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Abstract

CRISPR screens provide large-scale assessment of cellular gene functions. Pooled
libraries typically consist of several single guide RNAs (sgRNAs) per gene, for a large
number of genes, which are transduced in such a way that every cell receives at most
one sgRNA, resulting in the disruption of a single gene in that cell. This approach is
often used to investigate effects on cellular fitness, by measuring sgRNA abundance at
different time points. Comparing gene knockout effects between different cell
populations is challenging due to variable cell-type specific parameters and between
replicates variation. Failure to take those into account can lead to inflated or false
discoveries.

We propose a new, flexible approach called ShrinkCRISPR that can take into
account multiple sources of variation. Impact on cellular fitness between conditions is
inferred by using a mixed-effects model, which allows to test for gene-knockout effects
while taking into account sgRNA-specific variation. Estimates are obtained using an
empirical Bayesian approach. ShrinkCRISPR can be applied to a variety of
experimental designs, including multiple factors. In simulation studies, we compared
ShrinkCRISPR results with those of drugZ and MAGeCK, common methods used to
detect differential effect on cell fitness. ShrinkCRISPR yielded as many true discoveries
as drugZ using a paired screen design, and outperformed both drugZ and MAGeCK for
an independent screen design. Although conservative, ShrinkCRISPR was the only
approach that kept false discoveries under control at the desired level, for both designs.
Using data from several publicly available screens, we showed that ShrinkCRISPR can
take data for several time points into account simultaneously, helping to detect early
and late differential effects.

ShrinkCRISPR is a robust and flexible approach, able to incorporate different
sources of variations and to test for differential effect on cell fitness at the gene level.
These improve power to find effects on cell fitness, while keeping multiple testing under
the correct control level and helping to improve reproducibility. ShrinkCrispr can be
applied to different study designs and incorporate multiple time points, making it a
complete and reliable tool to analyze CRISPR screen data.
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Introduction 1

The study of effects of genetic perturbation is fundamental to elucidate gene function. 2

In addition, the identification of genes which knockout leads to cell death, either in 3

combination with another genetic change (say a mutation of another gene, leading to 4

‘synthetic lethality’) or in combination with a certain drug, may lead to more efficient 5

cancer treatments. Genome-scale screening methods, in which thousands of genes are 6

individually targeted in a single experiment, are often at the start of such investigations. 7

Major challenges of such approaches have included undesired targeting of aspecific sites 8

(“off-target” effects) and variable gene inactivation efficiencies. The adaptation of 9

clustered regularly interspaced short palindromic repeats (CRISPR) technology to 10

mammalian cells led to the development of improved gene knockout screens, with higher 11

efficiency and lower off-target effects [7, 8]. 12

Per cell one gene is knocked out and single guide RNAs (sgRNAs) of these cells are 13

sequenced. By comparing sgRNA abundance between different conditions, the effect of 14

specific knockouts on cell fitness can be investigated. 15

This method can be applied to study the impact of gene knockout on cell lines of 16

different origins, isogenic cell lines (identical cell lines in which only the status of one 17

gene is different) or a cell line with and without treatment. However, the comparison of 18

gene knockout effects is challenging due to differences in abundance of specific sgRNAs 19

at the start of the experiment. These may be due, for example, to variations in the 20

library composition, efficiency of transduction of sgRNAs into cells and selection, 21

growth rate of transduced cells, premature or incomplete Cas9 activity and 22

between-replicate variation. Data analysis methods ideally should take care of all these 23

issues, to ensure reliability and reproducibility of identified effects. 24

CRISPR screen data involve additional aspects that need to be taken into account: 25

(i) a large number of variables (sgRNAs) and a relatively small number of replicates, 26

also typical for other omics data; (ii) the data are generated by DNA sequencing, and 27

thus consist of counts displaying over-dispersion, aspects that classic statistical methods 28

do not account for; (iii) the effect of a gene knockout is evaluated by several sgRNAs 29

per gene, which need to be aggregated to reach a single conclusion about that gene; (iv) 30

the experiment often involves two sequencinq runs, one at baseline measuring the 31

starting abundance of each sgRNA, and a paired replicate at a later time point, 32

typically after a chosen number of cell doublings. Furthermore, data related to multiple 33

cell lines exhibit both technical and biological variability, which must be accounted for 34

separate and differently in the data analysis. Indeed, the effect of condition such as 35

different treatments may be represented as fixed in the model, as conclusions are to be 36

drawn for the chosen conditions, whilst the variation between sgRNAs can better be 37

assumed to be random – the sgRNA effect then represents that of multiple, similar 38

sgRNAs targeting the same gene. 39

Currently available analysis methods only account for some of these issues. For 40

example, two often used methods, MAGeCK [11] and drugZ [3], ignore the variability 41

between initial replicates. Since the data are produced using deep sequencing, some 42

authors have used data analysis methods designed for (RNA) sequencing, such as 43

edgeR [4,13, 17] and DESeq2 [12]. While these can take care of over-dispersion, neither 44

can estimate both the fixed effect of condition, as well as the random effect of sgRNAs. 45

Furthermore, as these perform one test per sgRNA, they typically require a much 46

heavier multiple testing correction than if testing was performed per gene. 47

To tackle these challenges, we propose an analysis method that, by means of a 48

mixed-effects regression-based empirical-Bayes framework, can efficiently detect genes 49

with differential impact on cell fitness. It first transforms the count data into fold 50

changes relative to the starting sgRNA abundance at T = 0 for each biological sample, 51

then normalizes the data using the rscreenorm [1] method. It then uses an 52
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empirical-Bayes regression model, including a fixed effect for condition and a random 53

effect for the sgRNAs, to find gene-specific effects. This leads to a test per gene by 54

taking all sgRNAs targeting that gene together into account. Our method makes use of 55

ShrinkBayes [19], which fits empirical-Bayes regression models simultaneously for many 56

features using INLA [18], enabling the use of mixed effect models in analyses of 57

high-dimensional data. We call our method ShrinkCRISPR. 58

This manuscript is organized as follows. Section 2 presents the method, section 3 59

uses a simulation model to compare methods’ performances and section 4 illustrates the 60

performance of our pipeline on experimental data. We conclude with a brief summary 61

and discussion in section 5. 62

Methods 63

Experimental designs 64

For completeness, we give here a short overview of the steps involved in CRISPR-Cas9 65

screening. For each replicate, viral particles expressing single guide RNAs (sgRNAs) are 66

transduced into cells, and each sgRNA leads the Cas9 endonuclease to cut a specific 67

target, resulting in a specific gene knockout [8]. Transduction efficiency can vary, so 68

abundance of each sgRNA is obtained per sample both at an initial time point, which we 69

will refer to as T = 0, as well as at a later time point, typically after a chosen number of 70

cell doublings. Differences in sgRNA abundance between the investigated experimental 71

conditions reflect a differential effect on cell fitness of the specific knockout. 72

Two experimental designs are commonly used when studying differential effect on 73

cell fitness between cell lines. For the assessment of drug sensitivity, one batch of cells is 74

transduced and sequenced (T = 0) after which the cell sample is split, and the resulting 75

parts are cultured separately, one with and the other without the drug of interest. This 76

experimental design yields data that can be analysed per pair of replicates disregarding 77

initial sgRNA abundance at T = 0, as this is the same for both. Data analysis involves 78

comparing sgRNA abundance between the treated and untreated replicates (Figure 79

1-A). We will refer to this drug sensitizing experimental design as the “paired design”. 80

For comparing two different cell lines, initial sgRNA abundance at T = 0 is 81

measured per cell line. Then sgRNA abundances are compared between cell lines A and 82

B at a later time point (Figure 1-B). We will refer to this design as the the 83

“independent design”. The two cell lines here involved can for example be derived from 84

the same parental cell line, with and without a mutation. 85

Taking T = 0 into account and normalization 86

When using the independent design, sgRNA abundance can only be compared fairly 87

between cell lines if its initial abundance is taken into account. To do this, we transform 88

the count data into fold changes using the formula: 89

fcs =
Cs0 − Cs

Cs0

, (1)

for a given sgRNA s, where Cs0 , Cs represent the cell count at T = 0 and at the end 90

point of the screen, respectively, and fcs is the resulting fold change. Indeed, fcs is the 91

proportion of cells containing sgRNA s lost relative to their initial abundance. It can 92

take values from −∞ to 1, where 1 represents complete lethality (all cells with sgRNA s 93

are lost between T0 and the end point, so Cs = 0), 0 represents no effect on cell viability 94

(i.e. Cs = Cs0), and negative values indicate proliferation of cells containing the sgRNA 95

s (Cs > Cs0). 96
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Figure 1. Two commonly used experimental designs. A: a drug sensitizing study
compares the effect of gene knockout on paired replicates derived from the same initial
sample screened at T = 0, which is then split and each part is cultured under a different
condition (typically treatment or not). B: the comparison of two cell lines typically
involves different sgRNA abundances at T = 0.

The distribution of fold changes can vary between replicates, between conditions and 97

between cell lines. The use of normalization procedures such as rscreenorm [1] is 98

especially important when these distributions vary considerably. Rscreenorm makes use 99

of assay controls (both negative and positive controls) and of quantile normalization to 100

make measurements across replicates and cell lines more comparable and reflecting the 101

functional effect. With rscreenorm we generate lethality scores per sgRNA, with values 102

around 0 for sgRNAs yielding a phenotype similar to that of negative controls, and 103

values around 1 for sgRNAs similar to positive controls. In other words, lethality scores 104

around 0 represent the same cell fitness as for negative controls, whilst lethality scores 105

around 1 represent as little cell fitness as for positive controls. Quantile normalization is 106

only required in case of large differences in fitness score distributions of the different 107

samples. Lethality scores ls are derived from the fold changes via the formula: 108

ls =
fcs − fcneg
fcpos − fcneg

, (2)

where fcneg is the median of the sgRNAs’ fold changes in the negative control genes 109

and fcpos is the median of the sgRNAs’ fold changes in the positive control genes. 110

An empirical-Bayes regression model 111

By testing possible differences between fold changes of the different cell lines or 112

conditions, we can detect differential effect on cell fitness. To do so, we define a 113

multivariate statistical model. For given gene g, replicate r and condition c, the 114

following model is used: 115

lsgr = α+ βCr + bs + usgc + ϵr, g = 1, . . . , G, r = 1, . . . , R, c = 1, 2, (3)
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where s ∈ {1, . . . , Sg} indicates the sgRNA targeting gene g, and Sg is the total number 116

of sgRNAs targeting gene g. In addition, lsgr is a vector of length equal to Sg, α is the 117

vector of average lethal effects of sgRNAs in the reference cell line, β represents the 118

difference in lethality of the gene knockout between the two conditions across sgRNAs 119

targeting gene g, Cr represents the condition for replicate r, bs is a random effect 120

accounting for variation between sgRNAs, and usgc is a random effect representing a 121

possible interaction between sgRNA s and condition c, allowing for condition-specific 122

sgRNA effects. The error term ϵr of the model is assumed to follow a normal 123

distribution with mean 0. We can then test the null hypothesis H0 : β = 0 of no 124

differential lethality of any of the sgRNAs s between the conditions, against the 125

alternative hypothesis Ha : β ̸= 0 of differential lethality. If an independent design is 126

used, the condition represents a specific cell line, and the remaining cell line is used as 127

reference. If a paired design is used, the condition represents a treated sample, and the 128

untreated sample is used as reference. 129

This flexible model tries to capture multiple sources of variation at the gene level, 130

namely across replicates (by means of Cr) and sgRNAs (via bs and usgc), yielding a 131

single test per gene for difference in cell fitness between conditions. The model can be 132

extended to incorporate longitudinal data. 133

Experiments involving CRISPR screens often involve a low number of replicates over 134

just two conditions, while measuring the abundance of tens of thousands of sgRNAs at 135

the same time. Model fitting per sgRNA may therefore lead to unreliable estimates. To 136

counter this, we fit the model using ShrinkBayes [19], an empirical-Bayes approach 137

which uses shrinkage to yield parameter estimates. This produces estimates of fixed as 138

well as of random effects in the model by means of efficient, deterministic numerical 139

approximations using INLA [18]. Because our proposed method involves shrinkage, we 140

call it “ShrinkCRISPR”. An R package is currently under construction for the use of 141

ShrinkCRISPR and all codes used in this paper are available on the github page 142

https://github.com/RenTissier. 143

Per gene testing 144

ShrinkCRISPR enables us to test for differential effects on cell fitness directly at the 145

gene level. This is equivalent to testing H0 : β = 0 in equation 3. As such, the test 146

takes into account existing variation between sgRNAs and between replicates, as well as 147

a possible interaction between sgRNAs and conditions. By taking all sgRNAs into 148

account and modelling the separate sources of variation, this yields robust effect 149

estimates which tend to be more reproducible. 150

Multiple testing correction 151

For each gene, a Bayes factor is obtained by fitting the model under the null and the 152

alternative hypotheses and computing the ratio between the two posterior marginal 153

likelihoods obtained. From this list of Bayes factors, the local false discovery rate 154

(lfdr, [5]) is computed for each gene. The lfdr has the advantage over the false discovery 155

rate that the Bayes factors involved do not need to be independent. 156

Multiple time points 157

Another strength of ShrinkCRISPR is the possibility to include sgRNA abundance for 158

more than two time points in the model. This can lead to an increase in power, as more 159

measurements are available per replicate, and may allow for a reduction of the number 160

of replicates. Model 3 with multiple time point becomes: 161
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Zgr = α+ β1Cr + β2t+ β3Cr × t+ br + usgc + ϵr, (4)

where β1 represents the average differential lethality effect of the gene knockout between 162

conditions, across sgRNAs and over time. The parameter β2 can be interpreted as the 163

change in cell population containing sgRNAs targeting gene g, and t represents the time 164

points used. Another parameter of interest in this model is the interaction effect β3, 165

representing a possible interaction between time and condition on the fold change of the 166

sgRNAs targeting gene g. 167

Simulation study 168

Simulation setup 169

We performed a simulation study to evaluate the performance of ShrinkCRISPR, and to 170

compare it to the commonly used methods drugZ [3] and MAGeCK [11]. All methods 171

were compared in terms of true effects detected, as well as false discoveries produced. 172

We simulated data for both paired and independent designs. This allows us not only to 173

compare all three methods, but also to study the impact of variability of initial sgRNA 174

abundance on results, which plays a role when using an independent design, but not 175

when using a paired design. We assume the study involves two conditions (c = 1, 2) 176

with R replicates in each condition, and S sgRNAs studied so that S =
∑

g Sg, with Sg 177

representing the number of sgRNAs per gene as before. 178

Our simulation setup involved the following steps: 179

1. Simulation of the mean lethality effect z∗g1 for each gene g in the control cell line 180

using a gamma distribution of shape and scale fixed to 1: 181

z∗g1 ∼ Γ(1, 1), g = 1, . . . , G.

As shown in figure S1 of the supplementary material, such gamma distribution 182

allows for a majority of lethality effects to be close or equal to 0. Assuming that 183

most genes have a behaviour closer from a non-essential gene (gene known to not 184

be impacting cell survival if knocked out) than from an essential gene (gene 185

required for cell survival). The randomly generated lethality effects are 186

subsequently scaled between 0 and 1 by dividing them by the maximum lethality 187

effect obtained. Note that by rescaling the lethality effects, the lethality effect 188

drawn from the gamma distribution are shrank towards zero (as we are divinding 189

by a value higher than 1) subsequently increasing the number of non-essential 190

genes in the control cell line. 191

2. Computation of the mean lethality effect for each gene in condition 2 by using 192

z∗g2 = z∗g1 +∆g, where ∆g represents the mean effect difference of all sgRNAs s 193

targeting gene g (defined later on). We define by S∗
g the set of indices s of 194

sgRNAs targeting gene g. In the context of this simulation study, all sets S∗
g 195

include 4 indices. Furthermore, we represent by zsc the lethality effect for sgRNA 196

s in condition c, which is equal to z∗gc for s ∈ S∗
g . So, {zsc, s = 1, . . . , } is the 197

expanded set of values of lethality effects over all sgRNAs, corresponding to the 198

original set {z∗gc, g = 1, . . . , G} of generated values for all genes. 199

3. Simulation of the observed fold changes fcsrc for each sgRNA s, replicate r and 200

condition c using a Gaussian distribution: 201

fcsrc ∼ N (zgc, σ
2) s = 1, . . . , S, r = 1, . . . , R, c = 1, 2,
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where σ2 represents the biological variation between replicates of the same 202

condition. The generated values {fcsrc, s = 1, . . . , S} for each replicate r are then 203

organized in vectors, which form the columns of a matrix L of dimensions 204

S × (2R). 205

4. Simulation of the S × (2R) matrix C0 representing the initial counts for each 206

replicate shortly after transduction. The counts for the independent design case 207

are simulated to control the average initial number of counts for each sgRNA as 208

follows: 209

csrc,0 = trunc(f ∗ λrsc) s = 1, . . . , S, r = 1, . . . , R, c = 1, 2,

where f , i.e, the number of folds represents the average count of cells transduced 210

by each sgRNA, λrsc ∼ U(0.05, 1.95) represents the transduction efficiency, and 211

“trunc” is the truncation function. In the paired design case, the equation becomes: 212

csrc,0 = trunc(f ∗ λrs) s = 1, . . . , S, r = 1, . . . , R,

5. Computation of the matrix M of gene counts at a later time point using the 213

formula: 214

M = C0 − C0 × L.

Each dataset contains 2 conditions with R = 3 replicates each and G = 1000 genes. 215

Simulations are made independently for both paired and independent designs. For each 216

gene, we simulate a fixed number Sg = 4 of different sgRNAs, resulting in a total of 217

S = 4000 sgRNAs. In each dataset the first 100 genes (400 sgRNAs) are simulated 218

using the same value ∆g as mean effect difference for their sgRNAs. So for each 219

experimental design, the value of ∆g is given by: 220

∆g > 0, g ∈ {1, . . . , 100}
∆g = 0, g ∈ {101, . . . , 1000}

For each experimental design we consider 6 scenarios, each corresponding to a 221

different value of ∆g ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. A fixed value of σ = 0.1 and f = 400 is 222

used in all scenarios. A total of 100 datasets are simulated and analyzed for each 223

scenario. Four hundred positive control sgRNAs (sgRNAs from essential genes) and 400 224

negative control sgRNAs (sgRNAs from non-essential genes) are also simulated in each 225

dataset. The simulation process is the same for remaining sgRNAs, with the exception 226

that their mean lethality zg1 is fixed and is the same for both conditions. The mean 227

lethality for positive controls is 0.8 and for negative controls is 0.1. A fixed value of 228

σ = 0.05 is used for the controls. 229

ShrinkISO is then applied for each of the 100 simulated datasets, and genes with lfdr 230

< 0.05 are selected as significant. 231

Results 232

Paired design 233

Figure 2 shows that the performance obtained by the three approaches is rather 234

different across all simulation scenarios. Indeed, drugZ and MAGeCK yield too many 235

false positive hits even when there are no differential effects, i.e. when ∆g = 0, with on 236

average 66.9 and 105.2 false hits respectively (left panel of figure 2). These numbers 237
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Figure 2. Results per method and simulation scenario, for the paired design. Left
panel: average number of false positive hits across 100 simulated datasets. Right panel:
average number of true positive hits across 100 simulated datasets. Black lines: standard
deviation across simulated dataset.

represent 6.7 and 10.5% of false positives, respectively, when in fact 5% were expected. 238

If no effect is simulated, then 100% of the hits are false positives. As ∆g increases, 239

drugZ yields progressively less false positives, but that is not the case for MAGeCK. In 240

contrast, ShrinkCRISPR does not yield any false positives across all different scenarios. 241

This suggests it is conservative, in this simulation setup. 242

In terms of true hits, drugZ is the best performing approach to detect small lethality 243

effects, with on average 46.8 and 81.2 true positive hits when ∆g = 0.1 or 0.2, 244

respectively. However, drugZ is not able to detect all true positive hits when ∆g ≥ 0.3, 245

with a maximum around 90.2. ShrinkCRISPR displays low power for ∆g ≤ 0.2, similar 246

power to drugZ when ∆g = 0.3 and it outperforms all methods when ∆g ≥ 0.4. 247

MAGeCK shows in all scenarios a low ability to detect true hits, with less than 40% of 248

genes with effect detected across all effects considered. All results are available in Table 249

S1. 250

Figure 3 presents the ROC curves obtained by averaging the ROC curves across the 251

100 simulated datasets. Overall, ShrinkCRISPR performs at least as well as drugZ in 252

terms of sensitivity and specificity. In particular, as the number of true positives 253

increases, the corresponding number of false positives increases quicker with drugZ than 254

with ShrinkCRISPR – this is clearly visible from the results obtained with ∆g = 0.1. 255

Thus, while ShrinkCRISPR is more conservative, it yields a higher ratio of true positive 256

hits compared to false positives, for low ∆g values. Finally, MAGeCK shows worse 257

performance than both drugZ and ShrinkCRISPR in every scenario, in terms of 258

sensitivity, specificity as well as error control level. This may be explained by the fact 259

that it involves two one-sided tests, which inflates the false positive rate. 260

We can conclude that drugZ has more power to detect true hits related to small 261

effects (∆g = 0.2), while also yielding more false positives, compared with 262

ShrinkCRISPR in our simulation study with a paired design. For larger effects, 263

ShrinkCRISPR performs better, as it detects as many true hits as drugZ, while yielding 264

virtually no false positives. MAGeCk displays less power and yields a higher false 265

positive rate than the other two methods in the situations considered. 266
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Figure 4. Results per method and simulation scenario, for the independent design.
Left panel: average number of false positive hits. Right panel: average number of true
positive hits. Black lines: standard deviation across simulated dataset.

Independent design 267

When using an independent design, the initial sgRNA abundance may vary between 268

replicates. Since both MAGeCK and drugZ do not take into account the initial sgRNA 269

abundance, it is to be expected that they perform less well for data produced using this 270

design. Indeed, both MAGeCK and drugZ yield many (> 50 on average, where 50 were 271

expected) false positive hits in simulated datasets (left panel of Figure4). This is 272

understandable as both methods were developed for the paired experimental design. In 273

contrast, ShrinkCRISPR yields no false positives throughout all different simulation 274

scenarios. 275

In terms of true positives, ShrinkCRISPR is conservative for small effects, detecting 276

at most 5 true hits on average for ∆g ≤ 0.2. For ∆g ≥ 0.3 and higher, it identifies 277

between 80 and 100% of all hits. MAGeCK and drugZ detect between 10 and 20% of 278

hits for ∆g ≤ 0.2, but find only 33.1 % and 55.1 % of all true positives respectively for 279

∆g = 0.5 (Figure 4, right panel). 280

As expected, for this design ShrinkCRISPR yields ROC curves considerably better 281

compared to both drugZ and MAGeCK (Figure 5). Indeed, ShrinkCRISPR displays 282

similar sensitivity and specificity for the independent design to that for the paired 283

design. In contrast, both drugZ and MAGeCK yield more false positives and less power 284

for the independent design. 285

Overall, both MAGeCK and drugZ display worse performance with the independent 286

design, compared to the paired design. In terms of false positives, drugZ yields on 287

average 10% false positive hits for ∆g = 0, compared to 6.7% in the paired design, and 288

1% for ∆g = 0.5 , compared to 0% in the paired design. In addition, the maximum 289

power it achieved in simulations was below 60%. MAGeCK yields more false positives 290

using the independent design, compared with the paired design. Note that the 291

performances of drugZ for an independent design is dependent on the amount of 292

variation at baseline. To illustrate this, we also simulated independent screens with a 293

variance at baseline being approximately half the variance in the results above. This led 294

to an improvement of the performances of drugZ (see Supplementary Table S1). 295

The performance of both drugZ and MAGeCK is worse under the independent design 296

because both methods do not take into account the initial sgRNA abundance variation. 297

In this case, it is essential to include the initial screen (at T = 0) in the analysis. 298

The absence of false positive hits accross all simulation scenarios highlights the 299

10/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486584doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486584
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve for ∆g = 0.1

specificity

se
ns

iti
vi

ty

1 0.8 0.6 0.4 0.2 0

shrinkCRISPR
DrugZ
MAGCEK

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve for ∆g = 0.2

specificitys

se
ns

iti
vi

ty

1 0.8 0.6 0.4 0.2 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve for ∆g = 0.3

specificitys

se
ns

iti
vi

ty

1 0.8 0.6 0.4 0.2 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve for ∆g = 0.5

specificitys

se
ns

iti
vi

ty

1 0.8 0.6 0.4 0.2 0

Figure 5. ROC curves per method and simulation scenario with ∆g > 0 for the
independent design.

11/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486584doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486584
http://creativecommons.org/licenses/by-nc-nd/4.0/


conservatism and potential lack of power of ShrinkCRISPR with a small number of 300

samples. This is confirmed by results obtained using less extreme lethality values for the 301

positive and negative controls (see supplementary table S2). By increasing the variance 302

of lethality effect sigma2 the number of false positive increases but remains small. It is 303

also important to note that all sgRNAs are simulated with no count increase between 304

T=0 and the later time point T, further limiting the ability to detect hits for 305

shrinkCRISPR as no growth of the different populations of sgRNA transduced cells is 306

simulated. 307

Experimental data analysis 308

We apply ShrinkCRISPR to the following public datasets: 1. cisplatin sensitivity 309

screens, as part of a large study of the sensitivity to a variety of drugs of human RPE1 310

cells [15]] using a paired design; 2. the longitudinal screens of two cancer cell lines 311

(HeLa and HCT116), performed with the first generation of the Toronto KnockOut 312

(TKO) library [7]. For the latter, we analysed both single time points, as well as 313

multiple time points with the model. 314

Cisplatin sensitivity (paired design) 315

Cisplatin causes DNA crosslinks, of which the repair requires specific DNA damage 316

response genes, most notably components of the Fanconi anemia pathway [9]. This 317

means that, in studies involving screening of cell lines with and without cisplatin, the 318

clearest illustration of biological relevance involves genes whose knockout is specifically 319

lethal in cisplatin-treated cells. In [15] human RPE1 cells were screened using the 320

TKOv3 sgRNA library with and without cisplatin. The different screens were performed 321

in duplicates. As this low number of replicates is challenging for mixed effect models, 322

we grouped two screens that were executed identically (cisplatin 2 and cisplatin 3), 323

yielding four replicates for both treated and untreated cells. 324

ShrinkCRISPR identified 37 significant hits (lfdr = .10, colored dots in Figure 6), 325

the vast majority showing lower abundance in cisplatin-treated as compared to 326

untreated cells – this is represented by a negative effect appearing on the left side of the 327

volcano plot. 328

As expected, these include 12 (out of 22) known Fanconi anemia genes (depicted as 329

green dots in Figure 6), as well as other known DNA repair genes such as GTF2H5, 330

ERCC8, C19orf40 (FAAP24), ERCC5, RAD18, GTF2H5, RAD51B and MUS81. 331

Notably, because the calculated lethality score Z is continuous and can take values 332

varying from −∞ to 1 (1 indicating complete depletion relative to controls and to T0, 333

and negative values indicating enrichment), the effect sizes of enriched genes can 334

potentially be very large. An example of such a hit is PTEN, a multifunctional tumor 335

suppressor protein which, when absent, may increase cellular growth and survival (see 336

for example [10]). It displays enrichment in both cisplatin-treated and untreated cells, 337

but this is significantly less pronounced in the treated cells, possibly reflecting that the 338

chemotherapeutic drug cisplatin particularly affects fast growing cells (Figure S4 of the 339

supplementary material). 340

Longitudinal analysis (independent design) 341

To illustrate the use of ShrinkCRISPR with multiple time points, we use screen data 342

produced by [7] with the TKOv1 library. Here we will include data of HCT116 343

(colorectal carcinoma) and HeLa (cervical carcinoma) cell lines, as both were screened in 344
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Associated Protein 100 (FAAP100)
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Table 1. Number of significant genes selected by two consecutive time points with
lfdr=0.05. Each row displays the number of selected genes for that time point, individually
(diagonal) and in overlap with subsequent time points. The total number of significant
genes per time point is displayed in the column Significant genes, and the number of
significant genes selected by all time points is displayed in the row All.

Time Point T = 1 T = 2 T = 3 T = 4 Significant genes
T = 1 124 138 141 148 336
T = 2 - 28 97 97 204
T = 3 - - 41 160 273
T = 4 - - - 83 322
All - - - - 36

triplicate at four time points (supplementary table S3). This study used an independent 345

design, with the HeLa cell line used as reference. 346

The raw data was preprocessed by first calculating fold changes (equation 1) and 347

using rscreenorm [1] to yield quantile-normalized lethality scores. The second step was 348

needed to correct for differences between cell lines. Since the HeLa cell line was used as 349

reference, lethality scores represent the difference in cell counts in the HCT116 350

compared to HeLa cell line. We first analyzed the different time points individually, 351

yielding four separate sets of results. Subsequently, we used the longitudinal model 352

(equation 4) to analyse all time points together. Genes were selected with lfdr = 0.05. 353

Single time point analysis 354

The top 10 genes selected per time point display little overlap with those for other time 355

points (Figure 7). In addition, some genes with very small effect sizes are found to be 356

statistically significant. Indeed, OR52H1 is an olfactory receptor gene, unlikely to be 357

functionally different when knocked out in these cells, and known to be an off-target 358

effect. 359

Estimated effect sizes for consecutive time points showed remarkable consistency 360

(Figure 8). Indeed, linear regression fitted between estimated effect sizes yielded 361

R2 = 0.90 between T = 1 and T = 2, R2 = 0.89 between T = 2 and T = 3, and 362

R2 = 0.97 between T = 3 and T = 4. The high agreement between T = 3 and T = 4 363

shows that observed effects mostly occur prior to T = 3. 364

A comparison between hit lists of genes obtained per time point yielded a substantial 365

number of genes selected only for T = 1 (124 out of a total of 336 – table 1). Such 366

differences may reflect early or late biological effects of specific genetic perturbations, 367

such as differences of depletion speeds between cell lines. Numbers of genes selected 368

only for later time points represented smaller proportions of the total of genes selected 369

(28 out of 204, 41 out of 273 and 83 out of 322 for T = 2, 3, 4 respectively). Differences 370

between hit lists of genes arise as a result of applying a threshold on the genes’ local 371

FDRs, which takes into account results for all genes at once. Being threshold-dependent, 372

they are less general: indeed, the overlap between gene lists is 100% for a threshold of 373

either 0 or 1. In addition, the lfdr for a gene varies if results for other genes vary. Thus, 374

comparisons between effect sizes as in figure 8 are fairer as they better reflect 375

gene-specific effects. Note also that, while only 36 significant genes are selected by all 4 376

time points, higher agreement is observed for later time points (Figure S5 of 377

supplementary material). 378
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Figure 7. Volcano plots displaying the difference in lethality score between HCT116
and HeLa cells for each time point. Red dots indicate significant genes; the names of
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volcano) represents either a stronger lethality in HeLa cells, or a growth advantage in
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Figure 8. Scatterplots of the effect sizes estimated by ShrinkCRISPR per gene for
consecutive time points. The red line represents equal effect sizes.

15/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486584doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486584
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9. Venn diagram illustrating the overlap of genes found to have a differential
effect on cell fitness between HeLa and HCT116 cells, for the three different models
(longitudinal, single time point at T = 1 and single time point at T = 4).

Multiple time points analysis 379

We selected the most extreme time points to fit the model considering multiple time 380

points. For this part, the rscreenorm quantile normalization step was removed from the 381

preprocessing, and this model (longitudinal) as well as the analysis of single time points 382

T = 1 and T = 4 were re-run. 383

Figure 9 illustrates the agreement between the 3 model results. The longitudinal 384

model yielded many more hits: 781 genes compared to 337 and 234 for T = 1 and 385

T = 4, respectively. Only 101 genes were selected between all model fits. This is mostly 386

due to the disagreement between results using only 1 time point, as only 49 genes from 387

each of the single time point models are not recovered by the longitudinal model. 388

However, the large number of hits that are uniquely found with the longitudinal model 389

suggests it has increased power for hit identification. 390

Discussion 391

We present ShrinkCRISPR, a new, flexible and powerful method for the analysis of 392

CRISPR screen data for identification of differential effect on cell fitness between 393

conditions. This method incorporates initial sgRNA abundance of each cell line in 394

analyses, enabling its use for various types of experimental designs, including 395

drug-sensitizing screens and isogenic-cell screens. Taking all individual sgRNAs per gene 396

at once in the model, ShrinkCRISPR can test for differences between conditions at the 397

gene level. It makes use of an empirical-Bayes framework, which allows us to represent 398

sgRNA effects as random and condition effects as fixed. The model averages out 399

extreme or conflicting changes, picking out effects that are consistent across most 400

sgRNAs targeting that gene. By adequately accounting for different sources of 401

variability, the method yields as much power as others for most effects, whilst 402
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consistently keeping false discoveries under control. Finally, testing at the gene level 403

requires less multiple testing correction than at the sgRNA level, yielding more power. 404

Our method takes into account existing variation between sgRNAs, as well as 405

possible variation of sgRNAs on cell fitness between conditions via the interaction effect 406

in the model. This yields more robust estimates than those obtained by analysing 407

individual sgRNAs separately: such methods may seemingly produce estimates that 408

display less variability per sgRNA, giving a false impression of more accuracy. In fact, 409

by neglecting inter-sgRNA variability, results represent largely effects on the current 410

experiment, so tend to be difficult to replicate in new experiments, when different 411

replicates, and sometimes different sgRNAs, are used. 412

In a simulation study, ShrinkCRISPR yielded similar ROC curves to those produced 413

by a another method, drugZ, for drug sensitizing screens using paired designs. However, 414

ShrinkCRISPR yields much less false positives in general. It also outperforms both 415

drugZ and another method, MAGeCK, in the context of independent designs, used e.g. 416

for isogenic screens, as it is the only approach to take into account initial sgRNA 417

abundance. While multiple factors may lead to variability in initial sgRNAs abundance, 418

in published work we found no results reporting such checks. The publicly available 419

data we used in our examples illustrates this point. 420

The method drugZ was developed to analyse screen data from paired designs. As 421

such, it is not unexpected to perform less well for the analysis of screens generated using 422

independent designs. In our simulation study, we used it to analyse data from 423

independent designs to illustrate the impact of ignoring initial sgRNA abundance on 424

results. 425

ShrinkCRISPR is the best approach in terms of controlling the proportion of false 426

positive hits, while it is able to find all hits with strong differential effect. However, 427

ShrinkCRISPR is conservative: the false discovery rate is under the desired level, and 428

the method is not able to detect hits with small effect sizes. The low power for 429

detecting small effects could be potentially improved upon by using a spike-and-slab 430

prior for the effect of interest, which would enable the model to better separate a subset 431

of genes with no differential behaviour between groups, from those with differential 432

behaviour. Using the current simulation study setup, however, this did not lead to a 433

better performance (data not shown). The choice of spike-and-slab prior will be 434

available in the R package ShrinkCRISPR. 435

Results of the simulation study must be interpreted with care. Indeed, each 436

individual simulated dataset used the same effect size ∆g for all genes with a condition 437

effect. This enables us to draw conclusions about power of the methods for detecting 438

effects of different sizes, as well as to understand how the amount of false discoveries 439

depends on the effect size present. In practice, experimental data will involve genes with 440

a range of effect sizes. The specific range typically depends on the experimental design 441

and conditions involved. Thus, quantitative results about power and proportion of false 442

discoveries from our simulation study cannot be easily translated to practical 443

applications. The variance existing between sgRNA count within a gene or between 444

replicates can be due to a lot of different phenomenon and is not easily quantifiable. 445

The total amount of variation simulated in the simulation study could not be 446

representative of the experimental results with the improvement of CRISPR screens. 447

However, we have shown with the simulation study that shrinkCRISPR was robust to 448

most variation sources. 449

Our method has been designed to analyse CRISPR screen data generated by 450

sequencing, consisting of counts. Our proposed pipeline takes the initial sgRNA 451

abundance into account by computing fold changes 1, and subsequently computes 452

lethality scores via rscreenorm. As such, the pre-processed data are no longer counts, 453

and in fact is analysed using model 3 with an error term following a normal distribution. 454
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While we suggest using this pipeline, other researchers may choose to use fewer or 455

none of these pre-processing steps. For example, when studying results for isogenic cell 456

lines, relatively smaller effects are expected than when using cell lines from different 457

individuals or different tissue types. In such cases, sharing of the initial sgRNA 458

abundance eliminates one important variability source. In addition, lethality score 459

distributions for library sgRNAs as well as for assay control sgRNAs tend to be stable 460

across cell lines, and normalization with rscreenorm may be unnecessary. In such cases, 461

the data will involve both over-dispersion as well as potentially zero inflation. The 462

flexibility of the proposed framework enables ShrinkCRISPR to still be used, by fitting 463

model 3 with a negative binomial distribution for the response Zgr as counts, 464

accounting for over-dispersion. It can also include a term to account for zero inflation. 465

Some researchers suggest combining multiple test results for sgRNAs targeting the 466

same gene by means of summarizing their p-values (one example is REF), say using the 467

minimum of them. This can lead to over-optimistic results, as the summary works 468

similarly to a filtering of the features, since only one test is selected from a set of them. 469

As a filter, the selection of the sgRNA test with the smallest p-value is not independent 470

of the test result by definition, and this yields a bias on the FDR control method [20]. 471

There are methods currently in use which rely on more sophisticated approaches for 472

combining sgRNA-level results (statistics or p-values) to yield gene-level statistics or 473

p-values [3]. While several methods exist to combine p-values of various tests [6, 14, 16], 474

most of them require independent tests, which is not the case for sgRNAs targeting the 475

same gene. There are p-value combining methods which allow for non-independent test, 476

but then only for one-sided significance testing [2]. Such methods would therefore 477

require two statistical tests, which are clearly not independent. So, using such 478

approaches would increases the severity of multiple testing correction, and possibly lead 479

to an inflation in false positive hits due to correlation between tests. 480

ShrinkCRISPR relies on enough replicates per combination of group and cell line, 481

ideally 3, to yield reliable results. Indeed, using 2 replicates to a poorer ShrinkCRISPR 482

performance, as variances within and between cell lines are then poorly estimated. In 483

particular, if a single replicate is available for each combination of group and cell line, 484

ShrinkCRISPR cannot be applied. While this can be seen as a too strong requirement 485

by some researchers, we think this is a reasonable restriction: it follows from the need 486

for estimating variability for all sources of variation, which is precisely what enables 487

ShrinkCRISPR to yield less false discoveries. A further challenge when using 488

ShrinkCRISPR is that the effect sizes are not always straightforward to interpret due to 489

the several normalization steps. Furthermore, as all approaches using fold changes, 490

ShrinkCRISPR is sensitive to extreme values for sgRNA initial abundance, in particular 491

very low ones. 492

The TKO data analysis showed that our approach can account for multiple effects in 493

CRISPR screens, both at the sgRNA and at the replicate levels. Indeed, estimated 494

effects of different time points showed strong agreement: their correlation was at least 495

90% on average. Finally, by taking multiple time points into account in the model, 496

ShrinkCRISPR significantly increased the power to detect differential effect on cell 497

fitness, finding more time-independent effects than when individual time points were 498

used. 499

Another important step of pre-processing common to all methodologies based on fold 500

changes is the handling of low counts. Indeed in shrinkCRISPR we create a fold change 501

to measure the population growth of cell transduced with a specific sgRNA. The 502

presence of low sgRNA counts at the initial time point can lead to a large fold change 503

value and thus to an artificially large lethality score. This can then produce false 504

positive hits. By modelling the variance between sgRNAs within a gene, ShrinkCRISPR 505

is more robust to extreme values for individual sgRNAs. However, this may not be 506
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sufficient. One common approach to deal with such problems is to add to all raw low 507

counts at T0 a fixed (small) number of ’cells’ in order to reduce the impact of such low 508

counts on results. 509

We conclude that ShrinkCRISPR yields at least as much power to other existing 510

ones for most effects, with much better true positive proportions, even if conservative. 511

As downstream validation studies are extremely time-consuming, it represents an 512

important step towards making better use of data produced, producing more 513

reproducible results, and leading to more efficient studies. 514
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15. M. Olivieri, T. Cho, A. Álvarez Quilón, K. Li, M. J. Schellenberg,
M. Zimmermann, N. Hustedt, S. E. Rossi, S. Adam, H. Melo, A. M. Heijink,
G. Sastre-Moreno, N. Moatti, R. K. Szilard, A. McEwan, A. K. Ling,
A. Serrano-Benitez, T. Ubhi, S. Feng, J. Pawling, I. Delgado-Sainz, M. W.
Ferguson, J. W. Dennis, G. W. Brown, F. Cortés-Ledesma, R. S. Williams,
A. Martin, D. Xu, and D. Durocher. A genetic map of the response to dna
damage in human cells. Cell, 182:481–496, 2020.

16. K. Pearson. Empirical bayes methods and false discovery rates for microarrays.
Biometrika, 253− 4:379–410, 1933.

17. M. Robinson, D. McCarthy, and G. Smyth. edger: a bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics,
1(26):139–140, 2010.

18. H. Rue, S. Martino, and N. Chopin. Approximate bayesian inference for latent
gaussian models by using integrated nested laplace approximations. Journal of
the Royal Statistical Society, Series B, 71:319–392, 2009.

19. M. van de Wiel, G. Leday, L. Pardo, H. Rue, A. van der Vaart, and R. van
Wieringen. Bayesian analysis of rna sequencing data by estimating multiple
shrinkage priors. Biostatistics, 1(14):113–128, 2012.

20. M. van Iterson, J. Boer, and R. Menezes. Filtering, fdr and power. BMC
Bioinformatics, 11, 2010.

20/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486584doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486584
http://creativecommons.org/licenses/by-nc-nd/4.0/

