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Single nuclei RNAseq analysis of HD mouse models and human brain reveals impaired

oligodendrocyte maturation and potential role for thiamine metabolism
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Abstract

The complexity of affected brain regions and cell types is a challenge for Huntington’s disease (HD) treatment.
Here we used single nucleus RNA sequencing (snRNAseq) to investigate mechanism of pathology in the cortex
and striatum from R6/2 mice at 8 and 12w and in three regions of human HD post-mortem tissue. We identified
cell type-specific and cell agnostic signatures and found changes suggesting oligodendrocytes (OLs) and
oligodendrocyte precursors (OPCs) were arrested in intermediate maturation states. OL-lineage regulators
OLIG1 and OLIG2 were negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD
mouse NeuN-negative cells showed decreased accessibility of sites regulated by OL maturation genes. Glucose
and lipid metabolism were implicated in abnormal cell maturation and PRKCE and Thiamine Pyrophosphokinase
1 were identified as central genes. High dose thiamine/biotin treatment of R6/1 HD mice to target thiamine
metabolism not only restored OL maturation, but also rescued pathology in neurons. These findings reveal
insights into HD OL pathology that spans multiple brain regions and link OL maturation deficits to abnormal

thiamine metabolism.
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Introduction

Huntington disease (HD) is a progressive neurodegenerative disease characterized by prominent loss of medium
spiny neurons (MSN) in the striatum and cortical atrophy '. The disease, which manifests with cognitive,
psychiatric and movement impairments, is caused by an autosomal dominant CAG repeat expansion in the first
coding exon of the Huntingtin gene and a corresponding expanded polyglutamine repeat in the Huntingtin (HTT)
protein 2. Genome-wide approaches, including bulk RNA- and ChIP-sequencing, have facilitated understanding
the molecular impact of mutant HTT (mHTT) expression in a variety of model systems 3 and have suggested
deficits in neurodevelopmental programs in HD 37-°, however bulk tissue analysis limits understanding of cell
type-specific changes. The ability to distinguish common signatures of HD across multiple cell types from those
unique to specific cell types facilitates our mechanistic understanding of disease. Expression of mHTT using
cell type-specific drivers in animal models of HD ° or human HD induced pluripotent stem cells differentiated to
specific cell types support the idea that cell type-specific effects of HD synergistically lead to pathogenesis "2,
Further, single cell transcriptomics approaches have supported the concept of cell type specific
neurodevelopmental impairments in HD.'3.14

There has been a growing awareness that OL-lineage cells are abnormal in HD. First, early myelination
deficits based on structural and transcriptomic studies were described in mouse models of HD'5:'6. OL targeted
mHTT expression causes HD symptoms in mice, as well as myelination deficits and altered OL maturation via a
mechanism involving Myrf'”. Myelination deficits due to mHTT expression were evident in spinal cord white
matter in BACHD mice'®. Consistently, bulk transcriptional studies of human HD revealed that MYT1L, a myelin
transcription factor, and MBP were decreased in the caudate and prefrontal cortex, respectively %20, Second,
glial dysfunction?'?? and impaired OPC differentiation has been described for HD. For example, HD embryonic
stem cell-derived glial progenitors transplanted into shiverer mice exhibit decreased differentiation and
hypomyelination compared to controls 23. Another study showed that remyelination was impaired in cuprizone-
treated mice, implicating abnormal OPC function in HD?*, and inactivation of mHTT in OPCs prevented myelin
abnormalities in HD mice ''. Clinical radiographic and neuropathological studies also reveal that OLs and

myelination are abnormal in human HD (summarized in 2°). Neuropathologic examination of postmortem HD
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brains revealed higher density of OLs in the caudate nucleus?® 27, including in pre-symptomatic HD patients.
Stereological examinations of white matter reveal a decrease of 20-30% of the cross-sectional area of white
matter in coronal levels from frontal to occipital regions 28, as well as in the fornix2°, in both lower and higher HD
grades, suggesting that white matter loss represents an early change.

Here, we used single nucleus-RNAseq (snRNAseq) to obtain cell type-specific gene expression data
across multiple brain regions from both the rapidly progressing R6/2 mouse model *° and human post-mortem
brain samples with increasing grades of disease severity — including both adult- and juvenile-onset HD - and
used these data for correlative and causal network modeling. We identified cell type-specific and agnostic gene
expression changes, as well as putative causal drivers of transcriptomic changes. Consistent with previous
literature, we find that oligodendrocyte-lineage cells show significant transcriptional dysregulation. Expanding on
these findings, HD OPCs and OLs have altered expression of development and maturation genes in both mice
and human tissue, with many HD OL-lineage cells showing intermediate states of development. The extent of
dysregulation correlates with CAG repeat length in human tissue; the same dysregulated genes were also
highlighted by causal modeling in our mouse data. A gene central to the OPC/OL causal network, Protein kinase
C epsilon (PRKCE), was downregulated in human and mouse tissue, and functional studies clarified its role in
promoting OL maturation. Evidence from ATACseq and validation studies support this dysregulation. Notably,
we identify impairments in glucose and lipid metabolism, identified as cell type agnostic signatures, as potential
drivers of this pathology. This connection to metabolism led us to find potentially unique roles for diacylglycerol
(DAG), and thiamine and biotin (T&B) metabolic processes in HD OL maturation impairments. Thiamine
Pyrophosphokinase 1 (Tpk1), which converts thiamine into thiamine pyrophosphate, was differentially expressed
in the most cell types in the 12w R6/2 mice, and both TPK7 and SLC719A2, a thiamine transporter, were
downregulated in the human HD snRNAseq data. Mutations in TPK1 or the thiamine-transporters SLC19A3 lead
to thiamine pyrophosphate deficiencies and early-onset neurodegeneration with brain atrophy, basal ganglia
impairment, and motor dysfunction which can be effectively treated with high dose thiamine and biotin (T&B)
3132 |In addition, mutations in SLC19A2 lead to Roger's syndrome, with megaloblastic anemia,

thrombocytopenia, diabetes mellites, and sensorineural deafness 32 and general dietary thiamine deficiencies

are known to contribute to a number of neurological and psychiatric symptoms 4. To further examine potential
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connections between metabolic changes in HD and OL maturation we treated R6/1 mice, which has a longer
therapeutic window than R6/2 mice and also show dys-maturation signatures in a number of cell types 4, with
T&B and conducted snRNAseq on the striatum of T&B treated and vehicle treated mice. T&B treatment resulted
in significant rescue of dys-maturation signatures in OL and neurons, and an overall decrease in the number of
significant differentially expressed genes (DEGs). Our novel data provide evidence that dysregulated metabolism

and metabolic genes can directly contribute to the cell maturation deficits observed in OLs and other cell types,

and that diet supplementation may be a therapeutic modality for HD.

Results
Single nuclei RNAseq of R6/2 mouse model of HD

R6/2 mice are a rapidly progressing transgenic mouse model that express mHTT exon 1 and have
features in common with human symptomatic HD, including transcriptional changes °. To uncover progressive,
cell type-specific, and region-specific transcriptional changes, shnRNAseq was conducted on three striatal and
cortical samples each from R6/2 and non-transgenic (NT) mice at 8w and 12w of age (Fig. 1a, See Methods.
snRNAseq data were also generated and analyzed from human HD and control brains (Fig. 1a and e, described
below). Initial QC and filtering led to the identification of 108,974 nuclei in total. Fig. 1b and Supplementary Fig.
1a show uniform manifold approximation and projection (UMAP) plots of these data. Unsupervised clustering
identified 13 clusters in the 8w and 12w striatal samples, and 18 and 16 clusters in the 8w and 12w cortical
samples, respectively (Fig. 1b). A select number of cell type gene markers used to annotate these clusters is
shown in Supplementary Fig. 1b. R6/2 and NT cells clearly separate in some of the clusters. For example, 12w
D1+ MSNs completely separated into distinct clusters, which is reflected by the large number of DEGs between
the two conditions (Fig. 1b-d, Supplementary Table 1). The proportion of cells in each cluster across the cortex
and striatum is shown in Fig. 1d. We also find large numbers of DEGs in the excitatory (Ex) and inhibitory (Inhib)
neurons, astrocyte (Astro), OLs, and OPC clusters (Fig. 1¢). Minimal to no changes were seen in the microglia
(MG), vascular cells, and cholinergic neurons (Fig. 1¢). These clusters had the smallest number of cells and
therefore could lack the power required to identify statistical differences. Regional differences are reflected by

differences in cell type-specific DEGs across regions (Fig. 1¢). The total numbers of DEGs across all cell types
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were compiled and compared between 8w and 12w samples showing a large overlap of DEGs, with more unique
DEGs in the 12w samples for both the striatum and cortex (Supplementary Fig. 1¢). When we combined all
data from both ages and regions, we found no clustering differences for each cell type between age and region,
except for cell types that were specific to either the striatum or cortex, e.g. MSNs in the striatum (Supplementary
Fig. 1d). The only differences between the age groups were seen between the 8w and 12w OLs.

Gene ontology (GO 3%) enrichment analysis and KEGG pathway analysis were used to investigate the
biological implications of each set of DEGs from the different cell types. The top 10 significant terms revealed
that the majority of DEGs, regardless of cell type, are involved in neuronal related functions, including
neurogenesis, synaptic function, and glutamate related signaling (Supplementary Fig. 2a). Certain cell types
were enriched for terms such as “developmental process” in OLs and OPCs. Similar to GO analysis across
regions, age, and cell type, there were recurring KEGG pathways as well as sets of unique pathways that group
together to indicate functional impairment such as focal adhesion, cytoskeleton, ErbB and axon guidance as the
top pathways in OLs, suggesting a loss of signaling pathways involved in cell-to-cell communication between
OLs and neurons (Supplementary Fig. 2b). We also identified cell type agnostic DEGs that were common to
both glia and neurons. Fig. 2a and Supplementary Fig. 3a show the top multi-cluster DEGs identified in at least
50% of the cell types/clusters per tissue region and age, as a heatmap with hierarchical clustering. Many DEGs
across both glia and neurons are involved in RNA processing and splicing and metabolism. Hierarchical
clustering shows grouping of genes with similar functions indicating potential correlated expression and
regulation. KEGG pathway analysis also highlighted metabolic pathways including TCA cycle, O-glycan
biosynthesis, amino and nucleotide sugar, sucrose, and pentose phosphate pathways, many of which appear in
the earlier 8w age stage (Supplementary Fig. 2b). Dysregulated metabolic genes were found in or downstream
of the glucose super metabolism pathway that includes glycolysis, the hexosamine biosynthetic, polyol, and
diacylglycerol pathways. The two genes dysregulated across the most cell types in the 12w striatum were Tpk1,
and Malat1, a long non-coding RNA involved in RNA processing and transcriptional dysregulation 3¢ (Fig 2a).
Moreover, Tpk1 was also among the top dysregulated genes in the 12w cortex, and another glycolytic gene,

glucose-6-phosphate isomerase 1 (Gpi1), was one of the top multi-cluster DEGs in both 8w striatum and cortex

(Fig. 2a and Supplementary Fig. 3a). Both metabolic genes are upregulated in R6/2. We investigated whether
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there was an enrichment for KEGG metabolic genes in the DEGs and which metabolic pathways were most
impacted; a composite is shown in Fig. 2b (12w striatum) and Supplementary Fig. 3b. Tpk1, Ogt, Dgkx genes,
and Galnt13, found in sub-pathways related to glucose and lipid metabolism, are among the most commonly

dysregulated genes in all cell types.

R6/2 OPCs are committed to maturation while OLs appear transcriptionally less mature than NT OLs

Given the large changes in OPC and OL clusters, and the UMAPs in Fig. 1 showing a trajectory of R6/2
cells embedding between the OPC and OL clusters, we investigated whether these cells might represent
intermediate cell states between OPCs and OLs. The OL-OPC data were subclustered, revealing six clusters in
the 12w striatum and five clusters in the 8w striatum, 8w cortex, and 12w cortex. Each cluster represented distinct
populations of OPCs or OLs comprised of R6/2 and/or NT (Fig. 2¢c (12wk striatum), and Supplementary Fig.
3c-e, integrated data cross regions and ages are described in supplementary results and supplementary
Table 2). These subclustered data were then further annotated based on the gene expression markers and
annotations defined by Marques and Zeisel et al 3" as OPCs, committed oligodendrocyte precursors (COP),
newly formed oligodendrocytes (NFOL), myelin-forming oligodendrocytes (MFOL), or mature oligodendrocytes
(MOL) (Fig. 2c and Supplementary Fig. S3c). DEGs were generated for R6/2 versus NT statistical contrasts
for each of the developmental stages. These analyses revealed that R6/2 OPCs (OPC & COP) and OLs (NFOL,
MFOL, and MOL) at both ages and in both anatomic regions have changes in expression that suggest
developmental/maturation impairments. DEGs included: Mog, Mag, Mbp, Opalin, microtubule genes, and genes
involved in OL maturation, function, and myelination (Supplementary Table 1 & Supplementary Fig. 3e). DEGs
involved in glucose and lipid metabolism were also found in OPCs and OLs, including upregulation of Tpk1.
Pseudotime analysis 28 revealed most R6/2 cells were in transitional cell states between OPCs (pseudotime 0)
and MOLs (pseudotime 30+), with many HD cells found in the COP cluster and a cluster of NFOL, while NT cells
were mostly either OPCs, MFOL, or MOLs (Fig. 2c & d and Supplementary Fig. 3c-f, these results are further
described in the supplement). HD OL and OPC showed a bimodal distribution at the OPC and OL stages

across all ages and regions examined, suggested states of intermediate maturation in both OPCs and OLs (Fig
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2d). Overall, these data suggest that OPC maturation and subsequent OL differentiation is impaired in R6/2

mice.

Causal network modeling (CNM) identifies disrupted gene expression networks in R6/2 mice and
reveals potential cell type-specific mechanisms of transcriptional change

To investigate disruptions in cell type-specific gene networks in HD, and identify potential key driver
genes, we utilized weighted gene co-expression network analysis (WGCNA 3°) and Bayesian causal network
modeling (Fig. 1a) to identify causal relationships between genes identified as cell type-specific DEGs and
correlated gene network modules 4042, After feature selection (Methods), we used WGCNA and ran a signed
network analysis using cells from all NT samples; 6 gene co-expression modules were detected across cortical
and striatal tissues at both ages (Fig. 3a, Supplementary Table 3, and Supplementary Figure 4). Trait-module
correlation analyses showed that our modules were correlated to specific cell types (Fig. 3a). The yellow module
positively correlated with neuronal cell types and negatively correlated with glia, and the red, turquoise, green,
brown, and blue modules positively correlated with Ex, MSNs, MG, Astros, and OLs, respectively. GO enrichment
analysis of gene module members showed enrichment for terms related to each cell type (Fig. 3b). For example,
the OL-correlated blue module was enriched for myelination-related terms. Except for the green module, each
module was significantly enriched for DEGs determined using the hypergeometric test (Supplementary Fig.
5a), suggesting that these gene networks are relevant to the disease state and become impacted as the disease
progresses. The connectivity of the top module members rank-ordered by eigengene-based connectivity (kME)
revealed significant alterations (Fig. 3c).

To understand the potential causal connections between these genes and HD, we applied a Bayesian
approach to causal network modeling (See Methods) with the combined cell type-specific WGCNA module genes
and cell type-specific DEGs as input (Fig. 4a and b, Supplementary Fig. 5b-d, Supplementary Table 4). We
explored the MSN and OPC/OL bayes nets (bnets) in detail for two reasons: 1) since MSN are the most studied
cell type in HD the bnet should recapitulate previous findings and also reveal both known and novel interactions
between known dysregulated genes, providing validation for our approach, and 2) both cell types were the most

impacted in our mouse model (total number of DEG) with the OPCs and OLs showing the largest number of
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DEGs that suggest developmental deficits. The merged NT and R6/2 bnets are shown in Figs 4a and b. We
highlight genes representing key drivers (hub genes with high outward centrality, or genes connecting 2 hubs)

which are potentially causal regulators of downstream nodes.

MSN _Network. The MSN bnet includes genes involved in MSN development/identity, function, and genes

implicated in HD, including Ebf1, a key driver that is lost in the R6/2 bnet (yellow edges) and is involved in striato-
nigral MSN development and other genes that interact in both the direct and indirect pathways 4344, Genes of
the indirect pathway in D2 MSNSs, including Adora2a, Drd2, and Penk, were all downregulated and only show
NT causal interactions (purple edges), indicating a loss of function of these genes, thus validating the approach
45, Furthermore, Drd2 is a parent node of Penk, which is not only a downstream target of Drd2 signaling and

dysregulated in HD 48, but is transcriptionally regulated by Drd2 expression through dopamine-induced activation

47

OPC/OL Network: Based on the extensive dysregulation of OPC and OLs, we next explored the corresponding

bnet (Fig. 4b) and found Prkce, Sgk1, Zbtb16 and Tnr as key drivers. Prkce is regulated by DAG and Zbtb16 4,
a zinc finger binding protein that is involved on OL maturation and myelination, is found downstream of Adipor2,
an adiponectin receptor that regulates glucose and lipid metabolism. Downstream of Zbtb716 is serum- and
glucocorticoid-inducible kinase 1 (Sgk7), which is normally upregulated in OLs during cellular stress and
regulates many ion channels and solute carrier proteins involved in metabolic pathways and glucose uptake
(e.9.#%), such as GLUT1, GLUT4, and glutamate transporters. Sgk7 is downregulated in R6/2 mice indicating a
potential loss of function in HD — see supplementary results for additional validation studies. Exploration of
downstream nodes reveals a connection between Smarca2, which is a protein in the SWI/SNF family involved
in gene expression and chromatin remodeling in OLs, and Prkce. Smarca2 (BRM) and Smarca4 (BRG1) play
roles in OPC and OL development, including promoting OPC differentiation 5%%'. The majority of the outward
edges from key drivers are NT specific, indicating a loss of causal connection to downstream nodes in the R6/2
mice. Transcription regulator analysis using LISA %2 revealed the network is enriched for targets of Smarca4, and

Olig2, as well as other regulators previously highlighted for HD, including Suz12, Jun, Fos, and Mefc2 (Fig. 4c).
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These findings suggest an interconnected role of OPC/OL development with lipid and glucose metabolism

through Prkce and DAG, protein glycosylation, Adipor2, and Sgk1.

MG, Astro, and Ex neuron bnets are described in the supplementary results.

ATACseq of glial-enriched nuclei identifies regulators underlying transcriptional pathology in HD glia.
To understand the drivers of gene expression changes in non-neuronal cells (e.g. glia) versus neurons,
and validate the LISA analysis, we performed ATACseq on NeuN+ and NeuN- sorted nuclei from both the
striatum and cortex of the same R6/2 mouse cohort (Supplementary Fig. 6a). The neuronal nuclear protein
NeuN is localized in nuclei and perinuclear cytoplasm of most of the neurons in the central nervous system. We
performed foot printing analysis using TOBIAS % which revealed developmental changes in the glia-enriched
NeuN- data (Fig. 4d (12w striatum) and Supplementary Fig. 6b, and Supplementary Table 5), and
enrichment for immediate early genes in the neuron-enriched NeuN+ data. Among the top 20 TFs in the NeuN-
data that showed differential binding between R6/2 and NT we found Sox9 and 10 were significantly decreased
in the 8wk striatal data, and Olig1 and 2 decreased in the 12wk striatal data. Interestingly, when all the samples
were grouped and we compared the top 20 up and down TFs per an age and region, there was some overlapping
TFs between the 12w cortical and both striatal samples, but these were in opposite directions such as Hes1 and
Zbtb14 (Supplementary Fig. 6b & c). The 8w cortical samples had the least similarities compared to all other
regions and ages (Supplementary Fig. 6b & ¢) and showed a number of HOX genes within the top 20 TFs with
reduced binding. The cortical data showed differential binding of other known HD genes such as Egr1 and Sp1.
NeuN+ cells have some similarities with the NeuN- showing differential binding of Zbtb14 and Hes1, although in
opposite direction, in several ages and regions, but also showed an enrichment for immediate early genes Jun,

Fos, and Mef2c/b/d (Supplementary Fig. 6b).

10
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Single nucleus RNAseq from HD and control cingulate, caudate, and nucleus accumbens identifies
several heterogeneous OL lineage cells and altered maturation states

Given the altered gene expression in OL lineage cells in R6/2 mice, we investigated whether mHTT
expression also impacted gene expression in OPCs and OLs in human HD post-mortem tissue. snRNAseq was
carried out on 66 samples from 29 donors (3 grade |, 4 grade Il, 4 grade lll, 3 grade 1V, 5 juvenile-onset HD, and
10 matched controls - the demographics of whom are outlined in Supplementary Table 6). To define the
pathology in different brain regions, we microdissected the cingulate cortex, the caudate, and the nucleus
accumbens from frozen brain tissue as outlined in Fig. 1a and analyzed the samples using snRNAseq. All major
lineages were identified in the 290525 nuclei analyzed. Projection of nuclei in tSNE space shows that nuclei of
the same lineages largely occupy neighboring space (Fig. 1e and Supplementary Fig. 1d&e). Nuclei did not
show distinct donor or batch related colocalization in the tSNE space after correcting for batch effects
(Supplementary Fig. 7 a-b). A violin plot of lineage-specific genes delineated all expected lineages
(Supplementary Fig. 1e). We detected changes in gene expression in all cell types; for this study we focused
on cells of the OL lineage.

We focused on OLs and OPCs (Fig. 5a-b) and analyzed 80199 OL and 13844 OPC nuclei in isolation of
other lineages. Projecting OL and OPC in their own reduced dimension space (PHATE reduction — see Methods)
shows a continuous trajectory from OPCs to OLs, and separation between HD and control nuclei (Fig. 5a, b).
To examine the differentiation states of OL lineage cells, using well-established methods %4, we calculated the
relative ordering of cells along a pseudotime dimension calculated based on the PHATE reduction and projected
the pseudotime values in the reduced dimension space (Figure 5¢). OPCs were set as root nodes and therefore
had low pseudotime values, while OLs had high values. Similar to our mouse data, examination of pseudotime
values per anatomic region in control, grades I-lll HD, and Juvenile onset HD nuclei show altered maturation
states across brain regions and grade in HD. That is, across all brain regions examined, HD nuclei showed a
relatively larger proportion of cells with intermediate pseudotime values compared with controls, which is more
pronounced with increasing HD grade, particularly in HD grade 3. Conversely, in juvenile onset HD (HDJ), the

effect was less appreciable in the cingulate cortex, and more pronounced in the striatum, with the majority of

caudate and accumbens OPCs showing intermediate pseudotime values compared with control nuclei (Fig. 5d).
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In contrast, HDJ OLs do not show demonstrable differences compared with control nuclei base on pseudotime
analysis. The results suggest that HD maturation pathology is at least partially progressive with HD grade, and

that HDJ maturation pathology affects mainly OPCs.

We next performed unbiased sub-clustering of OL and OPC nuclei using the Levine algorithm and
identified 7 sub-clusters (Fig. 5e). Most subclusters contained a mix of cells from all three regions (Fig.5f) and
HD grades (Fig.5g, h), although in clusters 4 and 6 most nuclei were derived from the cingulate, and in clusters
1, 3, and 7 caudate nuclei represented the largest proportion (Fig. 5g). Most clusters contained mixtures of
nuclei from both HD and controls, but a number showed a preponderance of one or the other (Fig. 5h) with the
caveat that our dataset harbored relatively larger numbers of HD nuclei versus control (Con 17955, HD 76088).
With that caveat, Cluster 2 was mostly composed of HDJ nuclei, while cluster 6 was composed of a
preponderance of HD3 nuclei (Supplementary Fig. 7¢). Examination of select gene markers shows that clusters
4 and 5 represent OPCs with relatively high expression of OPC markers TNR and DSCAM (Fig. 5i,
supplementary Fig. 7d) and low expression of gene markers for mature OLs. Compared to cluster 5, cluster 4
shows lower expression of OPC genes BCAN, VCAN, PDGFRA, and CSPG4, but a higher proportion of cells
with TCF7L2 expression, suggesting this cluster represents differentiation-committed OPCs % (Supplementary
Fig 7d). Conversely, clusters 1, 2, 3, and 7 show relatively high expression of OL genes CNP, PLP1, and MBP
(Fig. 5i). Amongst the former, cluster 2 shows the highest expression levels of OPALIN and MOG, suggesting it
is most mature (myelinating). Moreover, cluster 7 showed expression of both OL genes (although at
comparatively lower levels) and the OPC gene DSCAM and is interpreted as an intermediate state between OL
and OPC lineages. Likewise, cluster 6 showed expression of the immature OL gene CA2 as well as other OL
genes including APOD, PTGDS, and CRYAB, but not myelin genes. It is thus also interpreted as immature OL.
Interestingly, the HD-enriched clusters 1, 2, and 7 showed higher expression levels of KIRREL3 compared with
the control-enriched cluster 3. KIRREL3 is a gene shown to be highly expressed in OL residing in chronic inactive
lesions of multiple sclerosis®. Finally, the HD-caudate predominant myelinating OL Cluster 7 showed relatively
high expression of several immune related genes such FYB1, SYK (Fig. 5i), APOE, CD74, and C3
(Supplementary Fig. 7d, Supplementary Table 7), reminiscent of the immune oligodendroglia described in

multiple sclerosis®. The cluster markers are provided in Supplementary Table 7.
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Differential gene expression analysis reveals further differences between HD and control OLs

We next identified significant DEGs between HD and control OL and OPC nuclei in different regions; the
number of significant DEGs unique to and shared by respective anatomic regions is shown in Venn diagrams for
OLs (Fig. 6a, Supplementary Table 8) and OPCs (Fig. 6b, Supplementary Table 8). Given that the
neurodegeneration is detected in the caudate nucleus at the earliest stages of HD and that pathology in the
nucleus accumbens and cortex is typically seen in more advanced disease, we reasoned that comparing DEGs
in these regions is informative in the following ways: 1) DEGs that are shared among the caudate, accumbens,
and cingulate likely represent pervasive or core transcriptional pathology in different anatomic regions regardless
of disease severity. 2) DEGs shared between the relatively preserved nucleus accumbens and less severely
affected cingulate cortex likely represent early pathologic alterations that may be compensatory in early stages
of the disease and are lost in more advanced stages. This does not preclude the possibility that any number of
these DEGs may represent cell-autonomous changes due to mHTT in OL and OPCs. With this insight,
examination of significant DEGs in these regions highlights a number of themes; first, myelin related and OL
identity genes including MAG, MBP, MOBP, MOG, OPALIN, PLP1, CNP, and OLIG1 and 2 were significantly
downregulated in OLs of all areas in HD (Supplementary Table 8). This was reflected in a negative enrichment
of the GO myelination in HD OL’s across all three brain regions (Fig. 6¢). Second, multiple heat shock response
genes including HSPA1A, HSPH1, HSPA4L, HSP90AA1, HSPB1, HSPA4, and HSPD1 were increased across
all anatomic regions, suggesting widespread, pervasive pathology in HD OLs (Supplementary Table 8). Multiple
metallothionein genes including MT2A, MT3, MT1X, MT1M, and MT1E, as well as heat shock protein encoding
genes HSPA1A, HSPA1B, and HSPB1 were increased in all brain regions in HD (Supplementary Table 8).
SPP1, which is a secreted protein that is increased in demyelination and remyelination ¢, was also increased in
all these regions. CA2, a gene encoding a carbonic anhydrase enzyme expressed in immature OL and mature
OLs but not OPCs®’, was increased in cingulate OLs (validated in Supplementary Fig. 8b-e). To determine
whether similar metabolic genes were dysregulated in our human OPC and OLs that were found in our mouse
data, we overlapped human OPC and OL DEGs with the dysregulated metabolic genes in the 12w striatum data

and found a large overlap of with these DEGs (Supplementary Fig. 8a) including DGKx, GALNTx genes,
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PTGDS, and TPK1. In the accumbens and cingulate (Fig. 6¢), gene ontologies related to nuclear export, RNA
binding, RNA splicing, peptidyl-lysine modification, and H3 deacetylation were more significantly enriched.
Several DEGs shared between the accumbens and cingulate OLs were related to metabolism, including
adipogenesis (ARL4A, COQ3, CHUK, ABCA1, GBE1, and ME1 — increased in HD OLs), fatty acid metabolism
(EVOVL2 and PLA2G6 — decreased in HD OLs), and pyruvate metabolism (pyruvate kinase M1/M2 PKM -
decreased in HD OLs). These results implicate metabolic pathways, including lipid and glucose metabolism in
HD pathology at early stages of neurodegeneration (Fig. 6¢ and Supplementary Table 8). The involvement of
immune genes we observed in HD-enriched clusters is reflected in the enrichment of immune-related ontologies
in the HD OLs DEGs, including NFKB activation and inflammasome (Fig. 6¢ and Supplementary Table 8).
Analysis of enriched GO in HD OPCs reveals a downregulation of genes related to N-acetyl-
galactoseaminyltransferase activity, and an upregulation of stress-related ontologies across the three regions.

Similar to the mouse data, we also see terms related to nervous system development, ion channels, and cell

adhesion (Figs. 2a and Supplementary Table 8).

Dysregulated gene expression is related to numbers of CAG repeats

The length of CAG repeats varied among our donors, and even between regions in the same donor
(Supplementary Table 6). To determine if any of the OL or OPC genes varied as a function of the numbers of
CAG repeats, we conducted a regression analysis with gene expression as response variable and CAG repeats
as explanatory variable. We collapsed cells from each sample and used the pseudobulk samples as input for
the regression analysis, corrected for batch and brain region and only extracted the significant CAG coefficients
(Supplementary Table 7). A number of genes showed significant correlations between expression and CAG
repeat lengths, some in OPCs or OLs or both (Fig. 6d). The graph plots the regression coefficients of each gene
in OLs versus OPCs; the upper right quadrant represents genes with positive correlations in both OPCs and OL,
the lower left quadrant genes that have negative correlations in both. Among genes with negative correlations
in OPCs are transcription factors OL/G1 and OLIG2, ASCL1, SOX2 and SOX4, which play roles in OL-lineage
development, along with /IGF2R, suggesting that progression through the OL lineage is further inhibited with

longer repeat length. Indeed, OPC lineage genes including OPCML and CSPG4 were negatively correlated with
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CAG repeat length (Fig. 6d). Moreover, PTGDS, a cluster 6 marker, had the most negative coefficients in both
OPCs and OLs as a function of CAG repeat length, implicating prostaglandin synthesis in the severity of HD
pathology. Some of these genes also were identified in our OL bnet as key drivers, including: SGK1, TNR, and
NAV3 (Fig. 4b). We also investigated KEGG and REAC pathways that were enriched in genes correlated with
CAG repeat lengths (Fig. 6e and Supplementary Table 7). Among the pathways that are enriched in OLs with
increasing repeat lengths are those of inflammation, which is more pronounced in human brain, sphingolipid
signaling, and ERK2 activation — which is known to control myelination®8. Both OLs and OPCs show enrichment
in genes related to glutamatergic synapses and ubiquitin-mediated proteolysis. When we examined the OL
genes with negative coefficients, we found that a number of them are involved in cholesterol metabolism

including (DHCR7, DHCR24, ABCA2, and ACAT2 — Supplementary Table 7), which further implicates lipid

metabolism as central to OL pathology in HD.

Validation of OL pathology in human HD and mouse data

Many genes that regulate OL maturation or were identified as key regulators were similarly dysregulated
in HD patient and mouse data including: MOBP, MAL, CLDN11, MBP, OLIG1, OPALIN, PRKCE, and SMARCA2
(Fig. 7a). To confirm dysregulation of key genes PRKCE and TPK1, performed WB analysis. Additional
investigation and validation of OL genes and other metabolic genes was also conducted and can be found in the
supplemental data and text. Protein levels of PRKCE, and phospho-PRKCE were significantly decreased in the
cingulate and caudate of HD brains and the ctx and str in the R6/2 mice (Fig. 7b-e). Both species showed an
increase in PRKCE RNA levels, opposite of the protein data. The ratio of p-PRKCE to PRKCE was not altered
though, suggesting that reduction in active PRKCE is related to reduced protein levels (Fig. 7b-e).

Since TPK1 was found to be dysregulated in both mouse (up) and human (down) data at the RNA level
in OLs and OPCs, we assessed the protein levels of the monomer and active dimer form of TPK1. Fig. 7f-g
shows a decrease of TPK1 (monomer and dimer) in HD patient tissue with HD grade 3 & 4 (At adjusted p-value
<0.1 for 3, and <0.05 for 4), and in juvenile HD (adjusted p <0.05), consistent with RNA expression data, whereas
TPK1 dimer is increased in the R6/2 striatum (Fig. 7d-e). The mouse and human data are discordant from each

other which may indicate a loss of function of expression in humans and compensatory increase in the mice or
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other unknown mechanism. Nonetheless, the data confirms that TPK1 is dysregulated in both human HD and
murine model of HD.

Given the potential contribution of DAG to OL development and as a substrate of PRKCE - a central hub
of the OL causal network, we evaluated DAG levels using lipidomic profiling of control brain versus HD in the
cingulate. A significant decrease in DAG levels was observed in juvenile HD brain as well as grade 2 HD brains
relative to controls (Fig. 7h). These data support the hypothesis that glucose and lipid metabolism, and
specifically DAG signaling, potentially through PRKCE, could be playing an important role in the OPC/OL
maturation changes we see between HD and control patients. This is further supported by the reduction in TPK1
in HD brains due to the involvement of thiamine in the production of acetyl-CoA, which is then used during DAG
formation. Given this finding along with the results demonstrating the reduction of PRKCE in human tissue,
together with the causal network analysis placing PRKCE at the top of the OL/OPC network upstream to several
maturation genes, we hypothesized that it played an important role in promoting OL differentiation. To test this
hypothesis, we knocked down Prkce from primary murine OPC cultures, and differentiated these cells into OLs.
The cultures expressed OLIG2, and OLs expressed CNPase. Compared with scrambled siRNA, siRNA specific
to Prkce effectively knocked down the protein (Fig 7i). Interestingly, the levels of MOG were significantly
increased by Prkce knockdown, supporting that the downregulation of Prkce leads to increased OL
differentiation. Indicating that loss of PRKCE - as seen in our western blot data - in both human and mouse HD

OPCs/OLs would lead to increased OPC commitment to differentiation, an increase in COP cells which we see

in our snRNAseq data.

High Dose thiamine and biotin rescues transcriptional dysregulation in neurons and altered OL and

OPC developmental genes in a mouse model of HD

Given that both mouse and human data showed alterations in TPK1 and SLC19A2, and these may
regulate PRKCE thorough DAG, we tested whether high doses of thiamine and biotin (T&B) treatment, similar
to that used to treat HD-like phenocopy disease such as biotin-responsive basal ganglia disease 32, would rescue
our observed broad and/or cell type-specific gene expression changes including OL maturation genes.
Furthermore, due to the discordant RNA expression changes in our mouse and human data we speculate that
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the increase in TPK1 was compensatory in the HD mouse model. Considering that TPK1 was only increased at
12w and not 8w, we suspect that these compensatory changes are responding to earlier metabolic changes and
tested whether targeting thiamine metabolism at a relatively early timepoint prior to any documented changes in
TPK1 expression %, would rescue the dys-maturation. For this study, R6/1 mice were used given symptoms are
delayed by several weeks relative to R6/2 mice %, thus allowing a greater window to observe effects of a given
treatment. R6/1 and NT mice (8w-old) were treated with vehicle or T&B for 7wks before striatal tissue was
collected and analyzed using snRNAseq (Fig 8a). MSNs, inhibitory neurons, OPCs, OL, and Astros showed the
most DEGs between R6/1 and NT vehicle treated mice (Supplementary Table 10). Comparing R6/2 and R6/1
DEGs for each cell type, we found high correlation between HD models and a significant overlap in DEGs,
including between OPC and OL maturation genes (Fig. 8b) supporting the use of R6/1 mice for the
supplementation study. When we evaluated DEGs between R6/1 T&B treated and vehicle treated mice
(treatment effect), for each cell type, there was a significant overlap of genes impacted by T&B treatment and
genotype DEGs (Fig. 8b). Figure 8c shows a scatterplot of the overlapping DEG between the T&B treatment
effect (R6/1 + T&B vs R6/1 + vehicle) and the genotype DEGs (R6/1 vs NT) for each cell type, which shows
significant discordance between the genotype DEGs and the treatment DEGs, indicating rescue of these
transcriptional alterations. This translated into a decrease in the number of significant DEGs detected for each
cell type ((R6/1 + T&B vs NT) compared to (R6/1 + Vehicle vs NT)), except for the Ex neurons which actually
had an increase in DEGs (Fig. 8d). Interestingly, the cell types with the most genes rescued by T&B treatment
(discordant values) were OL-lineage cells and Adarb2+ interneurons that represent inhibitory neuron subcluster
1 (Inhib1 (Fig. 8a)). Based on the reduction of DEGs detected OL, MSNs, Interneurons, Astros, and OPC all had
a large decrease in the number of DEGs detected by 115, 176, 378, 129, and 82 DEGs, respectively. Within the
OPCs and OLs there was significant rescue of maturation related DEGs CInd11 and Mal, and a further increase
of Neat1, which was increased in caudate-parenchymal human HD OLs, and is upregulated during OL
maturation. Several genes that correlated with CAG repeat length, e.g. Ptgds, Phgdh, and Tmtc2, were rescued
by T&B treatment. GO enrichment analysis also revealed the molecular functions of the genotype DEGs that

were rescued from T&B treatment (Fig. 8e). In Astrocytes there was a significant rescue of iron metabolism

related genes, Ex neurons showed rescue of neuroligin binding and calcium signaling, and the MSNs showed
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rescue of cyclic nucleotide phosphodiesterase activity, GABA receptor activity, calcium transport, creatine kinase
activity, and electron transport chain genes. Similar to MSNs, the inhibitory neurons showed rescue of calcium
related genes, cyclic phosphodiesterase activity, and creatine kinase activity, but also showed unique terms such
as glutamate receptor activity, LDL binding, neurotrophic TRK receptor, and fructose binding. Lastly, the OPCs
and OLs showed rescue of glutamate receptor activity, RNA binding, creatine kinase, activity, calcium related
genes, and GTP binding. These results a) support the hypothesis that metabolic changes in HD contributes to

driving cell type-specific transcriptional changes and b) specifically thiamine metabolism deficits may be

contributing to OL maturation deficits.

Discussion

The studies above describe a systematic and in-depth analysis of single cell transcriptomics of HD mouse
models and human patient brains leveraging causal network modeling (CNM) to implicate key drivers of gene
expression pathology. Using snRNAseq, we identified dysregulated genes across multiple cell types and cell
type-specific changes that may drive the functional changes seen in each cell type. In addition to specific
changes in neurons, specifically D1 and D2 MSNs, a large number of gene expression changes in the OL lineage
related to development and maturation processes were identified. We defined a progressive dys-maturation
phenotype that spans multiple brain regions in both human and mouse HD. CNM identified potential key genes
and molecules with putative causal roles in cell type-specific alterations, several of which were connected to
metabolic functions, cell maturation, and OL/OPC-identity genes. This includes PRKCE that causally interacts
with many other genes in our OPC/OL bnet, including SMARCAZ2 and OLIG2 targets important in OL maturation.
Functional studies validated PRKCE’s role in promoting OL maturation. Our ATACseq data provided further
validation demonstrating decreased accessibility for genes regulated by known OL developmental TFs (SOX9
and 10, OLIG1 and 2, and ASCL1)%, further implicating OL differentiation in HD pathology. These data provided
a framework to build targeted therapeutics, as illustrated by treatment with T&B that restored many of the

maturation and transcriptional deficits and providing further validation of the approach.
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Recent single nuclei studies identified common and cell type-specific transcriptional alterations in R6/2
and Q175 HD mouse models that were recapitulated in postmortem HD human caudate and putamen 461,
showing cell-type specific alterations in HD. In MSNs, mitochondrial dysfunction underlay a detrimental innate
immune response '4. Striatal OLs showed decreased expression of several markers, however, the correlation
between mouse and human OL signatures was low in this case. Here, we show that OLs are increased in the
human cingulate and caudate, and mouse and human OL show similar transcriptional dysregulation and reduced
maturation. HD oligodendrocytes are transcriptionally immature across multiple human and mouse brain regions.
The fact that this phenotype spans the severely affected caudate, moderately involved cingulate, and the
relatively preserved nucleus accumbens suggests that the deficits are independent of disease severity or
anatomic region. Nonetheless, our data shows that impaired OL maturation is progressive with HD grade, and
that in juvenile-onset HD, the maturation deficits largely involve OPCs. This was supported by ATACseq results
demonstrating reduced binding of OL developmental TFs.

Previous studies have suggested that the dysmaturity of HD OLs may also represent an inability to
respond to the normal turnover of myelin or dedifferentiation. If the accumulation of mHTT downregulates the
transcription of myelin genes, it may inhibit the ability of already myelinating OLs to produce myelin components
during their normal turnover. Huang et al. showed that mHTT binds to MYRF and downregulates myelin genes
7. MYREF is positively regulated by CHD7, which is regulated by OLIG2%°— a master regulator of OL identity and
a gene our results implicate in HD pathology. While MYRF appears to play a role in the abnormal function of
mature OLs, we also suggest that OL defects start earlier during OL development and maturation from OPCs,
which is consistent with previous studies?3. In our human data, this finding was most pronounced in juvenile-
onset HD, where maturation deficits appear to almost entirely involve OPCs and not OLs - based on pseudotime
analysis. Our results support a model where OPC commitment to differentiation is increased in HD, a process
facilitated by downregulation of PRKCE. OL maturation is hampered in HD, as demonstrated in the literature,
through mechanisms possibly involving dysfunction of MYRF'”. The difference between juvenile-onset and adult-

onset HD is intriguing. We speculate this may arise from the larger CAG repeat lengths in juvenile-onset HD,

and the fact that HTT is expressed more highly in OPCs compared to OLs 2. That said, we further describe a
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progressive pathology in OL differentiation that appears more pronounced with HD grade. Thus, OL-lineage
pathology in HD is likely both developmental and progressive.

Metabolic disturbances in HD are hypothesized to directly lead to cellular distress, but less is known
about their contributions towards epigenetic regulation, transcriptional deficits, and impact on cell maturation and
identity. Both mouse and human snRNAseq data show dysregulation of key genes related to glucose and lipid
metabolism that include genes that are within or downstream of several key metabolic pathways, including
glycolysis, DAG, the hexosamine and protein glycosylation pathways. A recent study demonstrated that
accumulation of unsaturated sterols in OPCs drives their differentiation into OLs, implicating lipid metabolism as
functioning in OL differentiation, and not only as generating myelin building blocks®3. Cholesterol metabolism
was implicated in HD pathology by several groups®-7'. Additionally, DAG lipids which activate PRKCE were
decreased in HD brains. Interestingly, protein kinase C signaling has been shown to be important to OPC
differentiation, and myelination 7>75. We found PRKCE levels to be decreased in HD, and that downregulating
PRKCE in OPCs in vitro leads to increased differentiation of OLs. Further determination of the mechanism
underlying these findings is the subject of future studies. Moreover, appropriate glucose metabolism is critical
for the proper development and function of OLs, as OPCs transition to myelinating OLs 7679, Finally, thiamine
metabolism is linked to oligodendrocyte differentiation based on evidence from deficient pyruvate
dehydrogenase function in humans, which is known to cause structural white matter abnormalities 8°, and
experimental evidence from pyruvate-dehydrogenase deficient mice, which show a reduction of O4-positive
OL/OPCs 81.

A highly dysregulated gene and the most common DEG in the R6/2 12w striatal data, TPK1 regulates
conversion of thiamine to thiamine-pyrophosphate (TPP), a cofactor required for the conversion of pyruvate to
acetyl-CoA, by alpha-ketoglutarate dehydrogenase in the TCA cycle and by ketolase in the pentose phosphate
pathway, the latter being active in OL cultures and important for myelinating OLs 8. Acetyl-CoA links metabolic
processes to many epigenetic regulators of transcriptional control as it is used for histone acetylation, in the TCA
cycle for energy and feeds metabolites into DNA and histone methylation, and in the generation of both DAG

and UDP-GIcNAc, for PRKCE signaling and use by OGT for protein glycosylation (Fig. 8f). Interestingly,

mutations in TPK1 are linked to Thiamine Metabolism Dysfunction Syndrome 5, which pheno-copies HD, and
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mutations in thiamine transporters such as SLC19A3 lead to biotin responsive basal ganglia disease 83 which is
treated with high T&B supplementation. Driven by our findings and similarities to other human disorders, we
evaluated T&B treatment as a therapeutic strategy to reverse HD pathology in R6/1 mice. We hypothesized that
TPK1 shows a compensatory increase in HD mice at later ages, responding to earlier metabolic changes. We
tested this hypothesis by treating relatively pre-symptomatic R6/1 HD mice. Several transcriptional pathologies
in HD were rescued by high dose T&B, suggesting promise as a potential treatment strategy. Excitingly, during
the course of our study, a separate study was published showing a decrease in SLC19A3 and TPP in HD patients
and in both R6/1 and zQ175 mice®*. High dose T&B treatment produced both increased thiamine levels in the
brain and CSF and behavioral rescue in R6/1 mice as early as 13 weeks. Our snRNAseq data revealed that
R6/1 mice show maturation and loss of cell identity genes similar to the R6/2 model and that treatment with T&B
in the R6/1 mice, prior to TPK1 or SLC19A3 RNA changes, not only rescued a significant portion of dysregulated
genes, including neuronal, but also specifically rescued expression of a specific subtype of inhibitory neurons
and OPC and OL maturation genes. Furthermore, there was a reduction in the total number of significant DEGs
in all cell types, except for in Ex neurons which may be compensatory changes due to the discordant levels in
the genotype and treatment effects, but this requires further study outside the scope of this work. These data
provide validation of the two studies and additional mechanistic insight that rescue by T&B likely acts in part
through rescue of transcriptional deficits in a subpopulation of inhibitory neurons expressing ADARB2, and of
OLs. Specifically rescuing many genes involved in HD pathogenesis such as iron metabolism in astrocytes,
calcium and phosphodiesterase signaling and activity in neurons, and maturation genes in OLs. Our data
suggests that OL maturation impairments may be driven, in part, by thiamine metabolism and changes in the
binding of TFs that regulate OL maturation, including Sox9 and 10 and Olig1 and2. Furthermore, HD OPCs
seem to have increased commitment into COP and immature OL which could be driven by decreased DAG and

PRKCE, which is rescued by T&B treatment (Fig. 89). It also further supports T&B as a viable treatment for HD,

now undergoing a clinical trial in Spain (https://clinicaltrials.gov/ct2/show/NCT04478734), and supports the utility

of using single cell approaches to guide therapeutic target identification and evaluation.
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Online Methods

Mice: All experimental procedures were in accordance with the Guide for the Care and Use of Laboratory
Animals of the NIH and animal protocols were approved by Institutional Animal Care and Use Committees at
the University of California Irvine (UCI), an AAALAC accredited institution. R6/1 and R6/2 mice have been
described elsewhere in detail . For the study using R6/2 mice , 10 five-week-old R6/2 and non-transgenic
(NT) male mice were purchased from Jackson Laboratories and aged to 8 or 12 weeks. For the thiamine/biotin
study using R6/1 mice, 10 five-week-old R6/1 and NT male and female mice were purchased from Jackson
Laboratories. R6/1 mice (5/grp) were given a daily dose of combined 50mg/kg thiamine and 20mg/kg biotin
(Caymen, Ann Arbor, MI) or vehicle (PBS) I.P. beginning at age 8 weeks, treated for 7 weeks, then euthanized
at age 15 weeks. All mice were housed in groups of up to five animals/cage under a 12-hr light/dark cycle with
ad libitum access to chow and water. Mice were euthanized by pentobarbital overdose and perfused with 0.01
M PBS. Striatum and cerebral cortex were dissected out of each hemisphere and flash-frozen for snRNAseq or

biochemical analysis.

Single nuclei RNAseq

Mouse: Single nuclei were isolated from %2 hemisphere full striatal or full cortex in Nuclei EZ Lysis buffer
(Cat#NUC101-1KT, Sigma-Aldrich) and incubated for 5 min. Samples were passed through a 70um filter and
incubated in additional lysis buffer for 5 min and centrifuged at 500 g for 5 min at 4°C before two washes in
Nuclei Wash and Resuspension buffer (1xPBS, 1% BSA, 0.2U/ul RNase inhibitor). Nuclei were FACS sorted
using DAPI to further isolate single nuclei and remove additional cellular debris. These nuclei were run on the
10x Chromium Single cell 3’ gene expression v3 platform. Libraries were QCed and sequenced on the NovaSeq
6000 using 30 bases for read 1 and 98 bases for read2, [ to obtain >=50K reads per a cell. A total of 109,053
cells with 6.1 billion reads were sequenced for the 24 samples with on average 4544 cells per sample with
~55.6K reads each. Alignment was done using the CellRanger pipeline v3.1.0 (10X Genomics
https://github.com/10XGenomics/cellranger) to a custom pre-mRNA transcriptome built from refdata-cellranger-

mm10-1.2.0 transcriptome using cellRanger mkref. UMI Count matrices were generated from BAM files using
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default parameters of cellRanger count command. The gene barcode matrices for each sample were imported
into R using the Read10X function in the Seurat R package 8 (v3.1.5). Replicates were combined using

cellRanger aggr.

Human: Dissection of the cingulate cortex, caudate nucleus, and nucleus accumbens from frozen Postmortem
specimens was performed on material procured and preserved from autopsies on control as well as grade Il and
grade Il HD. These samples were obtained from the New York Brain Bank. All cases had RNA integrity numbers
of > 7. Brain tissue measuring ~ 5 x 4 x 3 mm were dissected on a dry ice cooled stage and processed
immediately as described below. A Table of the cases and controls used is provided in Supplementary Table
4. Nuclei were isolated as described in. Briefly, brain tissue was homogenized in a Dounce homogenizer with
12—-15 strokes of the loose pestle and 12—15 strokes of the tight pestle on ice in a Triton X-100 based, sucrose
containing buffer. The suspension from each sample was filtered through a BD Falcon tubes with a cell strainer
caps (Becton Dickinson, cat. no. 352235), washed, re-filtered, washed, followed by a cleanup step using
iodixanol gradient centrifugation as described in 7. The nuclear pellet was then re-suspended in 1% BSA in
nuclease-free PBS (containing RNAse inhibitors) and titrated to 600-1200 nuclei/ul. The nuclear suspensions
were processed by the Chromium Controller (10x Genomics) using single Cell 3' Reagent Kit v2 or v3 (Chromium
Single Cell 3' Library & Gel Bead Kit v2/v3, catalog number PN-1000075; Chromium Single Cell A Chip Kit, 48
runs, catalog number: 120236; 10x Genomics). Sequencing and alignment: Sequencing of the snRNAseq
libraries was done on lllumina NOVAseq 6000 platformV4 150 bp paired end reads. Alignment was done using
the CellRanger pipeline (10X Genomics) to GRCh38.p12 (refdata-cellrangerGRCh38-1.2.0 file provided by 10x

genomics). Count matrices were generated from BAM files using default parameters of the DropEst pipeline .

QC and filtering

Mouse: Based on the distribution of number of genes detected in each cell and the distribution of number of
UMIls, nuclei with less than 200 genes or more than 6000 genes were excluded from the downstream analyses.

Nuclei with percent mitochondrial reads aligning to mitochondria genes of more than 2% were excluded. UMI
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counts were then normalized in Seurat 3.0 and top 2000 highly variable genes were identified using

FindVariableFeatures function with variance stabilization transformation (VST).

Human: To remove low quality cells, we first used the combined quality calls from the CellRanger algorithm as
well as the DropEst algorithm. This allowed us to retain more high quality nuclei than either algorithm alone. Data
QC was done using the scater package 8. Nuclei with percent exonic reads from all reads in the range of less
75% were included. Nuclei with percent mitochondrial reads aligning to mitochondria genes of more than 14%
were excluded. Genes were filtered by keeping features with > 10 counts per row in at least in 31 cells. A
temporary count slot was created by decontaminating the counts from ambient RNA by calling decontX() function
with default parameters in R 88, These counts were used for downstream clustering, but not differential gene
expression analysis.

Combining multiple datasets from different sequencing batches and count normalization

Using the R package Seurat (version 4.06)8°, the datasets were merged after controlling for sequencing batches
(four batches). We integrated the lognormalized and scaled datasets in Harmony version 0.1. The Harmony
reductions were then added to the merged Seurat object containing all datasets. The merged object was

normalized using SCTransform function in Seurat accounting for batch and percentage mitochondrial reads °.

Dimension reduction and clustering

Mouse: Based on the elbow plot, top 20 PCs were retained for seurat objects with all cell types and 15 for the
OPC and oligo analysis. These PCs were used in the downstream unsupervised clustering using a shared
nearest neighbor Louvain modularity optimization to identify clusters of cells of the same type. Some of the
identified clusters were comprised of multiple cell types, therefore we subclustered these cells for further
downstream DEG generation and analysis (Supplementary Fig. 1a).

Human: Pre-clustering of nuclei was done in Seurat using the shared nearest neighbor smart local moving
algorithm °1 after using the INMF or UMAP reducions, and calling FindClusters(... , algorithm=3,method="igraph",

n.iter = 100, ...). Several resolution and k options were trialed to select the option with the largest number of pre-
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clusters with the high lineage purity. Lineage identity was determined for each cluster using was done using
geneset enrichment analysis of lineage markers % and by inspecting cluster markers generated by
scran::findmarkers(direction="up”) function . We also depended on the cell_classifier tool we previously used
9, Pre-clusters with mixed identities based on enrichment of multiple lineage genes were sub-clustered iteratively
until all pre-clusters showed pure identities which we combine into lineages (Astrocytes, neurons,
oligodendrocytes, myeloid, endothelial, OPCs, and ependymal cells). Sub-clustering of select pre-clusters was
done as needed to get the lineage-pure small clusters. We next combined the clusters of the same lineage to
call the lineages presented in Fig. 1e.

After getting pure OL and OPCs, a new object from these cells only was created in monocle3. Corpus
callosum cells were removed, because no HD corpus callosum samples were included in the dataset. Filtering
lowly expressed genes yielded 16955 genes. The SCT normalized counts were used to reduce the dimensions
using the PHATE function % in R correcting for batch (using the mutual nearest neighbor option), and using the

following parameters: KNN= 5, Dim=3, Decay=50, T=10. Clustering was done in monocle3 utilizing the three

PHATE reductions as input using the Levine algorithm.

Cluster annotation and differential gene expression

Mouse: Unsupervised clustering was done using shared nearest neighbor Louvain modularity optimization. For
each cluster, we used multiple cell type-specific marker genes that have been previously described in the
literature to determine cell type/state identity. Exemplary genes used as markers for major cell types are shown
in Supplementary Fig. 1. Differentially expressed genes between different clusters, ages or disease groups
were identified using Wilcoxon Rank Sum test on genes that are expressed in at least 25% of the group. Further
sub-clustering was conducted on some of the main clusters due to mixed cell types represented in that cluster,
e.g. oligodendrocyte progenitors (OPCs) and premyelinating oligodendrocytes and astrocytes with vascular
cells. Specifically, for subclustered OPCs and OL, OL-lineage, annotations were used from Marques et al. 3" by
looking at gene expression for marker genes identified in that study. These annotations were then collapsed into

OPC and OL groups for ease of reference and consistency with human OPC and OL cells. Cluster and DEG
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analyses were conducted on each region and age for HD versus NT independently and, combined where noted
that the cells were integrated together across region and age.

Human: Differentially expressed genes (DEGs) between HD and control per anatomic region in OL and OPC
separately were identified using EdgeR gimQLFTest adjusting for sequencing batch and using an FDR cutoff of
25% (9). The raw counts were used here, not the decontaminated counts. Retrieving the top 3000 differentially
expressed genes resulted in adjusted p values less than 0.05, which were considered significant and were used
for downstream analysis.

The CAG gene correlation analysis was conducted through the R package limma (version 3.14). Samples
for the analysis were prepared using a pseudo-bulk approach. Gene expression data for each donor at a specific
region were summed up together respectively to create pseudo-samples for the correlation analysis. Each
pseudo donor-region sample were then log normalized and scaled using Seurat’s NormalizeData function
(version 4.06) for optimal performance in limma. The covariates accounted for in the design matrix between
samples included age and gender. Lastly, a row in the design matrix included the CAG repeats for each donor-
region sample. The weights of the model were determined using limma's ImFit with the arguments of the function

including the pseudo-bulk donor region expression data and the design matrix as described above.

Pseudotime trajectory analysis using Monocle3

Mouse: For oligodendrocyte developmental trajectory assessment, cells that were identified as OPC and OL
lineage were used to create a separate Seurat object using SubsetData function on raw counts. Pseudotime
analysis was conducted on the integrated data across all regions and ages.

Human: Pseudotime analysis was done using monocle3 employing the three PHATE dimensions to learn the
principal graph using the following parameters: wuse partition = F, learn_graph_control =
list(euclidean_distance_ratio=0.5, geodesic_distance_ratio=0.7, minimal_branch_len=100,
orthogonal_proj_tip=TRUE, rann.k=100), close_loop = F). The root nodes were set as OPC cells. Grade 4 cases
were excluded because after filtering low quality cells, two samples had very few OPCs after removing low quality

cells and doublets.
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ATACseq

Isolation of NeuN+ and NeuN- nuclei: The pulverized tissue was resuspended in 2ml NEB buffer (320mM
sucrose, 10mM Tris-HCI pH 8, 5mM CaCl2, 3mM MgAc2, 0.1mM EDTA, 0.1% Triton supplemented with
protease inhibitors (Roche, 11836170001) and transferred through 40um tissue strainer, followed by 5min
centrifugation at 600xg at 4C. The pellet was resuspended in 1 ml HS buffer (1.8M sucrose, 10mM Tris-HCI pH
8, 1mM MgCI2 and Proteinase inhibitors) and centrifuged for 20 min at 16,000xg at 4C. The nuclei containing
pellet was resuspended in blocking buffer (PBS with 0.5% BSA, 5% Normal Goat Serum and Proteinase
Inhibitors) and labeled with anti NeuN-PE antibody (1:100 dilution, Millipore, FCMAB317PE) and with Hoechst
(1:2000 dilution, Invitrogen, H3570) for 30min. The nuclei were filtered through 40um mesh and sorted using BD
FACSAria™ with gates set to separate NeuN+ and NeuN- single nuclei populations. The nuclei were collected
in tubes pre-coated with 1%BSA and sucrose was added to the sorted nuclei to a final concentration of 0.32M
followed by 15min incubation on ice to stabilize the nuclei after sorting. The ATAC-seq was performed as
described in Corces et al %. Briefly, 50000 sorted nuclei were transferred to tubes and pelleted by centrifugation
at 2000Xg for 15 min. The pellet was resuspended in transposition reaction mix (25ul 2x TD buffer, 2pl
transposase, 17ul PBS, 0.5ul 1% digitonin, 0.5yl 10% Tween-20, 5ul water) and incubated at 37C for 30min
following by clean up with Zymo DNA Clean and Concentrator kit (Zymo D4004). lllumina adapters were added
by PCR to generate sequencing libraries as previously described. The ATAC-seq libraries were sequenced on

an Illlumina HiSeq 2000 for single-end 50-bp reads. Fastq files were aligned to the mm10 genome using Bowtie2

and paramaters previously described in Smith-Gearter et al. 2020 ¥7.

Footprinting Analysis

We used TOBIAS software (REF: https://doi.org/10.1038/s41467-020-18035-1) for footprinting analysis of
ATAC-seq data. Briefly, aligned BAM files were used to call accessible regions (peaks) using MACS2 using the
following parameters: --nomodel --shift -100 --extsize 200 --broad. Peaks from all the samples across all
conditions were merged to a set of union peaks using bedtools merge. TF motifs were downloaded from JASPAR
CORE 2022 database. TOBIAS software robustly performs all steps of footprinting analysis including Tn5 bias

correction, footprinting, and comparison between conditions and has been shown to outperform other common
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methods of footprinting. TOBIAS also calculates TF binding on a global level across all sites as well as the locus-

specific level using JASPAR motif data.

Gene Ontology, KEGG Pathway, and TF enrichment analyses

Mouse: DEGs, gene modules members, and bnet gene members were used for further analyses using GOirilla
for gene ontology enrichment analyses, KEGG pathway analysis, and LISA for TF enrichment analysis.
Human: Gene Ontology term enrichment analysis was done in gProfiler2 package in R °2. The results of edgeR
DEG was used as input and the following options: (ordered_query =T, significant = T, exclude_iea = T, underrep
=F, evcodes = F, region_query = F, max_p_value = 1, min_set_size = 0, max_set_size = 100, min_isect_size =
5, correction_method = "gSCS"). Statistical significance was determined using the more conservative gSCS
method 38 yielding adjusted p values. Terms with adjusted p values < 0.05 were considered significant. The
terms shown in the Figs. are selected based on ordering the results based on
negative_log10_of adjusted_p_value followed by the ratio of the shared of number of genes enriched in a term

to that of the total number of genes in the GO term (desc(intersection_size/term_size)).

Network modeling

Mouse: Weighted gene co-expression network analysis (WGCNA) *°)was used to identify gene network modules
from the mouse snRNAseq data. Normalized count data from Seurat 3.0 were first used for feature selection,
filtering all genes without at least 1 count in 25% of all cells. Co-expression networks were then generated for
NT data using WGCNA. Correlative module-trait relationships were used to identify gene network modules that
had high correlation with specific cell types used as input, and module preservation statistics were used to assess
recapitulation of gene networks in R6/2 data. Bayesian network modeling. To identify causal relationships
between cell type-specific gene subnetwork we used a bayesian network modeling approach using the R
package BNLearn (Scutari, M. (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of
Statistical Software, 35(3), 1-22. https://doi.org/10.18637/jss.v035.i03). Probabilistic graphical modeling has
been previously used to assess causal relationships between genes/proteins with great success in recapitulating

known biological pathway interactions from single cell data . Our approach took advantage of the co-expressed
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gene networks we previously identified to try and find causal relationships amongst these genes. To better
interpret our data we chose to use input data from individual cell types, which were identified to be most
correlated with each individual gene network module. The resulting causal network would be cell type-specific
and easier to biological interpret. Features were chosen based on their inclusion within these gene modules and
additionally genes were added based on differential expression between R6/2 and NT mice for each cell type-
gene network module pair. E.g. We identified that the turquoise gene network module most highly correlated
with our MSNs, these genes and DEGs found in both D1 and D2 MSNs were used as input from both 8 and 12w
striatal and cortical data. HD and NT networks were separately generated to identify changes in network structure
between disease and control. No priors were used as input for the structure learning. Using this input we
constructed our Bayesian networks with a bootstrap approach using 50% of samples and 200 rounds. Due to
the spasticity of single nuclei data, even after gene filtering, we chose to use an interval method for discretization,
factoring input data into 3 breaks. For structure learning we utilized Bayesian Dirichlet likelihood-equivalence
scoring and a hill-climbing algorithm for searching for network structures. An average network was generated
from each output where the strength and direction (empirical frequency computed from the probability of each

edges’ existence and direction) of each causal edge were greater than or equal to 0.85 and 0.5, respectively.

HD and control networks were then merged to identify changes in network structure, novel nodes and edges.

Primary oligodendrocyte culture

Mouse primary oligodendrocyte precursor cells (OPCs) were isolated with immunopanning as described
previously %°. Briefly, cerebral cortices from C57BL/6 pups at P7 were digested in papain solution for 20min at
37°C, followed by titration and filtration. Cells were then sequentially incubated in three immunopanning dishes
(2 negative selections with BSL1, followed by 1 positive selection with anti-mouse CD140a antibody (BD
Bioscience, 558774). After positive selection, OPCs were trypsinized, plated onto PDL-coated culture dishes
with SATO medium supplemented with growth factors (10 ng/mL PDGF-AA and 10 ng/mL bFGF), and

maintained in a 37°C, 5% CO.incubator for further expansion.

siRNA Transfection
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Mouse primacy oligodendrocyte precursor cells (OPCs) were seeded onto PDL-coated 6-well plate at a density
of 2x10° cells/well a day before transfection. Cells were transiently transfected with either siRNA targeting Prkce
or non-targeting control (Origene, SR427452) at a final concentration of 30 nM using X-tremeGENE 360
Transfection Reagent (Roche, 8724105001). After 24 hr of knockdown, cells were cultivated with either
proliferating (supplemented with growth factors) or differentiation (supplemented T3, 60 ng/mL) media. After 3

days of proliferation and 5 days of differentiation, cells were harvested, and proteins were extracted and

processed for western blot analysis.

Qualitative lipidomic analysis of samples by electrospray triple Quadrupole mass spectrometry
coupled with high performance liquid chromatography

Total lipids were extracted from frozen 40-70 mg human brain dissected as described above. Lipidomics profiling
in mouse plasma and tissue samples was performed using Ultra Performance Liquid Chromatography-Tandem
Mass Spectrometry (UPLC-MSMS). Lipid extracts were prepared from homogenized tissue samples using
modified Bligh and Dyer method '°°, spiked with appropriate internal standards, and analyzed on a platform
comprising Agilent 1260 Infinity HPLC integrated to Agilent 6490A QQQ mass spectrometer controlled by
Masshunter v 7.0 (Agilent Technologies, Santa Clara, CA). Glycerophospholipids and sphingolipids were
separated with normal-phase HPLC as described before 11, with a few modifications. An Agilent Zorbax Rx-Sil
column ( 2.1 x 100 mm, 1.8 ym) maintained at 25°C was used under the following conditions: mobile phase A
(chloroform: methanol: ammonium hydroxide, 89.9:10:0.1, v/v) and mobile phase B (chloroform: methanol:
water: ammonium hydroxide, 55:39:5.9:0.1, v/v); 95% A for 2 min, decreased linearly to 30% A over 18 min and
further decreased to 25% A over 3 min, before returning to 95% over 2 min and held for 6 min. Separation of
sterols and glycerolipids was carried out on a reverse phase Agilent Zorbax Eclipse XDB-C18 column (4.6 x 100
mm, 3.5um) using an isocratic mobile phase, chloroform, methanol, 0.1 M ammonium acetate (25:25:1) at a
flow rate of 300 pl/min. Quantification of lipid species was accomplished using multiple reaction monitoring
(MRM) transitions 19192 ynder both positive and negative ionization modes in conjunction with referencing of
appropriate internal standards: PA 14:0/14:0, PC 14:0/14:0, PE 14:0/14:0, PG 15:0/15:0, Pl 17:0/20:4, PS

14:0/14:0, BMP 14:0/14:0, APG 14:0/14:0, LPC 17:0, LPE 14:0, LPI 13:0, Cer d18:1/17:0, SM d18:1/12:0, dhSM
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d18:0/12:0, GalCer d18:1/12:0, GluCer d18:1/12:0, LacCer d18:1/12:0, D7-cholesterol, CE 17:0, MG 17:0, 4ME
16:0 diether DG, D5-TG 16:0/18:0/16:0 (Avanti Polar Lipids, Alabaster, AL). Lipid levels for each sample were
calculated by summing up the total number of moles of all lipid species measured by all three LC-MS
methodologies, and then normalizing that total to mol %. The final data are presented as mean mol % with error

bars showing mean + S.E. Statistical comparisons were done using a one-way ANOVA and Tukey’s test for

post-hoc analysis. Only results on DAG are provided.

Western blots

Mouse: Brain tissue was prepared for western blot analysis as follows: Soluble/Insoluble Fractionation: Striatal
tissue was processed as described previously 9. Total Fractionation: Isolated striatum or cortex was
homogenized with 20 strokes of a potter-Elvenhjem glass tissue homogenizer in 1mL modified RIPA buffer (50
mM Tris-HCI pH 7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1mM EDTA) supplemented with one
Pierce protease inhibitor mini tablet (Fisher Scientific A32953), 1mM PMSF, phosphatase inhibitors 2 (Millipore
Sigma, P5726) (1:1000) and 3 (Millipore Sigma P0044) (1:1000), 10 pg/mL aprotinin, and 10 ug/mL leupeptin.
Lysates were sonicated then centrifuged at 16,000 rcf for 15 minutes, and 5-10ug analyzed by western blot.
Combined linear range was quantified on Empiria by analyzing a concentration gradient of protein (1.25, 2.5, 5,
10, and 20 ug per lane) with Revert for each antibody (Licor) to determine loading concentration. Protein was
then subjected to SDS/PAGE on a NuPage Novex 4-12% Bis-Tris precast gel (Thermo Fisher NW04125) with
MOPS running buffer (Invitrogen NP0001) and transferred onto a Immobilon-FL PVDF (Millipore Sigma
IPFLO0010) membrane. 5ug of reduced, insoluble protein from Insoluble Fractions were resolved on 3-8% Tris-
Acetate Poly-Acrylamide gels. Whole protein was quantified using the revert assay (LI-COR Biosciences 926-
11016), and the membrane was blocked with Intercept (TBS) Blocking Buffer (LI-COR biosciences 927-60010)
for 1 hour. The membrane was then incubated in primary antibodies overnight, washed three times with TBS-
0.1% Tween-20, and incubated for 1 hour in Intercept block supplemented with 0.1% Tween-20 and near-infrared
conjugated secondary antibodies. Membranes were imaged on a LI-COR scanner and quantified using Empiria
Software. Experiments were performed at least twice with multiple biological replicates. Antibodies for the

following antigens were used DGKB (Thermofisher cat# PA5-15416 1:1000), PRKCE (Invitrogen PA5-83725 —
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1:1000), p-PKCe¢ (ser729) (Millipore 06-821-1; 1:1000), SGK1 (abcam - ab59337 1:1000), TPK1 (Fisherscientific
cat# 50-172-6732 1:500), GPI1 (Thermofisher cat# PA5-26787 1:1000), Anti-Huntingtin Antibody, a.a. 1-82 |
MAB5492 - EMD Millipore. The mice used for westerns were from two separate cohorts and did not include the
mice used for snRNAseq and snATACseq. 6 males animals per group were used for each western except for
the solb/insolb fractionated western which were mice were from a third cohort that included 4 male mice per

group. All Western statistical analysis was performed using Students T-Test with two-tailed distribution and two-

sample equal variance (homoscedastic). Exact p-values for significant differences are provided in the figure.

Human: Protein was extracted from dissected frozen tissue using RIPA buffer on ice. Protein concentration was
estimated using a modified Bradford assay. Western blotting was performed using sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (SDS-PAGE) as described previously '%4. Briefly, protein lysates were
separated by precast 4-20 % Bis-Tris gradient gels (GenScript), followed by transferring onto PVDF membrane
(Millipore). After 1 hour blocking in blocking buffer (5% milk, 0.1% TBS-Tween) at room temperature, membranes
were incubated overnight at 4°C with primary antibodies. Antibodies for the following antigens were used MAG
(Proteintech cat#14386-1-AP - 1:1000-3000), MOG (Proteintech #12690-1-AP - 1:500-1000), PRKCE
(Invitrogen PA5-83725 — 1:1000), p-PKCe (ser729) (Millipore 06-821-1; 1:1000), MBP (Cell signal #78896S,
1:1000), SGK1 (abcam - ab59337 1:1000), TPK1 (Fisherscientific cat# 50-172-6732 1:500), GAPDH
(Proteintech 60004-1-Ig 1:1000), Actin (Proteintech 66009-1-lg; 1:5000), Anti-mouse and anti-rabbit Peroxidase-
AffiniPure Donkey IgG (H+L) (Jackson ImmunoResearch Labs Cat# 715-035-151 and 711-035-152). Detection
was using enhanced chemiluminescence (cat# 1705061 or 1705062) on a Bio-Rad ChemiDoc™ Touch Imaging
System. Band areas were normalized to Actin and/or GAPDH. Statistical comparisons were conducted using
unpaired two-tailed t-test or Mann-Whitney test as appropriate. TPK1 was analyzed separately using similar
methods as described in the mouse section, and using only striatal tissue lysates.

Western blot analysis of OPC cultures was performed as outlined above with the following modifications.
The following antibodies were used: rabbit anti-PRC-epsilon (Invitrogen PA5-83725, 1:1000), mouse anti-OLIG2
(Millipore, MABN50, 1:1000), mouse anti-CNPase (Biolegend, SMI-91, 1:5000), rabbit anti-MOG (Thermo, PA5-

19602, 1:1000) and mouse anti-aTUBULIN (Calbiochem, CP06, 1:2500). Detection of target proteins was done
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by measuring chemiluminescence signal using ECL™ Prime Western Blotting Detection Reagent (Sigma,
GERPN2232) on a ChemiDoc Imaging System (Bio-Rad). Image J was used to quantify the protein bands and

aTUBULIN was used as loading control.

Immunohistochemistry and in situ hybridization

Standard chromogenic and fluorescent immunohistochemistry as well as in situ hybridization were done as
described previously . Paraffin-embedded formalin-fixed tissue sections were used for IHC and ISH. The
following antibodies were used CA2 (Abcam ab124687- 1:100), MBP (Invitrogen PA1-10008 — 1:5000).
RNAscope™ was done per the manufacturer instructions using an RNAscope ™ multiplex Fluorescent v2 kit
(ACDbio 323100) with the following probes for SPP1 (cat# 889751-C2), NEAT1 (cat# 411531-C3), and MBP

(cat# 573051-C4).

Imaging and quantification

Whole slides were scanned and the images on an Aperio™ Leica slide scanner at 40X. Fluorescent stained
slides were scanned on Leica Aperio™ Versa scanner at 40X. additional images were taken on a Zeiss™ 810
LSM 800 confocal microscope at using a 40X/1.3 NA oil-immersion objective. For quantification of IHC, we
employed an automated method using Qupath v0.2 positive cell detection algorithm %, Identification of pencil
fibers and blood vessels was done using a pixel classifier trained on regions not quantified but in the same slide.
Quantification of ISH slides uses positive cell detection method followed by subcellular detection. Only cells with
nuclear signal were considered positive. Staining artifact and blood vessels were excluded. One or more images
from each patient were used. The results were loaded in R v4.0. and cells with a minimum of 3 or more MBP
dots or clusters were considered positive. NEAT1 and SPP1 were quantified in MBP positive cells. Nuclei with 2
or more dots or clusters were considered positive for SPP1 and with 2 or more dots/clusters for NEAT1. Statistical
comparisons were done using one-tailed t-test or Wilcox rank test as appropriate. For calculating MBP:CA2
ratios, immunofluorescence for MBP and CA2 was performed on three or more images per case from 3 HD and
4 control caudate stained sections. The MBP signal was binarized using the threshold function in ImageJ

(threshold detected automatically) and was divided by the number of CA2 positive cells counted in each image.
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Statistical analyses

All features highlighted in the paper and reported as statistically significant have p-values < 0.05 or adjusted p-

values < 0.1, unless otherwise stated.

Data and code availability

All data and code are available from the corresponding authors upon reasonable request.
Data for this study can be found at:

GEO accession numbers:

Human data: GSE180928

Mouse snRNAseq: GSE180294

Mouse ATACseq: GSE180236
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Fig. 1. Single nucleus RNAseq of mouse and human R6/2 and HD samples. a) lllustration of workflow used
for this study. After frozen tissue is microdissected from the Cingulate, Caudate, and nucleus Accumbens from
66 samples from 29 human donors (3 grade |, 4 grade I, 4 grade lll, 3 grade IV, 5 juvenile-onset HD, and 10
matched controls), or the striatum and cortex of the mice (n = 3), nuclei are isolated, 10X Libraries are prepared
followed by next generation sequencing. b) Uniform manifold projection and approximation plots (UMAP) of the
R6/2 and NT mouse data colored by cluster or genotype. General cell type annotations: Astro = Astrocytes, OL
= Oligodendrocyte, OPC = Oligodendrocyte progenitors, MSN = Medium spiny neurons, Inhib = inhibitory
neurons, MG = Microglia, Ex = Excitatory neurons, Inter = Interneurons. c¢) Barplot showing the number of up
(blue) and down (orange) regulated DEGs per a cell type in the mouse data. b and ¢) Striatal (Str, light blue bar)
samples on the left and cortical (Ctx, light green bar) samples on the right, 12w samples marked by yellow bar
and 8w marked by purple bar. d) Proportion of R6/2 and NT cells within each cluster, red = R6/2 & blue = NT. e)
tSNE plots of the human snRNAseq results showing color-coded by cell type (Left), condition (Right), anatomic

region (Bottom Left), and grade (Bottom Right). Right, dotplot showing expression of cell type markers per

cluster.
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Fig. 2. Analysis of differentially expressed genes in R6/2 mice and subclustered analysis of OPCs and
OL. a) Left: Heatmaps and hierarchical clustering of normalized mean expression values in all glial or neuronal
cells of the top cell type agnostic DEGs. Cell color represents row min (seafoam green) and max (orange). Color
bars denote NT glial cells (light blue), R6/2 glial cells (orange), NT neural cells (purple), and R6/2 neuronal cells
(yellow). RNA processing and splicing (Ccnl2, Tra2a, ddx5, Celf2 and Taf15) and metabolism (Guf1, Tpk1, and
Gpi1) related genes. Glucose super metabolism pathway genes that include glycolysis, the hexosamine
biosynthetic pathway, polyol pathway, and diacylglycerol pathways, include Ogt, Tpk1, Gpi1, and Galant18. 8w
and 12w Str data shown, cortical data in Supplementary Fig. 3a. Right: violin plot of two exemplary genes
Malat1 (top) and Tpk1 (bottom) that show global up or down regulation in R6/2 mice, across all cell type,
respectively from 12wStr. b) Network showing all KEGG metabolic genes significantly dysregulated across the
12wStr DEGs from every cell type. 12w Str data shown, 8w Str and cortical data in Supplementary Fig. 3b.
Node size is equal to the number of cell types in which the gene is found to be significantly dysregulated and
node are colored by up and down regulation (orange = up and blue = down). ¢) UMAPs of subclustered OPCs
and OL in the 12w striatum, colored by genotype. Cluster composition: NT cells are mainly MOLs and MFOLs,
or OPCs; while R6/2 cells are COP, NFOL, and MOL. Statistical contrasts: R6/2 vs NT for each cluster, cluster
comparisons between R6/2 and NT MOLs, NT MFOLs and R6/2 MOL, COP vs OPCs. 8wStr and cortical data

show in Supplementary Fig. 3c. e) Density plots of cell numbers across pseudotime cell stages, colored by

genotype and age.
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Fig. 3. WGCNA analysis of R6/2 mouse snRNAseq data shows cell type-specific changes in network
structure. a) Dendrogram and correlation heatmap showing cell type-specific co-expression modules. Heatmap
shows modules highly correlated with each cell type, dendrogram shows clustering of neuronal module together
and glial together. Cell color represents column min (orange) and max (blue). b) Top five GO terms per module,
showing cell type-specific functional relevance. ¢) Circos plots of the top 50 genes with highest KME in NT mice

(left) and R6/2 (right). Red lines show connectivity between the top 50 genes. Structural differences can be

seen between NT and R6/2.
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Fig. 4. Causal network analysis and ATACseq of glia reveals Prkce, Olig1/2, Sox9/10, and glucose and
lipid metabolism as important regulators. a) MSN bnet. b) OL bnet. a & b) Both causal networks are merged
from NT and R6/2. If a node and edge existed in both the NT and R6/2 bnets, the NT data (edge weight) were
used for plotting. Each bnets shows nodes that exist only in NT or R6/2 and nodes that exist in both, as well as
novel edges and edges retained in the R6/2 data. Each bnet was also plotted using a hierarchical structure to
show the direction of causal flow. In each plot, genes with a high degree of outward centrality ( >10 outward
edges) are highlighted by increased gene name size, as well as genes that connect between two genes that
have a high degree of outward centrality. We consider these highlighted genes key drivers of the network. Color
scheme is as follows: Edge (purple = NT, yellow = R6/2, grey = both), node fill color (green = NT node, pink =
R6/2 node, light green = both), node outline color (orange = upregulated, blue = downregulated). MG, Astro, and
Ex neuron bnets are in Supplementary Fig. 5b-d. ¢) LISA analysis of OL causal network gene members,
showing the top 20 regulatory transcription factors. d) Volcano plot showing differential binding scores, and -
log(pvalue) differences of TF binding in open chromatin in 12w NeuN- striatal cells. blue = top20 by differential

binding score, orange = pvalue <0.05. 8wStr, cortical, and all NeuN+ data can be found in Supplementary Fig.

6b.
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Fig. 5. Huntington disease oligodendrocytes are less mature. a-c, e, f) Projection of control and HD nuclei
in the PHATE dimension color-coded by condition (a), lineage (b), pseudotime value (c), cluster (e), and HD
grade (f). Note that OPCs have the lowest pseudotime values in ¢. d) Pseudotime values are shown in
histograms across brain region and HD grade. Note that the proportion of nuclei with intermediate pseudotime
values is higher in HD, especially grade lll. (g-h) The relative contribution of anatomic region (g) and condition
(h) to each cluster is shown in bar plots. i) Gene expression dot plots showing normalized expression of select

cluster marker genes, with color denoting expression levels and circle size denoting the proportion of nuclei

expressing the gene of interest.
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Fig. 6. Differential gene expression analysis of HD and control OPCs and OLs. Venn diagram analysis of
the DEGs in OPCs (a) and oligodendrocytes (b). The number of DEGs that are increased (black) or decreased
(red) in HD nuclei is highlighted per overlap sector. The stars indicate the DEGs that are shared across all
regions, and the # indicates the DEGs shared between the Cingulate and Accumbens. ¢) Gene ontology (GO)
term analysis of differentially expressed genes in select sectors of the venn diagrams HD versus control OLs
and OPC (from panels a, c). The * and # signs correspond to the DEGs shared across all regions and DEGs
shared between accumbens and cingulate OL and OPCs, respectively (purple = OPC DEGs, and green = OL
DEGs). The sign of the negative log10 of the adjusted p value indicates the direction of changes; positive sign
corresponds to genes increased in HD, and negative sign corresponds to genes decreased in HD. d) Scatter
plot of the correlation coefficients of genes that correlate with CAG repeats in OPCs (y-axis) and OLs (x-axis).
The color of thew genes correspond to whether the coefficient was significant in OLs only (green), OPCs and
OLs (blue), or OPCs only (purple). e) KEGG and Reactome pathway enrichment analysis of the genes that
significantly correlate with CAG repeats in OPCs and OLs (top panel), OLs (middle panel), or OPCs (lower
panel). The negative log10 of the adjusted p value is indicated on the x-axis, and the pathways on the y-axis.

The color of each circle corresponds to the percentage of overlap between the CAG-correlated genes and the

genes in each pathway.
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Fig. 7. Western, lipidomics, and cellular analyses validates HD differences in TPK1 and PRKCE. a)
Scatterplots of Z-score log2 fold change values comparing mouse and human data in 12w striatum versus human
caudate OL DEGs. Genes with |Z-log2FC| values > 1.5 are highlighted in seafoam green and OL maturation
genes are highlighted in orange, showing concordance between species for PRKCE and OL maturation genes,
and discordance of TPK1 expression. Seafoam green = genes with absolute value(zlog2FC) differences > 1,
Orange = key genes highlighted. b) Western blot of PRKCE and phospho-PRKCE in HD and control patient
cingulate cortex and caudate. ¢) Quantification of western blow results. Mann Whitney test used for each
statistical analysis. Exact p-values: Cingulate: PKCE-0.0003, p-PKCE-0.0003; Caudate: PKCE-0.0055, p-PKCE-
0.0385. d) Licor images of Prkce, pPrkce, TPK1, and respective revert in R6/2 and NT striatum and cortex. e)
Quantification of licor results. f) Western blot of TPK1 in human caudate samples from juvenile HD, HD grades
1-4, and control patients. g) Quantification of human TPK1 data. Statistical analysis was done using a one-way
ANONA and Tukey HSD posthoc, comparing control to each adult HD grades (adjusted p=0.979, 0.221, 0.070,
0.018) and control to juvenile HD (p=0.015). h) DAG levels quantified from HD and control patient brains showing
significant decreased DAG levels in HD brains. i) Western blot of PRKCE, MOG, CNPase, OLIG2, and A-Tubulin

in OPC and OLs +/- K/D of PRKCE.
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Fig. 8. Thiamine and biotin study in R6/1 mice shows rescue of OL maturation DEGs and other cell type
DEGs. a) UMAP showing the R6/1 and NT mouse data colored by genotype and treatment. b) Venn diagram
comparing genotype DEGs in 15w R6/1 mice and 12wStr of R6/2 mice against each other and treatment effect
DEGs from R6/1 T&B treated versus vehicle. ¢) Scatterplot showing Z-score log2FC of all genes overlapping
between genotype and treatment effect DEGs. Colored by cell type origin. OL and Inhib1 neurons show the most
rescued DEGs. Quadrants 1 and 3 represent rescue of expression and 2 and 4 represent exacerbation. d)
Barplot showing the logZ2ratio of the number of significant DEGs comparing R61 vehicle versus NT vehicle to
R6/1 T&B versus NT vehicle. e) Top 10 GO terms of overlapping DEGs per cell type (R61 vehicle versus NT
vehicle to R6/1 T&B versus NT vehicle). f) lllustration of metabolic pathways impacted in HD. g) lllustration

showing how PRKCE and DAG levels regulate OPC commitment to differentiation and MOL maturation in control

and HD, and how T&B treatment rescues maturation impairments.
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