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Abstract

Aberrant shifts in DNA methylation have long
been regarded as an early marker for cancer onset
and progression. To chart DNA methylation
changes that occur during the transformation
from normal healthy colon tissue to malignant
colorectal cancer (CRC), we collected over 50
samples from 15 familial adenomatous polyposis
(FAP) and non-FAP colorectal cancer patients,
and  generated  30-70x  whole-genome
methylation sequencing (WGMS) runs via the
novel Ultima Genomics ultra high-throughput
sequencing platform. We observed changes in
DNA methylation that occur early in the
malignant transformation process, in gene
promoters and in distal regulatory elements.
Among these changes are events of hyper-
methylation which are associated with a bivalent
“poised” chromatin state at promoters and are
CRC-specific. Distal enhancers show nonlinear
dynamics, lose methylation in the progression
from normal mucosa to dysplastic polyps but
regain methylation in the adenocarcinoma state.
Enhancers that gain chromatin accessibility in
the adenocarcinoma state and are enriched with
HOX transcription factor binding sites, a marker
of developmental genes. This work demonstrates
the feasibility of generating large high quality
WGMS data wusing the Ultima Genomics
platform and provides the first detailed view of

methylation dynamics during CRC formation
and progression in a model case.

Introduction

CRC is the third most diagnosed cancer in men
and second in women and accounts for 8% of all
cancer deaths!. Recent improvements in
colorectal cancer diagnosis and therapeutic
strategies have increased CRC patient survival
time while the mortality rate of CRC remains
high?.

The molecular pathway causing CRC is the
conventional adenoma-carcinoma pathway?.
The pre-malignant to malignant progression of
sporadic adenoma to carcinoma has been
described for CRC malignancies and occurs in a
stepwise fashion®#. The initiating step in 80-90%
of colorectal tumors is the loss of adenomatous
polyposis coli (APC) gene resulting in -catenin
stabilization and increased WNT signaling®.
Subsequent mutations in other cancer driver
genes such as KRAS, TP53, and SMAD4 result
in the transformation to carcinoma. Familial
adenomatous polyposis (FAP) is an autosomal
dominant inherited disorder caused by a germline
mutation in the APC gene. The disease is
characterized by the formation of numerous
adenomatous polyps mainly in the epithelium of
the large intestine, typically arising at teenage
years®’, This leads to a very high likelihood of
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malignant transformation in at least one of these
polyps by the fifth decade, 100% lifetime risk of
CRC and is only preventable by prophylactic
removal of the entire colon (colectomy)’. The
presence of benign and dysplastic polyps in FAP
patients is thought to reflect the earliest steps in
CRC formation, and as such presents a valuable
and unique system for dissecting the early events
in CRC tumor initiation and progression in the
same initial genetic background.

DNA methylation is one of the most widely
studied epigenetic modifications. Changes in
DNA methylation correlate with changes in gene
expression and cell state®®, and have been
observed in virtually every cancer typel®. Cancer
cells typically exhibit global hypo-methylation
while specific loci such as CpG islands are
usually hypermethylated'!~!3. These alterations
occur very early in the carcinogenesis process, in
many cases before malignant transformation, and
increase with tumor progression'#!>, DNA
methylation changes specific to CRC have been
previously reported in many genomic regions
including gene promoters, LINEl repeat
elements and at regulatory regions bound by the
Polycomb group protein complex!®!7. A
distinguished type of regulatory regions that
show increased methylation in cancer, are
bivalent promoters and enhancers (also called
poised promoters/enhancers). These regions are
enriched with activating and repressing
chromatin modifications that co-occur at the
same genomic regions and are pre-loaded with
poised RNA polymerase II to prepare genes for
rapid activation. Poised promoters are typical for
developmental genes and were suggested to
“safeguard differentiation” and thus their
malfunction is expected to have a harmful impact
on the cell'®2°,

In recent decades, the availability of next
generation  sequencing  technologies  has
profoundly improved our understanding of the
molecular basis of human disease and enabled
data-informed drug design, personalized disease
treatment and improved monitoring of disease

progression’’*2, However, in recent years, the
decrease in sequencing cost has plateaued and
has been a limiting factor in both the number of
samples interrogated and in the scope of data
collected per sample, especially for individual
laboratories®®. To date, most studies, including
large cancer genome profiling studies such as
The Cancer Genome Atlas (TCGA)?! have opted
to measure genomic methylation status using
targeted approaches like arrays rather than
genome wide approaches due to the high cost of
sequencing associated with whole genome
methylation sequencing (WGMS) at relevant
coverage.

The Ultima Genomics (UG) sequencing platform
utilizes a new sequencing architecture that
combines an open flow cell design on a circular
wafer with large surface area, utilizing rotational
reagent delivery, optical end-point detection, and
mostly natural nucleotides without reversible
terminators. This platform enables sequencing
billions of reads with high base accuracy (Q30 >
85%), at significantly reduced cost versus
conventional sequencing platforms?¥, thereby
allowing efficient generation of comprehensive
WGMS data. In this study we used the UG
platform to sequence 44 WGMS samples along
the FAP tumor progression from normal mucosa
to adenocarcinoma at high coverage (30-60X).
This broad WGMS dataset allowed us to better
monitor the transformation happening at the
early stages of cancer development and discover
thousands of methylation changes that occur at
the transition from the normal mucosa stage to
both the benign and dysplastic stages before
adenocarcinoma formation. Using WGMS we
were also able to assess hundreds of thousands of
CpG methylation changes that occur at distal
regulatory elements, most of which were not
previously measured by enrichment and array-
based assays. In addition to presenting this novel
method and results, the data serve as a valuable
scientific resource for probing early events
associated with CRC.
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Results

Ultima Genomics whole genome methylation

To compare WGMS data generated by the UG
sequencer to WGMS methods we sequenced the
standard reference HG001, HG002 and HG005
cell-lines using both EM-seq®® and Bisulfite?*
conversion methods and compared our data with
the recently published Genome in a Bottle
(GIAB) EpiQC data?’. Using the UG sequencer
we sequenced an average of 922 million reads per
sample for each of the methods with two to five
replicates (Supplementary table 1). We first
examined general mapping statistics such as read
mappability rate, duplication rate and the percent
of Lambda (fully unmethylated) and pUC19
(fully methylated) control DNA spike-ins.
Overall, UG datasets had high mappability rates
(95% to 99%) and low duplication rates (15% to
30%; Supplementary Fig la-b). The internal
controls for methylation (Lambda and pUC19)
showed high conversion efficiency both for EM-
seq (98.5%) and Bisulfite-seq (97%) (Fig la-b)
and C to T conversion rates at unmethylated
CpGs were uniform along the read
(Supplementary Fig 1c).

We next examined the genomic coverage of CpG
sites achieved by the UG in comparison to EpiQC
data. UG achieved comparable coverage
statistics to EpiQC, with median CpG depth
demonstrating a linear increase in depth as
function of numbers of reads (Fig 1¢c). At the read
level UG achieved between 4.5 and 5.5 average
CpG depth per 100 million reads vs 4-7 by
EpiQC (Fig 1d, note that UG reads were
generally slightly shorter than in EpiQC data,
Supplementary table 1).

Importantly, the high UG coverage depth
resulted in a much higher average coverage per
CpG (Fig le). On average, we observed 70% of
CpGs covered at over 20X leading to smaller
deviations between replicates when compared to
lower coverage (Supplementary Fig 1d).

To compare the methylation calls between the
two sequencing platforms we first assessed the
average methylation across all the samples
sequenced (Supplementary Fig 1e). We observed
high variability between the different library
preparation methods (standard deviation between
methods are 0.7, 1.2, 1.5 for HG001, HG002 and
HGO005), which is higher than the variability
between the different platforms (standard
deviation between platforms of EM-seq method
are 0.57, 0.77, 0.62 for HGOO1, HG002 and
HGO005). Importantly, we observed that
methylation patterns around the transcription
start site (TSS) of all genes and across many
different genomic features behaved similarly on
both platforms (Supplementary Figs 1f & 2a).

To further test agreement between the different
platforms we measured the -correlation of
methylation levels of all CpGs with >5X
coverage in both EpiQC data and UG genomics
data (24.5 M CpGs; Fig 1f). We observed a very
high correlation (R = 0.94 to 0.96) when
measuring methylation levels of the same cell
line with the two technologies. Correlation
between different conversion methods was
similar to that of the correlation using the same
conversion method (R = 0.94 to 0.96) between
the two sequencing platforms (Fig 1g).

Finally, we evaluated differential analysis
performed on the two sequencing platforms by
identifying differentially methylated regions
(DMRs) between HG001 and HG002. We found
an 80% overlap between the detected DMRs of
the different platforms for both EM-seq and
Bisulfite-seq conversion (Fig 1h). Further
inspection demonstrated that most differences in
detected DMRs were explainable by marginal
calls near the calling threshold (Figl i-j). Overall,
these results indicate that the technical variation
between UG and EpiQC is modest (R = 0.95)
when compared to differences in biological
samples from different sources (HGOO1 wvs
HGO002; R =0.82).
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- Figure 1: Comparison between Ultima Genomics sequencing of to EpiQC EpiQC reference set. (a-b) Average

| methylation levels (y-axis) at control sets, Lambda non-methylated DNA and pUC19 fully-methylated DNA in UG/EpiQC

. EM-seq (enzymatic conversion) libraries, in EpiQC Accel-NGS (bisulfite conversion) libraries and in UG xGen (bisulfite
conversion) libraries. (¢) CpG coverage in UG and EpiQC data, median CpG depth (x-axis) vs. millions of sequenced reads
(y-axis). (d) CpG median coverage normalized to 100 million reads at all data sets. (e) Fraction of CpGs out of hg38 CpGs
(29M) that are covered by by at least two replicates in none (gray), both (brown) or each of the two platforms (yellow and
blue, EpiQC and UG respectively) .
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Figure 1. Continue from previous page: (f) Correlation of whole genome methylation sequencing between cell lines in
platforms. Heatmap shows the Pearson correlation coefficients between each two samples coming from different sources,
assays and platforms. Top row denotes the source of the sample(orange, brown and yellow for HG001, HG002 and HG005
respectively). Second row denotes the two platforms (yellow and blue for EpiQC and Ultima Genomics, respectively). Third
row denotes the two conversion methods (brown and green for EM-seq enzymatic conversion and bisulfite conversion,
respectively). Fourth row denotes the library prep methods (red, orange, yellow, green and blue for EM-seq, Accel-NGS,
Splat, Trueseq and xGen, respectively). (g) Examples of four pairwise correlation plots taken from Fig 1f (border color of
each image is marked on the correlation map) (h-j) Differentially methylated regions (DMRs) are detected similarly in UG
and EpiQC platforms. (h) DMRs between HG001 and HG002 genomes were called in both platforms. Venn diagrams show
the overlap in DMRs between the two platforms, using two replicates from EM-seq (left) and two replicates from Bisulfite
conversion (right) methods, (i) Platform-specific DMRs show a similar change in methylation. Shown is the observed
methylation delta between each two replicates of HG001 and HG002 genomes in UG (x-axis) and in EpiQC (y-axis), color
of the points encodes for platform-specificity (yellow and blue for EpiQC specific regions and UG specific regions
respectively). (j) Observed methylation delta in methylation between each two replicates of HG001 and HG002 genomes in
UG (x-axis) and in EpiQC (y-axis) in jointly-called DMRs.

DNA  methylation changes with cancer
development of Familial adenomatous
polyposis patients

We next examined the ability of the UG platform
for characterization of genome wide methylation
changes during the early colon polyp formation
using FAP samples. To this end, we collected
blood and multiple fresh frozen samples of colon
“normal” mucosa, polyps and an
adenocarcinoma sample from nine FAP patients
(Fig 2a; Table 2; Methods). We also collected
fresh frozen samples from adenocarcinoma
tissues from six CRC patients. Tissue slides of
the normal mucosa and polyps were examined by
a pathologist and defined into four categories of
increasing severity: normal mucosa, benign,
dysplastic and adenocarcinoma. DNA was
extracted from these samples, processed using
EM-seq, and sequenced to an average genomic
coverage of ~50 X (25x to 112x) (Fig 2a and
Supplementary Fig 3b).

To gain insight on the tissue composition of these
samples we applied a computational method for
methylation-based cell type deconvolution2?
(methods; Supplementary Fig 3c). This analysis
revealed that three of the adenocarcinoma
samples had a negligible colon fraction and one
of them contained a high fraction of lung cells.
Pathologist review on Hematoxylin and Eosin
(H&E) slides taken from FFPE samples from

some of the same tissues further validated the
tissue composition estimation for 2 of 3 cases
(Supplementary  Fig 3d) including the
observation of significant lung cell infiltration in
one of the samples. To avoid the possible
confounding effect of significant non-colon
tissue in the samples we set a threshold of 35%
colon fraction as the minimal requirement for
downstream analysis, excluding six samples (3
AdCa, and 3 normal mucosa polyps) from further
analysis.

Average genome wide methylation levels show a
gradual decrease during tumor progression from
a median of 75% genomic methylation in normal
tissues to ~65% in adenocarcinoma samples (Fig
2b; Supplementary Fig 3a) in agreement with
existing studies!!?°. To visualize the change of
methylation states during disease progression we
projected the observed global methylation levels
using the UMAP dimensionality reduction
technique (Fig 2c). This embedding clearly
differentiates the blood samples from the colon
ones and suggests a gradual change that is largely
consistent with pathological grading of the
tissues. Pearson correlation of the global
methylation levels supports similar observations
(Supplementary Fig 3f).

To further examine whether this trend is
consistent in different functional genomic
regions we measured methylation changes in
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Figure 2: Familial adenomatous polyposis samples collected across different pathologist-defined states show changes
in DNA methylation at malignant states trajectories. (a) Whole genome methylation sequencing at high coverage was
done from four different pathologist-defined states: normal mucosa, benign, dysplastic and adenocarcinoma. Blood samples
were collected from the same individuals for reference. (b) Average genome-wide DNA methylation levels at each of the
pathologist-defined states(red, yellow, light brown, dark brown and black for blood, normal mucosa, benign, dysplastic and
adenocarcinoma, respectively). (¢) UMAP representation of WGMS samples done on CpGs where all samples have at least
10X coverage per CpG (colored same as in (b)) (d-f) Average DNA methylation levels of all disease states (colored same

as in (b)) by different genomic features (x-axis).

CpG Islands/Shores/Shelves (Shores: 2kb around
the CpG islands, Shelves: 2k-4kb around the
CpG island), repeat elements and other
regulatory elements. (Fig 2d-f). In contrast to
most genomic features, CpG islands exhibit a
slight increase in methylation during cancer
progression while the CpG shelves and shores
show the same decrease as other regions (Fig
2¢)*Y. 5> UTR regions that typically contain many
CpG islands also show a similar increase. Other
genomic elements that show deviation from the
global behavior are colon-specific regulatory
regions and enhancers (Fig 2e and
Supplementary Fig 3e); these regions lose
methylation in the progression to dysplastic state

and regain methylation from dysplastic to tumor
state. In addition, we observe that the variability
within genomic features increases with
progression towards cancer (Fig 2d-f and
Supplementary Fig 3e)

Tens of thousands of differentially methylated
regions (DMRs) are found between normal
mucosa and adenocarcinoma states

To characterize genomic regions that change in
methylation during tumor progression we
performed a pairwise DMR3!' test between
normal mucosa (M) to the pathologist-defined
sample groups (benign (B), dysplastic (D) and
adeno (A), B-M, D-M, or A-M, respectively).
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Figure 3: Differential methylated regions during progression from normal to malignant. (a-b) Intersect plot of
pairwise comparison of normal vs benign, dysplastic and adenocarcinoma where horizontal bars show the size of each
pairwise DMR set and the horizontal bars show the size of the respective overlap. (a) 144,284 Hypo-methylation DMRs
between all pairwise tests. (b) 6224 Hyper methylation DMRs between all pairwise tests, 1334 of which occur early in the
benign stage. (c) Volcano plots of differential methylation levels: shown are methylation differences compared to normal
mucosa samples (x-axis) and g-value statistical significance (y-axis) of all pairwise comparisons. (d) Genomic annotation
of different DMRs tests distinguished to hyper- and hypo-methylation. (¢) HOXA cluster shows multiple DMR both at
hyper and hypo methylation. (f-g) comparison to the TCGA dataset. (f) Change in methylation in CRC progression
specifically matches colorectal adenocarcinoma (COAD) and rectal adenocarcinoma (READ). Shown is the Pearson
correlation coefficient between the change in methylation from normal mucosa and disease states (color-coded) in our data
and normal to tumor methylation changes in TCGA data of 450k arrays. Comparison includes 339,977 CpGs. (g) High
fraction of the hyper-DMRs, but not the hypo-DMRs are differentially methylated in the TCGA dataset. Differential
methylation in TCGA as determined by DNMIVD?? per CpG site and cancer type, and filtered to include methylation
difference >15%, adjusted p-value <0.05. Presented is the percent intersection of the CpGs in DMRs we detect among

differentially-methylated CpGs of TCGA.

Overall, we found 150,508 DMRs covering
almost 3 million individual CpG sites, one of the
largest such DMR maps ever reported.
Partitioning DMRs to regions that lose
methylation during disease progression (hypo)
and regions that gain methylation during disease
progression (hyper), we found that hypo-
methylated DMRs are significantly more
common than hyper-methylated DMRs (144,284
vs 6,224) and that while many hyper-methylated
DMRs (30%) can already be seen in benign
polyps, only a small fraction of hypo-methylated
DMRs (10%) are detected first in the benign
polyps (Fig3 a-b) suggesting different
methylation dynamics over disease progression.
As may be expected, the amplitude of
methylation changes increases gradually from
the benign DMRs (90% of the delta = 0.246) to
the dysplastic and adenocarcinoma DMRs (90%
of the delta = 0.318 and 0.348 respectively; Fig
3c). We next examined the differences in
genomic features in each DMR group and found
that CpG islands, CpG shelves, promoters and
regulatory regions were overrepresented at
hyper-methylated DMRs, while normally “inert”
functional groups such as repeat elements and
intergenic regions were over-represented at
hypo-methylated sites (Fig 3d). This trend was
consistent among the different disease states. An
example for a cluster of hyper-methylated DMRs
is the HOXA locus (Figure 3e). This genomic
region of 35 kb has multiple DMRs that gradually
elevate in methylation levels from normal

mucosa to adenocarcinoma, and are associated
with reduced accessibility as viewed by ATAC-
seq data (Figure 3e). The expression of three
HOXA genes is repressed in tumors as seen in
TCGA data (Supplementary Fig 4a). HOX
hyper-methylation was observed before in
colorectal cancer as well as in multiple other
cancers™?.

We next wanted to test whether the gradual
changes we observe in the different disease states
are specific to CRC. To this end we compared the
average per-CpG methylation change in each of
the three disease states with the pan-cancer
methylation changes in the same CpGs in
hundreds of normal and tumor samples studied in
TCGA?! (Fig 3f). As expected, the change in
methylation in adenocarcinoma was mostly
correlated with methylation changes in COAD
(Colon adenocarcinoma) and READ (Rectum
adenocarcinoma) in TCGA (R > 0.8) whereas
correlation levels with other cancer types were
lower (R < 0.61). Of note, the change in
methylation in the intermediate disease states
(Benign, Dysplastic) were also specifically
correlated with the same matched tumor types,
and correlation increased with disease
progression (Fig.3f). We also observed that
hypo-methylated markers show a lower overlap
(<40%) with TCGA data, suggesting that hyper-
methylated regions are more cancer type specific
than hypo-methylated regions (Fig 3g).
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Figure 4: Poised genes are hyper-methylated during cancer progression. (a) DNA accessibility in normal colon samples
(ENCODE) vs DNA methylation levels in normal mucosa (this study), grouped and colored by ChromHMM chromatin
state. (b) K-Means (K=8) clustering of 11,323 variable CpG islands/shelves and shores (3825 CpG Islands, 4821 CpG
shelves and 2677 CpG shores) across all FAP samples. Variability was determined as standard deviation >10 across all
samples. First row denotes patient identity by color and second row denotes sample pathology label (yellow, light brown,
dark brown and black for normal mucosa, benign, dysplastic and adenocarcinoma, respectively) (c) Fraction of annotation
type (CpG island/shelves and shores) in each of the K-Means clusters. (d) Histone marks levels (H3K4me1/3, H3K27ac
and H3K27me3) sigmoid colon (ENCODE, Normal colon) on clusters 5-8 from panel b. Each row shows the color coded
histone mark level in the relevant genomic position centered around the CpG island/shore/shelf from low (red) to high
(blue). Top panels show average marker level. (e) GO enrichment of genes associated with CpG islands of clusters 5-8 of
panel b. Circle size correlates with the overlap between the GO term and the genes adjacent to the CpG islands in clusters
5-8. Circle colors maps the FDR corrected p-value for the enrichment (f) /RF4 genomic track showing gradual increase in
CpG methylation at the CpG islands next to the TSS and gradual decrease of CpG methylation at the gene body of /RF4.
First four rows show the chromatin accessibility in the four pathology groups, next four rows show histone modification

levels in normal mucosa and last panel shows DNA methylation level for the different groups as in panel b.

Lastly we assessed how many of the DMRs that
we detect are also found as differentially
methylated in TCGA data**. Among the full set
of DMRs we detected in all disease states
(153,525 regions), only 15% are covered by
Infinium HumanMethylation450 array (24,067
regions), occupying 71,462 array marker CpGs.
Thus, WGMS provides a substantially broader
view of dynamic DMRs and differentially
methylated CpGs.

Poised genes are hyper-methylated during
cancer progression

We next explored the relationship between DNA

methylation  dynamics and  chromatin
architecture and their correlated changes during
cancer progression. We first compared

methylation levels observed in normal mucosa
samples to the chromatin accessibility in the
same regions in normal mucosa**. Grouping
these regions according to predefined functional
chromatin  state clusters (ChromHMM?™)
captures different behaviors, where most regions
show negative correlation between methylation
levels and chromatin accessibility (Fig 4a). For
example, active regions such as active and
flanking TSS (groups 1-4) display high DNA
accessibility levels and very low DNA
methylation levels. Regions of strong and weak
transcription (gene bodies, groups 5-6) have high
DNA methylation levels and low accessibility
levels. Regulatory regions (enhancers, groups 7-

11) show an intermediate behavior where both
accessibility and methylation are at intermediate
levels. Bivalent enhancers and TSSs are the only
group that demonstrates a different trend
combining low accessibility levels and low
methylation levels in normal colon mucosa
tissues.

To better understand the relationship between
chromatin and methylation at CpG islands,
shelves and shores we clustered the 11,323
variable regions from 3,825 CpG Islands, 4,821
CpG shelves and 2,677 CpG shores (Fig 4b). The
resulting horizontal ordering of the samples
shows a gradual change in DNA methylation
from normal mucosa to adenocarcinoma. DMR
clusters 1-4, containing >75% CpG shores and
shelves, exhibit a general decrease in DNA
methylation  from  normal mucosa to
adenocarcinoma (Hypo-clusters), while clusters
5-8, consisting of >75% CpG islands, show an
increase in DNA methylation from normal
mucosa to adenocarcinoma (Hyper-clusters) (Fig
4c). Focusing on the chromatin state in Hyper-
clusters using public ChIP-seq data of four
histone marks (H3K4mel, H3K4me3, H3K27ac
and H3K27me3) in normal colon** we found that
>85% of the regions in the Hyper-clusters carry
both an activating mark (H3K4mel) and a
repressive mark (H3K27me3; Fig 4d) which is a
hallmark of poised/bivalent genes'®. Histone
marks at the Hypo-clusters show weak ChIP-seq
levels and thus their chromatin state could not be
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defined (Supplementary Fig 4b). Gene
enrichment analysis of the genes associated with
Hyper-clusters (Fig4 e; closest gene (<1000bp))
revealed a strong enrichment for general
developmental programs such as regionalization,
cell fate commitment and more. TCGA
expression of the genes associated with the CpG
islands/shelves and shores in each cluster
(Supplementary Fig4c) shows a global decrease
in expression from normal to tumor, with the
decrease being most significant in clusters 6-7
that gain methylation and are enriched with CpG
islands.

One example for a bivalent gene promoter can be
seen at the IRF4 gene that has no observed
accessibility at the gene promoter region while
having very strong H3K4mel and H3K27me3
signals (Fig 4f). The IRF4 promoter exhibits
gradual increase in methylation level and its gene
body region has a gradual decrease in
methylation levels. These epigenetic
modifications all occur with small and non-
significant expression changes observable in
TCGA data (Supplementary Fig 4d).

Enhancer  methylation show  non-linear

dynamics during CRC progression

The availability of ATAC-seq data for similar
FAP samples enables us to follow the dynamics
of DNA methylation and chromatin accessibility
in detail. We examined the methylation changes
at distal regulatory elements by integrating
accessibility data defined using scATAC from a
parallel dataset of  benign-dysplasia-
adenocarcinoma tumor progression in FAP
patients®®. We first filtered the accessible peaks
by distance from CpG islands and transcription
start site (>1 kb from both) and by the number of
CpGs in each peak (>3 CpGs per peak;
Supplementary Fig 4e). We then sorted the
resulting 165,297 peaks based on the observed
variability in the methylation levels across the
samples and selected the top 42,593 that had
>15% change in DNA methylation between

groups for further evaluation. K-means (K=6)
clustering of the methylation levels at these
enhancer regions reveals a strong global change
in methylation pattern between the groups (Fig
5a). Most of the variable enhancer regions
present a non-monotonic methylation dynamic
consisting of decreasing methylation with the
progression from normal mucosa to benign and
dysplastic states but elevated methylation in the
adenocarcinoma state. Chromatin
accessibility changes between the different
disease states mirror the methylation changes in
the same regions (Fig 5b). For example clusters
2 and 5 which gain methylation in tumor samples
exhibit decreased DNA accessibility, while
clusters 1,3,4 and 6 that lose DNA methylation
gain DNA accessibility. Testing for enrichment
of transcription factor motifs within each of the
different clusters (Fig 5c) revealed similar
groupings to the ones reported by analysis of
single cell ATAC seq data®® with a very strong
JUN:FOS (AP-1) enrichment at clusters that lose
methylation (gain accessibility) and CDX, OLIG,
GATA and NERUOD family transcription
factors at clusters that gain methylation (lose
accessibility). Specifically, cluster 5 shows a
very strong enrichment for the HOX family
transcription factors and also shows the highest
level of hyper-methylation in adenocarcinoma
samples.

A typical example for an enhancer with non-
monotonic methylation dynamics is the
IL6R/SHE enhancer (Fig 5d) which loses
methylation in the progression from normal
mucosa to the dysplastic state, but regains
methylation in adenocarcinoma. Chromatin
accessibility in these enhancer regions decreases
with disease progression and the expression of
associated genes (/L6R and SHE) has been shown
to decrease in (CRC) tumor (TCGA; Fig Se).
These results demonstrate the complex
choreography of regulatory events that occur
during early CRC formation and progression.
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Figure 5: Strong changes in DNA methylation across thousands of colon regulatory elements. (a) K-means (K=6)
clustering of 42,593 variable regulatory regions (defined by 500 bp-wide scATAC-seq peaks®) of all FAP samples colored
as in Fig 4b. (b) scATAC-seq accessibility levels inpeaks found in clusters from panel a grouped and colored by pathological
classification (x-axis; color code as in Fig 4b). (c) Transcription factor position weight matrix (PWM) enrichment in the 15
peaks with most significant p-values found in each cluster from panel a (TF with statistical significance of log10(p-value)
>10 are shown). Purple color intensity codes for log2-enrichment of PWM over background (scATAC-seq peakset). (d)
Genomic tracks of the IL6R gene loci as in Fig 4f where the lowest panel shows connection of enhancer regions to promoter
regions. (€) TCGA RNA expression (y-axis) of /L6R and SHE at tumor vs normal COAD samples.
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Discussion

DNA methylation has long been considered a
marker for cancer progression, aging and disease
state’’. To date, many large scale landmark
methylation studies balanced the scope and depth
of their assays using arrays, RRBS or target
capture methods?!3438, Despite the ability of
these assays to capture many biologically
relevant changes along with DNA methylation
levels, they capture only a fraction of genomic
CpG sites that exhibit functionally meaningful
changes in disease and aging. More recent
studies have demonstrated that whole genome
methylation sequencing (WGMS) indeed reveals
many informative regions whose DNA
methylation changes during aging, cancer
progression and cell differentiation and provides

a deeper understanding of biological mechanisms
39-44

Here, we present the utility of a novel sequencing
technology (UG) that enables cost-efficient
generation of WGMS data at scale. We validated
the equivalence of methylation data generated on
this platform using standard samples and criteria
defined by the EpiQC consortium in terms of
general sequencing criteria, conversion controls
and genomic coverage. Furthermore, we
demonstrate that detection of regions of
differential methylation between two genome-in-
a-bottle cell lines (HG001 and HG002) by UG
are highly similar to existing reference data.

Comprehensive WGMS can unlock information
on the function of genomic regions that have not
been explored so far. For example, focusing on
distal regulatory elements we measured changes
in methylation state of 1,350,249 CpGs in over
165,000 distal peaks defined by scATAC-seq.
Notably, only 63,363 CpGs (<5%) of these are
represented at the Infinium MethylationEPIC
array (850k array). Furthermore, we found that of
the >15% of these CpGs (224,765 out of
1,350,249 ) that exhibit significant variability

explored in our study, only <6% (12,320 out of
224,765) are covered by the array.

Familial adenomatous polyposis (FAP) patient
samples offer a unique and valuable view of
cancer progression. Although samples are
collected at the same time point they cover
multiple  stages of tumor  progression
representing the malignancy trajectory and as
such provide an exceptional resource for
understanding early events that precede
adenocarcinoma formation. Using UG sequencer
we generated a unique dataset of WGMS at high
coverage (>50X) on 44 samples taken from 15
patients. In this work we were able to detect
millions of CpGs that change in the trajectory
from normal mucosa through benign and
dysplastic polyps to adenocarcinoma.
Remarkably, hundreds of thousands of these
CpGs become differentially methylated already
in the benign and dysplastic states suggesting that
many of the cancerous cellular transformations
occur at this early stage. Although most of the
differential changes that we detect reflect hypo-
methylation from the normal mucosa (144,284
hypo DMRs vs 6224 hyper DMR) only 10% of
the changes in normal to tumor are observed in
the early stages while a larger fraction (25%) of
the normal mucosa to adenocarcinoma hyper-
DMRs are already observed in the benign stage
(Fig 3a,b). Comparison with TCGA data
revealed that a larger fraction of the hyper-
methylated CpGs (70% as compared to 40%
overlap in hypo-DMRs) are specific to colorectal
tumors, suggesting a more tumor-specific
behavior in hyper-methylation which occurs at
tightly-regulated CpG islands. The gradual
nature of methylation changes during CRC
progression is observed in the increase in
correlation with methylation changes in
colorectal and rectal adenocarcinoma (Figs 3f,g),
suggesting again that early occurring methylation
changes are indeed part of the malignant
transformation.

By integrating ATAC-seq and WGMS datasets
we demonstrated the resemblance in these
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signals both in terms of correlated changes in
specific regulatory elements as well as similar
gene sets emerging from the cluster analysis (Fig
5c; Becker et al 20223¢). These similarities
highlight the fact that these two assays mirror
similar underlying biological changes and to
suggest that WGMS results can serve as proxy to
the underlying chromatin state. Furthermore, by
providing the methylation haplotypes of single
molecules, WGMS provides further information
on subpopulation of cells and how they can be
distinguished from one another.

Individual sample clustering (Fig4b, Fig5a)
based on WGMS levels revealed a gradual
methylation change in pathologist-defined
malignancy states, but also revealed clustering of
individuals. Specifically, patients A014 and
A035 form clusters which include multiple
malignancy states. This observation may relate to
the genotype of patient A014, which lacks the
germline APC mutation*, and the polyps of
patient A035 which present a sessile phenotype.
These results mark the complexity of the DNA
methylation phenotype and its specificity to
individual patients and their health records. This
emphasizes the need to combine multiple
datasets of each individual patient.

In summary, this study demonstrates the utility
of a novel sequencing platform in uncovering
genome-scale information on the molecular
mechanisms underlying the trajectory from
normal mucosa to adenocarcinoma. Although
analysis of additional samples is required to
further characterize the physiological impact of
these changes, we believe that the comprehensive
dataset produced in this study will serve as a
valuable resource for future studies and as a
demonstration of the potential impact of this
approach.

Methods:
Patient Selection and Sample collection

Patient selection and sample collection were done as
described in Horning et al*.

NGS Library preparation

To generate whole genome DNA methylation libraries,
approximately 200 ng of genomic DNA from each Genome
in a Bottle (GIAB) reference sample (HG001, HG002, and
HGO005) (Coriell) and FAP samples was mechanically
sheared to a fragment size of 200-300 bp (short insert) or
300-400 bp (long insert, EM-seq only) using Covaris. For
EM-seq libraries, NEBNext® Ultra II DNA Library Prep
reagents (NEB #E7645) were used to ligate SmC-protected
adapters. The NEBNext® Enzymatic Methyl-seq
Conversion Module (NEB #E7125) was used to perform a
two-step enzymatic conversion of non-methylated
cytosines to uracils. For bisulfite-converted (Bisulfite-seq)
libraries, fragmented gDNA was denatured and non-
methylated cytosines were converted to uracils using the
EZ DNA Methylation-Gold Kit (Zymo D5005). After
conversion, single stranded library prep was carried out
using the xGen™ Methyl-Seq DNA Library Prep Kit (IDT
#10009860). In the final PCR step for EM-seq and
Bisulfite-seq libraries, Ultima Genomics (UG)-specific
indexing primers were used.

For all EM-seq libraries we followed New England Biolabs
(NEB) recommendations of ~200 bp insert size resulting in
an average insert size of ~180 bp (Supplementary table 1).

Ultima Genomics sequencing

Ultima Genomics sequencing was done as previously
described in Almogy et al**

Data processing for GIAB and FAP samples

Raw reads in FASTQ format were first trimmed for
Illumina P5 adaptors and base quality using Cutadapt*® ( -
q 20,20 - 0.2 -m 50 -g ACACGACGCTCTTCCGATCT
), reads were then mapped to HG38 reference (containing
pUC19 and Lambda genome) using BWA-Meth*’ with
default parameters. Output BAM file was then
deduplicated and sorted using MarkDuplicatesSpark from
GATK®. To call methylation levels we used both
MethylDackel
(https://github.com/dpryan79/MethylDackel) and WGBS-
Tools (https://github.com/nloyfer/wgbs tools). Mbias
plots were produced using MethylDackel with default
parameters.

Analytical methods
Differentially Methylated Regions (DMRs):

For DMR analysis we used Metilene?!. Input CpG data for
metilene was first filtered by coverage (>=5 in GIAB
samples, >=10 in FAP samples) on all CpGs in the pairwise
test. We ran metilene with the following flags -d 0 -m 5 -v
0.2, we then filtered the results by >15% methylation diff
and by either qvalue < 0.05 or KS-test < 0.05.
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Cell type deconvolution

Prediction of cell type composition in our FAP and CRC
data was done wusing the meth atlas package
(https:/github.com/nloyfer/meth atlas)®’. To this end,
WGMS data was reduced to 450 k array format.

TCGA methylation and expression data

Processed methylation data from TCGA was obtained from
the DNA Methylation Interactive Visualization Database
(DNMIVD)*. Differential methylation was determined per
CpG site and cancer type, and filtered to include
methylation difference (tumor vs. normal) > 15%, adjusted
p-value < 0.05. As TCGA data is of 450 k array, matched
CpGs were extracted from our WGMS. Sites common to
all 21 cancer types and our data include 339,977 CpGs.
Gene expression data of the COAD dataset was
downloaded as “htseq-counts” from UCSC Xena browser.

K-means clustering

K-Means clustering of average methylation across samples
was done using Kmeans++ algorithm. Clustered data was
then sorted using hclust both on the samples (horizontal)
and clusters (vertical).

Transcription factor enrichment

To generate motif match matrices, motifs from the curated,
high-confidence JASPAR2020 vertebrate core database
were obtained®. We called significant motif matches in
peaks, or subsets of peaks, using JASPAR motif position
weight matrices and the function “matchMotifs” from the
“motifmatchr” and “chromVAR” packages, resulting in a
binary peaks-by-matches matrix. To compute enrichments,
we defined foreground (specific cluster) and background
peak sets (all scATAC-seq peaks), then performed a two
sided Fisher’s Exact test for the over representation of each
motif in the foreground set. For K-means cluster motif
enrichments, we aggregated all peaks from a given K-
means cluster and tallied the total number of matches for
each motif in the cluster, and we used all of the other
clusters as the background

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author upon request.
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