

1
2
3
4

5 **Reconstructing the ancestral vertebrate brain using a lamprey neural cell type atlas**

6
7 Francesco Lamanna^{1,*,#}, Francisca Hervas-Sotomayor^{1,*,#}, A. Phillip Oel^{1,2}, David Jandzik^{3,4}, Daniel
8 Sobrido-Cameán⁵, Megan L. Martik^{6,7}, Stephen A. Green⁶, Thoomke Brüning¹, Katharina
9 Mößinger¹, Julia Schmidt¹, Celine Schneider¹, Mari Sepp¹, Florent Murat^{1,8}, Jeremiah J. Smith⁹,
10 Marianne E. Bronner⁶, María Celina Rodicio⁵, Antón Barreiro-Iglesias⁵, Daniel M. Medeiros³,
11 Detlev Arendt², Henrik Kaessmann^{1,#}
12
13

14 1) Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-
15 69120 Heidelberg, Germany.
16 2) Developmental Biology Unit, European Molecular Biology Laboratory, D-69012 Heidelberg,
17 Germany.
18 3) Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado
19 80309, USA.
20 4) Department of Zoology, Comenius University, Bratislava, Slovakia.
21 5) Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de
22 Compostela, 15782 Santiago de Compostela, Spain.
23 6) Division of Biology and Biological Engineering, California Institute of Technology, Pasadena,
24 CA, USA.
25 7) Present address: Department of Molecular and Cell Biology, University of California, Berkeley,
26 CA, USA.
27 8) Present address: INRAE, LPGP, 35000 Rennes, France.
28 9) Department of Biology, University of Kentucky, Lexington, Kentucky.
29
30

31 * These authors contributed equally to this work
32

33 # e-mail: F.L. (f.lamanna@zmbh.uni-heidelberg.de); F.H.-S. (f.hervas@zmbh.uni-heidelberg.de);
34 H.K. (h.kaessmann@zmbh.uni-heidelberg.de)

35 **The vertebrate brain emerged more than ~500 million years ago in common evolutionary**
36 **ancestors. To systematically trace its cellular and molecular origins, we established a spatially**
37 **resolved cell type atlas of the entire brain of the sea lamprey – a jawless species whose**
38 **phylogenetic position affords the reconstruction of ancestral vertebrate traits – based on**
39 **extensive single-cell RNA-seq and *in situ* sequencing data. Comparisons of this atlas to neural**
40 **data from the mouse and other jawed vertebrates unveiled various shared features that enabled**
41 **the reconstruction of the core cell type composition, tissue structures, and gene expression**
42 **programs of the ancestral brain. However, our analyses also revealed key tissues and cell types**
43 **that arose later in evolution. For example, the ancestral vertebrate brain was likely devoid of**
44 **cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter**
45 **emerged from astrocyte-like evolutionary precursors on the jawed vertebrate lineage. Our**
46 **work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and**
47 **provides a foundation for exploring its diversification during evolution.**

48
49 The brain of vertebrates is a structurally complex and preeminent organ because of its central
50 functions in the body. Its most fundamental divisions are the forebrain (prosencephalon; traditionally
51 divided into the telencephalon and diencephalon), the midbrain (mesencephalon), and hindbrain
52 (rhombencephalon) (Fig. 1a). This regionalization is shared across all extant jawed vertebrates, and
53 present even in jawless vertebrates (i.e., the extant cyclostomes: lampreys and hagfishes), the sister
54 lineage of jawed vertebrates (gnathostomes)¹ (Fig. 1a), which have overall less complex brains than
55 jawed vertebrates². While a basic molecular regionalization has been described for the substantially
56 simpler central nervous systems of the closest evolutionary relatives of vertebrates (urochordates and
57 cephalochordates)^{3,4}, the anatomical complexity of the four major divisions of the vertebrate brain
58 evolved in common vertebrate ancestors ~515-645 MYA⁵ (Fig. 1a), likely as part of the cephalic
59 expansion that commenced around the emergence of this animal lineage (“new head” hypothesis)⁶.

60
61 Previous anatomical and molecular studies of the vertebrate brain have yielded intriguing insights
62 and hypotheses pertaining to its structural and functional evolution^{7,8}. However, its ancestral cellular
63 composition and underlying gene expression programs, as well as its subsequent diversification, have
64 not been systematically explored.

65
66 To fill this critical gap, we generated a comprehensive cell type atlas of the adult and larval
67 (ammocoete) brain of the sea lamprey (*Petromyzon marinus*), based on extensive transcriptomic and
68 spatial expression data at single-cell resolution (<https://lampreybrain.kaessmannlab.org/>). Integrated
69 comparative analyses of this atlas unveiled details of the cell type repertoire and molecular
70 architecture of the ancestral vertebrate brain, but also revealed distinct cell types, gene expression
71 programs, and tissue structures that emerged during the evolution of the brain in jawed and jawless
72 vertebrates, respectively.

73
74 **Cellular and molecular organization of the lamprey brain**
75 We generated scRNA-seq data (21 libraries in total) for whole adult and ammocoete brains, and
76 separately for their four major anatomical regions (telencephalon, diencephalon, mesencephalon,
77 rhombencephalon), to facilitate cell type assignments (Fig. 1a; Supplementary Tables 1, 2). To ensure
78 optimal scRNA-seq read mapping, we substantially refined and extended previous annotations of the

79 lamprey germline genome⁹ (Extended Data Fig. 1; Supplementary Data 1) based on 63 deeply
80 sequenced RNA-seq libraries covering six major organs, including different brain regions
81 (Supplementary Table 1; Methods). After quality control and data filtering (Methods), we obtained
82 transcriptomes for a total of 159,381 high-quality cells (adult: 72,810; ammocoete: 86,571). Using a
83 detailed clustering approach and iterative marker gene-based annotation procedure (Methods), we
84 identified 151 (95 neuronal) distinct cell types in the adult and 120 (92 neuronal) in the larval datasets,
85 respectively (Supplementary Table 3; see [online atlas](#)). To spatially localize cell types across the
86 brain, we generated *in situ* sequencing (ISS)¹⁰ data for 93 selected marker genes in both lamprey life
87 stages, and single-molecule RNA-FISH (smFISH) images for four genes in the larval stage
88 (Supplementary Table 4; Supplementary Data 2).

89

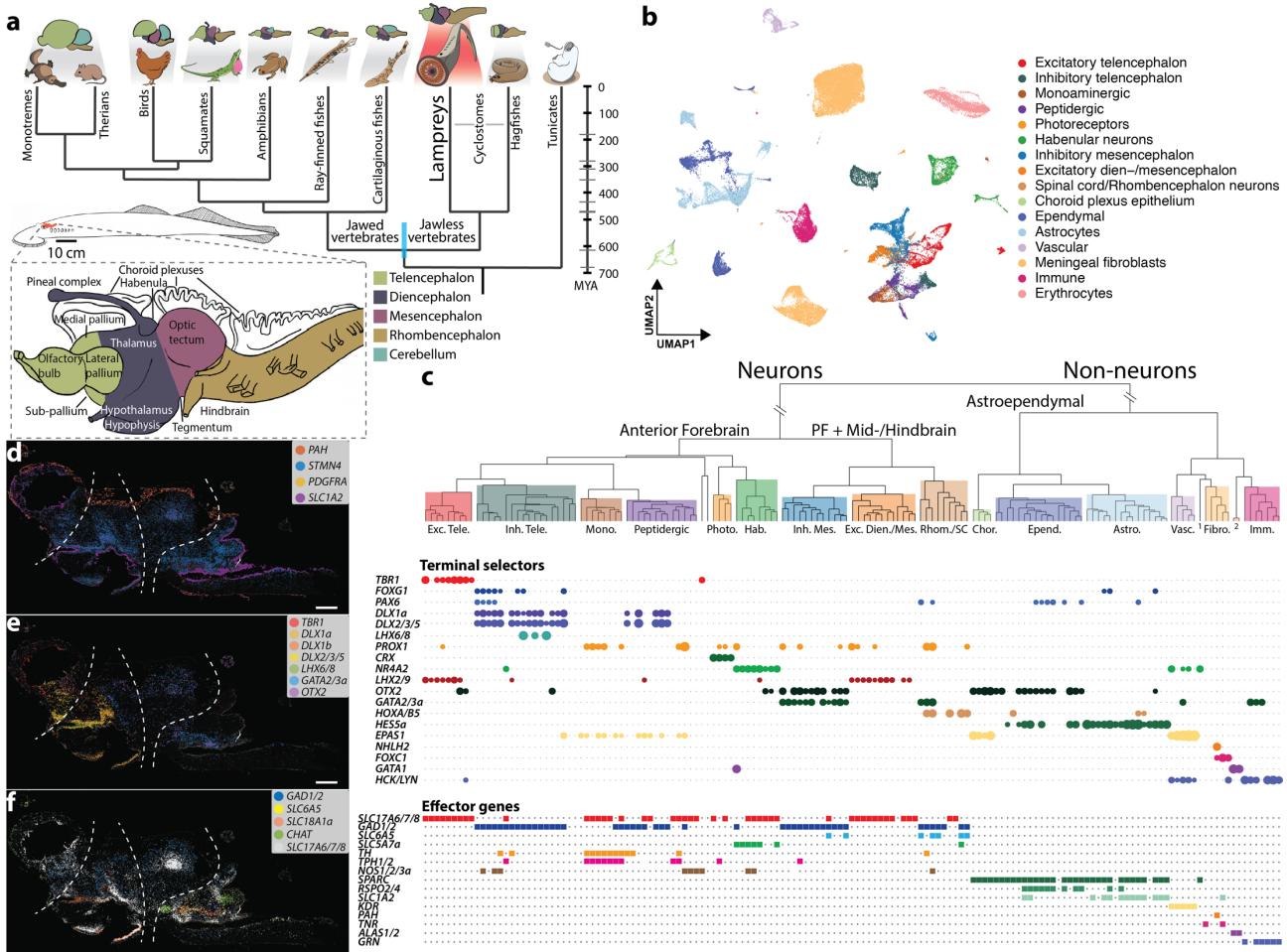
90 Overall, the cell type compositions and gene expression patterns are similar between the adult and
91 ammocoete datasets (Extended Data Figs. 2, 3). However, the adult brain is characterized by larger
92 numbers of expressed genes per cell and greater cell type specificities¹¹ of gene expression compared
93 to the ammocoete brain (Extended Data Fig. 4b, c). This result is robust to controls for technical
94 differences between the datasets (Methods; Extended Data Fig. 4a, b, c). Additionally, the ammocoete
95 brain displays the expression of several transcription factor genes (TFs) marking periventricular
96 neurons (e.g., *ZFP704*; Extended Data Fig. 4d-f), which might indicate the presence of not fully
97 differentiated cells in the larval brain.

98

99 A cell type tree derived from the adult dataset, which reflects cell type relationships based on gene
100 expression distances, unveils the hierarchical organization of cell types in the lamprey brain (Fig. 1b,
101 c). The primary division is between neuronal and non-neuronal cell types, which are in turn split into
102 astroependymal cells (i.e., neural tube-derived glia) and other cells (i.e., vascular cells, meningeal
103 fibroblasts, hematopoietic cells, and glial cells from the peripheral nervous system, PNS). Our spatial
104 ISS data illustrate that these three major cell type classes occupy very distinct areas of the brain (Fig.
105 1d).

106

107 At a secondary hierarchical level, non-neuronal cells are organized according to their cell class
108 identity (e.g., astrocytes, ependymal cells, erythrocytes, immune cells), in agreement with their
109 molecular phenotype (Fig. 1c). By contrast, the organization of neuronal types primarily reflects their
110 anatomical origin. Thus, a first separation is evident between telencephalic, anterior diencephalic
111 (i.e., hypothalamus and pre-thalamus), pineal, and habenular neurons on one side of the neuronal
112 clade, and posterior diencephalic (i.e., thalamus and pre-tectum), mesencephalic and
113 rhombencephalic/spinal cord neurons on the other. Within each developmental subdivision, neurons
114 are organized according to their neurotransmitter phenotype (Fig. 1c).


115

116 The overall hierarchical cell type organization of the lamprey brain is supported by the expression
117 patterns of terminal selectors (i.e., sets of TFs that determine and maintain cell type identity^{12,13}) and
118 effector genes (i.e., sets of genes that characterize the molecular phenotype of cells) (Fig. 1c). Inhibitory neurons, for instance, are regulated mainly by *DLX* genes in the anterior forebrain¹⁴ but by
119 *GATA2/3*, *OTX2* and *TAL* genes in the posterior forebrain, midbrain, hindbrain and spinal cord^{15,16}
120 (Fig. 1c; Extended Data Fig. 7a). Our ISS data confirm this strict compartmentalization of neuronal
121

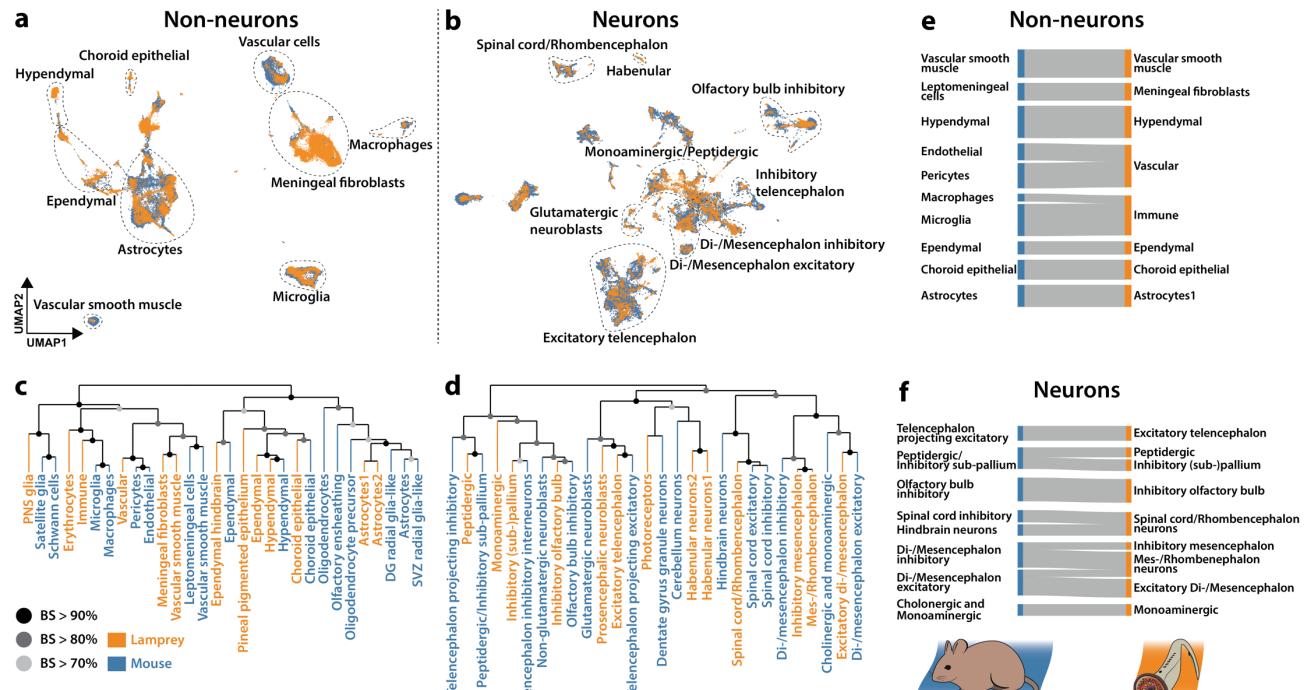
122 regulators (Fig. 1e; Extended Data Fig. 7h, i, l, m). Conversely, neurotransmitter-related genes are
 123 expressed across different brain regions (Fig. 1c, f).

124

125 The hierarchical relationship of cell types in the lamprey brain is very similar to that observed for a
 126 reference mammalian brain atlas (i.e., that of the mouse¹⁷), which suggests that all vertebrates share
 127 a common general cellular and molecular organization of neural tissues that was established during
 128 the evolution of the vertebrate stem lineage.

129
 130 **Fig. 1 | Adult brain atlas overview.** **a**, Upper panel: phylogenetic tree displaying the main vertebrate lineages and their
 131 approximate brain anatomies; blue bar indicates the estimated confidence interval for cyclostomes/gnathostomes
 132 divergence times⁵. Lower panel: schematic of the adult sea lamprey brain showing the different regions dissected for this
 133 study. **b**, UMAP of brain cells colored according to their corresponding cell type group. **c**, Dendrogram describing the
 134 relationships between the identified cell types. Colored boxes correspond to highlighted cell type groups in **b**. Upper
 135 panel: expression of terminal selector marker genes within each cell type; circle sizes are proportional to the number of
 136 cells expressing the gene. Lower panel: binary expression (presence/absence; based on whether a given gene is
 137 differentially expressed in the corresponding cell type; see Methods) of effector genes (neurotransmitters for neuronal
 138 types). PF, Posterior Forebrain; 1, PNS glia; 2, Erythrocytes. **d**, **e**, **f**, Sagittal sections (same orientation as in panel a) of
 139 the adult brain showing ISS maps of genes marking: neurons (STMN4), astroependyma (SLC1A2), and meningeal
 140 fibroblasts (PAH, PDGFRa) (**d**); anterior forebrain vs. posterior forebrain and midbrain neuronal factors (**e**); and
 141 neurotransmitter genes (**f**). Dashed lines separate the main four brain regions illustrated in panel a. See Extended Data
 142 Fig. 12 for ISS section schemes; scale bars, 500 μ m. N.B.: lamprey gene symbols throughout this study are based on
 143 corresponding mouse ortholog names.

144


145

146 **Vertebrate cell type families**

147 To illuminate the cell type composition and molecular architecture of the ancestral vertebrate brain
 148 and to uncover differences between the central nervous systems (CNS) of cyclostomes and
 149 gnathostomes, we performed detailed comparative analyses of our adult lamprey atlas with a
 150 corresponding atlas established for the mouse¹⁷. The neuronal and non-neuronal cells of the two
 151 atlases were contrasted separately using a dedicated method for homologous cell type detection (self-
 152 assembling manifold mapping, SAMap)¹⁸ and a correlation-based analysis of gene expression that
 153 also considers paralogous genes and was adapted from a previous approach¹⁹ (Methods).

154

155 The SAMap results show a great degree of correspondence between the two species for groups of cell
 156 types belonging to the same class (e.g., vascular cells, astrocytes, excitatory neurons of the
 157 telencephalon), as indicated by the UMAP projection of the inter-species manifold (Fig. 2a, b) and
 158 the distribution of mapping scores between the two atlases (Fig. 2e, f; Extended Data Fig. 9;
 159 Supplementary Table 5). This high-level similarity is confirmed by cross-species dendrograms based
 160 on the correlation approach applied to orthologous TF genes (Fig. 2c, d; Extended Data Fig. 10).
 161 These observations suggest that many of the corresponding cell classes share evolutionarily related
 162 gene expression programs (Extended Data Fig. 11a). We propose that the matching groups of cell
 163 types uncovered in these analyses might constitute homologous cell type 'families'²⁰ that were already
 164 present in the brain of the last common ancestor of jawless and jawed vertebrates more than ~515-
 165 645 MYA⁵.

166

167 **Fig. 2 | Comparisons between lamprey and mouse brain atlases.** **a, b**, SAMap results displaying UMAP projections
 168 of non-neuronal (a) and neuronal (b) cells from both species. Erythrocytes and oligodendrocytes were removed from the
 169 lamprey and mouse datasets respectively. **c, d**, Dendrograms reporting gene expression distance (Pearson's r) of TF genes
 170 of non-neuronal (c) and neuronal (d) cell type groups from the two species. BS, bootstrap support ($n = 1,000$). **e, f**, Sankey
 171 diagrams relating non-neuronal (e) and neuronal (f) cell type groups between the two species based on SAMap mapping
 172 scores (min = 0.1; max = 0.65); link width proportional to mapping score.

173

174

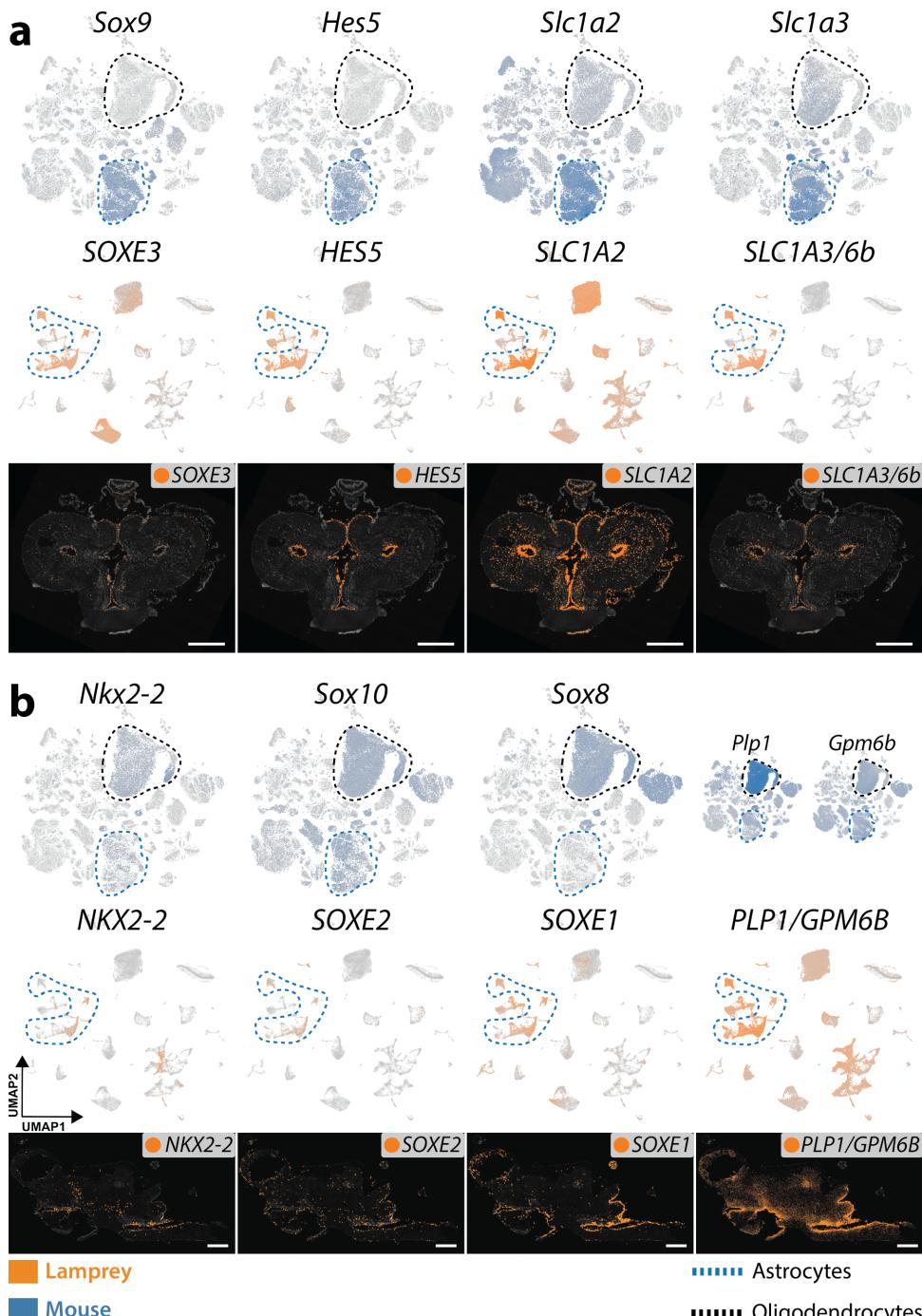
175 **Blood, vascular, and PNS cells**

176 The hematopoietic cells found in the lamprey brain can be classified into erythrocytes, characterized
177 by the massive expression of hemoglobin and heme-related genes (e.g., *ALAS1/2*), and immune cells,
178 which are mainly composed of microglia/macrophages and lymphocytes (Extended Data Fig. 5a).
179 The microglia/macrophage cell types are highly correlated to mammalian perivascular macrophages
180 and microglia (Fig. 2c, e; Supplementary Table 5), and express genes that are typically related to the
181 non-specific immune response (e.g., *GRN*, *CSF1R*, *HCK/LYN*; Extended Data Fig. 5a-c) both outside
182 (macrophages) and inside (microglia) the brain (Extended Data Fig. 5d). We also identified a
183 lymphocytic cell population (type: Lympho2) expressing one of the two known cyclostome-specific
184 variable lymphocyte receptor genes (*VLRA*; Extended Data Fig. 5a), which is part of a distinct
185 adaptive immune system that emerged on the cyclostome lineage in parallel to that of gnathostomes²¹.
186

187 We identified several vascular cell types, corresponding to endothelial cells/pericytes, which express
188 typical vascular markers (e.g., *EPAS1*, *KDR*; Extended Data Fig. 5a-c) and are principally localized
189 at the innermost meningeal layer (Extended Data Fig. 5d), forming the perineural vascular plexus²².
190 The inner and outer leptomeningeal layers are populated by fibroblast-like cells (type: Fibro1) that
191 are likely homologous to the meningeal vascular fibroblasts described in the mouse brain^{17,23} given
192 their high respective homology mapping scores (Fig. 2c, e; Supplementary Table 5) and the
193 expression of key orthologous marker genes (e.g., *PDGFRA*, *FOXC1*, *LUM*; Extended Data Fig. 5a-
194 d). A second fibroblast type (Fibro2) occupies the space between the leptomeningeal boundaries
195 (Extended Data Fig. 5d) and is characterized by the expression of genes involved in the metabolism
196 of glucose (*G6PC*)²⁴, fatty acids (*FABP3*), cholesterol (*SOAT1/2*), and aromatic aminoacids (*PAH*)
197 (Extended Data Fig. 5a) This cell type might correspond to meningeal round cells, which form a
198 metabolically active tissue typical of lamprey that is not present in the meninges of other
199 vertebrates^{22,24}.

200 PNS glia are represented by a small cluster (n = 53) expressing the TF genes *SOXE2* and *SOXE3*
201 (orthologous to mammalian *Sox10* and *Sox9*, respectively²⁵); they co-localize within cranial nerve
202 roots (Extended Data Fig. 5a, e). This group of cells, which most likely corresponds to the peripheral
203 ensheathing glia described by Weil and colleagues²⁶, expresses some markers whose mouse orthologs
204 are characteristic of satellite glia (*SOXE2*) and Schwann cells (*EGR2/3/4*, *PMP22/EMP3*) (Extended
205 Data Fig. 5a) However, they lack the expression of key peripheral myelin constituent genes like *MPZ*
206 and *PMP2*, confirming the absence of myelin from the lamprey PNS²⁷. The co-localization of this
207 cell type together with meningeal fibroblasts and vascular smooth muscle cells within the cell type
208 tree (Extended Data Fig. 5a) likely reflects their common developmental origin from the neural
209 crest/placodes¹⁷.
210

211 **Astroependymal cells and the origin of myelination**


212 Astroependymal cells (i.e., CNS glia) are divided into two main, developmentally related, cell classes:
213 ependymal cells and astrocytes. Ependymal cells are ciliated, epithelial-like cells that populate the
214 ventricular system of the brain, the circumventricular organs (CVO)²⁸, and the choroid plexuses²⁹,
215 and are characterized by the expression of the ciliogenesis-related TF *FOXJ1* and the extracellular
216 matrix component *CCN2/3/5* (Extended Data Fig. 6a, e, f, i). We identified two types of specialized
217 secretory ependymal types in the lamprey brain: choroid plexus epithelial cells (*OTX2*⁺), responsible
218

219 for the production of cerebrospinal fluid (CSF), and hypendymal cells of the sub-commissural organ
220 (SCO), which massively express the main Reissner's Fibers component SCO-spondin (*SSPO*)³⁰
221 (Extended Data Fig. 6a, b, g, i). Two additional types of specialized ependymal cells are the
222 pigmented pineal epithelial cells, defined by markers that are common to the retina pigment
223 epithelium (e.g., *RPE65*, *RRH*; Extended Data Fig. 6a), and the *KERA*-expressing ependymal cells of
224 the hindbrain and spinal cord (types: ReEpen1, ReEpen3; Extended Data Fig. 6a, c, d). The large
225 number of detected ependymal cells and cell types in the adult dataset (Extended Data Fig. 3b) likely
226 reflects the large relative sizes of the ventricles and choroid plexuses of the lamprey brain (Extended
227 Data Fig. 6i)³¹.

228
229 Lamprey astrocytes are highly comparable to those from mouse in terms of their overall transcriptome
230 (Fig. 2c, e). They share key marker genes that are fundamental for the development and function of
231 astrocytes, such as *SOXE3* (*Sox9*), *HES5*, and *SLC1A2* (Fig. 3a; Extended Data Fig. 6a). Like in other
232 anamniotes (e.g., fishes, amphibians), lamprey astrocytes are mainly localized around the ventricles
233 (Fig. 3; Extended Data Fig. 6h), forming the so-called ependymo-radial glia³².

234
235 Like in the PNS, lamprey CNS axons are not myelinated²⁷, consistent with the absence of key master
236 regulators of oligodendrocyte identity (*OLIG1*, *OPALIN*) and myelin specific genes (*MOBP*,
237 *TSPAN2*) from its genome. Other myelin-related genes are present in the genome, but they are not
238 expressed in glial cells (e.g., *PDGFRA* and *NKX6-1/2* are expressed in meningeal fibroblasts;
239 Extended Data Fig. 5a). Notably, despite the lack of myelination, lamprey astrocytes express several
240 oligodendrocyte-specific genes, such as the TFs *NKX2-2* and *SOXE2* (*Sox10*)³³ (Fig. 3b; Extended
241 Data Fig. 6a), the proteolipid gene *PLP1/GPM6B* (orthologous to the myelin components *Plp1* and
242 *Gpm6b*) (Fig. 3b; Extended Data Fig. 6a), and the extracellular matrix glycoproteins *TNR* and
243 *HEPACAM* (Extended Data Fig. 6a, j, k). Given the expression of crucial TFs of oligodendrocyte
244 identity and the presence of myelin-related genes within lamprey astrocytes, our findings lend strong
245 support to the hypothesis that oligodendrocytes originated from astrocyte-like glia in gnathostome
246 ancestors²⁶.

247

248
249 **Fig. 3 | Expression of astrocyte- and oligodendrocyte-specific genes.** **a, b,** UMAPs showing the expression of astrocyte-
250 (a) and oligodendrocyte- (b) specific orthologous genes in the mouse (upper panels) and lamprey (middle panels) atlases.
251 Lower panels: ISS maps of the adult lamprey brain for the same genes, showing coronal sections of the telencephalon (a)
252 and sagittal sections of the whole brain (b; same orientation as in Fig. 1a). See Extended Data Fig. 12 for ISS section
253 schemes; scale bars, 500 μ m.

254

255 **Neuronal diversity across brain regions**

256 Finally, we scrutinized neuronal cell types across the different brain regions. Hindbrain and spinal
257 cord neurons are defined by the expression of several *HOX* genes (*HOXA/B3*, *HOXA/B4*, *HOXA/B5*;
258 Extended Data Fig. 7a, b). Two types of hindbrain glycinergic cells (types: ReInh5, ReInh6), likely
259 corresponding to inhibitory reticulospinal neurons³⁴, are highly correlated to reticular neurons of the

260 medulla in mouse¹⁷ (Supplementary Table 5) and express related markers (*SLC6A5*, *SLC32A1b*,
261 *EBF2/3*; Extended Data Fig. 7a, b, f, g). Cholinergic neurons expressing the TF gene *TBX6/20* show
262 very localized expression within the hindbrain, likely corresponding to afferent nuclei of cranial
263 nerves³⁵ (Extended Data Fig. 7c-e). None of the detected midbrain/hindbrain clusters specifically
264 express markers related to Purkinje (e.g., *ALDOC*, *PCP2*, *SLC1A6*, *CAR8*) or granule (e.g.,
265 *NEUROD1*, *CBLN1*, *GABRA6*) neurons of the cerebellum, nor are these markers expressed in the
266 dorsal isthmic region (Supplementary Data 2). We did also not detect the expression of marker genes
267 in this region that are associated with neurons of inferred ancestral cerebellar nuclei³⁶, which were
268 shown to have diversified in the gnathostome lineage through duplications³⁶. These observations
269 confirm the absence of proper cerebellar nuclei in the lamprey brain^{36,37}. Within the rostral spinal
270 cord we identified two types of GABAergic CSF-contacting (CSF-c) cells³⁸ (types: ReInh1, ReInh2);
271 these are ciliated neurons that are homologous to the gnathostome CSF-c neurons of the spinal cord
272 central canal, and express genes coding for channels that respond to changes in CSF pH (*PKD2L1*,
273 *PKD2L2*), and for proteins that remove toxic oxidative compounds from the CSF (*AMBP*) (Extended
274 Data Fig. 7a, b).

275

276 Thalamic, pre-tectal and tectal neurons are divided into excitatory and inhibitory classes (Extended
277 Data Fig. 7a) and express TFs that are typical of homologous anatomical regions in mouse (i.e.,
278 thalamus, pre-tectum, and superior colliculus)¹⁷. In fact, like in the murine brain, glutamatergic
279 neurons are characterized by the expression of *SHOX2*, *EBF1*, *EBF2/3*, whereas GABAergic neurons
280 express *GATA2/3a*, *GATA2/3b*, *TAL1*, *OTX1/2* (Fig. 1e; Fig. 4a; Extended Data Fig. 7a, f-m).

281

282 Epithalamic neurons (i.e., neurons stemming from the dorsal-most region of the diencephalon) are
283 divided into habenular types and pineal/parapineal photoreceptors, like in the gnathostome brain³⁹.
284 All habenular neurons express the same TFs (*NR4A2*, *ETV1*, *IRX2/5*; Extended Data Fig. 8a, d), with
285 the medial and lateral nuclei showing very distinct expression patterns for several genes (e.g.,
286 *MYO9A*, *PRKCQ*, *GNG2*, *TMEM64*; Fig. 4b; Extended Data Fig. 8a, c). The medial habenula is
287 occupied by glutamatergic, nitrergic, and cholinergic neurons^{40,41} (Fig. 1c; Extended Data Fig. 8a, c),
288 with a cell type expressing neuropeptide Y (*NPY*; Extended Data Fig. 8a, c). The lateral habenulae
289 are molecularly related to each other; they co-express several markers (*GNG2*, *TMEM64*, *SLC1A3/6a*;
290 Fig. 4b; Extended Data Fig. 8a, c) and can be distinguished by the differential expression of two
291 neuropeptide genes: proenkephalin (*PENK*; right) and cholecystokinin-like (*CCK*-like; left)
292 (Extended Data Fig. 8e).

293

294 The pineal and parapineal organs of the lamprey are characterized by the presence of cells that are
295 both photoreceptive and neuroendocrine⁴². Such a dual nature is confirmed by our data at the
296 molecular level by the expression of the genes *CRX* (necessary for the differentiation of
297 photoreceptors), *GUCA1B* (involved in visual phototransduction), *LHX3/4*, and *ISL1/2* (required for
298 the development of neuroendocrine cells in the mammalian anterior pituitary)⁴³ in all detected cell
299 types (Extended Data Fig. 8a, n, r). Within the pineal organ, we identified cone- (type: Photo1) and
300 rod-like (type: Photo2) cells defined by the expression of cone- (*ARR3*, *PDE6H*) and rod-specific
301 markers (*RHO*, *PDE6G*, *GRK1*). Both pineal types can be distinguished from parapineal
302 photoreceptors by the expression of recoverin (*RCVRN*) and genes involved in the biosynthesis of
303 melatonin (*TPH1/2*, *AANAT*) (Extended Data Fig. 8a, m, p, q; see also [online atlas](#)). Cells of the

304 parapineal organ (types: Photo3, Photo4) express the non-visual opsin gene parietopsin and the
305 neuropeptide gene *TAC1* (Extended Data Fig. 8a). Unlike the pineal stalk, characterized by the
306 expression of pineal markers, parapineal ganglion, and tract cells are strongly marked by lateral
307 habenular genes (e.g., *PPP1R14A/B/C*, *GNG2*; Extended Data Fig. 8j, m, n), confirming the long-
308 standing hypothesis of Studnicka (1905)³⁹ that these two structures are extensions of the left habenula
309 and that they are histologically distinct from the parapineal organ.

310

311 Nearly all monoaminergic neurons, identified by the expression of monoamine transport (*SLC18A1a*,
312 *SLC18A1b*) and metabolic (*TH*, *TPH1/2*) genes, form a unique taxon within the cell type tree (Fig.
313 1c; Extended Data Fig. 8a), which includes serotonergic and dopaminergic neurons of the
314 hindbrain, midbrain, and hypothalamus. Dopaminergic neurons of the posterior tubercle nucleus
315 (PTN) of the hypothalamus (type: MeDopa1) co-express dopamine- and glutamate-related genes⁴⁴
316 (Extended Data Fig. 8a, b) and are considered homologs of the dopaminergic neurons of the
317 substantia nigra *pars compacta* (SNc) of amniotes⁴⁵, an important component of basal ganglia. These
318 cells are located next to *NTS*-producing neurons⁴⁶ (a modulator of dopaminergic activity⁴⁷; Fig. 4a)
319 and express the TF *PROX1* (Fig. 1c) that is crucial for the development of dopaminergic PTN cells
320 in zebrafish⁴⁸.

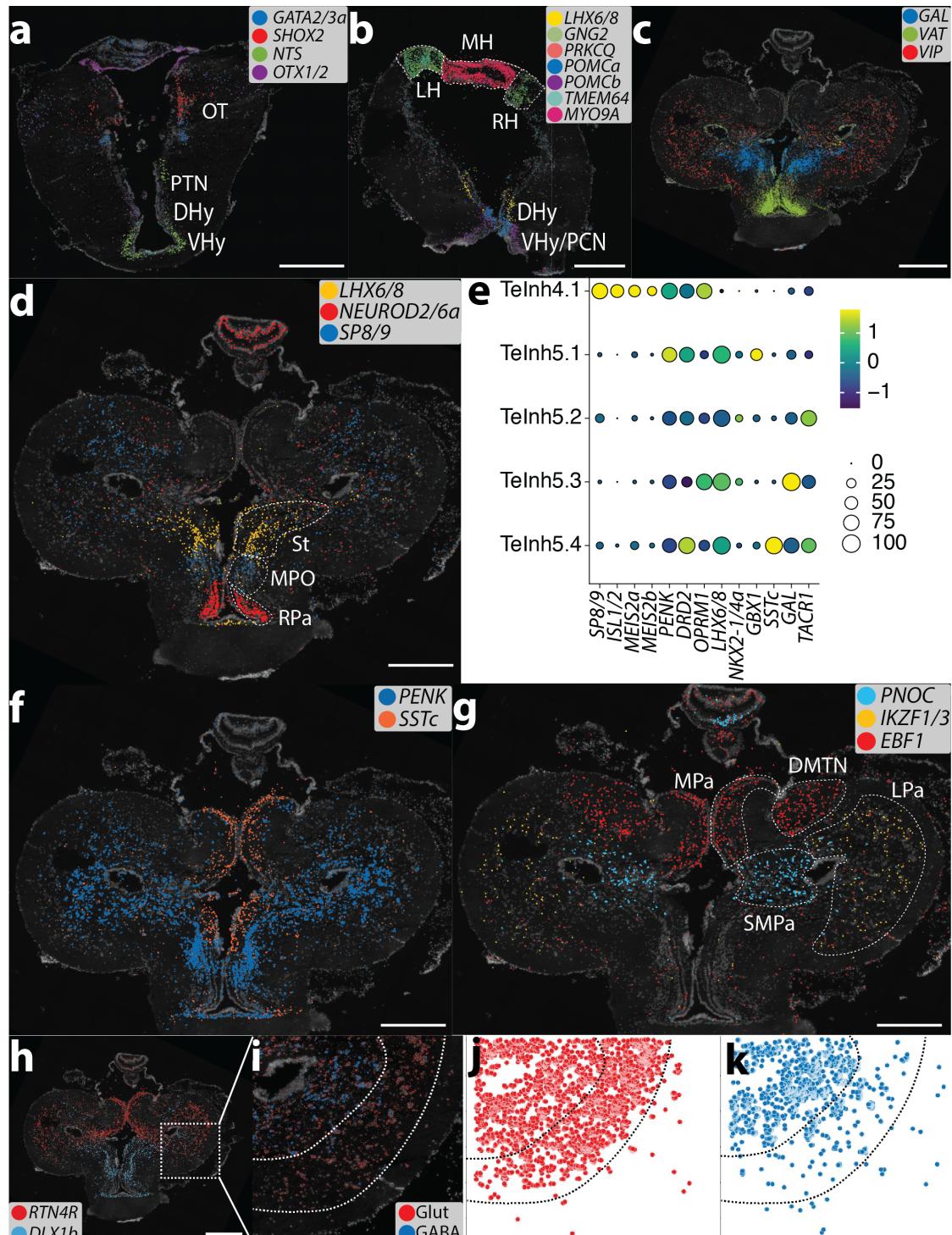
321

322 Like in the mouse brain atlas¹⁷, most hypothalamic peptidergic neurons co-cluster with
323 monoaminergic cells (Fig. 1c; Extended Data Fig. 8a). Neurons of the ventral hypothalamus and
324 postoptic commissure nucleus (PCN) express the neuropeptide genes cholecystokinin (*CCK*)⁴⁹ and
325 pro-opiomelanocortins (*POMCa*, *POMCb*) (Fig. 4b; Extended Data Fig. 8e, g), as well as the
326 circadian rhythm-related genes *SIX3/6a* and *PER1/2* (also expressed in the pineal complex; see [online
327 atlas](#)). Other neuropeptides expressed in the hypothalamus are: galanin (*GAL*)⁵⁰, somatostatins (*SSTa*,
328 *SSTc*)⁵¹, neuropeptide Y (*NPY*)⁵², neuropeptid Y (*NTS*), vasotocin (*VAT*), proenkephalin (*PENK*),
329 prepronociceptin (*PNO*), gonadotropin-releasing hormones (*GNRH1*, *GNRH2*), prolactin-releasing
330 hormone (*PRLH*), and *FAM237A/B* (Extended Data Fig. 8a, c-g). Additional peptidergic neurons
331 cluster with inhibitory neurons of the pallium/sub-pallium (Extended Data Fig. 8a); these include
332 *GAL*⁺ neurons of the septum and preoptic area (POA) (type: DePep10) and glutamatergic neurons
333 expressing *VAT*, *GNRH1*, and *NEUROD2/6a* (type: DePep9) located in the rostral paraventricular
334 area (RPa) of POA (Fig. 4c, d; Extended Data Fig. 8a, m).

335

336 Inhibitory neurons of the telencephalon are classified into olfactory bulb (OB) and pallium/sub-
337 pallium cell types and are all enriched for typical forebrain GABAergic markers (*GAD1/2*, *DLX1a*,
338 *DLX1b*, *DLX2/3/5*; Extended Data Fig. 7l, m; Extended Data Fig. 8a). OB neurons can be recognized
339 by: i) the conserved expression of several TFs that are characteristic of the anterior forebrain and
340 placodes in chordates³ (e.g., *SP8/9*, *PAX6*, *FOXG1*, *ETV1*; Extended Data Fig. 8a, s), ii) the unique
341 expression of *PRDM12* (expressed in pain-sensing nerve cells and V1 interneurons in
342 gnathostomes^{53,54}; Extended Data Fig. 8a, t), and iii) the presence of dopaminergic cells (type:
343 TeDopa1; Extended Data Fig. 8a). *SP8/9*⁺ neurons are present also in the sub-pallium (type: TeInh4),
344 within the medial preoptic nucleus (MPO; Fig. 4d) where they co-express *ISL1/2*, a marker of striatal
345 projection neurons in gnathostomes (Extended Data Fig. 8a). The presence of *SP8/9*⁺-*ISL1/2*⁺ and
346 *SP8/9*⁺-*ETV1*⁺ neurons in the sub-pallium and OB, respectively, is already known for mammals,

347 where they originate from the lateral ganglionic eminence (LGE)⁵⁵, suggesting that these two cell
348 populations share the same developmental origin and migratory patterns across vertebrates.


349

350 Another important sub-pallial progenitor zone in jawed vertebrates is the medial ganglionic eminence
351 (MGE), a developmental source of pallidal, striatal, and cortical GABAergic interneurons. The
352 occurrence of an MGE in the cyclostome brain was proposed by Sugahara and colleagues, based on
353 the presence of an *NKX2-1/4⁺* domain in the sub-pallium of lamprey and hagfish embryos⁷. We
354 identified neurons (type: TeInh5) expressing *LHX6/8* (a marker of MGE-derived cells in mammals)
355 and showing residual expression for *NKX2-1/4a* (Fig. 4e) within two sub-pallial regions: i) the
356 striatum, a structure located dorsal to the MPO⁵⁶ (Fig. 4d), and ii) the putative pallidum⁵⁷, a nucleus
357 located ventrolaterally to the thalamic eminences (Extended Data Fig. 8j). Within the striatum, this
358 neuron type is organized into an internal (*SSTc⁺*) and external layer (*PENK⁺*) (Fig. 4f; Extended Data
359 Figs. 8m, n). Recursive clustering revealed the presence of subtypes that express markers of both
360 striatal (*DRD2*, *PENK*) and pallidal (*TACR1*, *GBX1*) neurons (Fig. 4e). These results indicate that,
361 unlike in gnathostomes, where the striatum is mostly LGE-derived and the pallidum MGE-derived,
362 the lamprey striatum and pallidum are very similar at the transcriptomic level and are both MGE-
363 derived.

364

365 The presence of *DLX⁺* GABAergic neurons expressing LGE- and MGE-related markers in the
366 pallium (Fig. 4d, h; Extended Data Fig. 8i, n, o) implies that migration from progenitor zones of the
367 sub-pallium also occurs in lamprey. Many of these neurons express the neuropeptide genes *PENK*,
368 and *SSTc*, which mark GABAergic interneurons types in the pallium of several gnathostome
369 species^{11,58,59} (Fig. 4f; Extended Data Fig. 8m, n, q, r). The vasoactive intestinal peptide (*VIP*; a
370 marker of a sub-population of cortical GABAergic interneurons in amniotes) is also present in the
371 lamprey pallium, but, contrary to gnathostomes, it is expressed exclusively in glutamatergic neurons
372 (Fig. 4c; Extended Data Fig. 8a, p).

373

374

375

376

377

378

379

380

381

382

383

384

385

Fig. 4 | Neuronal spatial maps. a-d, f-h ISS maps of selected neuronal marker genes across various adult brain coronal sections. e, Dotplot displaying the expression of marker genes for subtypes of LGE- (TeInh4) and MGE- (TeInh5) derived (sub-)pallial inhibitory neurons. i, Magnification from the dashed square in h showing the layered organization of the lateral pallium; each neuronal class is highlighted by plotting the expression of multiple specific marker genes: GABA (*GAD1/2*, *DLX1a*, *DLX1b*, *DLX2/3/5*), Glut (*SLC17A6/7/8*, *TBRI*). j, k, Spatial scatter plot (same coordinates and markers as in i) highlighting the position of GABAergic and glutamatergic neurons within the lateral pallium. DHy, dorsal hypothalamus; DMTN, dorsomedial telencephalic nucleus; LH, left habenula; LPa, lateral pallium; MH, medial habenula; MPa, medial pallium; MPO, medial preoptic nucleus; OT, optic tectum; PCN, postoptic commissure nucleus; PTN, posterior tubercle nucleus; RH, right habenula; RPa, rostral paraventricular area; SMPa, sub-medial pallium; St, striatum; VHy, ventral hypothalamus. See Extended Data Fig. 12 for ISS section schemes; scale bars, 500 μ m.

386 The expression programs of excitatory neurons of the lamprey telencephalon are overall highly
387 correlated to those of the corresponding cell types in mouse (Fig. 2f). This similarity is confirmed by
388 the expression of marker genes typical of mammalian cortical glutamatergic neurons within the
389 lamprey pallium and, partially, OB (e.g., *TBR1*, *EMX1/2a*, *EMX1/2b*, *RTN4R*, *LHX2/9*, *BCL11B*,
390 *IKZF1/3*; Fig4h; Extended Data Fig. 7h, i; Extended Data Fig. 8a, f-h, j-l, o, q). We identified eight
391 distinct cell types populating four different regions of the lamprey pallium: i) dorsomedial
392 telencephalic nucleus (DMTN; type: TeExc1), ii) medial pallium (MPa; type: TeExc4), iii) sub-
393 medial pallium (SMPa; type: TeExc3), and iv) lateral pallium (LPa; types: TeExc2, TeExc5-8) (Fig.
394 4g; Supplementary Table 3; see [online atlas](#)). DMTN is a relay nucleus that is innervated by tufted-
395 like cells of the OB⁶⁰ and is located at the interface between the pallium and OB, of which it
396 constitutes the caudal-most portion. Like the OB the DMTN displays a layered structure with outer
397 glutamatergic neurons, which share the same expression profile with cells of the OB glomerular layer,
398 (e.g., *EBF1*) and inner GABAergic (*PRDM12*⁺) neurons (Extended Data Fig. 8o, p, r-u). MPa and
399 SMPa neurons express the TFs *OTX2* and *NR2F1/6a*. They extend caudally, reaching the thalamic
400 eminences, and are defined by the expression of *EBF1*, *SSTc* (TeExc4) and *C1QL3*, *PNOC* (TeExc3)
401 (Fig. 4g; Extended Data Fig. 8a, h, n, r). We find that LPa neurons form a three-layered cortex with
402 an inner GABAergic/glutamatergic layer, a middle glutamatergic layer, and an external molecular,
403 fiber-rich layer, in accord with previous work⁶¹ (Fig. 4h-k). They all express several genes associated
404 with cortical projection neurons in amniotes (e.g., *FOXP1/2/4*, *MEIS2*, *LAMP5*, *RORB*, *TCAP*;
405 Extended Data Fig. 8a). However, contrary to what is known for amniotes, we did not observe any
406 regional specification of gene expression patterns among these neurons (e.g., dorsal vs. ventral) that
407 could be related to known, functionally distinct areas of the lateral pallium (e.g., somatosensory,
408 visual, motor, olfactory)^{62,63}.

409

410 Discussion

411 In this study, we used extensive scRNA-seq and targeted spatial transcriptomics data to create a neural
412 cell type atlas for a cyclostome representative: the sea lamprey
413 (<https://lampreybrain.kaessmannlab.org/>). Our comparisons between filter-feeding larval
414 (ammocoete) and parasitic adult stages suggest that the larval brain might contain sets of not yet fully
415 differentiated cells, even though lampreys spend most of their life cycle as ammocoetes². Our work
416 thus implies that the adult stage should be used to assess the cell type diversity of lampreys and its
417 comparison with that of other species. This notion is in agreement with the recent discovery that
418 ammocoetes represent an evolutionarily derived and not an ancestral life stage of lampreys⁶⁴.

419

420 Our cell type tree analyses revealed that lampreys and gnathostomes share a common fundamental
421 cellular and molecular organization of the brain that emerged in the vertebrate stem lineage more than
422 ~515-645 MYA ago. This finding is in line with the shared broad brain regionalization (Fig. 1a,
423 Extended Data Fig. 11b) and previously described patterning mechanisms across vertebrates¹. Our
424 comparisons of lamprey and mouse cell types revealed homologous relationships for many cell type
425 families; that is, we identified groups of cell types partly sharing the same developmental processes
426 and gene expression programs. These cell type families likely constituted the core of the ancestral
427 vertebrate cell type repertoire.

428

429 However, the lamprey brain lacks key cell types present in the gnathostome brain. Notably, our work
430 confirms the absence of oligodendrocytes and sheds new light on their origination. We found that
431 lamprey astrocytes express several oligodendrocyte-specific genes, including master regulators and
432 effector genes (Fig. 3b). Our observations suggest that key components of the molecular machinery
433 of oligodendrocytes were present in astrocyte-like cells of the vertebrate ancestor, and indicate that
434 oligodendrocytes originated from these evolutionary precursors on the gnathostome lineage
435 (Extended Data Fig. 11b). Our work thus extends previous studies, which showed that lamprey axons
436 seem to be physically associated with astrocytes²⁶ and that key aspects of the regulatory program
437 required for oligodendrocyte differentiation in gnathostomes are present during lamprey
438 gliogenesis³³. Our analyses also failed to provide evidence for the presence of granule or Purkinje
439 cells in the rostral hindbrain, strongly supporting the notion that the mature lamprey brain lacks a
440 proper cerebellum. We note, however, that a recent study detected expression of granule and Purkinje
441 cell TFs in the dorsal rhombomere 1 of lamprey embryos⁶⁵. A targeted prospective analysis of the
442 dorsal isthmic region in the adult and developmental lamprey brain might thus reveal the presence of
443 potential rare homologs of cerebellar cell types.

444
445 The discovery of both LGE- and MGE-derived inhibitory neurons in the lamprey telencephalon
446 confirms that the two main GABAergic progenitor zones of the sub-pallium were already present in
447 the common vertebrate ancestor^{7,66} (Extended Data Fig. 11b). In the mammalian sub-pallium such
448 inhibitory neurons largely contribute to the two core basal ganglia nuclei: the striatum and pallidum,
449 with projection neurons (LGE-derived) in the striatum projecting to the pallidum (MGE-derived).
450 The presence of similar pathways between analogous regions was demonstrated in lamprey, implying
451 that the main basal ganglia circuitry is shared by all vertebrates⁵⁷. By contrast, we show that – unlike
452 the striatum of jawed vertebrates – the lamprey striatum is mainly MGE-derived, as is its putative
453 pallidum, suggesting that these two structures have a common developmental origin (from the MGE)
454 and that the striata of lamprey and jawed-vertebrates are populated by non-homologous cell types.
455 Notably, a population of LGE-derived cells (TeInh4) is located immediately ventral to the lamprey
456 striatum, in the MPO region (Fig. 4d). However, its contribution to the basal ganglia circuitry is still
457 unknown. Outside the lamprey sub-pallium, LGE- and MGE-derived cells also contribute to
458 GABAergic interneurons of the OB and pallium, indicating that their migratory patterns are
459 conserved across vertebrates (Extended Data Fig. 11b).

460
461 Within the pallium, we identified groups of cell types that are likely homologous to glutamatergic
462 mammalian cortical neurons, supporting the hypothesis that the core cell types composing
463 cortical/nuclear circuits across jawed vertebrates emerged in common vertebrate ancestors^{63,67}. These
464 neurons express genes that are associated with different projection modalities (e.g., input,
465 intratelencephalic, output), but not in the same combinations as observed in jawed vertebrates⁶⁸.

466
467 Altogether, our study provides the first global view of the cellular composition and molecular
468 architecture of the ancestral vertebrate brain, and provides the groundwork for investigating its
469 extensive cellular and structural diversification during vertebrate evolution.

470
471 **Acknowledgements**

472 We thank all members of the Kaessmann group for the fruitful discussions; Elisa Panzariello, Marta
473 Sanchez-Delgado, Nils Trost for the brain and animal illustrations, Moritz Mall for providing
474 temporary lab-space and assistance, and Margarida Cardoso-Moreira for discussions and comments
475 on the manuscript. Computations were performed on the Kaessmann lab server (managed by Nils
476 Trost) and the bwForCluster from the Heidelberg University Computational Center (supported by the
477 state of Baden-Württemberg through bwHPC and the German Research Foundation – INST 35/1134-
478 1 FUGG). This research was supported by grants from the European Research Council (615253,
479 OntoTransEvol), European Commission (Marie Skłodowska-Curie Actions ITN: EvoCELL), and the
480 Tschira foundation, which funded the Illumina NextSeq machine used for sequencing. DMM and DJ
481 were supported by the grants of National Science Foundation (IOS 1656843), National Institutes of
482 Health/National Institute of Dental and Craniofacial Research (RDE025940), and University of
483 Colorado, Boulder RIO Innovative Seed Grant FY21 (all to DMM). DJ was also supported by the
484 grant from the Scientific Grant Agency of the Slovak Republic (VEGA 1/0450/21).

485

486 **Author contributions**

487 F.L, F.H.-S., and H.K. conceived and organized the study based on H.K.’s original design. F.L, F.H.-
488 S., and H.K wrote the manuscript with input from all authors. F.L. performed all analyses, and
489 developed the brain atlas app. F.H.-S. established and optimized the tissue dissociation protocol, and
490 performed all scRNA-seq and *in situ* experiments with support from A.P.O., J.S., and C.S., and
491 guidance from M.S. F.L. and F.H.-S. annotated and interpreted the data. T.B. prepared bulk libraries
492 with guidance from K.M. M.S. established the smFISH protocol. F.H.-S., A.P.O., D.J., D.S.C.,
493 M.L.M, and S.A.G. collected the samples. A.B.I., D.M.M., M.B., and M.C.R. provided samples. J.J.S.
494 provided early access to genome assemblies and annotations. A.P.O., M.S., F.M., D.S.C., A.B.I.,
495 D.M.M., and D.A. provided useful feedback and discussions. H.K. supervised the study and provided
496 funding.

497

498 **Correspondence and requests for materials** should be addressed to F.L., F.H.S., or H.K.

499

500 **Competing interests**

501 The authors declare no competing financial interests.

502

503

504 **Methods**

505

506 **Sea lamprey samples**

507 Sea lamprey (*Petromyzon marinus*) samples were dissected from specimens obtained from three
508 different sources (Supplementary Table 1). Sampled animals were euthanized by submersion in 0.1%
509 MS-222 (Sigma, A5040-25G), unless specified otherwise, followed by decapitation according to
510 local guidelines. Tissue samples from larvae (i.e., ammocoetes, between 90 and 130 mm in body
511 length), juveniles (Youson stages 6-7) and adults used for bulk-tissue RNA-seq and genome
512 annotation (see below) were collected from freshwater streams in Maine, USA, and held in large,
513 aerated tanks with sand and freshwater until being sacrificed. All procedures were approved by the
514 University of Colorado, Boulder Institutional Animal Care and Use Committee as described in
515 protocol 2392. Larvae (between 70 and 120 mm in body length) used for scRNA-seq, smRNA-FISH,

516 and Cartana experiments were collected from the River Ulla in Galicia, Spain, and kept at the
517 Interfaculty Biomedical Research Facility (IBF) of Heidelberg University in freshwater aerated tanks
518 with river sediment and appropriate temperature conditions (~15°C) until used for tissue collection.
519 All animal procedures were performed in accordance with European Union and German ethical
520 guidelines on animal care and experimentation, and were approved by the local animal welfare
521 authorities (Regierungspräsidium Karlsruhe). Upstream migrating mature adults used for scRNA-seq
522 experiments were obtained from a commercial supplier (Novas Y Mar, Galicia, Spain) and were
523 processed immediately upon their arrival to the laboratory. All procedures were approved by the
524 Bioethics Committee of the University of Santiago de Compostela and the Xunta de Galicia
525 Government and conformed to European Union and Spanish regulations for the care and handling of
526 animals in research. Adult specimens used for Cartana experiments were obtained from the US Fish
527 and Wildlife Service and Department of the Interior and were euthanized by immersion in 0.25%
528 MS-222, followed by decapitation. All procedures were approved by the California Institute of
529 Technology Institutional Animal Care and Use Committee (IACUC) protocol 1436.
530

531 **RNA extraction and sequencing of bulk tissue samples**

532 In total, 63 sea lamprey tissue samples from six organs (brain, heart, liver, kidney, ovary, testis) were
533 dissected from larval, juvenile, and adult specimens. Total RNA was extracted using different
534 extraction protocols (Supplementary Table 1); RNA quality was inspected using the Fragment
535 Analyzer (Advanced Analytical Technologies) and its concentration was determined using a
536 NanoDrop (Thermo Fisher Scientific). Strand-specific RNA-seq libraries were generated using the
537 Illumina TruSeq Stranded mRNA Library protocol. Each library was sequenced on Illumina HiSeq
538 2500 platforms (100nt, single-end) at the Lausanne Genomic Technologies Facility
539 (<https://www.unil.ch/gtf>).

540 **Sea lamprey genome annotation**

541 Bulk tissue RNA-seq reads were mapped to the sea lamprey germline genome⁹ using GSnap⁶⁹
542 (version: 2018-03-01) with the option to find known and new splice junctions in individual reads
543 activated (--novelSplicing=1). The resulting BAM files for each stage and tissue were merged before
544 being used for transcriptome assembly with StringTie⁷⁰ (v1.3.4d). Each resulting GTF file was
545 filtered for putative assembly artifacts using GffRead⁷¹ (v0.9.9) by discarding single-exon transcripts
546 and multi-exon mRNAs that have any intron with a non-canonical splice site consensus (i.e., not GT-
547 AG, GC-AG, or AT-AC). Individual annotated transcriptomes were then merged together with the
548 already available set of annotated protein-coding genes from the germline genome study⁹ in order to
549 obtain a non-redundant set of transcripts. Genome annotation was further refined using TransDecoder
550 (v5.3.0; <https://github.com/TransDecoder/TransDecoder>) in order to identify candidate coding-
551 regions within transcript sequences; this process involves the identification of the longest putative
552 Open Reading Frame (ORF) within each transcript and the subsequent search of the corresponding
553 peptides against SwissProt (<https://uniprot.org>) using BlastP⁷² (v2.5.0+) and Pfam
554 (<https://pfam.xfam.org>) using HMMER⁷³ (v3.2). Annotation quality was assessed by comparing the
555 number of reads mapping to exonic, intronic, and intergenic regions of the genome (Extended Data
556 Fig. 1). Annotation completeness was also estimated using BUSCO⁷⁴ (v3) by comparing the set of
557 translated longest CDS from each transcript against a set of metazoan-conserved single-copy
558 orthologs from OrthoDB⁷⁵ (Supplementary Table 6).

560

561 Orthology assignment

562 Homology information for the set of annotated genes was retrieved by applying the OrthoFinder⁷⁶
563 (v2.3.11) pipeline against a group of selected chordates: vase tunicate (*Ciona intestinalis*), inshore
564 hagfish (*Eptatretus burgeri*), Australian ghostshark (*Callorhinichus milii*), spotted gar (*Lepisosteus*
565 *oculatus*), zebrafish (*Danio rerio*), West Indian Ocean coelacanth (*Latimeria chalumnae*), Western
566 clawed frog (*Xenopus tropicalis*), red junglefowl (*Gallus gallus*), house mouse (*Mus musculus*), and
567 human (*Homo sapiens*). By reconstructing a complete set of rooted gene trees among the analyzed
568 species, this tool allows to establish all orthology relationships among all genes, and to infer
569 duplication events and cross reference them to the corresponding nodes on the gene and species trees.
570 Proteomes were downloaded from Ensembl (remaining species; v97) databases and used for a BlastP
571 Best Reciprocal Hit (BRH) analysis; in order to avoid redundancies in the blast results, only the
572 peptides coming from the longest isoform within each gene were used. Rooted gene trees from the
573 inferred orthogroups – i.e., groups of genes descended from a single gene in the Last Common
574 Ancestor (LCA) – were obtained using Multiple Sequence Alignments (MSA; MAFFT⁷⁷ v7.455)
575 with IQ-TREE⁷⁸ (v1.6.12; 1,000 bootstrap replicates) and STRIDE⁷⁹. Orthology relationships can be
576 explored in our [online atlas](#).

577

578 Cell dissociation and single cell RNA-seq data generation

579 Larval and adult heads were air dissected and brains were placed in 1x HBSS (Life Technologies,
580 14185052) for cleaning and removal of the meninges. Once cleaned, brains were further treated as a
581 whole sample or, for the second set of experiments, divided in regions (telencephalon, diencephalon,
582 mesencephalon and rhombencephalon). Brain tissue was dissociated using the Papain Dissociation
583 System (Worthington, LK003150), according to the manufacturer's protocol, with the following
584 modifications: the tissue was incubated in papain solution (volume adjusted for tissue size, 100 – 300
585 µl) at 28 °C for 15 min under constant agitation. Then, the tissue was gently and collected by
586 centrifugation for 1 min at 300g. This step was followed by a second incubation in fresh papain
587 solution and a final trituration, performed as described above. The dissociated cells were spun down
588 at 300g for 5 min and resuspended in the inhibitor solution (prepared following the Papain
589 Dissociation System specifications). The suspension was filtered using a 40 µM falcon strainer
590 (Sigma-Aldrich, CLS431750-50EA) and, immediately after, a discontinuous density gradient was
591 performed. The cells were then resuspended in Leibovitz's L-15 Medium (Life Technologies,
592 21083027) reaching a final volume between 50 and 100 µl, depending on the original tissue size.
593 Cells were examined for viability and counted using a trypan blue staining and a Neubauer counting
594 chamber (Assistent).

595

596 After ensuring a cell viability greater than 90% and a concentration equal or higher than 300 cells per
597 µl, cell suspensions (~15,000 cells per reaction) were loaded onto the Chromium system (10x
598 Genomics). cDNA amplification and scRNA-seq libraries were constructed using Single-Cell 3' Gel
599 Bead and Library v2 (for larvae) and v3 kits (for adults), following the instructions of the
600 manufacturer. For one larval whole brain we additionally produced a library using the v3 kit (SN352),
601 in order to confirm observed (biological) differences between the larval and adult datasets; that is, to
602 rule out that technical differences explain the observed differences (Supplementary Fig. 4b, c). cDNA
603 libraries were amplified using 12-13 PCR cycles and quantified on a Qubit Fluorometer (Thermo

604 Fisher Scientific). Average fragment size was determined on a Fragment Analyzer (Agilent).
605 Libraries were sequenced using the NextSeq 500/550 High Output Kit v2.5 on the Illumina NextSeq
606 550 system (28 cycles for Read 1, 56 cycles for Read 2, 8 cycles for i7 index and 0 cycles for i5
607 index).

608

609 **scRNA-seq data processing**

610 scRNA-seq reads were mapped to the reference genome⁹ with our extended annotation (see above),
611 and Unique Molecule Identifier (UMI) count matrices were produced using CellRanger v3.0.2 (10x
612 genomics). Cell-containing droplets were obtained from the CellRanger calling algorithm and
613 validated by checking: i) the cumulative distribution of UMIs; ii) the distribution of UMIs coming
614 from mitochondrial genes; iii) the distribution of the proportion of UMIs coming from intronic
615 regions. Putative multiplets (i.e., droplets containing more than one cell) were identified using
616 DoubletFinder⁸⁰ and Scrublet⁸¹; droplets labeled as multiplets by any of the two methods were
617 removed from the count matrices.

618

619 The obtained count matrices were analyzed using Seurat v3.1.5⁸² and pre-processed by keeping only
620 genes expressed in at least five cells and by removing cells containing less than 200 UMIs and more
621 than 5% (ammocoete) or 10% (adult) mitochondrial UMIs. Raw UMI counts were then normalized
622 using the SCTransform method⁸³ and the top 3,000 Highly Variable Genes (HVGs) across all cells
623 were used for subsequent analyses. Principal Component Analysis (PCA) was applied to the
624 normalized HVG matrices, and the resulting 75 most significant PCs were used for building a Shared
625 Nearest Neighbor (SNN) graph that was then clustered using the Louvain method with different
626 resolution values (0.5-10). Differential expression analysis was run in order to find potential marker
627 genes from all clusters across all resolution values (Wilcoxon Rank Sum Test: $\log FC \geq 0.25$; $\min.pct = 0.1$;
628 Bonferroni-adjusted p-value < 0.01). The PCA-transformed matrices were finally embedded
629 in two-dimensional space using Uniform Manifold Approximation and Projection (UMAP) and t-
630 distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction techniques.

631

632 The clustered cells were further manually inspected in order to identify and then remove spurious
633 clusters (i.e., clusters composed by damaged/stressed cells or multiplets/empty droplets that escaped
634 the previous filtering steps). Cell types/states were annotated on top of the clusters obtained using the
635 highest resolution value (10); a putative phenotype/function was assigned to each cluster by allocating
636 marker genes to any of the following Gene Ontology⁸⁴ (GO) categories: transcription (co-)factor,
637 neurotransmitter metabolism, neurotransmitter transport, neurotransmitter receptor, neuropeptide⁸⁵,
638 neuropeptide receptor⁸⁵, immune response, erythrocyte differentiation, blood vessel development,
639 neurogenesis, gliogenesis. Annotated clusters that were contiguous on the UMAP and t-SNE
640 embeddings were manually inspected and joined together if they were showing similar expression
641 patterns among their respective marker genes. Additional functional information was added by
642 comparing the annotated clusters to published vertebrate neural single-cell datasets^{17,86}.

643

644 Datasets coming from different samples were integrated using integrative non-Negative Matrix
645 Factorization (iNMF) as implemented in LIGER v0.5.0⁸⁷. Datasets were integrated at two levels: i)
646 integration of replicates coming from the same brain region (i.e., telencephalon, diencephalon,
647 mesencephalon, rhombencephalon and whole brain) and stage (i.e., ammocoete, adult); ii)

648 integration, within each stage, of all replicates together in the same dataset encompassing all sampled
649 regions. Each integrated dataset was then imported to Seurat to perform SNN graph construction,
650 clustering, DE analysis, 2D-embedding and cluster annotation as described above.
651

652 We noticed that the number of UMIs per cell was sensibly and consistently lower for the larval dataset
653 (produced using Chromium kit v2) compared to the adult one (produced using Chromium kit v3;
654 Supplementary Tables 1, 2). In order to establish whether this difference reflected an actual biological
655 property of the two stages, we downsampled the adult count matrices to 50% and assessed its impact
656 on cluster resolution (Extended Data Fig. 4a-c). In addition, we produced a larval dataset using the
657 v3 kit and compared its number of UMIs per cell to the larval v2 and adult v3 datasets (Extended
658 Data Fig. 4b, c) (see also data generation section above).
659

660 **Lamprey-mouse comparisons**

661 In order to find cross-vertebrate similarities and differences in neural cell types, the adult integrated
662 brain atlas was compared against a published juvenile mouse nervous system atlas¹⁷. The two datasets
663 were first compared via a correlation-based approach. That is, the raw UMI count matrices were
664 extracted from both species datasets and orthology information for the corresponding gene IDs was
665 added; orthology relationships between mouse and lamprey were obtained from the OrthoFinder
666 analysis (see above; Supplementary Table 7). The UMI counts coming from paralogs in the respective
667 species were summed (“meta-gene” method¹⁹) and the species-specific gene IDs were replaced by
668 numeric indexes (1..n, where n is the number of orthology groups between the mouse and lamprey)
669 shared by the two species. The new “meta-gene” count matrices were then normalized using
670 SCTransform, filtered for HVGs, and averaged across all annotated clusters. Expression levels were
671 finally transformed to Specificity Indexes (SI) using the method of Tosches and colleagues¹¹ and used
672 for Pearson correlation analyses. Dendrograms relating cell-type families between lamprey and
673 mouse were constructed using the pvclust⁸⁸ R package with complete hierarchical clustering and
674 1,000 replicates.
675

676 In addition, the two datasets were compared using the Self Assembling Manifold mapping (SAMap;
677 v0.2.3) algorithm¹⁸, a method that enables mapping single-cell transcriptomic atlases between
678 phylogenetically distant species. A gene-gene bipartite graph with cross species edges connecting
679 homologous gene pairs was constructed by performing reciprocal BlastP searches between the two
680 proteomes of the two species. The graph was used in a second step to project the two datasets into a
681 joint, lower-dimensional manifold representation, where expression correlation between homologous
682 genes was iteratively used to update the homology graph connecting the two atlases. After the analysis
683 was run, a mapping score (ranging from 0 to 1) was computed among all possible cross-species cluster
684 pairs.
685

686 ***In situ* sequencing**

687 Whole brains (adults) and heads (larvae) were embedded in OCT mounting medium and then flash-
688 frozen by laying them on isopentane, previously cooled on liquid nitrogen. Adult tissues were rinsed
689 with ice cold PBS before being frozen. Tissues were cryosectioned in 10 µm coronal and sagittal
690 sections and stored at -80 °C until further use. Sections were processed for *in situ* sequencing using
691 the High Sensitivity Library Preparation Kit from CARTANA AB (10x Genomics). The method and

692 data processing are described by Ke and colleagues¹⁰. Processing of sections was done following
693 CARTANA's protocol with minor modifications. In brief, sections on SuperFrost Plus glass slides
694 (Thermo Fisher Scientific) were air dried for 5 min. Afterwards, sections were fixed by 3.7% (v/v)
695 paraformaldehyde in UltraPure distilled water (DNase/RNase-Free, Thermo Fisher Scientific,
696 10977035) for 7 min and washed in PBS (Thermo Fisher Scientific, 70011036; diluted in UltraPure
697 distilled water), followed by 0.1 N HCl treatment for 5 min and a wash with PBS. The sections were
698 then dehydrated with ethanol and air dried before covering them with SecureSeal hybridization
699 chambers (Grace Bio-Labs, 10910000). All subsequent steps, including probe hybridization and
700 ligation, amplification, fluorescent labeling and quality control imaging, followed manufacturer's
701 specifications. Finally, mounted sections were shipped to CARTANA's facility (Solna, Sweden) for
702 *in situ* sequencing.

703

704 Single molecule RNA-FISH

705 Larval whole heads were snap frozen and cryosectioned (horizontal sections) as described above.
706 This time, however, the sections were collected on coverslips (22 mm x 22 mm) previously
707 pretreated with a silanization solution (0.3% (v/v) bind-silane (GE Healthcare Life Sciences, 17-
708 1330-01), 0.1% (v/v) acetic acid and 99.6% (v/v) ethanol).

709

710 To reduce tissue autofluorescence, sections were embedded in polyacrylamide gel, RNAs were
711 anchored to the gel by LabelX treatment, and cellular proteins and lipids were cleared as previously
712 described^{89,90}, with modifications. LabelX solution was prepared by reacting Label-IT (Mirus Bio)
713 with Acryloyl X – SE (Thermo Fisher Scientific) as described by Chen and colleagues⁹⁰.
714 Specifically, sections were air dried for 15-20 min and fixed in 3.7% paraformaldehyde in PBS for
715 10-15 min, followed by a 2 min incubation in 4% SDS in PBS and washes with PBS. Fixed sections
716 were then incubated in 70% ethanol at 4°C for at least 16h. Next, sections on coverslips were washed
717 twice with PBS, once with 1x MOPS pH 7.7 (Sigma-Aldrich, M9381) and incubated with LabelX
718 (diluted to a concentration of 0.006 mg/mL in 1xMOPS) at room temperature for 4 hours, followed
719 by two PBS washes. To anchor LabelX-modified RNAs, sections were embedded in thin 4%
720 polyacrylamide (PA) gels. First, coverslips were washed for 2 min with a PA solution, consisting of
721 4% (v/v) of 19:1 acrylamide/bis-acrylamide (Sigma-Aldrich, A9926-5), 60 mM Tris·HCl pH 8, and
722 0.3 M NaCl. Coverslips were then washed for 2 min with the PA solution supplemented with
723 ammonium persulfate (Sigma-Aldrich, 7727-54-0) and TEMED (Sigma-Aldrich, T7024) at final
724 concentrations of 0.03% (w/v) and 0.15% (v/v), respectively. To cast the gel, 75 µl of the PA solution
725 (supplemented with the polymerizing agents), was added to glass slides previously treated with Repel
726 Silane (GE Healthcare Life Sciences, 17-1332-01) and washed with ethanol. Each coverslip was then
727 layered on top of a slide, with one drop of PA solution, ensuring that a thin PA layer forms between
728 the slide and the coverslip. The gel was allowed to cast at room temperature for 1.5 h. Coverslips and
729 slides were gently separated leaving coverslips with sections embedded into the PA gel. Coverslips
730 were then washed with digestion buffer consisting of 0.8 M guanidine-HCl, 50 mM Tris·HCl pH 8,
731 1 mM EDTA, and 0.5% (v/v) Triton X-100. Coverslips were incubated with digestion buffer
732 supplemented with 8 U/ml of proteinase K (Sigma-Aldrich, P2308) at 37 °C for 2 – 3 h.

733

734 After background reduction, sections were hybridized with HuluFISH probes, designed and
735 developed by PixelBiotech. The hybridization protocol followed the manufacturer's

736 recommendations. Briefly, coverslips were washed twice with HuluWash buffer (PixelBiotech
737 GmbH) and incubated in 50 µl of probe solution, consisting of each probe diluted in hybridization
738 buffer at a concentration of 1:100. Coverslips were incubated at 37 °C for 12 h, inside a light-protected
739 humidified chamber. Afterwards, coverslips were washed 4 times with HuluWash buffer. Each wash
740 lasted 10 min and was done at room temperature. The last wash was supplemented with Hoechst
741 33342 (Thermo Fisher Scientific, H3569). Coverslips were then mounted in 2 drops of Prolong
742 Diamond mounting medium (Thermo Fisher Scientific, P36961). The mounted sections were allowed
743 to cure at room temperature for 24 hours.

744
745 All sections were imaged on a Leica TCS-SP5, a confocal laser scanning microscope controlled by
746 the Leica Application Suite (LAS). All images shown are the projection of mosaics built by stitching
747 individual z-stacks. Each z-stack consisted of individual images (50 images for *SSPOa*, *VAT*,
748 *GNRH1a*, 15 images for *ZFP704*) taken by setting a range of 10-15 µm and a step size below 0.8 µm.
749 Images were captured with a 63x immersion oil objective and sequentially excited by a 405 nm Diode
750 laser (for the Hoechst 33342 staining), followed by the laser required for each probe (561 nm DPSS
751 laser for *SSPOa*, *ZFP704* and *VAT*; and 633 nm HeNe laser for *GNRH1a*). Projections of the z-stacks
752 were performed in Fiji 2⁹¹ by using the average intensity projection. Further processing (only when
753 required) involved contrast enhancing (saturated pixels between 0.1 and 0.3%) and background
754 subtraction for noise reduction (rolling ball with a radius of 50 pixels).

755
756

757 **Data availability**

758 Raw and processed bulk and single-cell RNA-seq data have been deposited to ArrayExpress with the
759 accession numbers E-MTAB-11085 (bulk) and E-MTAB-11087 (single cell)
760 (<https://www.ebi.ac.uk/arrayexpress/>). Additional data are available as supplementary information or
761 upon request. Information about gene expression, cell type annotation, and gene orthology
762 relationships across species can be visualized using the online atlas
763 (<https://lampreybrain.kaessmannlab.org/>).

764

765 **Code availability**

766 All code underlying the published atlas is available on GitHub ([https://github.com/f-
768 lamanna/LampreyBrainAtlas/](https://github.com/f-
767 lamanna/LampreyBrainAtlas/)) together with detailed instructions about its usage. Additional code is
769 available upon request.

770

771 **Supplementary Table 1**

772 Lists of specimens and samples used in this study.

773

774 **Supplementary Table 2**

775 scRNA-seq sequencing statistics.

776

777 **Supplementary Table 3**

778 Lists of larval and adult detected cell types and their putative location.

779

779 **Supplementary Table 4**

780 Lists of *in situ* marker genes used in this study (ISS and smFISH).

781

782 **Supplementary Table 5**

783 Table of SAMap mapping scores for all lamprey and mouse cell types.

784

785 **Supplementary Table 6**

786 Results of the BUSCO analysis on the lamprey genome annotation.

787

788 **Supplementary Table 7**

789 Lamprey and mouse orthologs obtained with OrthoFinder.

790

791 **Supplementary Table 8**

792 List of all lamprey gene names used in this manuscript with their respective gene IDs (as reported by

793 our custom annotation).

794

795 **Supplementary Data 1**

796 Lamprey genome custom annotation files.

797

798 **Supplementary Data 2**

799 *In situ* images produced in this study.

800

801 **References**

- 802 1. Sugahara, F., Murakami, Y., Pascual-Anaya, J. & Kuratani, S. Reconstructing the ancestral vertebrate
803 brain. *Dev. Growth Differ.* **59**, 163–174 (2017).
- 804 2. Nieuwenhuys, R. & Nicholson, C. Lampreys, Petromyzontoidea. in *The central nervous system of*
805 *vertebrates* 397–495 (Springer, 1998).
- 806 3. Cao, C. *et al.* Comprehensive single-cell transcriptome lineages of a proto-vertebrate. *Nature* (2019).
807 doi:10.1038/s41586-019-1385-y
- 808 4. Benito-Gutiérrez, È. *et al.* The dorsoanterior brain of adult amphioxus shares similarities in expression
809 profile and neuronal composition with the vertebrate telencephalon. *BMC Biol.* **19**, 1–19 (2021).
- 810 5. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines, Timetrees,
811 and Divergence Times. *Mol. Biol. Evol.* **34**, 1812–1819 (2017).
- 812 6. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. *Science*. **220**, 268–
813 273 (1983).
- 814 7. Sugahara, F. *et al.* Evidence from cyclostomes for complex regionalization of the ancestral vertebrate
815 brain. *Nature* **531**, 97–100 (2016).
- 816 8. Grillner, S. Evolution of the vertebrate motor system — from forebrain to spinal cord. *Curr. Opin.*
817 *Neurobiol.* **71**, 11–18 (2021).
- 818 9. Smith, J. J. *et al.* The sea lamprey germline genome provides insights into programmed genome
819 rearrangement and vertebrate evolution. *Nat. Genet.* (2018). doi:10.1038/s41588-017-0036-1
- 820 10. Ke, R. *et al.* In situ sequencing for RNA analysis in preserved tissue and cells. *Nat. Methods* **10**, 857–
821 860 (2013).
- 822 11. Tosches, M. A. *et al.* Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell
823 transcriptomics in reptiles. *Science*. **360**, 881–888 (2018).
- 824 12. Arendt, D. *et al.* The origin and evolution of cell types. *Nat. Rev. Genet.* (2016).
825 doi:10.1038/nrg.2016.127
- 826 13. Hobert, O. Terminal Selectors of Neuronal Identity. in *Current Topics in Developmental Biology* **116**,
827 455–475 (Elsevier Inc., 2016).
- 828 14. Martínez-de-la-Torre, M., Pombal, M. A. & Puelles, L. Distal-less-like protein distribution in the larval

829 lamprey forebrain. *Neuroscience* **178**, 270–284 (2011).

830 15. Kala, K. *et al.* Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. *Development* **136**, 253–262 (2009).

831 16. Achim, K. *et al.* The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. *Biol. Open* **2**, 990–997 (2013).

832 17. Zeisel, A. *et al.* Molecular Architecture of the Mouse Nervous System. *Cell* **174**, 999–1014.e22 (2018).

833 18. Tarashansky, A. J. *et al.* Mapping single-cell atlases throughout Metazoa unravels cell type evolution. *Elife* **10**, 1–24 (2021).

834 19. Geirsdottir, L. *et al.* Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. *Cell* **179**, 1609–1622.e16 (2019).

835 20. Arendt, D., Bertucci, P. Y., Achim, K. & Musser, J. M. Evolution of neuronal types and families. *Curr. Opin. Neurobiol.* **56**, 144–152 (2019).

836 21. Pamcer, Z. *et al.* Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. *Nature* **430**, 174–180 (2004).

837 22. Nakao, T. Electron microscopic studies on the lamprey meninges. *J. Comp. Neurol.* **183**, 429–453 (1979).

838 23. Vanlandewijck, M. *et al.* A molecular atlas of cell types and zonation in the brain vasculature. *Nature* **554**, 475–480 (2018).

839 24. Rovainen, C. M. Glucose Production by Lamprey Meninges. *Science* **167**, 889–890 (1970).

840 25. Lee, E. M. *et al.* Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. *Dev. Biol.* **418**, 166–178 (2016).

841 26. Weil, M.-T. *et al.* Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. *J. Neurosci.* **38**, 6586–6596 (2018).

842 27. Bullock, T. H., Moore, J. K. & Fields, R. D. Evolution of myelin sheaths: Both lamprey and hagfish lack myelin. *Neurosci. Lett.* **48**, 145–148 (1984).

843 28. Joly, J.-S. *et al.* Windows of the brain: Towards a developmental biology of circumventricular and other neurohemal organs. *Semin. Cell Dev. Biol.* **18**, 512–524 (2007).

844 29. Bundgaard, M. & Van Deurs, B. Brain barrier systems in the lamprey. II. Ultrastructure and permeability of the choroid plexus. *Brain Res.* **240**, 65–75 (1982).

845 30. Barreiro-Iglesias, A., Villar-Cerviño, V., Anadón, R. & Rodicio, M. C. A monoclonal antibody as a tool to study the subcommissural organ and Reissner's fibre of the sea lamprey: An immunofluorescence study before and after a spinal cord transection. *Neurosci. Lett.* **464**, 34–38 (2009).

846 31. Cserr, H. F., Bundgaard, M., Ashby, J. K. & Murray, M. On the anatomic relation of choroid plexus to brain: A comparative study. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.* **7**, (1980).

847 32. Becker, C. G. & Becker, T. Neuronal Regeneration from Ependymo-Radial Glial Cells: Cook, Little Pot, Cook! *Dev. Cell* **32**, 516–527 (2015).

848 33. Yuan, T., York, J. R. & McCauley, D. W. Gliogenesis in lampreys shares gene regulatory interactions with oligodendrocyte development in jawed vertebrates. *Dev. Biol.* **441**, 176–190 (2018).

849 34. Wannier, T., Orlovsky, G. & Grillner, S. Reticulospinal neurones provide monosynaptic glycinergic inhibition of spinal neurones in lamprey. *Neuroreport* **6**, 1597–1600 (1995).

850 35. Pombal, M. A., Marín, O. & Gonzlez, A. Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. *J. Comp. Neurol.* **431**, 105–126 (2001).

851 36. Kebschul, J. M. *et al.* Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. *Science* **370**, (2020).

852 37. Lannoo, M. J. & Hawkes, R. A search for primitive purkinje cells: Zebrin II expression in sea lampreys (*Petromyzon marinus*). *Neurosci. Lett.* **237**, 53–55 (1997).

853 38. Jalalvand, E., Robertson, B., Wallén, P. & Grillner, S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. *Nat. Commun.* **7**, (2016).

854 39. Studnicka, F. K. Die Parietalorgane. in *Lehrbuch der Mikroskopischen Anatomie der Wirbeltiere* 1–256 (Gustav Fisher, 1905).

855 40. Stephenson-Jones, M., Floros, O., Robertson, B. & Grillner, S. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. *Proc. Natl. Acad. Sci. U. S. A.* **109**, (2012).

856 41. Grillner, S., von Twickel, A. & Robertson, B. The blueprint of the vertebrate forebrain – With special

884 reference to the habenulae. *Semin. Cell Dev. Biol.* **78**, 103–106 (2018).

885 42. Cole, W. C. & Youson, J. H. Morphology of the pineal complex of the anadromous sea lamprey, *Petromyzon marinus* L. *Am. J. Anat.* **165**, 131–163 (1982).

886 43. Mullen, R. D. *et al.* Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. *Mol. Cell. Endocrinol.* **265–266**, 190–195 (2007).

887 44. Fernández-López, B., Sobrido-Cameán, D., Anadón, R., Rodicio, M. C. & Barreiro-Iglesias, A. Restricted co-localization of glutamate and dopamine in neurons of the adult sea lamprey brain. *J. Anat.* **231**, 776–784 (2017).

888 45. von Twickel, A. *et al.* Individual Dopaminergic Neurons of Lamprey SNc/VTA Project to Both the Striatum and Optic Tectum but Restrict Co-release of Glutamate to Striatum Only. *Curr. Biol.* **29**, 677–685.e6 (2019).

889 46. Brodin, L. *et al.* Neurotensin-like Peptides in the CNS of Lampreys: Chromatographic Characterization and Immunohistochemical Localization with Reference to Aminergic Markers. *Eur. J. Neurosci.* **2**, 1095–1109 (1990).

890 47. St.-Gelais, F., Jomphe, C. & Trudeau, L. É. The role of neurotensin in central nervous system pathophysiology: What is the evidence? *J. Psychiatry Neurosci.* **31**, 229–245 (2006).

891 48. Pistocchi, A. *et al.* Crucial role of zebrafish prox1 in hypothalamic catecholaminergic neurons development. *BMC Dev. Biol.* **8**, 1–9 (2008).

892 49. Sobrido-Cameán, D. *et al.* Cholecystokinin in the central nervous system of the sea lamprey *Petromyzon marinus*: precursor identification and neuroanatomical relationships with other neuronal signalling systems. *Brain Struct. Funct.* **225**, 249–284 (2020).

893 50. Sobrido-cameán, D. *et al.* Galanin in an Agnathan: Precursor Identification and Localisation of Expression in the Brain of the Sea Lamprey *Petromyzon marinus*. *Front. Neuroanat.* **13**, 1–11 (2019).

894 51. Sobrido-Cameán, D. *et al.* Differential expression of somatostatin genes in the central nervous system of the sea lamprey. *Brain Struct. Funct.* **226**, 1031–1052 (2021).

895 52. Barreiro-Iglesias, A., Anadón, R. & Rodicio, M. C. New insights on the neuropeptide Y system in the larval lamprey brain: Neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities. *Neuroscience* **167**, 396–413 (2010).

896 53. Chen, Y. C. *et al.* Transcriptional regulator PRDM12 is essential for human pain perception. *Nat. Genet.* **47**, 803–808 (2015).

897 54. Thélie, A. *et al.* Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. *Dev.* **142**, 3416–3428 (2015).

898 55. Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: Implications for striatal and olfactory bulb neurogenesis. *J. Neurosci.* **23**, 167–174 (2003).

899 56. Pombal, M. A., El Manira, A. & Grillner, S. Organization of the lamprey striatum – transmitters and projections. *Brain Res.* **766**, 249–254 (1997).

900 57. Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B. & Grillner, S. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. *Curr. Biol.* **21**, 1081–1091 (2011).

901 58. Tosches, M. A. & Laurent, G. Evolution of neuronal identity in the cerebral cortex. *Curr. Opin. Neurobiol.* **56**, 199–208 (2019).

902 59. Wei, X. *et al.* Spatiotemporal transcriptome at single-cell resolution reveals key radial glial cell population in axolotl telencephalon development and regeneration. *bioRxiv* 2021.10.23.465550 (2021). doi:10.1101/2021.10.23.465550

903 60. Suryanarayana, S. M., Pérez-Fernández, J., Robertson, B. & Grillner, S. Olfaction in Lamprey Pallium Revisited—Dual Projections of Mitral and Tufted Cells. *Cell Rep.* **34**, (2021).

904 61. Suryanarayana, S. M., Robertson, B., Wallén, P. & Grillner, S. The Lamprey Pallium Provides a Blueprint of the Mammalian Layered Cortex. *Curr. Biol.* **27**, 3264–3277.e5 (2017).

905 62. Ocaña, F. M. *et al.* The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. *Curr. Biol.* **25**, 413–423 (2015).

906 63. Suryanarayana, S. M., Pérez-Fernández, J., Robertson, B. & Grillner, S. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. *Nat. Ecol. Evol.* **4**, 639–651 (2020).

907 64. Miyashita, T., Gess, R. W., Tietjen, K. & Coates, M. I. Non-ammocoete larvae of Palaeozoic stem

939 65. lampreys. *Nature* **591**, (2021).

940 65. Sugahara, F., Pascual-Anaya, J., Kuraku, S., Kuratani, S. & Murakami, Y. Genetic Mechanism for the
941 Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum. *Front. Cell
942 Dev. Biol.* **9**, 1–10 (2021).

943 66. Sugahara, F. *et al.* Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: Evolution
944 of regionalization and dorsoventral patterning of the vertebrate forebrain. *Development* **138**,
945 1217–1226 (2011).

946 67. Briscoe, S. D. & Ragsdale, C. W. Evolution of the Chordate Telencephalon. *Curr. Biol.* **29**, R647–
947 R662 (2019).

948 68. Briscoe, S. D. & Ragsdale, C. W. Homology, neocortex, and the evolution of developmental
949 mechanisms. *Science* **362**, 190–193 (2018).

950 69. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads.
951 *Bioinformatics* **26**, 873–881 (2010).

952 70. Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
953 *Nat. Biotechnol.* **33**, 290–295 (2015).

954 71. Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. *F1000Research* **9**, 1–20 (2020).

955 72. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421 (2009).

956 73. Eddy, S. R. Accelerated profile HMM searches. *PLoS Comput. Biol.* **7**, (2011).

957 74. Simão, F. A., Waterhouse, R. M., Ioannidis, P. & Kriventseva, E. V. BUSCO : assessing genome
958 assembly and annotation completeness with single-copy orthologs. *Genome Biol.* 9–10 (2015).
959 doi:10.1093/bioinformatics/btv351

960 75. Zdobnov, E. M. *et al.* OrthoDB v9.1: Cataloging evolutionary and functional annotations for animal,
961 fungal, plant, archaeal, bacterial and viral orthologs. *Nucleic Acids Res.* **45**, D744–D749 (2017).

962 76. Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics.
963 *Genome Biol.* **20**, 1–14 (2019).

964 77. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements
965 in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

966 78. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective
967 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **32**, 268–274
968 (2015).

969 79. Emms, D. M. & Kelly, S. STRIDE: Species tree root inference from gene duplication events. *Mol. Biol.
970 Evol.* **34**, 3267–3278 (2017).

971 80. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet detection in single-cell RNA
972 sequencing data using artificial nearest neighbors. *Cell Syst.* **8**, 352484 (2018).

973 81. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in
974 Single-Cell Transcriptomic Data. *Cell Syst.* **8**, 281–291.e9 (2019).

975 82. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888–1902.e21 (2019).

976 83. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using
977 regularized negative binomial regression. *bioRxiv* 1–15 (2019). doi:10.1101/576827

978 84. The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. *Nat. Genet.* **25**,
979 25–29 (2000).

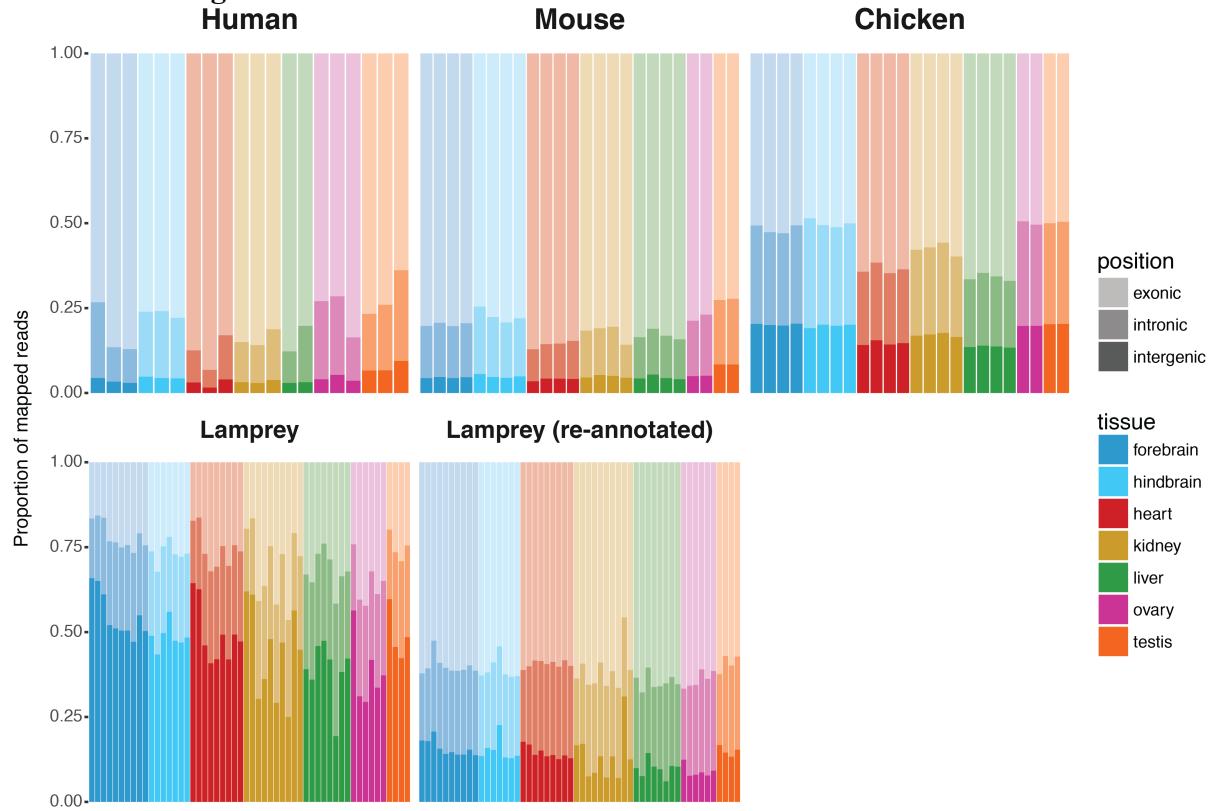
980 85. Wang, Y. *et al.* NeuroPep: A comprehensive resource of neuropeptides. *Database* **2015**, 1–9 (2015).

981 86. Raj, B. *et al.* Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. *Nat.
982 Biotechnol.* **36**, 442–450 (2018).

983 87. Welch, J. D. *et al.* Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell
984 Identity. *Cell* **177**, 1873–1887.e17 (2019).

985 88. Suzuki, R. & Shimodaira, H. Pvclust: An R package for assessing the uncertainty in hierarchical
986 clustering. *Bioinformatics* **22**, 1540–1542 (2006).

987 89. Moffitt, J. R. *et al.* High-performance multiplexed fluorescence *in situ* hybridization in culture and
988 tissue with matrix imprinting and clearing. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 14456–14461 (2016).


989 90. Cheng, Y. S. *et al.* Autonomous combinatorial color barcoding for multiplexing single molecule RNA
990 visualization. *bioRxiv* (2017). doi:10.1101/127373

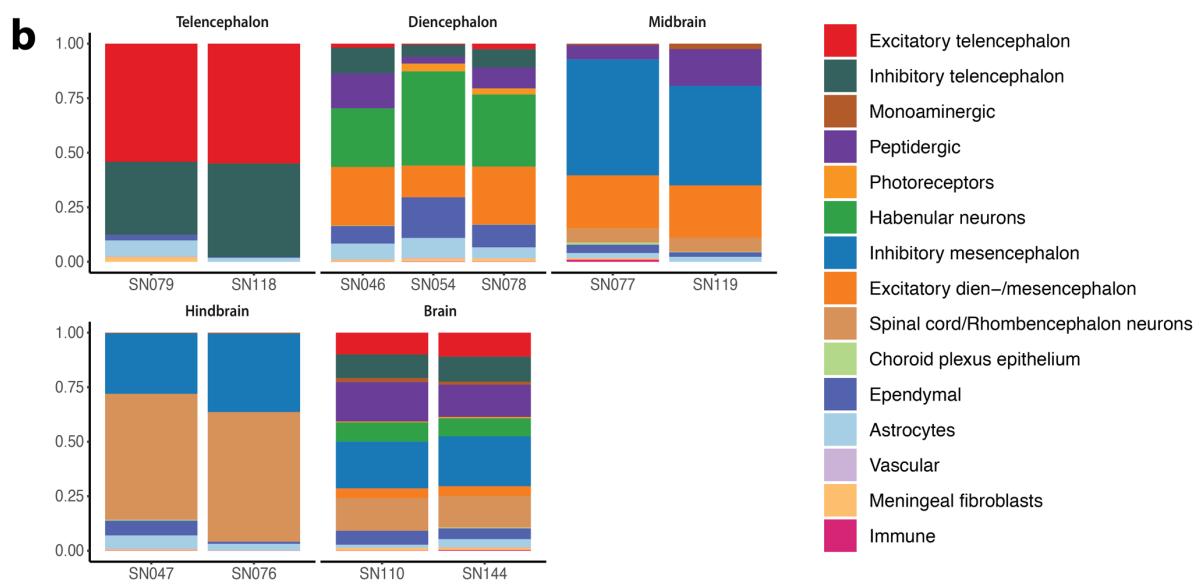
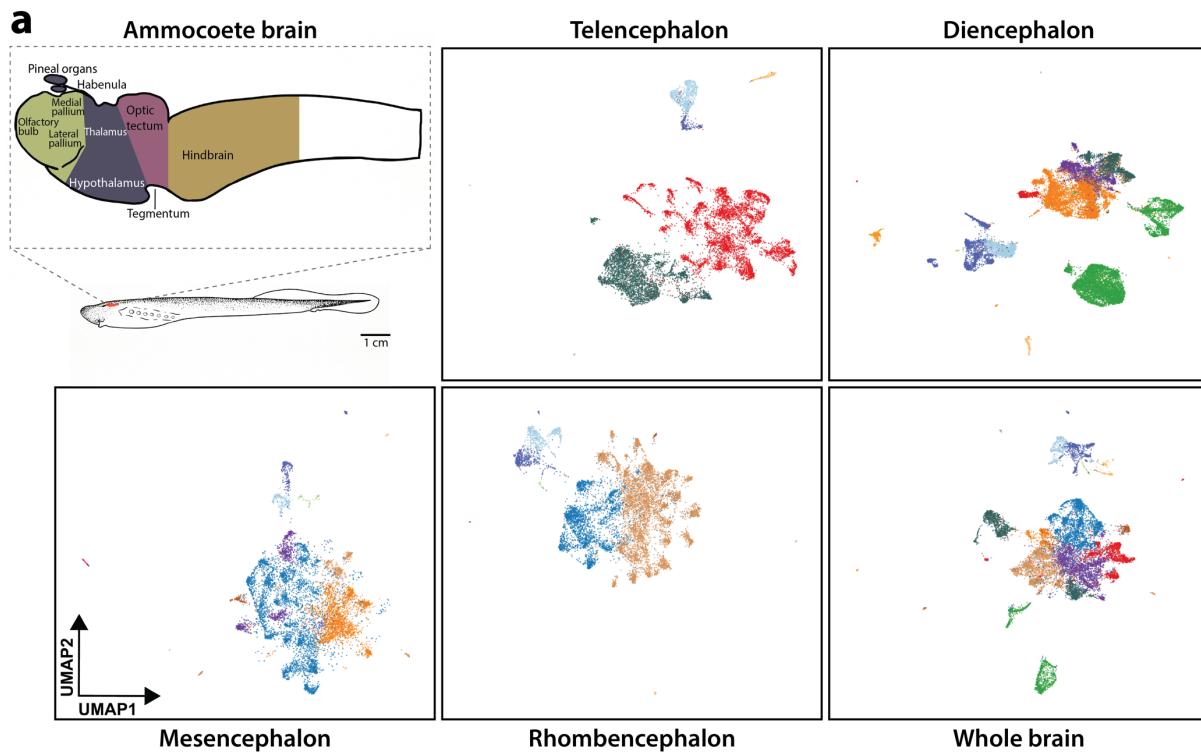
991 91. Schindelin, J. *et al.* Fiji: An open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–
992 682 (2012).

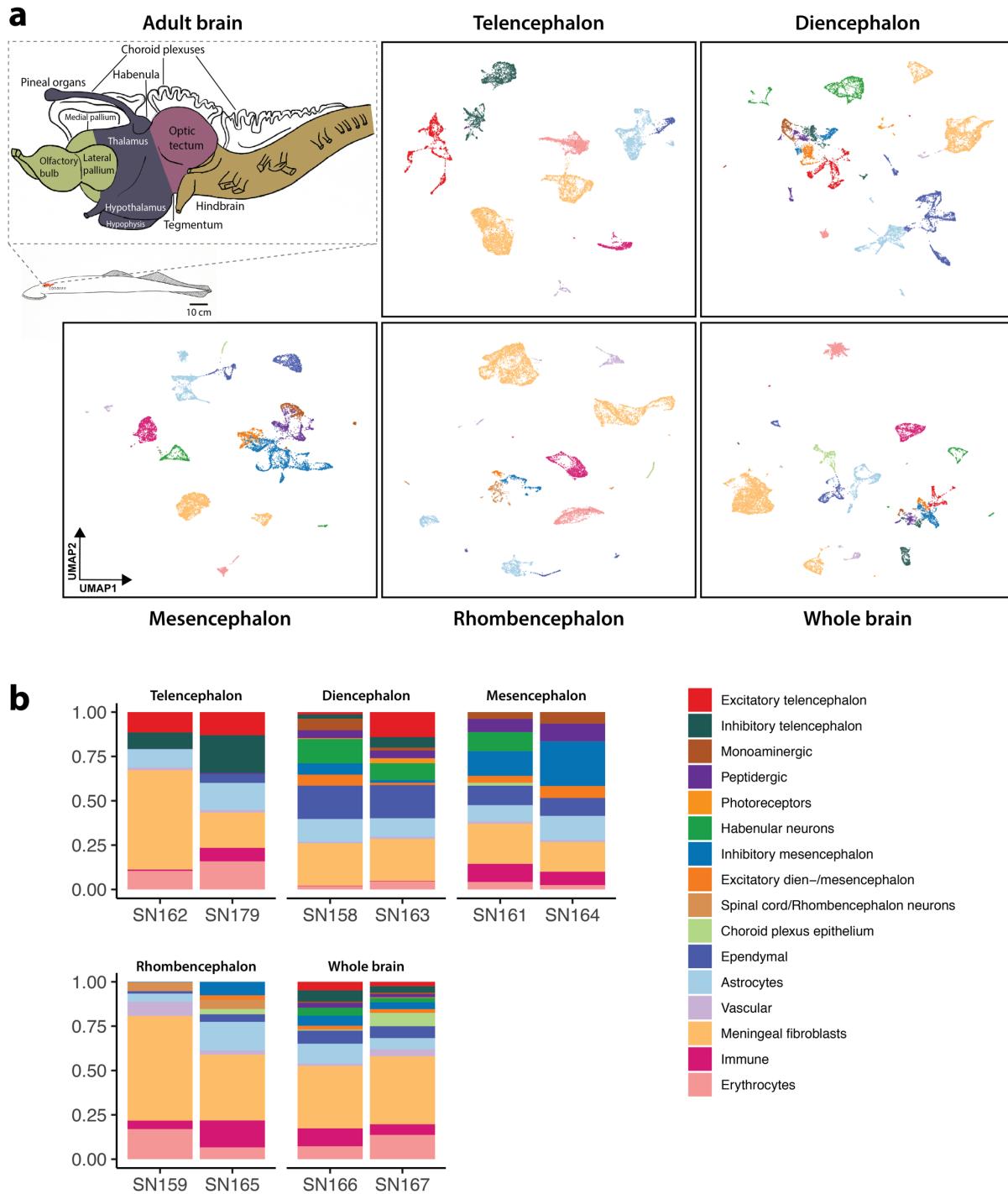
993

994

Extended Data Figures

995

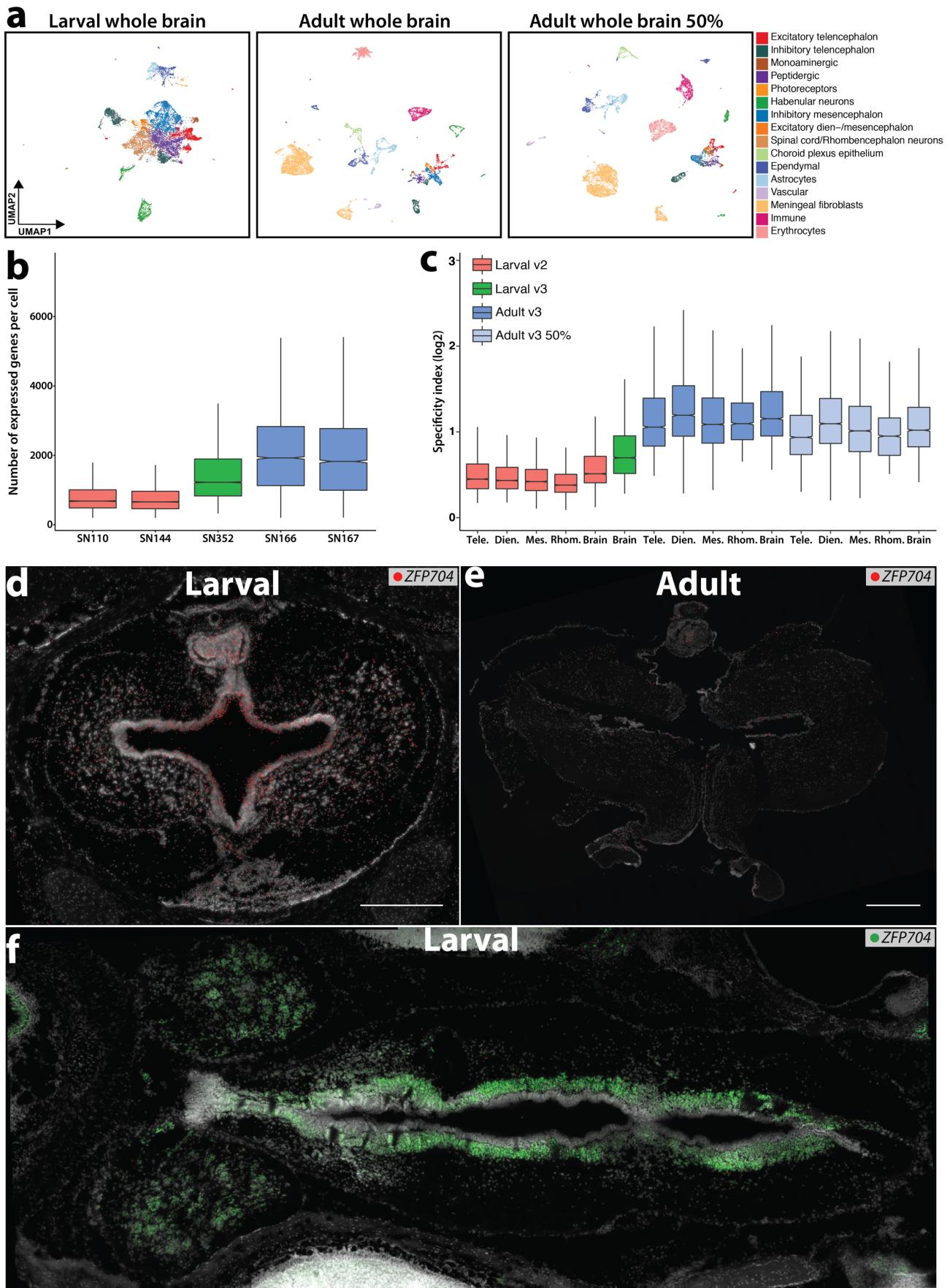


996


997

998

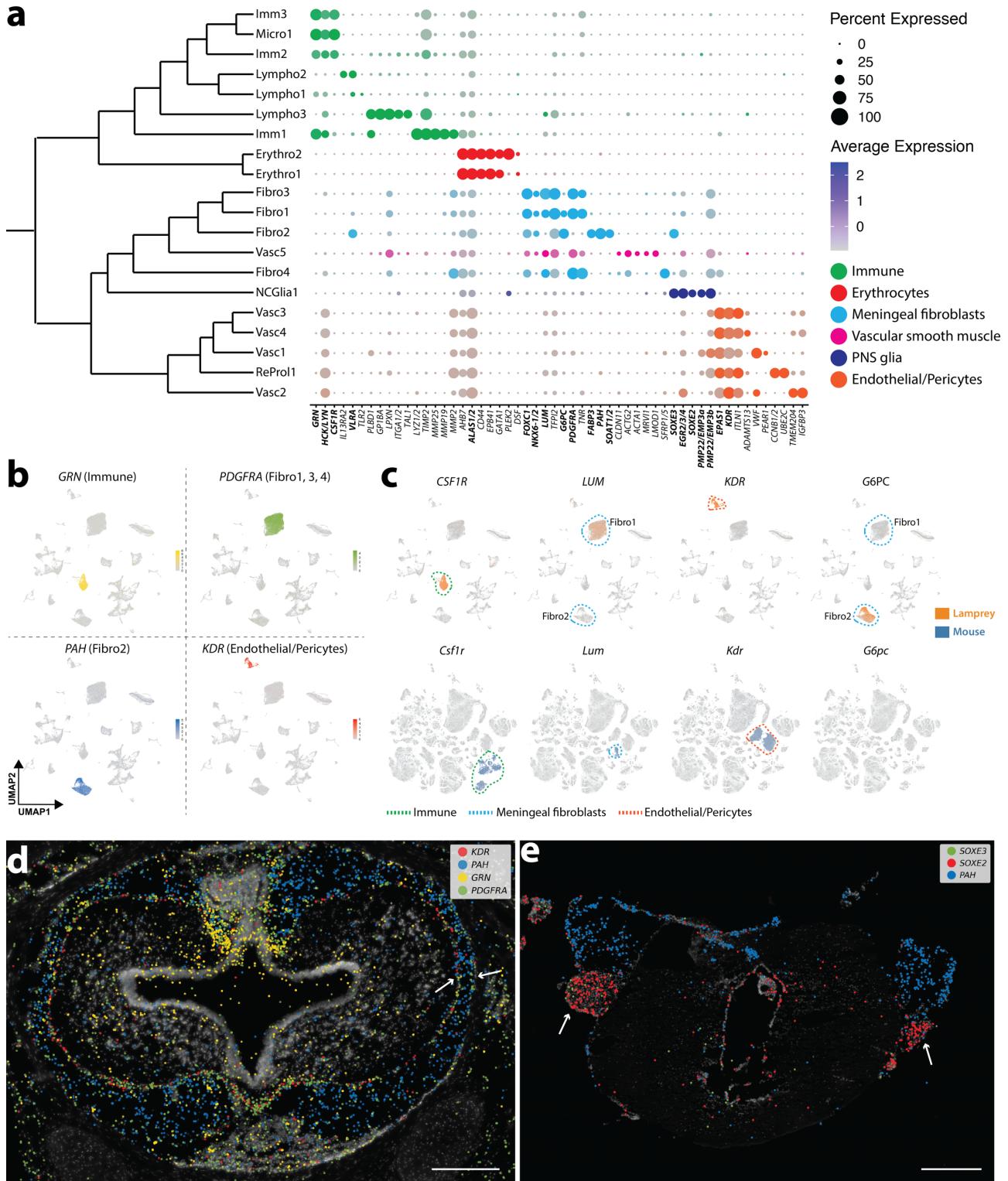
999

Extended Data Fig. 1 | Assessment of lamprey genome annotation quality. Barplots comparing the proportion of reads mapping to exonic, intronic, and intergenic regions between the lamprey genome annotation produced in this study (re-annotated) and the published annotations of lamprey⁹, chicken, mouse, and human.

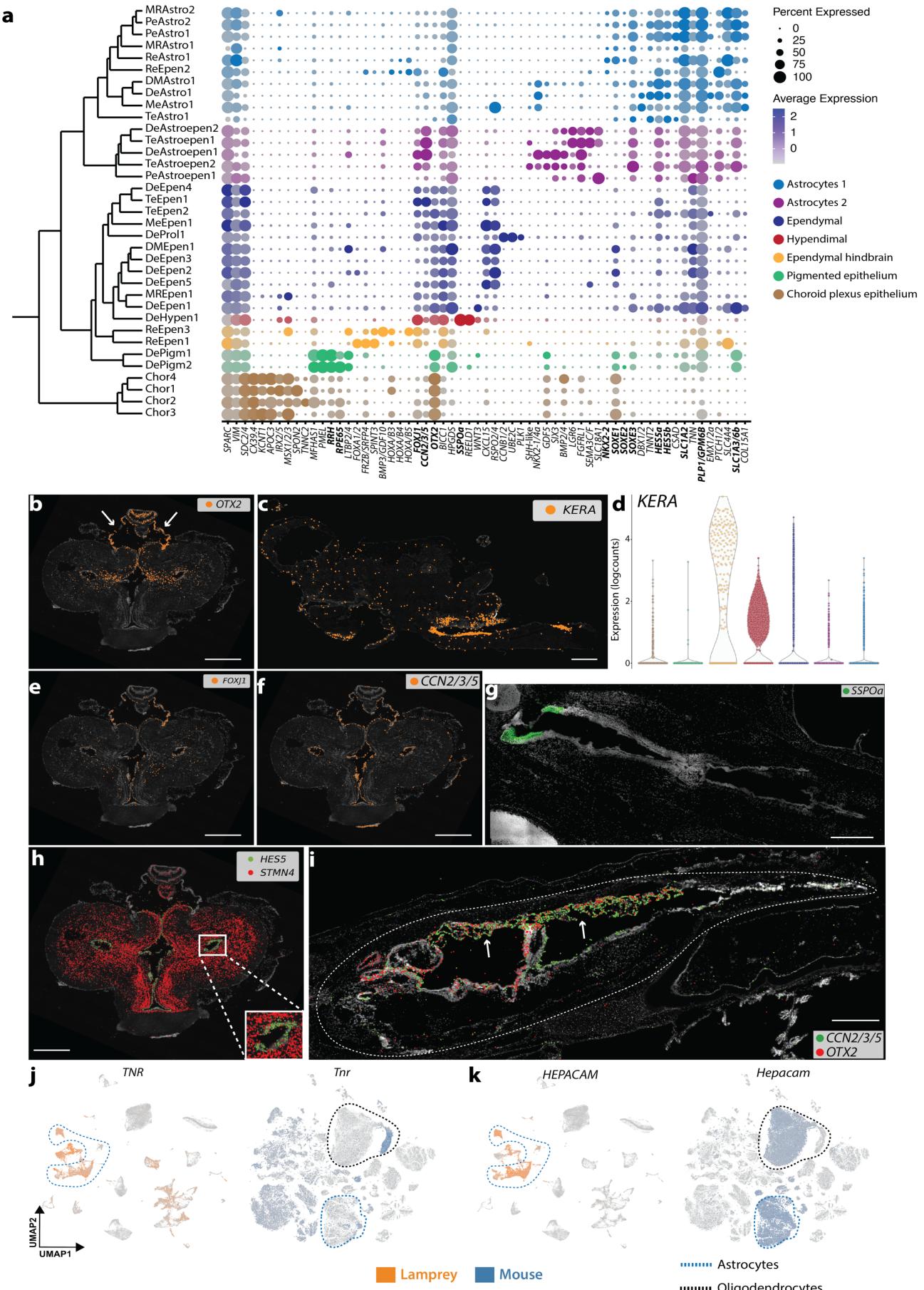


1006

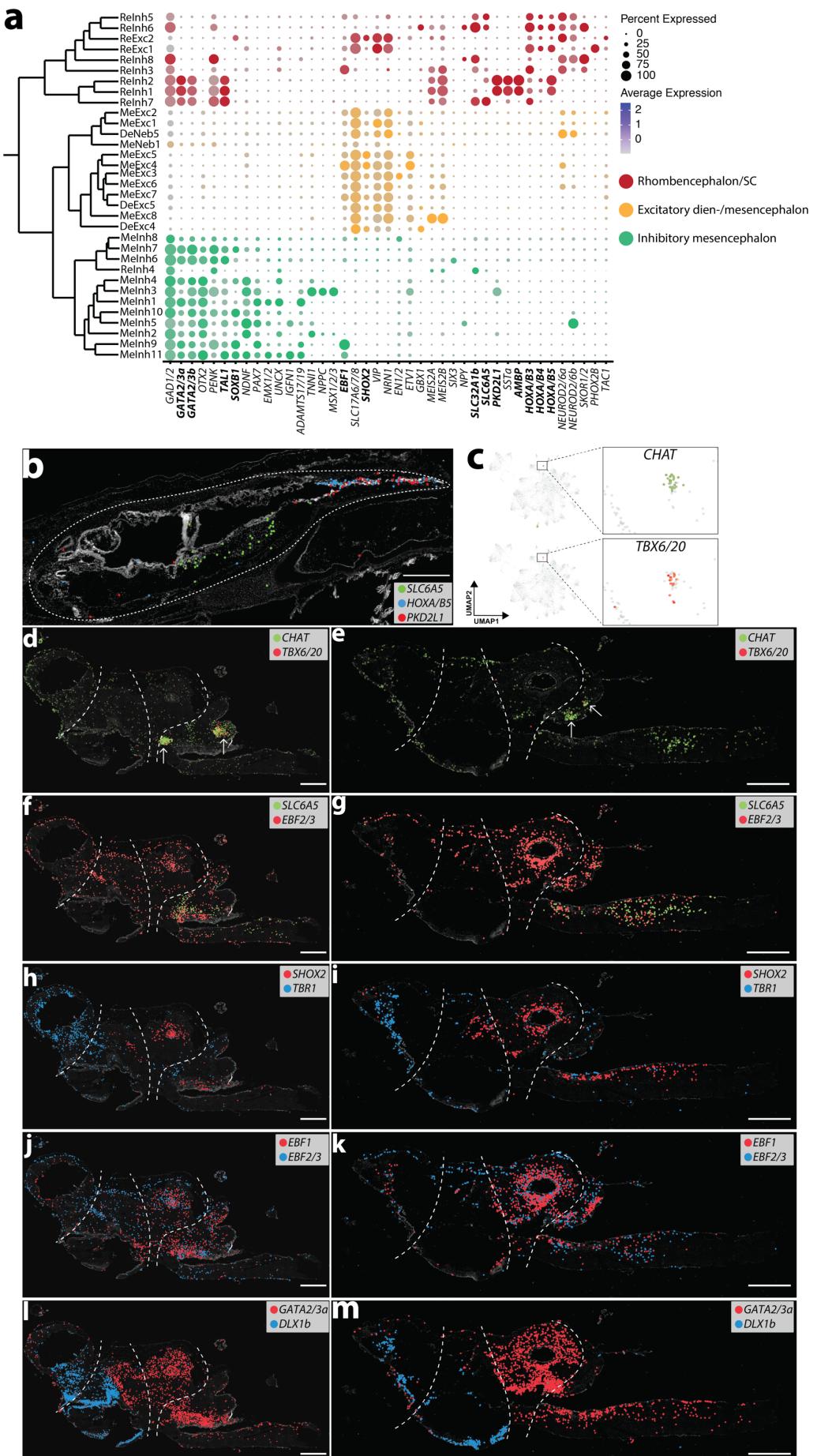
1007 **Extended Data Fig. 3 | Adult brain dataset. a,** Schematic of the sea lamprey adult brain showing the different regions
1008 dissected in this study and UMAP projections for each brain region. Additional information available in the interactive
1009 atlas (<https://lampreybrain.kaessmannlab.org/adult.html>). **b,** Barplots showing the proportions of each cell type group (as
1010 reported in a and Fig. 1b, c) for each sample.


1011

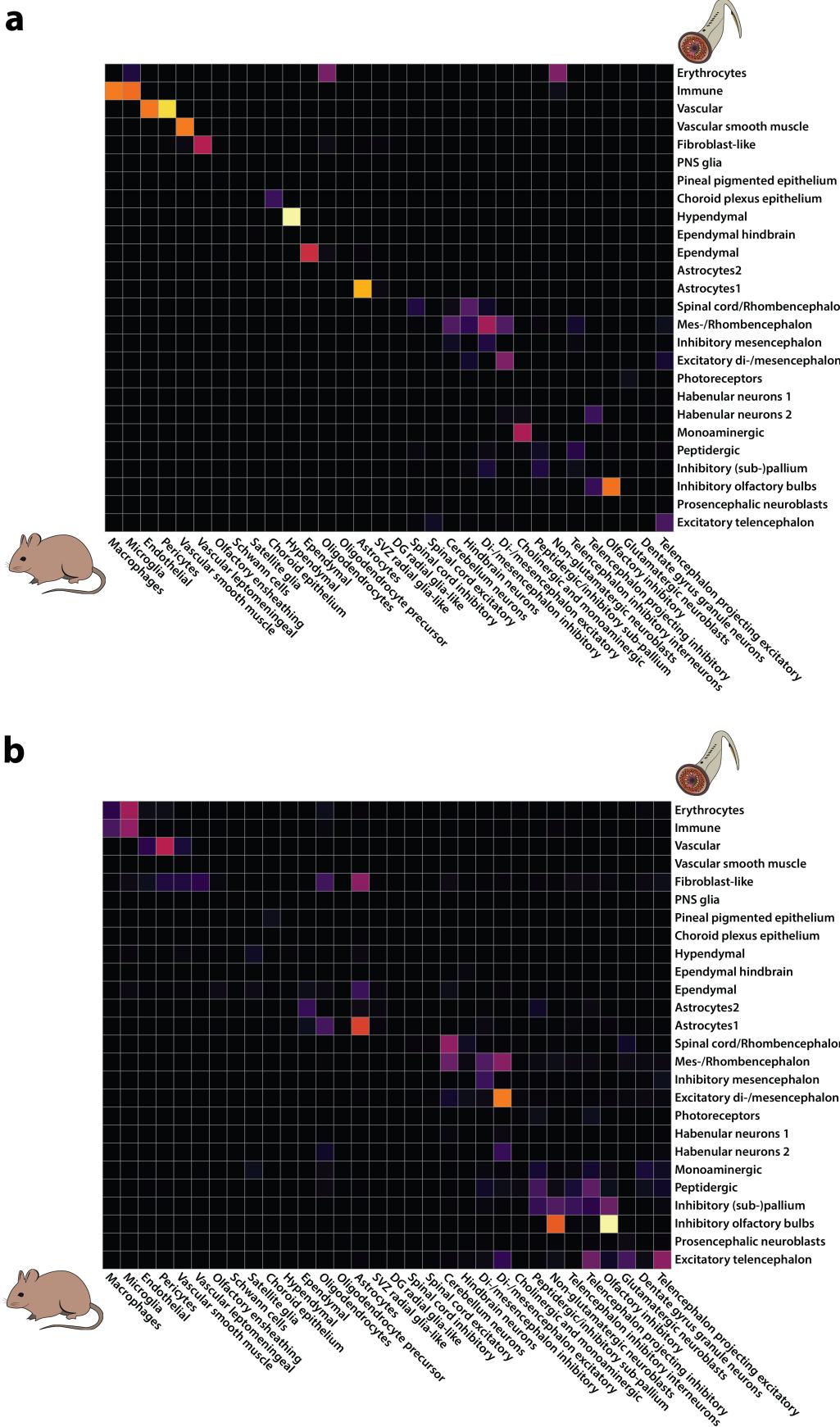
1012



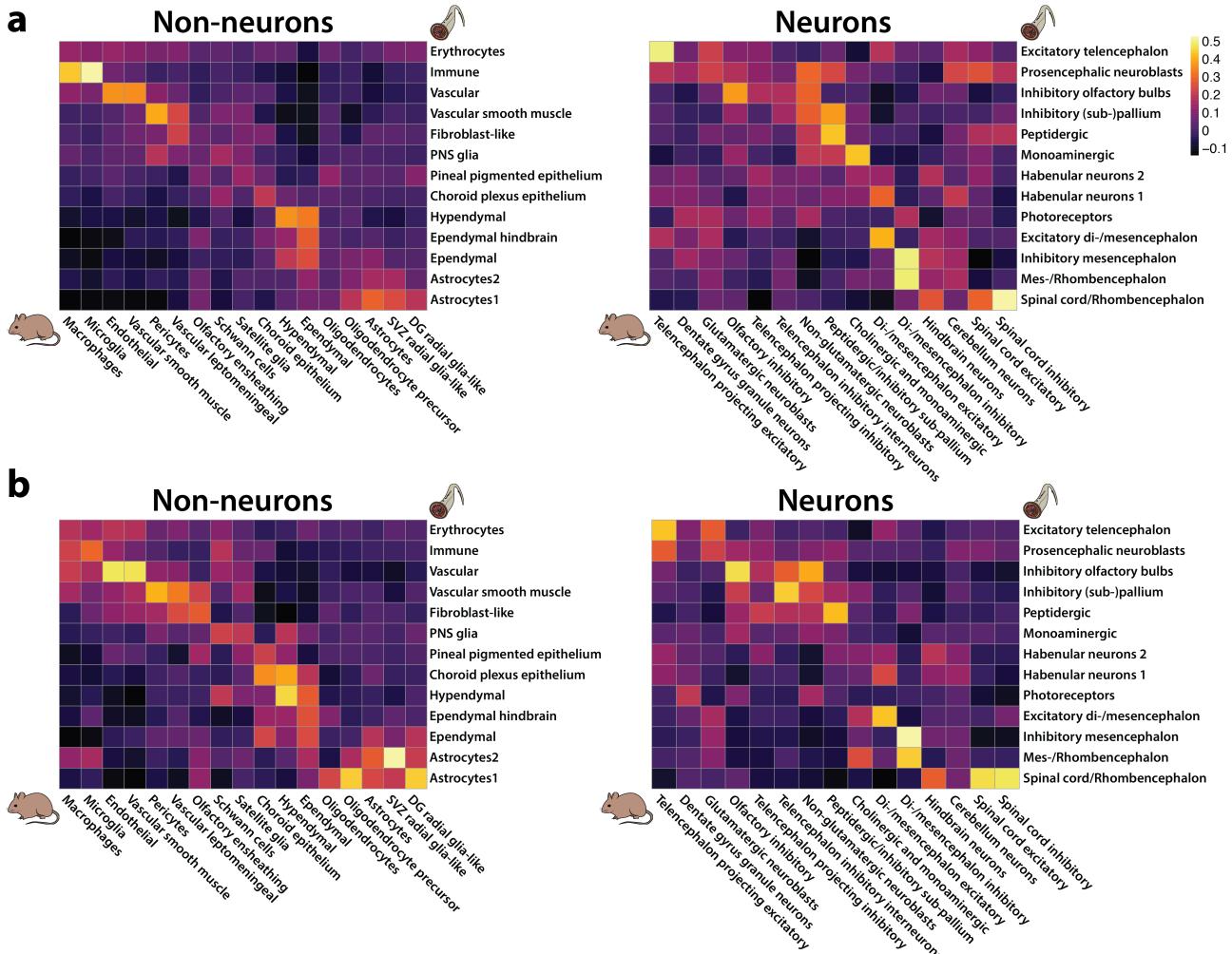
1013


1014 **Extended Data Fig. 4 | Differences between larval and adult datasets.** **a**, UMAP of 13,301 and 10,557 cells from the
1015 larval (left) and adult (middle, right) whole brain datasets, respectively. Right panel: dataset downsampled to 50% of its
1016 original number of UMIs per cell in order to account for differences in the Chromium kit versions used for the larval (v2)
1017 and adult (v3) samples; see Methods. **b**, Distribution of the number of expressed genes per cell for each whole brain
1018 sample. **c**, Distributions of specificity index scores for each brain region (neurons only) across the two stages for both
1019 Chromium kit versions (larval) and for v3 version with all UMI counts and 50% of the original number of UMIs per cell
1020 (adult). **d, e**, ISS maps showing the expression of *ZFP704* on coronal sections of the larval (d) and adult (e) telencephalon
1021 (see Extended Data Fig. 12 for the ISS dissection schemes). **f**, Horizontal section (anterior end to the left) of the larval
1022 brain showing the periventricular expression of *ZFP704* (smFISH) in neurons along the whole brain. Scale bars, 500 μ m.
1023

Extended Data Fig. 5 | Hematopoietic, vascular, and PNS cells. **a**, Subtree from the dendrogram of Fig. 1c displaying the expression of selected marker genes for each cell type (gene names mentioned in main text are highlighted in bold). **b**, Expression of marker genes for immune (*GRN*), meningeal (*PDGFRA*, *PAH*), and vascular (*KDR*) cells. **c**, Expression of lamprey markers and their mouse orthologs in the respective brain atlases (UMAPs). **d**, Coronal section of the larval telencephalon showing the spatial expression of the genes shown in b (same color code). Arrows mark leptomeningeal layers. **e**, Coronal section of the adult isthmic region (mesencephalon/rhombencephalon) showing the expression of *SOXE1* and *SOXE2* within cranial nerve roots (white arrows). See Extended Data Fig. 12 for ISS section schemes; scale bars, 500 μ m.


1034 **Extended Data Fig. 6 | a**, Subtree from the dendrogram of Fig. 1c displaying the expression of selected marker genes for
1035 each cell type (gene names mentioned in main text are highlighted in bold). **b**, Expression of *OTX2* within the adult
1036 telencephalon. White arrows point to choroid plexus. **c**, Expression of *KERA* within the adult brain (sagittal section;
1037 anterior end to the left), showing its concentration in the hindbrain. **d**, Violin plot displaying *KERA* expression among
1038 astroependymal cell types; color code as in a. **e, f**, Expression of *FOXJ1* (e) and *CCNI-5* (f) within the adult telencephalon.
1039 **g**, Horizontal section of the larval brain (anterior end to the upper left corner) showing the expression of *SSPO* (smFISH)
1040 around the rostral end of the third ventricle (sub-commissural organ). **h**, Expression of *STMN4* (neurons) and *HES5*
1041 (astrocytes) within the adult telencephalon showing the periventricular localization of lamprey astrocytes. **i**, Sagittal
1042 section (anterior end to the left) of a larval head (brain enclosed within white dashed line) showing the expression of
1043 *CCNI-5* and *OTX2*. White arrows point to choroid plexuses. **j, k**, Expression of *TNR* (j), *HEPACAM* (k), and their mouse
1044 orthologs on the respective brain atlases. See Extended Data Fig. 12 for ISS section schemes; scale bars, 500 μ m.
1045

1047 **Extended Data Fig. 7 | Posterior forebrain, midbrain, and hindbrain neurons.** **a**, Subtree from the dendrogram of
1048 Fig. 1c displaying the expression of selected marker genes for each cell type (gene names mentioned in main text are
1049 highlighted in bold). SC, spinal cord. **b**, Sagittal section (anterior end to the left) of a larval head (white dashed line
1050 outlines the brain) showing the expression of *SLC6A5*, *HOXA/B5*, and *PKD2L1*. Dashed lines separate the main brain
1051 regions. **c**, UMAP projection of a larval hindbrain dataset showing the expression of *CHAT* and *TBX6/20*. **d-I** Sagittal
1052 sections (anterior end to the left) of the adult brain showing the expression of selected marker genes. Arrows in d and e
1053 indicate the putative location of cranial nerve nuclei. See Extended Data Fig. 12 for the ISS section schemes; scale bars,
1054 500 μ m.
1055

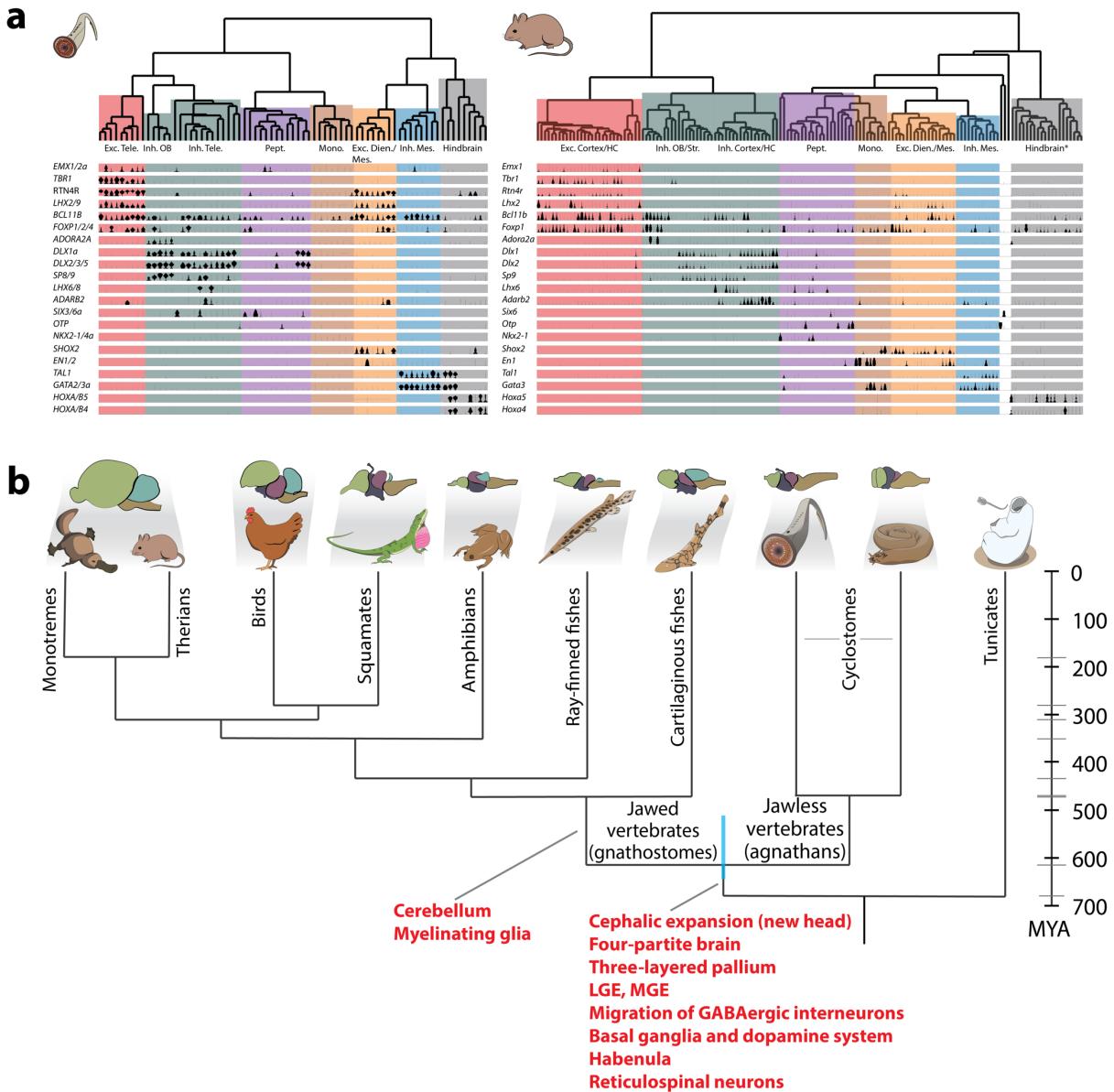

1061 MPa, medial pallium; MPO, medial preoptic nucleus; OB, olfactory bulb; OT, optic tectum; Pal, pallidum; PCN, postoptic
1062 commissure nucleus; PO, pineal organ; PpO, parapineal organ; PpT, parapineal tract; PS, pineal stalk; PTh, pre-thalamus;
1063 PTN, posterior tubercle nucleus; RH, right habenula; RPa, rostral paraventricular area; SMPa, sub-medial pallium; Sp,
1064 septum; St, striatum; Th, thalamus; VHy, ventral hypothalamus. Scale bars, 500 μ m.
1065

1066

1068

Extended Data Fig. 9 | SAMap scores for all cell type groups. **a, b,** Heatmaps of SAMap mapping scores for all groups of non-neuronal and neuronal cell types between mouse and lamprey, including all genes (a) and TF genes only (b).

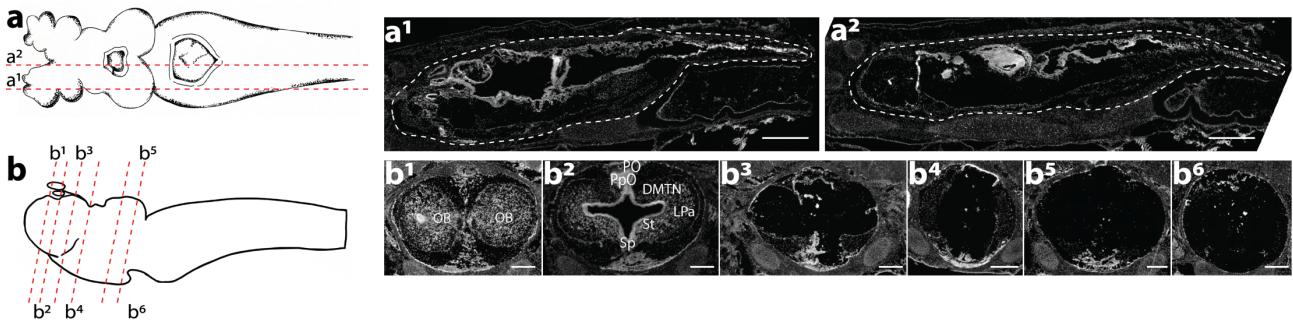
1070

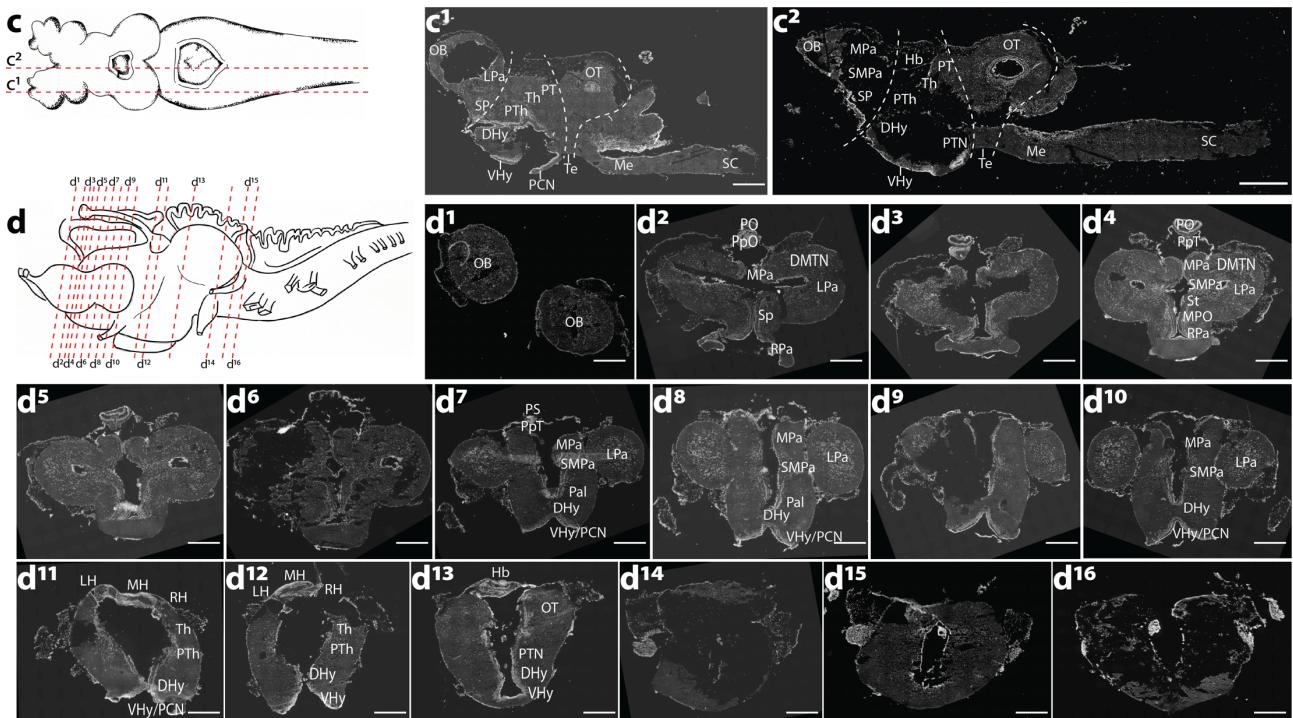

1071

1072

1073

1074


Extended Data Fig. 10 | Correlations between cell type groups. **a, b**, Heatmaps showing Pearson's correlation coefficients of specificity indexes of lamprey and mouse cell type groups for all orthologous genes (a) and for TFs only (b).


1075

1076 **Extended Data Fig. 11 | a**, Upper panel: lamprey and mouse dendograms of selected homologous neuronal families
1077 obtained based on correlations of expression levels of TF genes only. *Cerebellum excluded. Lower panel: violin plots
1078 showing the expression of selected TF genes for each cell type. Color code as in Fig. 1c. **b**, Vertebrate phylogenetic tree
1079 as in Fig. 1a showing key brain innovations (in red) as indicated, shown, or confirmed by our study.

Larval

Adult

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

Extended Data Fig. 12 | ISS dissection schemes. a-d, ISS dissection schemes (DAPI) of sagittal (a, c) and coronal (b, d) sections of lamprey larval and adult brains. Dashed lines on adult sagittal sections separate the main brain regions. DHy, dorsal hypothalamus; DMTN, dorsomedial telencephalic nucleus; Hb, habenula; LH, left habenula; LPa, lateral pallium; Me, medulla; MH, medial habenula; MPA, medial pallium; MPO, medial preoptic nucleus; OB, olfactory bulb; OT, optic tectum; Pal, pallidum; PCN, postoptic commissure nucleus; PO, pineal organ; PpO, parapineal organ; PTh, parapineal tract; PS, pineal stalk; PT, pre-tectum; PTh, pre-thalamus; PTN, posterior tubercle nucleus; RH, right habenula; RPa, rostral paraventricular area; SC, spinal cord; SMPa, sub-medial pallium; Sp, septum; St, striatum; Te, tegmentum; Th, thalamus; VHy, ventral hypothalamus. Scale bars, 500 μ m.