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Abstract

CRISPR screens provide large-scale assessment of cellular gene functions. Pooled
libraries typically consist of several single guide RNAs (sgRNAs) per gene, for a large
number of genes, which are transduced in such a way that every cell receives at most
one sgRNA | resulting in the disruption of a single gene in that cell. This approach is
often used to investigate effects on cellular fitness, by measuring sgRNA abundance at
different time points. Comparing gene knockout effects between different cell
populations is challenging due to variable cell-type specific parameters and between
replicates variation. Failure to take those into account can lead to inflated or false
discoveries.

We propose a new, flexible approach called ShrinkCRISPR that can take into
account multiple sources of variation. Impact on cellular fitness between conditions is
inferred by using a mixed-effects model, which allows to test for gene-knockout effects
while taking into account sgRNA-specific variation. Estimates are obtained using an
empirical Bayesian approach. ShrinkCRISPR can be applied to a variety of
experimental designs, including multiple factors. In simulation studies, we compared
ShrinkCRISPR results with those of drugZ and MAGeCK, common methods used to
detect differential effect on cell fitness. ShrinkCRISPR yielded as many true discoveries
as drugZ using a paired screen design, and outperformed both drugZ and MAGeCK for
an independent screen design. Although conservative, ShrinkCRISPR. was the only
approach that kept false discoveries under control at the desired level, for both designs.
Using data from several publicly available screens, we showed that Shrink CRISPR can
take data for several time points into account simultaneously, helping to detect early
and late differential effects.

ShrinkCRISPR is a robust and flexible approach, able to incorporate different
sources of variations and to test for differential effect on cell fitness at the gene level.
These improve power to find effects on cell fitness, while keeping multiple testing under
the correct control level and helping to improve reproducibility. ShrinkCrispr can be
applied to different study designs and incorporate multiple time points, making it a
complete and reliable tool to analyze CRISPR screen data.
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Introduction

The study of effects of genetic perturbation is fundamental to elucidate gene function.
In addition, the identification of genes which knockout leads to cell death, either in

combination with another genetic change (say a mutation of another gene, leading to
‘synthetic lethality’) or in combination with a certain drug, may lead to more efficient
cancer treatments. Genome-scale screening methods, in which thousands of genes are

individually targeted in a single experiment, are often at the start of such investigations.

Major challenges of such approaches have included undesired targeting of aspecific sites
(“off-target” effects) and variable gene inactivation efficiencies. The adaptation of
clustered regularly interspaced short palindromic repeats (CRISPR) technology to
mammalian cells led to the development of improved gene knockout screens, with higher
efficiency and lower off-target effects [7}/§].

Per cell one gene is knocked out and single guide RNAs (sgRNAs) of these cells are
sequenced. By comparing sgRNA abundance between different conditions, the effect of
specific knockouts on cell fitness can be investigated.

This method can be applied to study the impact of gene knockout on cell lines of
different origins, isogenic cell lines (identical cell lines in which only the status of one
gene is different) or a cell line with and without treatment. However, the comparison of
gene knockout effects is challenging due to differences in abundance of specific sgRNAs
at the start of the experiment. These may be due, for example, to variations in the
library composition, efficiency of transduction of sgRNAs into cells and selection,
growth rate of transduced cells, premature or incomplete Cas9 activity and
between-replicate variation. Data analysis methods ideally should take care of all these
issues, to ensure reliability and reproducibility of identified effects.

CRISPR screen data involve additional aspects that need to be taken into account:
(i) a large number of variables (sgRNAs) and a relatively small number of replicates,
also typical for other omics data; (ii) the data are generated by DNA sequencing, and
thus consist of counts displaying over-dispersion, aspects that classic statistical methods
do not account for; (iii) the effect of a gene knockout is evaluated by several sgRNAs
per gene, which need to be aggregated to reach a single conclusion about that gene; (iv)
the experiment often involves two sequencing runs, one at baseline measuring the
starting abundance of each sgRNA, and a paired replicate at a later time point,
typically after a chosen number of cell doublings. Furthermore, data related to multiple
cell lines exhibit both technical and biological variability, which must be accounted for
separate and differently in the data analysis. Indeed, the effect of condition such as
different treatments may be represented as fixed in the model, as conclusions are to be
drawn for the chosen conditions, whilst the variation between sgRNAs can better be
assumed to be random — the sgRNA effect then represents that of multiple, similar
sgRNAs targeting the same gene.

Currently available analysis methods only account for some of these issues. For
example, two often used methods, MAGeCK |[11] and drugZ [3|, ignore the variability
between initial replicates. Since the data are produced using deep sequencing, some
authors have used data analysis methods designed for (RNA) sequencing, such as
edgeR [4,13}17] and DESeq2 [12]. While these can take care of over-dispersion, neither

can estimate both the fixed effect of condition, as well as the random effect of sgRNAs.

Furthermore, as these perform one test per sgRNA, they typically require a much
heavier multiple testing correction than if testing was performed per gene.

To tackle these challenges, we propose an analysis method that, by means of a
mixed-effects regression-based empirical-Bayes framework, can efficiently detect genes
with differential impact on cell fitness. It first transforms the count data into fold
changes relative to the starting sgRNA abundance at T' = 0 for each biological sample,
then normalizes the data using the rscreenorm [1] method. It then uses an
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empirical-Bayes regression model, including a fixed effect for condition and a random 53
effect for the sgRNAs, to find gene-specific effects. This leads to a test per gene by 54
taking all sgRNAs targeting that gene together into account. Our method makes use of 55
ShrinkBayes |19], which fits empirical-Bayes regression models simultaneously for many s

features using INLA [18], enabling the use of mixed effect models in analyses of 57
high-dimensional data. We call our method ShrinkCRISPR. 58
This manuscript is organized as follows. Section 2 presents the method, section 3 50

uses a simulation model to compare methods’ performances and section 4 illustrates the e
performance of our pipeline on experimental data. We conclude with a brief summary &
and discussion in section 5. 62

Methods 6

Experimental designs o4

For completeness, we give here a short overview of the steps involved in CRISPR-Cas9 s
screening. For each replicate, viral particles expressing single guide RNAs (sgRNAs) are s
transduced into cells, and each sgRNA leads the Cas9 endonuclease to cut a specific 67
target, resulting in a specific gene knockout [§]. Transduction efficiency can vary, so 68
abundance of each sgRNA is obtained per sample both at an initial time point, which we
will refer to as T' = 0, as well as at a later time point, typically after a chosen number of
cell doublings. Differences in sgRNA abundance between the investigated experimental =
conditions reflect a differential effect on cell fitness of the specific knockout. o)

Two experimental designs are commonly used when studying differential effect on 73
cell fitness between cell lines. For the assessment of drug sensitivity, one batch of cells is 7
transduced and sequenced (T = 0) after which the cell sample is split, and the resulting
parts are cultured separately, one with and the other without the drug of interest. This
experimental design yields data that can be analysed per pair of replicates disregarding
initial sgRNA abundance at T = 0, as this is the same for both. Data analysis involves 7

comparing sgRNA abundance between the treated and untreated replicates (Figure 7
1-A). We will refer to this drug sensitizing experimental design as the “paired design”.
For comparing two different cell lines, initial sgRNA abundance at 7' = 0 is 81
measured per cell line. Then sgRNA abundances are compared between cell lines A and &
B at a later time point (Figure 1-B). We will refer to this design as the the 8
“independent design”. The two cell lines here involved can for example be derived from &
the same parental cell line, with and without a mutation. &
Taking 7' = 0 into account and normalization 86
When using the independent design, sgRNA abundance can only be compared fairly 87
between cell lines if its initial abundance is taken into account. To do this, we transform s
the count data into fold changes using the formula: 89
Cs, — Cs
Cs = ———, 1
f S CSO ( )

for a given sgRNA s, where Cj,, C; represent the cell count at 7' = 0 and at the end %
point of the screen, respectively, and fc, is the resulting fold change. Indeed, fc, is the
proportion of cells containing sgRNA s lost relative to their initial abundance. It can o
take values from —oo to 1, where 1 represents complete lethality (all cells with sgRNA s o
are lost between Ty and the end point, so Cs = 0), 0 represents no effect on cell viability o
(i.e. Cs = C4,), and negative values indicate proliferation of cells containing the sgRNA s

s (Cs > Cs,). o6
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Figure 1. Two commonly used experimental designs. A: a drug sensitizing study
compares the effect of gene knockout on paired replicates derived from the same initial
sample screened at T' = 0, which is then split and each part is cultured under a different
condition (typically treatment or not). B: the comparison of two cell lines typically
involves different sgRNA abundances at T' = 0.

The distribution of fold changes can vary between replicates, between conditions and
between cell lines. The use of normalization procedures such as rscreenorm [1] is
especially important when these distributions vary considerably. Rscreenorm makes use
of assay controls (both negative and positive controls) and of quantile normalization to
make measurements across replicates and cell lines more comparable and reflecting the
functional effect. With rscreenorm we generate lethality scores per sgRNA, with values
around 0 for sgRNAs yielding a phenotype similar to that of negative controls, and
values around 1 for sgRNAs similar to positive controls. In other words, lethality scores
around 0 represent the same cell fitness as for negative controls, whilst lethality scores
around 1 represent as little cell fitness as for positive controls. Quantile normalization is
only required in case of large differences in fitness score distributions of the different
samples. Lethality scores [; are derived from the fold changes via the formula:

l. = fcs_fcneg
° fcpos _fcneg’

(2)

where fcpeq is the median of the sgRNAs’ fold changes in the negative control genes
and fcpos is the median of the sgRNAs’ fold changes in the positive control genes.

An empirical-Bayes regression model

By testing possible differences between fold changes of the different cell lines or
conditions, we can detect differential effect on cell fitness. To do so, we define a
multivariate statistical model. For given gene g, replicate r and condition ¢, the
following model is used:

lsgr =+ BC, +bs+Uusge + 6, g=1,...,G, r=1,...,R, c=1,2, (3)
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where s € {1,...,5,} indicates the sgRNA targeting gene g, and S, is the total number
of sgRNAs targeting gene g. In addition, [, is a vector of length equal to S, « is the
vector of average lethal effects of sgRNAs in the reference cell line, 8 represents the
difference in lethality of the gene knockout between the two conditions across sgRNAs
targeting gene g, C,. represents the condition for replicate r, bs is a random effect
accounting for variation between sgRNAs, and u,g. is a random effect representing a
possible interaction between sgRNA s and condition ¢, allowing for condition-specific
sgRNA effects. The error term ¢, of the model is assumed to follow a normal
distribution with mean 0. We can then test the null hypothesis Hy : f = 0 of no
differential lethality of any of the sgRNAs s between the conditions, against the
alternative hypothesis H, : 8 # 0 of differential lethality. If an independent design is
used, the condition represents a specific cell line, and the remaining cell line is used as
reference. If a paired design is used, the condition represents a treated sample, and the
untreated sample is used as reference.

This flexible model tries to capture multiple sources of variation at the gene level,
namely across replicates (by means of C,) and sgRNAs (via by and usg.), yielding a
single test per gene for difference in cell fitness between conditions. The model can be
extended to incorporate longitudinal data.

Experiments involving CRISPR screens often involve a low number of replicates over
just two conditions, while measuring the abundance of tens of thousands of sgRNAs at
the same time. Model fitting per sgRNA may therefore lead to unreliable estimates. To
counter this, we fit the model using ShrinkBayes |19], an empirical-Bayes approach
which uses shrinkage to yield parameter estimates. This produces estimates of fixed as
well as of random effects in the model by means of efficient, deterministic numerical
approximations using INLA [18]. Because our proposed method involves shrinkage, we
call it “ShrinkCRISPR”. An R package is currently under construction for the use of
ShrinkCRISPR and all codes used in this paper are available on the github page
https://github.com/RenTissier.

Per gene testing

ShrinkCRISPR enables us to test for differential effects on cell fitness directly at the
gene level. This is equivalent to testing Hp : 8 = 0 in equation [3] As such, the test
takes into account existing variation between sgRNAs and between replicates, as well as
a possible interaction between sgRNAs and conditions. By taking all sgRNAs into
account and modelling the separate sources of variation, this yields robust effect
estimates which tend to be more reproducible.

Multiple testing correction

For each gene, a Bayes factor is obtained by fitting the model under the null and the
alternative hypotheses and computing the ratio between the two posterior marginal
likelihoods obtained. From this list of Bayes factors, the local false discovery rate
(Ifdr, [5]) is computed for each gene. The lfdr has the advantage over the false discovery
rate that the Bayes factors involved do not need to be independent.

Multiple time points

Another strength of ShrinkCRISPR is the possibility to include sgRNA abundance for
more than two time points in the model. This can lead to an increase in power, as more
measurements are available per replicate, and may allow for a reduction of the number
of replicates. Model [3| with multiple time point becomes:
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Zgr :a+510r+62t+630'r Xt+br+usgc+era (4)

where [, represents the average differential lethality effect of the gene knockout between
conditions, across sgRNAs and over time. The parameter o can be interpreted as the
change in cell population containing sgRNAs targeting gene g, and ¢ represents the time
points used. Another parameter of interest in this model is the interaction effect (s,
representing a possible interaction between time and condition on the fold change of the
sgRNAs targeting gene g.

Simulation study

Simulation setup

We performed a simulation study to evaluate the performance of ShrinkCRISPR, and to
compare it to the commonly used methods drugZ [3] and MAGeCK [11]. All methods
were compared in terms of true effects detected, as well as false discoveries produced.
We simulated data for both paired and independent designs. This allows us not only to
compare all three methods, but also to study the impact of variability of initial sgRNA
abundance on results, which plays a role when using an independent design, but not
when using a paired design. We assume the study involves two conditions (c =1, 2)
with R replicates in each condition, and S sgRNAs studied so that S =" g Sy, with Sy
representing the number of sgRNAs per gene as before.

Our simulation setup involved the following steps:

1. Simulation of the mean lethality effect z7; for each gene g in the control cell line
using a gamma distribution of shape and scale fixed to 1:

zg ~T(L,1), g=1,...,G.

As shown in figure S1 of the supplementary material, such gamma distribution
allows for a majority of lethality effects to be close or equal to 0. Assuming that
most genes have a behaviour closer from a non-essential gene (gene known to not
be impacting cell survival if knocked out) than from an essential gene (gene
required for cell survival). The randomly generated lethality effects are
subsequently scaled between 0 and 1 by dividing them by the maximum lethality
effect obtained. Note that by rescaling the lethality effects, the lethality effect
drawn from the gamma distribution are shrank towards zero (as we are divinding
by a value higher than 1) subsequently increasing the number of non-essential
genes in the control cell line.

2. Computation of the mean lethality effect for each gene in condition 2 by using
Zgo = 251 + Ay, where Ay represents the mean effect difference of all sgRNAs s
targeting gene g (defined later on). We define by S; the set of indices s of
sgRNAs targeting gene g. In the context of this simulation study, all sets S}
include 4 indices. Furthermore, we represent by zg. the lethality effect for sgRNA

s in condition ¢, which is equal to 2}, for s € 5. So, {zsc,8 =1,...,} is the
expanded set of values of lethality effects over all sgRNAs, corresponding to the
original set {z}.,g = 1,...,G} of generated values for all genes.

3. Simulation of the observed fold changes fcg,.. for each sgRNA s, replicate r and
condition ¢ using a Gaussian distribution:

fesre ~ N(24e,0%) s=1,...,8 r=1,...,R, ¢=1,2,
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where o2 represents the biological variation between replicates of the same

condition. The generated values {fcsrc,s = 1,...,S} for each replicate r are then
organized in vectors, which form the columns of a matrix L of dimensions
S x (2R).

4. Simulation of the S x (2R) matrix Cy representing the initial counts for each
replicate shortly after transduction. The counts for the independent design case
are simulated to control the average initial number of counts for each sgRNA as
follows:

Core,0 = trunc(f *« Apge) s=1,...,5, r=1,...,R, ¢=1,2,

where f, i.e, the number of folds represents the average count of cells transduced
by each sgRNA, A5 ~ U(0.05,1.95) represents the transduction efficiency, and
“trunc” is the truncation function. In the paired design case, the equation becomes:

Corc,0 = trunc(f * Apg) s=1,...,5, r=1,...,R,

5. Computation of the matrix M of gene counts at a later time point using the
formula:

M:C(]700XL.

Each dataset contains 2 conditions with R = 3 replicates each and G = 1000 genes.
Simulations are made independently for both paired and independent designs. For each
gene, we simulate a fixed number S, = 4 of different sgRNAs, resulting in a total of
S = 4000 sgRNAs. In each dataset the first 100 genes (400 sgRNAs) are simulated
using the same value A, as mean effect difference for their sgRNAs. So for each
experimental design, the value of A, is given by:

A, > 0, ge{l,...,100}
A, = 0, ge{101,...,1000}

For each experimental design we consider 6 scenarios, each corresponding to a
different value of Ay € {0,0.1,0.2,0.3,0.4,0.5}. A fixed value of 0 = 0.1 and f = 400 is
used in all scenarios. A total of 100 datasets are simulated and analyzed for each
scenario. Four hundred positive control sgRNAs (sgRNAs from essential genes) and 400
negative control sgRNAs (sgRNAs from non-essential genes) are also simulated in each
dataset. The simulation process is the same for remaining sgRNAs, with the exception
that their mean lethality z,; is fixed and is the same for both conditions. The mean
lethality for positive controls is 0.8 and for negative controls is 0.1. A fixed value of
o = 0.05 is used for the controls.

ShrinkISO is then applied for each of the 100 simulated datasets, and genes with Ifdr
< 0.05 are selected as significant.

Results
Paired design

Figure [2] shows that the performance obtained by the three approaches is rather
different across all simulation scenarios. Indeed, drugZ and MAGeCK yield too many
false positive hits even when there are no differential effects, i.e. when Ay = 0, with on
average 66.9 and 105.2 false hits respectively (left panel of figure . These numbers
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Figure 2. Results per method and simulation scenario, for the paired design. Left
panel: average number of false positive hits across 100 simulated datasets. Right panel:
average number of true positive hits across 100 simulated datasets. Black lines: standard
deviation across simulated dataset.

represent 6.7 and 10.5% of false positives, respectively, when in fact 5% were expected. 2
If no effect is simulated, then 100% of the hits are false positives. As A, increases, 239
drugZ yields progressively less false positives, but that is not the case for MAGeCK. In 210
contrast, ShrinkCRISPR does not yield any false positives across all different scenarios. 2a

This suggests it is conservative, in this simulation setup. 22
In terms of true hits, drugZ is the best performing approach to detect small lethality 24
effects, with on average 46.8 and 81.2 true positive hits when A, = 0.1 or 0.2, 244

respectively. However, drugZ is not able to detect all true positive hits when Ay > 0.3, 2
with a maximum around 90.2. ShrinkCRISPR displays low power for Ay < 0.2, similar s
power to drugZ when A, = 0.3 and it outperforms all methods when A, > 0.4. 207
MAGeCK shows in all scenarios a low ability to detect true hits, with less than 40% of s
genes with effect detected across all effects considered. All results are available in Table 2
S1. 250

Figure [3] presents the ROC curves obtained by averaging the ROC curves across the 2u
100 simulated datasets. Overall, ShrinkCRISPR, performs at least as well as drugZ in 252
terms of sensitivity and specificity. In particular, as the number of true positives 253
increases, the corresponding number of false positives increases quicker with drugZ than s
with ShrinkCRISPR — this is clearly visible from the results obtained with A, = 0.1. 255
Thus, while ShrinkCRISPR is more conservative, it yields a higher ratio of true positive s

hits compared to false positives, for low A, values. Finally, MAGeCK shows worse 257
performance than both drugZ and ShrinkCRISPR in every scenario, in terms of 258
sensitivity, specificity as well as error control level. This may be explained by the fact 250
that it involves two one-sided tests, which inflates the false positive rate. 260

We can conclude that drugZ has more power to detect true hits related to small 261
effects (A4 = 0.2), while also yielding more false positives, compared with 262
ShrinkCRISPR in our simulation study with a paired design. For larger effects, 263
ShrinkCRISPR performs better, as it detects as many true hits as drugZ, while yielding 26
virtually no false positives. MAGeCk displays less power and yields a higher false 265
positive rate than the other two methods in the situations considered. 266
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Figure 3. ROC curves per method and simulation scenario with Ay > 0 for the paired

design.
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Figure 4. Results per method and simulation scenario, for the independent design.

Left panel: average number of false positive hits. Right panel: average number of true
positive hits. Black lines: standard deviation across simulated dataset.

Independent design

When using an independent design, the initial sgRNA abundance may vary between
replicates. Since both MAGeCK and drugZ do not take into account the initial sgRNA
abundance, it is to be expected that they perform less well for data produced using this
design. Indeed, both MAGeCK and drugZ yield many (> 50 on average, where 50 were
expected) false positive hits in simulated datasets (left panel of Figur. This is
understandable as both methods were developed for the paired experimental design. In
contrast, Shrink CRISPR, yields no false positives throughout all different simulation
scenarios.

In terms of true positives, ShrinkCRISPR is conservative for small effects, detecting
at most 5 true hits on average for A, < 0.2. For A, > 0.3 and higher, it identifies
between 80 and 100% of all hits. MAGeCK and drugZ detect between 10 and 20% of
hits for A, < 0.2, but find only 33.1 % and 55.1 % of all true positives respectively for
Ay =05 (Figure right panel).

As expected, for this design ShrinkCRISPR yields ROC curves considerably better
compared to both drugZ and MAGeCK (Figure . Indeed, ShrinkCRISPR displays
similar sensitivity and specificity for the independent design to that for the paired
design. In contrast, both drugZ and MAGeCK yield more false positives and less power
for the independent design.

Overall, both MAGeCK and drugZ display worse performance with the independent
design, compared to the paired design. In terms of false positives, drugZ yields on
average 10% false positive hits for Ay = 0, compared to 6.7% in the paired design, and
1% for Ay = 0.5 , compared to 0% in the paired design. In addition, the maximum
power it achieved in simulations was below 60%. MAGeCK yields more false positives
using the independent design, compared with the paired design. Note that the
performances of drugZ for an independent design is dependent on the amount of
variation at baseline. To illustrate this, we also simulated independent screens with a
variance at baseline being approximately half the variance in the results above. This led
to an improvement of the performances of drugZ (see Supplementary Table S1).

The performance of both drugZ and MAGeCK is worse under the independent design

because both methods do not take into account the initial sgRNA abundance variation.

In this case, it is essential to include the initial screen (at T'= 0) in the analysis.
The absence of false positive hits accross all simulation scenarios highlights the
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Figure 5. ROC curves per method and simulation scenario with A, > 0 for the
independent design.
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conservatism and potential lack of power of ShrinkCRISPR with a small number of 300
samples. This is confirmed by results obtained using less extreme lethality values for the su
positive and negative controls (see supplementary table S2). By increasing the variance s
of lethality effect sigma? the number of false positive increases but remains small. It is 0
also important to note that all sgRNAs are simulated with no count increase between 304

T=0 and the later time point T, further limiting the ability to detect hits for 305
shrinkCRISPR as no growth of the different populations of sgRNA transduced cells is 306
simulated. 307
Experimental data analysis -
We apply ShrinkCRISPR to the following public datasets: 1. cisplatin sensitivity 300
screens, as part of a large study of the sensitivity to a variety of drugs of human RPE1 s
cells [15]] using a paired design; 2. the longitudinal screens of two cancer cell lines a1
(HeLa and HCT116), performed with the first generation of the Toronto KnockOut 312
(TKO) library [7]. For the latter, we analysed both single time points, as well as 313
multiple time points with the model. 314
Cisplatin sensitivity (paired design) a5
Cisplatin causes DNA crosslinks, of which the repair requires specific DNA damage 316
response genes, most notably components of the Fanconi anemia pathway [9]. This 317

means that, in studies involving screening of cell lines with and without cisplatin, the s
clearest illustration of biological relevance involves genes whose knockout is specifically s

lethal in cisplatin-treated cells. In [15] human RPEI cells were screened using the 320
TKOv3 sgRNA library with and without cisplatin. The different screens were performed 3z
in duplicates. As this low number of replicates is challenging for mixed effect models, 2
we grouped two screens that were executed identically (cisplatin 2 and cisplatin 3), 323
yielding four replicates for both treated and untreated cells. 324

ShrinkCRISPR identified 37 significant hits (lfdr = .10, colored dots in Figure @, 325
the vast majority showing lower abundance in cisplatin-treated as compared to 326
untreated cells — this is represented by a negative effect appearing on the left side of the s
volcano plot. 28

As expected, these include 12 (out of 22) known Fanconi anemia genes (depicted as 32
green dots in Figure @, as well as other known DNA repair genes such as GTF2H5, 33
ERCCS, C19orf40 (FAAP24), ERCC5, RAD18, GTF2H5, RAD51B and MUSSI. 331

Notably, because the calculated lethality score Z is continuous and can take values 33
varying from —oo to 1 (1 indicating complete depletion relative to controls and to Ty, 3
and negative values indicating enrichment), the effect sizes of enriched genes can 334
potentially be very large. An example of such a hit is PTEN, a multifunctional tumor  s3s
suppressor protein which, when absent, may increase cellular growth and survival (see s
for example [10]). It displays enrichment in both cisplatin-treated and untreated cells,  sx
but this is significantly less pronounced in the treated cells, possibly reflecting that the s
chemotherapeutic drug cisplatin particularly affects fast growing cells (Figure S4 of the s
supplementary material). 340

Longitudinal analysis (independent design) 341

To illustrate the use of ShrinkCRISPR with multiple time points, we use screen data 342
produced by [7] with the TKOv1 library. Here we will include data of HCT116 3
(colorectal carcinoma) and HeLa (cervical carcinoma) cell lines, as both were screened in = 34
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Figure 6. Volcano plot of the analysis of the cisplatin screens, compared to untreated
cells. The 37 genes with a lfdr below 0.1 are highlighted; green dots represent Fanconi
Anemia genes. Here we point out that C170ORF70 is now known as Fanconi-Anemia
Associated Protein 100 (FAAP100)
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Table 1. Number of significant genes selected by two consecutive time points with
1fdr=0.05. Each row displays the number of selected genes for that time point, individually
(diagonal) and in overlap with subsequent time points. The total number of significant
genes per time point is displayed in the column Significant genes, and the number of
significant genes selected by all time points is displayed in the row All.

Time Point | T=1 | T=2 | T=3 | T =4 | Significant genes
T=1 124 138 141 148 336
T=2 - 28 97 97 204
T=3 - - 41 160 273
T=4 - - - 83 322

All - - - - 36

triplicate at four time points (supplementary table S3). This study used an independent
design, with the HeLa cell line used as reference.

The raw data was preprocessed by first calculating fold changes (equation |1)) and
using rscreenorm [1] to yield quantile-normalized lethality scores. The second step was
needed to correct for differences between cell lines. Since the Hela cell line was used as
reference, lethality scores represent the difference in cell counts in the HCT116
compared to HeLa cell line. We first analyzed the different time points individually,
yielding four separate sets of results. Subsequently, we used the longitudinal model
(equation [4)) to analyse all time points together. Genes were selected with lfdr = 0.05.

Single time point analysis

The top 10 genes selected per time point display little overlap with those for other time
points (Figure . In addition, some genes with very small effect sizes are found to be
statistically significant. Indeed, OR52H1 is an olfactory receptor gene, unlikely to be
functionally different when knocked out in these cells, and known to be an off-target
effect.

Estimated effect sizes for consecutive time points showed remarkable consistency
(Figure . Indeed, linear regression fitted between estimated effect sizes yielded
R? =0.90 between T'=1 and T = 2, R? = 0.89 between 7' =2 and T = 3, and
R? = 0.97 between T' =3 and T = 4. The high agreement between 7= 3 and T = 4
shows that observed effects mostly occur prior to T' = 3.

A comparison between hit lists of genes obtained per time point yielded a substantial
number of genes selected only for T =1 (124 out of a total of 336 — table . Such
differences may reflect early or late biological effects of specific genetic perturbations,
such as differences of depletion speeds between cell lines. Numbers of genes selected
only for later time points represented smaller proportions of the total of genes selected
(28 out of 204, 41 out of 273 and 83 out of 322 for T = 2, 3, 4 respectively). Differences
between hit lists of genes arise as a result of applying a threshold on the genes’ local
FDRs, which takes into account results for all genes at once. Being threshold-dependent,
they are less general: indeed, the overlap between gene lists is 100% for a threshold of
either 0 or 1. In addition, the lfdr for a gene varies if results for other genes vary. Thus,
comparisons between effect sizes as in figure [8| are fairer as they better reflect
gene-specific effects. Note also that, while only 36 significant genes are selected by all 4
time points, higher agreement is observed for later time points (Figure S5 of
supplementary material).
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Figure 7. Volcano plots displaying the difference in lethality score between HCT116
and HeLa cells for each time point. Red dots indicate significant genes; the names of
the 10 most significant genes are shown. A negative effect size (left-hand side of the

volcano) represents either a stronger lethality in HeLa cells, or a growth advantage in
HCT116 cells.
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Figure 8. Scatterplots of the effect sizes estimated by ShrinkCRISPR per gene for
consecutive time points. The red line represents equal effect sizes.
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longitudinal

Figure 9. Venn diagram illustrating the overlap of genes found to have a differential
effect on cell fitness between HeLa and HCT116 cells, for the three different models

(longitudinal, single time point at T'= 1 and single time point at T = 4).

Multiple time points analysis

We selected the most extreme time points to fit the model considering multiple time
points. For this part, the rscreenorm quantile normalization step was removed from the
preprocessing, and this model (longitudinal) as well as the analysis of single time points

T =1 and T = 4 were re-run.

Figure [J] illustrates the agreement between the 3 model results. The longitudinal
model yielded many more hits: 781 genes compared to 337 and 234 for T =1 and
T = 4, respectively. Only 101 genes were selected between all model fits. This is mostly
due to the disagreement between results using only 1 time point, as only 49 genes from

each of the single time point models are not recovered by the longitudinal model.

However, the large number of hits that are uniquely found with the longitudinal model

suggests it has increased power for hit identification.

Discussion

We present ShrinkCRISPR, a new, flexible and powerful method for the analysis

of

CRISPR screen data for identification of differential effect on cell fitness between
conditions. This method incorporates initial sgRNA abundance of each cell line in

analyses, enabling its use for various types of experimental designs, including

drug-sensitizing screens and isogenic-cell screens. Taking all individual sgRNAs per gene
at once in the model, Shrink CRISPR can test for differences between conditions at the
gene level. It makes use of an empirical-Bayes framework, which allows us to represent

sgRNA effects as random and condition effects as fixed. The model averages out

extreme or conflicting changes, picking out effects that are consistent across most

sgRNAs targeting that gene. By adequately accounting for different sources of
variability, the method yields as much power as others for most effects, whilst
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consistently keeping false discoveries under control. Finally, testing at the gene level
requires less multiple testing correction than at the sgRNA level, yielding more power.

Our method takes into account existing variation between sgRNAs, as well as
possible variation of sgRNAs on cell fitness between conditions via the interaction effect
in the model. This yields more robust estimates than those obtained by analysing
individual sgRNAs separately: such methods may seemingly produce estimates that
display less variability per sgRNA, giving a false impression of more accuracy. In fact,
by neglecting inter-sgRNA variability, results represent largely effects on the current
experiment, so tend to be difficult to replicate in new experiments, when different
replicates, and sometimes different sgRNAs, are used.

In a simulation study, ShrinkCRISPR yielded similar ROC curves to those produced
by a another method, drugZ, for drug sensitizing screens using paired designs. However,
ShrinkCRISPR yields much less false positives in general. It also outperforms both
drugZ and another method, MAGeCK, in the context of independent designs, used e.g.
for isogenic screens, as it is the only approach to take into account initial sgRNA
abundance. While multiple factors may lead to variability in initial sgRNAs abundance,
in published work we found no results reporting such checks. The publicly available
data we used in our examples illustrates this point.

The method drugZ was developed to analyse screen data from paired designs. As
such, it is not unexpected to perform less well for the analysis of screens generated using
independent designs. In our simulation study, we used it to analyse data from
independent designs to illustrate the impact of ignoring initial sgRNA abundance on
results.

ShrinkCRISPR is the best approach in terms of controlling the proportion of false
positive hits, while it is able to find all hits with strong differential effect. However,
ShrinkCRISPR is conservative: the false discovery rate is under the desired level, and
the method is not able to detect hits with small effect sizes. The low power for
detecting small effects could be potentially improved upon by using a spike-and-slab
prior for the effect of interest, which would enable the model to better separate a subset
of genes with no differential behaviour between groups, from those with differential
behaviour. Using the current simulation study setup, however, this did not lead to a
better performance (data not shown). The choice of spike-and-slab prior will be
available in the R package ShrinkCRISPR.

Results of the simulation study must be interpreted with care. Indeed, each
individual simulated dataset used the same effect size A, for all genes with a condition
effect. This enables us to draw conclusions about power of the methods for detecting
effects of different sizes, as well as to understand how the amount of false discoveries
depends on the effect size present. In practice, experimental data will involve genes with
a range of effect sizes. The specific range typically depends on the experimental design
and conditions involved. Thus, quantitative results about power and proportion of false
discoveries from our simulation study cannot be easily translated to practical
applications. The variance existing between sgRNA count within a gene or between
replicates can be due to a lot of different phenomenon and is not easily quantifiable.
The total amount of variation simulated in the simulation study could not be
representative of the experimental results with the improvement of CRISPR. screens.
However, we have shown with the simulation study that shrinkCRISPR was robust to
most variation sources.

Our method has been designed to analyse CRISPR screen data generated by
sequencing, consisting of counts. Our proposed pipeline takes the initial sgRNA
abundance into account by computing fold changes [I} and subsequently computes
lethality scores via rscreenorm. As such, the pre-processed data are no longer counts,

and in fact is analysed using model 3] with an error term following a normal distribution.
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While we suggest using this pipeline, other researchers may choose to use fewer or
none of these pre-processing steps. For example, when studying results for isogenic cell
lines, relatively smaller effects are expected than when using cell lines from different
individuals or different tissue types. In such cases, sharing of the initial sgRNA
abundance eliminates one important variability source. In addition, lethality score
distributions for library sgRNAs as well as for assay control sgRNAs tend to be stable
across cell lines, and normalization with rscreenorm may be unnecessary. In such cases,
the data will involve both over-dispersion as well as potentially zero inflation. The
flexibility of the proposed framework enables ShrinkCRISPR to still be used, by fitting
model [3| with a negative binomial distribution for the response Z, as counts,
accounting for over-dispersion. It can also include a term to account for zero inflation.

Some researchers suggest combining multiple test results for sgRNAs targeting the
same gene by means of summarizing their p-values (one example is REF), say using the
minimum of them. This can lead to over-optimistic results, as the summary works
similarly to a filtering of the features, since only one test is selected from a set of them.
As a filter, the selection of the sgRNA test with the smallest p-value is not independent
of the test result by definition, and this yields a bias on the FDR control method [20].

There are methods currently in use which rely on more sophisticated approaches for
combining sgRNA-level results (statistics or p-values) to yield gene-level statistics or
p-values [3]. While several methods exist to combine p-values of various tests [6|{14L/16],
most of them require independent tests, which is not the case for sgRNAs targeting the
same gene. There are p-value combining methods which allow for non-independent test,
but then only for one-sided significance testing [2]. Such methods would therefore
require two statistical tests, which are clearly not independent. So, using such
approaches would increases the severity of multiple testing correction, and possibly lead
to an inflation in false positive hits due to correlation between tests.

ShrinkCRISPR relies on enough replicates per combination of group and cell line,
ideally 3, to yield reliable results. Indeed, using 2 replicates to a poorer ShrinkCRISPR
performance, as variances within and between cell lines are then poorly estimated. In
particular, if a single replicate is available for each combination of group and cell line,
ShrinkCRISPR cannot be applied. While this can be seen as a too strong requirement
by some researchers, we think this is a reasonable restriction: it follows from the need
for estimating variability for all sources of variation, which is precisely what enables
ShrinkCRISPR to yield less false discoveries. A further challenge when using
ShrinkCRISPR is that the effect sizes are not always straightforward to interpret due to
the several normalization steps. Furthermore, as all approaches using fold changes,
ShrinkCRISPR is sensitive to extreme values for sgRNA initial abundance, in particular
very low ones.

The TKO data analysis showed that our approach can account for multiple effects in
CRISPR screens, both at the sgRNA and at the replicate levels. Indeed, estimated
effects of different time points showed strong agreement: their correlation was at least
90% on average. Finally, by taking multiple time points into account in the model,
ShrinkCRISPR significantly increased the power to detect differential effect on cell
fitness, finding more time-independent effects than when individual time points were
used.

Another important step of pre-processing common to all methodologies based on fold
changes is the handling of low counts. Indeed in shrinkCRISPR we create a fold change
to measure the population growth of cell transduced with a specific sgRNA. The
presence of low sgRNA counts at the initial time point can lead to a large fold change
value and thus to an artificially large lethality score. This can then produce false
positive hits. By modelling the variance between sgRNAs within a gene, ShrinkCRISPR
is more robust to extreme values for individual sgRNAs. However, this may not be
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sufficient. One common approach to deal with such problems is to add to all raw low
counts at Ty a fixed (small) number of ’cells’ in order to reduce the impact of such low
counts on results.

We conclude that ShrinkCRISPR yields at least as much power to other existing
ones for most effects, with much better true positive proportions, even if conservative.
As downstream validation studies are extremely time-consuming, it represents an
important step towards making better use of data produced, producing more
reproducible results, and leading to more efficient studies.
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