 min from 96 % solvent A (0.1 % formic acid) and 4 % solvent B (80 %
acetonitrile, 0.1 % formic acid) to 10 % solvent B within 2 minutes, to 30 % solvent B within the next
58 min, to 45% solvent B within the following 22 min, and to 90 % solvent B within the last 12 min
of the gradient. All solvents and acids had Optima grade for LC-MS (Thermo Fisher Scientific).
Eluting peptides were on-line ionized by nano-electrospray (nESI) using the Nanospray Flex lon
Source (Thermo Fisher Scientific) at 1.5 kV (liquid junction) and transferred into a Q Exactive HF
mass spectrometer (Thermo Fisher Scientific). Full scans in a mass range of 300 to 1650 m/z were
recorded at a resolution of 30,000 followed by data-dependent top 10 HCD fragmentation at a
resolution of 15,000 (dynamic exclusion enabled). LC-MS method programming and data acquisition
was performed with the XCalibur 4.0 software (Thermo Fisher Scientific). Afterwards the raw
proteome data were analyzed using Max Quant software version 1.6.2.10 (Cox and Mann, 2008). The
database for this analysis was our new V2 gene model data. The data were then further processed by
the Perseus (1.6.2.2) software (Cox et a., 2008; Tyanovaet a., 2016).

Data availability

All RNAseq reads have been uploaded to NCBI SRA and can be accessed under Bioproject
PRINA832564 and SRA accessions SRR18936040 to SRR18936170. Codes and Data used for
genome re-annotaiton, WGCNA and differential gene expression analysis are available on our GitHub
page https://github.com/deVries-
lab/Response to_a gradient_of environmental_cues in_mesotaenium_endlicherianum.  Proteomic
data have been uploaded to PRIDE. Furthermore, data can be interactively explored at
https://mesotaeni um.uni-goettingen.de
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SUPPLEMENTAL FIGURES

Supplemental Figure 1. F./Fy, and absorption values of all replicates of gradient tables; representative
micrographs of the most extreme corners and of vividly growing algae along the two gradients.
Supplemental Figure 2. BUSCO comparison between genome, protein sequences V1, protein
sequencesV?2

Supplemental Figure 3. Cumulative fraction of annotation vs AED plot for gene model V1 and V2
Supplemental Figure 4. Module membership versus Gene Significance for genes in different modules
with respect to F./F,

Supplemental Figure 5. Module membership versus Gene Significance for genes in different modules
with respect to Temperature

Supplemental Figure 6. Module membership versus Gene Significance for genes in different modules
with respect to light intensity

Supplemental Figure 7. Heatmap of the correlation between module eigengenes and light intensity,
temperature, absorption, replicate, and F,/F, as well as student test p-value

Supplemental Figure 8. The GLK alignment

Supplemental Figure 9. Absorption spectraof al replicates at chosen conditions.

Supplemental Figure 10. Sample dendrogram and trait heatmap to identify outliers for WGCNA
Supplemental Figure 11. Picking a soft threshold for WGCNA based on scale independence and Mean
connectivity

Supplemental Figure 12. Clustering of different modules and traits based for identifying a merging
threshold

Supplemental Figure 13. The graphical representation of the topological overlap matrix

Supplemental Figure 14. Heatmap of gene expression Z-score values for each module

Supplemental Figure 15. Digtribution of best blast hit of A. thaliana stress response genes among
WGCNA modules

Supplemental Figure 16. Heatmap of best blagt hit of A. thaliana stress response genes in M.
endlicherianum across different growth conditions

Supplemental Figure 17. Dotplot, cnetplot and heatmaps of DEGs comparing FvFm control vs stress
Supplemental Figure 18. Dotplot, cnetplot and heatmaps of DEGs comparing HLI HT vsLLI MT
Supplemental Figure 19. Dotplot, cnetplot and heatmaps of DEGs comparing MLI_HT vsLLI_MT
Supplemental Figure 20. Dotplot, cnetplot and heatmaps of DEGs comparing LLI_ HT vsLLI_MT
Supplemental Figure 21. Dotplot, cnetplot and heatmaps of DEGs comparing HLI_MT vsLLI_MT
Supplemental Figure 22. Dotplot, cnetplot and heatmaps of DEGs comparing MLI_MT vsLLI_MT
Supplemental Figure 23. Dotplot, cnetplot and heatmaps of DEGs comparing HLI LT vsLLI_MT
Supplemental Figure 24. Dotplot, cnetplot and heatmaps of DEGs comparing MLI_LT vsLLI_MT
Supplemental Figure 25. Dotplot, cnetplot and heatmaps of DEGs comparing MLI_LT vsLLI_MT
Supplemental Figure 26. Fully-labeled phylogenies of hub genes.
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Supplemental Figure 27. Lipid droplet count setup 2.
Supplemental Figure 28. LDAP phylogeny.

SUPPLEMENTAL TABLES

Supplemental Table 1. Temperature and light intensity measurements of all 504 coordinates on the
gradient table.

Supplemental Table 2. All 504 F,/F,, and absorption measurements of all replicates.

Supplemental Table 3. Number of genes and transcriptsin gene model V2

Supplemental Table 4. The general stats of raw reads, trimmed reads, and pseudoalignment
Supplemental Table 5. Summary of WGCNA Results

Supplemental Table 6. The results of GO-enrichment analysis for all modules of WGCNA
Supplemental Table 7. The list of top20 hubs for each module.

Supplemental Table 8. Counts of lipid dropletsin micrographs.

Supplemental Table 9. Full proteomic results, showing Mesotaenium gene model V2 identifiers,
Arabidopsis gene identifiers, and IBAQ values.

Supplemental Table 10. All data on absorption spectraof all replicates at chosen conditions.
Supplemental Table 11. Best blast hit of M. endlicherianum gene model againg A. thaliana
(Araport11)

Supplemental Table 12. Study design file used for RNASeq analysis

Supplemental Table 13. The CPM normalized expression table on the log2 scale

Supplemental Table 14. The GO-enrichment results of 9 pairwise comparisons

FIGURE LEGENDS

Figure 1: A fine-combed setup for assessing environmental cuesin M esotaenium. (a) Cladogram
of Streptophyta, highlighting that Mesotaenium endlicherianum SAG 12.97 is a representative of the
closest algal relatives of land plants. (b) Mesotaenium endlicherianum grown in C-medium in 42
twelve-well plates on a gradient table that produces a temperature range of 8.6+0.5 °C to 29.2+0.5 °C
on the x-axis and an irradiance gradient of 21.0+2.0 to 527.9+14.0 pmol photons m? s* on the y-axis.
(c) Overview of the measured maximum quantum yield F,/F, as a proxy for gross physiology (blue)
and Absorption (Abs.) at 480 (orange) and 680 nm (green); individual replicates of the biological
triplicates are shown on the left and the average values are shown on the right. (d) Statistical analysis
of the physiological values (F./Fn, Abs. 480 nm, Abs. 680 nm). Numbers correspond to
environmental conditions on the table. Biological triplicates were grouped into significant groups (a-
u) with R (version 4.1.3) using a Kruskal-Wallis test coupled with Fisher’s least significance; p values
were Bonferroni corrected. Significant differences at p < 0.001 are shown as letters. () Heatmaps
displaying averaged physiological values of the 42 conditions sorted either by (i) temperature or (ii)
light. A cut-off was set (black vertical line) based on the distribution of the highest values, which were
then summed up to determine a positive correlation with temperature or light conditions. (f) Two
principal component analyses (PCA) showing the correlation of light conditions (Ieft) or temperature
conditions (right) to physiological values (F./Fn, Abs. 480, 680 nm). Clusters are shown in different
colors, which are also visualized in an overview scheme of the gradient table at the top of the plots.

Figure 2: Global profiles of environment-governed gene expression response. (a) Principal
component analysis (PCA), visualizing PC1 and PC2. Backgrounds were drawn to highlight our
interpretation of the observed trends, samples are coded by color (temperature) and symbols
(irradiance in umol photons m? s™). (b) Visualization of Euclidean distances between samples via
heatmap, from red, zero distance, to blue, furthest distance (a distance of 300). (c) Heatmap of
Spearman correlation between samples, from red, maximum correlation (1.0), to blue, least
correlation (< 0.8). The clusters were calculated via the Euclidean distance. (d) PC1 and PC2
scrutinized using a small multiples method of light intensity and (e) temperature. In (d) shades of gray
corresponds to different light intensties. In (e) different colors represent different temperatures and
were mapped with the same colors as (a).
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Figure 3: Stress-titratable global differential gene expression profiles. To perform differential
gene expression analysis, we divided the table into 9 sectors (see scheme of the table); additionally, a
tenth group was raised based on Fv/Fm < 0.5. Linear models were fitted for each gene and empirical
Bayes statistics computed for differentially expressed genes (DEGSs) by the limma package. In total,
37 comparisons were made. DEGs were defined as genes with an absolute fold change > 2 and BH-
adjusted p value lesser than 0.01. (a) Volcano plots of DEGs for 9 selected comparisons based on the
sectors and the Fv/Fm < 0.5 criterion. (b) Heatmaps of numbers of DEGs for all sector-based
comparisons (blue, downregulation; red, upregulation; yellow, sum of up- and down-regulated genes);
grey bars label the first component (treatment) for calculating the contrasts (treatment vs. control). (c)
Biological theme comparison summarizing all GO-term enrichment analysis with adjusted p-value <
0.01 of DEGs against all genes that were expressed and passed the filtering in our analyses as
background. The size of each circle is proportional to the count of each GO-term. Only the top 30
enriched terms are shown. (d) Wordle of the 124 genes that showed significant regulation across
multiple comparisons shown in Figure 3a; word size correspond to the number of comparisons (based
on (a) ) in which agene appeared.

Figure 4: Unsupervised gene expresson clusters recover genetic programs separated by
environmental cues. Gene expression clustering into 26 colored modules was performed using
WGCNA,; grey is the module of unclustered genes. (a) Hierarchical cluster tree of 17,095 genes. The
heat map below the dendrogram shows the gene significance measure (from red, positive correlation,
to white, no correlation, to blue, negative correlation) for the four different conditions / physiological
parameters. (b) Heat map of the module-trait correlation based on eigengenes (from red, positive
correlation, to white, no correlation, to blue, negative correlation); see Suppl. Fig. 7 (c) Bar plots of
the mean gene significance across modules (given in the corresponding module color) towards the
parameters light intensity, temperature, and F./Fn,. (d) Enriched GO-terms for eight of the 26
modules; each inset shows the gene expression profiles of al genes in a given module. (€
Arabidopsis homologs for key processes were mined based on keywords; they were retrieved from a
look-up table of BLASTp hits in a search of Mesotaenium V2 againg A. thaliana representative
protein sequences. Bar charts show the percentage of detected Mesotaenium homologs across the
modules relative to the number of all Arabidopsis IDs assigned to the terms. No blast hit was not
depicted. Abbreviations. proc. = process; reg. = regulation; biogen. = biogenesis, develop. =
development; pos. = positive; neg. = negative; init. = initiation; GEP = Gene expression profile; med.
= mediated; dep. = dependent; modif. = modification; conjug. = conjugation; anneal. = annealing;
compl. = complex; synth. = synthesis; resp. = response; transf. = transferring.

Figure 5: Molecular programs for environmental responses around recurrent plant hubs.
Visualization of the co-expression networks clustered by WGCNA into the modules blue (3,101
genes), yellow (1,427 genes), green (1,220 genes), purple (506 genes), and pink (718 genes). Nodes,
circles representing genes, are connected by edges whose weight is based on a weighted topological
overlap matrix (TOM); weight is shown in a color gradient from light to dark indicating low to high
topological overlap valuesin the TOM. Brightly colored nodes represent the 20 most connected genes
(hubs) and are annotated; all other nodes are depicted in the corresponding paler color. Hubs are
annotated based on homology. Around the clugters, different protein-coding hub genes are
highlighted, giving information such as predicted domain structures or phylogenetic relationships,
fully-labelled phylogenies are deposited in Supp. Fig. 26. Circles in phylogenies represent ultrafast
bootstrap support, with larger circles represent high/full support; diamond symbols indicate high
(>90) support for branches separating highlighted clades. An alignment of GLK homologs can be
found in Suppl. Fig. 8.

Figure 6: Lipid droplets accumulate in Mesotaenium upon changing environments. (a)
Differential interference contrast (DIC) and confocal laser scanning micrographs of Mesotaenium
endlicherianum SAG 12.97 cells accumulating lipid droplets (LDs, arrows). Cells were either
subjected to different temperature/light conditions (see abbreviations below) of the gradient table for
89 h or 216 h. For confocal microscopy, algae were cultured independent of table conditions at 75
pmol photons m? s* and 22°C for 22 days. LDs are visible as distinct globular structuresin NIC and
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were stained by the lipid stain BODIPY ™ (false-colored green; 493 nm excitation; 503 nm emission)
and chlorophyll autofluorescence (false-colored purple). (b) Violin plots of LD quantification after 9
days of exposure to different environmental conditions including statistical analysis using Mann-
Whitney U datistics (significance grouping based on p value < 0.05; see also Suppl. Fig. 27) (c) Heat
map of row-scaled z-scores of the expression of homologs for LD biogenesis and function (see also
Suppl. Fig. 28). Temperature/light conditions are displayed at the bottom as symbols in different
colors, Arabidopsis thaliana (AT) identifiers based on BLASTp search are shown on the right (d)
Proteomic investigation into a lipid enriched phase extracted from Mesotaenium endlicherianum SAG
12.97 cells showing enrichment in hallmark proteins of LDs. Volcano plot showing significantly
(FDR<0.05) enriched Mesotaenium proteins in the lipid enriched phase (right side) compared to
proteins of the total extract (left side). Hallmark A. thaliana LD protein identifiers are annotated based
on BLAST. Top bar on the left plot shows the relative, normalized iBAQ values for ten LD signature
protein detected in Mesotaenium. Bottom bar plot shows the log2 enrichment of proteins
characterigtic for sub-cellular compartments. (LLI = Low light, LT = low temperature, MLI =
moderate light, MT = moderate temperature, HLI = high light, HT = high temperature).
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