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Microscopy techniques and image segmentation algorithms have improved dramatically this
decade, leading to an ever increasing amount of biological images and a greater reliance on imaging
to investigate biological questions. This has created a need for methods to extract the relevant in-
formation on the behaviors of cells and their interactions, while reducing the amount of computing
power required to organize this information. This task can be performed by using a network repre-
sentation in which the cells and their properties are encoded in the nodes, while the neighborhood
interactions are encoded by the links. Here we introduce Griottes, an open-source tool to build
the "network twin" of 2D and 3D tissues from segmented microscopy images. We show how the
library can provide a wide range of biologically relevant metrics on individual cells and their neigh-
borhoods, with the objective of providing multi-scale biological insights. The library’s capacities
are demonstrated on different image and data types. This library is provided as an open-source tool
that can be integrated into common image analysis workflows to increase their capacities.

I. INTRODUCTION

The effect of the cellular heterogeneity on the spatial
organization and function of biological tissues is emerg-
ing as a major paradigm to understand complex collec-
tive behaviors. This is the case for example in the study
of how spatial structure leads to the emergence of germ
layers during embryonic development [1] or in describing
the tumor heterogeneity in cancer [2–5]. Indeed modern
in vitro models such as in organ-on-a-chip devices [6] or
organoids [7] capture complex biological phenomena by
integrating several cell types that follow a precise spatial
patterning. These models reinforce the view that interac-
tions between cells are fundamental in determining many
properties of the tissues. In particular they show how the
mechanical and biochemical interactions between neigh-
boring cells determine many global biological properties
across many spatial scales [4].

In this context fluorescence microscopy has emerged as
an invaluable tool to generate large and high-resolution
images of two-dimensional (2D) or three-dimensional
(3D) tissues. These images have a typical resolution be-
low one micron, with several fluorescence channels being
acquired in parallel, often on several planes. As a re-
sult it is now common to generate thousands or more
multi-channel images that represent a trove of data on
the tissues being imaged (see e.g. Ref. [8]). This trend
is amplifying, with the increase in performance of micro-
scopes, cameras, and fluorophores, such as e.g. the new
CODEX technology [2, 9] that makes it possible to si-
multaneously image close to 60 markers in tissues. These
advances in image acquisition have led to a need for anal-
ysis methods to extract biologically relevant information
from these images, namely at the scale of the individual
cells. Such methods need to preserve information about
the cell types, their positions, and their biological func-
tion, while reducing the size and complexity that make
the original images difficult to treat.

Geometric networks constitute a natural representa-
tion of spatially encoded information that can be used to
describe the structure and interactions in biological tis-
sues. The network representation has already been used
in a range of settings, ranging from city structure and
railways [10] to flows in the pulmonary airway tree [11].
In contrast with protein interaction networks that are
common in biology, geometric networks preserve the spa-
tial information of the sample while encoding the prop-
erties of the individual objects. This makes them well-
suited for describing the structure and interactions be-
tween cells and to bridge the scales from the individual
cell to the tissue. More fundamentally, representing tis-
sues as networks is advantageous as it is possible to draw
from a vast literature in statistical physics, mathemat-
ics and computer science to analyze the structure and
quantify the relationships between the cells composing
the tissue [12].

Here we describe Griottes, an open-source tool to con-
struct a network representation from imaging data. The
routine creates a "network twin" of the imaged sample
by extracting individual cell information from segmented
images and building a network representation of the tis-
sue. This new object makes it easier to address quanti-
tative questions on complex tissues with single-cell pre-
cision. Below we begin by describing the code and its
function, followed by a a few examples on how biologi-
cally relevant information can be obtained from typical
images.

II. RESULTS

A network is a set of objects that are related to each
other. Each object is described by a node, which can
have several attributes, and the nodes are connected by
edges or links that represent the relationship between
them. The network is represented by a graph that shows
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Figure 1. Schematic representation of the Griottes workflow: the program takes multiple data formats as input to generate a graph in
a single command. The red boxes contain objects, the green boxes processes.

these objects as nodes and their relationships as links. In
Griottes we choose to represent each cell by a node that
is placed on its geometric center in 2D or 3D. The links
in the network represent neighborhood, either through
contact or through distance, as described below. Differ-
ent attributes (cell type, cell size etc.) can be assigned to
the nodes, while the links can contain information about
the distance between cells or the length of the common
border, as summarized in Table. I.

Griottes takes as an input segmented tissue images
and builds a the graph to represent them. The input
to Griottes can consist of data tables, as well as la-
beled images of nuclei and/or cytoplasms. The inputs
can be 2D or 3D, without any impact on the program
and a single line of code is enough to generate the graph
representation of the tissue.

Node Attribute Definition
x, y, z Mask geometric center in x, y, z
area Mask size

θ (, ψ)
Orientation of the mask major axis
(in 3D)

eccentricity Mask eccentricity

fluorescence
Mean mask fluorescence (one value
for each channel)

label Unique number each cell
Link attribute Definition
Contact size Length of the cell-cell contact
Distance Distance between two cell centers

Table I. List of attributes and their definitions as currently
available in Griottes.

A. Program architecture

The Griottes analysis pipeline contains two main
steps: individual cell attribute measurements step and
then the network construction step. These processes and
the program inputs and outputs, described in figure 1,
are elaborated immediately below.

a. Input: Griottes takes as input the output of
standard cell segmentation codes. This can be in either
as a labeled image (2D or 3D) or as a data table. The
labeled image has at least one channel composed of a
zero-padded matrix in which the area occupied by each
cell is filled with an integer label that is unique to this
cell. A data table containing single cell information can
also be used as an input (for supplementary details on
the input formatting we refer the reader to the program
documentation).

b. Individual attribute measurements: If the input
is an image containing segmented cells, Griottes can
extract their essential geometric properties such as their
size, shape and position in the image (see table I). In case
the input image also contains supplementary fluorescence
channels, then the individual fluorescence intensities of
the different cells can be extracted too. The data are
returned to the user, giving access to the statistics of
every single cell composing the tissue.

c. Network construction: From the individual cell
properties, Griottes builds a spatial graph where each
node can be populated with cell attributes defined by the
user. The construction methods are elaborated below.

d. Output: The returned object is a graph where the
previously measured properties are entered as node at-
tributes, each node in the network mapping to a given
cell in the tissue. The object is currently returned as a
NetworkX graph [13].
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e. Post-processing: After the network image of the
tissue has been generated with Griottes, it can be fur-
ther analyzed downstream using tailor-made programs
depending on the biological question to be addressed.
Example applications include spatial clustering algo-
rithms, such as Hidden Markov Random Fields (HMRF),
or graph neural networks (GNNs) to investigate the
neighborhood influence on biological properties such as
cell division [14]. Once the network image has been gen-
erated, it is possible to harness the diverse graph analysis
methods to extract relevant information from the exper-
imental data (Fig. 1).

B. Analysis pipeline

1. Extracting single-cell information from the image

The input image has to contain at least a labeled im-
age that contains the information on the segmented cells.
This allows the conversion of pixel-based information on
the different cell types to the node-based representation
of the tissue. In the following paragraphs we summa-
rize the different features that can be extracted using
Griottes.

a. Geometric property measurements: The geomet-
ric properties can be of particular interest as it is known
that cell morphology can be a significant feature of tissues
and their characterization can shed light on morphogene-
sis or mechanical constraints within the tissue [15]. To be
able to readily include the morphological information as
a feature of the cells in the network, we added an option
to measure the geometric properties of the cell masks in
Griottes. This includes extracting the mask volume,
eccentricity and orientation in space.

b. Fluorescence measurements: If the input image
contains supplementary channels containing the fluores-
cence information, Griottes can measure the mean flu-
orescence levels inside each cell mask and attribute this
number to the cell. This allows for downstream cell clas-
sification (is the cell of type A or B?), or phenotype in-
formation (what is this cell’s production of molecule C?).
The method is particularly reliable when the cell masks
are built from the membranes and the full volume of the
cell is recovered. If only the nucleus is stained, then only
the information from the pixels inside the nucleus mask
is taken into account.

2. Building the network

Once the information on the cell properties is extracted
from the image, Griottes constructs the connectivity
graph binding neighboring cells together (Fig. 1). Several
options are implemented by the program for determining
the connectivity between two cells.

The first method uses geometric graph construction.
A geometric graph is generated by connecting cells sepa-

rated by less than a given distance [10]. This connection
method can be particularly relevant when cell-cell com-
munication is mediated by chemical cues [16], in which
case the distance between cells determines the time nec-
essary for diffusion to take place. However, this con-
struction rule is less pertinent if cell-cell interactions are
contact mediated.

The second method is a Delaunay-triangulation based
connection condition (Fig. 2b). This is a robust state-of-
the-art heuristic widely used to build biologically relevant
networks in many different contexts [16–18]. The Delau-
nay triangulation provides a good estimate of the cell-
cell connectivity in the cases when the membranes are
not available or cannot be identified in the image data.
However care must be taken when analyzing such results,
since this method is known to not perfectly replicate tis-
sue morphology in 2D [19]. In order to avoid incoherent
links generated by the Delaunay procedure, the connec-
tions between cells beyond a cutoff distance are removed
from the network.

In contrast with the above cell-center based methods,
if the segmentation recovers masks of the complete cells,
it is also possible to construct a graph that accounts for
direct contact between the cells. This method relies on
the interfaces between the different cells (Fig. 2b), linking
cells that share a common membrane. With this method
it is possible to provide values to the edges as a function
of the shared membrane surface, as described in Table I.
This feature can be transposed in the graph object output
by weighting the edges that link two nodes (Fig. 2g).

III. APPLICATIONS

The method and interest in using network description
of tissues is clearer when the library is applied to specific
cases. Below we provide some illustrations of the im-
plementation of Griottes on three types of inputs: 2D
and 3D images as well as a data table. These examples
also correspond to different biological samples: the adult
zebrafish pallium and mesenchymal stem cell spheroids.
Each example showcases a different use case for the pro-
gram.

A. Zebrafish telencephalon 2D image

Deciphering the generation of neural stem cells (NSCs)
in the adult zebra fish brain requires a deeper un-
derstanding of the connections between individual cells
in the tissue. High-quality in vivo images have re-
cently been obtained by Dray et al.[20], as shown in
Fig. 2a. This image consists of a projected 3D stack
of whole-mount immunostained pallium from 3 months
post-fertilization zebrafish. Visualization of GFAP (glial
fibrillary acidic) expression allows the identification of
the neural stem cells, while PCNA (proliferating cell nu-
clear antigen) highlights dividing cells and ZO1 (Zonula
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Figure 2. a. Confocal dorsal view of the zebrafish adult pallium. GFAP in green, PCNA in magenta and ZO1 in white or blue. ZO1
is highlighting the apical domain of the cells allowing the identification of their apical area. Inset: spotlight on a limited tissue area,
the ZO1 membrane staining allows for the exact localization of cell membranes. Scale bar is 100µm. b. Griottes incorporates different
network construction methods. The contact-based method connects cells sharing a common membrane, the Delaunay and Geometric
graphs are commonly used graph-generation methods. c. The graphs generated from a same set of nodes with different construction rules
have different properties. For instance, the degree distribution of a Geometric graph is broader than that of the Contact and Delaunay
graph. d. Mean PCNA signal within the cells in the example tissue. Cells with an average intensity above 6500 (red line) are considered
PCNA+, the other cells are PCNA-. e. Thresholding intensity signals converts a network populated with continuous fluorescence signals
to a network populated with categorical cell types. f. Representation of the example network (panel b.) where node colors represent
cell type. Left: the network is projected on the ZO1 signal. Right: the network is projected on the PCNA signal. This method reliably
incorporates cell type information into the network representation of the tissue. g. Left: connected cells can have widely varying contact
surfaces. Right: this information can be encoded into the network by weighting the links between cells. Two differing cell-cell interfaces
(pink lines) have different link weights in the network representation of the tissue (pink arrows). h. The connection between cells can be
quantified at scale: the histogram of link weights in the tissue.

Occludens 1) shows the apical domain of the cells. These
cells have been shown to coordinate their behavior in part
via local cell-cell interactions (see Ref.[20] for details).

The image shown in Fig. 2a is first segmented using
Cellpose [21], which yields a multi-channel 2D image con-
taining the masks resulting from the cell segmentation
and the fluorescence image in the GFAP and PCNA chan-
nels. This image is then analyzed using Griottes to gen-

erate a network representation of the tissue, as shown in
Fig. 2b. Different network construction methods gener-
ate different graphs. This feature is illustrated in Fig. 2b,
where a graph is constructed for a sub-section of the tis-
sue using the contact, the Delaunay and the geomet-
ric construction rules. For the geometric and Delau-
nay graphs, the maximum cell-cell distance authorized
is 15 µm, to avoid generating spurious connections be-
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tween cells. While the Delaunay and contact graphs
give broadly similar structure, the geometric graph shows
clear differences in neighborhood, due to the heteroge-
neous sizes of the cells and their arrangements. The dif-
ferences in graph structure can be measured quantita-
tively, e.g. by observing the degree distribution (number
of links per cell) as a function of the network construc-
tion method. The distribution of degrees in the geometric
graph is much broader than in the contact of Delaunay
graphs (Fig. 2c).

From the input image, Griottes can also extract the
fluorescence in the PCNA channel of the individual cells
in the tissue. The distribution of fluorescence intensities
is shown in figure 2d. A threshold value is then selected
manually in order to classify cells with a higher intensity
as cell type PCNA+ and those below as cell type PCNA-
(Fig. 2e). This binary classification now allows us to set
the cell type as an attribute for each node and construct
the network representation of the tissue (Fig. 2f). We
verify that the brightest cells in the PCNA channel are
indeed classified as PCNA+ (Fig. 2f).

In images where the whole cells are segmented, as is
the case here, it is possible to include the individual cell-
cell contact surfaces in the network representation of the
tissue. Indeed, cells can have different shapes leading
to a high heterogeneity of cell contact surfaces within
the tissue (Fig. 2g). Cell-cell contact can be pertinent
to understand tissue behavior, since both chemical and
mechanical signals are transmitted through membrane
contacts. Extracting properties of these contact surfaces
can shed light on key biological processes such as notch
signaling [22]. Griottes allows easy retrieval of the con-
tact length between all pairs of neighboring cells. The
size of the contacts can be represented visually for each
link (Fig. 2g) and the quantitative distribution of these
values can be obtained (Fig. 2h) for downstream analysis.

B. Analysis of 3D spheroid images

The network representation can also be applied to 3D
cultures, in the form of spheroids or organoids. These
model systems recapitulate many aspects of the in vivo
tissue structure, as shown e.g. by comparing cryo-
sections of organs with organoids [7, 23]. In these tis-
sue models the structural organization in 3D was shown
to couple back on the functional behavior of the cells
within the organoid. This was quantitatively shown in
the case of mesenchymal stromal cells (MSCs), which
were found to organize in a hierarchical manner, depend-
ing on their level of commitment, and to express dif-
ferent levels of chemokines depending on their position
in the organoid [24, 25]. Previous analysis however was
limited to coarse-grained quantities on averaged 2D im-
ages [26, 27]. This can now be overcome by imaging
the organoids using a light-sheet microscope, which pro-
vides very good resolution over the complete depth of
the organoid. Some representative slices of the 3D recon-

struction are shown in Fig. 3a.
The MSC spheroids, with CD146 and DNA staining

(see the methods section for the full protocol), were im-
aged in 3D thereby providing access to the cell nuclei
and to the distribution of CD146-expressing cells. The
images were then segmented using Cellpose [21] and fed
into Griottes in order to generate the 3D network repre-
sentation of the organoid for further analysis. Since only
the nuclei were available in these images, the Delaunay
construction method was used to estimate the 3D graph,
as shown in Fig. 3b. For illustration purposes, the cells
here are classified depending on the CD146 expression
with the same methodology as in section IIIA.

This network representation allows us to retrieve the
distribution of number of neighbors (degree) for each cell
within the tissue. By repeating the measurement on
N = 5 spheroids, the distribution of degrees is found
to be well-described by a normal distribution, centered
at 〈k〉 = 11.4 ± 3.2 neighbors per cell (Fig. 3c). Other
properties, such as the distribution of distances between
every two neighbors within the samples, can readily be
obtained as well (Fig. 3d). In the MSC spheroids, cells
are on average separated by 〈l〉 = 23± 2.4 µm (Fig. 3d).

It is also possible to assign a layer number to each of
the cells in the network and to analyze the cells based on
their distance from the edge or center of the organoid.
This allows us to virtually peel off the cells composing
the outer layers of the spheroid or to treat each layer in-
dividually (Fig. 3e). Analysis of the average degree of
cells composing each layer, see figure 3f, shows an in-
crease from an average of 〈k0〉 = 8.0± 2.4 neighbors per
cell in the outer layer (layer 0) to 〈k6〉 = 13.3±2.9 neigh-
bors in the inner layers (layer 6 in this case). In contrast
to the increase in the number of neighbors as a function
of the layer, the cell-cell distance remains stable across
the spheroid depth. Indeed, the mean distance, defined
by length from one nuclei barycenter to another, varies
between 〈l3〉 = 22.6 ± 2.3 µm and 〈l0〉 = 23.8 ± 2.6 µm
(Fig. 3g). In the future, the layer analysis framework
could be combined with categorical information on the
cells, such as their phenotype, to assess the formation of
the spheroids and organoids in greater detail.

C. Building a network from a data table

Image processing software can often yield cell informa-
tion in a table format containing the cell positions as well
as other attributes such as the cell type. The data table
can contain the positions of the cells in the x−y plane, as
well as further information about the cells, such as their
cell type. Below we show how such data can be integrated
and analyzed using Griottes. In the current example a
region of interest of the zebrafish telencephalon was seg-
mented and analyzed [20], attributing a cell type to each
of the visible cells in the sample. Understanding cellular
organization and cell-cell relationships of this tissue will
be critical to better understand how this stem cell popu-
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Figure 3. a. Sections of a MSC spheroid imaged with a light-sheet microscope. The technique allows in-depth imaging of tissue structures.
Scale bar is 50µm. b. 3D network representation of a MSC spheroid. Different cell types are identified based upon CD146 fluorescence
measurements. c. Comparison between the degree distribution of an example spheroid (panel b., bars) and the batch distribution (N =
5, red line). d. Comparison between the link-length distribution of an example spheroid (bars) and the batch distribution (red line). e.
The network representation makes it possible to identify cells on the outer layer of the spheroid (red) from the inner cells (blue). We can
"peel off" the outer layers successively, revealing the inner structure and composition of the spheroid. f. Cell degree as a function of the
layer number, the average degree is larger for the layers near the center of the spheroid. Blue dots show one example spheroid and red
dashed line represents average over the experimental batch. g. Distance between cell centers (in µm) as a function of the layer number.
Blue dots show one example spheroid and red dashed line represents average over the experimental batch.
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lation coordinates its behavior to sustain large-scale and
long term homeostasis.

The cell positions can serve to place them on a
two-dimensional scatter plot where the different cell
phenotypes are indicated by different colors (Fig. 4a).
Griottes is then used to build the network representa-
tion of the tissue, here using the Delaunay triangulation
to connect cells to each other (Fig. 4b).

The telencephalon is structured in a quasi-2D struc-
ture, the cells spreading out and forming a sheet. Anal-
ysis of the degree distribution of the cells in the tissue
(Fig. 4c) shows a similar distribution to that recovered
from the cell membranes in figure 2c. The tissue contains
multiple cell-types necessary for maintaining the tissue
homeostasis (Fig. 4d) [20]. A key question to understand
the extrusion of cells from the zebrafish telencephalon
is the spatial organization of cell phenotypes within the
tissue. One method is to study the distribution and prop-
erties of clusters of cells of similar phenotype, i.e. a group
of cells of the same cell type that are connected to each
other. Such clusters can be identified by analyzing the
network (Fig. 4e), which makes it possible to compute
the proportion of cells of each type that belong to clus-
ters of size larger than 1 (Fig. 4f). We can look at the
distribution of cell clusters within the tissue to determine
the statistical properties of the organization of the tissue
(Fig. 4e).

Looking at the proportion of clusters strictly larger
than 1, we see differences depending on the cell types.
GFAP+/PCNA- cells, which compose 81% of the tissue,
all belong to the same cluster. On the other hand, despite
differing presence within the tissue, GFAP+/PCNA+
and GFAP-/PCNA+ cells have a similar chance of be-
longing to a cluster. Using the network representation
makes it possible to investigate experimental data in a
new light, whilst highlighting the cell-cell interactions
within the samples.

IV. DISCUSSION

Here we introduce Griottes, an open source, gener-
alist algorithm that can generate the network represen-
tation of segmented images. The routine accepts a wide
range of inputs: 2D and 3D images, mono-channel or
multi-channel, as well as data tables. It is designed to be
agnostic of the segmentation method used to pre-process
the images.

By generating a graph representation of the input im-
age, Griottes enables the use of a wide range of analysis
tools, some of which are illustrated in the current paper.
These include properties such as cell positions, geom-
etry, fluorescence intensity levels, and contact surfaces
with other cells in the tissue. The network representa-
tion then allows the geometric or phenotypic markers to
be related among neighboring cells in order to understand
the interactions that emerge.

The network representation of tissues condenses infor-

mation contained in images. Instead of representing the
system at the pixel-level, it summarizes the image at the
single cell level, drastically reducing the memory uptake
and increasing the information density. This analysis
framework is particularly relevant when focusing on indi-
vidual interactions between cells in the system and that
these interactions are determined by the spatial proper-
ties of the tissue. Later developments will include infor-
mation about the extra-cellular matrix or external con-
straints, which are simple to add to the network descrip-
tion.
Griottes is part of a growing ecosystem of image-

analysis tools enabling the spatial analysis of biological
images [3, 17, 28, 29]. The library is built in Python and
uses state of the art open-source libraries, allowing inves-
tigators to seamlessly integrate Griottes in their image
and data analysis workflows. We expect to continue de-
veloping Griottes , with the long-term goal to make the
step from pixel-based to node-based analysis as seamless
as possible.

CODE AND DATA AVAILABILITY

Griottes is an open-source Python package available
in the following GitHub repository. Small files (e.g.
CSVs) are accessible on the example repository, larger
files (e.g. images) are available upon request. All the
data are drawn from Dray et al. [20] and from unpub-
lished lab experiments.

METHODS

MSC spheroid preparation

Human Mesenchymal stem cells (hMSCs) derived from
the Wharton’s jelly of the umbilical cord [American Type
Culture Collection (ATCC) PCS-500-010, LGC, Mol-
sheim, France] were obtained at passage 2. The cells
were maintained as previously described [24]. To isolate
the CD146dim and CD146bright subpopulations, hM-
SCs (at passage 5) were recovered from the flasks using
TrypLE. Then, the cells were incubated with a staining
solution containing a 1:100 mouse anti-human CD146-
Alexa Fluor 647 antibody (BD Biosciences) diluted in
1% FBS, for 30 min. 25% of the brightest and 25%
of the dimmest CD146 stained cells were isolated by
flow cytometry using a FACSAria III (BD Biosciences).
The isolated CD146dim cells were then labelled with Vy-
brantTMDiO, while the CD146bright cells were stained
with VybrantTMDIL, for 30 min at 37 °C, as previously
described [24]. After PBS washing, 6 × 106 of a mix of
50:50 CD146dim and CD146bright sorted- hMSCs/mL
were seeded together into a 384 wells plate, which were
each filled with 50 uL culture medium containing 1 uM
SiR-DNA (Spirochrome), and the cells were let to form
spheroids for 24 hours. The spheroids were then fixed
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a.

d. e.

Cluster

Griottes

f.
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c.

Figure 4. a. Reconstruction of the zebrafish telencephalon from a data table. Colors represent the different cell types entered in the table
by the user. b. Network construction with Griottes from a point-cloud using the Delaunay construction rule. c. Degree distribution
of cells composing the zebrafish telencephalon after the network construction using the Delaunay rule. d. Composition of the zebrafish
telencephalon: a vast majority of the cells are GFAP+/PCNA-. e. From the network representation of the tissue we can extract clusters
of any given cell type (left). Distribution of PCNA+ cluster sizes (right). f. Percentage of cells that belong to a cluster of their cell type
of size larger than 1. All GFAP+/PCNA- cells are connected and belong to the same cluster. Conversely, a majority of GFAP+/PCNA-
and GFAP+/PCNA+ cells aren’t connected to any other cell of the same type.

using a 4% paraformaldehyde (PFA) solution (Alpha Ae-
sar) for 30 min, and, after PBS washing, the aggregates
were mounted into an agarose gel (Sigma) for 3D imag-
ing.

Imaging

Light sheet imaging has been performed using a com-
mercial version of the Dual Inverted Single Plane Imaging
Microscope (DiSPIM) [30] (Marianas -3i-). This system
consists in two identical arms fitted with illumination
and detection apparatus for light sheet generation and
its subsequent imaging.

Despite its ability to acquire the same volume on two
different angles with 90 degrees rotation, spheroids sam-
ples were acquired using only a single side acquisition.
This provided acceptable signal to noise ratio for ade-
quate segmentation and spared the time consuming dual
view reconstruction.

The used objective was a water immersion 40x objec-

tive with 0.8 numerical aperture. This provides a resolu-
tion of 0,162 um/pixel on the fitted camera (Hamamatsu
Orca Flash 4.0). Fast single plane acquisition was per-
formed by objective translation via a piezo-electric ele-
ment over a 150 um by 0.5 um increment. This provided
a final cubic volume of 248 x 248 x 150 um of the acquired
spheroid.

In order to excite the labelled samples, each plane
was excited with 100 ms (Camera exposure time) se-
quential illumination of three discrete wavelengths: 488,
561 and 640 nm corresponding to GFP, RFP and Sir-
DNA respectively. Chromatic fluorescence selection is
done via a set of quad-band filters and dichroics (Sem-
rock DA/FI/TR/Cy5-4X-B) on the CMOS Camera.
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