

# Environmental gradients reveal stress hubs predating plant terrestrialization

Armin Dadras<sup>1,\*</sup>, Janine M. R. Fürst-Jansen<sup>1,\*</sup>, Tatyana Darienko<sup>1</sup>, Denis Krone<sup>1</sup>, Patricia Scholz<sup>2</sup>, Tim P. Rieseberg<sup>1</sup>, Iker Irisarri<sup>1,3,4</sup>, Rasmus Steinkamp<sup>1</sup>, Maike Hansen<sup>5</sup>, Henrik Buschmann<sup>6</sup>, Oliver Valerius<sup>7</sup>, Gerhard H. Braus<sup>7</sup>, Ute Hoecker<sup>5</sup>, Marek Mutwil<sup>8</sup>, Till Ischebeck<sup>9</sup>, Sophie de Vries<sup>1</sup>, Maike Lorenz<sup>10</sup>, Jan de Vries<sup>1,2,11#</sup>

1 — University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077  
2 Goettingen, Germany

2 — University of Goettingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077  
3 Goettingen, Germany

3 — University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077 Goettingen, Germany

4 — Leibniz Institute for the Analysis of Biodiversity Change (LIB), Centre for Molecular Biodiversity Research, Museum of Nature,  
5 Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany

5 — University of Cologne, Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, Zülpicher Str.  
6 47b, Cologne 50674, Germany

6 — University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and  
7 Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany

7 — University of Goettingen, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and  
8 Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Grisebachstr. 8,  
9 37077 Goettingen, Germany

10 — School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore

11 — University of Münster, Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), 48143 Münster, Germany

12 — University of Goettingen, Albrecht-von-Haller Institute for Plant Science, Department of Experimental Phycology and SAG Culture  
13 Collection of Algae, Nikolausberger Weg 18, 37073 Goettingen, Germany

14 — University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics,  
15 Goldschmidtstr. 1, 37077 Goettingen, Germany

16 \*contributed equally

17 #author for correspondence: [devries.jan@uni-goettingen.de](mailto:devries.jan@uni-goettingen.de)

18 **ORCID:** Armin Dadras 0000-0001-7649-2388, Janine MR Fürst-Jansen 0000-0002-5269-8725, Tatyana Darienko 0000-0002-1957-0076,  
19 Patricia Scholz 0000-0003-0761-9175, Tim P Rieseberg 0000-0003-3548-8475, Henrik Buschmann 0000-0003-3022-6150, Oliver Valerius  
20 0000-0003-4430-819X, Gerhard H. Braus 0000-0002-3117-5626, Ute Hoecker 0000-0002-5636-9777, Marek Mutwil 0000-0002-7848-  
21 0126, Iker Irisarri 0000-0002-3628-1137, Till Ischebeck 0000-0003-0737-3822, Sophie de Vries 0000-0002-5267-8935, Maike Lorenz  
22 0000-0002-2277-3077, Jan de Vries 0000-0003-3507-5195

## ABSTRACT

Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unraveled the first full genomes of the closest algal relatives of land plants; among the first such species was *Mesotaenium endlicherianum*. Here, we used fine-combed RNAseq in tandem with photophysiological assessment on *Mesotaenium* exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study combinatory effects of stress response using clustering along gradients. We describe major hubs in genetic networks underpinning stress response and acclimation in the molecular physiology of *Mesotaenium*. Our data suggest that lipid droplet formation, plastid and cell wall-derived signals denote molecular programs since more than 600 million years of streptophyte evolution—before plants made their first steps on land.

## KEYWORDS

plant evolution; functional genomics; evolutionary genomics; stress physiology; streptophyte algae; co-expression networks

## MAIN

Plant terrestrialization changed the face of our planet. It gave rise to land plants (Embryophyta), the major constituents of Earth's biomass (Bar-On et al. 2018) and founders of the current levels of atmospheric oxygen (Lenton et al. 2016). Land plants belong to the Streptophyta, a monophyletic group that includes the paraphyletic freshwater and terrestrial streptophyte algae and the monophyletic land plants. Meticulous phylogenomic efforts have established the relationships of land plants to their algal relatives (Wickett et al. 2014; One Thousand Plant Transcriptomes Initiative, 2019). These data brought a surprise: the filamentous and unicellular Zygnematophyceae—and not other morphologically more elaborate algae—are the closest algal relatives of land plants. Now the

63 first three genomes of major orders of Zygnematophyceae (see Hess et al., 2022) are at hand:  
64 *Mesotaenium endlicherianum*, *Spirogloea muscicola* (Cheng et al., 2019), and *Penium margaritaceum*  
65 (Jiao et al., 2020). Using these, we are beginning to redefine the molecular chassis shared by land  
66 plants and their closest algal relatives. Included in this shared chassis will be those genes that  
67 facilitated plant terrestrialization. We here focus on one critical aspect: the molecular toolkit for the  
68 response to environmental challenges. For this, we use the unicellular freshwater/subaerial alga  
69 *Mesotaenium endlicherianum*.

70 Land plants use a multilayered system for the adequate response to environmental cues. This  
71 involves sensing, signaling, and response mainly by the production of, e.g., protective compounds.  
72 Some of the most versatile patterns in land plant genome evolution concerns genes for environmental  
73 adaptation (Golicz et al., 2016; Gordon et al., 2017; Bayer et al., 2020). That said, there is a shared  
74 core of key regulatory and response factors that are at the heart of plant physiology. These include  
75 phytohormones such as abscisic acid (ABA) found in non-vascular and vascular plants (for an  
76 overview, see Umezawa et al., 2010; Bowman et al., 2019), protective compounds resting on  
77 specialized metabolic routes such phenylpropanoid-derived compounds as well as proteins such as  
78 LATE EMBRYOGENESIS ABUNDANT (LEA; Hundertmark and Hincha 2008; Carella et al.,  
79 2019). Many of the genes integrated into these stress-relevant metabolic routes have homologs in  
80 streptophyte algae (Rieseberg et al., 2022). Taking angiosperms as reference, such stress-relevant  
81 pathways are often patchy. Whether these are also used under the relevant conditions is currently  
82 unknown. For example, while Zygnematophyceae have a homolog to the ABA-receptor PYL (de  
83 Vries et al. 2018, Cheng et al., 2019), this homolog works in a different, ABA-independent fashion  
84 (Sun et al., 2019). Thus, it is important to put the genetic chassis that could act under environmental  
85 shifts to the test.

86 Here, we used a fine grid of a bifactorial gradient for two key terrestrial stressors, variation in  
87 irradiance and temperature, to probe the genetic network that the closest algal relatives of land plants  
88 possess for its responsiveness to abiotic environment. Correlating growth, physiology, and global  
89 differential gene expression patterns from 128 transcriptomes (9,892,511,114 of reads, 1.5 Tbp of  
90 data) across 126 distinct samples covering a temperature range of >20°C and light range of >500  
91  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ , we pinpoint hubs in the circuits that have been shared along more than 600  
92 million years of streptophyte evolution.

93

## 94 RESULTS

### 95 A physiological grid: co-dependency of eurythermy and euryphytly in *Mesotaenium*

96 We studied the genome-sequenced strain SAG 12.97 of the freshwater alga  
97 *Mesotaenium endlicherianum*, a member of the Zygnematophyceae, the closest algal relatives of land  
98 plants (Cheng et al., 2019; Figure 1a and 1b). We cultivated *Mesotaenium* in a large-scale setup in 1.5  
99 liters of C medium up to a cell density of 0.33 AU at 680 nm. The culture was distributed across 504  
100 wells (42 twelve well plates; 2.5 mL of culture per well). The well plates were placed on a table with  
101 a temperature gradient from  $8.6 \pm 0.5$  °C to  $29.2 \pm 0.5$  °C on the x-axis. On top of the table, white LED  
102 lamps created an irradiance gradient from  $21.0 \pm 2.0$  to  $527.9 \pm 14.0 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$  across the y-  
103 axis, thus creating a 2D gradient table (Figure 1b, Suppl. Table 1). The 504 cultures were exposed to  
104 this gradient setup for 65 hours. The physiological status of the algae was assessed by determining the  
105 maximum quantum yield ( $F_v/F_m$ ) using pulse amplitude modulation fluorometry (PAM; IMAGING  
106 PAM, Walz, Germany); growth was assessed using a microplate reader with absorption at 480 nm,  
107 680 nm, and 750 nm (Figure 1c); the entire procedure was repeated in three successive biological  
108 replicates (i.e. three runs of the table, 504  $F_v/F_m$  and 4,536 absorption measurements per replicate).

109 The algae showed significant differences ( $p \leq 0.001$ ) in growth and gross physiology:  $F_v/F_m$   
110 values as well as absorption values decrease (for  $F_v/F_m$  values at  $20.5 \pm 1.0$  °C: from  $0.66 \pm 0.02$  for  
111  $I=21.14 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$  to  $0.042 \pm 0.04$  for  $I=534.7 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ) with rising intensities  
112 of irradiance (Figure 1d, Suppl. Fig. 1, Suppl. Table 2). The lowest  $F_v/F_m$  values (down to zero) were  
113 recorded at conditions of highest irradiance and lowest temperature. Here, low temperature had a  
114 stronger negative impact on growth and physiology than light (for  $F_v/F_m$  values: at  $8.6 \pm 0.5$  °C,  
115  $0.011 \pm 0.02$  at  $133 \pm 27 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$  compared to  $0.463 \pm 0.02$  at  $29.2 \pm 0.5$  °C at  $118 \pm 25 \mu\text{mol}$   
116  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ). Values on growth and physiology clustered by light were less broadly distributed  
117 than if clustered by temperature (Figure 1e, 1f). Even the highest light intensity ( $527.9 \pm 14.0 \mu\text{mol}$

118 photons  $\text{m}^{-2} \text{ s}^{-1}$ ) was stressful, but tolerable for the physiology of *Mesotaenium* at temperatures  
119 between  $20.5 \pm 0.1^\circ\text{C}$  ( $F_v/F_m = 0.042 \pm 0.04$ ) to  $25.3 \pm 0.1^\circ\text{C}$  ( $F_v/F_m = 0.045 \pm 0.04$ ); more extreme  
120 temperatures resulted in undetectable Fv/Fm values. Thus, eurythermy might establish the foundation  
121 for euryphyt in *Mesotaenium endlicherianum*.

122

### 123 **Fine-combed global differential gene expression profiles and gene models for *Mesotaenium***

124 To shed light on the molecular mechanisms that underpin the switch from tolerable steady-state  
125 conditions to adverse environmental cues in *Mesotaenium*, we applied global gene expression  
126 analyses using RNAseq. We pooled all twelve wells per plate and extracted RNA from a total of 126  
127 samples (42 plates, three biological replicates). 114 samples yielded usable RNA that was used to  
128 build 128 libraries (with a minimum of three biological replicates and additional technical replicates)  
129 for sequencing on the Illumina NovoSeq6000 platform. We generated a total of 1.5 Tbp of 150 bp  
130 paired read data at an average depth of 37.7 million reads per sample (~9.9 billion reads in total).  
131 Building on this wealth of data, we updated the *Mesotaenium* gene models. The number of protein-  
132 coding mRNAs increased from 11,080 in the original annotation (V1; Cheng et al. 2019) to 40,326  
133 protein-coding mRNA (26,009 high confidence, 14,317 low confidence; including splice variants) in  
134 19,233 genes; an additional 4,408 mRNA (in 4,312 genes) labeled as “predicted gene” in our gene  
135 models (Suppl. Table 3). The new gene models of annotation V2 brings the number of genes in  
136 *Mesotaenium* closer to other Zygnematophyceae with similar genome sizes; V2 has 43 more BUSCO  
137 genes (+10%; 21 less fragmented, 22 less missing; viridiplantae\_odb10) than V1 (Suppl. Fig. 2).  
138 Besides, we calculated Annotation Edit Distance metrics (AED) to assess the congruence (0 to 1, with  
139 0 being the best) between biological evidence and V1 and V2. In the cumulative fraction of annotation  
140 against AED score, V2 has more mRNAs with AED < 0.5. For example, 70% of mRNAs in V1  
141 (7,756 mRNAs) have an AED score < 0.5 compared to 60% in V2 (26,840 mRNAs). This is sensible  
142 since V2 was built based on the same set of evidence used to calculate AED and it shows higher  
143 congruence with them (Suppl. Fig. 3). Thus, we pseudoaligned our data onto the new *Mesotaenium*  
144 transcriptome V2 (average alignment rate was 87.31%; Suppl. Table 4).

145 To understand the gross profile of the gene expression data, we performed principal  
146 component analysis (PCA; Figure 2a). Independent biological replicates from the same condition  
147 clustered in close proximity. The most variation in data was explained by temperature (PC1; describes  
148 35% of variance), followed by irradiance (PC2; describes 18.1% of variance). We evaluated the  
149 distance (Figure 2b) and Spearman correlation (Figure 2c) using all genes to look for trends among  
150 different growth conditions. The data can be grouped into at least three categories: (1) samples with  
151 high light and/or high temperature, (2) a collection of low-temperature (8, 13, 17 °C) samples, and (3)  
152 samples at steady-state. Large clusters included steady-state, high light + heat, and high light. Most  
153 distinct was the cluster formed by samples from the high temperature + high light (Small multiples;  
154 Figure 2d and 2e).

155

### 156 **Plastid-related genes stand out in differential gene expression profiles**

157 For dissecting the differential gene expression responses, we divided the table into nine sectors and,  
158 additionally, a cohort of stressed algae based on  $F_v/F_m < 0.5$  (Figure 3). 36 comparisons were  
159 performed, among which we focused on nine, which additionally included the  $F_v/F_m$ -based  
160 comparison. Genes were considered to be differentially expressed between groups at an absolute fold  
161 change  $\geq 2$  and a Benjamini-Hochberg corrected  $p \leq 0.01$  (Figure 3a and b). Gross gene expression  
162 profiles were titratable by the intensity of environmental cues, i.e., with increasing disparity between  
163 conditions compared, and overall following the pattern in the PCA (cf. Figure 3b and Figure 2a). The  
164 most differentially regulated genes (6,578) were pinpointed by comparing low light and low  
165 temperature (LLI\_LT) versus high light and high temperature (HLI\_LT). Enriched GO terms among  
166 regulated genes most frequently included plastid biology-associated genes (Figure 3c). To scrutinize  
167 these data for specific genes that show a robust and universal response to alterations to the  
168 environment, we intersected all 8,157 significantly regulated genes pinpointed by the different  
169 comparisons. 3, 30, and 124 genes overlapped among all 9, 8, and 7 comparisons, respectively. These  
170 concordantly pinpointed genes were mostly light harvesting genes, corroborating the importance of  
171 plastids in the overall cell biology of *Mesotaenium* (Figure 3d). Indeed, the 30 genes found in all  
172 comparisons included for example reactive oxygen species (ROS)-relevant genes such as ELIP and

173 fatty acid metabolic genes. To understand whether these genes integrate into the context of molecular  
174 programs, we next looked at gene co-expression.

175

### 176 **Unsupervised gene expression clusters recover genetic programs shaped by physiology**

177 The environmental gradients triggered changes in the expression of gene cohorts. We wanted to  
178 understand their concerted action independent of any prioritization guided by homology to any land  
179 plant genes—solely from the molecular programs that operated in the algae. To do so, we applied  
180 weighted gene co-expression network analysis (WGCNA) for unsupervised clustering (Figure 4). To  
181 then understand the driving forces behind these changes, we turned to the highly connected genes  
182 (nodes) in the network—the hubs (Figure 5).

183 The 17,905 genes expressed in our samples (and that passed the minimum expression  
184 threshold) were clustered into 26 modules, which we refer to with colors (Figure 4a). Orange is the  
185 smallest module (39 genes), the largest modules are Turquoise, Blue, and Brown with 3568, 3101,  
186 and 1746 genes, respectively. The samples were taken under a range of distinct physiological  
187 conditions. Resulting data are a combined expression of the different environmental cues and the  
188 modulation of the algal physiology. To investigate the biological role of each module, we used their  
189 eigengenes as representatives for the modules' gene expression profiles and correlated their behavior  
190 with the two environmental cues light intensity and temperature as well as the algal parameters  
191 absorption (culture density and pigmentation) and  $F_v/F_m$  (overall physiological status). One of the  
192 foremost general patterns in cellular response to stress are ROS. These act as signals as well as  
193 culprits that, if not quenched, damage biomolecules; this was represented in GO terms of module  
194 Green that positively correlated with light intensity ( $r = 0.88, p = 6 \times 10^{-43}$ ) and negatively with  $F_v/F_m$   
195 ( $r = -0.79, p = 6 \times 10^{-29}$ ) (Figure 4d and Suppl. Fig. 4 to 7 and Suppl. Table 5 and 6).

196 The clusters also recovered the genetic signatures of thriving algae. Module Purple negatively  
197 correlates with increasing light ( $r = -0.94, p = 3 \times 10^{-60}$ ) and positively with absorption and  $F_v/F_m$  ( $r =$   
198  $0.67, p = 2 \times 10^{-18}$  and  $r = 0.67, p = 2 \times 10^{-18}$ ). These dense and physiologically healthy cell populations  
199 (experiencing no light stress) ramped up cell division (see Figure 4D and Suppl. Table 6), signified by  
200 homologs of cyclin and TPX2 appearing as hub genes. The 9th most connected hub gene was a  
201 kinesin homologous to important proteins such as PHRAGMOPLAST ORIENTING KINESIN 2  
202 (Figure 5; Suppl. Table 7), which thus is a likely conserved cell division hub of all  
203 Phragmoplastophyta—going back to a common ancestor that lived in the late Cryogenium.

204

### 205 **Conserved hubs for plastid-derived signals**

206 Chloroplasts act as environmental sensors in land plant cells (Kleine et al., 2021). In concert with this,  
207 many of the clusters we identified were associated with plastid biology and/or physiology (Figure 4d,  
208 Suppl. Fig. 4 to 7, Suppl. Table 6). The brown cluster showed many plastid-related terms and  
209 negatively correlates with temperature ( $r = -0.95, p = 7 \times 10^{-65}$ ) (Suppl. Fig. 5) and showed enrichment  
210 in GO-terms related to plastids, general transcription and translation. Among the top 20 hub genes in  
211 cluster brown, 12 were associated with translation and ribosomes (Suppl. Table 7). The light cyan  
212 cluster positively correlates with increasing light ( $r = 0.93, p = 10^{-56}$ ) (Suppl. Fig. 6) and negatively  
213 with  $F_v/F_m$  ( $r = -0.67, p = 5 \times 10^{-18}$ ) (Suppl. Fig. 4) whereas the blue cluster negatively correlates with  
214 increasing light ( $r = -0.76, p = 10^{-25}$ ) and positively with  $F_v/F_m$  ( $r = 0.67, p = 2 \times 10^{-18}$ ). Concomitantly,  
215 the blue module had a high number of enriched GO-terms (Suppl. Fig. 5 and Suppl. Table 6), many of  
216 which were plastid-related terms, cellular signaling, and terms that tie the two together; that is,  
217 signaling processes emanating from the plastid. This was also prominent in the light cyan module,  
218 where several terms related to terpenoid and apocarotenoid metabolism were enriched.

219 The hubs of many clusters, including those blue, light cyan, and yellow mentioned before,  
220 reflect an association with plastid-related processes. To highlight a few, the second most connected  
221 gene in module Blue was a homolog of GLK1 (Suppl. Fig. 8), a transcriptional factor (TF) that  
222 regulates chloroplast development and the activity of nuclear genes involved in photosynthetic light  
223 reaction and chlorophyll biosynthesis (Rossini et al., 2001; Yasumura et al., 2005; Waters et al.,  
224 2009). Blue also featured hydroxypyruvate reductase, important in photorespiration (Timm et al.,  
225 2008), as the fourth most connected gene. A CYP450 gene homologous to LUTEIN DEFICIENT 5  
226 (LUT5), was the 7<sup>th</sup> most connected, suggesting the involvement of pigment-related signaling.  
227 Moreover, a homolog of ABA responsive elements-binding factor 2 (ABF2) was part of cluster Blue,

bolstering previous discussions that parts of the ABA signaling module consist of ancient wires whose relevance in stress response predate plant terrestrialization and ABA dependency (de Vries et al., 2018; Sun et al., 2019; Fürst-Jansen et al., 2020).

Next to GLK—the most connected TF—other highly connected TFs appeared in Blue. These included the photomorphogenesis-regulating CONSTANS-like 3 (COL3; 4<sup>th</sup> most connected TF). Noteworthily, also a homolog of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) was present in module Blue; CO/COL and GLKs are both degradation targets of COP1 (Liu et al., 2008; Sarid-Krebs et al., 2015; Ordoñez-Herrera et al., 2018). Further, the circadian regulator BROTHER OF LUX ARRHYTHMO (2<sup>nd</sup> most connected TF). Further, homologs of ETHYLENE-INSENSITIVE3-like 1 (6<sup>th</sup> most connected TF) and several ERFs were among the most connected TFs. A link to ethylene is noteworthy, because investigations of the Zygnematophyceae *Spirogyra pratensis* (*Sp*) have shown that *SpEIN3* can rescue *Arabidopsis ein3-1* mutant plants (Ju et al., 2015). Furthermore, exogenous application of ethylene on *Spirogyra* triggers stress-, plastid- and photosynthesis-associated gene expression responses similar to land plants (Van de Poel et al., 2016). This speaks to a conserved regulatory framework that involves ethylene-associated factors, and maybe ethylene itself, in environmental signaling cascades in the common ancestor of land plants and their closest algal relatives.

Light cyan featured not only hubs related to ROS homeostasis from the thioredoxin superfamily and other light-induced proteins, but also pigment and apocarotenoid metabolism; these are the source of important signals from the chloroplast that likely have deep evolutionary roots (Rieseberg et al., 2022) and are also formed by light dependent oxidative reactions (recently reviewed by Moreno et al., 2021). Module Yellow correlated positively with light intensity ( $r = 0.62, p = 10^{-14}$ ) and negatively with absorption and  $F_v/F_m$  ( $r = -0.79, p = 10^{-28}$  and  $r = -0.81, p = 3 \times 10^{-31}$ ; Figure 3B); GO terms associated with plastids and proteolytic enzymes (FtsH, ClpP; Kato et al., 2012), recapitulating well-known ties of protein homeostasis and plastid maintenance. Indeed, cluster yellow featured five hubs that are homologous to CLP proteases, critical for chloroplast protein homeostasis (Sjögren et al., 2006; Nishimura et al., 2016), and hubs homologous to genes that orchestrate the coordination of transcriptional activity between chloroplasts and the nucleus; the latter included homologs of (i) pTAC6, which is essential for plastid gene expression and thus chloroplast development in *Arabidopsis* (Pfaltz et al., 2006), and (ii) a homolog of GENOMES UNCOUPLED 2, one of the foremost genes in the classical plastid–nucleus communication pathway (Susek et al., 1993). Among the TFs in cluster yellow was a homolog of the bZIP light signaling master regulator ELONGATED HYPOCOTYL 5 (HY5; reviewed in Jiao et al., 2007).

## Of ancient signaling cascades and cell wall perturbation

Mitogen-activated protein kinases (MAPK) constitute environmental response pathways in all eukaryotes (Chen and Thorner, 2007). In land plants, several abiotic and biotic cues have been described to trigger MAPK-mediated signaling (Nakagami et al., 2005; Rodriguez et al., 2010; Meng and Zhang, 2013; Chen et al., 2021); MAPK and phototropin kinases appeared as hubs in cluster Blue. Moreover, plant MAPK-based signaling is interwoven with wound response and brassinostroid signaling (Nakagami et al., 2005). Stress often coincides with a perturbation of plant cell wall homeostasis. Cluster Pink includes hubs for such wounding and cell-wall derived signals. This was paired with the GO term brassinostroid signaling, which balances growth, cell wall homeostasis, and stress in *Arabidopsis* (Sun et al., 2010; Planas-Riverola et al., 2019). Among the hubs in cluster Pink were homologs for (i) diverse receptor kinases known from *Arabidopsis* to sense alterations in cell wall integrity (Hématy et al., 2007), and (ii) EXORDIUM (of which *Mesotaenium* has 12 homologs), which integrates growth with environmental signaling (Schröder et al., 2009). This was paired with the COBRA family proteins being the most and third most connected hubs in the module. These proteins are known to be involved in cell expansion and balancing pathogen response with growth (Schindelmann et al., 2001; Roudier et al., 2002; Ko et al., 2006). It appears that *Mesotaenium* bears parts of a loop that senses physico-chemical perturbation of cell wall homeostasis; in land plants, these loops include brassinostroid signaling (Wolf et al., 2014).

## Lipid droplet formation constitutes a stress response predating plant terrestrialization

In land plants lipid droplet (LD) formation and triacylglycerol (TAG) accumulation is common to many stress responses, including heat, cold and drought (Higashi et al., 2015; Mueller et al., 2015; Gidda et al., 2016; Doner et al., 2021; Krawczyk et al., 2022). We observed that cells of *Mesotaenium* accumulated inclusions resembling LDs (Figure 6a) upon prolonged exposure to stress. Consistently, these globular structures were stained by BODIPY™ 493/503 (EM/EX), a common dye for lipid and oil-rich compartments (Listenberger and Brown, 2007; Kretzschmar et al., 2020). Under different conditions of temperature and light conditions, counts of LDs per cell showed significant differences (Figure 6b, Suppl. Table 8). We observed that the CGI-58 homolog was the 10th most connected hub in cluster green (Figure 5b). CGI-58 is key to lipid homeostasis, causing, if perturbed, the Chanarin-Dorfman syndrome in humans and LD overaccumulation in *Arabidopsis* (Lass et al., 2006; James et al., 2010; Figure 5c). Further, differential gene expression profiles pinpointed elevation of transcripts for characteristic LD protein homologs such as HSD1 and oleosin (OLE7) under high temperature and moderate light conditions (29 °C, 21 – 130 µmol photons m<sup>-2</sup> s<sup>-1</sup>) and LD-associated protein (LDAP) and PUX10 under high temperature and light conditions (21-29 °C, 130 – 528 µmol photons m<sup>-2</sup> s<sup>-1</sup>) (Figure 6c).

To scrutinize whether these structures are comparable to LDs of land plants, we performed sub-cellular fractionizations, obtained lipid-rich phases, and subjected them to proteomics using liquid chromatography-mass spectrometry (LC-MS). We identified 739 proteins in the putative LD fraction and 1574 proteins in the total extract (Suppl. Table 9). Of these, 14 were significantly enriched in the putative LD fraction (Figure 6 d, volcano plot) including hallmark LD proteins such as OLE, caleosin (CLO), steroleosin (HSD), and LDAP (Figure 6 d, bar plots). Overall, *Mesotaenium* responds to stress conditions by formation of LDs containing signature proteins for embryophytic LDs.

## DISCUSSION

Owing to their plain morphology, Zygnematophyceae emerged as unexpected closest algal relatives of land plants (Wickett et al., 2014; One Thousand Plant Transcriptomes Initiative, 2019; Hess et al., 2022). That said, the molecular programs of Zygnematophyceae speak of their close relationships to land plants. These point to a conserved chassis that likely operated in the last common ancestor of land plants and algae, featuring the proposed action of various hallmark genes (e.g., PYL homologs, GRAS family TFs and more) that were once considered land plant innovations. Building on the genomic resources for *Mesotaenium*, we have here delved into the molecular physiology and genetic programs of this alga, revealing which programs bear out when challenged with environmental cues.

Recent studies have proposed homology for the chassis of plastid–nucleus communication upon adverse environmental conditions between land plants and phragmoplastophytic streptophyte algae (Nishiyama et al., 2018; de Vries et al., 2018; Zhao et al., 2019). The GUN pathway likely has a conserved role in chloroplast transcription and streptophyte algal GUN1 homologs can rescue chloroplast retrograde signaling of *Arabidopsis Atgun1* mutants (Honkanen and Small, 2022); the degree of evolutionary conservation in the retrograde signaling pathway across streptophytes remains obscure (Honkanen and Small, 2022). Signals from damaged chloroplasts inhibit GLK1 expression in *Arabidopsis* (Martin et al., 2016). The negative correlation of module Blue (featuring *MeGLK*) with high light (leading to damaged chloroplasts) supports a role of *MeGLK* in operational retrograde signaling. Our data underscore that the wires between these components in plastid–nucleus communication are likely shared across more than 600 million years of streptophyte evolution and correlate with dealing with light regimes and adjustment of photosynthetic performance in the chloroplast also in the closest relatives of land plants.

One of the special features of plant and algal cells is their cell wall, forming their main interface with the environment. It is therefore not surprising that the cell wall is woven into a signaling network for environmental cues. In land plants, brassinosteroid-mediated signaling is part of a feedback loop for cell wall homeostasis and integrity (Wolf et al., 2014). While the involvement of brassinosteroids in streptophyte algae is doubtful—as is the case for many other phytohormones—our data suggest that there is a homologous chassis for a feedback loop for cell wall damage-based signaling that predates plant terrestrialization.

In land plants, the formation of LDs is known to occur under a variety of adverse environmental conditions (Gasulla et al., 2013; Mueller et al., 2015; Gidda et al., 2016). Stress-dependent formation of LDs likely evolved before land plants came to be (Li-Beisson et al., 2019; de

337 Vries et al., 2020; de Vries and Ischebeck, 2020), but their molecular underpinnings outside of land  
338 plants remain unclear. Here, we confirmed the identity of these *Mesotaenium* LDs using confocal  
339 microscopy, LD-specific staining and proteomics. Our comprehensive transcriptomic data illuminate  
340 co-expressed modules that might constitute a homologous program for stress-dependent LDs that  
341 acted before plants conquered land.

342

## 343 METHODS

### 344 Algal culturing and gradient table setup

345 We used the axenic and genome-sequenced *Mesotaenium endlicherianum* SAG 12.97  
346 ([https://sagdb.uni-goettingen.de/detailedList.php?str\\_number=12.97](https://sagdb.uni-goettingen.de/detailedList.php?str_number=12.97)) from the Algal Culture  
347 Collection, Göttingen, Germany (SAG, Friedl and Lorenz 2012, SAG). *Mesotaenium* was cultivated  
348 in C-Medium (Ichimura, 1971) for an average of 12 days in an aerated culture glass flasks (SCHOTT,  
349 Germany) at 80  $\mu$ mol photons  $m^{-2} s^{-1}$ . Prior to the experiment, cell density was analyzed using a  
350 LUNA™ Automated Cell Counter (Logos Biosystems, Annandale, VA, USA) and set to  $2.03 \times 10^7$   
351 cells/ml (diluting with C-Medium if needed; settings for cell counting: Cell roundness: 60%,  
352 minimum size: 3  $\mu$ m, maximum size: 60  $\mu$ m), corresponding to Abs680nm = 0.33 (Epoch  
353 Microplatereader, BioTek Instruments, USA). For the gradient table setup algal suspension was  
354 distributed across 504 wells (42 twelve-well plates [tissue culture testplates 12 No. 92412, TPP,  
355 Switzerland]; 2.5 mL of culture per well). Plates were sealed with Surgical tape, Micropore™ tape  
356 (3M, Germany) to minimize evaporation. The 42 twelve-well plates were then placed on a table that  
357 generates a cross-gradient of temperature ( $8.6 \pm 0.5$  °C to  $29.2 \pm 0.5$  °C on the x-axis) and irradiance  
358 ( $21.0 \pm 2.0$  to  $527.9 \pm 14.0$   $\mu$ mol photons  $m^{-2} s^{-1}$  on the y-axis) (see Suppl. Table 1). The temperature  
359 gradient was generated using a custom-made table (Labio, Czech Republic) equipped with true-  
360 daylight LEDs (sTube 2W 120 ver 11:11, Snaggi, Czech Republic) set to a 16:8 L/D cycle (Light  
361 from 6 am to 22 pm, Central European wintertime). *Mesotaenium* samples exposed to the 504  
362 different conditions 65 hours (for sampling for RNAseq and physiological measurements) and 89  
363 hours (for detailed light microscopy) on the gradient table. Condensed water at the top of the 12-well  
364 plates lids was removed three times in the 65 hours timespan by lightly tapping the lids twice.

365

### 366 Plate reader

367 *In vivo* Abs480nm, Abs680nm, and Abs750nm of all 42 plates was measured after 65h exposition (4-  
368 6 hours after light on) with an absorbance microplate reader Epoch (BioTek Instruments, VT, USA). 9  
369 data points per well were analyzed and averaged using software Gen5 2.0 (Bioteck, USA), resulting in  
370 108 measurements per 12-well plate per wavelength. For downstream analyses these values were  
371 averaged resulting in one value per 12-well plate per wavelength (Suppl. Fig. 1). After 89 h exposition  
372 16 plates were chosen from the prominent gradients (the four most extreme conditions in the corners  
373 and a cross of vibrant growth along the two gradients) for analyzing a full absorption spectrum (300-  
374 900nm) using the same setup. (Suppl. Fig. 9, Suppl. Table 10).

375

### 376 Photophysiological measurements

377 For maximum-quantum yield measurements ( $F_v/F_m$ ) the maxi version of the IMAGING PAM  
378 (ImagMAX/L, M-series, Walz, Germany) with an IMAG-K5 CCD camera, controlled with the  
379 ImagingWinGigE (V2.32) software, was used. The *Mesotaenium* cultures in the 12-well plates were  
380 dark adapted for 10-30 min before measurement. Before measurements, the lid was removed. For the  
381  $F_v/F_m$  measurement a short saturation pulse (Intensity 3) was applied. The measurement settings on  
382 the IMAGING PAM were the following: measuring light 1, gain 3, damping 2, mean over AOI (area  
383 of interest) was turned off. No special SP-routine was applied to modify the signal to noise ratio of the  
384 chlorophyll fluorescence measurement.

385

### 386 Statistical analysis of absorption and $F_v/F_m$ values and temperature/light cluster analysis

387 Statistical analysis of the absorption and the Fv/Fm values was done using Kruskal-Wallis test with  
388 post hoc test Fisher's least significant difference (Conover, 1999) using R (version 4.1.3). P-values  
389 were Bonferroni corrected and grouped into significant groups using R packages 'agricolae' version  
390 1.3-5 and 'dplyr' version 1.0.9. For heatmap generation of physiological values plotted against  
391 temperature/light R package 'pheatmap' version 1.0.12 was used. For cluster analysis the R package

392 ‘factoextra’ version 1.0.7 was used. Clusters were generated using the eclust function with clustering  
393 function ‘kmeans’, with number of clusters set to six and for hierarchical clustering ‘euclidean’ was  
394 used as distance measure. Clusters were visualized with principal component analysis (PCA) in R.  
395

### 396 **RNA extraction and sequencing**

397 After absorption measurements, the twelve-well plates were put back on the table to let cells adjust to  
398 the table conditions again for a minimum of 5 minutes before harvesting them. For RNA extraction  
399 0.4 mL were taken from every well of the 42 twelve-well plates on the table after pipetting the cells  
400 up and down twice to homogenize them. In total 4.8 mL liquid culture was taken per condition on the  
401 table (i.e., pooling 0.4 mL of each 12 wells per each of the 42 conditions). Samples were then  
402 centrifuged for 5 min at 20 °C and 4000 rpm. The supernatant was removed and the pellet was frozen  
403 at -80 °C. To extract RNA the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich Chemie GmbH,  
404 Germany) was used according to the manufacturer’s instructions. For cell disruption samples in lysis  
405 buffer were ultrasonicated for 1 min and vortexed. RNA samples were treated with DNase I (Thermo  
406 Fisher, Waltham, MA, USA) and shipped on dry ice to Novogene (Cambridge, UK) where they were  
407 quality checked with a Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). Libraries  
408 were built based on total RNA using poly-T oligo-attached magnetic beads. Following fragmentation,  
409 synthesis of the first strand cDNA was carried out using random hexamer primers and second strand  
410 cDNA using dUTP, instead of dTTP. A directional size-selected library was built that included PCR-  
411 based amplification. Sequencing adapters were 5' Adapter: 5'-  
412 AGATCGGAAGAGCGTCGTAGGGAAAGAGTGTAGATCTCGTGGTCGCCGTATCATT-3'  
413 and 3' Adapter: 5'-  
414 GATCGGAAGAGCACACGTCTGAACCTCCAGTCACGGATGACTATCTCGTATGCCGTCTTCT  
415 GCTTG-3'. The library was sequenced on an Illumina NovaSeq6000 platform.  
416

### 417 **Quality control of reads**

418 We checked the quality of our raw reads via FastQC (Andrews, Simon 2010) (v0.11.9) and  
419 summarized the results via MultiQC (Ewels et al. 2016) (v1.11). Based on these and the used adapter  
420 sequence, we filtered and trimmed reads via Trimmomatic (Bolger, Lohse, and Usadel 2014) (v 0.36)  
421 with these parameters: ("ILLUMINACLIP:  
422 novogene\_adapter\_sequences\_Trimmomatic.fa:2:30:10:2:True LEADING:26 TRAILING:26  
423 SLIDINGWINDOW:4:20 MINLEN:36"). We checked the quality of the trimmed reads with FastQC  
424 and MultiQC again.  
425

### 426 **Genome annotation**

427 The original annotation of *M. endlicherianum* (Cheng et al., 2019) had a lower number of genes  
428 compared to other Zygnematophyceae algae. We took advantage of our newly generated RNAseq  
429 dataset to improve genome annotation. Trimmed reads were mapped via HISAT2 (Pertea et al. 2016,  
430 2) and assembled via StringTie (Pertea et al. 2016, 2). StringTie results showed many novel isoforms  
431 as well as novel transcripts. We also used BUSCO V5 (Manni et al. 2021) to measure the  
432 completeness of the gene models in annotation V1 independent of StringTie. Although the gene  
433 prediction method which used by BUSCO at the genome level is very efficient, it is not unexpected if  
434 it misses some proteins that were annotated in a genome via experimental, based on bioinformatic  
435 methods and NGS data, or ab-initio based gene prediction methods. Therefore, we expect that the  
436 BUSCO score based on the proteins of a gene model should be equal to or greater than the BUSCO  
437 score of the genome. When we compared the BUSCO score between the genome and protein  
438 sequences for *M. endlicherianum* with “viridiplantae.odb.10-2020-09-10”, we noticed that they show  
439 similar numbers (Suppl. Fig. 2). Therefore, we decided to re-annotate the genome of *M.  
440 endlicherianum* with our comprehensive RNA-Seq datasets as well as public protein and genome  
441 sequences published for its close relatives.

442 We annotated the *M. endlicherianum* genome using REAT (v0.6.1). Various gene models  
443 were predicted based on different types of evidence and methods. The final gene models and  
444 annotation V2 were based on agreement with the experimental evidence. At the end, we tried to  
445 quantify “completeness” and quality of the new annotation V2 and the old V1.

446 First, we used RNAseq evidence with REAT’s “Transcriptome Workflow” with HISAT2  
447 (v2.2.1), Scallop (Shao and Kingsford 2017) (v0.10.5) and StringTie (v2.1.5). We also used Portcullis  
448 (Mapleson et al. 2018) (v1.2.4) to identify genuine junctions based on short reads alignments. This  
449 workflow uses Mikado (Venturini et al. 2018) (v2.3.4) to identify the “best” set of transcripts from  
450 multiple transcript assemblies.

451 Then, we used gene homology information from representative streptophytes in REAT’s  
452 “Homology Workflow”. SPALN (Gotoh 2008a; 2008b) (v2.4.7) was used to align representative  
453 protein sequences onto the *M. endlicherianum* genome. The representative dataset consisted on  
454 genome, gene models, and protein sequences of *Anthoceros agrestis* (Oxford strain) (Li et al. 2020),  
455 *Arabidopsis thaliana* (C.-Y. Cheng et al. 2017), *Azolla filiculoides* (Li et al. 2018), *Chara braunii*  
456 (Nishiyama et al. 2018), *Chlorokybus melkonianii* (Wang et al. 2020), *Chlamydomonas reinhardtii*  
457 (Merchant et al. 2007) (v5.6), *Klebsormidium nitens* (Hori et al. 2014), *Mesostigma viride* (Liang et  
458 al. 2019), *Marchantia polymorpha* (Montgomery et al. 2020) (v6.1r1), *Penium margaritaceum* (Jiao  
459 et al. 2020), *Physcomitrium patens* (Lang et al. 2018) (v3.3), *Selaginella moellendorffii* (Banks et al.  
460 2011), and *Spirogloea muscicola* (S. Cheng et al. 2019). We also used the junction file produced by  
461 Portcullis. Since there were no close relatives of *M. endlicherianum* on the SPALN species-specific  
462 parameter set, we used three different closest possibilities (Angiosp, Chlospec, and MossWorts) and  
463 built three models. These alignments are filtered using a predefined set of criteria (cf. code on  
464 GitHub) including exon length, intron length, internal stop codon, among others. The final gene  
465 models of V2 were prepared by Mikado.

466 Afterwards, we used REAT’s “Prediction Workflow” to predict gene models *ab initio* and  
467 based on RNAseq and homology evidence. This uses Augustus (Stanke et al. 2006; Stanke,  
468 Tzvetkova, and Morgenstern 2006; Hoff and Stanke 2019) (v 3.4.0), SNAP (Korf 2004) (version  
469 2006-07-28), Glimmer (Kelley et al. 2012) (v0.3.2), and CodingQuarry (Testa et al. 2015) (v2.0),  
470 which generate different gene models as the raw material for EvidenceModeler (Haas et al. 2008)  
471 (v1.1.1) that chooses the best set of exons and combine them in a gene model using weights (see  
472 GitHub) that could be adjusted for each sort of prediction and evidence. To include UTRs where  
473 possible, the EVM output is then processed by Mikado using UTR-containing gene models from the  
474 transcriptome and homology workflows as inputs, as well gene models classified by REAT as gold,  
475 silver, and bronze based on their agreement with the set of protein sequences from other streptophyte  
476 genomes (streptophyte algae and land plants), transcriptome alignment, homology alignment, and  
477 junctions. To train *ab initio* predictors, a user-defined number of models are randomly chosen in a  
478 user-defined ratio between (10%) mono-exonic and (90%) multi-exonic. These models were chosen  
479 from best classified models (gold and silver). For Augustus, we performed meta parameter  
480 optimization and train a model with kfold=8. Beside *ab initio* predictions, we used Augustus to  
481 predict gene models with three different weights for each evidence type as suggested by REAT  
482 authors (cf. code on GitHub).

483 At last, we used Minos (“Minos - a Gene Model Consolidation Pipeline for Genome  
484 Annotation Projects” [2019] 2022) which is gene model consolidation pipeline and produces external  
485 metrics based on DIAMOND “BLASTp/BLASTx” (Buchfink, Xie, and Huson 2015), Kallisto (Bray  
486 et al. 2016) (v0.46.2) expression quantification, coding potential calculator (CPC2 v0.1) (Kang et al.  
487 2017, 2) and BUSCO assessments. These metrics pass through Mikado in combination with various  
488 gene models produced with different methods (as mentioned above), Minos determines the best gene  
489 model for each region based on user defined criteria (for details, see GitHub) and external metrics.  
490 Minos also put a tag on each gene model to categorize them based on a user defined threshold (we  
491 used default values) for sequence similarity coverage of homologs, BUSCO score, CPC score, TPM  
492 expression, and transcript score into “high confidence”, “low confidence”, and “predicted genes”.

#### 493 494 **Genome annotation assessment**

495 We used two methods to compare the quality of the new gene model with the published one. We  
496 compared the BUSCO scores of the annotated protein sequences as well as genome sequence using  
497 the reference “viridiplantae.odb.10-2020-09-10” dataset. We also used maker (Campbell et al. 2014)  
498 (v3.01.04) to calculate the AED (Eilbeck et al. 2009) to evaluate the agreement of the gene models  
499 with external evidences. Maker-P was used to build the *M. endlicherianum* gene model V1.

500 Further, we used the maker package to perform functional annotation via InterProScan and  
501 BLAST using agat (Dainat 2020) package (v0.9.2). Additionally, we performed a BLAST search  
502 against *A. thaliana* protein sequences (Araport11) and reported the best hit for each sequence in  
503 (Suppl. Table 11) and used eggNOGmapper (Huerta-Cepas et al. 2017; 2019) (v2.1.8) to perform  
504 functional annotation. We used DIAMOND (Buchfink, Xie, and Huson 2015) (v2.0.15) with ultra-  
505 sensitive mode, *e* value cutoff of  $1e^{-7}$  and in an iterative manner. We used the protein sequences as our  
506 inputs and Viridiplantae (33090) as our taxonomy scope.  
507

#### 508 **RNA-Seq analysis: Pseudoalignment**

509 In order to quantify gene expression, we used Kallisto (Bray et al. 2016) (v0.45.0). We indexed the  
510 transcriptome file with --kmer-size=31 parameter and used --bootstrap-samples 100 and --rf-stranded  
511 to quantify gene expression based on pseudoaligned reads. We used MultiQC to obtain an overview  
512 of alignment for each condition.  
513

#### 514 **Filtering, normalization, modeling mean-variance relationship, and data exploration**

515 Kallisto quantification files were imported into R (v4.2.0) with tximport (Soneson, Love, and  
516 Robinson 2016) (v1.24.0) to calculate the counts from abundance via “lengthScaledTPM” based on  
517 our study design file (Suppl. Table 12). We used edgeR (Robinson, McCarthy, and Smyth 2010)  
518 (v3.38.1) for filtering and TMM-normalization (Robinson and Oshlack 2010) of the reads (genes with  
519  $>1$  count per million (CPM) at log2 scale in a least 3 samples—the number of replicates—were kept).  
520 Then, we used the voom function from limma (Ritchie et al. 2015; Phipson et al. 2016; Law et al.  
521 2014; Liu et al. 2015) (v3.52.2) to model mean-variance relationship. The normalized expression table  
522 on the log2 scale is available in (Suppl. Table 13). We performed principal component analysis based  
523 on the expression table output of voom and visualized the result with ggplot2 (Ggplot2 n.d., 2)  
524 (v3.3.6). We visualized the heatmap of distance and Spearman correlation between all samples  
525 considering all genes via pheatmap (v1.0.12) and calculated clusters via the Euclidian method.  
526

#### 527 **RNA-Seq analysis: Weighted gene co-expression network analysis**

528 We used WGCNA (Langfelder and Horvath 2008; 2012) package (v1.71) with the expression table  
529 produced by limma. We checked for and filtered out outliers as suggested by WGCNA authors  
530 (Suppl. Fig. 10). Then, we visualized the scale free topology model fit ( $R^2$ ) against the soft thresholds  
531 ( $\beta$ s) to pick a  $\beta$  for our network construction (Suppl. Fig. 11). We used signed network type and  
532 “bicor” as our correlation function for WGCNA. Based on these results, we picked 16 as our soft  
533 threshold ‘ $\beta$ ’. We experimentally chose a merging threshold if 0.25 after exploring different values  
534 from 0.2 to 0.4 and investigating the relationship between eigengenes and temperature, light intensity,  
535  $F_v F_m$ , and absorption (Suppl. Fig. 12). We built the gene co-expression network using a merging  
536 threshold of 0.25 for modules, maximum portion of outliers as 0.05 and minimum module size of 30.  
537 Then, we visualized the correlation between each module eigengene and temperature, light intensity,  
538  $F_v F_m$ , and absorption to identify which modules are more related to each treatment (Figure 4c). We  
539 provided a table for all genes, their module assignment, inter- and intramodular connectivity, gene  
540 significance for temperature and light intensity, correlation with temperature and light intensity, and  
541 their module membership (aka. Signed eigengene-based connectivity) in (Suppl. Table 5). We also  
542 visualized the graphical representation of the topological overlap matrix of our samples (Suppl. Fig.  
543 13). In order to have a visual representation of gene expression in each module, we drew heatmaps for  
544 each module via pheatmap (using Euclidean method for calculating the distance and complete method  
545 clustering) (Suppl. Fig. 14). GO enrichment analysis was performed via clusterProfiler package (Yu et  
546 al. 2012; Wu et al. 2021) (v4.4.4) using the output of eggNOGmapper and adjusted p-value cut-off  
547 0.05 and q-value cut-off of 0.05, considering only genes that are present in our GO term-to-gene table  
548 which was expressed and passed filtering as our background gene universe (Suppl. Table 6).  
549 Determining the proper background gene list has significant importance in enrichment analysis  
550 (Wijesooriya et al. 2022).

551 To see how *A. thaliana*’s well-known genes in stress-response mechanisms (downloaded  
552 from TAIR database via keyword search) were distributed across different modules we performed  
553 BLASTp searches against the new *M. endlicherianum* annotated proteins. We visualized the  
554 distribution of these IDs for different stress-related keywords in (Suppl. Fig. 15) and the expression of

555 these genes across different samples via pheatmap (Suppl. Fig. 16). We defined as module hubs the  
556 top 20 genes (nodes) with the highest connectivity within each module (Suppl. Table 5 and 14).

### 558 **Differential gene expression analysis**

559 We performed differential gene expression analysis using the limma package. We divided samples  
560 into multiple groups as follows: low light intensity (21 and 39  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ), medium light  
561 intensity (72 and 129  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ), high light intensity (329 and 527  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ),  
562 low temperature (8 °C and 12 °C), medium temperature (17 °C, 20 °C, and 23 °C), high temperature  
563 (26 °C and 29 °C; see grid/colored table layout in Figure 3). We performed all-against-all  
564 comparisons and an additional comparison of those samples from an  $F_v/F_m < 0.5$  versus low light  
565 intensity + medium temperature. We used duplicateCorrelation as suggested by Smyth et al. (2005) to  
566 consider technical replicates. We used clusterprofiler for GO-enrichment analysis (Wu et al. 2021)  
567 with adjusted p-value and q-value cutoff of 0.01 and only genes that were expressed and passed  
568 filtering as our background universe. The heatmap of gene expression profiles, dot plot and cnetplot  
569 of enriched GO-terms for each comparison is available in (Suppl. Table 14 and Suppl. Fig. 17 to 25).

### 571 **Phylogenetic analyses**

572 We assembled a protein database based on the protein releases from the genomes of: *Anthoceros*  
573 *agrestis* BONN (Li et al., 2020), *Anthoceros punctatus* (Li et al., 2020), *Amborella trichopoda*  
574 (Amborella Genome Project, 2013), *Arabidopsis thaliana* (Lamesch et al., 2012), *Azolla filiculoides*  
575 (Li et al., 2018), *Bathycoccus prasinos* (Moreau et al., 2012), *Brassica oleracea* (Liu et al., 2014),  
576 *Brassica rapa* (Wang et al., 2010), *Brachypodium distachyon* (The International Brachypodium  
577 Initiative, 2010), *Capsella grandiflora* (Slotte et al., 2013), *Chara braunii* (Nishiyama et al., 2018),  
578 *Chlorokybus atmophyticus* (Wang et al., 2020), *Chlamydomonas reinhardtii* (Merchant et al., 2007),  
579 *Coccomyxa subellipoidea* (Blanc et al., 2012), *Gnetum montanum* (Wan et al., 2018), *Klebsormidium*  
580 *nitens* (Hori et al., 2014), *Marchantia polymorpha* (Bowman et al., 2017), *Mesostigma viride* (Wang  
581 et al., 2020), *Micromonas pusilla*, *Micromonas* sp. (Worden et al., 2009), *Oryza sativa* (Ouyang et al.,  
582 2007), *Picea abies* (Nystedt et al., 2013), *Physcomitrium patens* (Lang et al., 2018), *Salvinia cucullata*  
583 (Li et al., 2018), *Selaginella moellendorffii* (Banks et al., 2011), *Solanum lycopersicum* (The Tomato  
584 Genome Consortium, 2012), *Theobroma cacao* (Argout et al., 2011), *Mesotaenium endlicherianum*  
585 (Cheng et al., 2019), *Ostreococcus lucimarinus* (Palenik et al., 2007), *Penium margaritaceum* (Jiao et  
586 al., 2020), *Spirogloea muscicola* (Cheng et al., 2019), *Ulva mutabilis* (De Clerck et al., 2018), *Volvox*  
587 *carteri* (Prochnik et al., 2010).

588 Homologs for proteins were detected using BLASTp with *Arabidopsis* and *Mesotaenium*  
589 proteins as query against the aforementioned proteins as database. Alignments were computed using  
590 MAFFT v7.490 (Katoh and Standley, 2013). All phylogenies were computed with IQ-TREE  
591 multicore version 1.5.5 (Nguyen et al., 2015); their respective best model for protein evolution was  
592 determined using ModelFinder (Kalyaanamoorthy et al., 2017) according to Bayesian Information  
593 Criterion and 1000 ultrafast bootstrap replicates; 1000 ultrafast bootstrap replicates (Hoang et al.,  
594 2018) were carried out and 100 Felsenstein bootstraps (Felsenstein, 1985) for the LDAP phylogeny.

### 596 **Differential interference contrast and confocal laser scanning microscopy**

597 Differential interference contrast (DIC) imaging was done for all replicates from the table with a  
598 Olympus BX-60 microscope (Olympus, Japan) with a ProgRes C14plus camera and the ProgRes®  
599 CapturePro Software (version 2.9.01) (JENOPTIK AG, Jena, Germany). The morphology of chosen  
600 conditions (see Supplemental Figure 1) of *Mesotaenium* cells that were 89 h on the table was  
601 analyzed.

602 For algae that were used for quantifying the abundance of lipid droplet per cell, a ZEISS Axioscope 7  
603 microscope (Carl Zeiss, Germany) was used including the ZEN software (Carl Zeiss, Germany). Lipid  
604 droplet count was carried out in FIJI (Schindelin et al., 2012). For statistical analysis of the lipid  
605 droplet count data, we first used a Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess normality and  
606 used Mann-Whitney U tests (Mann and Whitney, 1947) with R (version 3.6.1) accordingly.

607 Confocal laser scanning microscope was done on a Zeiss LSM780 (Carl Zeiss) set as in  
608 Müller et al. (2017). For the staining of the LD structures, we used the neutral lipid specific stain  
609 BODIPY™ 493/503 (EM/EX) (Merck). *Mesotaenium* cells were grown for 22 days on WHM-

610 medium at 70-80  $\mu\text{mol}$  photons  $\text{m}^{-2} \text{s}^{-1}$  and 22°C. These cells were ultrasonicated for 1 min with 1:500  
611 BODIPY and incubated on a shaker for 5 min before visualization.  
612

### 613 **Lipid droplet isolation and proteomics**

614 For lipid droplet isolation 23 days old *Mesotaenium* cells grown on WHM-Medium at 70-80  $\mu\text{mol}$   
615 photons  $\text{m}^{-2} \text{s}^{-1}$  and 22 °C were homogenized using a Tenbroeck or potter homogenizer in lipid droplet  
616 isolation buffer (10 mM sodium phosphate buffer pH 7.5, 200  $\mu\text{M}$  PMFS, 0.5 mM DSP, 10 mM N-  
617 Ethylmaleimide). The resulting centrifuged supernatant of a 100 x g spin for 1 min was considered as  
618 total extract (TE). After two further high speed centrifugations (SW40 Ti for 1h, 4°C at 100000 x g,  
619 TLA120 for 1h at 100000 x g and 4°C) the floating fat pad was precipitated at -20 °C using 100%  
620 ethanol overnight. The precipitated pellet was washed with 80% ethanol twice, dried and then  
621 suspended in 6M urea. Protein concentration was determined using BCA. An in-gel SDS gel digestion  
622 was done with trypsin adapted from Shevchenko et al. (1996). C18 Stage tip purification was done  
623 according (Rappaport et al., 2003; 2007). Protein samples were analyses using LC-MS. For this,  
624 peptide samples were reconstituted in 20  $\mu\text{l}$  LC-MS sample buffer (2% acetonitrile, 0.1% formic  
625 acid). 2  $\mu\text{l}$  of each sample were subjected to reverse phase liquid chromatography for peptide  
626 separation using an RSLCnano Ultimate 3000 system (Thermo Fisher Scientific). Therefore, peptides  
627 were loaded on an Acclaim PepMap 100 pre-column (100  $\mu\text{m}$  x 2 cm, C18, 5  $\mu\text{m}$ , 100 Å; Thermo  
628 Fisher Scientific) with 0.07% trifluoroacetic acid at a flow rate of 20  $\mu\text{L}/\text{min}$  for 3 min. Analytical  
629 separation of peptides was done on an Acclaim PepMap RSLC column (75  $\mu\text{m}$  x 50 cm, C18, 2  $\mu\text{m}$ ,  
630 100 Å; Thermo Fisher Scientific) at a flow rate of 300 nL/min. The solvent composition was  
631 gradually changed within 94 min from 96 % solvent A (0.1 % formic acid) and 4 % solvent B (80 %  
632 acetonitrile, 0.1 % formic acid) to 10 % solvent B within 2 minutes, to 30 % solvent B within the next  
633 58 min, to 45% solvent B within the following 22 min, and to 90 % solvent B within the last 12 min  
634 of the gradient. All solvents and acids had Optima grade for LC-MS (Thermo Fisher Scientific).  
635 Eluting peptides were on-line ionized by nano-electrospray (nESI) using the Nanospray Flex Ion  
636 Source (Thermo Fisher Scientific) at 1.5 kV (liquid junction) and transferred into a Q Exactive HF  
637 mass spectrometer (Thermo Fisher Scientific). Full scans in a mass range of 300 to 1650 m/z were  
638 recorded at a resolution of 30,000 followed by data-dependent top 10 HCD fragmentation at a  
639 resolution of 15,000 (dynamic exclusion enabled). LC-MS method programming and data acquisition  
640 was performed with the XCalibur 4.0 software (Thermo Fisher Scientific). Afterwards the raw  
641 proteome data were analyzed using Max Quant software version 1.6.2.10 (Cox and Mann, 2008). The  
642 database for this analysis was our new V2 gene model data. The data were then further processed by  
643 the Perseus (1.6.2.2) software (Cox et al., 2008; Tyanova et al., 2016).  
644

### 645 **Data availability**

646 All RNAseq reads have been uploaded to NCBI SRA and can be accessed under Bioproject  
647 PRJNA832564 and SRA accessions SRR18936040 to SRR18936170. Codes and Data used for  
648 genome re-annotation, WGCNA and differential gene expression analysis are available on our GitHub  
649 page [https://github.com/deVries-  
650 lab/Response\\_to\\_a\\_gradient\\_of\\_environmental\\_cues\\_in\\_mesotaenium\\_endlicherianum](https://github.com/deVries-lab/Response_to_a_gradient_of_environmental_cues_in_mesotaenium_endlicherianum). Proteomic  
651 data have been uploaded to PRIDE. Furthermore, data can be interactively explored at  
652 <https://mesotaenium.uni-goettingen.de>  
653

### 654 **ACKNOWLEDGEMENT**

655 We thank René Heise for excellent technical support. J.d.V. thanks the European Research Council  
656 for funding under the European Union's Horizon 2020 research and innovation programme (Grant  
657 Agreement No. 852725; ERC-StG "TerreStriAL"). J.d.V., U.H., and H.B. are grateful for support  
658 through the German Research Foundation (DFG) within the framework of the Priority Programme  
659 "MAdLand – Molecular Adaptation to Land: Plant Evolution to Change" (SPP 2237; VR 132/4-1; BU  
660 2301/6-1), in which T.R. is a PhD student and A.D., J.M.R.F.-J, and I.I. partake as associate members.  
661 A.D. is grateful for being supported through the International Max Planck Research School (IMPRS)  
662 for Genome Science. J.M.R.F.-J. and T.R. gratefully acknowledge support by the Ph.D. program  
663 "Microbiology and Biochemistry" within the framework of the "Göttingen Graduate Center for  
664 Neurosciences, Biophysics, and Molecular Biosciences" (GGNB) at the University of Goettingen.

665 P.S. was supported by the GGNB in frame of the PRoTECT program at the University of Goettingen.  
666 T.I. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG; GRK 2172-  
667 PRoTECT). M.M. is supported by Singaporean Ministry of Education grant T2EP30122-0001. P.S. is  
668 grateful for support from the Studienstiftung des Deutschen Volkes. We thank Prof. Dr. Christiane  
669 Gatz and Dr. Guido Kriete for giving us access to the ImagMAX/L PAM in the Department of Plant  
670 Molecular Biology and Physiology.

671

## 672 **CONTRIBUTIONS**

673 J.d.V. and M.L. conceived the project. J.d.V. coordinated the project with M.M. M.L. provided plant  
674 materials. J.M.R.F.-J., T.D., and T.R. performed experimental work. A.D. carried out computational  
675 analysis. O.V., J.M.R.F.-J., P.S., T.I., D.K. and G.H.B. performed proteomics. H.B. investigated cell  
676 division patterns. M.H. and U.H. investigated photomorphogenesis patterns. A.D. and R.S. built web  
677 resources. J.d.V., A.D., and J.M.R.F.-J. contributed to writing the manuscript. J.d.V. organized the  
678 manuscript. All authors commented, discussed, and provided input on the final manuscript.

679

## 680 **COMPETING INTERESTS**

681 The authors declare no competing interests.

682

## 683 **SUPPLEMENTAL FIGURES**

684 Supplemental Figure 1.  $F_v/F_m$  and absorption values of all replicates of gradient tables; representative  
685 micrographs of the most extreme corners and of vividly growing algae along the two gradients.

686 Supplemental Figure 2. BUSCO comparison between genome, protein sequences V1, protein  
687 sequences V2

688 Supplemental Figure 3. Cumulative fraction of annotation vs AED plot for gene model V1 and V2

689 Supplemental Figure 4. Module membership versus Gene Significance for genes in different modules  
690 with respect to  $F_v/F_m$

691 Supplemental Figure 5. Module membership versus Gene Significance for genes in different modules  
692 with respect to Temperature

693 Supplemental Figure 6. Module membership versus Gene Significance for genes in different modules  
694 with respect to light intensity

695 Supplemental Figure 7. Heatmap of the correlation between module eigengenes and light intensity,  
696 temperature, absorption, replicate, and  $F_v/F_m$  as well as student test p-value

697 Supplemental Figure 8. The GLK alignment

698 Supplemental Figure 9. Absorption spectra of all replicates at chosen conditions.

699 Supplemental Figure 10. Sample dendrogram and trait heatmap to identify outliers for WGCNA

700 Supplemental Figure 11. Picking a soft threshold for WGCNA based on scale independence and Mean  
701 connectivity

702 Supplemental Figure 12. Clustering of different modules and traits based for identifying a merging  
703 threshold

704 Supplemental Figure 13. The graphical representation of the topological overlap matrix

705 Supplemental Figure 14. Heatmap of gene expression Z-score values for each module

706 Supplemental Figure 15. Distribution of best blast hit of *A. thaliana* stress response genes among  
707 WGCNA modules

708 Supplemental Figure 16. Heatmap of best blast hit of *A. thaliana* stress response genes in *M.*  
709 *endlicherianum* across different growth conditions

710 Supplemental Figure 17. Dotplot, cnetplot and heatmaps of DEGs comparing FvFm control vs stress

711 Supplemental Figure 18. Dotplot, cnetplot and heatmaps of DEGs comparing HLI\_HT vs LLI\_MT

712 Supplemental Figure 19. Dotplot, cnetplot and heatmaps of DEGs comparing MLI\_HT vs LLI\_MT

713 Supplemental Figure 20. Dotplot, cnetplot and heatmaps of DEGs comparing LLI\_HT vs LLI\_MT

714 Supplemental Figure 21. Dotplot, cnetplot and heatmaps of DEGs comparing HLI\_MT vs LLI\_MT

715 Supplemental Figure 22. Dotplot, cnetplot and heatmaps of DEGs comparing MLI\_MT vs LLI\_MT

716 Supplemental Figure 23. Dotplot, cnetplot and heatmaps of DEGs comparing HLI\_LT vs LLI\_MT

717 Supplemental Figure 24. Dotplot, cnetplot and heatmaps of DEGs comparing MLI\_LT vs LLI\_MT

718 Supplemental Figure 25. Dotplot, cnetplot and heatmaps of DEGs comparing MLI\_LT vs LLI\_MT

719 Supplemental Figure 26. Fully-labeled phylogenies of hub genes.

720 Supplemental Figure 27. Lipid droplet count setup 2.  
721 Supplemental Figure 28. LDAP phylogeny.  
722  
723

## 724 SUPPLEMENTAL TABLES

725 Supplemental Table 1. Temperature and light intensity measurements of all 504 coordinates on the  
726 gradient table.  
727 Supplemental Table 2. All 504  $F_v/F_m$  and absorption measurements of all replicates.  
728 Supplemental Table 3. Number of genes and transcripts in gene model V2  
729 Supplemental Table 4. The general stats of raw reads, trimmed reads, and pseudoalignment  
730 Supplemental Table 5. Summary of WGCNA Results  
731 Supplemental Table 6. The results of GO-enrichment analysis for all modules of WGCNA  
732 Supplemental Table 7. The list of top20 hubs for each module.  
733 Supplemental Table 8. Counts of lipid droplets in micrographs.  
734 Supplemental Table 9. Full proteomic results, showing Mesotaenium gene model V2 identifiers,  
735 Arabidopsis gene identifiers, and IBAQ values.  
736 Supplemental Table 10. All data on absorption spectra of all replicates at chosen conditions.  
737 Supplemental Table 11. Best blast hit of *M. endlicherianum* gene model against *A. thaliana*  
738 (Araport11)  
739 Supplemental Table 12. Study design file used for RNASeq analysis  
740 Supplemental Table 13. The CPM normalized expression table on the log2 scale  
741 Supplemental Table 14. The GO-enrichment results of 9 pairwise comparisons  
742

## 743 FIGURE LEGENDS

744

745 **Figure 1: A fine-combed setup for assessing environmental cues in Mesotaenium.** (a) Cladogram  
746 of Streptophyta, highlighting that *Mesotaenium endlicherianum* SAG 12.97 is a representative of the  
747 closest algal relatives of land plants. (b) *Mesotaenium endlicherianum* grown in C-medium in 42  
748 twelve-well plates on a gradient table that produces a temperature range of  $8.6\pm0.5$  °C to  $29.2\pm0.5$  °C  
749 on the x-axis and an irradiance gradient of  $21.0\pm2.0$  to  $527.9\pm14.0$   $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$  on the y-axis.  
750 (c) Overview of the measured maximum quantum yield  $F_v/F_m$  as a proxy for gross physiology (blue)  
751 and Absorption (Abs.) at 480 (orange) and 680 nm (green); individual replicates of the biological  
752 triplicates are shown on the left and the average values are shown on the right. (d) Statistical analysis  
753 of the physiological values ( $F_v/F_m$ , Abs. 480 nm, Abs. 680 nm). Numbers correspond to  
754 environmental conditions on the table. Biological triplicates were grouped into significant groups (a-  
755 u) with R (version 4.1.3) using a Kruskal-Wallis test coupled with Fisher's least significance;  $p$  values  
756 were Bonferroni corrected. Significant differences at  $p \leq 0.001$  are shown as letters. (e) Heatmaps  
757 displaying averaged physiological values of the 42 conditions sorted either by (i) temperature or (ii)  
758 light. A cut-off was set (black vertical line) based on the distribution of the highest values, which were  
759 then summed up to determine a positive correlation with temperature or light conditions. (f) Two  
760 principal component analyses (PCA) showing the correlation of light conditions (left) or temperature  
761 conditions (right) to physiological values ( $F_v/F_m$ , Abs. 480, 680 nm). Clusters are shown in different  
762 colors, which are also visualized in an overview scheme of the gradient table at the top of the plots.  
763

764 **Figure 2: Global profiles of environment-governed gene expression response.** (a) Principal  
765 component analysis (PCA), visualizing PC1 and PC2. Backgrounds were drawn to highlight our  
766 interpretation of the observed trends; samples are coded by color (temperature) and symbols  
767 (irradiance in  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ). (b) Visualization of Euclidean distances between samples via  
768 heatmap, from red, zero distance, to blue, furthest distance (a distance of 300). (c) Heatmap of  
769 Spearman correlation between samples, from red, maximum correlation (1.0), to blue, least  
770 correlation (< 0.8). The clusters were calculated via the Euclidean distance. (d) PC1 and PC2  
771 scrutinized using a small multiples method of light intensity and (e) temperature. In (d) shades of gray  
772 corresponds to different light intensities. In (e) different colors represent different temperatures and  
773 were mapped with the same colors as (a).  
774

775 **Figure 3: Stress-titratable global differential gene expression profiles.** To perform differential  
776 gene expression analysis, we divided the table into 9 sectors (see scheme of the table); additionally, a  
777 tenth group was raised based on  $F_v/F_m < 0.5$ . Linear models were fitted for each gene and empirical  
778 Bayes statistics computed for differentially expressed genes (DEGs) by the limma package. In total,  
779 37 comparisons were made. DEGs were defined as genes with an absolute fold change  $\geq 2$  and BH-  
780 adjusted  $p$  value lesser than 0.01. (a) Volcano plots of DEGs for 9 selected comparisons based on the  
781 sectors and the  $F_v/F_m < 0.5$  criterion. (b) Heatmaps of numbers of DEGs for all sector-based  
782 comparisons (blue, downregulation; red, upregulation; yellow, sum of up- and down-regulated genes);  
783 grey bars label the first component (treatment) for calculating the contrasts (treatment vs. control). (c)  
784 Biological theme comparison summarizing all GO-term enrichment analysis with adjusted  $p$ -value  $\leq$   
785 0.01 of DEGs against all genes that were expressed and passed the filtering in our analyses as  
786 background. The size of each circle is proportional to the count of each GO-term. Only the top 30  
787 enriched terms are shown. (d) Wordle of the 124 genes that showed significant regulation across  
788 multiple comparisons shown in Figure 3a; word size correspond to the number of comparisons (based  
789 on (a) ) in which a gene appeared.  
790

791 **Figure 4: Unsupervised gene expression clusters recover genetic programs separated by**  
792 **environmental cues.** Gene expression clustering into 26 colored modules was performed using  
793 WGCNA; grey is the module of unclustered genes. (a) Hierarchical cluster tree of 17,095 genes. The  
794 heat map below the dendrogram shows the gene significance measure (from red, positive correlation,  
795 to white, no correlation, to blue, negative correlation) for the four different conditions / physiological  
796 parameters. (b) Heat map of the module-trait correlation based on eigengenes (from red, positive  
797 correlation, to white, no correlation, to blue, negative correlation); see Suppl. Fig. 7 (c) Bar plots of  
798 the mean gene significance across modules (given in the corresponding module color) towards the  
799 parameters light intensity, temperature, and  $F_v/F_m$ . (d) Enriched GO-terms for eight of the 26  
800 modules; each inset shows the gene expression profiles of all genes in a given module. (e)  
801 Arabidopsis homologs for key processes were mined based on keywords; they were retrieved from a  
802 look-up table of BLASTp hits in a search of *Mesotaenium* V2 against *A. thaliana* representative  
803 protein sequences. Bar charts show the percentage of detected *Mesotaenium* homologs across the  
804 modules relative to the number of all Arabidopsis IDs assigned to the terms. No blast hit was not  
805 depicted. Abbreviations: proc. = process; reg. = regulation; biogen. = biogenesis; develop. =  
806 development; pos. = positive; neg. = negative; init. = initiation; GEP = Gene expression profile; med.  
807 = mediated; dep. = dependent; modif. = modification; conjug. = conjugation; anneal. = annealing;  
808 compl. = complex; synth. = synthesis; resp. = response; transf. = transferring.  
809

810 **Figure 5: Molecular programs for environmental responses around recurrent plant hubs.**  
811 Visualization of the co-expression networks clustered by WGCNA into the modules blue (3,101  
812 genes), yellow (1,427 genes), green (1,220 genes), purple (506 genes), and pink (718 genes). Nodes,  
813 circles representing genes, are connected by edges whose weight is based on a weighted topological  
814 overlap matrix (TOM); weight is shown in a color gradient from light to dark indicating low to high  
815 topological overlap values in the TOM. Brightly colored nodes represent the 20 most connected genes  
816 (hubs) and are annotated; all other nodes are depicted in the corresponding paler color. Hubs are  
817 annotated based on homology. Around the clusters, different protein-coding hub genes are  
818 highlighted, giving information such as predicted domain structures or phylogenetic relationships;  
819 fully-labelled phylogenies are deposited in Supp. Fig. 26. Circles in phylogenies represent ultrafast  
820 bootstrap support, with larger circles represent high/full support; diamond symbols indicate high  
821 ( $>90$ ) support for branches separating highlighted clades. An alignment of GLK homologs can be  
822 found in Suppl. Fig. 8.  
823

824 **Figure 6: Lipid droplets accumulate in *Mesotaenium* upon changing environments.** (a)  
825 Differential interference contrast (DIC) and confocal laser scanning micrographs of *Mesotaenium*  
826 *endlicherianum* SAG 12.97 cells accumulating lipid droplets (LDs; arrows). Cells were either  
827 subjected to different temperature/light conditions (see abbreviations below) of the gradient table for  
828 89 h or 216 h. For confocal microscopy, algae were cultured independent of table conditions at 75  
829  $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$  and 22°C for 22 days. LDs are visible as distinct globular structures in NIC and

were stained by the lipid stain BODIPY<sup>TM</sup> (false-colored green; 493 nm excitation; 503 nm emission) and chlorophyll autofluorescence (false-colored purple). (b) Violin plots of LD quantification after 9 days of exposure to different environmental conditions including statistical analysis using Mann-Whitney *U* statistics (significance grouping based on *p* value < 0.05; see also Suppl. Fig. 27) (c) Heat map of row-scaled z-scores of the expression of homologs for LD biogenesis and function (see also Suppl. Fig. 28). Temperature/light conditions are displayed at the bottom as symbols in different colors, *Arabidopsis thaliana* (AT) identifiers based on BLASTp search are shown on the right (d) Proteomic investigation into a lipid enriched phase extracted from *Mesotaenium endlicherianum* SAG 12.97 cells showing enrichment in hallmark proteins of LDs. Volcano plot showing significantly (FDR<0.05) enriched *Mesotaenium* proteins in the lipid enriched phase (right side) compared to proteins of the total extract (left side). Hallmark *A. thaliana* LD protein identifiers are annotated based on BLAST. Top bar on the left plot shows the relative, normalized iBAQ values for ten LD signature protein detected in *Mesotaenium*. Bottom bar plot shows the log<sub>2</sub> enrichment of proteins characteristic for sub-cellular compartments. (LLI = Low light, LT = low temperature, MLI = moderate light, MT = moderate temperature, HLI = high light, HT = high temperature).

## REFERENCES

Amborella Genome Project et al. The Amborella Genome and the Evolution of Flowering Plants. *Science* 342, 1241089–1241089 (2013).

Banks, J. A., et al. The *Selaginella* genome identifies genetic changes associated with the evolution of vascular plants. *Science* 332, 960–63. (2011).

Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. *Proc Natl Acad Sci USA* 115, 6506–6511 (2018).

Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J. & Edwards, D. Plant pan-genomes are the new reference. *Nat. Plants* 6, 914–920 (2020).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics* 30, 2114–20. (2014).

Bowman, J. L., Briginshaw, L. N., Fisher, T. J. & Flores-Sandoval, E. Something ancient and something neofunctionalized— evolution of land plant hormone signaling pathways. *Curr Opin Plant Biol.* 47, 64–72 (2019).

Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-Seq quantification. *Nat Biotechnol.* 34, 525–27. (2016).

Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. *Nat Methods* 12, 59–60. (2015).

Campbell, Michael S., Carson Holt, Barry Moore, and Mark Yandell. 2014. “Genome Annotation and Curation Using MAKER and MAKER-P.” *Current Protocols in Bioinformatics* 48 (1): 4.11.1–4.11.39. <https://doi.org/10.1002/0471250953.bi0411s48>.

Carella, P. et al. Conserved biochemical defenses underpin host responses to oomycete infection in an early-divergent land plant lineage. *Curr Biol* 29, 2282-2294.e5 (2019).

Chen, R. E. & Thorner, J. Function and regulation in MAPK signaling pathways: Lessons learned from the yeast *Saccharomyces cerevisiae*. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research* 1773, 1311–1340 (2007).

Chen, X. et al. Protein kinases in plant responses to drought, salt, and cold stress. *J. Integr. Plant Biol.* 63, 53–78 (2021).

Cheng, C.-Y., Krishnakumar, V., Chan, A. P., Thibaud-Nissen, F., Schobel, S. & Town, C D. Araport11: A Complete Reannotation of the *Arabidopsis Thaliana* Reference Genome. *Plant J* 89, 789–804. (2017).

878 Cheng, S., et al. Genomes of subaerial Zygnematophyceae provide insights into land plant  
879 evolution. *Cell* 179, 1057-1067.e14. (2019).

880 Conover, W.J. *Practical Nonparametrics Statistics*. (1999) 3rd Edition, John Wiley & Sons Inc.,  
881 New York

882 Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-  
883 range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol* 26, 1367-1372.  
884 (2008).

885 Dainat, J. AGAT: another gff analysis toolkit to handle annotations in any gtf/gff format. Version  
886 V0 4: 10-5281. (2020).

887 De Clerck, O. et al. Insights into the Evolution of Multicellularity from the Sea Lettuce Genome.  
888 *Current Biology* 28, 2921-2933.e5 (2018).

889 de Vries, J. & Ischebeck, T. Ties between stress and lipid droplets pre-date seeds. *Trends Plant  
890 Sci.* 25, 1203-1214. (2020).

891 de Vries, J. et al. Heat stress response in the closest algal relatives of land plants reveals  
892 conserved stress signaling circuits. *The Plant Journal* 324, 1064-24 (2020).

893 de Vries, J., Curtis, B. A., Gould, S. B. & Archibald, J. M. Embryophyte stress signaling evolved  
894 in the algal progenitors of land plants. *Proc. Natl. Acad. Sci. U.S.A.* 115, E3471-E3480 (2018).

895 Doner, N. M. et al. *Arabidopsis thaliana* EARLY RESPONSIVE TO DEHYDRATION 7  
896 Localizes to Lipid Droplets via Its Senescence Domain. *Front. Plant Sci.* 12, 658961 (2021).

897 Eilbeck, K., Moore, B., Holt, C. & Yandell, M. Quantitative measures for the management and  
898 comparison of annotated genomes. *BMC Bioinformatics* 10, 67. (2009).

899 Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for  
900 multiple tools and samples in a single report. *Bioinformatics* 32, 3047-48. (2016).

901 Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39,  
902 783-791. (1985).

903 Friedl, T. & Lorenz, M. The Culture Collection of Algae at Göttingen University (SAG): a  
904 biological resource for biotechnological and biodiversity research. *Procedia Environ Sci* 15:110-117.  
905 (2012).

906 Gasulla, F. et al. The response of *Asterochloris erici* (Ahmadjian) Skaloud et Peksa to  
907 desiccation: a proteomic approach. *Plant Cell Environ* 36, 1363-1378 (2013).

908 Ggplot2: elegant graphics for data analysis. accessed. July 20, 2022.  
909 <https://link.springer.com/book/10.1007/978-3-319-24277-4>.

910 Gidda, S. K. et al. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic  
911 Regulation of Neutral Lipid Compartmentation in Plant Cells. *Plant Physiol.* 170, 2052-2071 (2016).

912 Golicz, A. A., Batley, J. & Edwards, D. Towards plant pangenomics. *Plant Biotechnol J* 14,  
913 1099-1105 (2016).

914 Gordon, S. P. et al. Extensive gene content variation in the *Brachypodium distachyon* pan-  
915 genome correlates with population structure. *Nat Commun* 8, 2184 (2017).

916 Gotoh O. Direct mapping and alignment of protein sequences onto genomic sequence.  
917 *Bioinformatics* 24, 2438-44. (2008b).

918 Gotoh, O. A space-efficient and accurate method for mapping and aligning cdna sequences onto  
919 genomic sequence. *Nucleic Acids Research* 36, 2630-38. (2008a).

920 Haas, B. J., et al. Automated eukaryotic gene structure annotation using EVidenceModeler and  
921 the program to assemble spliced alignments. *Genome Biology* 9, R7. (2008).

922 Hématy, K. *et al.* A Receptor-like Kinase Mediates the Response of Arabidopsis Cells to the  
923 Inhibition of Cellulose Synthesis. *Curr Biol.* 17, 922–931 (2007).

924 Hess, S. *et al.* A phylogenomically informed five-order system for the closest relatives of land  
925 plants. *Curr Biol.* 32, 4473–4482 (2022).

926 Higashi, Y., Okazaki, Y., Myouga, F., Shinozaki, K. & Saito, K. Landscape of the lipidome and  
927 transcriptome under heat stress in *Arabidopsis thaliana*. *Sci Rep* 5, 10533 (2015).

928 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving  
929 the Ultrafast Bootstrap Approximation. *Molecular Biology and Evolution* 35, 518–522 (2018).

930 Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. *Curr Protoc Bioinformatics* 65, e57 (2019).

932 Honkanen, S. & Small, I. The GENOMES UNCOUPLED1 protein has an ancient, highly  
933 conserved role but not in retrograde signalling. *New Phytologist* 236, 99–113 (2022).

934 Hori, K., *et al.* *Klebsormidium flaccidum* genome reveals primary factors for plant terrestrial  
935 adaptation. *Nature Communications* 5, 3978. (2014).

936 Huerta-Cepas, J., *et al.* EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated  
937 orthology resource based on 5090 organisms and 2502 viruses. *Nucl Acids Res* 47, D309–14. (2019).

938 Huerta-Cepas, J., Forsslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., von Mering, C. &  
939 Bork, P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper.  
940 *Mol Biol Evol* 34, 2115–22. (2017).

941 Hundertmark, M. & Hincha, D. K. LEA (Late Embryogenesis Abundant) proteins and their  
942 encoding genes in *Arabidopsis thaliana*. *BMC Genomics* 9, 118–22 (2008).

943 Ichimura, T. Sexual cell division and conjugation-papilla formation in sexual reproduction  
944 of *Closterium strigosum*. In *Proceedings of the Seventh International Seaweed Symposium*,  
945 University of Tokyo Press, Tokyo, p. 208–214. (1971).

946 James, C. N. *et al.* Disruption of the *Arabidopsis* CGI-58 homologue produces Chanarin–  
947 Dorfman-like lipid droplet accumulation in plants. *Proc. Natl. Acad. Sci. U.S.A.* 107, 17833–17838  
948 (2010).

949 Jiao, C., *et al.* The *Penium margaritaceum* genome: hallmarks of the origins of land plants.” *Cell*  
950 181, 1097–1111.e12. (2020).

951 Jiao, Y., Lau, O. S. & Deng, X. W. Light-regulated transcriptional networks in higher plants. *Nat Rev Genet* 8, 217–230 (2007).

953 Ju, C. *et al.* Conservation of ethylene as a plant hormone over 450 million years of evolution.  
954 *Nature Plants* 1, 14004 (2015).

955 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.  
956 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589  
957 (2017)

958 Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L. & Gao, G. CPC2: a fast and  
959 accurate coding potential calculator based on sequence intrinsic features.” *Nucleic Acids Research* 45,  
960 W12–16. (2017).

961 Kelley, D. R., Liu, B., Delcher, A. L., Pop, M. & Salzberg, S. L. Gene prediction with glimmer  
962 for metagenomic sequences augmented by classification and clustering. *Nucl Acids Res* 40, e9.  
963 (2012).

964 Kleine, T. *et al.* Acclimation in plants – the Green Hub consortium. *Plant J* 106, 23–40 (2021).

965 Ko, J.-H., Kim, J. H., Jayanty, S. S., Howe, G. A. & Han, K.-H. Loss of function of COBRA, a  
966 determinant of oriented cell expansion, invokes cellular defence responses in *Arabidopsis thaliana*.  
967 *Journal of Experimental Botany* 57, 2923–2936 (2006).

968 Korf, I. Gene finding in novel genomes. *BMC Bioinformatics* 5, 59. (2004).

969 Krawczyk, H. E. *et al.* Heat stress leads to rapid lipid remodeling and transcriptional adaptations  
970 in *Nicotiana tabacum* pollen tubes. *Plant Physiol.* 189, 490-515. (2022).

971 Kretzschmar, F. K., *et al.* Identification of Low-Abundance Lipid Droplet Proteins in Seeds and  
972 Seedlings. *Plant Physiol.* 182, 1326-1345. (2020).

973 Lamesch, P. *et al.* The *Arabidopsis* Information Resource (TAIR): Improved gene annotation and  
974 new tools. *Nucleic Acids Res.* 40, D1202-D1210. (2012).

975 Lang, D., *et al.* The *Physcomitrella patens* chromosome-scale assembly reveals moss Genome  
976 structure and evolution. *Plant J.* 93, 515-33. (2018).

977 Langfelder, P. & Horvath, S. "WGCNA: an R package for weighted correlation network analysis.  
978 *BMC Bioinformatics* 9, 559. (2008).

979 Langfelder, P. & Horvath, S. Fast R functions for robust correlations and hierarchical clustering. *J  
980 Stat Software* 46, 1-17. (2012).

981 Lass A, *et al.* Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by  
982 CGI-58 and defective in Chanarin-Dorfman Syndrome. *Cell Metab* 3, 309-319. (2006).

983 Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model  
984 analysis tools for RNA-seq read counts. *Genome Biol.* 15, R29. (2014).

985 Lenton, T. M. *et al.* Earliest land plants created modern levels of atmospheric oxygen. *Proc. Natl.  
986 Acad. Sci. U.S.A.* 113, 9704-9709 (2016).

987 Li-Beisson, Y., Thelen, J. J., Fedosejevs, E. & Harwood, J. L. The lipid biochemistry of  
988 eukaryotic algae. *Progress in Lipid Research* 74, 31-68 (2019).

989 Li, F.-W., *et al.* *Anthoceros* genomes illuminate the origin of land plants and the unique biology  
990 of hornworts. *Nat Plants* 6, 259-72. (2020).

991 Li, F.-W., *et al.* Fern genomes elucidate land plant evolution and cyanobacterial symbioses.  
992 *Nature Plants* 4, 460-72. (2018).

993 Liang, Z., *et al.* *Mesostigma viride* genome and transcriptome provide insights into the origin and  
994 evolution of streptophyta. *Advanced Sci.* 7, 1901850. (2019).

995 Listenberger, L. L., and Brown, D. A. (2007) Fluorescent Detection of Lipid Droplets and  
996 Associated Proteins. *Curr Protoc Cell Biol.* 35, 24.2.1-24.2.11

997 Liu, L.-J. *et al.* COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome  
998 Regulation of Flowering in *Arabidopsis*. *The Plant Cell* 20, 292-306 (2008).

999 Liu, R., *et al.* Why weight? Modelling sample and observational level variability improves power  
1000 in RNA-Seq Analyses." *Nucleic Acids Research* 43 (15): e97. (2015).

1001 Liu, S. *et al.* The *Brassica oleracea* genome reveals the asymmetrical evolution of polyploid  
1002 genomes. *Nat. Commun.* 5, 3930. (2014).

1003 Mann, H.B. and Whitney, D.R. (1947) On a test of whether one of two random variables is  
1004 stochastically larger than the other. *Ann. Math. Statist.* 1, 50-60.

1005 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel  
1006 and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of  
1007 eukaryotic, prokaryotic, and viral genomes. *Molecular Biology and Evolution* 38 (10): 4647-54.  
1008 (2021).

1009 Mapleson, D., Venturini, L., Kaithakottil, G. & Swarbreck, D. Efficient and accurate detection of  
1010 splice junctions from RNA-Seq with portcullis." *GigaScience* 7, giy131. (2018).

1011 Marchant, D. B., *et al.* Dynamic genome evolution in a model fern. *Nature Plants* 8, 1038-1051.  
1012 (2022).

1013 Martín, G. et al. Phytochrome and retrograde signalling pathways converge to antagonistically  
1014 regulate a light-induced transcriptional network. *Nat Commun* 7, 11431 (2016).

1015 Meng, X. & Zhang, S. MAPK Cascades in Plant Disease Resistance Signaling. *Annu. Rev.*  
1016 *Phytopathol.* 51, 245–266 (2013).

1017 Merchant, S. S., et al. The *Chlamydomonas* genome reveals the evolution of key animal and plant  
1018 functions. *Science* 318, 245–50. (2007).

1019 Minos. Minos - a Gene Model Consolidation Pipeline for Genome Annotation Projects. Python.  
1020 EI-CoreBioinformatics. <https://github.com/EI-CoreBioinformatics/minos>. (2019).

1021 Montgomery, S. A., et al. Chromatin organization in early land plants reveals an ancestral  
1022 association between H3K27me3, transposons, and constitutive heterochromatin. *Curr Biol* 30, 573–  
1023 588.e7. (2020).

1024 Moreau, H. et al. Gene functionalities and genome structure in *Bathycoccus prasinus* reflect  
1025 cellular specializations at the base of the green lineage. *Genome Biology* 13, R74 (2012).

1026 Moreno, J. C., Mi, J., Alagoz, Y. & Al-Babili, S. Plant apocarotenoids: from retrograde signaling  
1027 to interspecific communication. *Plant J* 105, 351–375 (2021).

1028 Mueller, S. P., Krause, D. M., Mueller, M. J. & Fekete, A. Accumulation of extra-chloroplastic  
1029 triacylglycerols in *Arabidopsis* seedlings during heat acclimation. *Journal of Experimental Botany* 66,  
1030 4517–4526 (2015).

1031 Müller, A. O., Blersch, K. F., Gippert, A. L. & Ischebeck, T. Tobacco pollen tubes – a fast and  
1032 easy tool for studying lipid droplet association of plant proteins. *Plant J* 89, 1055–1064 (2017).

1033 Nakagami, H., Pitzschke, A. & Hirt, H. Emerging MAP kinase pathways in plant stress signalling.  
1034 Trends in Plant Science 10, 339–346 (2005).

1035 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective  
1036 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular Biology and*  
1037 *Evolution* 32, 268–274 (2015).

1038 Nishimura, K., Kato, Y. & Sakamoto, W. Chloroplast Proteases: Updates on Proteolysis within  
1039 and across Suborganellar Compartments. *Plant Physiol.* 171, 2280–2293 (2016).

1040 Nishiyama, T., et al. The *Chara* genome: secondary complexity and implications for plant  
1041 terrestrialization.” *Cell* 174 (2): 448-464.e24. (2018).

1042 Nystedt, B., Street, N. R., Wetterbom, A., et al. (2013) The Norway spruce genome sequence and  
1043 conifer genome evolution. *Nature*, 497, 579-584.

1044 One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the  
1045 phylogenomics of green plants. *Nature* 574, 679–685 (2019).

1046 Ordoñez-Herrera, N. et al. The Transcription Factor COL12 Is a Substrate of the COP1/SPA E3  
1047 Ligase and Regulates Flowering Time and Plant Architecture. *Plant Physiol.* 176, 1327–1340 (2018).

1048 Ouyang, S., Zhu, W., Hamilton, J., et al. (2007) The TIGR Rice Genome Annotation Resource:  
1049 improvements and new features. *Nucleic Acids Res.*, 35, D883–D887.

1050 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression  
1051 analysis of RNA-Seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc* 11, 1650–67.  
1052 (2016).

1053 Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K.-J. & Oelmüller, R. pTAC2, -6, and -12 are  
1054 components of the transcriptionally active plastid chromosome that are required for plastid gene  
1055 expression. *Plant Cell* 18, 176–197 (2006).

1056 Phipson, B., Lee, S., Majewski, I. J., Alexander, W.S. & Smyth, G. K. Robust hyperparameter  
1057 estimation protects against hypervariable genes and improves power to detect differential expression.  
1058 *Ann Appl Stat* 10, 946–63. (2016).

1059 Planas-Riverola, A. et al. Brassinosteroid signaling in plant development and adaptation to stress.  
1060 Development 146, dev151894 (2019).

1061 Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga  
1062 *volvox carteri*. Science 329, 223–226 (2010).

1063 Rappaport, J., Ishihama, Y., and Mann, M. Stop and go extraction tips for matrix-assisted laser  
1064 desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem  
1065 75, 663–670. (2003).

1066 Rappaport, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-  
1067 fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896–  
1068 1906. (2007).

1069 REAT. “REAT - Robust and Extendable Eukaryotic Annotation Toolkit.” n.d. Accessed July 19,  
1070 2022. <https://github.com/EI-CoreBioinformatics/reat>.

1071 Rieseberg, T. P. et al. Crossroads in the evolution of plant specialized metabolism. Seminars in  
1072 Cell & Developmental Biology S1084952122000738 (2022) doi:10.1016/j.semcd.2022.03.004.

1073 Ritchie, M. E., et al. Limma powers differential expression analyses for RNA-sequencing and  
1074 microarray studies. Nucl Acids Res 43, e47–e47. (2015).

1075 Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression  
1076 analysis of RNA-Seq data. Genome Biol. 11, R25. (2010).

1077 Robinson, M. D., McCarthy, D.J. & Smyth, G. K. EdgeR: a bioconductor package for differential  
1078 expression analysis of digital gene expression data. Bioinformatics 26, 139–40. (2010).

1079 Rodriguez, M. C. S., Petersen, M. & Mundy, J. Mitogen-Activated Protein Kinase Signaling in  
1080 Plants. Annu. Rev. Plant Biol. 61, 621–649 (2010).

1081 Rossini, L., Cribb, L., Martin, D. J. & Langdale, J. A. The maize Golden2 gene defines a novel  
1082 class of transcriptional regulators in plants. Plant Cell 13, 1231–1244 (2001).

1083 Roudier, F., Schindelman, G., DeSalle, R. & Benfey, P. N. The COBRA Family of Putative GPI-  
1084 Anchored Proteins in Arabidopsis. A New Fellowship in Expansion. Plant Physiology 130, 538–548  
1085 (2002).

1086 Sarid-Krebs, L. et al. Phosphorylation of CONSTANS and its COP 1-dependent degradation  
1087 during photoperiodic flowering of Arabidopsis. Plant J 84, 451–463 (2015).

1088 Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9,  
1089 676–682 (2012).

1090 Schindelman, G. et al. COBRA encodes a putative GPI-anchored protein, which is polarly  
1091 localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 15, 1115–1127  
1092 (2001).

1093 Schröder, F., Lisso, J., Lange, P. & Müssig, C. The extracellular EXO protein mediates cell  
1094 expansion in Arabidopsis leaves. BMC Plant Biol 9, 20 (2009).

1095 Shao, M. & Kingsford, C. “Accurate Assembly of Transcripts through Phase-Preserving Graph  
1096 Decomposition.” Nat Biotechnol. 35, 1167–69. (2017).

1097 Shapiro, S.S. and Wilk, M.B. An analysis of variance test for normality (complete samples).  
1098 Biometrika, 52, 591–611. (1965).

1099 Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins  
1100 from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

1101 Simon, A. FastQC: a quality control tool for high throughput sequence data. Babraham  
1102 Bioinformatics, Babraham Institute, Cambridge, United Kingdom.  
1103 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. (2010).

1104 Sjögren, L. L. E., Stanne, T. M., Zheng, B., Sutinen, S. & Clarke, A. K. Structural and Functional  
1105 Insights into the Chloroplast ATP-Dependent Clp Protease in Arabidopsis. *Plant Cell* 18, 2635–2649  
1106 (2006).

1107 Slotte, T. et al. The *Capsella rubella* genome and the genomic consequences of rapid mating  
1108 system evolution. *Nat Genet* 45, 831–835 (2013).

1109 Smyth, G. K., Michaud, J. & Scott, H. S. Use of within-array replicate spots for assessing  
1110 differential expression in microarray experiments. *Bioinformatics* 21, 2067–75. (2005).

1111 Soneson, C., Love, M. I. & Robinson, M. D. 2016. “Differential Analyses for RNA-Seq:  
1112 Transcript-Level Estimates Improve Gene-Level Inferences.” *F1000Research*.  
1113 <https://doi.org/10.12688/f1000research.7563.2>.

1114 Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S. & Morgenstern, B. AUGUSTUS: ab  
1115 initio prediction of alternative transcripts. *Nucl Acids Res* 34, W435–39. (2006).

1116 Stanke, Mario, Ana Tzvetkova, and Burkhard Morgenstern. 2006. “AUGUSTUS at EGASP:  
1117 Using EST, Protein and Genomic Alignments for Improved Gene Prediction in the Human Genome.”  
1118 *Genome Biology* 7 (1): S11. <https://doi.org/10.1186/gb-2006-7-s1-s11>.

1119 Sun, Y. et al. A ligand-independent origin of abscisic acid perception. *Proc Natl Acad Sci USA*.  
1120 116, 24892–24899 (2019).

1121 Sun, Y. et al. Integration of Brassinosteroid Signal Transduction with the Transcription Network  
1122 for Plant Growth Regulation in Arabidopsis. *Developmental Cell* 19, 765–777 (2010).

1123 Susek, R. E., Ausubel, F. M. & Chory, J. Signal transduction mutants of arabidopsis uncouple  
1124 nuclear CAB and RBCS gene expression from chloroplast development. *Cell* 74, 787–799 (1993).

1125 Testa, A. C., Hane, J. K., Ellwood, S. R. & Oliver, R. P. CodingQuarry: highly accurate hidden  
1126 markov model gene prediction in fungal genomes using RNA-Seq transcripts. *BMC Genomics* 16,  
1127 170. (2015).

1128 The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model  
1129 grass Brachypodium distachyon. *Nature* 463, 763–768

1130 The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy  
1131 fruit evolution. *Nature* 485, 635-641

1132 Timm, S. et al. A Cytosolic Pathway for the Conversion of Hydroxypyruvate to Glycerate during  
1133 Photorespiration in Arabidopsis. *The Plant Cell* 20, 2848–2859 (2008).

1134 Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M. & Cox, J. The  
1135 Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat Methods* 13,  
1136 731-740. (2016).

1137 Umezawa, T. et al. Molecular basis of the core regulatory network in ABA responses: sensing,  
1138 signaling and transport. *Plant Cell Physiol.* 51, 1821–1839. (2010).

1139 Van de Poel, B., Cooper, E. D., Van Der Straeten, D., Chang, C. & Delwiche, C. F.  
1140 Transcriptome profiling of the green alga *Spirogyra pratensis* (Charophyta) suggests an ancestral role  
1141 for ethylene in cell wall metabolism, photosynthesis, and abiotic stress responses. *Plant Physiology*  
1142 172, 533–545 (2016).

1143 Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. Swarbreck, D. Leveraging Multiple  
1144 Transcriptome Assembly Methods for Improved Gene Structure Annotation. *GigaScience* 7, giy093.  
1145 (2018).

1146 Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. *Nature Plants* 4, 82–  
1147 89 (2018).

1148 Wang, S. et al. Genomes of early-diverging streptophyte algae shed light on plant  
1149 terrestrialization. *Nat Plants* 6, 95–106. (2020).

1150 Wang, X. et al. The genome of the mesopolyploid crop species *Brassica rapa*. *Nat. Genet.* 43,  
1151 1035–1039. (2011).

1152 Waters, M. T. et al. GLK Transcription Factors Coordinate Expression of the Photosynthetic  
1153 Apparatus in *Arabidopsis*. *Plant Cell* 21, 1109–1128. (2009).

1154 Wickell, D. et al. Underwater CAM photosynthesis elucidated by *Isoetes* genome. *Nat Commun*  
1155 12, 6348 (2021).

1156 Wickett, N. J. et al. Phylogenetic analysis of the origin and early diversification of land  
1157 plants. *Proc. Natl. Acad. Sci. U.S.A.* 111, E4859–E4868 (2014).

1158 Wijesooriya, K., Jadaan, S. A., Perera, K. L., Kaur, T. & Ziemann, M. Urgent need for consistent  
1159 standards in functional enrichment analysis. *PLOS Comp Biol* 18, e1009935. (2022).

1160 Wolf, S. et al. A receptor-like protein mediates the response to pectin modification by activating  
1161 brassinosteroid signaling. *Proc. Natl. Acad. Sci. U.S.A.* 111, 15261–15266 (2014).

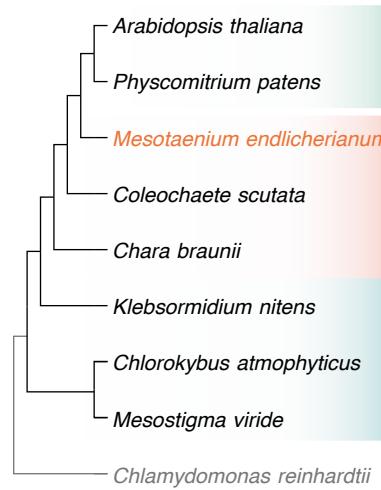
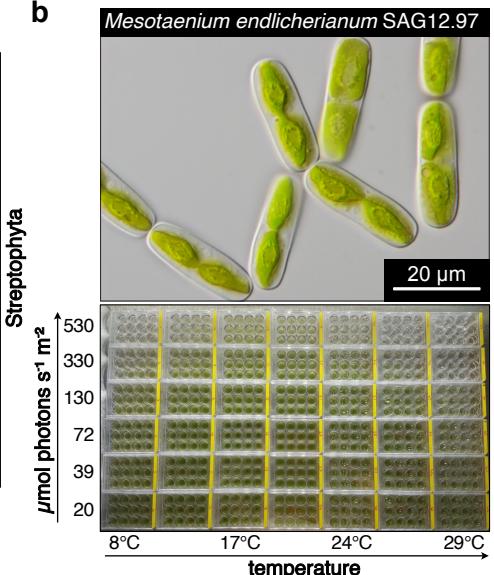
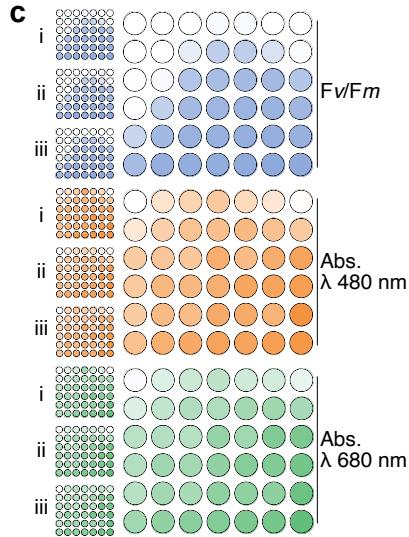
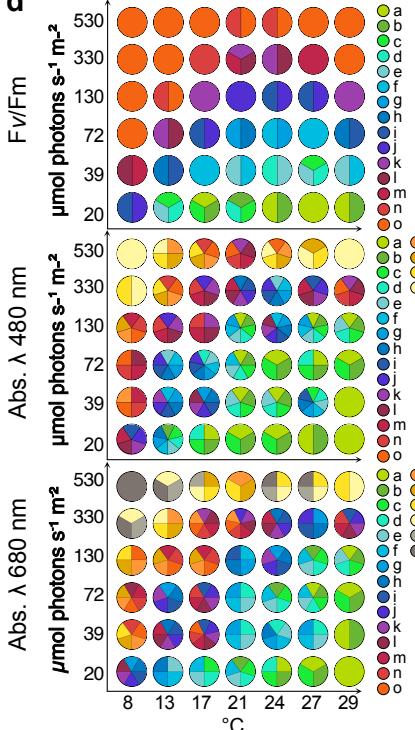
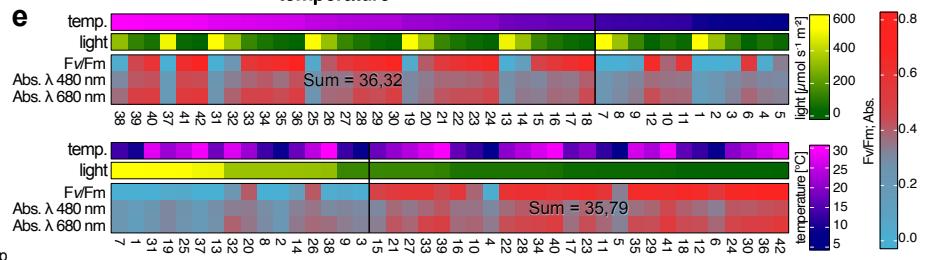
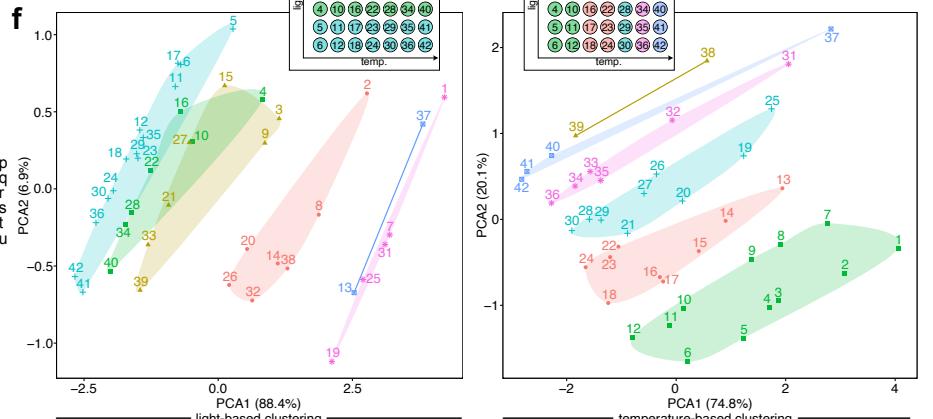
1162 Worden, A. Z., et al. Green evolution and dynamic adaptations revealed by genomes of the  
1163 marine picoplankton *Micromonas*. *Science*, 324, 268–272. (2009).

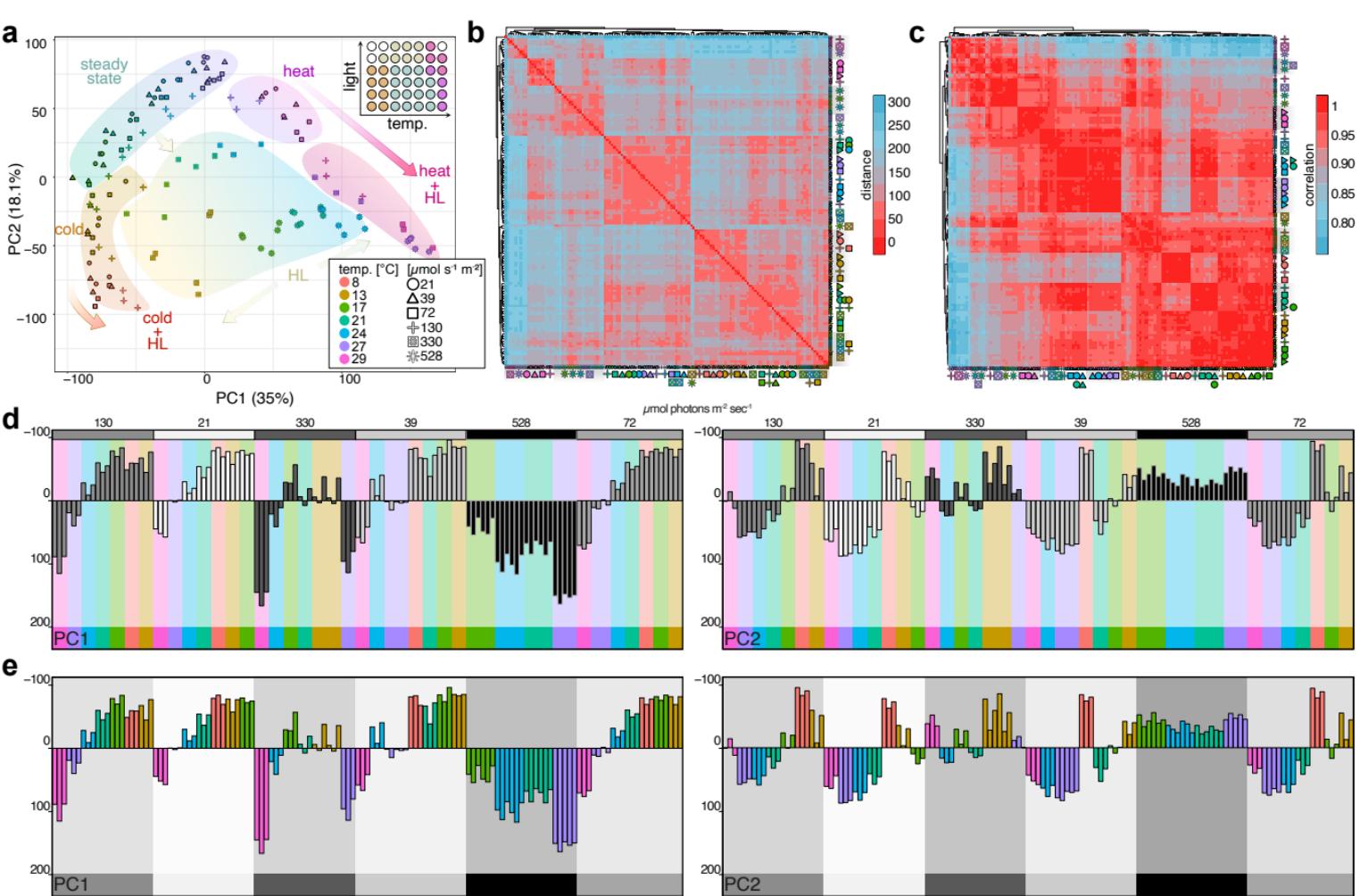
1164 Wu, T., et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. *The  
1165 Innovation* 2, 100141. (2021).

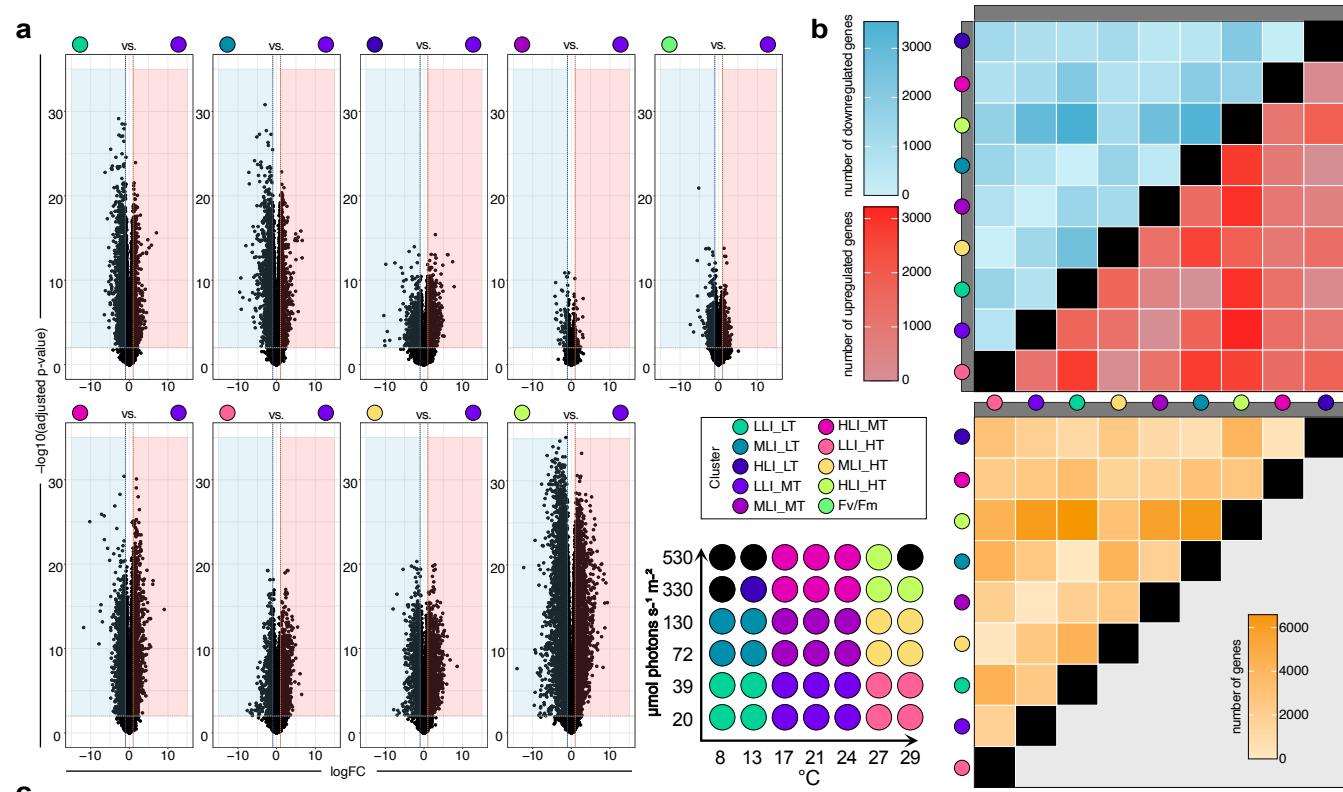
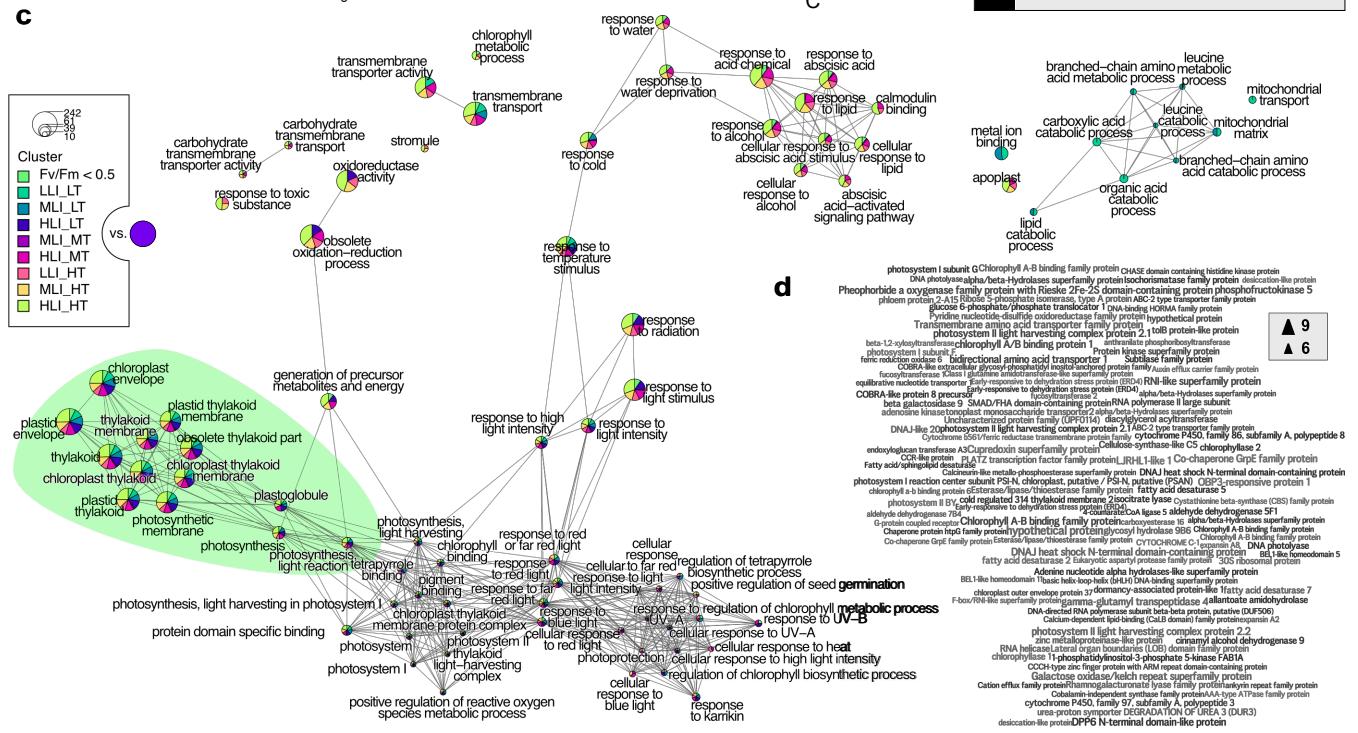
1166 Yasumura, Y., Moylan, E. C. & Langdale, J. A. A Conserved Transcription Factor Mediates  
1167 Nuclear Control of Organelle Biogenesis in Anciently Diverged Land Plants. *The Plant Cell* 17,  
1168 1894–1907 (2005).

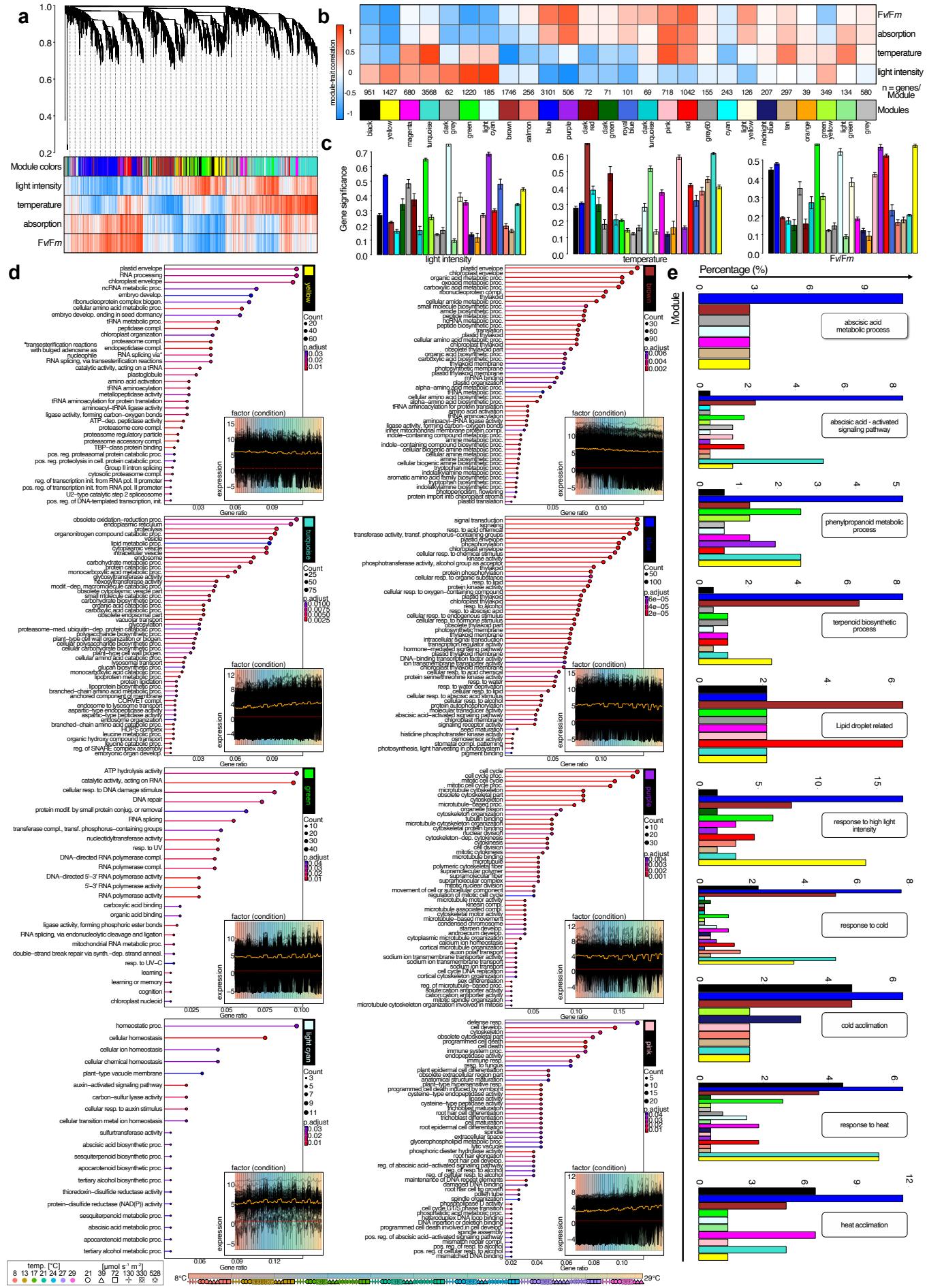
1169 Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. 2012. “ClusterProfiler: An R  
1170 Package for Comparing Biological Themes Among Gene Clusters.” *OMICS: A Journal of Integrative  
1171 Biology* 16 (5): 284–87 (2012).

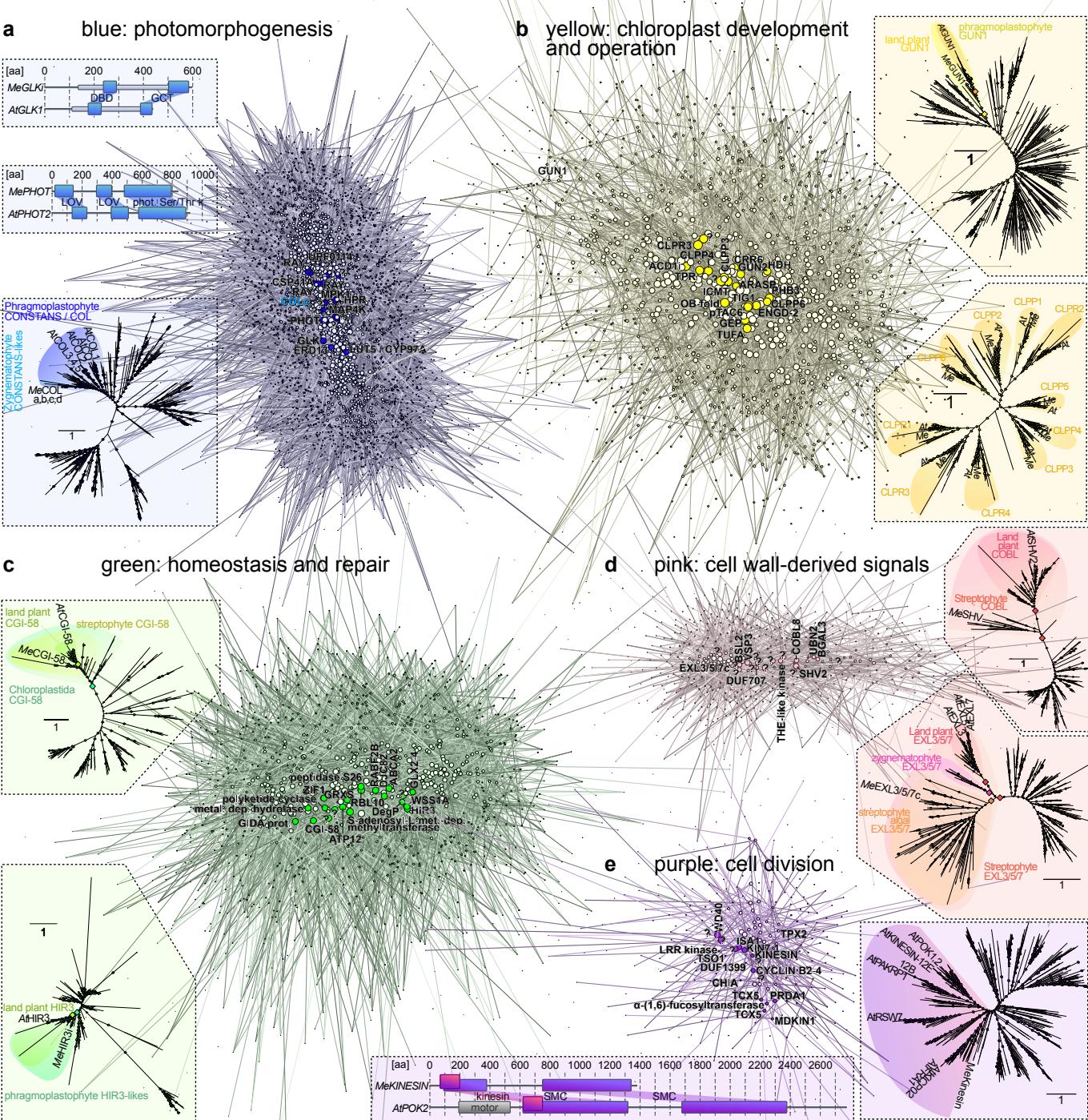
1172 Zhao, C. et al. Evolution of chloroplast retrograde signaling facilitates green plant adaptation to  
1173 land. *Proc. Natl. Acad. Sci. U.S.A.* 116, 5015–5020 (2019).

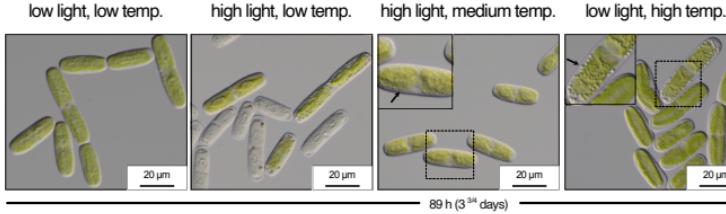
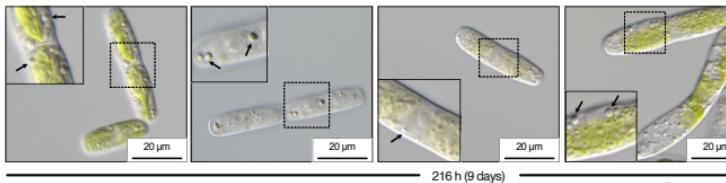
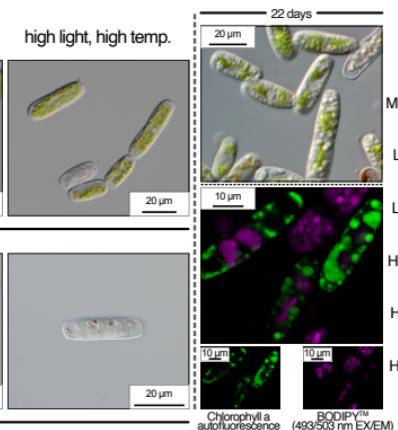
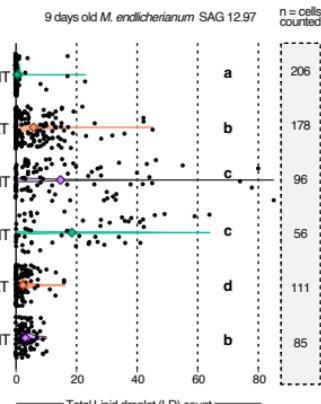
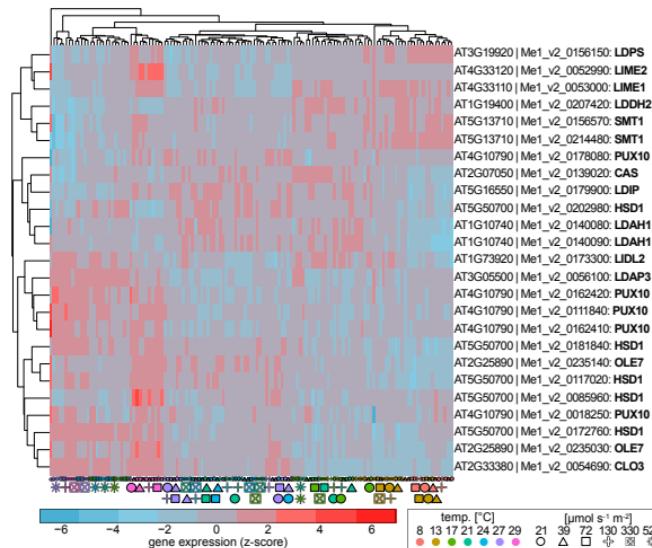
**a****b****c****d****e****f**









**a****b****c****d**