

1 **Selenocysteine metabolism is a targetable vulnerability in *MYCN*-amplified cancers**

2
3 Hamed Alborzinia^{1,2*§}, Zhiyi Chen^{3*}, Umut Yildiz^{1,2*}, Florencio Porto Freitas³, Felix C.E. Vogel⁴, Julianna
4 Varga^{1,2}, Jasmin Batani³, Christoph Bartenhagen⁵, Werner Schmitz⁶, Gabriele Büchel⁷, Bernhard
5 Michalke⁸, Jashuo Zheng⁹, Svenja Meierjohann¹⁰, Enrico Girardi^{11,16}, Elisa Espinet^{12,13}, Andres Florez¹⁴,
6 Ancely Ferreira dos Santos³, Nesrine Aroua^{1,2}, Lisa Schlicker⁴, Thamara N. Xavier da Silva⁴,
7 Adriana Przybylla^{1,2}, Petra Zeisberger^{1,2}, Giulio Superti-Furga^{11, 15+}, Martin Eilers⁶, Marcus Conrad⁹,
8 Matthias Fischer⁵, Almut Schulze⁴, Andreas Trumpp^{1,2#§}, José Pedro Friedmann Angeli^{3#§}

9
10 1- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg,
11 Germany

12 2- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.

13 3- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Würzburg,
14 Würzburg, Germany.

15 4- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg,
16 Germany.

17 5- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology,
18 University Children's Hospital, Medical Faculty, University of Cologne, Germany.

19 6- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of
20 Würzburg, Würzburg, Germany.

21 7- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany.

22 8- Research Unit Analytical BioGeoChemistry, Helmholtz Center München (HMGU), Neuherberg, Germany.

23 9- Institute of Metabolism and Cell Death, Helmholtz Zentrum München (HMGU), Neuherberg, Germany.

24 10- Department of Pathology, University of Würzburg, Würzburg, Germany.

25 11- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.

26 12- Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of
27 Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain.

28 13- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació
29 Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain.

30 14- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA.

31 15- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria

32 16- Solgate GmbH, Klosterneuburg, Austria

33
34 * These authors contributed equally to this work

35 # These authors jointly supervised the study

36
37 §Correspondence to

38 pedro.angeli@vichow.uni-wuerzburg.de (J.P.F.A.)

39 hamed.alborzy@gmail.com (H.A.)

40 a.trumpp@dkfz-heidelberg.de (A.T.)

41
42 **Competing interests:** The authors declare the following financial interests/personal
43 relationships which may be considered as potential competing interests: M.C. is the co-
44 founder of ROSCUE THERAPEUTICS GmbH and author of patent application related to
45 ferroptosis. G.S-F. is co-author of patent applications related to SLCs, co-founder of Solgate
46 GmbH as well as the Academic Project Coordinator of the IMI grants RESOLUTE and
47 Resolution in partnership with Pfizer, Novartis, Bayer, Sanofi, Boehringer-Ingelheim and Vifor
48 Pharma. The G.S-F. laboratory receives funds from Pfizer. All other authors declare no other
49 relevant conflicts of interest.

50

51

52 **Abstract**

53 Understanding the operational molecular, and metabolic networks that determine the balance
54 between pro- and anti-ferroptotic regulatory pathways could unravel unique vulnerabilities to
55 be exploited for cancer therapy. Here we identify the selenoprotein P (SELENOP) receptor,
56 LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis
57 in vitro and in orthotopic neuroblastoma mouse models. Specifically, the exquisite dependency
58 on LRP8-mediated selenocysteine import is caused by the failure of MYCN-amplified cells to
59 efficiently utilize alternative forms of selenium/selenocysteine based uptake necessary for
60 selenoprotein biosynthesis. Increased activity of one of such transporters, SLC7A11, in
61 MYCN-amplified cells leads to cysteine overload, progressive mitochondrial decline and
62 impaired proliferation. These data reveal in LRP8 a targetable, and specific vulnerability of
63 MYCN-amplified neuroblastoma cells and disclose a yet-unaccounted mechanism for
64 selective ferroptosis induction that has the potential to become an important therapeutic entry
65 point for MYCN-amplified neuroblastoma.

66 **Statement of significance:** Given the largely unsuccessful repurposing of adult oncology
67 drugs for the treatment of neuroblastoma, our discoveries pave the way for novel ferroptosis
68 based strategies for this entity. Specifically, targeting of LRP8 may offer novel therapeutic and
69 safer opportunities for a number of pediatric malignancies and MYCN driven cancers.

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90 **Introduction**

91 Ferroptosis is a unique cell death modality that is attracting increasing interest as a means to
92 eradicate therapeutically challenging tumor entities (1, 2). At the molecular level, ferroptosis
93 has been shown to be primarily suppressed by the selenoprotein glutathione peroxidase 4
94 (GPX4) (3). GPX4 utilizes reducing equivalents from glutathione (GSH) to suppress the
95 accumulation of lipid hydroperoxides, and, ultimately, the induction of cell death (4). This
96 central role of GPX4 has spurred an intense search for strategies and molecular tools able to
97 inhibit its activity (2, 3, 5, 6). Nonetheless, the lack of suitable *in vivo* GPX4 inhibitors and the
98 foreseen systemic toxicity of such compounds (7-9) are still limiting and pose cautionary
99 aspects for the translation of these discoveries into anti-cancer therapies. Recently we, and
100 others, have uncovered that high-risk *MYCN*-amplified neuroblastomas are characterized by
101 a striking GPX4 dependency (10-12). The molecular determinants of this increased
102 dependency remain elusive, and untangling the mechanisms dictating ferroptosis
103 hypersensitive states could pave the way to specifically exploit these vulnerabilities. In the
104 present work, using genome-wide and single-cell transcriptomics CRISPR-activation
105 (CRISPRa) screens, we identify novel regulators of ferroptosis and detect shared
106 transcriptional signatures and states regulating ferroptosis hypersensitivity. Specifically, we
107 identify the low-density lipoprotein receptor (LDLR) related protein 8 (LRP8, also known as
108 APOER2) as a critical bottleneck in selenium/selenocysteine metabolism in *MYCN*-amplified
109 entities. We found that the *MYCN*-associated vulnerability is due to the incompatibility of
110 *MYCN*-amplified cells to activate alternative selenium/selenocysteine pathways, such as
111 SLC7A11, required to support selenoprotein translation. Therefore, our work demonstrates
112 that different pathways of selenium/selenocysteine acquisition are associated with unique
113 metabolic consequences that can be accompanied by a severe metabolic disruption in specific
114 oncogenic contexts. The identification of these metabolic vulnerabilities offers unanticipated
115 opportunities to specifically, selectively and safely target LRP8 to induce ferroptosis for
116 therapeutic benefit.

117

118 **Results**

119 ***CRISPR activation screens identify novel regulator of ferroptosis***

120 In order to gain additional insight into the process of ferroptosis, we reasoned that
121 understanding the mechanisms capable of suppressing ferroptosis in intrinsically
122 hypersensitive cells would provide a means to identify as yet uncharacterized regulators of
123 ferroptosis. To this end, we initially analyzed data from the depmap portal (www.depmap.org)
124 in search for cell lines that are hypersensitive to the GPX4 inhibitors RSL3 and ML210 (**Fig.**
125 **1A**). We selected the *MYCN*-amplified neuroblastoma cell line SK-N-DZ, a representative of
126 tumor entities that still defy current treatments and for which we and others have previously

127 reported a marked dependency on GPX4 (10-13), thus providing an ideal setting to interrogate
128 the mechanisms underlying this hypersensitivity. Using this cell line, we performed genome-
129 wide CRISPR activation (CRISPRa) screens during which we induced ferroptosis via two non-
130 overlapping mechanisms (**Fig. 1B**), namely via i) GPX4 and via ii) system Xc- inhibition.
131 Screen deconvolution allowed us to identify several known and novel ferroptosis regulators
132 (**Fig. 1C**). A secondary screen focusing on the obtained hits confirmed the resistance
133 phenotype for the majority of the scoring hits when selected against the GPX4 inhibitor RSL3
134 (**Fig. 1D**). In order to provide an unbiased understanding of the differential mechanism of
135 cellular states that prevent ferroptosis, we coupled the focused screen to single-cell RNA-seq
136 (scRNA-seq, CROP-seq) as a readout (**Fig. 1E**). The focused library consisted of two guide
137 RNAs (gRNAs) targeting each of the selected 36 candidate genes together with ten non-
138 targeting control gRNAs (NT ctrl). We obtained high-quality data from ~11,000 CRISPRa-
139 assigned cells (mean of ~78,000 reads and median of ~6,600 genes per cell) (fig. S1A, B).
140 Selecting cells with a strong CRISPRa phenotype (see methods) allowed us to retrieve 130
141 cells on average for each of the selected hits (32/36 target gene identities detected, fig. S1B).
142 Target identities for which cells could not be assigned (*SLC7A11*, *TAF4*, *ARR3*, *SLC13A4*)
143 likely conferred a negative impact on cell proliferation as a consequence of target gene
144 overexpression in the absence of ferroptosis-inducing agents (fig. S1B). As expected, cells
145 assigned to a particular perturbation cluster showed an increased expression of the targeted
146 gene (**Fig. 1F** and fig. S1D, E). Interestingly, the impact of several CRISPRa phenotypes
147 converged on the expression of known ferroptosis regulators. For instance, overexpression
148 phenotypes of *IRS4* and *MET* shared the upregulation of known ferroptosis suppressors,
149 including the transcription factor *NFE2L2* that drives the expression of genes involved in redox
150 signalling and oxidative protection (14), the heat-shock protein *HSPB1*, as well as the CoQ
151 oxidoreductases *AIFM2* (also known as *FSP1* (15, 16)) (fig. S1E, F). Gene Ontology analysis
152 of differentially expressed genes upon CRISPRa showed significant enrichment in processes
153 involved in cellular detoxification, energy metabolism, and proteasomal degradation that have
154 all been previously associated with ferroptosis (17-19) (fig. S1G). Interestingly, the highest
155 scoring hit in our primary screen, *LRP8*, clustered together with the *GPX4* overexpression
156 phenotype in our scCRISPRa screen, underscoring that the mechanism underlying ferroptosis
157 resistance might overlap and be shared between multiple groups (**Fig. 1F** and fig. S1C, E).
158 Thus, our scCRISPRa secondary screen faithfully recapitulated the gRNA identity in single-
159 cell assays and simultaneously provided transcriptional signatures of different ferroptosis
160 resistant states derived from the genome-wide screen.

161

162

163 **SELENOP is a critical source of selenium to support the growth of a subset of MYCN-
164 amplified neuroblastomas**

165 The identification of LRP8 as a critical regulator of ferroptosis sensitivity is in agreement with
166 data from the cancer therapeutic response portal (CTRP), showing that expression of *LRP8*
167 strongly correlates with resistance to GPX4 inhibitors (ML210, RSL3 and ML162) (fig. S2A)
168 (20). To functionally validate our findings, we first overexpressed *LRP8* using a CRISPRa
169 system in which SK-N-DZ cells became robustly resistant to RSL3 treatment (fig. S2B).
170 Similarly, stable overexpression of a Flag-tagged h*LRP8* in SK-N-DZ cells conveyed
171 resistance to a panel of ferroptosis inducers covering differential modes of action (**Fig. 2A, B**).
172 In line with a specific inhibitory role for LRP8 in ferroptosis, an overall impact on sensitivity
173 towards other cytotoxic compounds was not observed (fig. S2C). In accordance with the
174 protective effect observed, *LRP8* overexpression suppressed lipid peroxidation in cells treated
175 with a GPX4 inhibitor (**Fig. 2C**). Furthermore, overexpression of *LRP8* was able to increase
176 ferroptosis resistance in a larger panel of cell lines (**Fig. 2D**). No other members of the LRP
177 family showed similar effects when overexpressed, highlighting the specific role of LRP8 (fig.
178 S2D, E).

179 Next, we set out to explore the mechanism by which LRP8 protects cells from ferroptosis.
180 Previous studies have established that members of low-density lipoprotein (LDL) receptor-
181 related protein, including LRP2 and LRP8, are receptors for the selenium carrier protein
182 SELENOP (21, 22), indicating that modulation of selenocysteine metabolism could be the
183 major mechanisms by which LRP8 protects cells from ferroptosis (**Fig. 2E**). This hypothesis
184 is in agreement with the finding that overexpression of *LRP8* leads to upregulation of GPX4 at
185 the protein level without impacting RNA levels, pointing towards an underlying post-
186 transcriptional regulation (**Fig. 2A** and fig. S1F and 2F). Next, to address the requirement of
187 LRP8, we generated LRP8-deficient SK-N-DZ cells and observed that these cells, without
188 additional stressors, readily underwent massive ferroptosis-like cell death in the absence of
189 ferroptosis-inhibiting compounds (**Fig. 2F**). To further corroborate this observation and provide
190 mechanistic support for targeting LRP8 in neuroblastoma, we deleted *Lrp8* in the murine TH-
191 MYCN neuroblastoma mouse model (**Fig. 2G**) and in a larger panel of neuroblastoma cell
192 lines with and without *MYCN* amplification (fig. S2G-I). These additional models fully
193 recapitulated the observation that LRP8 is essential to support the viability not only of human
194 neuroblastoma cell lines but that it is also essential in a well-defined neuroblastoma genetic
195 model driven by *MYCN* (fig. S2H-I).

196 Given the important role of selenocysteine metabolism in preventing ferroptosis, we next
197 asked if any correlation with the clinical outcome can be observed in cohorts of pediatric
198 neuroblastoma patients. First, we showed that high *GPX4* expression is a robust predictor of
199 poor survival, arguing that ferroptosis could indeed be a major tumor-suppressing mechanism

200 in neuroblastoma (fig. S3). Although *LRP8* expression itself was not associated with event-
201 free survival, expression of several members of the selenium/selenocysteine metabolic
202 pathway downstream of *LRP8* as well as *LRP8* codependent enzymes (i.e, *SEPHS2*, *PSTK*,
203 *EEFSEC*, *SECISBP2*) showed strong correlation with poor disease outcome, a finding that is
204 in line with the generally high expression of members of the selenocysteine biosynthetic
205 pathway in high-risk neuroblastoma (fig. S3). These data suggest that the efficient flux of
206 selenium/selenocysteine through this pathway is a strong determinant for poor survival of
207 neuroblastoma patients and may mediate therapy resistance. This hypothesis also agrees
208 with our observation that SK-N-DZ cells were unable to grow in selected batches of fetal
209 bovine serum (FBS) unless supplemented with exogenous sources of selenium or ferroptosis-
210 inhibiting compounds (fig. S4A). Strikingly, we could identify that FBS unable to support the
211 growth of this cell line was not devoid of total selenium but showed remarkably low levels of
212 *SELENOP* (fig. S4B). Accordingly, the protective effect conferred by the overexpression of
213 *LRP8* was dramatically reduced in such conditions (fig. S4C). Unequivocal evidence for a
214 direct link between *LRP8*, selenocysteine, *GPX4* and cell survival was provided by showing
215 that overexpression of wild-type *GPX4* was unable to rescue cell viability upon loss of *LRP8*,
216 but that expression of *GPX4* (U46C), a mutant that retains catalytic function but bypasses the
217 requirement of selenium for efficient translation (23), could fully restore cell viability (**Fig. 2H, I**).
218 In line with this, knockdown of selenophosphate synthetase 2 (*SEPHS2*), a central enzyme
219 in the metabolism of selenium, significantly reduced ferroptosis resistance of cells
220 overexpressing *LRP8* (fig. S4D). Additional proof that ferroptosis is induced in *LRP8*-deficient
221 cells was provided by demonstrating that lipid peroxidation can be triggered in the absence of
222 *LRP8* and that this is prevented by the addition of ferrostatin-1 (Fer1) or by the overexpression
223 of the *GPX4*-independent ferroptosis suppressor *AIFM2* (*FSP1*) (fig. S4E, F) (15). Taken
224 together, our results suggest that targeting *SELENOP* uptake via *LRP8* could be a valuable
225 strategy for selectively triggering ferroptosis in *MYCN*-amplified neuroblastoma.
226

227 **Characterization of selenium uptake mechanisms**

228 The observation that *MYCN*-amplified neuroblastoma cells are highly dependent on *LRP8* for
229 selenium uptake is unanticipated, given that alternative forms and uptake mechanisms exist
230 (24). Moreover, the speciation analysis of FBS showed that selenite and selenate were
231 present, both at approximately 1-2 nM, but these species were unable to sufficiently support
232 selenocysteine biosynthesis and consequently unable to suppress ferroptosis in
233 neuroblastoma (fig. S4B). Our *in vitro* rescue experiments suggested that additional 20-fold
234 excess of selenite was required to rescue viability (fig. S4B). These findings led us to
235 hypothesize that alternative mechanisms of selenium provision must be inefficient in
236 neuroblastoma cells. In order to gain insights into these alternative mechanisms, we devised

237 two CRISPR-based screens focusing on solute carriers (SLCs), as these transporters are the
238 major mediators of soluble metabolite uptake into cells (25). First, we took advantage of the
239 fact that SK-N-DZ requires supplementation of selenium for proliferation in SELENOP poor
240 conditions. Therefore, we supplemented specific compounds able to support the growth of this
241 cell line, namely selenocystine, selenite, beta-mercaptoethanol and selenomethionine, and
242 compared gRNA representation under these conditions (**Fig. 3A**). To allow such an
243 assessment, we normalized gRNA representation of each condition to that of the
244 selenomethionine condition, reasoning that the complete absence of selenium could impair
245 proliferation and thus hinder the identification of relevant transporters. Analysis of the
246 selenocystine and selenite supplementation conditions revealed that gRNAs targeting
247 *SLC7A11* and *SLC3A2* were the most strongly depleted. This indicates that system Xc-, in
248 addition to its previously reported role in indirect uptake (26, 27), is a major contributing factor
249 for the direct uptake of inorganic and organic forms of selenium (**Fig. 3B**). Additionally, our
250 screen also revealed that the sulfate transporter *SLC26A6* contributes to the uptake of selenite
251 (**Fig. 3B**).

252 In an alternative screen aiming to identify SLC synthetic lethal interactions with LRP8, we used
253 cells in which the deletion of *LRP8* did not lead to the loss of viability (HT1080 and A375) (fig.
254 S5A-D). Despite being viable upon genetic loss of *LRP8*, these cell lines still display a high
255 sensitivity towards several ferroptosis inducers (fig. S5B, D). Similarly, screens in both cell
256 lines retrieved the system Xc- subunits *SLC7A11* and *SLC3A2* as synthetic lethality with LRP8
257 deficiency (fig. S5E). Surprisingly, the *SLC26A6* transporter was not identified in these
258 settings, suggesting that this transporter might be only relevant in specific cell types, indicating
259 redundancy with other members of the SLC26A family. In line with these observations,
260 neuroblastoma cell lines show overall reduced expression levels of both the system Xc-
261 (*SLC7A11* and *SLC3A2*) and *SLC26A6*, compared to other cancer cell lines (**Fig. 3C**).
262 Furthermore, analysis of publicly available data (depmap portal) showed that LRP8
263 dependency presents a significantly positive correlation with *SLC7A11* expression in
264 neuroblastomas, whereas, curiously, GPX4 dependency presented an inverse correlation
265 (**Fig. 3D**). Such correlations were not obvious for *SLC26A6*. Altogether, this data suggests
266 that the low capacity for the uptake of inorganic selenium is the likely cause for the increased
267 dependency on LRP8 in neuroblastoma.

268

269 ***SLC7A11* activity is toxic to MYCN-amplified neuroblastoma**

270 Next, we decided to further investigate the role of system Xc-, reasoned by its general
271 importance in multiple cellular contexts. We rationalized that overexpression of *SLC7A11* in
272 LRP8-dependent cell lines could be sufficient to rescue them from cell death, as this should
273 allow them to exploit alternative selenium sources. As initially foreseen, overexpression of

274 *SLC7A11* led to a marked increase in GPX4 protein level, an effect phenocopied by the thiol
275 donor β Me (Fig. 4A). Even though GPX4 was robustly upregulated, we, surprisingly, observed
276 that *SLC7A11* overexpression led to a profound growth defect in neuroblastoma cells. This
277 effect was specific to *SLC7A11* activity, as it was fully rescued by the addition of the system
278 Xc- inhibitor Erastin (Fig. 4A). Metabolomics and RNA-seq analysis revealed that increasing
279 *SLC7A11* activity resulted in a marked upregulation of intracellular thiols and was
280 accompanied by the induction of several oxidative stress-related genes that are controlled by
281 ATF4 and NRF2 (Fig. 4B, C and fig. S6B, C). To provide additional insight into potential
282 causes of the *SLC7A11*-mediated toxicity in neuroblastoma, we generated SK-N-DZ cells
283 carrying a Dox-inducible *SLC7A11* vector. This model system showed that upon doxycycline
284 treatment *SLC7A11*-expressing cells lose proliferative capacity and eventually die (fig. S6A).
285 These results are in agreement with reports demonstrating the toxic impact of cysteine
286 overload on mitochondrial function and the induction of increased reductive stress (28, 29).
287 This notion was further corroborated by our analysis of mitochondrial function (Fig. 4D, E)
288 showing that oxygen consumption was significantly impaired in cells overexpressing
289 *SLC7A11*. This was also mirrored by the loss of intermediates of the tricarboxylic acid (TCA)
290 cycle and by a noticeable depletion of nucleotide triphosphates (NTP) (Fig. 4B, C). Curiously,
291 in contrast to the metabolic profile of *SLC7A11*-overexpressing cells, cells overexpressing
292 *LRP8* presented an inverse response. Specifically, *LRP8*-overexpressing cells showed an
293 increase in NTP levels, most prominent for ATP and UTP, as well as higher levels of NADP
294 and GSH, indicating an increased cellular reducing capacity (fig. S6D-I). These data also
295 suggest a potential role for selenocysteine metabolism in suppressing system Xc- activity.
296 Currently, it is not clear how the expression of *LRP8* could regulate system Xc- activity, but,
297 based on our scRNA-seq data, we can hypothesize that this regulation could be mediated
298 post-transcriptionally by the downregulation of an RNA-binding protein, *YBX3*, that was
299 previously reported to bind to the mRNAs of both *SLC7A11* and *SLC3A2* and to stabilize
300 *SLC3A2* (30). This hypothesis is supported by the observed regulation of *YBX3* in several
301 CRISPRa clusters (fig. S1E, H).
302 Moreover, we could demonstrate that the toxic effect of high *SLC7A11* expression is not
303 limited to the SK-N-DZ cell line, as it could also be recapitulated in the murine cell line derived
304 from the TH-MYCN model. Interestingly, cell lines that do not carry the *MYCN* amplification
305 (SK-N-FI and SH-SY5Y) were mostly refractory to the growth inhibitory effect of *SLC7A11*
306 overexpression (fig. S7A, B). Additional support was provided by using the SH-EP (MYCN-
307 ERT2) model, where we could demonstrate that decreased cell fitness already reported by
308 *MYCN* activation (31) is aggravated by *SLC7A11* overexpression and rescued by Erastin
309 treatment (fig. S7C, D). Finally, growth impairment upon *SLC7A11* overexpression was not
310 restricted to cell lines grown *in vitro* as orthotopic *in vivo* models of neuroblastoma also

311 exhibited a marked decrease in tumor growth upon *SLC7A11* induction (**Fig. 4F-H**). Together,
312 our results suggest that the LRP8 dependency could emerge during tumor evolution as a result
313 of a potential growth advantage of neuroblastoma with low activity of system Xc⁻.

314

315 ***LRP8 is required for the initiation and maintenance of neuroblastoma in vivo***

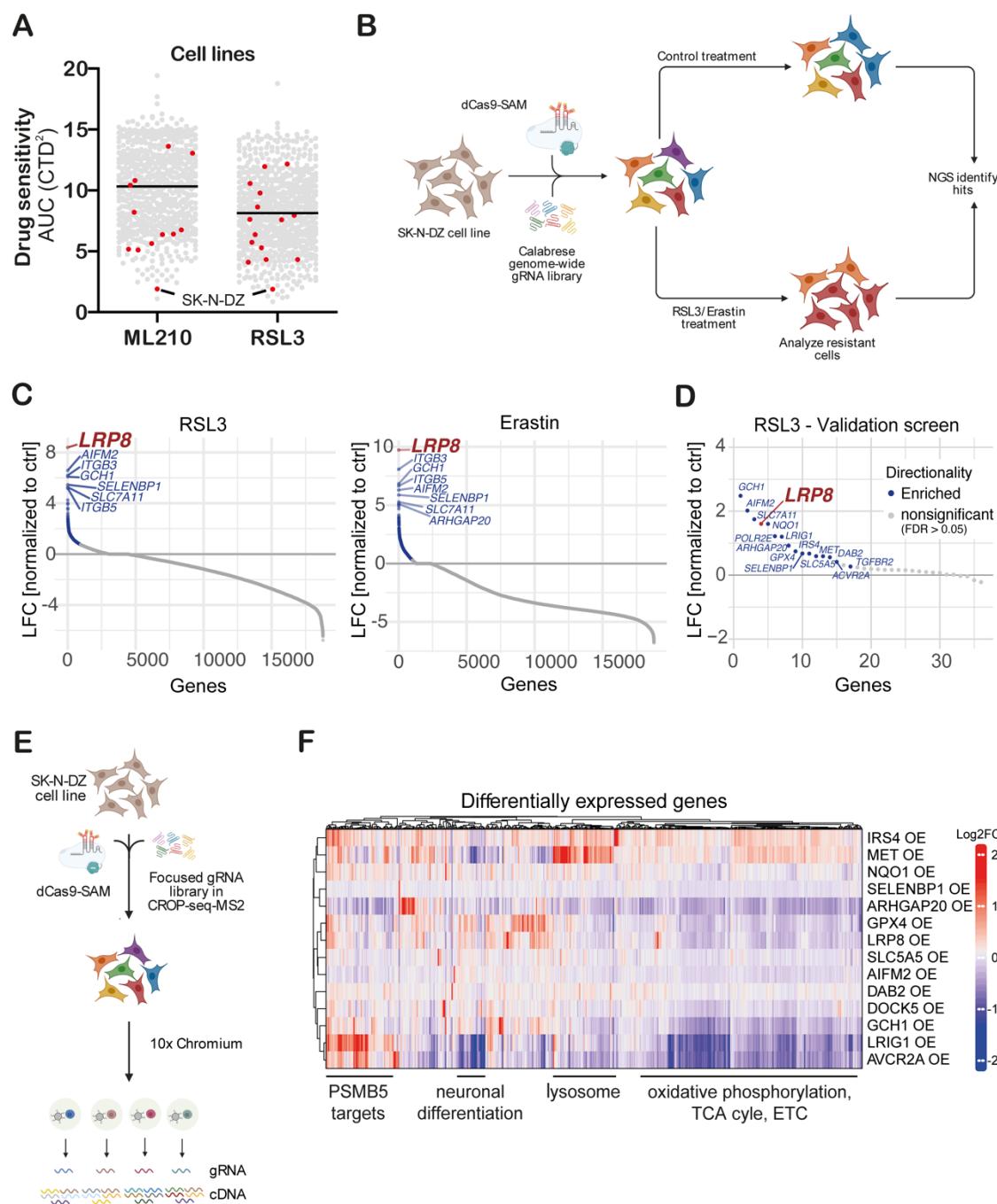
316 Given the important role played by the selenocysteine metabolism in preventing ferroptosis in
317 highly aggressive neuroblastoma subtypes with *MYCN* amplifications, we asked if upstream
318 targeting of this pathway could afford a detrimental effect on neuroblastoma growth *in vivo*.
319 We took advantage of our orthotopic animal model in which SK-N-DZ cells were implanted in
320 the adrenal gland of NOD.Cg-Prkdc^{scid}Il2rgtm1^{Wj}/SzJ (NSG) mice (12). Briefly, cells were
321 grown in the presence of liproxstatin-1 (Lip-1) before implantation to prevent ferroptotic cell
322 death of LRP8-deficient and -proficient neuroblastoma cells. Subsequently, SK-N-DZ cells
323 were implanted and tumor growth was monitored using *in vivo* bioluminescence imaging (**Fig.**
324 **5A**). LRP8 deficient tumors showed a marked decrease in tumor growth and, compared to
325 LRP8 proficient cells, showed a significantly increased overall survival of mice (76d +/- vs. 31d
326 +/-) with a median survival of 29d vs. 40days (**Fig. 5B-D**). Next, we explored the therapeutic
327 potential of targeting LRP8 in established SK-N-DZ neuroblastoma. For this, LRP8 proficient
328 (LRP8^{WT}) and deficient (LRP8^{KO}) tumors were both allowed to grow in the presence of *in vivo*
329 active Lip-1 (**Fig. 5E**) with the former ones serving as controls (**Fig. 5E**, top, red). After LRP8-
330 deficient neuroblastomas were established (seven days post-implantation with five days Lip-
331 1 treatment), mice were randomized into two groups. Lip-1 treatment was continued in the
332 yellow group, while in the blue group, the Lip-1 injections and thus ferroptosis inhibition were
333 stopped (**Fig. 5E**, bottom). Analysis of the three cohorts after 14 days post-implantation
334 showed that both LRP8 deficient xenograft groups (blue, yellow) showed impaired tumor
335 growth compared to WT controls (red) despite Lip-1 mediated ferroptosis inhibition (**Fig. 5F,**
336 **G**). Importantly, Lip-1 withdrawal in the randomized LRP8^{KO} group significantly further reduced
337 neuroblastoma growth in the established tumor setting (**Fig. 5F,G**). The data above support
338 the requirement of LRP8 for the establishment and maintenance of *MYCN* amplified SK-N-DZ
339 neuroblastoma by restricting ferroptosis. This is further confirmed by the fact that the LRP8^{KO}
340 tumors show robust loss of GPX4 protein (**Fig. 5H**). Collectively, our data indicate that LRP8
341 is required to prevent ferroptosis by maintaining high levels of GPX4 in *MYCN*-amplified
342 orthotopic neuroblastoma models and suggest that inhibiting the SELENOP/LRP8 axis could
343 be a novel and selective strategy to trigger ferroptosis and thereby limit tumor growth in
344 neuroblastoma cells (**Fig. 5I**).

345

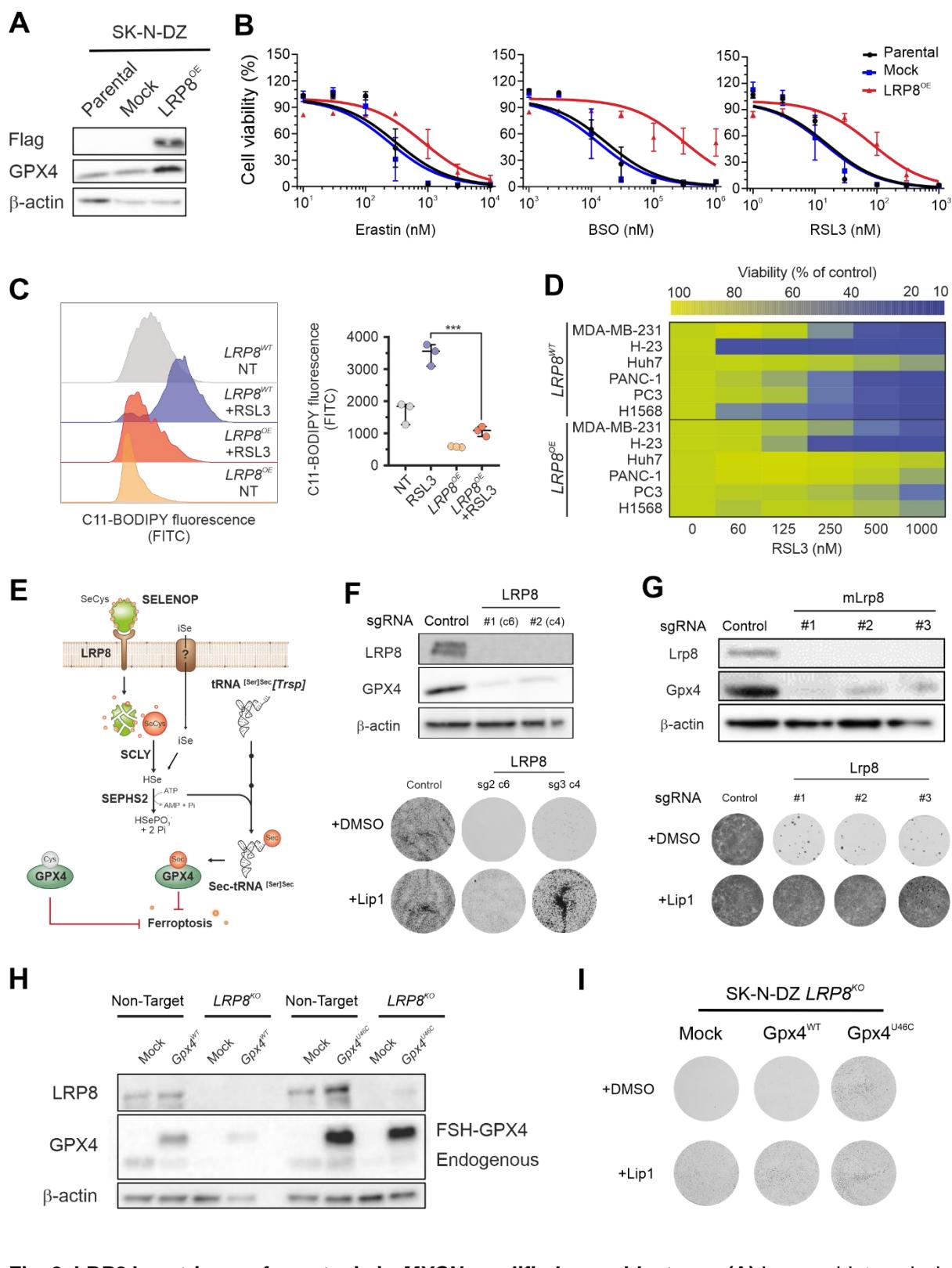
346

347

348 **Discussion**


349 The present study demonstrates that blocking selenium/selenocysteine uptake mechanisms
350 could be an attractive strategy to disrupt GPX4 function specifically and selectively induce
351 ferroptotic cell death in *MYCN*-amplified neuroblastoma. We demonstrate here that
352 selenium/selenocysteine can be obtained by cancer cells via multiple routes: one dependent
353 on the SELENOP/LRP8 axis and alternatively via the activity of cyst(e)ine/sulfate transport
354 systems such as system Xc- (SLC7A11/SLC3A2) and members of the SLC26A family.
355 Characterization of these two pathways in neuroblastoma uncovered that they pose a
356 fundamentally distinct metabolic burden for the *MYCN*-amplified subgroup, where activation
357 of system Xc- leads to mitochondrial functional decline and impaired proliferation favouring
358 the development of cancer cells with low system Xc- activity. The tradeoff for this aggressive
359 and fast proliferative state generates an unexpected dependency on LRP8 and thus unravels
360 a rational strategy to selectively disrupt GPX4 and elicit ferroptosis in *MYCN*-amplified entities.
361 These recognitions could have broader implications, as a recently published cancer
362 dependency map of pediatric tumors identified *LRP8* as an essential gene in pediatric Ewing
363 sarcoma and medulloblastoma, all entities associated with *MYCN* amplifications (32).
364 Moreover, given the largely unsuccessful repurposing of adult oncology drugs for the
365 treatment of neuroblastoma and other childhood malignancies, these discoveries pave the
366 way for exciting translational opportunities. Thus, targeting of LRP8, for example, by the
367 development of LRP8/SELENOP neutralizing antibodies, may overcome the limitations of
368 strategies that aim to directly inhibit GPX4 or other members of the selenocysteine metabolic
369 network, which could be limited by extensive organ toxicity as demonstrated by mouse genetic
370 studies (33). Additionally, given the recognition that GPX4 inhibition can also impair T-cell
371 function (34), but also contribute to the CD8+ T-cell mediated cancer cell killing (35, 36), it is
372 important to consider that immune cells, like CD8+ T-cells lack *LRP8* expression. Thus,
373 targeting LRP8 could critically impair GPX4 function in *MYCN* tumors or metastasis while
374 sparing immune cells and could therefore be seen as a potent combinatorial strategy with
375 immunotherapies.

376


377 **Acknowledgements:**

378 **Funding:** J.P.F.A. acknowledges the support of the Junior Group Leader program of the
379 Rudolf Virchow Center, University of Würzburg, the Deutsche Forschungsgemeinschaft
380 (DFG), FR 3746/3-1, SPP2306 (FR 3746/6-1) and the CRC205 (INST 269/886-1). This work
381 was also supported by the SPP2306 (A.T. and H.A.), FOR2674 and SFB873 funded by the
382 Deutsche Forschungsgemeinschaft (A.T.); the DKTK joint funding project “RiskY-AML”; the
383 “Integrate-TN” Consortium funded by the Deutsche Krebshilfe, the Dietmar Hopp Foundation
384 (A.T.). M.C. is supported by the DFG CO 291/7-1 and the SPP2306 (CO 297/9-1 and CO

385 297/10-1) as well as the European Research Council (ERC) under the European Union's
386 Horizon 2020 research and innovation programme (grant agreement No. GA 884754). J.Z. is
387 supported by a Humboldt Postdoctoral Fellowship. A.S., L.S. and F.C.E.V. are supported by
388 SPP2306 (SCHU 2670/4-1) and FOR2314 (SCHU 2670/2-2). MF and CB were supported
389 by the Deutsche Forschungsgemeinschaft (DFG; grant no. BA 6984/1-1 and grant no. FI
390 1926/2-1 to M.F., and as part of the SFB 1399 to M.F.), the Förderverein für krebskranke
391 Kinder e.V. Köln (endowed chair to M.F.), and the German Ministry of Science and Education
392 (BMBF) as part of the e:Med initiative (grant no. 01ZX1603 and 01ZX1607 to M.F.). G.S.F
393 acknowledges funding from the Austrian Academy of Sciences. E.G was supported by a Marie
394 Skłodowska-Curie fellowship (MSCA-IF-2014-661491). U.Y. and H.A. thank the DKFZ Single-
395 Cell Open Lab (scOpenLab) for assistance with the single-cell CRISPR-activation screen.
396 Illustrations in Figures 1B, E, and 5A, E, I were created with BioRender.com. **Author**
397 **Contributions** J.P.F.A., A.T. and H.A. conceived the project. J.P.F.A., H.A. designed
398 experiments and wrote the manuscript. Z.C., H.A., U.Y. performed most experiments
399 described herein and related analyses. J.B., F.P.F., A.F.S., T.N.X.S., J.V., N.A., A.F., P.Z.,
400 A.P. supported with the in vitro experiments, generation of cell lines and analyses thereof.
401 U.Y. performed the analyses of the CRISPRa screens and scRNA-seq. H.A., E.E. performed
402 the in vivo experiments and implemented related analyses. C.B. and M.F. generated the
403 neuroblastoma cohort data previously, and performed the analyses depicted here. W.S.,
404 F.C.E.V., L.S. and A.S. supported with the preparation, analysis and interpretations of
405 metabolomics data. J.Z., M.C., G.B., M.E., E.G. and G.S.F. generated and provided
406 antibodies, cell lines and key reagents used in this study. B.M performed and analyzed the
407 selenium speciation analysis. J.P.F.A. and A.T. supervised the project. All authors provided
408 intellectual input and critical edits and approved the manuscript. **Additional Information**, n.a.
409
410
411
412
413

Fig. 1. Genome-wide CRISPR activation screen identifies negative regulators of ferroptosis. (A) Analysis of the depmap portal (www.depmap.org) reveals MYCN-amplified SK-N-DZ as hypersensitive cell lines to the GPX4 inhibitors RSL3 and ML210. **(B)** Strategy of the genome-wide CRISPR activation (CRISPRa) screen in MYCN-amplified SK-N-DZ cells. **(C)** Overexpression phenotypes conferring resistance to 300 nM RSL3 (left) or 1 μ M Erastin (right) treatment. Significant hits are marked in blue ($FDR \leq 0.05$), while the highest scoring hit, *LRP8*, is highlighted in red. **(D)** Overexpression phenotypes conferring resistance to RSL3 (100 nM) induced ferroptosis in the pooled validation CRISPRa screen. Significantly enriched genes are marked and labelled in blue ($FDR \leq 0.05$). The highest scoring hit from the primary screens, *LRP8*, is highlighted in red. **(E)** Strategy of the single-cell CRISPRa screen to characterize hits from the ferroptosis-resistance screen. Guide RNA labels are recovered alongside the whole transcriptome readout for each cell. **(F)** Transcriptomic consequences of CRISPRa of 14 scoring hits from the primary and the validation screens. Each row represents one CRISPRa cluster. For each cluster, the top 50 genes with the most significantly differential expression (compared to the non-targeting control cluster) were selected and merged to a signature gene list represented by the columns. Columns and rows were hierarchically clustered based on Pearson correlation.

431 **Fig. 2. *LRP8* loss triggers ferroptosis in *MYCN*-amplified neuroblastoma. (A)** Immunoblot analysis
432 of FLAG and GPX4 in SK-N-DZ cells overexpressing an empty vector or *hLRP8*-Flag. **(B)** Dose-
433 dependent toxicity of the ferroptosis inducers Erastin, BSO and RSL3 in SK-N-DZ cell lines stably
434 transduced with a vector expressing *hLRP8*-Flag. Data are the mean \pm s.e.m. of $n = 3$ wells of a 96-
435 well plate from three independent experiments. **(C)** Flow cytometry analysis of BODIPY 581/591 C11
436 oxidation in SK-N-DZ overexpressing *hLRP8*-Flag induced by RSL3 treatment (100 nM, 6 h). **(D)** Heat
437 map depicting the dose-dependent response of RSL3 in a panel of cell lines overexpressing *hLRP8*-
438 Flag. **(E)** Schematic representation of selenium uptake mechanisms. **(F)** Generation and
439 characterization of *LRP8* knockout cell lines. **(G)** Generation and characterization of *Lrp8* knockout
440 cell lines. **(H)** Immunoblot analysis of LRP8 and GPX4 expression in *LRP8*^{KO} and *Gpx4*^{WT} cells. **(I)** Colony formation assay of *LRP8*^{KO} cells overexpressing *Gpx4*^{WT} or *Gpx4*^{U46C} in the presence of DMSO or Lip1.

441 characterization of *LRP8* knockout cell lines using two independent gRNAs. Upper panel, immunoblot
442 analysis of *LRP8* expression in cells transduced with gRNA targeting *LRP8*. Lower panel, clonogenic
443 capacity of clonal cell lines either wild-type or knockout for *LRP8* in the presence of Lip-1 (500 nM). **(G)**
444 Recapitulation of *LRP8* dependency in a murine model of *MYCN*-amplification. Upper panel depicts
445 immunoblot of *Lrp8* and *Gpx4* in cells expressing three independent gRNAs targeting *Lrp8*. Lower panel
446 shows the clonogenic capacity of *Lrp8*-deficient cells and the protective effect of Lip-1 (500 nM). **(H)**
447 Immunoblot analysis of FLAG and GPX4 in SK-N-DZ cells overexpressing flag-tagged WT or an U46C
448 variant of GPX4 in a wild-type and knockout *LRP8* background. **(I)** Clonogenic capacity of SK-N-DZ
449 *LRP8* knockout cells expressing an empty vector, WT or an U46C variant of GPX4. Clonogenic assays
450 depicted are representative of three independently performed experiments with similar results.

451

452

453

454

455

456

457

458

459

460

461

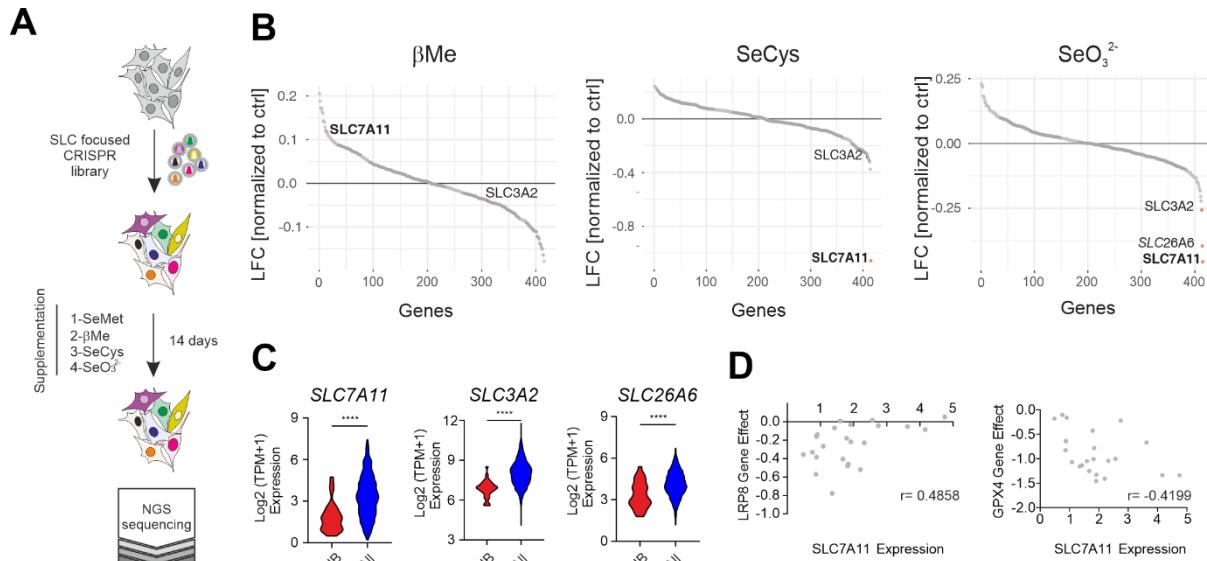
462

463

464

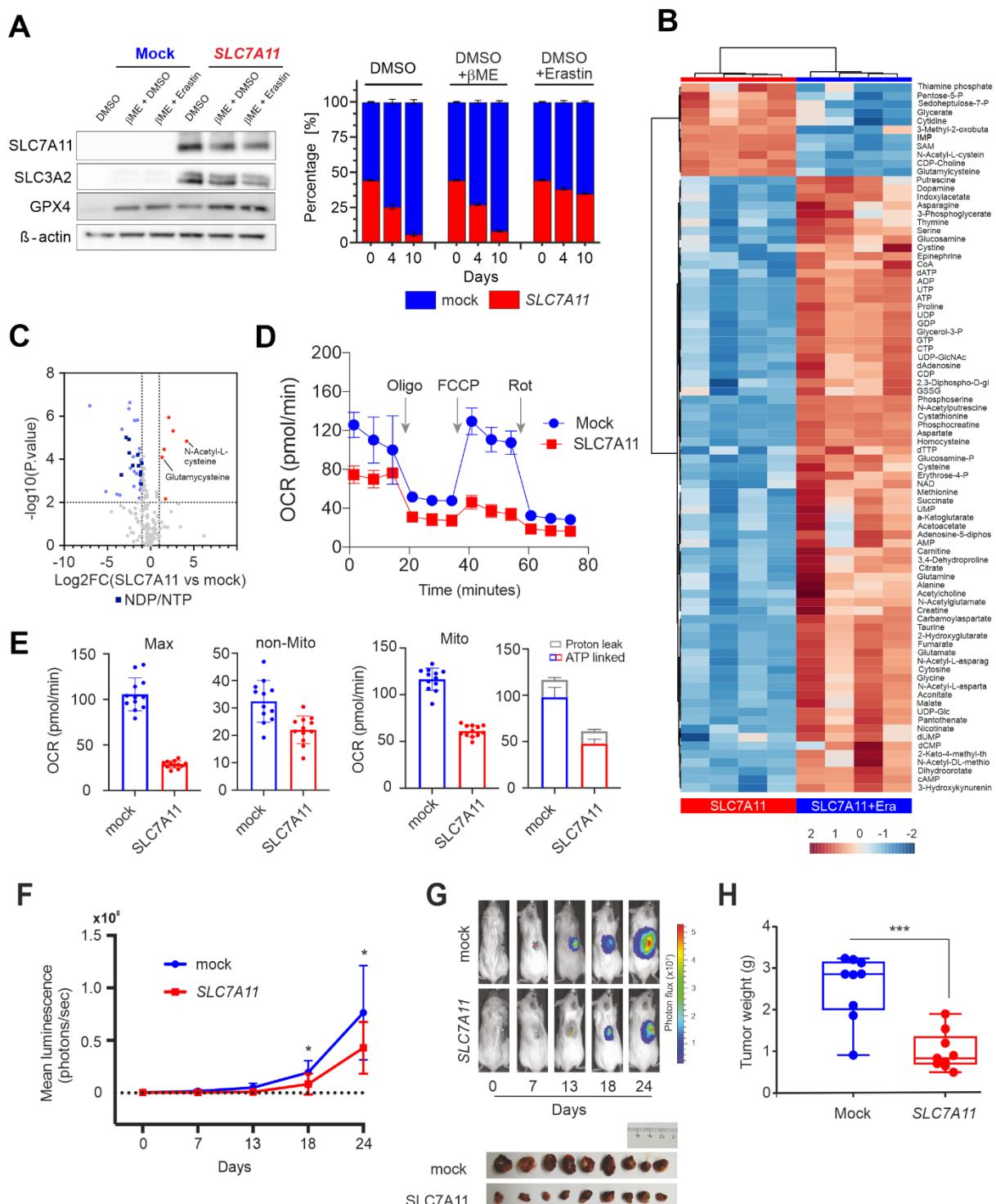
465

466


467

468

469


470

471

472
473

474 **Fig. 3. SLC-focused CRISPR screen identifies alternative selenium uptake mechanisms. (A)**
475 Schematic representation of the SLC-focused CRISPR knockout screen in the SK-N-DZ cell line grown
476 in the presence of defined selenium sources. **(B)** CRISPR gene log₂ fold change in SK-N-DZ cells
477 grown in defined supplemented media. **(C)** Comparison of *SLC7A11* expression in a panel of 23
478 neuroblastoma cell lines against 1349 non-neuroblastoma cell lines demonstrating the lineage-specific
479 lower expression of *SLC7A11*, *SLC3A2* and *SLC26A6* (www.depmap.org). **(D)** Dot plot depicting the
480 correlation of the dependency of neuroblastoma cell lines on LRP8 and GPX4 (CERES score of -1
481 means full dependency based on CRISPR–Cas9 knockout screening data) and the expression levels
482 of *SLC7A11* in a panel of 27 neuroblastoma cell lines (depmap portal; <https://depmap.org/portal/>). Cell
483 lines with low expression of *SLC7A11* were found to be dependent on LRP8 (Pearson correlation
484 r:0.4858).

485

486

487 **Fig. 4. SLC7A11 activation drives metabolic collapse in MYCN-amplified neuroblastoma.** (A) Generation and characterization of cells overexpressing SLC7A11. Immunoblot analysis of SLC7A11 and SLC3A2 from SK-N-DZ cells overexpressing SLC7A11 or mock. Cell competition assay of SK-N-DZ cell line overexpressing SLC7A11 or mock controls. For the experiment, cells were seeded at a ratio of 50/50 and 50,000 events were measured via flow cytometry at the depicted time points. Rescue experiments were performed in the presence of 50 μM beta-Mercaptoethanol (βME) and 0.5 μM Erastin. Bars display percentage of eGFP- (blue) and Scarlet-cells (red) with n=1, or means +/- s.e.m with n=3. (B) Heatmap showing 84 metabolites that are significantly different between SLC7A11-overexpressing SK-N-DZ cells with and without Erastin (0.5 μM). Abundance is represented as log2-transformed normalized peak intensity relative to row mean. (C) Volcano plot showing log2 fold change of

497 metabolites in *SLC7A11*-overexpressing SK-N-DZ cells treated with or without Erastin (0.5 μ M).
498 Metabolites that are significantly different ($p \leq 0.05$) with log2 fold change ≥ 1 or ≤ -1 are highlighted.
499 NDP/NTP are marked in dark blue. **(D)** Mitochondrial Stress Assay of SK-N-DZ cells expressing empty
500 vector or *SLC7A11*. **(E)** Mitochondrial parameters derived from assay shown in **(D)**. **(F)** Tumor
501 growth of orthotopically implanted SK-N-DZ cells overexpressing *SLC7A11* (red, $n = 9$) or mock controls
502 (blue, $n = 9$). Values are mean \pm s.e.m; statistical comparisons were done using t-tests. * $P < 0.05$. **(G)**
503 Representative luminescence images and photographs of tumors from each group from **(F)** at
504 endpoint. **(H)** Tumor weight of orthotopically implanted SK-N-DZ cells overexpressing *SLC7A11*
505 (red, $n = 9$) or mock controls (blue, $n = 9$).

506

507

508

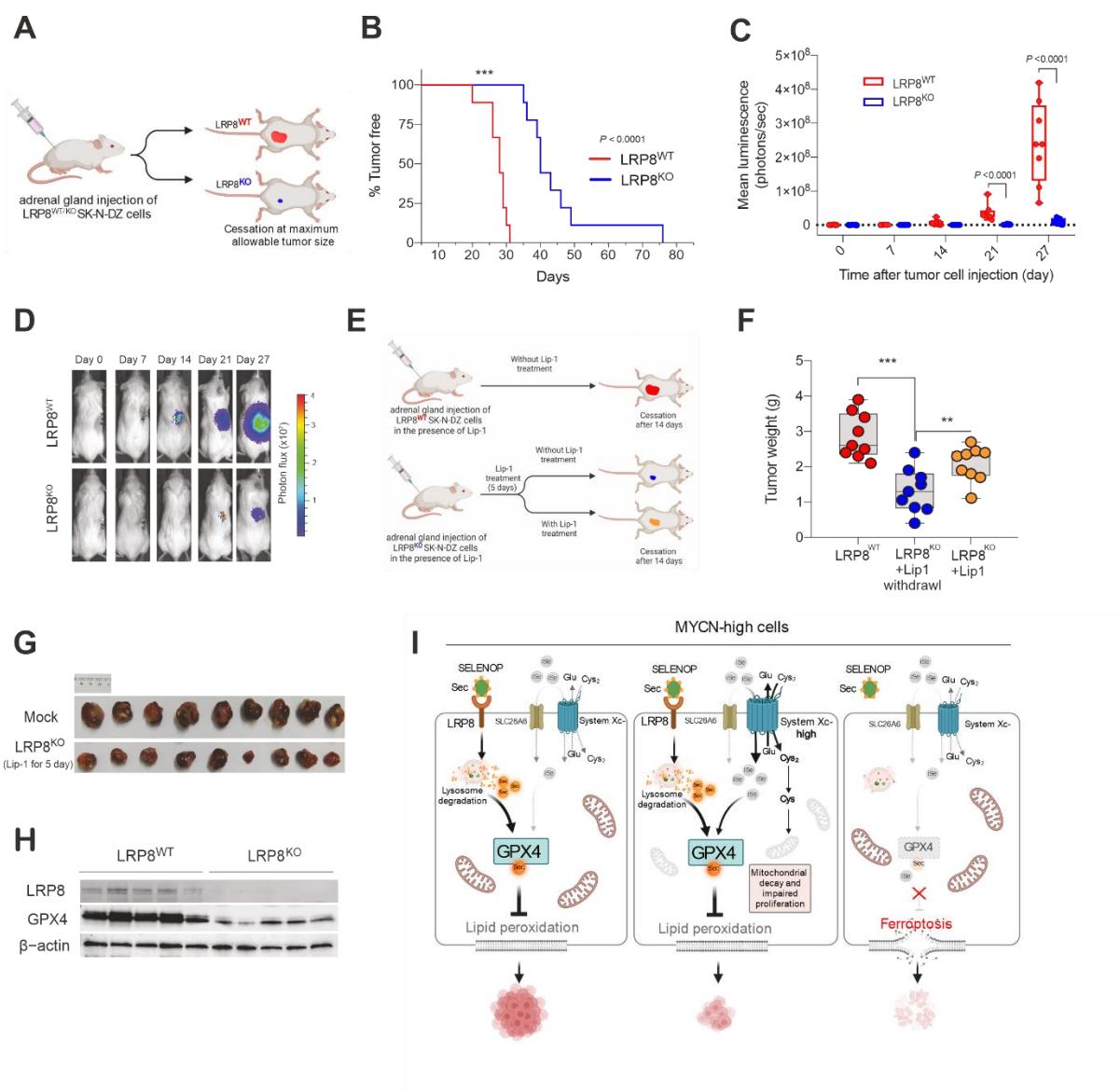
509

510

511

512

513


514

515

516

517

518

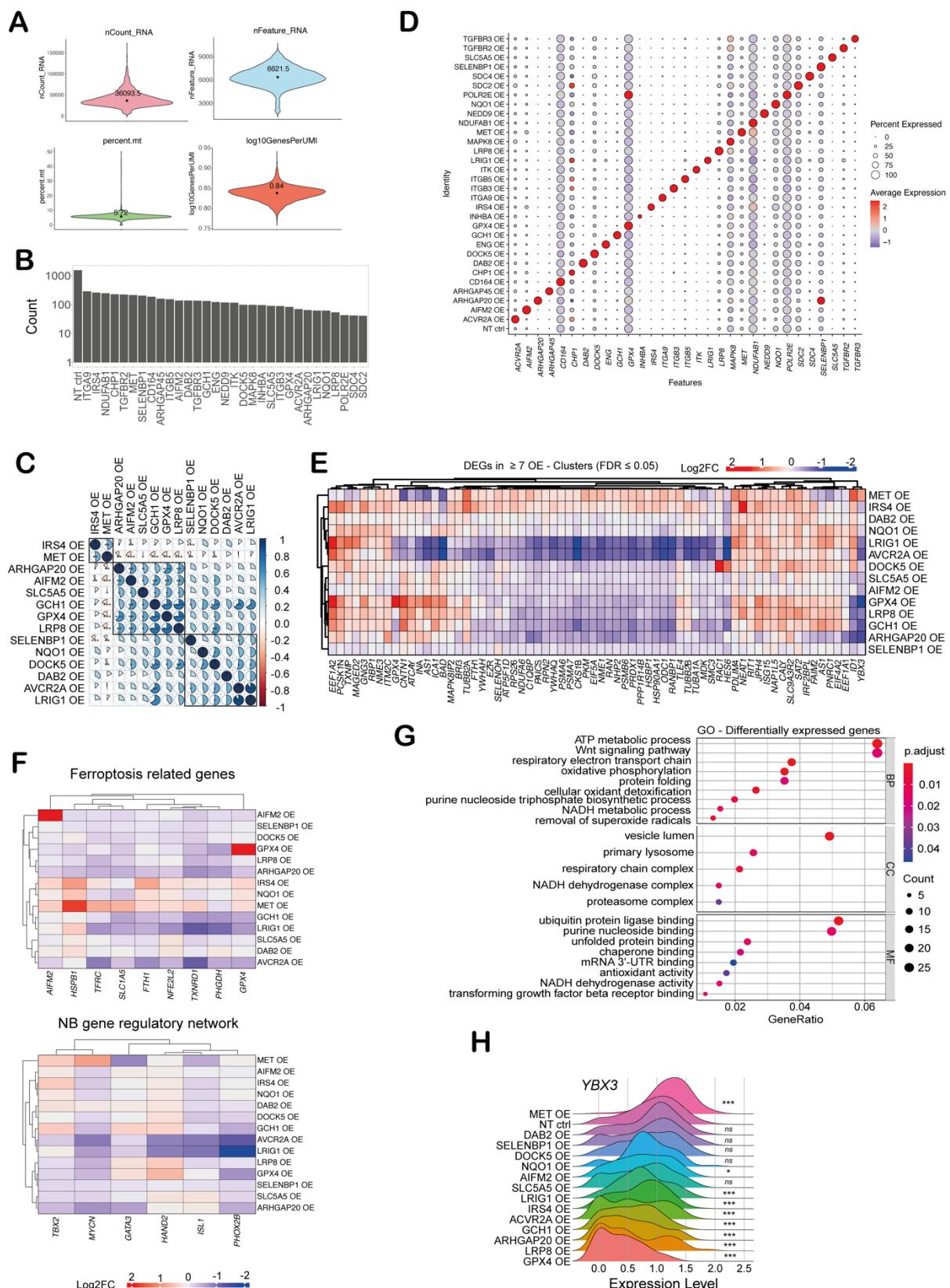
519
 520 **Fig. 5. LRP8 is essential for orthotopic neuroblastoma growth.** **(A)** Schematic representation of the
 521 orthotopic implantation of control (LRP8^{WT}) or LRP8-deficient (LRP8^{KO}) SK-N-DZ cell lines. **(B)** Kaplan-
 522 Meier plot displaying tumor-free survival (TFS) for mice injected orthotopically with LRP8^{WT} (blue, $n =$
 523 9) or LRP8^{KO} (red, $n = 9$) SK-N-DZ cells. t-test was conducted for statistical analysis. **** $P < 0.0001$. **(C)**
 524 Tumor growth upon orthotopic implantation of LRP8^{WT} (blue, $n = 9$) or LRP8^{KO} (red, $n = 9$) of SK-N-DZ
 525 cell line. Values are mean with SEM; t-test was conducted for statistical analysis. **** $P < 0.0001$. **(D)**
 526 Representative luminescence images from each group sown in (c). **(E)** Outline of the orthotopic
 527 implantation and treatment scheme with Liproxstatin-1 (Lip-1) of LRP8^{WT} and LRP8^{KO} SK-N-DZ cells
 528 **(F)** Tumor weight of orthotopically implanted LRP8^{WT} (blue, $n = 9$) or LRP8^{KO} (red and gray, $n = 9$ each)
 529 SK-N-DZ cells. All mice were treated with Lip-1 for 5 days. After this, treatment was ceased for LRP8^{WT}
 530 (blue) and LRP8^{KO} cohorts (red) or maintained for an additional 14 days (yellow), see methods for
 531 details. Tumors were analyzed at the end point. Values represent mean with s.e.m; t-test was conducted
 532 for statistical analysis. **(G)** Representative images of tumors in the control (blue) and LRP8^{KO} groups
 533 (yellow) treated with Lip-1 for 5 days after implantation. **(H)** Immunoblot analysis of LRP8 and GPX4
 534 levels from orthotopic tumors of LRP8^{WT} or LRP8^{KO} SK-N-DZ cells, treated with Lip-1 for 5 days after
 535 implantation followed by 14 days after randomization. **(I)** Schematic representation for the proposed
 536 model of LRP8 inhibition essentiality. Comparison of selenium /selenocysteine uptake mechanisms in
 537 proliferating MYCN-amplified cells, depicting the contribution of primarily LRP8/SELENOP supporting
 538 selenoprotein translation (left panel). Activation of SLC7A11 mediated uptake of
 539 selenium/selenocysteine in MYCN-amplified neuroblastoma leads to progressive mitochondrial decline
 540 and impaired proliferation (central panel). Inhibition of LRP8 in proliferative and SLC7A11/SLC26 low

541 conditions selectively trigger ferroptosis in *MYCN*-amplified neuroblastoma (right panel). SELENOP,
542 Selenoprotein P; iSe, inorganic selenium; SeCys, Selenocysteine.

543

544

545


546

547

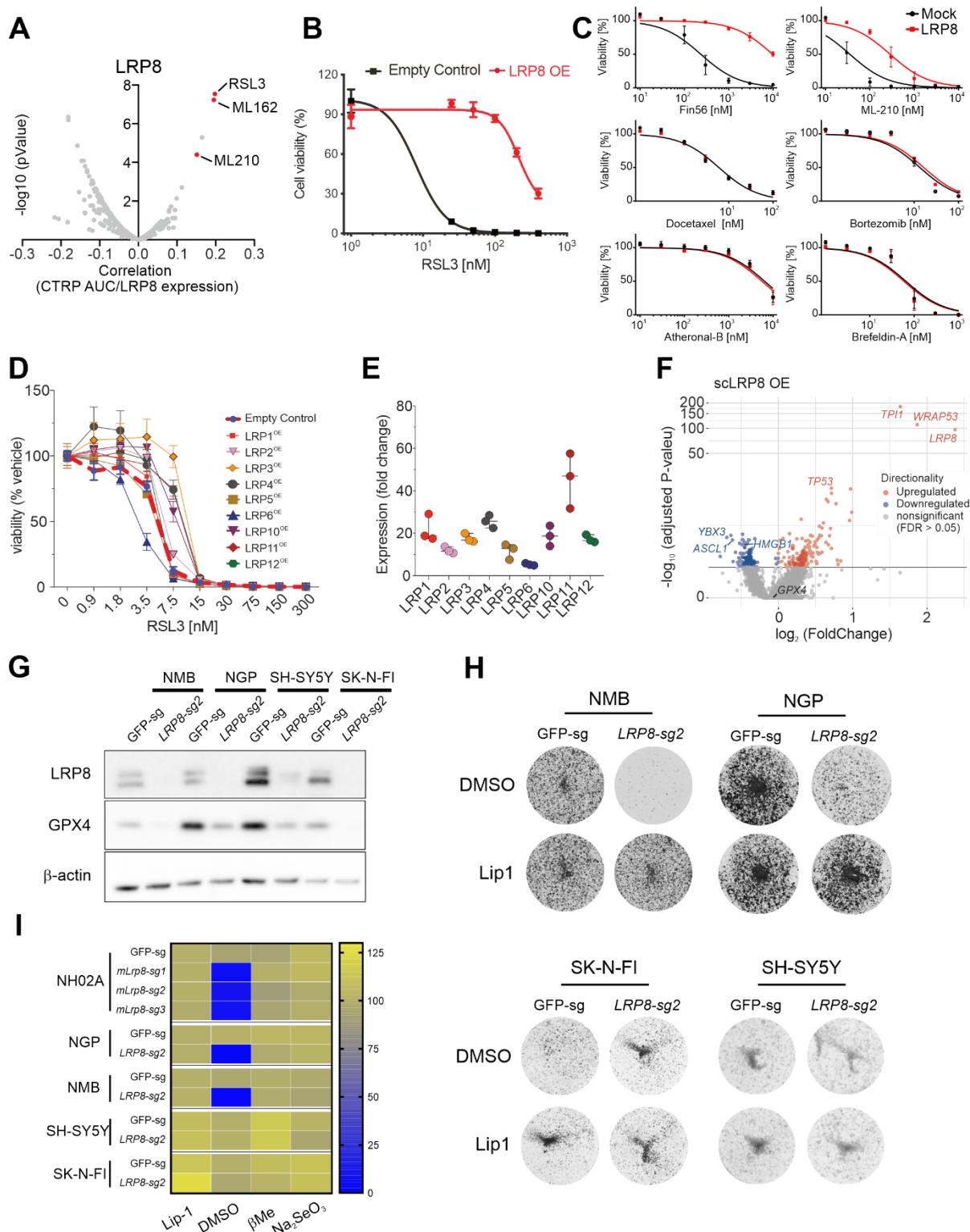
548

549

550

551

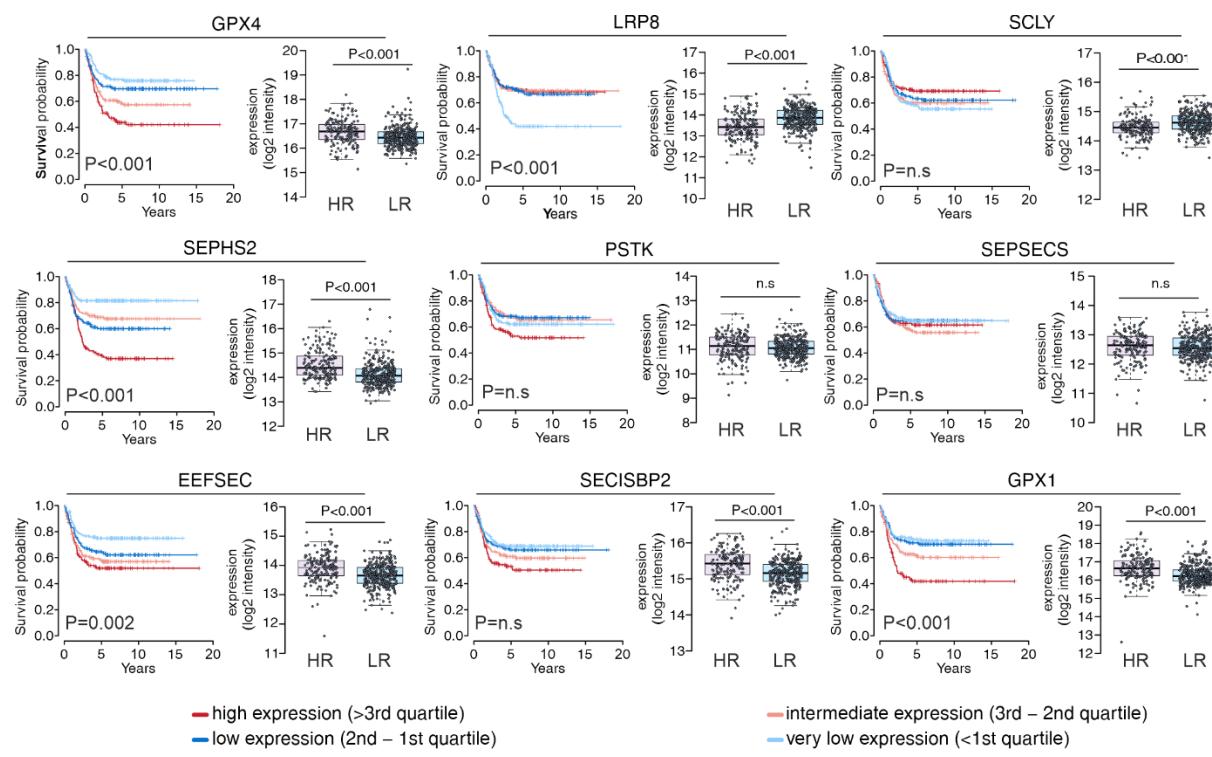
552 **Fig. S1. (A)** Top left: number of unique molecular identifiers (UMIs) per cell in the scCRISPRa sample.
553 Top right: number of detected genes per cell. Bottom left: percentage of mitochondrial reads detected.
554 Bottom right: number of genes per UMI (log-transformed) reflecting library complexity. The median
555 values are printed and highlighted by a dot. **(B)** The number of cells (y-axis, in log-scale) assigned to
556 each scoring hit (indicated on the x-axis) in the single-cell experiment. OE: overexpression, NT ctrl:
557 cells assigned to non-targeting control gRNAs. **(C)** Pairwise comparison of transcriptome similarities of


558 validated CRISPRa clusters and genes derived from the gene expression signature list (based on
559 Spearman correlation). Color intensities and ratios of the pie-chart indicate relative overlap. Rows and
560 columns are hierarchically ordered and related groups are marked with a blue rectangle. *** $P < 0.001$,
561 ** $P < 0.01$, * $P < 0.05$. **(D)** Dot plot showing expression of target genes (x-axis) in each CRISPRa cluster
562 (y-axis). The size of the dots reflects the fraction of cells within a particular cluster for which the
563 expression of the gene was detected. OE: overexpression. NT ctrl: cluster of cells assigned to non-
564 targeting control gRNAs. **(E)** Changes in gene expression following CRISPRa (clusters represented by
565 each row) of genes that were detected as significantly differentially expressed (FDR ≤ 0.05) in at least
566 seven of the 14 scoring CRISPRa clusters. Columns and rows were hierarchically clustered based on
567 Pearson correlation. **(F)** Changes in expression of ferroptosis related genes (upper) and transcriptional
568 core regulatory circuits maintaining cell state in *MYCN*-amplified neuroblastoma derived from (37)
569 (lower) that were detected as significantly differentially expressed in at least one of the CRISPRa
570 clusters represented by each row. **(G)** Gene Ontology (GO) term enrichment analysis conducted on the
571 signature gene list that was derived from the top 50 genes showing the most significant differential
572 expression in each scoring CRISPRa cluster. Selected terms are shown up to FDR ≤ 0.05 . BP:
573 biological process, CC: cellular compartment, MF: molecular function. **(H)** Ridge-plot showing the
574 expression of *YBX3* in each scoring CRISPRa cluster. OE: overexpression, NT ctrl: cluster of cells
575 assigned to non-targeting control gRNAs. *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$, ns: nonsignificant (FDR
576 corrected p-values calculated by Wald tests comparing mean expression values in each CRISPRa
577 cluster versus the NT ctrl cluster).

578

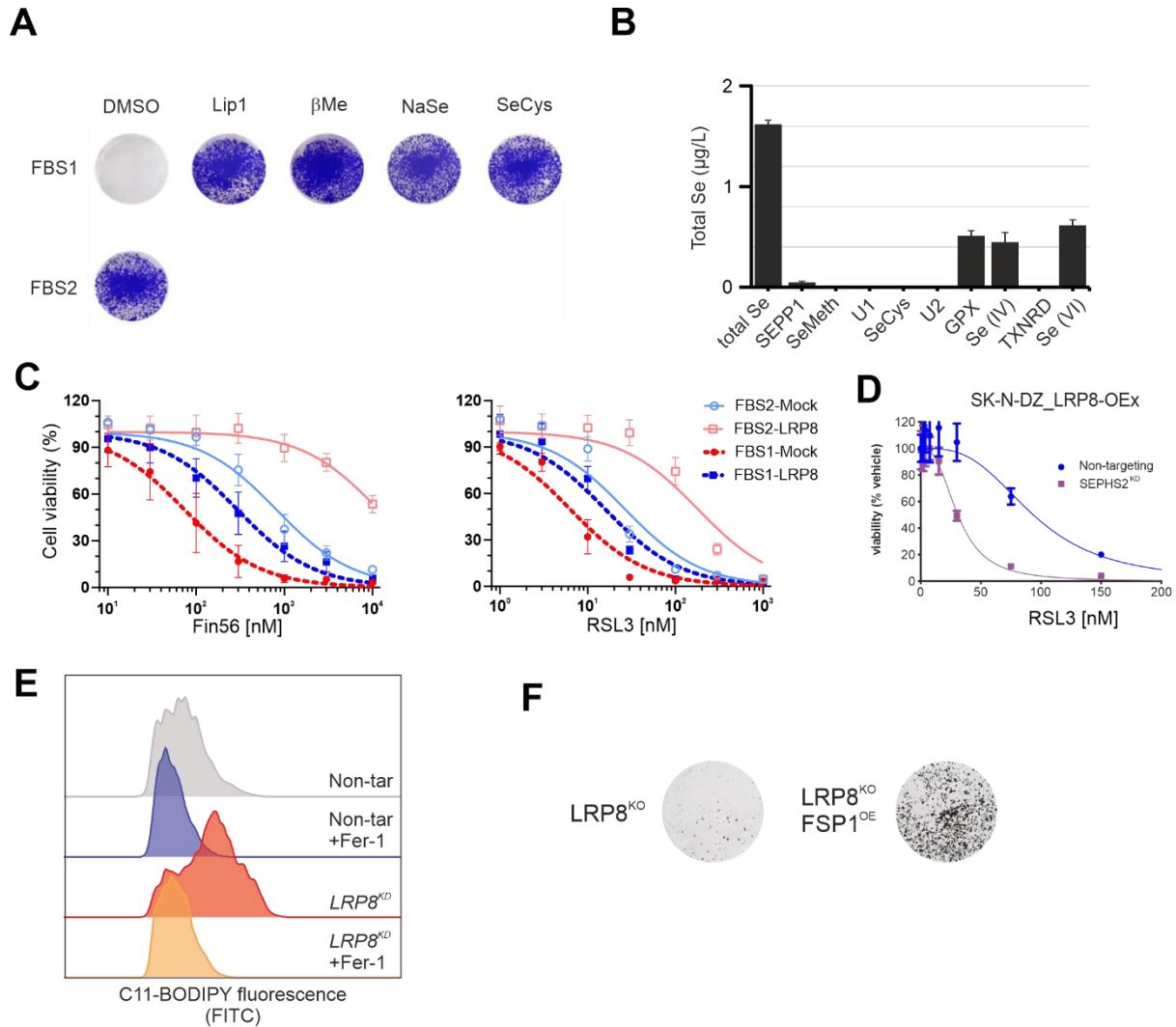
579

580

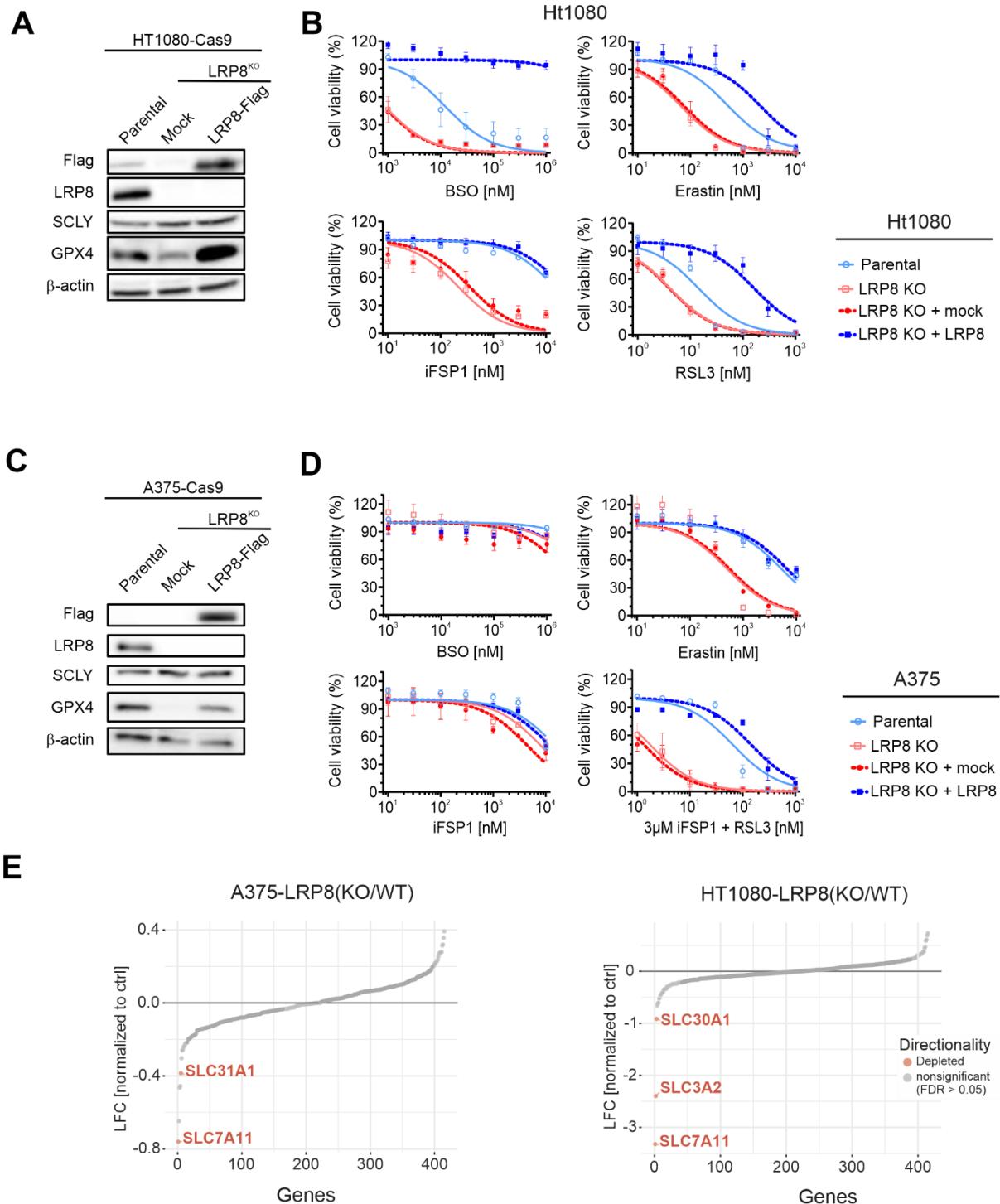

581

582

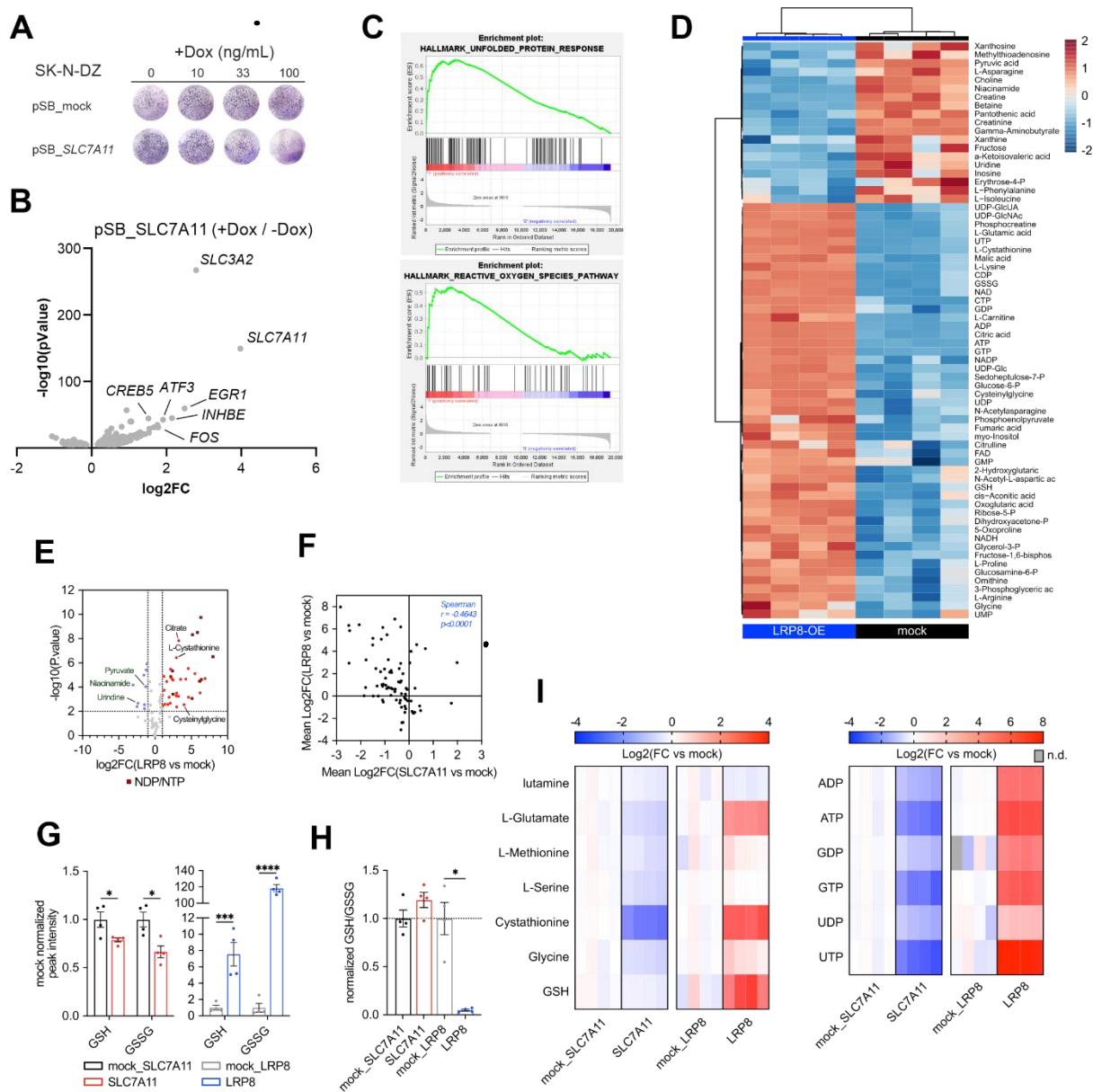
583 **Fig. S2. (A)** High expression of LRP8 is correlated with resistance to GPX4 inhibitors in a panel of 1400
 584 cell lines. Data were extracted from the CTRP/depmap database. **(B)** Dose-dependent toxicity of RSL3
 585 in SK-N-DZ dCas9-SAM cells expressing gRNA targeting the *LRP8* promoter or a control gRNA. **(C)**
 586 Dose-dependent response of SK-N-DZ cells overexpressing an empty vector or human *LRP8* (hLRP8)
 587 using a panel of cytotoxic drugs. **(D)** dose-dependent toxicity of RSL3 in SK-N-DZ dCas9-SAM cell
 588 expressing gRNAs targeting different members of the LRP family. Data are the mean \pm s.e.m. of $n = 3$
 589 wells of a 96-well plate from three independent experiments. **(E)** Expression changes of different LRP
 590 genes in SK-N-DZ dCas9-SAM cell expressing the respective gRNA. Data are presented as mean \pm s.e.m. of
 591 $n = 3$ wells. **(F)** Volcano-plot showing differently expressed genes in the LRP8 overexpression cluster
 592 compared to non-targeting control cells. Each dot represents a single gene. Mean expression values


593 (log₂ fold-change) are plotted against the significance values (log₁₀ transformed adjusted p-values).
594 Significantly upregulated genes are marked in red while downregulated genes are marked in blue (FDR
595 ≤ 0.05). **(G)** Immunoblot analysis of LRP8 and GPX4 in *MYCN*-amplified (NMB and NGP) and non-
596 amplified (SH-SY5Y and SK-N-FI) neuroblastoma cells transduced with gRNA targeting *Lrp8*. **(H)**
597 Clonogenic capacity of the indicated neuroblastoma cell lines transduced with an gRNA targeting *LRP8*
598 in the presence or absence of the ferroptosis suppressor liproxstatin-1 (Lip-1). **(I)** Heatmap indicating
599 viability of the indicated cell lines transduced with gRNA expression constructs targeting *LRP8* or
600 controls (GFP-sg) in the presence of different ferroptosis inhibitors, including sodium selenite. Data are
601 presented as mean ± s.e.m. of n = 3 wells of a 96-well plate from three independent experiments.
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

631


632 **Fig. S3.** Association between selected genes in the selenium/selenocysteine biosynthetic pathway on
633 Kaplan-Meier survival analysis and expression levels (log₂ intensity) in low-risk (LR) and high-risk (HR)
634 neuroblastoma patients (n=459). The p-values were calculated using a two-sided Wilcoxon rank-sum
635 test (boxplots, comparison of gene expression between high and low risk patients) and log-rank test
636 (Kaplan-Meier curves, pairwise comparisons) and Benjamini-Hochberg corrected. All p-values were
637 adjusted for multiple testing (Benjamini-Hochberg).
638

639



640
Fig. S4. (A) Clonogenic capacity of SK-N-DZ cells in two different FBS batches (FBS1 and FBS2).
641 Rescue in FBS1 was carried out using liproxistatin-1 (Lip-1, 500 nM), β Me (50 μ M), NaSe (50 nM) and
642 selenocysteine (50 nM). **(B)** Analysis of selenium speciation in FBS lacking growth-supporting capacity
643 of SK-N-DZ cells (FBS1). **(C)** Dose-dependent toxicity of FIN56 and RSL3 in SK-N-DZ expressing a
644 lentiviral construct expressing Flag-LRP8 (LRP8) or empty vector control (Mock). Viability assays were
645 performed in the two different FBS batches described in **(A)**. **(D)** Dose-dependent toxicity of RSL3 in
646 SK-N-DZ cells overexpressing LRP8 (LRP8-OEx) and co-transfected with siRNA targeting SEPHS2
647 (SEPHS2^{KD}) or non-targeting control. **(E)** Flow cytometry analysis of C11-BODIPY oxidation in SK-N-
648 DZ LRP8 knockdown cells (LRP8^{KD}) or non-targeting controls in the presence and absence of
649 ferrostatin-1 (1 μ M). **(F)** Clonogenic capacity of SK-N-DZ LRP8 knockout cells (LRP8^{KO}) expressing a
650 FSP1 overexpression construct (FSP1^{OE}) or empty vector control.

651
652
653
654

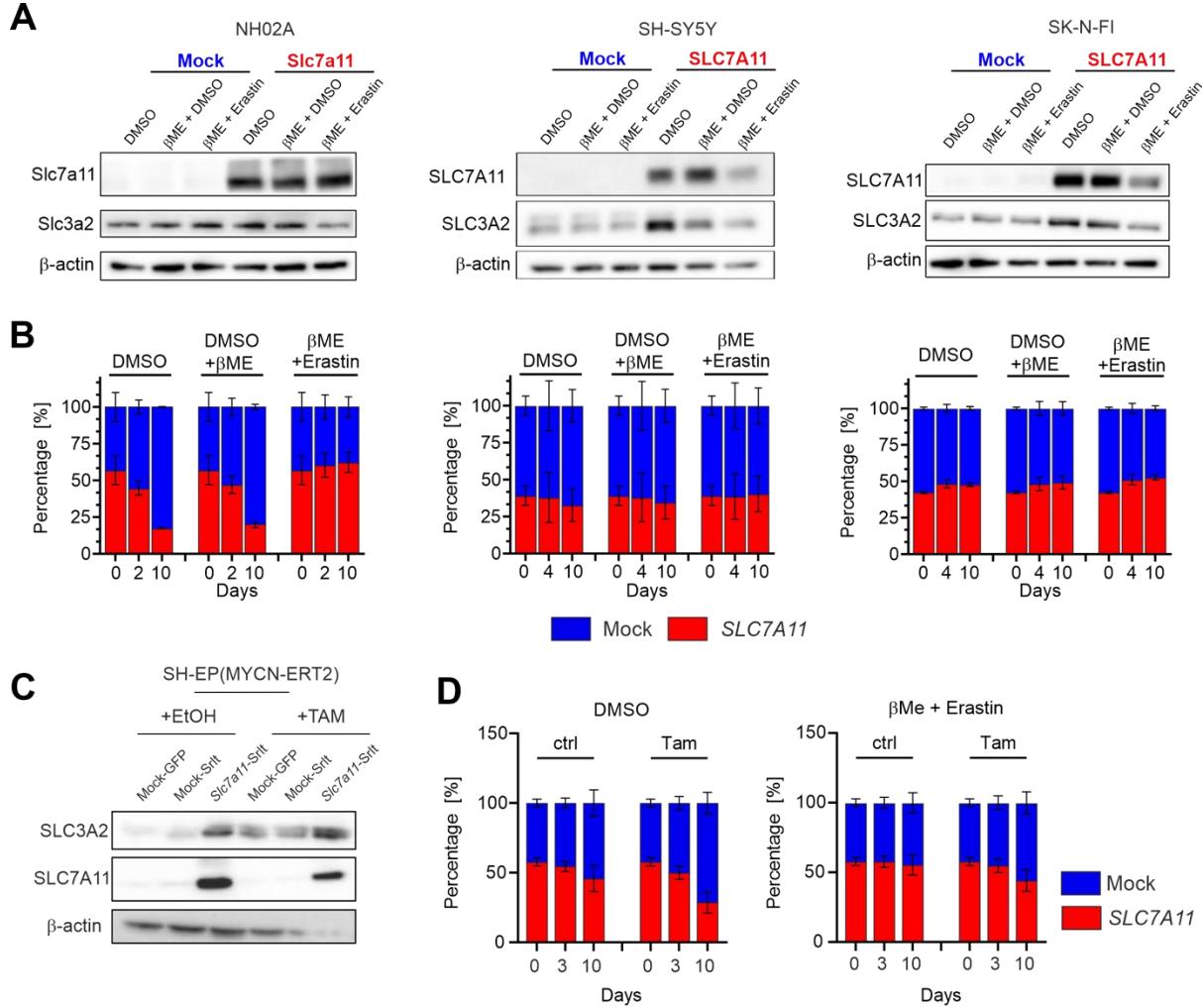


Fig. S5. Immunoblot analysis of LRP8, SCLY, GPX4 and Flag in LRP8-deficient HT1080 (**A**) and A375 (**C**) cells overexpressing *hLRP8*-Flag or empty vector (Mock). Parental cell lines only expressing Cas9 are shown as control. Dose-dependent toxicity of the ferroptosis inducers iFSP1, Erastin, BSO and RSL3 in LRP8-deficient (LRP8 KO) HT1080 (**B**) and A375 (**D**) cell lines stably transduced with a vector expressing *hLRP8*-Flag. Parental cell lines only expressing Cas9 are shown as control. Data are the mean \pm s.e.m. of $n = 3$ wells of a 96-well plate from three independent experiments. (**E**) Results of a CRISPR deletion screen conducted in H1080 and A375 cell lines displayed as log₂ fold change between LRP8-deficient and wild-type cells.

666
667
668 **Fig. S6. (A)**. Clonogenic capacity of a clonal SK-N-DZ cell line expressing a Tet-inducible SLC7A11
669 expression plasmid under different doxycycline concentration. **(B)** Volcano-plot showing differently
670 expressed genes upon SLC7A11 overexpression induced by doxycycline treatment (+Dox) compared
671 to solvent (-Dox). Each dot represents a single gene. Log2 fold-change of mean expression values are
672 plotted against the significance values (\log_{10} transformed adjusted p-values). **(C)** GSEA enrichment
673 plot of the three most differentially enriched gene sets from the HALLMARK collection, namely
674 “unfolded-protein response” and “reactive oxygen species pathway”. **(D)** Heatmap showing 66
675 metabolites that are significantly different between LRP8-overexpressing SK-N-DZ cells and mock
676 control. Abundance is represented as Log2-transformed normalized peak intensity relative to row mean.
677 **(E)** Volcano plot showing differentially abundant metabolites upon LRP8 overexpression in SK-N-DZ
678 cells compared to mock control. Log2 fold change of mean normalized peak intensities are plotted
679 against the significance values (\log_{10} transformed adjusted p-values). Significantly up- (red) or
680 downregulated (blue) metabolites are indicated and selected metabolites are labelled. NDP/NTP are
681 highlighted in dark red. **(F)** Spearman correlation analysis of Log2 fold changes for 78 polar metabolites
682 compared between LRP8- and SLC7A11-overexpressing SK-N-DZ cells relative to mock controls. **(G)**.
683 Normalized levels of GSH and GSSG in LRP8- and SLC7A11-overexpressing SK-N-DZ cells relative
684 to mock controls. Data are represented as mean \pm s.e.m (n=4). **(H)** Relative GSH/GSSG ratio for cells
685 shown in (g). **i.** Heat maps showing log2 fold change of selected metabolites in LRP8- and SLC7A11-
686 overexpressing SK-N-DZ cells relative to mock controls (n=4) (n.d. = not detected). * $P < 0.05$, ***
687 $P < 0.005$, **** $P < 0.001$

688

689

Fig. S7. (A) Immunoblot analysis of SLC7A11 and SLC3A2 in different neuroblastoma cell lines upon transduction of an SLC7A11 overexpression plasmid (*SLC7A11^{OE}*) or empty vector (Mock). **(B)** Cell competition assay of a panel of neuroblastoma cell lines overexpressing *SLC7A11* (*SLC7A11^{OE}*) compared to empty vector (Mock). **(C)** Immunoblot analysis of SLC7A11 and SLC3A2 in a *MYCN*-inducible cell line SH-EP (*MYCN-ERT²*) transduced with an *SLC7A11* overexpression plasmid (*SLC7A11-Srlt*), GFP (Mock-GFP) or empty vector (Mock-Srlt) upon treatment with 0.5 μ M tamoxifen or solvent (ethanol) for 24 hours. **(D)** Competition assay of SH-EP (*MYCN-ERT²*) expressing an *SLC7A11* expression plasmid or empty vector (Mock) upon *MYCN* activation. For the competition assay, cells were seeded at a ratio of 50/50 and 50,000 events were measured by flow cytometry at the depicted time points. Rescue experiments were carried in the presence of β Me alone (50 μ M) or a combination of β Me and Erastin (0.5 μ M). Time zero in the different cell lines represents the same experiments plotted repeatedly in order to facilitate visualization. Bars display percentage of eGFP- (blue) and Scarlet-cells (red) with $n=3$ or means \pm s.e.m. with $n=3$.

703

704

705

706

707

708

709

710

711

712

713

714

715

716 Methods

717

718 Cell culture

719 The human neuroblastoma cell line SK-N-DZ was maintained in DMEM medium (Gibco)
720 supplemented with 10% FCS (Gibco), 1X HEPES (Gibco) and 100 U/ml penicillin/streptomycin
721 (Gibco) at 37° C with 5% CO₂. Cell lines were tested for their identity by SNP genotyping and
722 for mycoplasma contamination by the respective Multiplexion service (Heidelberg, Germany).

723

724 Molecular cloning

725 The human CRISPR activation pooled library Set A (Addgene plasmid #92379 was a gift from
726 David Root and John Doench) was amplified as described previously (38). Briefly, Endura
727 electrocompetent cells (Lucigen, Cat. No. 60242) were used to perform six electroporation
728 reactions on a MicroPulserTM II (BioRad) following the manufacturer's instructions (pre-set
729 EC1 setting with V: 1.8 kV). Subsequently, cells were pooled and recovered at 37° C for 45
730 min on a shaking-incubator. The cell suspension was diluted with LB-medium and 2 ml of
731 bacterial suspension was spread evenly on pre-warmed LB-agar plates containing
732 carbenicillin (100 µg/ml, 1x 245 mm square dish per 10,000 gRNAs in library) and incubated
733 for 12 hours at 37° C. The electroporation efficiency was assessed and cells harvested when
734 library representation was >100 bacterial colonies per gRNA. Plasmid DNA was purified using
735 NucleoBond® Xtra Maxi EF (Macherey-Nagel, Cat. No. 740424) according to manufacturer's
736 instructions. Sequencing libraries were prepared using the NEBNext 2x High-Fidelity Master
737 Mix (NEB, Cat. No. M0541L) with amplification primers that were partially complementary to
738 the lentiviral gRNA backbone with overhangs introducing the Illumina P5/P7 adapter
739 sequences. A pool of staggered P5 primer and 5% PhiX spike-in were used to increase
740 sequence diversity. Maintenance of gRNA distribution and library complexity was confirmed
741 via next-generation sequencing (NGS) on a Hi-Seq2000 with the following read configuration:
742 125 cycles Read 1, 8 cycles index 1 (i7). Sequencing was performed by the High Throughput
743 Sequencing Unit of the DKFZ Genomics and Proteomics Core Facility.

744

745 For the validation and for the scCRISPRa screens, a custom gRNA library was constructed
746 with selected hits from the primary screen. A pool of 82 oligonucleotides containing two gRNAs
747 for each target together with ten NT control gRNAs was ordered from Twist Bioscience (San
748 Francisco, USA) and cloned into a modified CROP-seq-MS2 vector via Golden Gate Assembly
749 (NEB, Cat. No. E5520). The modified CROP-seq-MS2 plasmid was obtained as following: the
750 lentiviral CROP-seq-opti vector (Addgene plasmid #106280 was a gift from Jay Shendure)

751 was sub-cloned via restriction digest of the plasmid with Nsil-HF (NEB, Cat. No. R3127) and
752 SnaBI (NEB, Cat. No. R0130) and the insertion of a synthetic dsDNA fragment coding for a
753 gRNA scaffold sequence with MS2 stem-loop motifs (manufactured by Synbio Technologies,
754 South Brunswick Township, USA). The MS2 loops in the gRNA scaffold allow the recruitment
755 of the p65-HSF1 transactivator complex (expressed from pLentiMPH2). Next, the puromycin
756 resistance gene was extended with a sequence coding for a viral p2A self-cleaving motif and
757 a tagBFP thereby removing the stop-codon from the puromycin resistance gene. For this, the
758 plasmid was linearized with BstEII-HF (NEB, Cat. No. R3162) and MluI-HF (NEB, Cat. No.
759 R3198) and the synthetic dsDNA fragment (manufactured by Twist Bioscience) was inserted
760 to the plasmid backbone thus generating CROP-seq-MS2. The custom gRNA library was
761 amplified in electrocompetent Endura bacteria (Lucigen, Cat. No. 60242) and plasmid DNA
762 purified as described. Library complexity was verified via NGS using the MiSeq V3 kit (Read
763 configuration: 167 cycles Read 1, 8 cycles index 1 (i7)).

764

765 Individual gRNAs were cloned into the modified CROP-seq-MS2 or the pXPR_502 (Addgene
766 #96923 was a gift from John Doench and David Root) lentivectors for CRISPRa experiments
767 and the pLKO5_RFP657 backbone for knockout (CRISPR-KO) experiments via restriction
768 digest of the respective lentivector with BsmBI (NEB, Cat. No. R0739). Oligonucleotides
769 (Sigma-Aldrich) with the gRNA sequences and complementary overhangs were
770 phosphorylated, annealed and inserted into the respective lentiviral delivery vector.

771

772 Oligonucleotides used for cloning of individual gRNAs

Name	Sequence (5'-3')
sense LRP8-KO #1	CACCGGCCACTGCATCCACGAACGG
antisense LRP8-KO #1	AAACCCGTTCGTGGATGCAGTGGCC
sense LRP8-KO #2	CACCGCTGCTTAGACCACAGCGACG
antisense LRP8-KO #2	AAACCGTCGCTGTGGTCTAACGCAGC
sense LRP8-OE #1	CACCGGGCGGGAGGCAGCGGGAGCGGG
antisense LRP8-OE #1	AAACTCCCGCTGCCGCCTCCGCC
sense LRP8-OE #2	CACCGGGCAGAGCCGAGTCAGAGAC
antisense LRP8-OE #2	AAACGTCTCTGACTCGGCTCTGCC
sense AIFM2-OE #1	CACCGTAACCTGACCCTGAGCGAA
antisense AIFM2-OE #1	AAACTTCGCTCAGGGTCAAGGTTAC
sense YBX3-OE #1	CACCGGCCGCCGGTGCCTTCTA
antisense YBX3-OE #1	AAACTAGAAAGCGCACCGGGCGCC

sense LRP8-VBC #2	CACCGTACGGCTGAAGAGAGTGCCT
antisense LRP8-VBC #2	AAACACGCACTCTCTTCAAGCCGTAC
sense LRP8-VBC #3	CACCGGCAATAAGACCATCTCAG
antisense LRP8-VBC #3	AAACCTGAGATGGTCTTATTGCC
sense LRP8-exon9 #3	CACCGTACCAATTACCTAGCCATGGA
antisense LRP8-exon9 #3	AAACTCCATGGCTAGGTAATGGTAC
sense LRP8-exon9 #4	CACCGGAACCTGGGGACTTAGACC
antisense LRP8-exon9 #4	AAACGGTCTAAGTCCCCAGGTTCC

773

774 **Lentivirus production**

775 Large-scale lentivirus production was performed using a second-generation lentivirus system
776 and a calcium phosphate transfection kit (Invitrogen, Cat. No. K278001) in HEK293T cells.
777 Briefly, early passaged HEK293T cells were co-transfected with the lentiviral transfer plasmid,
778 a packaging plasmid (psPAX2, Addgene plasmid #12260 was a gift from Didier Trono), as
779 well as with a plasmid encoding the VSV-G envelope (pMD2.G, Addgene plasmid #12259 was
780 a gift from Didier Trono). Viral supernatant was collected 48 hours post transfection, snap
781 frozen and stored at -80° C until use. Alternatively, for the generation of cell expressing the
782 following constructs; p442-LRP8-Flag, p442-Mock, p442-hSLC7A11, p442-mSlc7a11, p442-
783 GFP and p442-mScarlet, HEK293T cells were used to produce replication-incompetent
784 lentiviral particles pseudotyped with the ecotropic envelope protein of the murine leukaemia
785 virus (MLV) or the pan-tropic envelope protein VSV-G. The third-generation packaging
786 plasmids (MDLg_pRRE and pRSV_Rev) and transfer plasmids were co-transfected into
787 HEK293T cells. Cell cultural supernatant containing viral particle was harvested 48h past
788 transfection and used to transduced cell lines of interest. All experimental procedures for
789 lentivirus production and transduction were performed in a biosafety level 2 laboratory.
790

791 **Cell line generation for CRISPRa and CRISPR-KO experiments**

792 Polyclonal SK-N-DZ cells constitutively expressing the CRISPR activation machinery were
793 engineered by transducing wild-type cells with lentiviral particles carrying a dCas9-VP64 (lenti
794 dCas9VP64_Blast, Addgene plasmid #61425 was a gift from Feng Zhang) at a multiplicity of
795 infection (MOI) of ~0.5. After recovery, cells were selected via Blasticidin treatment (20 µg/ml).
796

797 For the validation and scCRISPRa screens, SK-N-DZ cells expressing dCas9-VP64 were
798 transduced with lentiviral particles encoding the p65-HSF1 transactivator complex
799 (pLentiMPH2, Addgene plasmid #89308 was a gift from Feng Zhang). After recovery and
800 selection with hygromycin B (200 µg/ml, Gibco, Cat. No. 10687010), cells were individualized

801 by fluorescence activated cell sorting based on physical parameters (forward scatter and side
802 scatter) and exclusion of dead cells via DAPI staining. Clonal cell lines were established and
803 tested for their CRISPRa potential. Two independent clonal SK-N-DZ cell lines were selected
804 for the validation screen, while the best scoring clonal cell line was used for the scCRISPRa
805 screen.

806

807 For the CRISPR-KO experiments, cells were transduced with lentivirus carrying a transgene
808 that encodes a doxycycline-inducible wild-type Cas9 nuclease (pCW-Cas9-EGFP). After
809 recovery, Cas9-inducible cells were transduced with the gRNA lentivirus (pLKO5-RFP657
810 backbone) at a MOI of ~0.3. Double positive cells (EGFP/RFP657) were individualized via
811 FACS with the exclusion of dead cells (DAPI negative). Cas9 expression was induced with
812 the addition of doxycycline (1 µg/ml, Sigma-Aldrich, Cat. No. D9891) into the cell culture
813 medium.

814

815 **Genome-wide CRISPRa screen to identify negative regulators of ferroptosis**

816 Polyclonal SK-N-DZ cells expressing dCas9-VP64 were transduced with the genome-wide
817 Calabrese CRISPRa library in triplicate at an MOI of ~0.3. For each replicate, 190 million cells
818 were transduced achieving a representation of ~1,000 cells per gRNA. After initial recovery
819 for 4 days, cells were selected with puromycin (0.65 µg/ml) for 7 days. For each replicate, cells
820 were split into four groups of which one was harvested to determine baseline gRNA
821 representation, another one maintained as the control group, while two others were treated
822 with one of the ferroptosis inducing agents, RSL3 or Erastin respectively, at a concentration
823 lethal for wild-type SK-N-DZ (300 nM/1 µM). Cells were maintained either with the addition of
824 puromycin (control group) or with the addition of puromycin and the respective drug for
825 additional two weeks. The control cells were passaged maintaining the gRNA representation
826 of 1,000 cells per gRNA throughout the screen. Cells were harvested once the treatment
827 groups reached approximately the same number as the control groups.

828 The genomic DNA was extracted using a commercial kit (Quick-DNA Midirep Plus kit, Zymo
829 Research, Cat. No. D4075) following the manufacturer's instructions and NGS libraries
830 prepared as described. Libraries were sequenced as a multiplexed pool on a single lane of a
831 HiSeq2000 chip with the following read configuration (125 cycles Read 1, 8 cycles index 1
832 (i7)).

833

834 **Genome-wide CRISPRa screen analysis and selection of candidate hits**

835 Raw sequencing reads were processed as previously described (39). Briefly, reads were
836 trimmed to remove the constant vector sequence upstream of the gRNA sequences with
837 *cutadapt* and then mapped to the reference library with *Bowtie2*. For each gRNA, the assigned

838 reads were counted and normalized (cpm, counts per million reads). Using the control
839 samples, a negative binomial count distribution was estimated and used to determine fold-
840 changes of individual gRNAs in the treatment samples. P-values were computed and
841 corrected for multiple testing (FDR). Finally, a gene-level score was calculated from the mean
842 log fold-change of all gRNAs targeting the same gene. Candidate hits were selected using the
843 top 100 enriched genes and examining protein interactions via StringDB (40) network analysis
844 (R package version 2.4.0). Those hits were selected that showed a predicted interaction in the
845 network (total of 36 genes, 162 predicted interactions, p-value: 0.0055).

846

847 **Secondary validation CRISPRa screen**

848 Two monoclonal SK-N-DZ cell lines constitutively expressing dCas9-VP64 as well as the p65-
849 HSF1 transactivator complex were transduced with the custom gRNA library targeting the
850 transcription start sites of 36 selected hits from the primary screen (gRNA representation >
851 2000x). After recovery and selection with puromycin (1 µg/ml), cells were split into one control
852 group and a treatment group with RSL-3 (100 nM). Cells were harvested after two weeks and
853 sequencing libraries prepared as described. Libraries were sequenced as a multiplexed pool
854 on a MiSeq V3 (Read 1: 167 cycles, index 1 (i7): 8 cycles).

855

856 **Secondary validation screen analysis**

857 A count matrix of gRNA abundances was determined as described for the primary screen
858 while mapping the reads to the custom reference library. In order to compute enrichment
859 scores and p-values, the robust rank aggregation workflow in the MaGeCK (41) pipeline was
860 used.

861

862 **Single-cell CRISPRa screen**

863 A monoclonal SK-N-DZ expressing dCas9-VP64 and p65-HSF1 was transduced in duplicate
864 with the custom gRNA library in the CROP-seq-MS2 backbone at a low MOI of ~0.07 to
865 minimize the integration of multiple gRNAs. Transduction efficiency was confirmed via flow
866 cytometric analysis of tagBFP expression. Cells were selected with puromycin at 1 µg/ml 24
867 hours post-transduction. Puromycin selection was continued for additional 4 days at 1.5 µg/ml.
868 Ten days after transduction, cells were collected and ~20,000 individual cells per lane were
869 partitioned by the 10X Chromium Controller. Single-cell RNA-seq libraries were constructed
870 using the Chromium Single Cell Gene Expression v3.1 kit (10X Genomics, Cat. No. 1000128)
871 following the manufacturer's protocol thereby retaining 40 ng of full-length cDNA for the
872 enrichment of gRNAs. Guide RNA sequences were selectively amplified adapting a hemi-
873 nested PCR approach that was previously described (42) using the gRNA_enrichment1_fw

874 (5'-GTGACTGGAGTTCAGACGTGTGCTCTCCGATCTCTTG TG-
875 GAAAGGACGAAACACCG-3') and gRNA_enrichment1_rv (5'-CTACACGAC-
876 GCTCTTCCGATCT-3') primers and the 2x KAPA HiFi HotStart Ready Mix (Roche, Cat. No.
877 KK2601). In a subsequent PCR, 1 ng of purified PCR product was used as input to construct
878 sequencing ready libraries with the gRNA-enrichment2_fw (5'-
879 CAAGCAGAAGACGGCATACGAGAT[index1]GTGACTGGAGTTCAG-3') and
880 gRNA_enrichment2_rv (5'-AATGATACGGCGAC-
881 CACCGAGATCTACACTCTTCCCTACACGACGCTC-3') primers. The whole-transcriptome
882 single-cell libraries were sequenced on a NovaSeq6000 with 28 cycles Read 1, 8 cycles index
883 1 (i7) and 91 cycles Read 2. The gRNA enrichment libraries were sequenced on a NextSeq550
884 high with the following read configuration: 32 cycles Read 1, 8 cycles index 1 (i7) and 120
885 cycles Read 2.

886

887 **Single-cell CRISPRa screen analysis**

888 Whole-transcriptome single-cell reads were mapped to the reference genome (GRCh 38) and
889 count matrices were generated using Cell Ranger (10X Genomics, version 6.0.1) with default
890 parameters. Single-cell sequencing data from two individual 10X Chromium lanes were
891 combined using the aggregation function (cellranger aggr). Data normalization and
892 downstream analysis were performed with the R package Seurat (version 4.0.1). Based on
893 the inflection point per cell barcode, a threshold of 1,000 detected features per cell was set to
894 filter out empty droplets as well as cells with low complexity. The count matrix was filtered for
895 genes detected in at least 10 cells. For each cell, UMI counts of each gene were divided by
896 the total number of counts and multiplied by a scaling factor (10,000) after which they were
897 log-transformed. Guide RNA enrichment libraries were processed via fba (43) (version 0.0.11)
898 and mapped to the custom gRNA library thereby allowing two mismatches. The Seurat object
899 was filtered for cells that were assigned to a particular gRNA and cells with a strong CRISPRa
900 phenotype were determined using Seurat's Mixscape function. Differential gene expression
901 analysis was performed for each CRISPRa group with DESeq2 (version 1.32.0) using cells
902 assigned to the NT group as control. The top 50 differentially expressed genes were selected
903 (ranked by the adjusted p-value) from each overexpression group and merged together to
904 create the gene expression signature list. For Fig. 1F, functionally related differentially
905 expressed genes were labelled based on overrepresented terms that were retrieved from the
906 Gene Ontology, the Reactome, the KEGG and the Molecular Signatures databases and based
907 on enrichment analysis performed with the R package clusterProfiler (version 4.0.2).

908

909 **SLC focused CRISPR based screens for selenium relevant transporters**

910 SK-N-DZ were transduced with the SLC-focused CRISPR based library in duplicate at an MOI
911 of 0.5. For each replicate, 10 million cells were transduced to achieve a representation of
912 >1000. After recovery for 3 days, the cells were selected with 0.5 µg/ml puromycin and were
913 maintained with 500nM Lip-1 for 5 days. After selection, for each replicate, the cells were split
914 into five groups which were treated with 20nM Na2SeO3, 20nM Selenocystiene, 200nM
915 Selenomethione, 50µM βME and 500nM Lip-1 respectively. The cells were passaged
916 maintaining representation >1000 cells per gRNA throughout the screen. Cell pellets were
917 harvested at day 14 of treatment. The genomic DNA was extracted using a commercial kit
918 (QIAGEN-DNeasy) following manufacturer's instructions. Libraries were sequenced as a
919 multiplexed pool on a Nextseq500 (8 cycles index 2 (i5), 8 cycles index 1 (i7), 75 cycles Read
920 1, 75 cycles Read 2)

921

922 **Generation of *LRP8*-knockout cell lines**

923 SK-N-DZ cells were transduced with lentiviral particles encoding *LRP8* gRNAs
924 (lentiCRISPRv2 blast, Addgene plasmid #98293 was a gift from Brett Stringer). After recovery
925 and selection with blasticidin (10µg/ml), cells were subcloned via limiting dilution. Clonal cell
926 lines were established and tested for *LRP8* expression by Western Blot. Two clonal cell lines
927 were selected for further experiments.

928 Clonal HT1080 and A375 cells constitutively expressing Cas9 were transfected with plasmids
929 encoding gRNAs (pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W, Addgene plasmid #67976
930 was a gift from Kosuke Yusa) targeting introns flanking *LRP8* exon 9. After selection with
931 puromycin (1µg/ml), cells were grown by limiting dilution. Clonal cell lines were established
932 and tested by genotyping PCR and Western Blot. Two clonal cell lines were selected for further
933 experiments and subsequent CRISPR based screens.

934

935 **SLC focused CRISPR based screens in *LRP*-KO and wild-type**

936

937 *LRP8*-KO and WT cell lines were transduced with the SLC focused CRISPR based library at
938 an MOI of 0.5. 10 million cells for each cell lines were transduced achieving >1000 cells per
939 gRNA. After recovery and selection with 1µg/ml puromycin, the *LRP8*-KO and -WT cell lines
940 were split and maintained at the gRNA representation of >1000. Cell pellets were harvested
941 after 2 weeks of passaging. The genomic DNA was extracted with a commercial kit (QIAGEN-
942 DNeasy) following the manufacturer's instructions. Libraries were multiplexed and sequenced
943 on a Nextseq 500 (8 cycles index 2 (i5), 8 cycles index 1 (i7), 75 cycles Read 1, 75 cycles
944 Read 2). The mapping of raw sequencing reads to the reference library and computing of
945 enrichment scores and P-values were processed using the MaGeCK pipeline. The
946 MaGeCKFlute was used for identification of gene hits and associate pathways.

947 **Cell lines generation for competition assay**

948 Human neuroblastoma cell lines (SK-N-DZ, SK-N-FI, SH-SY5Y and SH-EP MYCN-ER) and
949 the murine neuroblastoma cell line (NH02A) expressing a lentiviral construct carrying
950 *SLC7A11* cDNA or an empty vector were generated using the methods described above.
951 Briefly, lentiviral constructs were transduced into the corresponding cell line labeled with
952 mScarlet or eGFP. The combination of construct/fluorophore is described in the figures
953 present in the main text. Established cell lines were counted and mixed at a 1:1 ratio and the
954 distribution was monitored during the period indicated in the main text. Rescue experiments
955 were carried using a combination of β Me (50 μ M) and Erastin (0.5 μ M).

956

957 **Analysis of Cell Viability**

958 The impact of various compounds on cell viability was analyzed using the CellTiter-Glo (CTG)
959 assay (Promega). To determine changes in cell viability, 3000 cells were seeded in full
960 medium in 96-well plates (Greiner Bio One) 24 h prior to the treatment. Cells were then treated
961 for 72 h with the indicated concentration of compounds. Cell viability was analyzed using the
962 CTG assay following the manufacturer's instructions. For in vitro clonogenic assays, 200 cells
963 were seeded in 12-well plate for 14 days with each particular experimental condition, and
964 colonies were stained with 1 mL 0.01% (w/v) crystal violet.

965

966 **Analysis of Lipid peroxidation**

967 Approximately 10^5 cells were seeded in six-well plates. Before lipid peroxidation being
968 analyzed, medium was removed, C11-BODIPY (wave length: 581/591 nm) diluted in Hank's
969 Balanced Salt Solution (HBSS; Gibco) and added to wells at a final concentration of 4 μ M.
970 After 15 min staining at 37° C inside the tissue culture incubator, cells were harvested gently
971 and levels of lipid peroxidation immediately analyzed using a BD FACS Aria™ III cell sorter.

972

973 **Transient siRNA-mediated gene knockdown**

974 SK-N-DZ cells were seeded in 12-well plates (200,000 cells/well) and 24h later transiently
975 transfected with a mix of RNAiMax (0.04 μ l/well; Thermo Fisher Scientific) and 0.01 μ M/well
976 of siRNA following the manufacturers' instructions.

977

978 **Metabolic Profiling**

979 Water-soluble metabolites from *SLC7A11*-overexpressing cells were extracted with 0.5 ml ice-
980 cold MeOH/H₂O (80/20, v/v) containing 0.01 μ M lamivudine (Sigma-Aldrich) and water-
981 soluble metabolites from *LRP8*-overexpressing cells were extracted with 1.0 ml ice-cold
982 MeOH/CH₃CN/H₂O (50/30/20, v/v/v) containing 4 μ M of the internal standards D4-glutaric
983 acid and D8-phenylalanine. The suspensions were vigorously mixed, sonicated, mixed again

984 and centrifuged for 5 min at 13,000g. After centrifugation of the resulting homogenates,
985 supernatants were transferred to a RP18 SPE column (Phenomenex) that had been activated
986 with 1.0 ml CH3CN and conditioned with 1.0 mL of MeOH/H2O (80/20, v/v). The remaining
987 cell pellet was again resuspended in 0.5 mL ice-cold MeOH/CH3CN/H2O (50/30/20, v/v/v),
988 mixed, sonicated and centrifuged as before. The supernatant was transferred to the same
989 column again and the eluate was collected in the same tube as before. The eluate was dried
990 in a centrifugal evaporator Savant (Thermo Scientific) or SpeedVac (Labconco) and dissolved
991 in 5 mM NH4OAc in CH3CN / H2O (50/50, v/v) in 50 μ L for *SLC7A11*-overexpressing cells and
992 in 100 μ L/1*10⁶ cells for *LRP8*-overexpressing cells.

993 For LC-MS analysis of water-soluble metabolites from *SLC7A11*-overexpressing cells, 3 μ L of
994 each sample was applied to a ZIC-cHILIC column (Sigma-Aldrich SeQuant ZIC-cHILIC, 3 μ m
995 particle size, 100*2.1 mm). Metabolites were separated at 30°C by LC using a DIONEX
996 Ultimate 3000 UPLC system (Thermo Fisher Scientific) and the following solvents: Solvent A
997 consisting of 5 mM NH4OAc in CH3CN/H2O (5/95, v/v) and solvent B consisting of 5 mM
998 NH4OAc in CH3CN/H2O (95/5, v/v). At a flow rate of 200 μ L/min, a linear gradient starting at
999 100% solvent B decreasing to 40% solvent B over 23 min was applied followed by 17 min
1000 constant elution with 40% solvent B, followed by a linear increase to 100% solvent B over 1
1001 min. Recalibration of the column was achieved by 7 min pre-run with 100% solvent B. MS-
1002 analyses were performed on a high-resolution Q-Exactive mass spectrometer (Thermo Fisher
1003 Scientific) in alternating positive- and negative full MS mode applying the following scan and
1004 HESI source parameters: Scan Range: 69.0 - 1000 m/z. Resolution: 70,000, AGC-Target:
1005 3E6, Maximum Injection Time: 200 ms. Sheath gas: 30, auxiliary gas: 10, sweep gas: 3, Aux
1006 Gas Heater temperature: 120 °C. Spray voltage: 2.5 kV (pos)/3.6 kV (neg), capillary
1007 temperature: 320 °C, S-lens RF level: 55.0.

1008 For LC/MS analysis of water-soluble metabolites from *LRP8*-overexpressing cells, 3 μ L of
1009 sample was applied to an Amid-HILIC column (Thermo Fisher Scientific Accucore 150 Amid-
1010 HILIC, 2.6 μ m particle size, 100 x 2.1 mm). Metabolites were separated at 30°C by LC using a
1011 DIONEX Ultimate 3000 UPLC system (Thermo Fisher Scientific) and the following solvents:
1012 Solvent A consisting of 5 mM NH4OAc in CH3CN/H2O (5/95, v/v) and solvent B consisting of
1013 5 mM NH4OAc in CH3CN/H2O (95/5, v/v). At a flow rate of 350 μ L/min, a linear gradient
1014 starting at 98% solvent B for 1 min, followed by a linear decrease to 40% solvent B within 5
1015 min, then maintaining 40% solvent B for 13 minutes, then returning to 98% solvent B within 1
1016 minute. The column was equilibrated at 98% solvent B for 5 minutes prior every injection. The
1017 eluent was directed to the ESI source of the MS instrument from 0.5 minutes to 19 minutes
1018 after sample injection. MS analysis was performed on a high-resolution Q-Exactive plus mass
1019 spectrometer (Thermo Fisher Scientific) in alternating positive- and negative full MS mode
1020 applying the following scan and HESI source parameters: 69-1000 m/z; resolution: 70,000;

1021 AGC-Target: 1E6; maximum injection time: 50 ms; sheath gas: 30; auxiliary gas: 10; aux gas
1022 heater temperature: 120°C; spray voltage: 3.6 kV (pos)/2.5 kV (neg), capillary temperature:
1023 320°C, S-lens RF level: 55.0. For the fragmentation of water-soluble metabolites, the following
1024 ddMS2 settings were applied in both modes: Resolution: 17,500; AGC-Target: 1E5; maximum
1025 injection time: 50 ms; Loop count: 1; CE: 20, 50, 80; Apex trigger: 0.1 to 10s; minimum AGC
1026 target: 2E3; Dynamic exclusion: 20 s.

1027 Signal determination and quantitation was performed using TraceFinder™ Software Version
1028 3.3 (Thermo Fisher) or using EI-Maven Software Version 0.12.0 (<https://elucidata.io/el-maven/>).

1030

1031 **Analysis of oxygen consumption rate**

1032 Oxygen consumption rate (OCR) of SK-N-DZ (*SLC7A11*-overexpressing and Mock) cells was
1033 measured using the Seahorse XF96 Analyzer (Seahorse Biosciences) and the Seahorse XF
1034 Cell Mito Stress Test Kit with oligomycin (final concentration 1.5 μ M), followed by FCCP (final
1035 concentration 2 μ M), and Rotenone (final concentration 0.5 μ M). For this experiment 40,000
1036 cells/well were plated a day before the experiment. This allowed for a 60–70% confluence at
1037 the time of measurement. Data were normalized to total protein amount (Bio-Rad protein
1038 assay).

1039

1040

1041 **Selenium speciation analyses**

1042 We measured total selenium by inductively coupled plasma sectorfield mass spectrometry
1043 (ICP-sf-MS) and the selenium species selenite (Se-IV), selenate (Se-VI), selenomethionine-
1044 bound selenium (Se-MET), selenocystine-bound selenium (Se-Cys), thioredoxin reductase-
1045 bound selenium (Se-TrxR), glutathione-peroxidase-bound selenium (Se-GPx), selenoprotein-
1046 P-bound selenium (SELENOP) and albumin-bound selenium (Se-HSA) using ion exchange
1047 chromatography (IEC) coupled with ICP-dynamic reaction cell mass spectrometry (ICP-DRC-
1048 MS) in analogy to methodologies previously established (44). The experimental settings for
1049 ICP-sf-MS (ELEMENT II, Thermo Scientific, Bremen Germany) were: radio frequency power:
1050 1260 W, plasma gas flow: 16L Ar/min auxiliary gas flow: 0.85L Ar/min, nebulizer gas flow:
1051 1.085 L Ar/min, daily optimized, dwell time 300 ms, ions monitored: 77Se, 78Se, high resolution
1052 mode. For speciation of selenium compounds, we used the hyphenated system from Perkin
1053 Elmer (Rodgau, Germany) comprising of a NexSAR gradient HPLC pump, autosampler and
1054 NexION 300 D ICP-DRC-MS, completely controlled by Clarity software. The separation
1055 column for species separation was an ion exchange pre- and analytical column AG-11+AS-
1056 11 (250 x 4 mm I.D.) from Thermo Dionex (Idstein, Germany). The sample volume was 50 μ L.
1057 The mobile phases and chromatographic gradient were previously published(44). Briefly, the

1058 flow rate was 0.80 ml/min. The experimental settings for ICP-DRC-MS) were: radio frequency
1059 power: 1250 W, plasma gas flow: 15L Ar/min auxiliary gas flow: 1.05L Ar/min, nebulizer gas
1060 flow: 0.92 L Ar/min, daily optimized, dwell time 300 ms, ions monitored: 77Se, 78Se, 80Se,
1061 DRC reaction gas: CH4 reaction at 0.58 ml/min, DRC rejection parameter q: 0.6. Five-point
1062 calibration curves from 0-5000 ng/L were linear with r^2 for the three Se isotopes being better
1063 than 0.999881. Data files from selenium chromatograms were processed with Clarity software
1064 for peak area integration.

1065

1066 **Analyses of pediatric cohorts of neuroblastoma samples**

1067 RNA sequencing of 498 neuroblastoma cases was performed as described previously (45). In
1068 short, mRNA purification was done using the Dynabeads mRNA Purification Kit (Invitrogen)
1069 and library construction was performed according to the standard TruSeq protocol. Clusters
1070 were generated according to the TruSeq PE cluster Kit version 3 reagent preparation guide
1071 (for cBot-HiSeq/HiScanSQ). Paired-end sequencing with 100bp read length was performed
1072 on the Illumina HiSeq 2000 platform. Raw data processing, read mapping, and gene
1073 expression quantification were done using the Magic-AceView analysis pipeline and AceView
1074 transcriptome reference (<http://www.aceview.org>) as described previously(45). Genes with
1075 generally low read counts were removed using R (v4.1.1) and the function 'filterByExpr' in R-
1076 package edgeR (v3.34.1). Differential gene expression analysis was done using the empirical
1077 Bayes method implemented in the R-package limma (v3.48.3).

1078

1079 ***In vivo* orthotopic mouse experiments**

1080 All studies involving mice and experimental protocols were conducted in compliance with the
1081 German Cancer Center Institute guidelines and approved by the governmental review board
1082 of the state of Baden-Wuerttemberg, Regierungspraesidium Karlsruhe, under the
1083 authorization number G-176/19, followed the German legal regulations. Mouse strains used
1084 in the study: NOD.Cg-Prkdc^{Scid}Il2rgtm1^{Wjl}/SzJ (NSG, JAX stock #005557). Female mice, 3 – 4
1085 months of age, were used for experiments. Mice were housed in individually ventilated cages
1086 under temperature and humidity control. Cages contained an enriched environment with
1087 bedding material. To generate orthotopic mouse models for neuroblastoma, 2×10^5 SK-N-DZ
1088 cells were transplanted into the right adrenal gland after surgical site was prepared. Cells were
1089 resuspended in a 1:1 (vol/vol) mix of growth factor-reduced matrigel (Corning) and PBS.
1090 Overall, 20 μ l of this cell suspension was injected into the right adrenal gland of anaesthetized
1091 mice. After tumor cell transplantation, we monitored the mice for evidence of tumor
1092 development by bioluminescent signal using an IVIS Spectrum Xenogen device (Caliper Life
1093 Sciences). We observed a clear signal from the tumors one week after the injection of 2×10^5
1094 SK-N-DZ cells. For liproxstatin (Lip-1) we used 10 mg/kg/d for the first 5 days. Lip-1 treatment

1095 (every second day) continued in one group for another 2 weeks. Animals' health was
1096 monitored daily and mice were euthanized as soon as they reached abortion criteria defined
1097 in the procedure. Sample size was calculated with the help of a biostatistician using R version
1098 3.4.0. Assumptions for power analysis were as follows: α error, 5%; β error, 20%. Mice were
1099 randomized into treatment groups prior to treatment. In case animals had to be sacrificed
1100 before the pre-defined endpoint (due to weight loss or other termination criteria), they were
1101 excluded from any downstream analyses. All animal experiments were blinded during
1102 experiments and follow up assessment.

1103

1104

1105 References

1. J. P. Friedmann Angeli, D. V. Krysko, M. Conrad, Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. *Nat Rev Cancer*, (2019).
2. V. S. Viswanathan *et al.*, Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. *Nature* **547**, 453-457 (2017).
3. W. S. Yang *et al.*, Regulation of ferroptotic cancer cell death by GPX4. *Cell* **156**, 317-331 (2014).
4. R. Shah, M. S. Shchepinov, D. A. Pratt, Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. *ACS Cent Sci* **4**, 387-396 (2018).
5. H. Liu, S. L. Schreiber, B. R. Stockwell, Targeting Dependency on the GPX4 Lipid Peroxide Repair Pathway for Cancer Therapy. *Biochemistry* **57**, 2059-2060 (2018).
6. J. K. Eaton, R. A. Ruberto, A. Kramm, V. S. Viswanathan, S. L. Schreiber, Diacylfuroxans Are Masked Nitrile Oxides That Inhibit GPX4 Covalently. *J Am Chem Soc*, (2019).
7. B. A. Carlson *et al.*, Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. *Redox Biol* **9**, 22-31 (2016).
8. S. H. Brutsch *et al.*, Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. *Antioxid Redox Signal* **22**, 281-293 (2015).
9. J. P. Friedmann Angeli *et al.*, Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. *Nat Cell Biol* **16**, 1180-1191 (2014).
10. K. V. Floros *et al.*, MYCN-Amplified Neuroblastoma Is Addicted to Iron and Vulnerable to Inhibition of the System Xc-/Glutathione Axis. *Cancer Res* **81**, 1896-1908 (2021).
11. Y. Lu *et al.*, MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. *Cell Death Dis* **12**, 511 (2021).
12. H. Alborzinia *et al.*, MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. *Nat Cancer* **3**, 471-485 (2022).
13. J. Lewerenz, G. Ates, A. Methner, M. Conrad, P. Maher, Oxytosis/Ferroptosis-(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. *Front Neurosci* **12**, 214 (2018).
14. M. Yamamoto, T. W. Kensler, H. Motohashi, The KEAP1-NRF2 System: a Thiol-Based Sensor-Effectuator Apparatus for Maintaining Redox Homeostasis. *Physiol Rev* **98**, 1169-1203 (2018).
15. S. Doll *et al.*, FSP1 is a glutathione-independent ferroptosis suppressor. *Nature* **575**, 693-698 (2019).
16. K. Bersuker *et al.*, The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. *Nature* **575**, 688-692 (2019).
17. M. Gao *et al.*, Role of Mitochondria in Ferroptosis. *Mol Cell* **73**, 354-363 e353 (2019).
18. X. Chen, C. Yu, R. Kang, G. Kroemer, D. Tang, Cellular degradation systems in ferroptosis. *Cell Death Differ* **28**, 1135-1148 (2021).

1142 19. S. J. Dixon *et al.*, Ferroptosis: an iron-dependent form of nonapoptotic cell death. *Cell* **149**,
1143 1060-1072 (2012).

1144 20. A. Basu *et al.*, An interactive resource to identify cancer genetic and lineage dependencies
1145 targeted by small molecules. *Cell* **154**, 1151-1161 (2013).

1146 21. G. E. Olson, V. P. Winfrey, S. K. Nagdas, K. E. Hill, R. F. Burk, Apolipoprotein E receptor-2
1147 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. *J Biol Chem*
1148 **282**, 12290-12297 (2007).

1149 22. R. F. Burk, K. E. Hill, A. K. Motley, L. M. Austin, B. K. Norsworthy, Deletion of selenoprotein P
1150 upregulates urinary selenium excretion and depresses whole-body selenium content. *Biochim
1151 Biophys Acta* **1760**, 1789-1793 (2006).

1152 23. I. Ingold *et al.*, Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced
1153 Ferroptosis. *Cell* **172**, 409-422 e421 (2018).

1154 24. R. F. Burk, K. E. Hill, Regulation of Selenium Metabolism and Transport. *Annu Rev Nutr* **35**, 109-
1155 134 (2015).

1156 25. G. Superti-Furga *et al.*, The RESOLUTE consortium: unlocking SLC transporters for drug
1157 discovery. *Nat Rev Drug Discov* **19**, 429-430 (2020).

1158 26. E. Olm *et al.*, Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine
1159 transporter explains the cancer-specific cytotoxicity of selenite. *Proc Natl Acad Sci U S A* **106**,
1160 11400-11405 (2009).

1161 27. A. E. Carlisle *et al.*, Selenium detoxification is required for cancer-cell survival. *Nat Metab* **2**,
1162 603-611 (2020).

1163 28. C. E. Hughes *et al.*, Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron
1164 Homeostasis. *Cell* **180**, 296-310 e218 (2020).

1165 29. V. L. Kolossov *et al.*, Thiol-based antioxidants elicit mitochondrial oxidation via respiratory
1166 complex III. *Am J Physiol Cell Physiol* **309**, C81-91 (2015).

1167 30. A. Cooke *et al.*, The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC
1168 mRNA Abundance. *Cell Rep* **27**, 3097-3106 e3095 (2019).

1169 31. S. Herold *et al.*, Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA
1170 polymerase. *Nature* **567**, 545-549 (2019).

1171 32. N. V. Dharia *et al.*, A first-generation pediatric cancer dependency map. *Nat Genet* **53**, 529-
1172 538 (2021).

1173 33. J. P. Friedmann Angeli, M. Conrad, Selenium and GPX4, a vital symbiosis. *Free Radic Biol Med*
1174 **127**, 153-159 (2018).

1175 34. M. Matsushita *et al.*, T cell lipid peroxidation induces ferroptosis and prevents immunity to
1176 infection. *J Exp Med* **212**, 555-568 (2015).

1177 35. P. Liao *et al.*, CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via
1178 ACSL4. *Cancer Cell*, (2022).

1179 36. W. Wang *et al.*, CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy.
1180 *Nature* **569**, 270-274 (2019).

1181 37. A. D. Durbin *et al.*, Selective gene dependencies in MYCN-amplified neuroblastoma include
1182 the core transcriptional regulatory circuitry. *Nat Genet* **50**, 1240-1246 (2018).

1183 38. J. Joung *et al.*, Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
1184 *Nature Protocols* **12**, 828-863 (2017).

1185 39. P. N. Spahn *et al.*, PinAPL-Py: A comprehensive web-application for the analysis of
1186 CRISPR/Cas9 screens. *Scientific Reports* **7**, 15854 (2017).

1187 40. D. Szklarczyk *et al.*, STRING v11: protein–protein association networks with increased
1188 coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic
1189 Acids Research* **47**, D607-D613 (2019).

1190 41. W. Li *et al.*, MAGeCK enables robust identification of essential genes from genome-scale
1191 CRISPR/Cas9 knockout screens. *Genome Biology* **15**, 554 (2014).

1192 42. A. J. Hill *et al.*, On the design of CRISPR-based single-cell molecular screens. *Nature Methods*
1193 **15**, 271-274 (2018).

1194 43. J. Duan, G. C. Hon, FBA: feature barcoding analysis for single cell RNA-Seq. *Bioinformatics* **37**,
1195 4266-4268 (2021).

1196 44. N. Solovyev, A. Berthele, B. Michalke, Selenium speciation in paired serum and cerebrospinal
1197 fluid samples. *Anal Bioanal Chem* **405**, 1875-1884 (2013).

1198 45. W. Zhang *et al.*, Comparison of RNA-seq and microarray-based models for clinical endpoint
1199 prediction. *Genome Biol* **16**, 133 (2015).

1200