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ABSTRACT  
 

Objective 

Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease 
of the intestine, comprising Crohn’s disease and ulcerative colitis. By characterising 
metabolites in faeces, combined with faecal metagenomics, host genetics and clinical 
characteristics, we aimed to unravel metabolic alterations in IBD. 

Design 

We measured 1,684 different faecal metabolites and 8 short-chain and branched-chain fatty 
acids in stool samples of 424 IBD patients and 255 non-IBD controls. Regression analyses 
were used to compare concentrations of metabolites between cases and controls and 
determine the relationship between metabolites and each participant’s lifestyle, clinical 
characteristics and gut microbiota composition. Moreover, genome-wide association analysis 
was conducted on faecal metabolite levels. 

Results 

We identified over 300 molecules that were differentially abundant in the faeces of patients 
with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and 
non-IBD samples (AUC = 0.85). We found changes in the bile acid pool in patients with 
dysbiotic microbial communities and a strong association between faecal metabolome and gut 
microbiota. For example, the abundance of Ruminococcus gnavus was positively associated 
with tryptamine levels. In addition, we found 158 associations between metabolites and dietary 
patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. 

Conclusion 

In this large-scale analysis, we identified alterations in the metabolome of patients with IBD 
that are independent of commonly overlooked confounders such as diet and surgical history. 
Considering the influence of the microbiome on faecal metabolites, our results pave the way 
for future interventions targeting intestinal inflammation. 

 

  



INTRODUCTION 

Characterisation of the host–microbiota symbiosis is crucial in the context of intestinal 

disorders such as inflammatory bowel disease (IBD) in which the gut environment is 

severely perturbed, yet the disease-causing mechanisms are still largely unknown. 

IBD is a chronic inflammatory disorder of the gastrointestinal tract that consists of two 

main subtypes: ulcerative colitis (UC) and Crohn's disease (CD)1,2. In IBD, periods of 

active disease are characterised by loss of strictly anaerobic bacteria, blooming of 

facultative anaerobes and alterations in the chemical environment in the gut3. For 

example, reductions of gut barrier–protecting short-chain fatty acids (SCFA) and 

alterations in bile acids, sphingolipids and tryptophan-derived metabolites have been 

consistently reported in faeces of patients with IBD4,5. However, a large number of 

molecules in the human body remain uncharacterised, and thus their implications for 

human health remain unknown. Considering that a subset small molecules, including 

microbiome-derived metabolites, have been shown to regulate the immune response, 

it is crucial to characterise these metabolites and understand which factors determine 

their concentrations in the gut. 

Recent technological advances in mass spectrometry techniques have enabled high-

throughput characterisation and quantification of a wide range of known and 

chemically unannotated molecules6. In this context, the characterisation of faecal 

metabolites holds great potential for discovering non-invasive biomarkers and 

therapeutic targets. To date, however, studies performing untargeted metabolomics 

on the faeces of patients with IBD have been scarce, limited in sample size and lacking 

in in-depth information on host genetics, lifestyle, diet and clinical characteristics4,7. 

In this study, we aimed to determine alterations in the gut metabolism of patients with 

IBD to pinpoint factors influencing faecal metabolite levels. For this, we used 

untargeted faecal metabolomics to characterise the prevalence and levels of 1,684 

different faecal metabolites in a cohort of 424 patients with IBD and 255 controls. Our 

findings highlight the potential of faecal metabolites as biomarkers for IBD and show 

that, despite the influence of lifestyle, genetics and disease, faecal microbes are a 

strong predictor of the levels and composition of metabolites in the gut.   



METHODS 

Cohort and metadata description 

Samples were obtained from two established cohorts: LifeLines8, a population biobank 

from the north of the Netherlands, and 1000IBD9, a cohort of patients with IBD from 

the University Medical Centre of Groningen (UMCG). In this study, we included 255 

non-IBD controls, 238 patients with CD and 174 patients with UC. Sample collection, 

storage and cohort characteristics have been described before10,11 (Suppl. Table 1). 

Metabolite quantification 

Metabolomics measurements performed by Metabolon Inc. (North Carolina, USA) 

(see Suppl. Methods) detected 1,684 different faecal metabolites (Suppl. Table 2). In 

addition to the untargeted metabolomics, we also measured the concentrations of 

eight short-chain and branched-chain fatty acids using liquid chromatography with 

tandem mass spectrometry (LC-MS/MS) methods (Suppl. Table 3). 

Metabolic data processing 

Metabolomic data was handled as a compositional dataset and transformed using 

centred log-ratios. Metabolites were split into three categories based on their 

prevalence in our cohort. The first group consisted of metabolites present in more than 

70% of the samples in both the cases and controls (x = 854). Missing values were 

imputed using k-Nearest Neighbour Imputation using the “kNN” function from the “VIM” 

R package12. We set the number of nearest neighbours to 10 (k = 10) for the imputation 

and Euclidean distance as a metric. The second group of metabolites (prevalence < 

70% and > 20%, x = 514) showed large sparsity across samples, so their levels were 

transformed into binary traits (metabolite presence/absence). Rare metabolites 

(prevalence < 20%, x = 316) were excluded from analysis given their limited power to 

detect meaningful associations. 

Identification of metabolites associated with IBD 

To identify metabolites associated with IBD, we performed linear regression analysis 

using the lm function in R. The abundance of each metabolite was compared between 

disease groups (IBD/CD/UC) and controls. Technical factors (storage time, input 

grams of faeces and sample batch), host characteristics (age, sex, BMI and bowel 



movements per day), intestinal integrity (any resection: yes/no) and 24 dietary patterns 

that were significantly different between cases and controls were included as 

covariates in the regression models (Suppl. Table 4). Less prevalent metabolites 

(prevalence < 70% and > 20% of samples) were evaluated using logistic regressions. 

Missing values were transformed to 0 and non-zero values to 1. Logistic regressions 

were performed using the implementation in the glm function in R and the covariates 

described above. All p-values were adjusted for multiple testing using Benjamini-

Hochberg corrections as implemented in the p.adjust function. We considered a false 

discovery rate (FDR) < 0.05 as the threshold for statistical significance. 

Association between metabolites and phenotypes 

An association analysis between phenotypes and metabolites was performed within 

each cohort (controls, CD and UC). We included information about lifestyle, including 

use of 31 different types of medication, dietary patterns represented by 144 food 

frequency–related scores and the levels of 3 faecal biomarkers (faecal calprotectin, 

chromogranin A and human beta-defensin) (see Suppl. Methods). Each phenotype–

metabolite combination was tested using linear regression, including age, sex, BMI, 

bowel movements per day and technical factors as covariates. 

Co-occurrence patterns between bacteria and metabolites 

Mmvec v.1.0.613 was used to estimate the co-occurrence probabilities between highly 

prevalent metabolites and bacteria. The QIIME14 implementation of mmvec was used 

with default settings. Co-occurrence patterns were represented in a biplot using the 

ordination coordinates obtained from mmvec analysis. Next, we assessed the 

associations between individual microbiome features (taxa, gene clusters and 

metabolic pathways) and metabolites using regression models. 

Differential abundance analyses of faecal microbiome features 

Linear regression analysis was used to identify microbiome features (taxa, pathways 

and metabolic gene clusters) that differed between controls and IBD. Age, sex, BMI, 

average bowel movements per day, history of intestinal resections (yes/no) and 

sequencing read depth were included as covariates in the regression models. Details 

of the processing of metagenomics data can be found in the Supplementary Methods. 



Association between dysbiosis and faecal metabolites 

Phenotypic differences between patients with dysbiotic and eubiotic microbiota were 

established using chi-squared or Wilcoxon-rank test for categorical and continuous 

variables, respectively. Differences in the abundance of faecal metabolites between 

the two groups of patients were tested using linear regression. Age, sex, BMI, intestinal 

resection (yes/no), ileocecal valve in-situ (yes/no), average bowel movements per day 

and differences in 12 dietary patterns (Suppl. Table 5) were added as covariates in 

the regression models. Associations were considered statistically significant at FDR < 

0.05. 

Meta-analysis of phenotype–metabolite and microbiome–metabolite 

associations 

The results of the metabolite–phenotype and metabolite–microbiome analyses were 

combined in a meta-analysis using random-effects models implemented in R package 

meta (v.4.8). Results were considered statistically significant when the meta-FDR < 

0.05. 

Genome-wide association analysis on faecal metabolites 

Exome sequencing and genomic array data were available for both cohorts (see 

Suppl. Methods). Associations between host genetics and faecal metabolite levels 

were identified using regression models. Linear regression was used for metabolites 

present in > 70% of the samples and logistic regression for those present in between 

70% to 20% of the samples. Analyses were performed per cohort, and results were 

combined in a meta-analysis, as previously described15. In addition to accounting for 

the confounders described above (see Identification of metabolites associated with 

IBD), we included population genetic structure as a covariate in the analysis. To 

determine the statistical significance of our findings we adopted two thresholds: a 

genome-wide significance (p-value<5e-08), and a more conservative cut-off, a study-

wide significance (p-value <2.97e-11). The study-wide significance threshold was 

determined by dividing the genome-wide threshold  by total number of metabolites 

(5.0e-08/1684). 

 



Prediction of IBD based on metabolomics profiles 

We used CoDaCoRe16 (v 0.0.1) to identify ratios of metabolites and bacterial 

abundances that could predict IBD and its sub-phenotypes. Here, we first split the data 

into a training and a test set for each prediction, using 75% of the samples in the 

training process. Next, we estimated the added predictive value of using ratios of 

metabolites compared to a model including only host age, sex, BMI and faecal 

calprotectin levels (calprotectin levels >200 µg/g, yes/no). Patients with a history of 

intestinal surgeries (n = 136) were excluded, and only highly prevalent metabolites 

(>70% of the samples) were considered in this analysis. 

Metabolite level prediction 

To predict the levels of metabolites in faeces, we performed regression models with 

L1 regularisation (lasso) using the glmnet R package17. We defined eight different 

models representing the data categories available in both cohorts (IBD and non-IBD 

samples, see Suppl. Methods). For each metabolite, we performed a 5-fold cross-

validation (CV) procedure to select the best set of predictors based on the mean of 

squared errors. A 10-fold CV step was used in each of the CV-training sets to tune the 

lasso penalty parameter (lambda) in the lasso regression. Using the estimates of the 

model minimising the mean of squared errors, we computed the R2 coefficient in the 

whole dataset. 

  



RESULTS 

Patients with IBD have a distinct faecal metabolite profile 

Metabolites were assessed in the faecal samples from 238 patients with CD, 174 

patients with UC and 255 non-IBD controls. On average, 1,011 metabolites were 

detected per sample, ranging from 784 to 1,241 molecules. Patients with CD had a 

significantly larger number of metabolites in faeces than controls and patients with UC 

(Wilcoxon-test p-value< 2x10-16). 

PCA based on the abundances of 854 highly prevalent metabolites revealed that IBD 

samples are dispersed across a cluster that partially overlaps with controls (Fig 1A). 

The first component of the PCA captured 18% of the variation and was driven by the 

levels of carnitine and bile and fatty acids, while the second component, representing 

8% of cohort variation, was driven by the abundance of dipeptides and several 

unclassified metabolites (Suppl. Table 6, Fig 1B-C). 

Differential abundance analysis revealed 324 associations when comparing patients 

with CD to non-IBD controls and 309 associations when comparing patients with UC 

to non-IBD controls (FDR<0.05) (Suppl. Table 7, Suppl. Figure 1A). Moreover, when 

looking into lower prevalence metabolites (present in < 70% of samples), we found 

that products of the metabolism of bile acids, ceramides and steroids were more 

prevalent in faeces of patients with IBD than in controls (182 and 119 molecules 

associated to CD and UC, respectively) (Suppl. Table 7). 

A prominent signal in both disease groups was the depletion of vitamins and fatty acid–

related molecules compared to controls (Fig 1E). In contrast, several derivatives of 

amino acid metabolism increased in the faeces of patients with IBD, which suggests 

an increase in amino acid utilisation in the gut of patients with IBD. For example, 

patients with IBD presented higher levels of the phenolic compound p-cresol sulphate, 

and multiple tryptophan derivatives from the indole/Ahr and kynurenine/IDO pathways 

were altered in IBD samples. The level of indole-propionic acid was decreased in UC 

(FDRUC = 0.03), while tryptamine and kynurenine were increased in both CD and UC 

(FDR < 0.05). Patients with IBD also showed higher levels of arachidonic acid (20:4n6) 

and a lower ratio of omega-6/omega-3 fatty acids (Suppl. Table 8, Suppl. Figure 1E). 



We also found that 106 metabolites were differentially abundant between CD and UC. 

For example, patients with UC presented higher levels of diaminopimelate (DAPA), an 

alpha-amino acid present in the cell membrane of gram-negative bacteria. 

Interestingly, DAPA-containing peptidoglycans can trigger the immune response 

mediated by NOD118 (Suppl. Figure 1C, Suppl. Table 9). 

Patients with UC show the lowest concentrations of SCFAs in faeces 

The SCFAs are a well-studied group of metabolites in the context of IBD. The 

concentrations of these molecules are essential for immune modulation, and their 

synthesis is dependent on colonic bacterial fermentation of polysaccharides19. 

Acetate, propionate and butyrate, the three most abundant SCFAs in the gut, were 

found in lower concentrations in patients with UC when compared with controls 

(FDRUC < 0.05). Strikingly, after correcting for potential confounding effects, no 

significant differences in these metabolites were observed between CD and controls. 

In contrast, levels of hexanoic (or caproic acid) and valeric acids were significantly 

lower in both groups of patients. In addition, three branched-chain fatty acids (2-

methylbutyrate, isobutyrate and isovaleric acid) were also found in lower 

concentrations in patients with UC (Suppl. Figure 2, Suppl. Table 7). 

Gut health and lifestyle are reflected in the levels of faecal metabolites 

Besides the link between IBD and faecal metabolite composition, we assessed the 

association between faecal metabolites and 229 host characteristics, including dietary 

habits, medication use and clinical features such as inflammation location and history 

of intestinal resections. Due to the significant differences observed in metabolite 

composition between cases and controls, we carried out association analysis per 

condition (i.e. CD only, UC only and controls only) and then combined the results in a 

meta-analysis (see Methods). 

Chromogranin A, beta-defensin 2 and calprotectin levels in faeces showed a large 

number of associations with faecal metabolites. In non-IBD controls, the level of 

chromogranin A was correlated with the levels of 164 metabolites, including positive 

associations with N-formylmethionine, cholesterol and secondary bile acids. 

Participants with calprotectin levels > 200 μg/g showed lower levels of cytidine in 



faeces. In addition, calprotectin was related to increased sphingosines and ceramides 

in UC but not CD (Fig 2A). 

We also observed consistency between drug usage and drug-derived metabolites 

(Suppl. Table 10). O-desmethyltramadol, the main active metabolite of the opioid 

tramadol, was detected in several patients with CD using opioids (logistic regression, 

FDR = 0.009, Suppl. Table 11). In patients with UC, the use of mesalazine (5-

aminosalicylate) was associated with higher levels of gentisate and N-

acetylmethionine sulfoxide (linear regression, FDR = 0.005, Suppl. Table 12). 

Interestingly, 5-aminosalicylate has been reported as an alternative substrate of 

gentisate 1,2-dioxygenase, an enzyme involved in gentisate metabolism. Taken 

together, these results suggest that gentisate metabolism is significantly reduced in 

the presence of 5-aminosalicylate (Suppl. Figure 3A)20. 

We found 158 associations between metabolites and dietary patterns (linear 

regression, FDRmeta < 0.05, Suppl. Table 12). Interestingly, approximately one-third 

of these were related to the consumption of coffee (n = 57), including positive 

correlations between coffee intake and the levels of picolinate and 5-Acetylamino-6-

amino-3-methyluracil (AAMU), one of the major caffeine metabolites (Fig 2C) (linear 

regression, FDRMeta < 0.05, Suppl. Table 12). 

Beyond diet and medication, we detected cotinine in faeces of self-reported smokers 

(logistic regression, FDRmeta = 1.31e-11, Suppl. Table 11) and found that higher 

systolic blood pressure was associated with five molecules in controls, including higher 

agmatine levels (linear regression, FDR = 0.04, Suppl. Table 12). 

Intestinal resections are associated with long-term metabolic alterations 

Although none of the patients in this cohort had had a recent surgical procedure at 

time of inclusion (average time between surgery and sample collection = 90 months, 

s.d. 87.4), having a history of intestinal resection(s) was strongly associated with 

faecal metabolite composition. In patients with CD, resection of the ileocecal valve 

was associated with changes in the abundance of 201 metabolites, including cholic 

acid and several monoacylglycerols. Colonic resection was also associated with 

modifications in the levels 56 molecules in CD and 8 molecules in UC (Suppl. Table 



12, Figure 2A,D). For example, colonic resection negatively correlated with the faecal 

levels of pyridoxamine (vitamin B6) (Suppl. Figure 3B). 

There were no significant differences in metabolites between different groups of 

disease behaviour or disease severity after statistically adjusting for gut surgery 

(resected vs non-resected). However, we did observe several interesting trends (linear 

regression, p-value < 0.05, FDR > 0.05, Suppl. Table 13). For example, patients with 

CD and penetrating diseases had lower butyrate levels (B1 vs B3). Disease severity 

(Montreal S score) also positively correlated with tyramine faecal abundance (Suppl. 

Figure 3C). In patients with UC, the extent of the disease (Montreal E score) was 

associated with the levels of four metabolites. For example, participants with proctitis 

(distal inflammation, E1 classification) had lower levels of 2R-3R-hydroxybutyrate and 

higher levels of cytidine compared to patients with extensive inflammation in the colon 

(proximal inflammation or pancolitis, E3 classification) (Suppl. Figure 3D). In addition, 

33 metabolites were altered in patients with exclusively-colonic CD as compared with 

UC. 

NAT2 genotype strongly associated with coffee metabolism 

Next, we investigated the effect of host genetics on faecal metabolites by carrying out 

a faecal metabolome genome-wide association analysis. At a study-wide significance 

level (p-value < 3.12e-10), we found only an association between a genetic 

polymorphism located closely to NAT2 (rs4921913) and AAMU (p-valuemeta = 1.79e-

11). This genetic variant is in linkage disequilibrium with a SNP reported to be 

associated with the ratio between 1,3-dimethylurate and AAMU (rs35246381, r2 > 

0.8)21. As expected, we could also replicate this finding in our cohort (p-valueIBD = 

8.46e-09, p-valuecontrols = 4.17e-09, p-valuemeta = 3.57e-13, Fig 3). AAMU is a metabolite 

derived from coffee, and its levels in faeces are strongly correlated with coffee 

consumption. Nonetheless, this gene–metabolite association remained significant 

even after adjusting for coffee intake (p-valueIBD = 2.2e-16, p-valuecontrols = 2.0e-09). 

At genome-wide significance level p-value < 5e-08, 267 genomic variants were 

associated with 61 different metabolites. For example, SNP rs4751995 in gene 

PNLIPRP2 was associated with the level of a faecal choline derivative (1-palmitoyl-2-

linoleoyl-digalactosyl glycerol (16:0/18:2), p-valuemeta = 5.68e-10), and a genetic variant 

rs2331038 in gene LRP5L was associated with serotonin (Suppl. Table 14). 



Gut microbiota composition is linked to metabolomic profiles 

We used neural networks to systematically assess the probability of co-occurrence 

between metabolites and bacteria. Higher cholic acid and creatinine levels correlated 

with an increase in the abundance of several pathobionts, including Ruminococcus 

gnavus, Streptococcus mutans and Veillonella parvula, and a decrease in 

Methanobrevibacter smithii and Coprococcus eutactus (Fig 4A, Suppl. Table 15). 

We then tested if the microbiome–metabolite co-occurrences were consistently 

observed in the three conditions in our study (CD, UC and non-IBD controls). First, we 

tested if the presence/absence of specific taxa in faeces was associated with the levels 

of faecal metabolites. The meta-analysis revealed 16,237 associations (Suppl. Figure 

5), of which 689 were significant in all three conditions (FDRcontrols < 0.05, FDRCD < 

0.05, FDRUC < 0.05, Suppl. Table 16). The presence of Akkermansia municiphila and 

Oscillibacter sp. (CAG 241) were associated with higher levels of fatty acids (fatty 

acyls: 3-methyl adipate, azelate (C9-DC), sebacate (C10-DC) and dodecanedioate 

(C12)). The presence of Bilophila wadsworthia was associated with lower levels of 

taurine, betaine and N,N,N-trimethyl-L-alanyl-L-proline (TMAP) (Fig 4B, linear 

regression, FDRmeta < 0.05). 

Additionally, we correlated non-zero microbial abundances with levels of metabolites 

and found 2,303 significant positive associations (Suppl. Table 17, FDR < 0.05). For 

example, the abundances of Blautia wexlerae and Dorea formicigenerans were 

positively correlated with lysine degradation products (N6-carboxymethyl lysine and 

N6,N6-dimethyl lysine), while F. prausnitzii correlated with hypoxanthine levels (linear 

regression, FDRmeta = 0.006). The levels of tryptamine were positively correlated with 

the abundance of R. gnavus (linear regression, FDRmeta = 4.87e-08) (Fig 4C) and levels 

of imidazole propionate with the abundance of Streptococcus parasanguinis (linear 

regression, FDRmeta = 2.86e-04). 

When exploring the metabolic potential of the gut microbiota, we observed significant 

differences in the abundances of 93 pathways and 94 gene clusters between cases 

and controls (Suppl. Table 18). In IBD, these alterations were characterised by 

increased amino acid utilisation and decreased fermentation pathways and fatty acid 

metabolism. For example, histidine degradation pathways (MetaCyC ID: HISDEG and 

PWY-5030) and histidine utilisation operon (hutHGIU) were enriched in both UC and 



CD metagenomes. The increase of the L-histidine degradation pathway I (HISDEG) 

was negatively correlated with the levels of histidine (linear regression, FDRmeta = 4.0e-

04), although it was not significantly associated with the levels of imidazole propionate 

(Fig 4C, Suppl. Table 19). In addition, the abundances of ethanolamides were 

negatively correlated with the ethanolamine utilisation operon (eut). Ethanolamines 

are components of host cell membranes, and their levels increase during periods of 

inflammation. The eut operon is known to be carried by several gut pathobionts, 

allowing the use of ethanolamine as a source of carbon and nitrogen, which might 

provide a selective advantage during periods of active disease (Fig 4D)22. The 

abundance of bai operons was associated with higher levels of faecal lithocholic acid 

(linear regression, FDRmeta = 0.003) and 12-ketolithocholate (linear regression, 

FDRmeta = 0.005) and lower levels of cholic acid (linear regression, FDRmeta = 3.54e-05) 

(Fig 4E) (Suppl. Table 20). 

Metabolic alterations in dysbiosis 

Considering that the gut microbiota of patients with IBD undergo transitions from 

eubiosis to dysbiosis, which might precede or indicate periods of active disease3,23, 

we investigated metabolite differences between patients with dysbiotic and eubiotic 

microbial compositions. In total, we identified 191 participants with dysbiotic microbiota 

(Fig 5A,B). The clinical characteristics of these participants showed an enrichment of 

CD subtype (n = 130, chi-squared test FDR = 2.45e-04) and ileocecal valve resections 

(n = 76, chi-squared test, FDR = 2.93e-10). Levels of chromogranin A were also higher 

in dysbiotic patients (Wilcoxon-test, FDR = 4.96e-05). However, no significant 

differences were observed between groups in the levels of faecal calprotectin (chi-

squared test FDR = 0.65, Suppl. Table 5). 

After correcting for disease phenotype (CD or UC), history of surgery, integrity of the 

ileocecal valve and dietary differences between the two groups, we identified 202 

enriched metabolites and 258 depleted metabolites in patients with dysbiosis. In 

patients with dysbiosis, levels of SCFA (hexanoic, valeric and butyric acid), indolin-2-

one and 3-phenylpropionate (hydrocinnamic acid) were reduced and N-acetyl-

isoputreanine, long-chain polyunsaturated fatty acids and bile acids were significantly 

increased (linear regression, FDR < 0.05, Suppl. Table 5). In addition, this group of 

patients showed a higher prevalence of taurine-conjugated and sulphated bile acids 



(logistic regression, FDR < 0.05, Suppl. Table 5). Overall, we observed lower levels 

of secondary bile acids compared to primary bile acids in dysbiotic samples, 

suggesting an accumulation of primary bile acids during periods of dysbiosis (linear 

regression, FDRDCA:CA = 0.007, FDRLCA:CDCA = 9.74e-04). 

Microbiome composition predicts metabolite levels in faeces 

In light of the numerous associations between metabolite levels and microbes, we 

explored to what extent metabolites could be predicted from metagenomic datasets. 

Age, sex, BMI, average bowel movements a day and technical experimental factors 

explained 3% of the metabolite variation. Dietary habits could predict > 20% of the 

variation in cysteine (25%, s.d. 1%), bilirubin (21%, s.d. 8.1%) and metabolites related 

to coffee consumption, including an unidentified metabolite that correlates with N-

methyl pipecolic acid (X-23655, 42%, s.d. 6%) and AAMU (31%, s.d. 9%). IBD 

(expressed as a binary trait) explained > 20% of the variation in palmitoylcarnitine 

(C16) and 15 other metabolites (Suppl. Table 21). In contrast, bacterial abundances 

were a strong predictor of 82 metabolites (> 40% of the variation), including of the 

levels of molecules such as lithocholate (41%, s.d. 18%) and dimethylarginine 

(ADMA/SDMA, 53%, s.d. 4%). Adding diet and participant characteristics to the model 

provided only a slight increase in the prediction power compared to that of bacterial 

abundance alone (paired Wilcoxon-test, p-value < 2.2x10-6) (Fig 5A). 

Faecal metabolomic profiles correctly classify IBD samples 

To discover potential biomarkers, we used a machine learning approach to identify 

metabolites that could predict disease phenotypes (see Suppl. Methods). Including the 

ratio between the sphingolipid lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) and L-

urobilin improved the accuracy of age, sex, BMI and faecal calprotectin levels as 

disease predictors (AUCcv = 0.85, AUCtest = 0.83, p-value = 9.89e-13, Fig 5 B-E, Suppl. 

Table 22), and a similar performance was achieved with bacteria abundances (AUCcv 

= 0.86, AUCtest = 0.84, p-value = 6.04e-14, Suppl. Figure 4 B,C). A combination of 

three species—Flavonifractor plautii, Gemmiger formicilis and Methanobrevibacter 

smithii—was identified as the most discriminative feature between cases and controls. 

Combining metabolite and microbiome ratios led to a modest but significant increase 

in model performance (AUCtest = 0.85, p-value = 4.34 e-09). 



Within patients with IBD, metabolites showed a limited power to correctly classify CD 

or UC samples (AUCcv = 0.78, AUCtest = 0.67) and active disease vs remission (AUCcv 

= 0.72, AUCtest = 0.60) (Suppl. Table 22). 

 X_ DISCUSSION 

We comprehensively characterised faecal metabolites in samples from patients with 

IBD and representatives of the Dutch population. Our results revealed alterations in 

the levels of more than 300 highly prevalent faecal metabolites in patients with IBD. 

Additionally, we described potential determinants of faecal metabolome composition 

by integrating untargeted metabolomics with extensive information on dietary habits, 

host genetics, clinical characteristics and gut microbiota composition. 

The drastic alteration in faecal metabolite composition in patients with IBD suggests a 

switch from a saccharolytic to a proteolytic fermentation metabolism24. We observed 

increased levels of products of amino acid metabolism. For example, patients with IBD 

showed higher levels of p-cresol sulphate compared to controls (FDRCD = 1.45e-04, 

FDRUC = 1.54e-03, Suppl. Table 7). This compound originates from fermentation of 

aromatic amino acids in the large intestine25, and its accumulation has been related to 

several diseases, including chronic kidney disease26 and colorectal cancer27,28. Phenol 

sulphate, a uremic toxin derived from metabolism of tyrosine29,30, was more prevalent 

in faeces of patients with CD (logistic regression, FDRCD = 0.003, Suppl. Table 7). 

Other metabolites enriched in the faeces of patients with IBD included molecules with 

a known pro-inflammatory effect, such as histidine, polyunsaturated fatty acids and 

sphingosines. In agreement with previous reports, we also found a strong enrichment 

of ceramides, polyamines, acylcarnitines and ethanolamides in the faeces of patients 

with CD and depletion of SCFA and gamma-glutamyl amino acids in UC (Suppl. Table 

7,FDR<0.05) 3–5,7,31,32. 

The strong correlation between microbial composition and faecal metabolites suggests 

that metabolomic data partially capture bacterial activity in the gut. We found 

B.wadsworthia to be associated with taurine, betaine and TMAP levels (Suppl. Table 

16). While this bacterium has the capacity to metabolise taurine and betaine, little is 

known about TMAP33. It has recently been shown that B. wadsworthia can convert 

trimethylamine into dimethylamine and consequently reduce the overall production of 

trimethylamine-N-oxide (TMAO)34. Therefore, we hypothesise that the demethylation 



capacities of this bacterium might explain the association between TMAP and 

B. wadsworthia. 

Another example of the strong correlation between metabolites and bacteria is the 

positive correlation we observe between levels of hypoxanthine, butyric and acetic 

acids, and the abundance of F. prausnitzii (Suppl. Table 17). Hypoxanthine is a 

molecule that contributes to maintaining the intestinal epithelium35. Hypoxanthine can 

be produced by F. prausnitzii through the metabolization of adenine36. Moreover, the 

relative abundance of Ruminococcus gnavus was related to tryptamine levels (Suppl. 

Table 17). R. gnavus, a bacterium highly abundant in dysbiotic periods in patients with 

IBD37, can produce tryptamine by decarboxylation of tryptophan38. Accumulation of 

tryptamine can increase gut motility via activation of serotonin receptor-4, which may 

explain why some patients experience decreased intestinal transit times during 

flares39. Additionally, the positive correlation we observe between S. parasanguinis 

and imidazole propionate could be explained by the capacity of this bacterium to 

degrade histidine40. Imidazole propionate has been associated with the risk of 

developing type 2 diabetes and regulates activation of the mTORC1 signalling 

pathway41,42, which is implicated in IBD43. 

The relation between the microbiome and metabolites allowed us to predict the levels 

of 82 faecal metabolites using metagenomic sequencing data (Suppl. Table 21). 

Consistent with observations in other cohorts21,44–46, well-predicted molecules 

included putrescine, urobilin, bile salts and fatty acids. However, and in agreement 

with Muller et al.46, models trained in controls and tested in IBD showed lower 

prediction accuracy than models trained with both IBD and non-IBD datasets. The low 

cross-predictability between cases and controls implies that some microbiota–

metabolite relations might be context-specific. In fact, when clustering samples either 

based on microbiome or metabolomic profiles, IBD samples tend to constitute two 

clusters—one overlapping with controls and another almost exclusively populated by 

samples of patients with IBD or dysbiosis (Fig 1A, Fig 5A). This pattern was also 

observed in the study of Jacobs et al.47 on faecal samples from patients with IBD and 

their unaffected first-degree relatives. Interestingly, in our cohort, the dysbiotic cluster 

was mainly populated by samples from patients with ileum disease involvement and/or 

an ileocecal valve resection (Suppl. Table 5). Accumulating literature demonstrates 

that disruptions in the small intestine due to inflammation or surgery impact the 



metabolite and microbial composition in faeces48,49. Halfvarson and colleagues23 

showed that patients with intestinal surgery in the ileum had a less stable microbiota 

and more often transited between non-IBD and IBD-enriched clusters. We observed 

that the dysbiotic cluster presented an enrichment of primary bile acids as compared 

to eubiotic samples from patients with IBD (Suppl. Table 5). It has been reported that 

an increase in cholic acid can exert selective pressure on the gut ecosystem due to its 

antimicrobial properties50. Overall, and considering the crucial role of the small 

intestine in nutrient absorption, we hypothesise that perturbations in this section of the 

gut lead to long-lasting alterations in the concentrations of bile acids, amino acids and 

lipids in the colon, which might re-shape the microbial composition towards a dysbiotic 

state. 

Along with the influence of the gut microbiota, diet and lifestyle are potential 

determinants of the abundance of small molecules in the human body. By correlating 

metabolites to dietary data, medication use and lifestyle factors, we found that daily 

habits such as smoking or coffee and tea consumption strongly correlated with their 

derivative molecules (Suppl. Table 12). Moreover, N-acetyl proline levels were 

associated with wine consumption. N-acetyl proline is an alpha-amino acid product of 

proline which is highly abundant in grape juice and wine51. In addition, dipeptides were 

more abundant in participants consuming more meat. Anserine, for example, which is 

present in the muscle tissue of poultry52, was found in higher levels in participants who 

consume chicken (Suppl. Table 12). Despite these associations, long-term dietary 

habits show only a moderate association with faecal metabolome composition. We 

hypothesise that our dietary data underestimates the contribution of food intake to 

levels of faecal metabolites since it is based on food frequency questionnaires. Future 

studies should consider the use of 24-hour dietary recalls to capture daily dietary 

variations when aiming to explore relations between food intake and faecal 

metabolites and food–microbiome interactions. 

Host genetics showed only a small impact on metabolite levels in faeces. The only 

association that passed our significance threshold was between a single nucleotide 

polymorphism near the NAT2 gene and AAMU, a caffeine metabolism product (Suppl. 

Table 14). NAT2 encodes an N-acetyltransferase enzyme that detoxifies several 

xenobiotics, including coffee and certain types of medication. A study in the TwinsUK 

biobank also reported this association and estimated that host genetics has a 



moderate effect on faecal metabolites, with an average heritability of ~18%21. This 

relatively low heritability contrasts with the impact of host genetics on the levels of 

circulating metabolites44,53 and might be explained by the fact that faecal metabolites 

are primarily influenced by microbial transformations occurring in the colon, which can 

potentially mask genetic effects. Moreover, sample sizes are still a limiting factor for 

discovering metabolite–genome associations. In fact, when using a looser significance 

cut-off (p-value < 5x10−8), we found > 200 suggestive associations pointing to the 

metabolism of cholesterol and serotonin. For example, LRP5L was associated with 

serotonin and PNLIPRP2 with 1-palmitoyl-2-linoleoyl-digalactosyl glycerol (16:0/18:2) 

(Suppl. Table 14). LRP5L belongs to the LDL receptor family found to be involved in 

controlling serotonin levels in the duodenum54. Both PNLIPRP2 and 1-palmitoyl-2-

linoleoyl-digalactosyl glycerol (a choline derivative) are linked to cholesterol 

metabolism, supporting the fact that choline supplements maintain blood cholesterol 

homeostasis55, and PNLIPRP2 has been associated with LDL levels in blood56. 

Finally, considering that colonoscopies are still the gold standard for diagnosing IBD, 

we demonstrated the potential of faecal metabolites as a non-invasive method for 

disease diagnosis. The ratio between the levels of two metabolites, lactosyl-N-

palmitoyl-sphingosine (d18:1/16:0) and L-urobilin or stercobilinogen was identified as 

a biomarker for IBD in our cohort (Suppl. Table 22). Reduced levels of L-urobilin and 

increased sphingolipids in faeces of patients with IBD have been observed in other 

cohorts3,5. Faecal measurements targeting these two commonly detected molecules 

could be relatively easy to implement in the clinic. These could, in combination with 

the faecal calprotectin levels, increase the accuracy of non-invasive tests. 

In conclusion, this study provides a detailed characterisation of the faecal metabolites 

in the context of health and intestinal inflammation, replicating known disease-relevant 

molecules and expanding our knowledge of disease heterogeneity. In addition, we 

pinpoint multiple associations between host, microbiota, diet and faecal metabolite 

levels, which we believe provide valuable resources for further investigation of 

metabolite- or microbiota-based interventions and treatment in IBD. 
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Figure 1. Faecal metabolite alterations in patients with Crohn’s disease and ulcerative 
colitis. A-D. Principal coordinate analyses depicting the clustering of 255 non-IBD (black), 238 CD 

(purple), 174 UC (green) and 12 IBDU (pink) samples according to their metabolomic composition. 
The first principal component is mainly driven by the levels of cholic acid and suberate (panel B 

and D) and the second component by the concentrations of phenylalanylalanine (panel C). Light–
dark colour gradient represents low–high metabolite values. Metabolite concentrations are 

expressed as centred log-ratio (clr) of the AUC raw values. E. Metabolite differences between 
cases and controls grouped into metabolomic pathways. For clarity, only categories with three or 

more metabolites are shown (number of metabolites per categories are indicated on the x-axis). 
Y-axis represents the t-statistic value from the linear regression model (see Methods). Asterisk 

indicate significant differences between CD and UC (FDR < 0.05, Suppl. Table 7). 

Figure 2. Potential determinants of faecal metabolite levels. A. Bar plot showing the number 
of significant associations between phenotypes and metabolites in each of the cohorts and in the 

meta-analysis (Suppl. Table 12. Only phenotypes with more than three associations are shown. 
Red labels indicate phenotypes exclusively available for cases and blue labels for controls. B. 
Boxplots depicting the levels of 7-ketocholesterol (expressed as clr-transformed AUC values) per 
cohort stratified by statin use. C. Correlation plot showing the relation between AAMU (expressed 

as clr-transformed AUC values) and coffee consumption (x-axis) per cohort. Coffee consumption 
is represented as the estimated consumption per day (grams/day) adjusted by overall individual 
calorie intake (see Methods). D. Boxplots showing the levels of 1-palmitoylglycerol (16:0). Boxplot 

shows the median and interquartile range (25th and 75th). Whiskers show the 1.5*IQR range. Data 
distribution is represented by background violin-plot. Lines in the correlation plot show linear 

regression and shadows indicate the 95% confidence interval. 

Figure 3. Genome-wide association between genetic polymorphisms and faecal 
metabolites. A. Manhattan plot shows the strong association between a single nucleotide 

polymorphism located in the NAT2 gene and AAMU, a metabolite derived from caffeine. Solid 
horizontal line signifies the significance threshold corrected by multiple hypothesis testing. Dashed 

line indicates the classic genome-wide significance threshold. Metabolites passing this threshold 
(in red) are considered suggestive associations (Suppl. Table 14). B. Boxplot depicting the levels 

of AAMU in non-IBD controls and IBD, stratified by SNP rs4921913 genotype. C. Boxplot showing 
the relation between SNP rs4921913 and the ratio of 1,3-dimethylurate to AAMU. This association 

was previously described in the TwinsUK cohort21. Metabolite values are presented as the 
residuals of the model regressing the covariates age, sex, BMI and technical confounders. Boxplot 

shows the median and interquartile range (25th and 75th). Whiskers show the 1.5*IQR range. Data 
distribution is represented by background violin-plot 

 



Figure 4. Metabolite co-occurrence with faecal microbes. A. Biplot representing conditional 
probabilities of co-occurrence between metabolites (dots) and microbes (arrows). Distances 

between dots and arrow tips represent the probability of co-occurrence of each metabolite and 
microbe. Orange dots highlight metabolites enriched in samples from patients with IBD in the linear 

regression analysis (see Methods, Suppl. Table 15). Arrow direction indicates the probability of 
microbes co-occurring with the levels of metabolites. To enhance interpretability, names of only a 

few metabolites are shown and only the top-10 species explaining the largest amount of variation 
are visualised. B. Taurine levels per cohort stratified by the presence or absence of B. wadsworthia 

in faecal metagenomes. C. Correlation between levels of tryptamine and abundance of R. gnavus. 
Only samples in which the bacterium had a non-zero relative abundance are shown. D-F. The 

relation between histidine and MetaCyc Histidine degradation pathway (D), between oleoyl-
ethanolamide and the eut operon (E) and between lithocholic acid and the bai operon (F) are 

shown as examples of the correlation between microbiota metabolic potential and metabolite 
levels, per cohort. Metabolite, bacteria and pathway values are clr-transformed. Boxplot shows the 
median and interquartile range (25th and 75th). Whiskers show the 1.5*IQR range. Data distribution 

is represented by background violin-plot. Correlation plot lines show linear regression. Shadows 
indicate the 95% confidence interval. 

Figure 5. Metabolic signature of patients with intestinal dysbiosis. A. Principal coordinate 
analysis on microbiome composition per sample (dots). Colours indicate disease phenotypes: CD 
(purple), UC (green), IBD-undetermined (pink), non-IBD (black). B. Red dots depict samples 

considered to be dysbiotic based on the median distance to non-IBD samples. C. Volcano plot 
showing the p-value (y-axis) and regression coefficients (x-axis) of the association analyses 

between dysbiotic and non-dysbiotic IBD samples (Suppl. Table 5). Dot colour indicates pathway 
annotations provided by Metabolon. 

Figure 6. Metabolite prediction and biomarker discovery for the diagnosis of IBD. A. 
Microbial abundances (light red) and bacterial pathways (dark red) show the largest capacity to 
predict the levels of metabolites. Boxplots show the capacity to predict metabolites levels of eight 

different models using seven types of data. Dots represent metabolites, and values in the y-axis 
represent the percentage of variation explained from cross-validated penalised regression 

methods using different sets of predictors (see Methods). The number of features in each model 
are indicated in parentheses in the legend (Suppl. Table 21). B-C. Show the abundance of the 

metabolites with the highest potential to discriminate between samples from non-IBD (grey) and 
IBD (UC in green and CD in purple). D. Boxplots depict the value of a potential biomarker for IBD. 

Y-axis is the log-transformed value of the ratio constructed from the levels of lactosyl-N-palmitoyl-
sphingosine (d18:1/16:0) and L-urobilin. Boxplot in grey depicts values in non-IBD controls. Boxplot 

in orange depicts values in patients with IBD. E. Receiver operating characteristic curve (ROC 
curve) of the prediction model based on patient characteristics (age, sex and BMI), the levels of 



faecal calprotectin (expressed as a binary trait (yes/no) if levels of this marker were > 200 µg/g of 

faeces) and the ratio between metabolites. The prediction value, expressed as the area under the 

curve (AUC), reached a value of 0.83 in the test dataset. Metabolite values are clr-transformed. 
Boxplot shows the median and interquartile range (25th and 75th). Whiskers show the 1.5*IQR 

range. Data distribution is represented by background violin-plot. 

SUPPLEMENTARY FIGURES: 

Suppl. Figure 1. Metabolite alterations associated to IBD. A. Volcano plot showing the p-value 

(y-axis) and regression coefficients (x-axis) of the association analyses between cases (CD and 
UC) and non-IBD controls. Dot colour indicates the pathway annotation provided by Metabolon. B-
C. Levels of L-urobilin and diaminopimelate stratified by disease phenotype. Metabolite levels are 

clr-transformed. L-urobilin is significantly decreased in both UC and CD and diaminopimelate 
significantly increased in UC. D. Log-ratio between tryptamine and tryptophan levels. This ratio 

was significantly increased in patients with CD. E. Patients with IBD show lower levels of the log-
ratio between omega-6 and omega-3 polyunsaturated fatty acids. 

Suppl. Figure 2. Short-chain fatty acids are depleted in patients with UC. Boxplots showing 

the concentrations of short-chain fatty acids per cohort. For visualisation purposes, metabolite 
concentrations are log-transformed and scaled. 

Suppl. Figure 3. Metabolite levels stratified by disease and patient characteristics. A. 
Gentisate levels are increased in patients with IBD who used mesalamines. Y-axis represents clr-
transformed metabolite levels. B. Levels of butyrate are lower in patients with CD and penetrating 

disease (Montreal B3) compared to non-structuring and non-penetrating forms of the disease 
(Montreal B1). C. Boxplots showing that patients with resections in the colon show lower vitamin 

B6 levels (pyridoxamine). D. In patients with UC, levels of 2R:3R-dihydroxybutyrate show a 
tendency to positively correlate with disease extension. 

Suppl. Figure 4. Bacterial taxa abundances can be used to classify non-IBD and IBD faecal 
samples. A. Boxplot depicts the values of a potential biomarker for IBD. Y-axis represents the log-
transformed values of the ratio constructed from the abundance of F. prausnitzii and the sum of 

G. formicilis and M. smithii. Boxplot in grey shows values in non-IBD controls. Boxplot in orange 
shows values in samples from patients with IBD. B. Receiver operating characteristic curve (ROC 

curve) of the prediction model based on patient characteristics (age, sex, BMI), the levels of faecal 

calprotectin (expressed as a binary trait (yes/no) if levels of this marker were > 200 µg/g of faeces) 

and the ratio based on bacterial taxa. The prediction value, expressed as the area under the curve 
(AUC), reached a value of 0.86 in the test dataset. Metabolite values are clr-transformed. Boxplot 
shows the median and interquartile range (25th and 75th). Whiskers show the 1.5*IQR range. Data 

distribution is represented by background violin-plot. 



Suppl. Figure 5. Heatmap showing co-occurrence of metabolites and bacteria in faeces. 
Heatmap showing two distinct patterns between the presence of bacteria and the levels of 

metabolites. Metabolites on the x-axis are annotated according to the pathway annotation provided 
by Metabolon. On the y-axis, bacteria are annotated based on their taxonomic class. Clustering is 

based on the regression coefficient derived from the meta-analysis of the relation between 
metabolite levels and detection or absence of a species in the faecal samples in each dataset (CD, 

UC, non-IBD). Red cells indicate positive associations and blue cells indicate negative associations 
between species and metabolites. White cells represent non-significant associations in the meta-

analysis. For readability, only the labels of certain metabolites are shown. 

Suppl. Figure 6. Statistical power to detect associations between host genetics and faecal 
metabolites. A. Power to detect associations dependent on sample size (alpha = 3.14e-10, 

variance explained by genetic effect (h2) = 0.08). B. Sample size to detect associations dependent 
on h2 considering different degrees of missingness from 10%–100% across all samples (alpha = 

3.14e-10, power = 0.8). 
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Figure 3

HC IBD

0 1 2 0 1 2
5.0

2.5

0.0

2.5

HC IBD

0 1 2 0 1 2

5.0

2.5

0.0

2.5

AAMU
(rs4921913)

Chromosome

-lo
g1

0 
(p

-v
al

ue
)

Study-wide significance 
(p-value=2.97e-11)

Genome-wide significance 
(p-value=5.00e-08)

rs4921913 (meta-analysis p-value=1.79e-11) rs4921913 (meta-analysis p-value=3.57e-13)

AA
M

U

1,
3-

di
m

et
hy

lu
ra

te
/A

AM
U

TT
(n=71)

CT
(n=41)

CC
(n=6)

TT
(n=71)

CT
(n=41)

CC
(n=6)

TT
(n=207)

CT
(n=123)

CC
(n=23)

TT
(n=207)

CT
(n=123)

CC
(n=23)

A)

B) C)



Figure 4
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Figure 5 
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Figure 6
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Suppl. Figure 3 
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Suppl. Figure 4 
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Suppl. Figure 5 
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