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Single nuclei RNAseq analysis of HD mouse models and human brain reveals impaired 1 

oligodendrocyte maturation and potential role for thiamine metabolism  2 
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Abstract  27 

 28 

The complexity of affected brain regions and cell types is a challenge for Huntington’s disease (HD) treatment.  29 

Here we used single nucleus RNA sequencing (snRNAseq) to investigate mechanism of pathology in the cortex 30 

and striatum from R6/2 mice at 8 and 12w and in three regions of human HD post-mortem tissue. We identified 31 

cell type-specific and cell agnostic signatures and found changes suggesting oligodendrocytes (OLs) and 32 

oligodendrocyte precursors (OPCs) were arrested in intermediate maturation states. OL-lineage regulators 33 

OLIG1 and OLIG2 were negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD 34 

mouse NeuN-negative cells showed decreased accessibility of sites regulated by OL maturation genes. Glucose 35 

and lipid metabolism were implicated in abnormal cell maturation and PRKCE and Thiamine Pyrophosphokinase 36 

1 were identified as central genes. High dose thiamine/biotin treatment of R6/1 HD mice to target thiamine 37 

metabolism not only restored OL maturation, but also rescued pathology in neurons. These findings reveal 38 

insights into HD OL pathology that spans multiple brain regions and link OL maturation deficits to abnormal 39 

thiamine metabolism.    40 
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Introduction 41 

 42 

Huntington disease (HD) is a progressive neurodegenerative disease characterized by prominent loss of medium 43 

spiny neurons (MSN) in the striatum and cortical atrophy 1. The disease, which manifests with cognitive, 44 

psychiatric and movement impairments, is caused by an autosomal dominant CAG repeat expansion in the first 45 

coding exon of the Huntingtin gene and a corresponding expanded polyglutamine repeat in the Huntingtin (HTT) 46 

protein 2. Genome-wide approaches, including bulk RNA- and ChIP-sequencing, have facilitated understanding 47 

the molecular impact of mutant HTT (mHTT) expression in a variety of model systems 3-6 and have suggested 48 

deficits in neurodevelopmental programs in HD 3,7-9, however bulk tissue analysis limits understanding of cell 49 

type-specific changes. The ability to distinguish common signatures of HD across multiple cell types from those 50 

unique to specific cell types facilitates our mechanistic understanding of disease.  Expression of mHTT using 51 

cell type-specific drivers in animal models of HD 10 or human HD induced pluripotent stem cells differentiated to 52 

specific cell types support the idea that cell type-specific effects of HD synergistically lead to pathogenesis 11,12. 53 

Further, single cell transcriptomics approaches have supported the concept of cell type specific 54 

neurodevelopmental impairments in HD.13,14 55 

There has been a growing awareness that OL-lineage cells are abnormal in HD.  First, early myelination 56 

deficits based on structural and transcriptomic studies were described in mouse models of HD15,16. OL targeted 57 

mHTT expression causes HD symptoms in mice, as well as myelination deficits and altered OL maturation via a 58 

mechanism involving Myrf17.  Myelination deficits due to mHTT expression were evident in spinal cord white 59 

matter in BACHD mice18. Consistently, bulk transcriptional studies of human HD revealed that MYT1L, a myelin 60 

transcription factor, and MBP were decreased in the caudate and prefrontal cortex, respectively 19,20. Second, 61 

glial dysfunction21,22 and impaired OPC differentiation has been described for HD. For example, HD embryonic 62 

stem cell-derived glial progenitors transplanted into shiverer mice exhibit decreased differentiation and 63 

hypomyelination compared to controls 23. Another study showed that remyelination was impaired in cuprizone-64 

treated mice, implicating abnormal OPC function in HD24, and inactivation of mHTT in OPCs prevented myelin 65 

abnormalities in HD mice 11. Clinical radiographic and neuropathological studies also reveal that OLs and 66 

myelination are abnormal in human HD (summarized in 25).  Neuropathologic examination of postmortem HD 67 
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brains revealed higher density of OLs in the caudate nucleus26 27, including in pre-symptomatic HD patients. 68 

Stereological examinations of white matter reveal a decrease of 20-30% of the cross-sectional area of white 69 

matter in coronal levels from frontal to occipital regions 28, as well as in the fornix29,  in both lower and higher HD 70 

grades, suggesting that white matter loss represents an early change.  71 

Here, we used single nucleus-RNAseq (snRNAseq) to obtain cell type-specific gene expression data 72 

across multiple brain regions from both the rapidly progressing R6/2 mouse model 30 and human post-mortem 73 

brain samples with increasing grades of disease severity – including both adult- and juvenile-onset HD -  and 74 

used these data for correlative and causal network modeling. We identified cell type-specific and agnostic gene 75 

expression changes, as well as putative causal drivers of transcriptomic changes. Consistent with previous 76 

literature, we find that oligodendrocyte-lineage cells show significant transcriptional dysregulation. Expanding on 77 

these findings, HD OPCs and OLs have altered expression of development and maturation genes in both mice 78 

and human tissue, with many HD OL-lineage cells showing intermediate states of development. The extent of 79 

dysregulation correlates with CAG repeat length in human tissue; the same dysregulated genes were also 80 

highlighted by causal modeling in our mouse data. A gene central to the OPC/OL causal network, Protein kinase 81 

C epsilon (PRKCE), was downregulated in human and mouse tissue, and functional studies clarified its role in 82 

promoting OL maturation. Evidence from ATACseq and validation studies support this dysregulation. Notably, 83 

we identify impairments in glucose and lipid metabolism, identified as cell type agnostic signatures, as potential 84 

drivers of this pathology. This connection to metabolism led us to find potentially unique roles for diacylglycerol 85 

(DAG), and thiamine and biotin (T&B) metabolic processes in HD OL maturation impairments. Thiamine 86 

Pyrophosphokinase 1 (Tpk1), which converts thiamine into thiamine pyrophosphate, was differentially expressed 87 

in the most cell types in the 12w R6/2 mice, and both TPK1 and SLC19A2, a thiamine transporter, were 88 

downregulated in the human HD snRNAseq data. Mutations in TPK1 or the thiamine-transporters SLC19A3 lead 89 

to thiamine pyrophosphate deficiencies and early-onset neurodegeneration with brain atrophy, basal ganglia 90 

impairment, and motor dysfunction which can be effectively treated with high dose thiamine and biotin (T&B) 91 

31,32. In addition, mutations in SLC19A2 lead to Roger’s syndrome, with megaloblastic anemia, 92 

thrombocytopenia, diabetes mellites, and sensorineural deafness 33 and general dietary thiamine deficiencies 93 

are known to contribute to a number of neurological and psychiatric symptoms 34. To further examine potential 94 
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connections between metabolic changes in HD and OL maturation we treated R6/1 mice, which has a longer 95 

therapeutic window than R6/2 mice and also show dys-maturation signatures in a number of  cell types 14, with 96 

T&B and conducted snRNAseq on the striatum of T&B treated and vehicle treated mice. T&B treatment resulted 97 

in significant rescue of dys-maturation signatures in OL and neurons, and an overall decrease in the number of 98 

significant differentially expressed genes (DEGs). Our novel data provide evidence that dysregulated metabolism 99 

and metabolic genes can directly contribute to the cell maturation deficits observed in OLs and other cell types, 100 

and that diet supplementation may be a therapeutic modality for HD.  101 

 102 

Results 103 

Single nuclei RNAseq of R6/2 mouse model of HD  104 

R6/2 mice are a rapidly progressing transgenic mouse model that express mHTT exon 1 and have 105 

features in common with human symptomatic HD, including transcriptional changes 30.  To uncover progressive, 106 

cell type-specific, and region-specific transcriptional changes, snRNAseq was conducted on three striatal and 107 

cortical samples each from R6/2 and non-transgenic (NT) mice at 8w and 12w of age (Fig. 1a, See Methods. 108 

snRNAseq data were also generated and analyzed from human HD and control brains (Fig. 1a and e, described 109 

below). Initial QC and filtering led to the identification of 108,974 nuclei in total. Fig. 1b and Supplementary Fig. 110 

1a show uniform manifold approximation and projection (UMAP) plots of these data. Unsupervised clustering 111 

identified 13 clusters in the 8w and 12w striatal samples, and 18 and 16 clusters in the 8w and 12w cortical 112 

samples, respectively (Fig. 1b). A select number of cell type gene markers used to annotate these clusters is 113 

shown in Supplementary Fig. 1b. R6/2 and NT cells clearly separate in some of the clusters. For example, 12w 114 

D1+ MSNs completely separated into distinct clusters, which is reflected by the large number of DEGs between 115 

the two conditions (Fig. 1b-d, Supplementary Table 1). The proportion of cells in each cluster across the cortex 116 

and striatum is shown in Fig. 1d. We also find large numbers of DEGs in the excitatory (Ex) and inhibitory (Inhib) 117 

neurons, astrocyte (Astro), OLs, and OPC clusters (Fig. 1c). Minimal to no changes were seen in the microglia 118 

(MG), vascular cells, and cholinergic neurons (Fig. 1c). These clusters had the smallest number of cells and 119 

therefore could lack the power required to identify statistical differences. Regional differences are reflected by 120 

differences in cell type-specific DEGs across regions (Fig. 1c). The total numbers of DEGs across all cell types 121 
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were compiled and compared between 8w and 12w samples showing a large overlap of DEGs, with more unique 122 

DEGs in the 12w samples for both the striatum and cortex (Supplementary Fig. 1c). When we combined all 123 

data from both ages and regions, we found no clustering differences for each cell type between age and region, 124 

except for cell types that were specific to either the striatum or cortex, e.g. MSNs in the striatum (Supplementary 125 

Fig. 1d). The only differences between the age groups were seen between the 8w and 12w OLs.  126 

 Gene ontology (GO 35) enrichment analysis  and KEGG pathway analysis were used to investigate the 127 

biological implications of each set of DEGs from the different cell types. The top 10 significant terms revealed 128 

that the majority of DEGs, regardless of cell type, are involved in neuronal related functions, including 129 

neurogenesis, synaptic function, and glutamate related signaling (Supplementary Fig. 2a). Certain cell types 130 

were enriched for terms such as “developmental process” in OLs and OPCs. Similar to GO analysis across 131 

regions, age, and cell type, there were recurring KEGG pathways as well as sets of unique pathways that group 132 

together to indicate functional impairment such as focal adhesion, cytoskeleton, ErbB and axon guidance as the 133 

top pathways in OLs, suggesting a loss of signaling pathways involved in cell-to-cell communication between 134 

OLs and neurons (Supplementary Fig. 2b). We also identified cell type agnostic DEGs that were common to 135 

both glia and neurons. Fig. 2a and Supplementary Fig. 3a show the top multi-cluster DEGs identified in at least 136 

50% of the cell types/clusters per tissue region and age, as a heatmap with hierarchical clustering. Many DEGs 137 

across both glia and neurons are involved in RNA processing and splicing and metabolism. Hierarchical 138 

clustering shows grouping of genes with similar functions indicating potential correlated expression and 139 

regulation. KEGG pathway analysis also highlighted metabolic pathways including TCA cycle, O-glycan 140 

biosynthesis, amino and nucleotide sugar, sucrose, and pentose phosphate pathways, many of which appear in 141 

the earlier 8w age stage (Supplementary Fig. 2b). Dysregulated metabolic genes were found in or downstream 142 

of the glucose super metabolism pathway that includes glycolysis, the hexosamine biosynthetic, polyol, and 143 

diacylglycerol pathways. The two genes dysregulated across the most cell types in the 12w striatum were Tpk1, 144 

and Malat1, a long non-coding RNA involved in RNA processing and transcriptional dysregulation 36 (Fig 2a). 145 

Moreover, Tpk1 was also among the top dysregulated genes in the 12w cortex, and another glycolytic gene, 146 

glucose-6-phosphate isomerase 1 (Gpi1), was one of the top multi-cluster DEGs in both 8w striatum and cortex 147 

(Fig. 2a and Supplementary Fig. 3a). Both metabolic genes are upregulated in R6/2. We investigated whether 148 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

there was an enrichment for KEGG metabolic genes in the DEGs and which metabolic pathways were most 149 

impacted; a composite is shown in Fig. 2b (12w striatum) and Supplementary Fig. 3b. Tpk1, Ogt, Dgkx genes, 150 

and Galnt13, found in sub-pathways related to glucose and lipid metabolism, are among the most commonly 151 

dysregulated genes in all cell types.  152 

 153 

R6/2 OPCs are committed to maturation while OLs appear transcriptionally less mature than NT OLs 154 

Given the large changes in OPC and OL clusters, and the UMAPs in Fig. 1 showing a trajectory of R6/2 155 

cells embedding between the OPC and OL clusters, we investigated whether these cells might represent 156 

intermediate cell states between OPCs and OLs. The OL-OPC data were subclustered, revealing six clusters in 157 

the 12w striatum and five clusters in the 8w striatum, 8w cortex, and 12w cortex. Each cluster represented distinct 158 

populations of OPCs or OLs comprised of R6/2 and/or NT (Fig. 2c (12wk striatum), and Supplementary Fig. 159 

3c-e, integrated data cross regions and ages are described in supplementary results and supplementary 160 

Table 2). These subclustered data were then further annotated based on the gene expression markers and 161 

annotations defined by Marques and Zeisel et al 37 as OPCs, committed oligodendrocyte precursors (COP), 162 

newly formed oligodendrocytes (NFOL), myelin-forming oligodendrocytes (MFOL), or mature oligodendrocytes 163 

(MOL) (Fig. 2c and Supplementary Fig. S3c).  DEGs were generated for R6/2 versus NT statistical contrasts 164 

for each of the developmental stages. These analyses revealed that R6/2 OPCs (OPC & COP) and OLs (NFOL, 165 

MFOL, and MOL) at both ages and in both anatomic regions have changes in expression that suggest 166 

developmental/maturation impairments. DEGs included: Mog, Mag, Mbp, Opalin, microtubule genes, and genes 167 

involved in OL maturation, function, and myelination (Supplementary Table 1 & Supplementary Fig. 3e). DEGs 168 

involved in glucose and lipid metabolism were also found in OPCs and OLs, including upregulation of Tpk1. 169 

Pseudotime analysis 38 revealed most R6/2 cells were in transitional cell states between OPCs (pseudotime 0) 170 

and MOLs (pseudotime 30+), with many HD cells found in the COP cluster and a cluster of NFOL, while NT cells 171 

were mostly either OPCs, MFOL, or MOLs (Fig. 2c & d and Supplementary Fig. 3c-f, these results are further 172 

described in the supplement).  HD OL and OPC showed a bimodal distribution at the OPC and OL stages 173 

across all ages and regions examined, suggested states of intermediate maturation in both OPCs and OLs (Fig 174 
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2d). Overall, these data suggest that OPC maturation and subsequent OL differentiation is impaired in R6/2 175 

mice.   176 

 177 

Causal network modeling (CNM) identifies disrupted gene expression networks in R6/2 mice and 178 

reveals potential cell type-specific mechanisms of transcriptional change 179 

To investigate disruptions in cell type-specific gene networks in HD, and identify potential key driver 180 

genes, we utilized weighted gene co-expression network analysis (WGCNA 39) and Bayesian causal network 181 

modeling (Fig. 1a) to identify causal relationships between genes identified as cell type-specific DEGs and 182 

correlated gene network modules 40-42. After feature selection (Methods), we used WGCNA and ran a signed 183 

network analysis using cells from all NT samples; 6 gene co-expression modules were detected across cortical 184 

and striatal tissues at both ages (Fig. 3a, Supplementary Table 3, and Supplementary Figure 4). Trait-module 185 

correlation analyses showed that our modules were correlated to specific cell types (Fig. 3a). The yellow module 186 

positively correlated with neuronal cell types and negatively correlated with glia, and the red, turquoise, green, 187 

brown, and blue modules positively correlated with Ex, MSNs, MG, Astros, and OLs, respectively. GO enrichment 188 

analysis of gene module members showed enrichment for terms related to each cell type (Fig. 3b). For example, 189 

the OL-correlated blue module was enriched for myelination-related terms. Except for the green module, each 190 

module was significantly enriched for DEGs determined using the hypergeometric test (Supplementary Fig. 191 

5a), suggesting that these gene networks are relevant to the disease state and become impacted as the disease 192 

progresses. The connectivity of the top module members rank-ordered by eigengene-based connectivity (kME) 193 

revealed significant alterations (Fig. 3c).  194 

To understand the potential causal connections between these genes and HD, we applied a Bayesian 195 

approach to causal network modeling (See Methods) with the combined cell type-specific WGCNA module genes 196 

and cell type-specific DEGs as input (Fig. 4a and b, Supplementary Fig. 5b-d, Supplementary Table 4). We  197 

explored the MSN and OPC/OL bayes nets (bnets) in detail for two reasons: 1) since MSN are the most studied 198 

cell type in HD the bnet should recapitulate previous findings and also reveal both known and novel interactions 199 

between known dysregulated genes, providing validation for our approach, and 2) both cell types were the most 200 

impacted in our mouse model (total number of DEG) with the OPCs and OLs showing the largest number of 201 
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DEGs that suggest developmental deficits. The merged NT and R6/2 bnets are shown in Figs 4a and b. We 202 

highlight genes representing key drivers (hub genes with high outward centrality, or genes connecting 2 hubs) 203 

which are potentially causal regulators of downstream nodes.  204 

 205 

MSN Network.  The MSN bnet includes genes involved in MSN development/identity, function, and genes 206 

implicated in HD, including Ebf1, a key driver that is lost in the R6/2 bnet (yellow edges) and is involved in striato-207 

nigral MSN development and other genes that interact in both the direct and indirect pathways 43,44. Genes of 208 

the indirect pathway in D2 MSNs, including Adora2a, Drd2, and Penk, were all downregulated and only show 209 

NT causal interactions (purple edges), indicating a loss of function of these genes, thus validating the approach 210 

45. Furthermore, Drd2 is a parent node of Penk, which is not only a downstream target of Drd2 signaling and 211 

dysregulated in HD 46, but is transcriptionally regulated by Drd2 expression through dopamine-induced activation 212 

47.  213 

 214 

OPC/OL Network: Based on the extensive dysregulation of OPC and OLs, we next explored the corresponding 215 

bnet (Fig. 4b) and found Prkce, Sgk1, Zbtb16 and Tnr as key drivers. Prkce is regulated by DAG and Zbtb16 48, 216 

a zinc finger binding protein that is involved on OL maturation and myelination, is found downstream of Adipor2, 217 

an adiponectin receptor that regulates glucose and lipid metabolism. Downstream of Zbtb16 is serum- and 218 

glucocorticoid-inducible kinase 1 (Sgk1), which is normally upregulated in OLs during cellular stress and 219 

regulates many ion channels and solute carrier proteins involved in metabolic pathways and glucose uptake 220 

(e.g.49), such as GLUT1, GLUT4, and glutamate transporters. Sgk1 is downregulated in R6/2 mice indicating a 221 

potential loss of function in HD – see supplementary results for additional validation studies. Exploration of 222 

downstream nodes reveals a connection between Smarca2, which is a protein in the SWI/SNF family involved 223 

in gene expression and chromatin remodeling in OLs, and Prkce. Smarca2 (BRM) and Smarca4 (BRG1) play 224 

roles in OPC and OL development, including promoting OPC differentiation 50,51. The majority of the outward 225 

edges from key drivers are NT specific, indicating a loss of causal connection to downstream nodes in the R6/2 226 

mice. Transcription regulator analysis using LISA 52 revealed the network is enriched for targets of Smarca4, and 227 

Olig2, as well as other regulators previously highlighted for HD, including Suz12, Jun, Fos, and Mefc2 (Fig. 4c). 228 
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These findings suggest an interconnected role of OPC/OL development with lipid and glucose metabolism 229 

through Prkce and DAG, protein glycosylation, Adipor2, and Sgk1.  230 

 231 

 MG, Astro, and Ex neuron bnets are described in the supplementary results.  232 

 233 

ATACseq of glial-enriched nuclei identifies regulators underlying transcriptional pathology in HD glia. 234 

To understand the drivers of gene expression changes in non-neuronal cells (e.g. glia) versus neurons, 235 

and validate the LISA analysis, we performed ATACseq on NeuN+ and NeuN- sorted nuclei from both the 236 

striatum and cortex of the same R6/2 mouse cohort (Supplementary Fig. 6a).  The neuronal nuclear protein 237 

NeuN is localized in nuclei and perinuclear cytoplasm of most of the neurons in the central nervous system.  We 238 

performed foot printing analysis using TOBIAS 53 which revealed developmental changes in the glia-enriched 239 

NeuN- data (Fig. 4d (12w striatum) and Supplementary Fig. 6b, and Supplementary Table 5), and 240 

enrichment for immediate early genes in the neuron-enriched NeuN+ data. Among the top 20 TFs in the NeuN- 241 

data that showed differential binding between R6/2 and NT we found Sox9 and 10 were significantly decreased 242 

in the 8wk striatal data, and Olig1 and 2 decreased in the 12wk striatal data. Interestingly, when all the samples 243 

were grouped and we compared the top 20 up and down TFs per an age and region, there was some overlapping 244 

TFs between the 12w cortical and both striatal samples, but these were in opposite directions such as Hes1 and 245 

Zbtb14 (Supplementary Fig. 6b & c). The 8w cortical samples had the least similarities compared to all other 246 

regions and ages (Supplementary Fig. 6b & c) and showed a number of HOX genes within the top 20 TFs with 247 

reduced binding. The cortical data showed differential binding of other known HD genes such as Egr1 and Sp1. 248 

NeuN+ cells have some similarities with the NeuN- showing differential binding of Zbtb14 and Hes1, although in 249 

opposite direction, in several ages and regions, but also showed an enrichment for immediate early genes Jun, 250 

Fos, and Mef2c/b/d (Supplementary Fig. 6b).  251 

 252 
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Single nucleus RNAseq from HD and control cingulate, caudate, and nucleus accumbens identifies 253 

several heterogeneous OL lineage cells and altered maturation states 254 

Given the altered gene expression in OL lineage cells in R6/2 mice, we investigated whether mHTT 255 

expression also impacted gene expression in OPCs and OLs in human HD post-mortem tissue.  snRNAseq was 256 

carried out on 66 samples from 29 donors (3 grade I, 4 grade II, 4 grade III, 3 grade IV, 5 juvenile-onset HD, and 257 

10 matched controls - the demographics of whom are outlined in Supplementary Table 6). To define the 258 

pathology in different brain regions, we microdissected the cingulate cortex, the caudate, and the nucleus 259 

accumbens from frozen brain tissue as outlined in Fig. 1a and analyzed the samples using snRNAseq. All major 260 

lineages were identified in the 290525 nuclei analyzed. Projection of nuclei in tSNE space shows that nuclei of 261 

the same lineages largely occupy neighboring space (Fig. 1e and Supplementary Fig. 1d&e).  Nuclei did not 262 

show distinct donor or batch related colocalization in the tSNE space after correcting for batch effects 263 

(Supplementary Fig. 7 a-b). A violin plot of lineage-specific genes delineated all expected lineages 264 

(Supplementary Fig. 1e). We detected changes in gene expression in all cell types; for this study we focused 265 

on cells of the OL lineage.   266 

We focused on OLs and OPCs (Fig. 5a-b) and analyzed 80199 OL and 13844 OPC nuclei in isolation of 267 

other lineages. Projecting OL and OPC in their own reduced dimension space (PHATE reduction – see Methods) 268 

shows a continuous trajectory from OPCs to OLs, and separation between HD and control nuclei (Fig. 5a, b). 269 

To examine the differentiation states of OL lineage cells, using well-established methods 54, we calculated the 270 

relative ordering of cells along a pseudotime dimension calculated based on the PHATE reduction and projected 271 

the pseudotime values in the reduced dimension space (Figure 5c). OPCs were set as root nodes and therefore 272 

had low pseudotime values, while OLs had high values. Similar to our mouse data, examination of pseudotime 273 

values per anatomic region in control, grades I-III HD, and Juvenile onset HD nuclei show altered maturation 274 

states across brain regions and grade in HD. That is, across all brain regions examined, HD nuclei showed a 275 

relatively larger proportion of cells with intermediate pseudotime values compared with controls, which is more 276 

pronounced with increasing HD grade, particularly in HD grade 3. Conversely, in juvenile onset HD (HDJ), the 277 

effect was less appreciable in the cingulate cortex, and more pronounced in the striatum, with the majority of 278 

caudate and accumbens OPCs showing intermediate pseudotime values compared with control nuclei (Fig. 5d). 279 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

In contrast, HDJ OLs do not show demonstrable differences compared with control nuclei base on pseudotime 280 

analysis. The results suggest that HD maturation pathology is at least partially progressive with HD grade, and 281 

that HDJ maturation pathology affects mainly OPCs.  282 

We next performed unbiased sub-clustering of OL and OPC nuclei using the Levine algorithm and 283 

identified 7 sub-clusters (Fig. 5e). Most subclusters contained a mix of cells from all three regions (Fig.5f) and 284 

HD grades (Fig.5g, h), although in clusters 4 and 6 most nuclei were derived from the cingulate, and in clusters 285 

1, 3, and 7 caudate nuclei represented the largest proportion (Fig. 5g).  Most clusters contained mixtures of 286 

nuclei from both HD and controls, but a number showed a preponderance of one or the other (Fig. 5h) with the 287 

caveat that our dataset harbored relatively larger numbers of HD nuclei versus control (Con 17955, HD 76088).  288 

With that caveat, Cluster 2 was mostly composed of HDJ nuclei, while cluster 6 was composed of a 289 

preponderance of HD3 nuclei (Supplementary Fig. 7c). Examination of select gene markers shows that clusters 290 

4 and 5 represent OPCs with relatively high expression of OPC markers TNR and DSCAM (Fig. 5i, 291 

supplementary Fig. 7d) and low expression of gene markers for mature OLs. Compared to cluster 5, cluster 4 292 

shows lower expression of OPC genes BCAN, VCAN, PDGFRA, and CSPG4, but a higher proportion of cells 293 

with TCF7L2 expression, suggesting this cluster represents differentiation-committed OPCs 55 (Supplementary 294 

Fig 7d).  Conversely, clusters 1, 2, 3, and 7 show relatively high expression of OL genes CNP, PLP1, and MBP 295 

(Fig. 5i). Amongst the former, cluster 2 shows the highest expression levels of OPALIN and MOG, suggesting it 296 

is most mature (myelinating). Moreover, cluster 7 showed expression of both OL genes (although at 297 

comparatively lower levels) and the OPC gene DSCAM and is interpreted as an intermediate state between OL 298 

and OPC lineages. Likewise, cluster 6 showed expression of the immature OL gene CA2 as well as other OL 299 

genes including APOD, PTGDS, and CRYAB, but not myelin genes. It is thus also interpreted as immature OL. 300 

Interestingly, the HD-enriched clusters 1, 2, and 7 showed higher expression levels of KIRREL3 compared with 301 

the control-enriched cluster 3. KIRREL3 is a gene shown to be highly expressed in OL residing in chronic inactive 302 

lesions of multiple sclerosis55. Finally, the HD-caudate predominant myelinating OL Cluster 7 showed relatively 303 

high expression of several immune related genes such FYB1, SYK (Fig. 5i), APOE, CD74, and C3 304 

(Supplementary Fig. 7d, Supplementary Table 7), reminiscent of the immune oligodendroglia described in 305 

multiple sclerosis55. The cluster markers are provided in Supplementary Table 7. 306 
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 307 

Differential gene expression analysis reveals further differences between HD and control OLs 308 

We next identified significant DEGs between HD and control OL and OPC nuclei in different regions; the 309 

number of significant DEGs unique to and shared by respective anatomic regions is shown in Venn diagrams for 310 

OLs (Fig. 6a, Supplementary Table 8) and OPCs (Fig. 6b, Supplementary Table 8). Given that the 311 

neurodegeneration is detected in the caudate nucleus at the earliest stages of HD and that pathology in the 312 

nucleus accumbens and cortex is typically seen in more advanced disease, we reasoned that comparing DEGs 313 

in these regions is informative in the following ways: 1) DEGs that are shared among the caudate, accumbens, 314 

and cingulate likely represent pervasive or core transcriptional pathology in different anatomic regions regardless 315 

of disease severity. 2) DEGs shared between the relatively preserved nucleus accumbens and less severely 316 

affected cingulate cortex likely represent early pathologic alterations that may be compensatory in early stages 317 

of the disease and are lost in more advanced stages. This does not preclude the possibility that any number of 318 

these DEGs may represent cell-autonomous changes due to mHTT in OL and OPCs. With this insight, 319 

examination of significant DEGs in these regions highlights a number of themes; first, myelin related and OL 320 

identity genes including MAG, MBP, MOBP, MOG, OPALIN, PLP1, CNP, and OLIG1 and 2 were significantly 321 

downregulated in OLs of all areas in HD (Supplementary Table 8). This was reflected in a negative enrichment 322 

of the GO myelination in HD OL’s across all three brain regions (Fig. 6c). Second, multiple heat shock response 323 

genes including HSPA1A, HSPH1, HSPA4L, HSP90AA1, HSPB1, HSPA4, and HSPD1 were increased across 324 

all anatomic regions, suggesting widespread, pervasive pathology in HD OLs (Supplementary Table 8). Multiple 325 

metallothionein genes including MT2A, MT3, MT1X, MT1M, and MT1E, as well as heat shock protein encoding 326 

genes HSPA1A, HSPA1B, and HSPB1 were increased in all brain regions in HD (Supplementary Table 8). 327 

SPP1, which is a secreted protein that is increased in demyelination and remyelination 56, was also increased in 328 

all these regions. CA2, a gene encoding a carbonic anhydrase enzyme expressed in immature OL and mature 329 

OLs but not OPCs57, was increased in cingulate OLs (validated in Supplementary Fig. 8b-e). To determine 330 

whether similar metabolic genes were dysregulated in our human OPC and OLs that were found in our mouse 331 

data, we overlapped human OPC and OL DEGs with the dysregulated metabolic genes in the 12w striatum data 332 

and found a large overlap of with these DEGs (Supplementary Fig. 8a) including DGKx, GALNTx genes, 333 
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PTGDS, and TPK1. In the accumbens and cingulate (Fig. 6c), gene ontologies related to nuclear export, RNA 334 

binding, RNA splicing, peptidyl-lysine modification, and H3 deacetylation were more significantly enriched. 335 

Several DEGs shared between the accumbens and cingulate OLs were related to metabolism, including 336 

adipogenesis (ARL4A, COQ3, CHUK, ABCA1, GBE1, and ME1 – increased in HD OLs), fatty acid metabolism 337 

(EVOVL2 and PLA2G6 – decreased in HD OLs), and pyruvate metabolism (pyruvate kinase M1/M2 PKM - 338 

decreased in HD OLs). These results implicate metabolic pathways, including lipid and glucose metabolism in 339 

HD pathology at early stages of neurodegeneration (Fig. 6c and Supplementary Table 8). The involvement of 340 

immune genes we observed in HD-enriched clusters is reflected in the enrichment of immune-related ontologies 341 

in the HD OLs DEGs, including NFKB activation and inflammasome (Fig. 6c and Supplementary Table 8). 342 

Analysis of enriched GO in HD OPCs reveals a downregulation of genes related to N-acetyl-343 

galactoseaminyltransferase activity, and an upregulation of stress-related ontologies across the three regions. 344 

Similar to the mouse data, we also see terms related to nervous system development, ion channels, and cell 345 

adhesion (Figs. 2a and Supplementary Table 8).  346 

 347 

Dysregulated gene expression is related to numbers of CAG repeats 348 

The length of CAG repeats varied among our donors, and even between regions in the same donor 349 

(Supplementary Table 6).  To determine if any of the OL or OPC genes varied as a function of the numbers of 350 

CAG repeats, we conducted a regression analysis with gene expression as response variable and CAG repeats 351 

as explanatory variable. We collapsed cells from each sample and used the pseudobulk samples as input for 352 

the regression analysis, corrected for batch and brain region and only extracted the significant CAG coefficients 353 

(Supplementary Table 7). A number of genes showed significant correlations between expression and CAG 354 

repeat lengths, some in OPCs or OLs or both (Fig. 6d). The graph plots the regression coefficients of each gene 355 

in OLs versus OPCs; the upper right quadrant represents genes with positive correlations in both OPCs and OL, 356 

the lower left quadrant genes that have negative correlations in both.  Among genes with negative correlations 357 

in OPCs are transcription factors OLIG1 and OLIG2, ASCL1, SOX2 and SOX4, which play roles in OL-lineage 358 

development, along with IGF2R, suggesting that progression through the OL lineage is further inhibited with 359 

longer repeat length. Indeed, OPC lineage genes including OPCML and CSPG4 were negatively correlated with 360 
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CAG repeat length (Fig. 6d). Moreover, PTGDS, a cluster 6 marker, had the most negative coefficients in both 361 

OPCs and OLs as a function of CAG repeat length, implicating prostaglandin synthesis in the severity of HD 362 

pathology. Some of these genes also were identified in our OL bnet as key drivers, including: SGK1, TNR, and 363 

NAV3 (Fig. 4b).  We also investigated KEGG and REAC pathways that were enriched in genes correlated with 364 

CAG repeat lengths (Fig. 6e and Supplementary Table 7).  Among the pathways that are enriched in OLs with 365 

increasing repeat lengths are those of inflammation, which is more pronounced in human brain, sphingolipid 366 

signaling, and ERK2 activation – which is known to control myelination58.  Both OLs and OPCs show enrichment 367 

in genes related to glutamatergic synapses and ubiquitin-mediated proteolysis.  When we examined the OL 368 

genes with negative coefficients, we found that a number of them are involved in cholesterol metabolism 369 

including (DHCR7, DHCR24, ABCA2, and ACAT2 – Supplementary Table 7), which further implicates lipid 370 

metabolism as central to OL pathology in HD.  371 

 372 

Validation of OL pathology in human HD and mouse data 373 

Many genes that regulate OL maturation or were identified as key regulators were similarly dysregulated 374 

in HD patient and mouse data including: MOBP, MAL, CLDN11, MBP, OLIG1, OPALIN, PRKCE, and SMARCA2 375 

(Fig. 7a). To confirm dysregulation of key genes PRKCE and TPK1, performed WB analysis. Additional 376 

investigation and validation of OL genes and other metabolic genes was also conducted and can be found in the 377 

supplemental data and text. Protein levels of PRKCE, and phospho-PRKCE were significantly decreased in the 378 

cingulate and caudate of HD brains and the ctx and str in the R6/2 mice (Fig. 7b-e). Both species showed an 379 

increase in PRKCE RNA levels, opposite of the protein data. The ratio of p-PRKCE to PRKCE was not altered 380 

though, suggesting that reduction in active PRKCE is related to reduced protein levels (Fig. 7b-e).  381 

Since TPK1 was found to be dysregulated in both mouse (up) and human (down) data at the RNA level 382 

in OLs and OPCs, we assessed the protein levels of the monomer and active dimer form of TPK1. Fig. 7f-g 383 

shows a decrease of TPK1 (monomer and dimer) in HD patient tissue with HD grade 3 & 4 (At adjusted p-value 384 

<0.1 for 3, and <0.05 for 4), and in juvenile HD (adjusted p <0.05), consistent with RNA expression data, whereas 385 

TPK1 dimer is increased in the R6/2 striatum (Fig. 7d-e). The mouse and human data are discordant from each 386 

other which may indicate a loss of function of expression in humans and compensatory increase in the mice or 387 
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other unknown mechanism. Nonetheless, the data confirms that TPK1 is dysregulated in both human HD and 388 

murine model of HD. 389 

Given the potential contribution of DAG to OL development and as a substrate of PRKCE – a central hub 390 

of the OL causal network, we evaluated DAG levels using lipidomic profiling of control brain versus HD in the 391 

cingulate.  A significant decrease in DAG levels was observed in juvenile HD brain as well as grade 2 HD brains 392 

relative to controls (Fig. 7h).  These data support the hypothesis that glucose and lipid metabolism, and 393 

specifically DAG signaling, potentially through PRKCE, could be playing an important role in the OPC/OL 394 

maturation changes we see between HD and control patients. This is further supported by the reduction in TPK1 395 

in HD brains due to the involvement of thiamine in the production of acetyl-CoA, which is then used during DAG 396 

formation. Given this finding along with the results demonstrating the reduction of PRKCE in human tissue, 397 

together with the causal network analysis placing PRKCE at the top of the OL/OPC network upstream to several 398 

maturation genes, we hypothesized that it played an important role in promoting OL differentiation. To test this 399 

hypothesis, we knocked down Prkce from primary murine OPC cultures, and differentiated these cells into OLs. 400 

The cultures expressed OLIG2, and OLs expressed CNPase.  Compared with scrambled siRNA, siRNA specific 401 

to Prkce effectively knocked down the protein (Fig 7i). Interestingly, the levels of MOG were significantly 402 

increased by Prkce knockdown, supporting that the downregulation of Prkce leads to increased OL 403 

differentiation. Indicating that loss of PRKCE - as seen in our western blot data - in both human and mouse HD 404 

OPCs/OLs would lead to increased OPC commitment to differentiation, an increase in COP cells which we see 405 

in our snRNAseq data.  406 

 407 

High Dose thiamine and biotin rescues transcriptional dysregulation in neurons and altered OL and 408 

OPC developmental genes in a mouse model of HD 409 

Given that both mouse and human data showed alterations in TPK1 and SLC19A2, and these may 410 

regulate PRKCE thorough DAG, we tested whether high doses of thiamine and biotin (T&B) treatment, similar 411 

to that used to treat HD-like phenocopy disease such as biotin-responsive basal ganglia disease 32, would rescue 412 

our observed broad and/or cell type-specific gene expression changes including OL maturation genes. 413 

Furthermore, due to the discordant RNA expression changes in our mouse and human data we speculate that 414 
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the increase in TPK1 was compensatory in the HD mouse model. Considering that TPK1 was only increased at 415 

12w and not 8w, we suspect that these compensatory changes are responding to earlier metabolic changes and 416 

tested whether targeting thiamine metabolism at a relatively early timepoint prior to any documented changes in 417 

TPK1 expression 59, would rescue the dys-maturation. For this study, R6/1 mice were used given symptoms are 418 

delayed by several weeks relative to R6/2 mice 30, thus allowing a greater window to observe effects of a given 419 

treatment. R6/1 and NT mice (8w-old) were treated with vehicle or T&B for 7wks before striatal tissue was 420 

collected and analyzed using snRNAseq (Fig 8a). MSNs, inhibitory neurons, OPCs, OL, and Astros showed the 421 

most DEGs between R6/1 and NT vehicle treated mice (Supplementary Table 10). Comparing R6/2 and R6/1 422 

DEGs for each cell type, we found high correlation between HD models and a significant overlap in DEGs, 423 

including between OPC and OL maturation genes (Fig. 8b) supporting the use of R6/1 mice for the 424 

supplementation study. When we evaluated DEGs between R6/1 T&B treated and vehicle treated mice 425 

(treatment effect), for each cell type, there was a significant overlap of genes impacted by T&B treatment and 426 

genotype DEGs (Fig. 8b). Figure 8c shows a scatterplot of the overlapping DEG between the T&B treatment 427 

effect (R6/1 + T&B vs R6/1 + vehicle) and the genotype DEGs (R6/1 vs NT) for each cell type, which shows 428 

significant discordance between the genotype DEGs and the treatment DEGs, indicating rescue of these 429 

transcriptional alterations. This translated into a decrease in the number of significant DEGs detected for each 430 

cell type ((R6/1 + T&B vs NT) compared to (R6/1 + Vehicle vs NT)), except for the Ex neurons which actually 431 

had an increase in DEGs (Fig. 8d). Interestingly, the cell types with the most genes rescued by T&B treatment 432 

(discordant values) were OL-lineage cells and Adarb2+ interneurons that represent inhibitory neuron subcluster 433 

1 (Inhib1 (Fig. 8a)). Based on the reduction of DEGs detected OL, MSNs, Interneurons, Astros, and OPC all had 434 

a large decrease in the number of DEGs detected by 115, 176, 378, 129, and 82 DEGs, respectively. Within the 435 

OPCs and OLs there was significant rescue of maturation related DEGs Clnd11 and Mal, and a further increase 436 

of Neat1, which was increased in caudate-parenchymal human HD OLs, and is upregulated during OL 437 

maturation. Several genes that correlated with CAG repeat length, e.g. Ptgds, Phgdh, and Tmtc2, were rescued 438 

by T&B treatment.  GO enrichment analysis also revealed the molecular functions of the genotype DEGs that 439 

were rescued from T&B treatment (Fig. 8e). In Astrocytes there was a significant rescue of iron metabolism 440 

related genes, Ex neurons showed rescue of neuroligin binding and calcium signaling, and the MSNs showed 441 
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rescue of cyclic nucleotide phosphodiesterase activity, GABA receptor activity, calcium transport, creatine kinase 442 

activity, and electron transport chain genes. Similar to MSNs, the inhibitory neurons showed rescue of calcium 443 

related genes, cyclic phosphodiesterase activity, and creatine kinase activity, but also showed unique terms such 444 

as glutamate receptor activity, LDL binding, neurotrophic TRK receptor, and fructose binding. Lastly, the OPCs 445 

and OLs showed rescue of glutamate receptor activity, RNA binding, creatine kinase, activity, calcium related 446 

genes, and GTP binding. These results a) support the hypothesis that metabolic changes in HD contributes to 447 

driving cell type-specific transcriptional changes and b) specifically thiamine metabolism deficits may be 448 

contributing to OL maturation deficits.   449 

  450 

 451 

Discussion 452 

 The studies above describe a systematic and in-depth analysis of single cell transcriptomics of HD mouse 453 

models and human patient brains leveraging causal network modeling (CNM) to implicate key drivers of gene 454 

expression pathology. Using snRNAseq, we identified dysregulated genes across multiple cell types and cell 455 

type-specific changes that may drive the functional changes seen in each cell type. In addition to specific 456 

changes in neurons, specifically D1 and D2 MSNs, a large number of gene expression changes in the OL lineage 457 

related to development and maturation processes were identified. We defined a progressive dys-maturation 458 

phenotype that spans multiple brain regions in both human and mouse HD. CNM identified potential key genes 459 

and molecules with putative causal roles in cell type-specific alterations, several of which were connected to 460 

metabolic functions, cell maturation, and OL/OPC-identity genes. This includes PRKCE that causally interacts 461 

with many other genes in our OPC/OL bnet, including SMARCA2 and OLIG2 targets important in OL maturation. 462 

Functional studies validated PRKCE’s role in promoting OL maturation. Our ATACseq data provided further 463 

validation demonstrating decreased accessibility for genes regulated by known OL developmental TFs (SOX9 464 

and 10, OLIG1 and 2, and ASCL1)60, further implicating OL differentiation in HD pathology. These data provided 465 

a framework to build targeted therapeutics, as illustrated by treatment with T&B that restored many of the 466 

maturation and transcriptional deficits and providing further validation of the approach.  467 
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Recent single nuclei studies identified common and cell type-specific transcriptional alterations in R6/2 468 

and Q175 HD mouse models that were recapitulated in postmortem HD human caudate and putamen 14,61, 469 

showing cell-type specific alterations in HD. In MSNs, mitochondrial dysfunction underlay a detrimental innate 470 

immune response 14. Striatal OLs showed decreased expression of several markers, however, the correlation 471 

between mouse and human OL signatures was low in this case. Here, we show that OLs are increased in the 472 

human cingulate and caudate, and mouse and human OL show similar transcriptional dysregulation and reduced 473 

maturation. HD oligodendrocytes are transcriptionally immature across multiple human and mouse brain regions. 474 

The fact that this phenotype spans the severely affected caudate, moderately involved cingulate, and the 475 

relatively preserved nucleus accumbens suggests that the deficits are independent of disease severity or 476 

anatomic region. Nonetheless, our data shows that impaired OL maturation is progressive with HD grade, and 477 

that in juvenile-onset HD, the maturation deficits largely involve OPCs. This was supported by ATACseq results 478 

demonstrating reduced binding of OL developmental TFs.   479 

Previous studies have suggested that the dysmaturity of HD OLs may also represent an inability to 480 

respond to the normal turnover of myelin or dedifferentiation.  If the accumulation of mHTT downregulates the 481 

transcription of myelin genes, it may inhibit the ability of already myelinating OLs to produce myelin components 482 

during their normal turnover.  Huang et al. showed that mHTT binds to MYRF and downregulates myelin genes 483 

17. MYRF is positively regulated by CHD7, which is regulated by OLIG250– a master regulator of OL identity and 484 

a gene our results implicate in HD pathology. While MYRF appears to play a role in the abnormal function of 485 

mature OLs, we also suggest that OL defects start earlier during OL development and maturation from OPCs, 486 

which is consistent with previous studies23. In our human data, this finding was most pronounced in juvenile-487 

onset HD, where maturation deficits appear to almost entirely involve OPCs and not OLs - based on pseudotime 488 

analysis. Our results support a model where OPC commitment to differentiation is increased in HD, a process 489 

facilitated by downregulation of PRKCE. OL maturation is hampered in HD, as demonstrated in the literature, 490 

through mechanisms possibly involving dysfunction of MYRF17. The difference between juvenile-onset and adult-491 

onset HD is intriguing. We speculate this may arise from the larger CAG repeat lengths in juvenile-onset HD, 492 

and the fact that HTT is expressed more highly in OPCs compared to OLs 62. That said, we further describe a 493 
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progressive pathology in OL differentiation that appears more pronounced with HD grade. Thus, OL-lineage 494 

pathology in HD is likely both developmental and progressive. 495 

Metabolic disturbances in HD are hypothesized to directly lead to cellular distress, but less is known 496 

about their contributions towards epigenetic regulation, transcriptional deficits, and impact on cell maturation and 497 

identity. Both mouse and human snRNAseq data show dysregulation of key genes related to glucose and lipid 498 

metabolism that include genes that are within or downstream of several key metabolic pathways, including 499 

glycolysis, DAG, the hexosamine and protein glycosylation pathways. A recent study demonstrated that 500 

accumulation of unsaturated sterols in OPCs drives their differentiation into OLs, implicating lipid metabolism as 501 

functioning in OL differentiation, and not only as generating myelin building blocks63. Cholesterol metabolism 502 

was implicated in HD pathology by several groups64-71. Additionally, DAG lipids which activate PRKCE were 503 

decreased in HD brains. Interestingly, protein kinase C signaling has been shown to be important to OPC 504 

differentiation, and myelination 72-75. We found PRKCE levels to be decreased in HD, and that downregulating 505 

PRKCE in OPCs in vitro leads to increased differentiation of OLs. Further determination of the mechanism 506 

underlying these findings is the subject of future studies. Moreover, appropriate glucose metabolism is critical 507 

for the proper development and function of OLs, as OPCs transition to myelinating OLs 76-79. Finally, thiamine 508 

metabolism is linked to oligodendrocyte differentiation based on evidence from deficient pyruvate 509 

dehydrogenase function in humans, which is known to cause structural white matter abnormalities 80, and 510 

experimental evidence from pyruvate-dehydrogenase deficient mice, which show a reduction of O4-positive 511 

OL/OPCs 81.  512 

A highly dysregulated gene and the most common DEG in the R6/2 12w striatal data, TPK1 regulates 513 

conversion of thiamine to thiamine-pyrophosphate (TPP), a cofactor required for the conversion of pyruvate to 514 

acetyl-CoA, by alpha-ketoglutarate dehydrogenase in the TCA cycle and by ketolase in the pentose phosphate 515 

pathway, the latter being active in OL cultures and important for myelinating OLs 82. Acetyl-CoA links metabolic 516 

processes to many epigenetic regulators of transcriptional control as it is used for histone acetylation, in the TCA 517 

cycle for energy and feeds metabolites into DNA and histone methylation, and in the generation of both DAG 518 

and UDP-GlcNAc, for PRKCE signaling and use by OGT for protein glycosylation (Fig. 8f). Interestingly, 519 

mutations in TPK1 are linked to Thiamine Metabolism Dysfunction Syndrome 5, which pheno-copies HD, and 520 
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mutations in thiamine transporters such as SLC19A3 lead to biotin responsive basal ganglia disease 83 which is 521 

treated with high T&B supplementation. Driven by our findings and similarities to other human disorders, we 522 

evaluated T&B treatment as a therapeutic strategy to reverse HD pathology in R6/1 mice. We hypothesized that 523 

TPK1 shows a compensatory increase in HD mice at later ages, responding to earlier metabolic changes. We 524 

tested this hypothesis by treating relatively pre-symptomatic R6/1 HD mice. Several transcriptional pathologies 525 

in HD were rescued by high dose T&B, suggesting promise as a potential treatment strategy. Excitingly, during 526 

the course of our study, a separate study was published showing a decrease in SLC19A3 and TPP in HD patients 527 

and in both R6/1 and zQ175 mice84. High dose T&B treatment produced both increased thiamine levels in the 528 

brain and CSF and behavioral rescue in R6/1 mice as early as 13 weeks. Our snRNAseq data revealed that 529 

R6/1 mice show maturation and loss of cell identity genes similar to the R6/2 model and that treatment with T&B 530 

in the R6/1 mice, prior to TPK1 or SLC19A3 RNA changes, not only rescued a significant portion of dysregulated 531 

genes, including neuronal, but also specifically rescued expression of a specific subtype of inhibitory neurons 532 

and OPC and OL maturation genes. Furthermore, there was a reduction in the total number of significant DEGs 533 

in all cell types, except for in Ex neurons which may be compensatory changes due to the discordant levels in 534 

the genotype and treatment effects, but this requires further study outside the scope of this work. These data 535 

provide validation of the two studies and additional mechanistic insight that rescue by T&B likely acts in part 536 

through rescue of transcriptional deficits in a subpopulation of inhibitory neurons expressing ADARB2, and of 537 

OLs. Specifically rescuing many genes involved in HD pathogenesis such as iron metabolism in astrocytes, 538 

calcium and phosphodiesterase signaling and activity in neurons, and maturation genes in OLs. Our data 539 

suggests that OL maturation impairments may be driven, in part, by thiamine metabolism and changes in the 540 

binding of TFs that regulate OL maturation, including Sox9 and 10 and Olig1 and2.  Furthermore, HD OPCs 541 

seem to have increased commitment into COP and immature OL which could be driven by decreased DAG and 542 

PRKCE, which is rescued by T&B treatment (Fig. 8g). It also further supports T&B as a viable treatment for HD, 543 

now undergoing a clinical trial in Spain (https://clinicaltrials.gov/ct2/show/NCT04478734), and supports the utility 544 

of using single cell approaches to guide therapeutic target identification and evaluation.    545 

 546 

 547 

 548 
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Online Methods 549 

 550 

Mice: All experimental procedures were in accordance with the Guide for the Care and Use of Laboratory 551 

Animals of the NIH and animal protocols were approved by Institutional Animal Care and Use Committees at 552 

the University of California Irvine (UCI), an AAALAC accredited institution. R6/1 and R6/2 mice have been 553 

described elsewhere in detail 30. For the study using R6/2 mice , 10 five-week-old R6/2 and non-transgenic 554 

(NT) male mice were purchased from Jackson Laboratories and aged to 8 or 12 weeks. For the thiamine/biotin 555 

study using R6/1 mice, 10 five-week-old R6/1 and NT male and female mice were purchased from Jackson 556 

Laboratories. R6/1 mice (5/grp) were given a daily dose of combined 50mg/kg thiamine and 20mg/kg biotin 557 

(Caymen, Ann Arbor, MI) or vehicle (PBS) I.P. beginning at age 8 weeks, treated for 7 weeks, then euthanized 558 

at age 15 weeks. All mice were housed in groups of up to five animals/cage under a 12-hr light/dark cycle with 559 

ad libitum access to chow and water. Mice were euthanized by pentobarbital overdose and perfused with 0.01 560 

M PBS. Striatum and cerebral cortex were dissected out of each hemisphere and flash-frozen for snRNAseq or 561 

biochemical analysis. 562 

 563 

Single nuclei RNAseq  564 

Mouse: Single nuclei were isolated from ½ hemisphere full striatal or full cortex in Nuclei EZ Lysis buffer 565 

(Cat#NUC101-1KT, Sigma-Aldrich) and incubated for 5 min. Samples were passed through a 70μm filter and 566 

incubated in additional lysis buffer for 5 min and centrifuged at 500 g for 5 min at 4°C before two washes in 567 

Nuclei Wash and Resuspension buffer (1xPBS, 1% BSA, 0.2U/μl RNase inhibitor). Nuclei were FACS sorted 568 

using DAPI to further isolate single nuclei and remove additional cellular debris. These nuclei were run on the 569 

10x Chromium Single cell 3’ gene expression v3 platform. Libraries were QCed and sequenced on the NovaSeq 570 

6000 using 30 bases for read 1 and 98 bases for read2, ß to obtain >=50K reads per a cell. A total of 109,053 571 

cells with 6.1 billion reads were sequenced for the 24 samples with on average 4544 cells per sample with 572 

~55.6K reads each.  Alignment was done using the CellRanger pipeline v3.1.0 (10X Genomics 573 

https://github.com/10XGenomics/cellranger) to a custom pre-mRNA transcriptome built from refdata-cellranger-574 

mm10-1.2.0 transcriptome using cellRanger mkref. UMI Count matrices were generated from BAM files using 575 
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default parameters of cellRanger count command. The gene barcode matrices for each sample were imported 576 

into R using the Read10X function in the Seurat R package 85 (v3.1.5). Replicates were combined using 577 

cellRanger aggr.  578 

 579 

Human: Dissection of the cingulate cortex, caudate nucleus, and nucleus accumbens from frozen Postmortem 580 

specimens was performed on material procured and preserved from autopsies on control as well as grade II and 581 

grade III HD. These samples were obtained from the New York Brain Bank. All cases had RNA integrity numbers 582 

of > 7. Brain tissue measuring ~ 5 × 4 × 3 mm were dissected on a dry ice cooled stage and processed 583 

immediately as described below. A Table of the cases and controls used is provided in Supplementary Table 584 

4. Nuclei were isolated as described in. Briefly, brain tissue was homogenized in a Dounce homogenizer with 585 

12–15 strokes of the loose pestle and 12–15 strokes of the tight pestle on ice in a Triton X-100 based, sucrose 586 

containing buffer. The suspension from each sample was filtered through a BD Falcon tubes with a cell strainer 587 

caps (Becton Dickinson, cat. no. 352235), washed, re-filtered, washed, followed by a cleanup step using 588 

iodixanol gradient centrifugation as described in 76. The nuclear pellet was then re-suspended in 1% BSA in 589 

nuclease-free PBS (containing RNAse inhibitors) and titrated to 600-1200 nuclei/μl. The nuclear suspensions 590 

were processed by the Chromium Controller (10x Genomics) using single Cell 3′ Reagent Kit v2 or v3 (Chromium 591 

Single Cell 3′ Library & Gel Bead Kit v2/v3, catalog number PN-1000075; Chromium Single Cell A Chip Kit, 48 592 

runs, catalog number: 120236; 10x Genomics). Sequencing and alignment: Sequencing of the snRNAseq 593 

libraries was done on Illumina NOVAseq 6000 platformV4 150 bp paired end reads. Alignment was done using 594 

the CellRanger pipeline (10X Genomics) to GRCh38.p12 (refdata-cellrangerGRCh38–1.2.0 file provided by 10x 595 

genomics). Count matrices were generated from BAM files using default parameters of the DropEst pipeline 86.  596 

 597 

QC and filtering 598 

 Mouse: Based on the distribution of number of genes detected in each cell and the distribution of number of 599 

UMIs, nuclei with less than 200 genes or more than 6000 genes were excluded from the downstream analyses. 600 

Nuclei with percent mitochondrial reads aligning to mitochondria genes of more than 2% were excluded. UMI 601 
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counts were then normalized in Seurat 3.0 and top 2000 highly variable genes were identified using 602 

FindVariableFeatures function with variance stabilization transformation (VST). 603 

 604 

Human: To remove low quality cells, we first used the combined quality calls from the CellRanger algorithm as 605 

well as the DropEst algorithm. This allowed us to retain more high quality nuclei than either algorithm alone. Data 606 

QC was done using the scater package 87. Nuclei with percent exonic reads from all reads in the range of less 607 

75% were included. Nuclei with percent mitochondrial reads aligning to mitochondria genes of more than 14% 608 

were excluded. Genes were filtered by keeping features with > 10 counts per row in at least in 31 cells. A 609 

temporary count slot was created by decontaminating the counts from ambient RNA by calling decontX() function 610 

with default parameters in R 88. These counts were used for downstream clustering, but not differential gene 611 

expression analysis.  612 

Combining multiple datasets from different sequencing batches and count normalization 613 

 614 

Using the R package Seurat (version 4.06)89, the datasets were merged after controlling for sequencing batches 615 

(four batches). We integrated the lognormalized and scaled datasets in Harmony version 0.1. The Harmony 616 

reductions were then added to the merged Seurat object containing all datasets. The merged object was 617 

normalized using SCTransform function in Seurat accounting for batch and percentage mitochondrial reads 90.   618 

 619 

Dimension reduction and clustering 620 

Mouse: Based on the elbow plot, top 20 PCs were retained for seurat objects with all cell types and 15 for the 621 

OPC and oligo analysis. These PCs were used in the downstream unsupervised clustering using a shared 622 

nearest neighbor Louvain modularity optimization to identify clusters of cells of the same type. Some of the 623 

identified clusters were comprised of multiple cell types, therefore we subclustered these cells for further 624 

downstream DEG generation and analysis (Supplementary Fig. 1a).    625 

Human: Pre-clustering of nuclei was done in Seurat using the shared nearest neighbor smart local moving 626 

algorithm 91 after using the iNMF or UMAP reducions, and calling FindClusters(… , algorithm=3,method="igraph", 627 

n.iter = 100, …). Several resolution and k options were trialed to select the option with the largest number of pre-628 
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clusters with the high lineage purity. Lineage identity was determined for each cluster using was done using 629 

geneset enrichment analysis of lineage markers 92 and by inspecting cluster markers generated by 630 

scran::findmarkers(direction=”up”) function 93. We also depended on the cell_classifier tool we previously used 631 

94. Pre-clusters with mixed identities based on enrichment of multiple lineage genes were sub-clustered iteratively 632 

until all pre-clusters showed pure identities which we combine into lineages (Astrocytes, neurons, 633 

oligodendrocytes, myeloid, endothelial, OPCs, and ependymal cells). Sub-clustering of select pre-clusters was 634 

done as needed to get the lineage-pure small clusters. We next combined the clusters of the same lineage to 635 

call the lineages presented in Fig. 1e.  636 

After getting pure OL and OPCs, a new object from these cells only was created in monocle3. Corpus 637 

callosum cells were removed, because no HD corpus callosum samples were included in the dataset. Filtering 638 

lowly expressed genes yielded 16955 genes. The SCT normalized counts were used to reduce the dimensions 639 

using the PHATE function 95 in R correcting for batch (using the mutual nearest neighbor option), and using the 640 

following parameters: KNN= 5, Dim=3, Decay=50, T=10. Clustering was done in monocle3 utilizing the three 641 

PHATE reductions as input using the Levine algorithm.  642 

 643 

Cluster annotation and differential gene expression 644 

Mouse: Unsupervised clustering was done using shared nearest neighbor Louvain modularity optimization. For 645 

each cluster, we used multiple cell type-specific marker genes that have been previously described in the 646 

literature to determine cell type/state identity. Exemplary genes used as markers for major cell types are shown 647 

in Supplementary Fig. 1. Differentially expressed genes between different clusters, ages or disease groups 648 

were identified using Wilcoxon Rank Sum test on genes that are expressed in at least 25% of the group.  Further 649 

sub-clustering was conducted on some of the main clusters due to mixed cell types represented in that cluster, 650 

e.g. oligodendrocyte progenitors (OPCs) and premyelinating oligodendrocytes and astrocytes with vascular 651 

cells. Specifically, for subclustered OPCs and OL, OL-lineage, annotations were used from Marques et al. 37 by 652 

looking at gene expression for marker genes identified in that study. These annotations were then collapsed into 653 

OPC and OL groups for ease of reference and consistency with human OPC and OL cells.  Cluster and DEG 654 
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analyses were conducted on each region and age for HD versus NT independently and, combined where noted 655 

that the cells were integrated together across region and age.  656 

Human: Differentially expressed genes (DEGs) between HD and control per anatomic region in OL and OPC 657 

separately were identified using EdgeR glmQLFTest adjusting for sequencing batch and using an FDR cutoff of 658 

25% (9). The raw counts were used here, not the decontaminated counts. Retrieving the top 3000 differentially 659 

expressed genes resulted in adjusted p values less than 0.05, which were considered significant and were used 660 

for downstream analysis. 661 

The CAG gene correlation analysis was conducted through the R package limma (version 3.14). Samples 662 

for the analysis were prepared using a pseudo-bulk approach. Gene expression data for each donor at a specific 663 

region were summed up together respectively to create pseudo-samples for the correlation analysis. Each 664 

pseudo donor-region sample were then log normalized and scaled using Seurat’s NormalizeData function 665 

(version 4.06) for optimal performance in limma. The covariates accounted for in the design matrix between 666 

samples included age and gender.  Lastly, a row in the design matrix included the CAG repeats for each donor-667 

region sample. The weights of the model were determined using limma's lmFit with the arguments of the function 668 

including the pseudo-bulk donor region expression data and the design matrix as described above. 669 

Pseudotime trajectory analysis using Monocle3 670 

Mouse: For oligodendrocyte developmental trajectory assessment, cells that were identified as OPC and OL 671 

lineage were used to create a separate Seurat object using SubsetData function on raw counts. Pseudotime 672 

analysis was conducted on the integrated data across all regions and ages.  673 

Human: Pseudotime analysis was done using monocle3 employing the three PHATE dimensions to learn the 674 

principal graph using the following parameters: use_partition = F, learn_graph_control = 675 

list(euclidean_distance_ratio=0.5, geodesic_distance_ratio=0.7, minimal_branch_len=100, 676 

orthogonal_proj_tip=TRUE, rann.k=100), close_loop = F). The root nodes were set as OPC cells. Grade 4 cases 677 

were excluded because after filtering low quality cells, two samples had very few OPCs after removing low quality 678 

cells and doublets. 679 

 680 
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ATACseq 681 

Isolation of NeuN+ and NeuN- nuclei: The pulverized tissue was resuspended in 2ml NEB buffer (320mM 682 

sucrose, 10mM Tris-HCl pH 8, 5mM CaCl2, 3mM MgAc2, 0.1mM EDTA, 0.1% Triton supplemented with 683 

protease inhibitors (Roche, 11836170001) and transferred through 40μm tissue strainer, followed by 5min 684 

centrifugation at 600xg at 4C. The pellet was resuspended in 1 ml HS buffer (1.8M sucrose, 10mM Tris-HCl pH 685 

8, 1mM MgCl2 and Proteinase inhibitors) and centrifuged for 20 min at 16,000xg at 4C. The nuclei containing 686 

pellet was resuspended in blocking buffer (PBS with 0.5% BSA, 5% Normal Goat Serum and Proteinase 687 

Inhibitors) and labeled with anti NeuN-PE antibody (1:100 dilution, Millipore, FCMAB317PE) and with Hoechst 688 

(1:2000 dilution, Invitrogen, H3570) for 30min. The nuclei were filtered through 40μm mesh and sorted using BD 689 

FACSAria™ with gates set to separate NeuN+ and NeuN- single nuclei populations. The nuclei were collected 690 

in tubes pre-coated with 1%BSA and sucrose was added to the sorted nuclei to a final concentration of 0.32M 691 

followed by 15min incubation on ice to stabilize the nuclei after sorting. The ATAC-seq was performed as 692 

described in Corces et al 96. Briefly, 50000 sorted nuclei were transferred to tubes and pelleted by centrifugation 693 

at 2000Xg for 15 min. The pellet was resuspended in transposition reaction mix (25μl 2× TD buffer, 2μl 694 

transposase, 17μl PBS, 0.5μl 1% digitonin, 0.5μl 10% Tween-20, 5μl water) and incubated at 37C for 30min 695 

following by clean up with Zymo DNA Clean and Concentrator kit (Zymo D4004). Illumina adapters were added 696 

by PCR to generate sequencing libraries as previously described. The ATAC-seq libraries were sequenced on 697 

an Illumina HiSeq 2000 for single-end 50-bp reads. Fastq files were aligned to the mm10 genome using Bowtie2 698 

and paramaters previously described in Smith-Gearter et al. 2020 97. 699 

 700 

Footprinting Analysis 701 

We used TOBIAS software (REF: https://doi.org/10.1038/s41467-020-18035-1) for footprinting analysis of 702 

ATAC-seq data. Briefly, aligned BAM files were used to call accessible regions (peaks) using MACS2 using the 703 

following parameters: --nomodel --shift -100 --extsize 200 --broad. Peaks from all the samples across all 704 

conditions were merged to a set of union peaks using bedtools merge. TF motifs were downloaded from JASPAR 705 

CORE 2022 database. TOBIAS software robustly performs all steps of footprinting analysis including Tn5 bias 706 

correction, footprinting, and comparison between conditions and has been shown to outperform other common 707 
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methods of footprinting. TOBIAS also calculates TF binding on a global level across all sites as well as the locus-708 

specific level using JASPAR motif data. 709 

 710 

Gene Ontology, KEGG Pathway, and TF enrichment analyses 711 

Mouse: DEGs, gene modules members, and bnet gene members were used for further analyses using GOrilla 712 

for gene ontology enrichment analyses, KEGG pathway analysis, and LISA for TF enrichment analysis.  713 

Human: Gene Ontology term enrichment analysis was done in gProfiler2 package in R 92. The results of edgeR 714 

DEG was used as input and the following options: (ordered_query = T, significant = T, exclude_iea = T, underrep 715 

= F, evcodes = F, region_query = F, max_p_value = 1, min_set_size = 0, max_set_size = 100, min_isect_size = 716 

5, correction_method = "gSCS"). Statistical significance was determined using the more conservative gSCS 717 

method 38 yielding adjusted p values. Terms with adjusted p values < 0.05 were considered significant. The 718 

terms shown in the Figs. are selected based on ordering the results based on 719 

negative_log10_of_adjusted_p_value followed by the ratio of the shared of number of genes enriched in a term 720 

to that of the total number of genes in the GO term (desc(intersection_size/term_size)).  721 

 722 

Network modeling 723 

Mouse:  Weighted gene co-expression network analysis (WGCNA) 39)was used to identify gene network modules 724 

from the mouse snRNAseq data. Normalized count data from Seurat 3.0 were first used for feature selection, 725 

filtering all genes without at least 1 count in 25% of all cells. Co-expression networks were then generated for 726 

NT data using WGCNA. Correlative module-trait relationships were used to identify gene network modules that 727 

had high correlation with specific cell types used as input, and module preservation statistics were used to assess 728 

recapitulation of gene networks in R6/2 data. Bayesian network modeling. To identify causal relationships 729 

between cell type-specific gene subnetwork we used a bayesian network modeling approach using the R 730 

package BNLearn (Scutari, M. (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of 731 

Statistical Software, 35(3), 1–22. https://doi.org/10.18637/jss.v035.i03). Probabilistic graphical modeling has 732 

been previously used to assess causal relationships between genes/proteins with great success in recapitulating 733 

known biological pathway interactions from single cell data 98. Our approach took advantage of the co-expressed 734 
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gene networks we previously identified to try and find causal relationships amongst these genes. To better 735 

interpret our data we chose to use input data from individual cell types, which were identified to be most 736 

correlated with each individual gene network module. The resulting causal network would be cell type-specific 737 

and easier to biological interpret. Features were chosen based on their inclusion within these gene modules and 738 

additionally genes were added based on differential expression between R6/2 and NT mice for each cell type-739 

gene network module pair. E.g. We identified that the turquoise gene network module most highly correlated 740 

with our MSNs, these genes and DEGs found in both D1 and D2 MSNs were used as input from both 8 and 12w 741 

striatal and cortical data. HD and NT networks were separately generated to identify changes in network structure 742 

between disease and control. No priors were used as input for the structure learning. Using this input we 743 

constructed our Bayesian networks with a bootstrap approach using 50% of samples and 200 rounds. Due to 744 

the spasticity of single nuclei data, even after gene filtering, we chose to use an interval method for discretization, 745 

factoring input data into 3 breaks. For structure learning we utilized Bayesian Dirichlet likelihood-equivalence 746 

scoring and a hill-climbing algorithm for searching for network structures. An average network was generated 747 

from each output where the strength and direction (empirical frequency computed from the probability of each 748 

edges’ existence and direction) of each causal edge were greater than or equal to 0.85 and 0.5, respectively. 749 

HD and control networks were then merged to identify changes in network structure, novel nodes and edges.  750 

 751 

Primary oligodendrocyte culture 752 

Mouse primary oligodendrocyte precursor cells (OPCs) were isolated with immunopanning as described 753 

previously 99. Briefly, cerebral cortices from C57BL/6 pups at P7 were digested in papain solution for 20min at 754 

37°C, followed by titration and filtration. Cells were then sequentially incubated in three immunopanning dishes 755 

(2 negative selections with BSL1, followed by 1 positive selection with anti-mouse CD140a antibody (BD 756 

Bioscience, 558774). After positive selection, OPCs were trypsinized, plated onto PDL-coated culture dishes 757 

with SATO medium supplemented with growth factors (10 ng/mL PDGF-AA and 10 ng/mL bFGF), and 758 

maintained in a 37°C, 5% CO2 incubator for further expansion. 759 

 760 

siRNA Transfection 761 
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Mouse primacy oligodendrocyte precursor cells (OPCs) were seeded onto PDL-coated 6-well plate at a density 762 

of 2x105 cells/well a day before transfection. Cells were transiently transfected with either siRNA targeting Prkce 763 

or non-targeting control (Origene, SR427452) at a final concentration of 30 nM using X-tremeGENE 360 764 

Transfection Reagent (Roche, 8724105001). After 24 hr of knockdown, cells were cultivated with either 765 

proliferating (supplemented with growth factors) or differentiation (supplemented T3, 60 ng/mL) media. After 3 766 

days of proliferation and 5 days of differentiation, cells were harvested, and proteins were extracted and 767 

processed for western blot analysis. 768 

 769 

Qualitative lipidomic analysis of samples by electrospray triple Quadrupole mass spectrometry 770 

coupled with high performance liquid chromatography 771 

Total lipids were extracted from frozen 40-70 mg human brain dissected as described above. Lipidomics profiling 772 

in mouse plasma and tissue samples was performed using Ultra Performance Liquid Chromatography-Tandem 773 

Mass Spectrometry (UPLC-MSMS). Lipid extracts were prepared from homogenized tissue samples using 774 

modified Bligh and Dyer method 100, spiked with appropriate internal standards, and analyzed on a platform 775 

comprising Agilent 1260 Infinity HPLC integrated to Agilent 6490A QQQ mass spectrometer controlled by 776 

Masshunter v 7.0 (Agilent Technologies, Santa Clara, CA). Glycerophospholipids and sphingolipids were 777 

separated with normal-phase HPLC as described before 101, with a few modifications. An Agilent Zorbax Rx-Sil 778 

column ( 2.1 x 100 mm, 1.8 µm) maintained at 25°C was used under the following conditions: mobile phase A 779 

(chloroform: methanol: ammonium hydroxide, 89.9:10:0.1, v/v) and mobile phase B (chloroform: methanol: 780 

water: ammonium hydroxide, 55:39:5.9:0.1, v/v); 95% A for 2 min, decreased linearly to 30% A over 18 min and 781 

further decreased to 25% A over 3 min, before returning to 95% over 2 min and held for 6 min. Separation of 782 

sterols and glycerolipids was carried out on a reverse phase Agilent Zorbax Eclipse XDB-C18 column (4.6 x 100 783 

mm, 3.5um) using an isocratic mobile phase,  chloroform, methanol, 0.1 M ammonium acetate (25:25:1) at a 784 

flow rate of 300 μl/min. Quantification of lipid species was accomplished using multiple reaction monitoring 785 

(MRM) transitions 101,102 under both positive and negative ionization modes in conjunction with referencing of 786 

appropriate internal standards: PA 14:0/14:0, PC 14:0/14:0, PE 14:0/14:0, PG 15:0/15:0, PI 17:0/20:4, PS 787 

14:0/14:0, BMP 14:0/14:0, APG 14:0/14:0, LPC 17:0, LPE 14:0, LPI 13:0, Cer d18:1/17:0, SM d18:1/12:0, dhSM 788 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

d18:0/12:0, GalCer d18:1/12:0, GluCer d18:1/12:0, LacCer d18:1/12:0, D7-cholesterol, CE 17:0, MG 17:0, 4ME 789 

16:0 diether DG, D5-TG 16:0/18:0/16:0 (Avanti Polar Lipids, Alabaster, AL). Lipid levels for each sample were 790 

calculated by summing up the total number of moles of all lipid species measured by all three LC-MS 791 

methodologies, and then normalizing that total to mol %. The final data are presented as mean mol % with error 792 

bars showing mean ± S.E. Statistical comparisons were done using a one-way ANOVA and Tukey’s test for 793 

post-hoc analysis. Only results on DAG are provided. 794 

 795 

Western blots 796 

Mouse: Brain tissue was prepared for western blot analysis as follows: Soluble/Insoluble Fractionation: Striatal 797 

tissue was processed as described previously 103. Total Fractionation: Isolated striatum or cortex was 798 

homogenized with 20 strokes of a potter-Elvenhjem glass tissue homogenizer in 1mL modified RIPA buffer (50 799 

mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1mM EDTA)  supplemented with one 800 

Pierce protease inhibitor mini tablet (Fisher Scientific A32953), 1mM PMSF, phosphatase inhibitors 2 (Millipore 801 

Sigma, P5726) (1:1000) and 3 (Millipore Sigma P0044) (1:1000), 10 μg/mL aprotinin, and 10 μg/mL leupeptin. 802 

Lysates were sonicated then centrifuged at 16,000 rcf for 15 minutes, and 5-10μg analyzed by western blot. 803 

Combined linear range was quantified on Empiria by analyzing a concentration gradient of protein (1.25, 2.5, 5, 804 

10, and 20 μg per lane) with Revert for each antibody (Licor) to determine loading concentration. Protein was 805 

then subjected to SDS/PAGE on a NuPage Novex 4-12% Bis-Tris precast gel (Thermo Fisher NW04125) with 806 

MOPS running buffer (Invitrogen NP0001) and transferred onto a Immobilon-FL PVDF (Millipore Sigma 807 

IPFL00010) membrane. 5µg of reduced, insoluble protein from Insoluble Fractions were resolved on 3-8% Tris-808 

Acetate Poly-Acrylamide gels. Whole protein was quantified using the revert assay (LI-COR Biosciences 926-809 

11016), and the membrane was blocked with Intercept (TBS) Blocking Buffer (LI-COR biosciences 927-60010) 810 

for 1 hour. The membrane was then incubated in primary antibodies overnight, washed three times with TBS-811 

0.1% Tween-20, and incubated for 1 hour in Intercept block supplemented with 0.1% Tween-20 and near-infrared 812 

conjugated secondary antibodies. Membranes were imaged on a LI-COR scanner and quantified using Empiria 813 

Software. Experiments were performed at least twice with multiple biological replicates. Antibodies for the 814 

following antigens were used DGKB (Thermofisher cat# PA5-15416 1:1000), PRKCE (Invitrogen PA5-83725 – 815 
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1:1000), p-PKCε (ser729) (Millipore 06-821-1; 1:1000), SGK1 (abcam - ab59337 1:1000), TPK1 (Fisherscientific 816 

cat# 50-172-6732 1:500), GPI1 (Thermofisher cat# PA5-26787 1:1000), Anti-Huntingtin Antibody, a.a. 1-82 | 817 

MAB5492 - EMD Millipore. The mice used for westerns were from two separate cohorts and did not include the 818 

mice used for snRNAseq and snATACseq.  6 males animals per group were used for each western except for 819 

the solb/insolb fractionated western which were mice were from a third cohort that included 4 male mice per 820 

group. All Western statistical analysis was performed using Students T-Test with two-tailed distribution and two-821 

sample equal variance (homoscedastic). Exact p-values for significant differences are provided in the figure. 822 

 823 

Human: Protein was extracted from dissected frozen tissue using RIPA buffer on ice. Protein concentration was 824 

estimated using a modified Bradford assay. Western blotting was performed using sodium dodecyl sulfate–825 

polyacrylamide gel electrophoresis (SDS-PAGE) as described previously 104. Briefly, protein lysates were 826 

separated by precast 4-20 % Bis-Tris gradient gels (GenScript), followed by transferring onto PVDF membrane 827 

(Millipore). After 1 hour blocking in blocking buffer (5% milk, 0.1% TBS-Tween) at room temperature, membranes 828 

were incubated overnight at 4°C with primary antibodies.  Antibodies for the following antigens were used MAG 829 

(Proteintech cat#14386-1-AP - 1:1000-3000), MOG (Proteintech #12690-1-AP - 1:500-1000), PRKCE 830 

(Invitrogen PA5-83725 – 1:1000), p-PKCε (ser729) (Millipore 06-821-1; 1:1000), MBP (Cell signal #78896S, 831 

1:1000), SGK1 (abcam - ab59337 1:1000), TPK1 (Fisherscientific cat# 50-172-6732 1:500), GAPDH 832 

(Proteintech 60004-1-Ig 1:1000), Actin (Proteintech 66009-1-Ig; 1:5000), Anti-mouse and anti-rabbit Peroxidase-833 

AffiniPure Donkey IgG (H+L) (Jackson ImmunoResearch Labs Cat# 715-035-151 and 711-035-152). Detection 834 

was using enhanced chemiluminescence (cat# 1705061 or 1705062) on a Bio-Rad ChemiDoc™ Touch Imaging 835 

System. Band areas were normalized to Actin and/or GAPDH. Statistical comparisons were conducted using 836 

unpaired two-tailed t-test or Mann-Whitney test as appropriate. TPK1 was analyzed separately using similar 837 

methods as described in the mouse section, and using only striatal tissue lysates.  838 

Western blot analysis of OPC cultures was performed as outlined above with the following modifications. 839 

The following antibodies were used: rabbit anti-PRC-epsilon (Invitrogen PA5-83725, 1:1000), mouse anti-OLIG2 840 

(Millipore, MABN50, 1:1000), mouse anti-CNPase (Biolegend, SMI-91, 1:5000), rabbit anti-MOG (Thermo, PA5-841 

19602, 1:1000) and mouse anti-αTUBULIN (Calbiochem, CP06, 1:2500). Detection of target proteins was done 842 
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by measuring chemiluminescence signal using ECL™ Prime Western Blotting Detection Reagent (Sigma, 843 

GERPN2232) on a ChemiDoc Imaging System (Bio-Rad). Image J was used to quantify the protein bands and 844 

αTUBULIN was used as loading control. 845 

 846 

Immunohistochemistry and in situ hybridization  847 

Standard chromogenic and fluorescent immunohistochemistry as well as in situ hybridization were done as 848 

described previously 94. Paraffin-embedded formalin-fixed tissue sections were used for IHC and ISH. The 849 

following antibodies were used CA2 (Abcam ab124687- 1:100), MBP (Invitrogen PA1-10008 – 1:5000). 850 

RNAscope™ was done per the manufacturer instructions using an RNAscope ™ multiplex Fluorescent v2 kit 851 

(ACDbio 323100) with the following probes for SPP1 (cat# 889751-C2), NEAT1 (cat# 411531-C3), and MBP 852 

(cat# 573051-C4).  853 

 854 

Imaging and quantification 855 

Whole slides were scanned and the images on an Aperio™ Leica slide scanner at 40X. Fluorescent stained 856 

slides were scanned on Leica Aperio™ Versa scanner at 40X. additional images were taken on a Zeiss™ 810 857 

LSM 800 confocal microscope at using a 40X/1.3 NA oil-immersion objective. For quantification of IHC, we 858 

employed an automated method using Qupath v0.2 positive cell detection algorithm 105. Identification of pencil 859 

fibers and blood vessels was done using a pixel classifier trained on regions not quantified but in the same slide. 860 

Quantification of ISH slides uses positive cell detection method followed by subcellular detection. Only cells with 861 

nuclear signal were considered positive. Staining artifact and blood vessels were excluded. One or more images 862 

from each patient were used. The results were loaded in R v4.0. and cells with a minimum of 3 or more MBP 863 

dots or clusters were considered positive. NEAT1 and SPP1 were quantified in MBP positive cells. Nuclei with 2 864 

or more dots or clusters were considered positive for SPP1 and with 2 or more dots/clusters for NEAT1. Statistical 865 

comparisons were done using one-tailed t-test or Wilcox rank test as appropriate. For calculating MBP:CA2 866 

ratios, immunofluorescence for MBP and CA2 was performed on three or more images per case from 3 HD and 867 

4 control caudate stained sections. The MBP signal was binarized using the threshold function in ImageJ 868 

(threshold detected automatically) and was divided by the number of CA2 positive cells counted in each image.  869 
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 870 

Statistical analyses 871 

All features highlighted in the paper and reported as statistically significant have p-values < 0.05 or adjusted p-872 

values < 0.1, unless otherwise stated.  873 

 874 

Data and code availability 875 

All data and code are available from the corresponding authors upon reasonable request. 876 

Data for this study can be found at:  877 

GEO accession numbers:  878 

Human data: GSE180928 879 

Mouse snRNAseq: GSE180294 880 

Mouse ATACseq: GSE180236 881 

 882 

Acknowledgements 883 

We would like to thank Iliana Herrera and Marie Heath for their technical assistance, and Karen Sachs for 884 

guidance with causal network modeling. This work was supported by the following NIH grants: R35 NS116872 885 

and P01 NS092525 (L.M.T.), R01 NS089076 (E.F. and L.M.T.). OAD was supported through funding from the 886 

Huntington Disease Society of America and the Hereditary Disease Foundation and RGL by the Hereditary 887 

Disease Foundation. This work was possible, in part, through access to the UCI Genomic High Throughput 888 

Facility Shared Resource of the Cancer Center Support Grant (CA-62203) and the Flow Cytometry Core in the 889 

Sue and Bill Gross Stem Cell Center. This research was supported by the Digital Computational Pathology 890 

Laboratory in the Department of Pathology and Cell Biology at Columbia University Irving Medical Center, and 891 

by the Biomarkers Core Laboratory at the Irving Institute for Clinical and Translational Research, home to 892 

Columbia University’s Clinical and Translational Science Award. 893 

 894 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

Author Contributions 895 

OAD, RGL, JW, JCR, LMT, and JEG designed and oversaw the study. Data analyses for the snRNAseq data 896 

from the mouse model and also human OPC and OLs were performed by RGL, JW, RM, AMR, VM, FP, and 897 

OAD. RM and RGL performed the WGCNA on the mouse snRNAseq data. RGL performed the causal network 898 

modeling. EM, NM and VS performed the nuclei isolation and 10x prep for the mouse snRNAseq. OAD and FK 899 

performed nuclei isolation on human samples. MA performed the ATACseq and MPG and VS performed the 900 

ATACseq data analyses. KO performed DNA extractions and assisted in data analysis. OAD, AT, and FK 901 

performed the immunohistochemistry, in situ hybridization, imaging, and image analysis on the human data. DD, 902 

HJP, and PC, performed the in vitro studies and analysis. JPV diagnosed and assessed the human postmortem 903 

HD tissue. XF assisted with human tissue collection and clinical metadata. GT performed all human proteomic 904 

analyses. SD analyzed the lipidomic data.  JCR, AL, and NG handled the mice, did brain isolations, and 905 

performed Licor western and data analyses for the mouse data. AL carried out isolation of single nuclei. RGL, 906 

OAD, JW, JEG and LMT wrote the manuscript. All authors read, edited, and approved the manuscript. 907 

 908 

Competing Interests Statement 909 

The authors declare no conflict of interest. 910 

 911 

References 912 

 913 

1 Vonsattel, J. P., Keller, C. & Del Pilar Amaya, M. Neuropathology of Huntington's disease. Handb Clin 914 
Neurol 89, 599-618, doi:10.1016/s0072-9752(07)01256-0 (2008). 915 

2 The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide 916 
repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971-983, 917 
doi:10.1016/0092-8674(93)90585-e (1993). 918 

3 Consortium, The Huntington's Disease iPSC Consortium. Developmental alterations in Huntington's 919 
disease neural cells and pharmacological rescue in cells and mice. Nat. Neurosci. 20, 648-660, 920 
doi:10.1038/nn.4532 (2017). 921 

4 Hyeon, J. W., Kim, A. H. & Yano, H. Epigenetic regulation in Huntington's disease. Neurochem Int, 922 
105074, doi:10.1016/j.neuint.2021.105074 (2021). 923 

5 Malla, B., Guo, X., Senger, G., Chasapopoulou, Z. & Yildirim, F. A Systematic Review of Transcriptional 924 
Dysregulation in Huntington's Disease Studied by RNA Sequencing. Front Genet 12, 751033, 925 
doi:10.3389/fgene.2021.751033 (2021). 926 

6 Vashishtha, M. et al. Targeting H3K4 trimethylation in Huntington disease. Proc. Natl. Acad. Sci. U. S. 927 
A. 110, E3027-3036, doi:10.1073/pnas.1311323110 (2013). 928 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

7 Barnat, M. et al. Huntington's disease alters human neurodevelopment. Science 369, 787-793, 929 
doi:10.1126/science.aax3338 (2020). 930 

8 Hickman, R. A. et al. Developmental malformations in Huntington disease: neuropathologic evidence of 931 
focal neuronal migration defects in a subset of adult brains. Acta Neuropathol 141, 399-413, 932 
doi:10.1007/s00401-021-02269-4 (2021). 933 

9 Conforti, P. et al. Faulty neuronal determination and cell polarization are reverted by modulating HD 934 
early phenotypes. Proc Natl Acad Sci U S A 115, E762-E771, doi:10.1073/pnas.1715865115 (2018). 935 

10 Lee, C. Y., Cantle, J. P. & Yang, X. W. Genetic manipulations of mutant huntingtin in mice: new insights 936 
into Huntington's disease pathogenesis. FEBS J 280, 4382-4394, doi:10.1111/febs.12418 (2013). 937 

11 Ferrari Bardile, C. et al. Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination 938 
deficits and behavioral abnormalities in Huntington disease. Proc Natl Acad Sci U S A 116, 9622-9627, 939 
doi:10.1073/pnas.1818042116 (2019). 940 

12 Lim, R. G. et al. Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal 941 
WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Rep. 19, 1365-1377, 942 
doi:10.1016/j.celrep.2017.04.021 (2017). 943 

13 Haremaki, T. et al. Self-organizing neuruloids model developmental aspects of Huntington's disease in 944 
the ectodermal compartment. Nat Biotechnol 37, 1198-1208, doi:10.1038/s41587-019-0237-5 (2019). 945 

14 Lee, H. et al. Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial 946 
RNA Release and Neuronal Innate Immune Activation. Neuron 107, 891-908.e898, 947 
doi:10.1016/j.neuron.2020.06.021 (2020). 948 

15 Teo, R. T. et al. Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 949 
and BACHD models of Huntington disease. Hum Mol Genet 25, 2621-2632, doi:10.1093/hmg/ddw122 950 
(2016). 951 

16 Jin, J. et al. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel 952 
knock-in mouse model of Huntington's disease. Hum Mol Genet 24, 2508-2527, 953 
doi:10.1093/hmg/ddv016 (2015). 954 

17 Huang, B. et al. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene 955 
expression and affects mature oligodendrocytes. Neuron 85, 1212-1226, 956 
doi:10.1016/j.neuron.2015.02.026 (2015). 957 

18 Ferrari Bardile, C. et al. Abnormal Spinal Cord Myelination due to Oligodendrocyte Dysfunction in a 958 
Model of Huntington’s Disease. Journal of Huntington's Disease 10, 377-384, doi:10.3233/JHD-210495 959 
(2021). 960 

19 Hodges, A. et al. Regional and cellular gene expression changes in human Huntington's disease brain. 961 
Hum Mol Genet 15, 965-977, doi:10.1093/hmg/ddl013 (2006). 962 

20 Labadorf, A. et al. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive 963 
Increase in Inflammatory and Developmental Gene Expression. PLoS One 10, e0143563, 964 
doi:10.1371/journal.pone.0143563 (2015). 965 

21 Benraiss, A. et al. Cell-intrinsic glial pathology is conserved across human and murine models of 966 
Huntington's disease. Cell reports 36, 109308, doi:10.1016/j.celrep.2021.109308 (2021). 967 

22 Meunier, C., Merienne, N., Jolle, C., Deglon, N. & Pellerin, L. Astrocytes are key but indirect 968 
contributors to the development of the symptomatology and pathophysiology of Huntington's disease. 969 
Glia 64, 1841-1856, doi:10.1002/glia.23022 (2016). 970 

23 Osipovitch, M. et al. Human ESC-Derived Chimeric Mouse Models of Huntington's Disease Reveal 971 
Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell 24, 107-122.e107, 972 
doi:10.1016/j.stem.2018.11.010 (2019). 973 

24 Teo, R. T. Y. et al. Impaired Remyelination in a Mouse Model of Huntington Disease. Molecular 974 
neurobiology 56, 6873-6882, doi:10.1007/s12035-019-1579-1 (2019). 975 

25 Wilson, H., Dervenoulas, G. & Politis, M. Structural Magnetic Resonance Imaging in Huntington's 976 
Disease. Int Rev Neurobiol 142, 335-380, doi:10.1016/bs.irn.2018.09.006 (2018). 977 

26 Myers, R. H. et al. Decreased neuronal and increased oligodendroglial densities in Huntington's 978 
disease caudate nucleus. J Neuropathol Exp Neurol 50, 729-742, doi:10.1097/00005072-199111000-979 
00005 (1991). 980 

27 Gomez-Tortosa, E. et al. Quantitative neuropathological changes in presymptomatic Huntington's 981 
disease. Ann Neurol 49, 29-34 (2001). 982 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

28 de la Monte, S. M., Vonsattel, J. P. & Richardson, E. P., Jr. Morphometric demonstration of atrophic 983 
changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. J Neuropathol 984 
Exp Neurol 47, 516-525, doi:10.1097/00005072-198809000-00003 (1988). 985 

29 Gabery, S. et al. Early white matter pathology in the fornix of the limbic system in Huntington disease. 986 
Acta neuropathologica 142, 791-806, doi:10.1007/s00401-021-02362-8 (2021). 987 

30 Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a 988 
progressive neurological phenotype in transgenic mice. Cell 87, 493-506, doi:10.1016/s0092-989 
8674(00)81369-0 (1996). 990 

31 Mayr, J. A. et al. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in 991 
the pyruvate oxidation pathway. Am J Hum Genet 89, 806-812, doi:10.1016/j.ajhg.2011.11.007 (2011). 992 

32 Zeng, W. Q. et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in 993 
SLC19A3. Am J Hum Genet 77, 16-26, doi:10.1086/431216 (2005). 994 

33 Labay, V. et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated 995 
with diabetes mellitus and deafness. Nat Genet 22, 300-304, doi:10.1038/10372 (1999). 996 

34 Dhir, S., Tarasenko, M., Napoli, E. & Giulivi, C. Neurological, Psychiatric, and Biochemical Aspects of 997 
Thiamine Deficiency in Children and Adults. Front Psychiatry 10, 207, doi:10.3389/fpsyt.2019.00207 998 
(2019). 999 

35 Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization 000 
of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48, doi:10.1186/1471-2105-10-48 001 
(2009). 002 

36 Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by 003 
modulating SR splicing factor phosphorylation. Mol Cell 39, 925-938, doi:10.1016/j.molcel.2010.08.011 004 
(2010). 005 

37 Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous 006 
system. Science 352, 1326-1329, doi:10.1126/science.aaf6463 (2016). 007 

38 Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal 008 
ordering of single cells. Nat Biotechnol 32, 381-386, doi:10.1038/nbt.2859 (2014). 009 

39 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC 010 
Bioinformatics 9, 559, doi:10.1186/1471-2105-9-559 (2008). 011 

40 Beckmann, N. D. et al. Multiscale causal networks identify VGF as a key regulator of Alzheimer's 012 
disease. Nat. Commun. 11, 3942, doi:10.1038/s41467-020-17405-z (2020). 013 

41 Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a 014 
human hematopoietic continuum. Science 332, 687-696, doi:10.1126/science.1198704 (2011). 015 

42 Carcamo-Orive, I. et al. Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals 016 
Genetic and Non-genetic Determinants of Heterogeneity. Cell Stem Cell 20, 518-532.e519, 017 
doi:10.1016/j.stem.2016.11.005 (2017). 018 

43 Langfelder, P. et al. Integrated genomics and proteomics define huntingtin CAG length-dependent 019 
networks in mice. Nat Neurosci 19, 623-633, doi:10.1038/nn.4256 (2016). 020 

44 Lobo, M. K., Yeh, C. & Yang, X. W. Pivotal role of early B-cell factor 1 in development of striatonigral 021 
medium spiny neurons in the matrix compartment. J. Neurosci. Res. 86, 2134-2146, 022 
doi:10.1002/jnr.21666 (2008). 023 

45 Kusko, R. et al. Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene 024 
expression and activates neuroprotective pathways in the YAC128 HD mouse. Mol Neurodegener 13, 025 
25, doi:10.1186/s13024-018-0259-3 (2018). 026 

46 Lee, H. et al. Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial 027 
RNA Release and Neuronal Innate Immune Activation. Neuron 107, 891-908 e898, 028 
doi:10.1016/j.neuron.2020.06.021 (2020). 029 

47 Savell, K. E. et al. A dopamine-induced gene expression signature regulates neuronal function and 030 
cocaine response. Sci Adv 6, eaba4221, doi:10.1126/sciadv.aba4221 (2020). 031 

48 Usui, N. et al. Zbtb16 regulates social cognitive behaviors and neocortical development. Transl 032 
Psychiatry 11, 242, doi:10.1038/s41398-021-01358-y (2021). 033 

49 Hinds, L. R. et al. Dynamic glucocorticoid-dependent regulation of Sgk1 expression in oligodendrocytes 034 
of adult male rat brain by acute stress and time of day. PLoS One 12, e0175075, 035 
doi:10.1371/journal.pone.0175075 (2017). 036 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

50 Gregath, A. & Lu, Q. R. Epigenetic modifications-insight into oligodendrocyte lineage progression, 037 
regeneration, and disease. FEBS Lett 592, 1063-1078, doi:10.1002/1873-3468.12999 (2018). 038 

51 Yu, Y. et al. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. 039 
Cell 152, 248-261, doi:10.1016/j.cell.2012.12.006 (2013). 040 

52 Qin, Q. et al. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin 041 
accessibility and ChIP-seq data. Genome Biol 21, 32, doi:10.1186/s13059-020-1934-6 (2020). 042 

53 Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic 043 
genome activation. Nat Commun 11, 4267, doi:10.1038/s41467-020-18035-1 (2020). 044 

54 Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-045 
502, doi:10.1038/s41586-019-0969-x (2019). 046 

55 Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543-547, 047 
doi:10.1038/s41586-019-0903-2 (2019). 048 

56 Selvaraju, R. et al. Osteopontin is upregulated during in vivo demyelination and remyelination and 049 
enhances myelin formation in vitro. Mol Cell Neurosci 25, 707-721, doi:10.1016/j.mcn.2003.12.014 050 
(2004). 051 

57 Cammer, W. & Zhang, H. Carbonic anhydrase in distinct precursors of astrocytes and oligodendrocytes 052 
in the forebrains of neonatal and young rats. Brain Res Dev Brain Res 67, 257-263, doi:10.1016/0165-053 
3806(92)90226-m (1992). 054 

58 Ishii, A., Fyffe-Maricich, S. L., Furusho, M., Miller, R. H. & Bansal, R. ERK1/ERK2 MAPK Signaling is 055 
Required to Increase Myelin Thickness Independent of Oligodendrocyte Differentiation and Initiation of 056 
Myelination. The Journal of Neuroscience 32, 8855, doi:10.1523/JNEUROSCI.0137-12.2012 (2012). 057 

59 Yildirim, F. et al. Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a 058 
therapeutic target in Huntington's disease. Proc Natl Acad Sci U S A 116, 24840-24851, 059 
doi:10.1073/pnas.1908113116 (2019). 060 

60 Szu, J., Wojcinski, A., Jiang, P. & Kesari, S. Impact of the Olig Family on Neurodevelopmental 061 
Disorders. Frontiers in neuroscience 15, 659601-659601, doi:10.3389/fnins.2021.659601 (2021). 062 

61 Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893-899, 063 
doi:10.1038/s41586-022-04521-7 (2022). 064 

62 Zhang, Y. et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and 065 
Vascular Cells of the Cerebral Cortex. The Journal of Neuroscience 34, 11929, 066 
doi:10.1523/JNEUROSCI.1860-14.2014 (2014). 067 

63 Hubler, Z. et al. Accumulation of 8, 9-unsaturated sterols drives oligodendrocyte formation and 068 
remyelination. Nature 560, 372-376 (2018). 069 

64 Valenza, M. et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease. The 070 
Journal of neuroscience : the official journal of the Society for Neuroscience 25, 9932-9939, 071 
doi:10.1523/JNEUROSCI.3355-05.2005 (2005). 072 

65 Valenza, M. et al. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by 073 
huntingtin mutation. Human molecular genetics 16, 2187-2198, doi:10.1093/hmg/ddm170 (2007). 074 

66 Valenza, M. et al. Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse 075 
model of Huntington's disease. Neurobiology of disease 28, 133-142, doi:10.1016/j.nbd.2007.07.004 076 
(2007). 077 

67 Block, R. C., Dorsey, E. R., Beck, C. A., Brenna, J. T. & Shoulson, I. Altered cholesterol and fatty acid 078 
metabolism in Huntington disease. J Clin Lipidol 4, 17-23, doi:10.1016/j.jacl.2009.11.003 (2010). 079 

68 Carroll, J. B. et al. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid 080 
Accumulation. PloS one 10, e0134465, doi:10.1371/journal.pone.0134465 (2015). 081 

69 Kacher, R. et al. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in 082 
Huntington's disease. Brain 142, 2432-2450, doi:10.1093/brain/awz174 (2019). 083 

70 Luthi-Carter, R. et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. 084 
Proceedings of the National Academy of Sciences of the United States of America 107, 7927-7932, 085 
doi:10.1073/pnas.1002924107 (2010). 086 

71 Kreilaus, F., Spiro, A. S., McLean, C. A., Garner, B. & Jenner, A. M. Evidence for altered cholesterol 087 
metabolism in Huntington's disease post mortem brain tissue. Neuropathology and applied 088 
neurobiology 42, 535-546, doi:10.1111/nan.12286 (2016). 089 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

72 Asotra, K. & Macklin, W. B. Protein kinase C activity modulates myelin gene expression in enriched 090 
oligodendrocytes. J Neurosci Res 34, 571-588, doi:10.1002/jnr.490340509 (1993). 091 

73 Baer, A. S. et al. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be 092 
overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132, 465-093 
481, doi:10.1093/brain/awn334 (2009). 094 

74 Baron, W., de Jonge, J. C., de Vries, H. & Hoekstra, D. Regulation of oligodendrocyte differentiation: 095 
protein kinase C activation prevents differentiation of O2A progenitor cells toward oligodendrocytes. 096 
Glia 22, 121-129, doi:10.1002/(sici)1098-1136(199802)22:2<121::aid-glia3>3.0.co;2-a (1998). 097 

75 Damato, M. et al. Protein Kinase C Activation Drives a Differentiation Program in an Oligodendroglial 098 
Precursor Model through the Modulation of Specific Biological Networks. Int J Mol Sci 22, 099 
doi:10.3390/ijms22105245 (2021). 100 

76 Amaral, A. I., Tavares, J. M., Sonnewald, U. & Kotter, M. R. Oligodendrocytes: Development, 101 
Physiology and Glucose Metabolism. Adv Neurobiol 13, 275-294, doi:10.1007/978-3-319-45096-4_10 102 
(2016). 103 

77 da Rosa, P. M. et al. High-glucose medium induces cellular differentiation and changes in metabolic 104 
functionality of oligodendroglia. Mol Biol Rep 46, 4817-4826, doi:10.1007/s11033-019-04930-4 (2019). 105 

78 Rinholm, J. E. et al. Regulation of oligodendrocyte development and myelination by glucose and 106 
lactate. J Neurosci 31, 538-548, doi:10.1523/JNEUROSCI.3516-10.2011 (2011). 107 

79 Yan, H. & Rivkees, S. A. Hypoglycemia influences oligodendrocyte development and myelin formation. 108 
Neuroreport 17, 55-59, doi:10.1097/01.wnr.0000192733.00535.b6 (2006). 109 

80 DeBrosse, S. D. et al. Spectrum of neurological and survival outcomes in pyruvate dehydrogenase 110 
complex (PDC) deficiency: lack of correlation with genotype. Mol Genet Metab 107, 394-402, 111 
doi:10.1016/j.ymgme.2012.09.001 (2012). 112 

81 Freedman, D. et al. Loss of Oligodendrocytes in Mouse Model of Pyruvate Dehydrogenase Complex 113 
Deficiency and Partial Reversal by Phenylbutyrate Treatment. Translational Neuroscience 3, 53-61 114 
(2020). 115 

82 Zhang, S., Lachance, B. B., Mattson, M. P. & Jia, X. Glucose metabolic crosstalk and regulation in 116 
brain function and diseases. Prog Neurobiol 204, 102089, doi:10.1016/j.pneurobio.2021.102089 (2021). 117 

83 Marce-Grau, A., Marti-Sanchez, L., Baide-Mairena, H., Ortigoza-Escobar, J. D. & Perez-Duenas, B. 118 
Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and 119 
functional studies. J Inherit Metab Dis 42, 581-597, doi:10.1002/jimd.12125 (2019). 120 

84 Pico, S. et al. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 121 
deficiency in Huntington's disease. Sci Transl Med 13, eabe7104, doi:10.1126/scitranslmed.abe7104 122 
(2021). 123 

85 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 e1821, 124 
doi:10.1016/j.cell.2019.05.031 (2019). 125 

86 Petukhov, V. et al. dropEst: pipeline for accurate estimation of molecular counts in droplet-based 126 
single-cell RNA-seq experiments. Genome Biol 19, 78, doi:10.1186/s13059-018-1449-6 (2018). 127 

87 McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, 128 
normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179-1186, 129 
doi:10.1093/bioinformatics/btw777 (2017). 130 

88 Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol 21, 131 
57, doi:10.1186/s13059-020-1950-6 (2020). 132 

89 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529, 133 
doi:10.1016/j.cell.2021.04.048 (2021). 134 

90 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using 135 
regularized negative binomial regression. Genome Biol 20, 296, doi:10.1186/s13059-019-1874-1 136 
(2019). 137 

91 Welch, J. D. et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell 138 
Identity. Cell 177, 1873-1887 e1817, doi:10.1016/j.cell.2019.05.006 (2019). 139 

92 Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene 140 
lists (2019 update). Nucleic Acids Res 47, W191-W198, doi:10.1093/nar/gkz369 (2019). 141 

93 Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell 142 
RNA-seq data with Bioconductor. F1000Res 5, 2122, doi:10.12688/f1000research.9501.2 (2016). 143 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

94 Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta 144 
Neuropathol Commun 8, 19, doi:10.1186/s40478-020-0880-6 (2020). 145 

95 Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat 146 
Biotechnol 37, 1482-1492, doi:10.1038/s41587-019-0336-3 (2019). 147 

96 Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of 148 
frozen tissues. Nat Methods 14, 959-962, doi:10.1038/nmeth.4396 (2017). 149 

97 Smith-Geater, C. et al. Aberrant Development Corrected in Adult-Onset Huntington's Disease iPSC-150 
Derived Neuronal Cultures via WNT Signaling Modulation. Stem Cell Reports 14, 406-419, 151 
doi:10.1016/j.stemcr.2020.01.015 (2020). 152 

98 Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks 153 
derived from multiparameter single-cell data. Science 308, 523-529, doi:10.1126/science.1105809 154 
(2005). 155 

99 Emery, B. & Dugas, J. C. Purification of oligodendrocyte lineage cells from mouse cortices by 156 
immunopanning. Cold Spring Harb Protoc 2013, 854-868, doi:10.1101/pdb.prot073973 (2013). 157 

100 Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can J Biochem 158 
Physiol 37, 911-917, doi:10.1139/o59-099 (1959). 159 

101 Chan, R. B. et al. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J 160 
Biol Chem 287, 2678-2688, doi:10.1074/jbc.M111.274142 (2012). 161 

102 Hsu, F. F., Turk, J., Shi, Y. & Groisman, E. A. Characterization of acylphosphatidylglycerols from 162 
Salmonella typhimurium by tandem mass spectrometry with electrospray ionization. J Am Soc Mass 163 
Spectrom 15, 1-11, doi:10.1016/j.jasms.2003.08.006 (2004). 164 

103 Ochaba, J. et al. PIAS1 Regulates Mutant Huntingtin Accumulation and Huntington's Disease-165 
Associated Phenotypes In Vivo. Neuron 90, 507-520, doi:10.1016/j.neuron.2016.03.016 (2016). 166 

104 Dansu, D. K. et al. PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Front 167 
Cell Neurosci 16, 820226, doi:10.3389/fncel.2022.820226 (2022). 168 

105 Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 169 
16878, doi:10.1038/s41598-017-17204-5 (2017). 170 

 171 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


OL

OPC

MSN 

MG
Astro

Vascular

Inter 

Ex 

OL

OPC

Astro/Vascular
MG

Inhib 

UMAP1

U
M

A
P2

OL

OPC

MSN 

MG

Astro
Vascular

Inhib ODC

OPC

MSN 

MGAstroVascular

MG

OL

OPC
Astro

Vascular

Inter 

Ex 

Ex8 

Str Ctx

12w
k 

8w
k 

Ex1

a

b

c

R6/2 & NT Droplet-based
snRNAseq 

Causal Network 
Modeling Validation Glucose & Lipid 

metabolism

OL

OPC

MSN 

MG
Astro

Vascular

Inhib 

Inter 

Ex 

OL

OPC

Astro/Vascular
MG

MG

OL

OPC
Astro

Vascular

Inter 

Ex 

Ex8 

OL

OPC

MSN 

MG

Astro
Vascular

Inhib 

Ex1

d

Patient

e

12wk 8wk 12wk 8wk 
OPC

OL
D1+
D2+
Ex1

Inhib2
Inhib3
Astro

Inhib4
Inhib1
Inhib5
Cholin

MG

Up
Down

-800 -600 -400 -200 0 200 400 600 800 -800-600-400-200 0 200 400 600 800 -500 -300 -100 300 500100

OL
OPC
D2+
D1+

Inhib3
Astro

Inhib2
Inhib1

Cholinergic
Inhib4

MG
Vascular

Ex1
Ex2

OPC
Inter4

OL
Ex3
Ex4
Ex6

Inter2
Ex8

Inter1
Inter3
Astro

Ex5
Ex7
MG

OPC
OL

Ex4
Ex1
Ex5
Ex3
Ex9
Ex2
Ex7

Inter1
Inter4
Inter2

Ex8
Ex6

Inter3Astro
MG

Vascular
-500 -300 -100 300 500100

Str Ctx

Immunofluorescence
Westerns

Lipidomics
ATACseq

STR CTX

R6/2
NT

Cell type-specific
& agnostic 

Figure 1

0 0.2 0.4 0.6 0.8 1

EX1
EX2
OL

EX3
EX4

INTER1
INTER2

OPC
ASTRO/VASCULAR

INTER3
MG

INTER4
EX5
EX6
EX7
EX8

R6/2 NT

0 0.2 0.4 0.6 0.8 1

INHIB1

D2+

OL

R6/2 D1+

NT D1+

ASTRO

INHIB2

OPC

INHIB3

MG

INHIB4

VASCULAR

CHOLINERGIC

Control
HD

Astro

OPC
Vascular

OL
Neuron
MG
Ependymal

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Single nucleus RNAseq of mouse and human R6/2 and HD samples. a) Illustration of workflow used 

for this study. After frozen tissue is microdissected from the Cingulate, Caudate, and nucleus Accumbens from 

66 samples from 29 human donors (3 grade I, 4 grade II, 4 grade III, 3 grade IV, 5 juvenile-onset HD, and 10 

matched controls), or the striatum and cortex of the mice (n = 3), nuclei are isolated, 10X Libraries are prepared 

followed by next generation sequencing. b) Uniform manifold projection and approximation plots (UMAP) of the 

R6/2 and NT mouse data colored by cluster or genotype. General cell type annotations: Astro = Astrocytes, OL 

= Oligodendrocyte, OPC = Oligodendrocyte progenitors, MSN = Medium spiny neurons, Inhib = inhibitory 

neurons, MG = Microglia, Ex = Excitatory neurons, Inter = Interneurons. c) Barplot showing the number of up 

(blue) and down (orange) regulated DEGs per a cell type in the mouse data. b and c) Striatal (Str, light blue bar) 

samples on the left and cortical (Ctx, light green bar) samples on the right, 12w samples marked by yellow bar 

and 8w marked by purple bar. d) Proportion of R6/2 and NT cells within each cluster, red = R6/2 & blue = NT. e) 

tSNE plots of the human snRNAseq results showing color-coded by cell type (Left), condition (Right), anatomic 

region (Bottom Left), and grade (Bottom Right). Right, dotplot showing expression of cell type markers per 

cluster.  
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Fig. 2. Analysis of differentially expressed genes in R6/2 mice and subclustered analysis of OPCs and 

OL. a) Left: Heatmaps and hierarchical clustering of normalized mean expression values in all glial or neuronal 

cells of the top cell type agnostic DEGs. Cell color represents row min (seafoam green) and max (orange). Color 

bars denote NT glial cells (light blue), R6/2 glial cells (orange), NT neural cells (purple), and R6/2 neuronal cells 

(yellow). RNA processing and splicing (Ccnl2, Tra2a, ddx5, Celf2 and Taf15) and metabolism (Guf1, Tpk1, and 

Gpi1) related genes. Glucose super metabolism pathway genes that include glycolysis, the hexosamine 

biosynthetic pathway, polyol pathway, and diacylglycerol pathways, include Ogt, Tpk1, Gpi1, and Galant18. 8w 

and 12w Str data shown, cortical data in Supplementary Fig. 3a. Right: violin plot of two exemplary genes 

Malat1 (top) and Tpk1 (bottom) that show global up or down regulation in R6/2 mice, across all cell type, 

respectively from 12wStr. b) Network showing all KEGG metabolic genes significantly dysregulated across the 

12wStr DEGs from every cell type. 12w Str data shown, 8w Str and cortical data in Supplementary Fig. 3b. 

Node size is equal to the number of cell types in which the gene is found to be significantly dysregulated and 

node are colored by up and down regulation (orange = up and blue = down). c) UMAPs of subclustered OPCs 

and OL in the 12w striatum, colored by genotype. Cluster composition: NT cells are mainly MOLs and MFOLs, 

or OPCs; while R6/2 cells are COP, NFOL, and MOL.  Statistical contrasts: R6/2 vs NT for each cluster, cluster 

comparisons between R6/2 and NT MOLs, NT MFOLs and R6/2 MOL, COP vs OPCs. 8wStr and cortical data 

show in Supplementary Fig. 3c. e) Density plots of cell numbers across pseudotime cell stages, colored by 

genotype and age. 
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Fig. 3. WGCNA analysis of R6/2 mouse snRNAseq data shows cell type-specific changes in network 

structure. a) Dendrogram and correlation heatmap showing cell type-specific co-expression modules. Heatmap 

shows modules highly correlated with each cell type, dendrogram shows clustering of neuronal module together 

and glial together. Cell color represents column min (orange) and max (blue). b) Top five GO terms per module, 

showing cell type-specific functional relevance. c) Circos plots of the top 50 genes with highest kME in NT mice 

(left) and R6/2 (right). Red lines show connectivity between the top 50 genes. Structural differences can be 

seen between NT and R6/2.  
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Fig. 4. Causal network analysis and ATACseq of glia reveals Prkce, Olig1/2, Sox9/10, and glucose and 

lipid metabolism as important regulators. a) MSN bnet. b) OL bnet. a & b) Both causal networks are merged 

from NT and R6/2. If a node and edge existed in both the NT and R6/2 bnets, the NT data (edge weight) were 

used for plotting. Each bnets shows nodes that exist only in NT or R6/2 and nodes that exist in both, as well as 

novel edges and edges retained in the R6/2 data. Each bnet was also plotted using a hierarchical structure to 

show the direction of causal flow. In each plot, genes with a high degree of outward centrality ( >10 outward 

edges) are highlighted by increased gene name size, as well as genes that connect between two genes that 

have a high degree of outward centrality. We consider these highlighted genes key drivers of the network. Color 

scheme is as follows: Edge (purple = NT, yellow = R6/2, grey = both), node fill color (green = NT node, pink = 

R6/2 node, light green = both), node outline color (orange = upregulated, blue = downregulated). MG, Astro, and 

Ex neuron bnets are in Supplementary Fig. 5b-d. c) LISA analysis of OL causal network gene members, 

showing the top 20 regulatory transcription factors. d) Volcano plot showing differential binding scores, and -

log(pvalue) differences of TF binding in open chromatin in 12w NeuN- striatal cells. blue = top20 by differential 

binding score, orange = pvalue <0.05. 8wStr, cortical, and all NeuN+ data can be found in Supplementary Fig. 

6b.  
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Fig. 5. Huntington disease oligodendrocytes are less mature. a-c, e, f) Projection of control and HD nuclei 

in the PHATE dimension color-coded by condition (a), lineage (b), pseudotime value (c), cluster (e), and HD 

grade (f). Note that OPCs have the lowest pseudotime values in c. d) Pseudotime values are shown in 

histograms across brain region and HD grade. Note that the proportion of nuclei with intermediate pseudotime 

values is higher in HD, especially grade III. (g-h) The relative contribution of anatomic region (g) and condition 

(h) to each cluster is shown in bar plots. i) Gene expression dot plots showing normalized expression of select 

cluster marker genes, with color denoting expression levels and circle size denoting the proportion of nuclei 

expressing the gene of interest.   
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Figure 6
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Fig. 6. Differential gene expression analysis of HD and control OPCs and OLs. Venn diagram analysis of 

the DEGs in OPCs (a) and oligodendrocytes (b). The number of DEGs that are increased (black) or decreased 

(red) in HD nuclei is highlighted per overlap sector. The stars indicate the DEGs that are shared across all 

regions, and the # indicates the DEGs shared between the Cingulate and Accumbens. c) Gene ontology (GO) 

term analysis of differentially expressed genes in select sectors of the venn diagrams HD versus control OLs 

and OPC (from panels a, c). The * and # signs correspond to the DEGs shared across all regions and DEGs 

shared between accumbens and cingulate OL and OPCs, respectively (purple = OPC DEGs, and green = OL 

DEGs). The sign of the negative log10 of the adjusted p value indicates the direction of changes; positive sign 

corresponds to genes increased in HD, and negative sign corresponds to genes decreased in HD. d) Scatter 

plot of the correlation coefficients of genes that correlate with CAG repeats in OPCs (y-axis) and OLs (x-axis). 

The color of thew genes correspond to whether the coefficient was significant in OLs only (green), OPCs and 

OLs (blue), or OPCs only (purple). e) KEGG and Reactome pathway enrichment analysis of the genes that 

significantly correlate with CAG repeats in OPCs and OLs (top panel), OLs (middle panel), or OPCs (lower 

panel). The negative log10 of the adjusted p value is indicated on the x-axis, and the pathways on the y-axis. 

The color of each circle corresponds to the percentage of overlap between the CAG-correlated genes and the 

genes in each pathway. 
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Fig. 7. Western, lipidomics, and cellular analyses validates HD differences in TPK1 and PRKCE. a) 

Scatterplots of Z-score log2 fold change values comparing mouse and human data in 12w striatum versus human 

caudate OL DEGs. Genes with |Z-log2FC| values > 1.5 are highlighted in seafoam green and OL maturation 

genes are highlighted in orange, showing concordance between species for PRKCE and OL maturation genes, 

and discordance of TPK1 expression. Seafoam green = genes with absolute value(zlog2FC) differences > 1, 

Orange = key genes highlighted.  b) Western blot of PRKCE and phospho-PRKCE in HD and control patient 

cingulate cortex and caudate. c) Quantification of western blow results. Mann Whitney test used for each 

statistical analysis. Exact p-values: Cingulate: PKCE-0.0003, p-PKCE-0.0003; Caudate: PKCE-0.0055, p-PKCE-

0.0385.  d) Licor images of Prkce, pPrkce, TPK1, and respective revert in R6/2 and NT striatum and cortex. e) 

Quantification of licor results. f) Western blot of TPK1 in human caudate samples from juvenile HD, HD grades 

1-4, and control patients. g) Quantification of human TPK1 data. Statistical analysis was done using a one-way 

ANONA and Tukey HSD posthoc, comparing control to each adult HD grades (adjusted p=0.979, 0.221, 0.070, 

0.018) and control to juvenile HD (p=0.015). h) DAG levels quantified from HD and control patient brains showing 

significant decreased DAG levels in HD brains. i) Western blot of PRKCE, MOG, CNPase, OLIG2, and A-Tubulin 

in OPC and OLs +/- K/D of PRKCE.  
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Fig. 8. Thiamine and biotin study in R6/1 mice shows rescue of OL maturation DEGs and other cell type 

DEGs. a) UMAP showing the R6/1 and NT mouse data colored by genotype and treatment. b) Venn diagram 

comparing genotype DEGs in 15w R6/1 mice and 12wStr of R6/2 mice against each other and treatment effect 

DEGs from R6/1 T&B treated versus vehicle. c) Scatterplot showing Z-score log2FC of all genes overlapping 

between genotype and treatment effect DEGs. Colored by cell type origin. OL and Inhib1 neurons show the most 

rescued DEGs. Quadrants 1 and 3 represent rescue of expression and 2 and 4 represent exacerbation. d) 

Barplot showing the log2ratio of the number of significant DEGs comparing R61 vehicle versus NT vehicle to 

R6/1 T&B versus NT vehicle. e) Top 10 GO terms of overlapping DEGs per cell type (R61 vehicle versus NT 

vehicle to R6/1 T&B versus NT vehicle). f) Illustration of metabolic pathways impacted in HD. g) Illustration 

showing how PRKCE and DAG levels regulate OPC commitment to differentiation and MOL maturation in control 

and HD, and how T&B treatment rescues maturation impairments.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497613
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	Single nuclei RNAseq of R6/2 mouse model of HD
	Causal network modeling (CNM) identifies disrupted gene expression networks in R6/2 mice and reveals potential cell type-specific mechanisms of transcriptional change
	ATACseq of glial-enriched nuclei identifies regulators underlying transcriptional pathology in HD glia.
	Single nucleus RNAseq from HD and control cingulate, caudate, and nucleus accumbens identifies several heterogeneous OL lineage cells and altered maturation states
	Differential gene expression analysis reveals further differences between HD and control OLs
	Dysregulated gene expression is related to numbers of CAG repeats
	Validation of OL pathology in human HD and mouse data
	High Dose thiamine and biotin rescues transcriptional dysregulation in neurons and altered OL and OPC developmental genes in a mouse model of HD

	Discussion
	Online Methods
	Human: To remove low quality cells, we first used the combined quality calls from the CellRanger algorithm as well as the DropEst algorithm. This allowed us to retain more high quality nuclei than either algorithm alone. Data QC was done using the sca...
	Combining multiple datasets from different sequencing batches and count normalization
	ATACseq
	Immunohistochemistry and in situ hybridization
	Imaging and quantification
	Data and code availability

	Acknowledgements
	Author Contributions
	Competing Interests Statement
	References



