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Abstract

Droplet-based single-cell omics, including single-cell RNA sequencing (scRNAseq),
single cell CRISPR perturbations (e.g., CROP-seq) and single-cell protein and
transcriptomic profiling (CITE-seq) hold great promise for comprehensive cell profiling
and genetic screening at the single cell resolution, yet these technologies suffer from
substantial noise, among which ambient signals present in the cell suspension may
be the predominant source. Current efforts to address this issue are highly specific to
a certain technology, while a universal model to describe the noise across these
technologies may reveal this common source thereby improving the denoising
accuracy. To this end, we explicitly examined these unexpected signals and observed
a predictable pattern in multiple datasets across different technologies. Based on the
finding, we developed single cell Ambient Remover (scAR) which uses probabilistic
deep learning to deconvolute the observed signals into native and ambient
composition. SCAR provides an efficient and universal solution to count denoising for
multiple types of single-cell omics data, including single cell CRISPR screens, CITE-

seq and scRNAseq. It will facilitate the application of single-cell omics technologies.
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Introduction

Single-cell RNA sequencing (scRNAseq) enables researchers to investigate
transcriptomes at single cell resolution, improving our understanding of cellular
heterogeneity and interactions between single cells and the microenvironment. Recent
efforts have extended scRNAseq beyond transcriptomes by encoding additional layers
of information, resulting in versatile tools for single-cell omics. For instance, by
combining functional screens with scRNAseq, CROP-seq has enabled the
interrogation of multiple biological nodes in a single experiment!~3; by combining
ssDNA-barcoded-antibodies with scRNAseq, CITE-seq has provided simultaneous
guantification of mRNA and surface proteins in a single cell*, which shows great
potential especially in immunophenotyping in fundamental and clinical research®. Most
recent efforts have even combined both technologies to enable multimodal profiling of
transcriptome and surface proteins in response to gene perturbations in cancer cells®.
Despite the exciting concepts and anticipated potential, applying these pioneering
technologies is challenging. One outstanding reason is the wide presence of
measurement noise. Various technical factors, such as ambient contamination’?,
amplification bias® and index swapping'® generate noise in single-cell omics
experiments. Several methods have been proposed to correct for the background
signals”-811-13_ Most of these are highly specific to transcriptome data’®!12, several
tools are specific to protein data in CITE-seq'®!4, while few attempt to denoise
exogenous barcode counts in other extended single cell technologies, such as single
cell CRISPR screens and cell indexing®>-'’ technologies. Conceptually, however,
there is little difference in the procedure in which these various technologies are
capturing their respective information (i.e., mMRNA, sgRNA, expressed barcodes and
antibody counts). All relevant molecules are included in the same reaction solution
during most of the involved processes, such as droplet formation, cell lysis, library
construction and sequencing. Background noise likely originates in a similar (if not
identical) way in each of these layers, meaning an ideal model can, in principle,
describe the common sources of the artifacts in a non-technology-specific manner. To
our knowledge, no such algorithm has been proposed so far.

To this end, we developed single cell ambient remover (scAR), a hypothesis-driven
model to identify and remove the background noise for transcriptome, protein and

feature-barcode data in single-cell omics technologies. Cell-free transcripts have been
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observed in empty droplets!® and are hypothesized to arise from ambient RNAs in
single cell suspension, which likely originates from damaged cells caused by cell
lysis”1920 This hypothesis suggests that ambient RNAs may not be completely
random but deterministic signals to a certain extent. Indeed, gene frequencies are
correlated between cell-containing and cell-free droplets’. These together motivate us
to explicitly evaluate the ambient signal hypothesis in multiple single-cell omics
technologies, which rationalizes a universal probabilistic model to describe this type
of noise. To highlight the generality of our approach, we apply scAR to multiple
datasets generated using different technologies from different sources, including an
internal CROP-seq dataset and several public CITE-seq datasets and scRNAseq

datasets. We also evaluate scAR with competing methods where available.
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Results

The scAR model.

SCAR uses a latent variable model to represent the biological and technical
composition in the observed count data (Fig. 1). It is designed under ambient signal
hypothesis, which assumes that ambient signals originate from broken cells during
sample preparation, homogenize in single cell solution (ambient signal pool) and
contaminate cell-containing and cell-free droplets (Fig. 1a). Mathematically speaking,
ambient signals are drawn from Binomial distributions with a shared parameter
(denoted as ambient frequencies, a) in cell-containing and cell-free droplets. This
parameter therefore can be estimated using cell-free droplets. Besides, we introduce
two hidden variables noise ratio (€) and native expression frequencies () to represent
the total contamination level per cell and normalized ‘true’ expression per cell
respectively (Fig. 1b). scAR simultaneously infers € and B using the variational
autoencoder (VAE) framework?-22 (Fig. 1b, Methods).

We use the optimized variables € and B to estimate the ‘theoretical’ gene expression,
which is considered as denoised counts for downstream analysis. In addition, in
several feature barcode technologies, such as CROP-seq and CellTagging®®, the
presence/absence of native signals is more critical information than the actual level.
To reflect this, SCAR outputs a probability matrix representing the probability whether

raw observed counts contain native signals.
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Fig. 1| The overview of scAR. scAR is a hypothesis-driven model for noise reduction in droplet-based
single-cell omics. a, Demonstration of the ambient signal hypothesis. During preparation of single cell
solution, RNA or protein counts are released upon cell lysis and consequently encapsulated by droplets
with or without a cell. In the case of a cell, these exogenous molecules are mixed with native ones and
barcoded by the same bead, which results in mixed counts as the final output. Under this assumption,
the ambient signals in both cell-containing and cell-free droplets are drawn from a same pool (meaning
an identical distribution). UMI stands for unique molecular identifier. For the purpose of illustration,
reddish purple, light green and their mixture hint ambient signals, native signals and observed counts,
respectively. b, scAR takes raw count matrices of RNA or protein as input and learns two sets of
parameters (¢ and B) through the variational autoencoder. g, a column vector represents noise ratios
per cell and B, a matrix represents cell-wise native frequencies of RNAs or proteins. d, a row vector
represents the ambient frequencies of RNAs or proteins, which is empirically estimated by averaging
cell-free droplets. sCAR assumes d is an experiment-specific factor thereby using a unique a for all
cells from a single experiment. The observed raw counts are modelled using a Binomial model which
contains known parameters d and sequencing depth D and two hidden variables ¢ and p. We optimized
¢ and B by minimizing the reconstruction errors and K-L divergence (Methods). scAR outputs two
matrices, a denoised count matrix and a probability matrix. The latter represents the probability that a
given observed count is not drawn from ambient sources (in other words, native signals exist). Meaning
of color codes is the same as a.

Examination of ambient signal hypothesis.

We conducted a case study which combines CROP-seq and bulk sequencing to
evaluate the ambient signal hypothesis (Fig. 2a and Methods). We designed a viral
pool of 99 sgRNAs targeting 13 different genes (supplementary table I), most of them
being essential in MCF7 cells?4?> (supplementary Fig. 1). We infected MCF7 cells
expressing dCas9-KRAB with the lentiviral libraries at extraordinary low multiplicity of
infection (MOI=0.3) to ensure single integrations of sgRNAs. Excessive sgRNAs in a
cell are supposed to be ambient signals. Cells were harvested at various time points

post-transduction and split into two portions, with one portion taken for 10x sCRNAseq
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and the other for bulk sequencing of sgRNAs, which reveals the frequencies of sSgRNA
libraries in the samples. In addition, the gene regulation activity of CRISPRI provides
an additional way to assess the identification of ‘true’ sgRNAs.

To validate whether ambient sgRNAs are correlated with the native ones, we
compared sgRNA frequencies in bulk sequencing and in cell-free droplets from CROP-
seq. Results show high correlation of SgRNA frequencies at both time points (Fig. 2b).
Randomly sampled subsets of cell-free droplets (from 0.5% to 5%) also show high
correlation (Fig. 2c), surprisingly, as few as ~200 droplets consistently show high
correlation to the bulk cells. Together, these observations suggest that ambient signals
are not random noise but endogenous expression-correlated artifacts. We next
examined the raw sgRNA counts in cell-containing droplets and observed presence of
ambient counts (Fig. 2d). ~25 distinct sgRNAs were detected per cell on average while
<=1 sgRNA is expected because of low multiplicity of infection. We also observed
significant ambient contamination as well as high correlation to endogenous
expression in datasets of different technologies and from various laboratories32627
(supplementary Fig. 2). Altogether, these indicate that the ambient signals are

systematic noise in single-cell omics and building scCAR on this basis is rational.
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Fig. 2| scAR identifies integrated signals in CROP-seq data. A CROP-seq experiment shows strong
ambient contamination, which affects guide assignment when using the naive approach. scAR enables
more accurate guide assignment. a, Demonstration of the experimental design (Methods). b,
Scatterplots of sgRNA frequencies between two sources. X-axis represents sgRNA frequencies
obtained by bulk DNA sequencing, Y-axis represents sgRNA frequencies obtained by averaging RNA
counts in cell-free droplets from 10x scRNAseq. Each dot represents an sgRNA, the red dashed lines
represent y=x and coefficients of determination (R? scores) are shown. c, coefficients of determination
(R? scores) show the correlation of sgRNA frequencies between bulk cells and randomly sampled cell-
free droplets. X-axis shows the proportions of cell-free droplets. The droplet numbers in each group are
indicated in brackets. The error bars indicate the variance of 10 samplings. d, Distribution of distinct
sgRNAs per cell in the raw counts. X-axis represents the number (not UMI count) of distinct sgRNAs
per cell, y-axis shows the density. Samples from two time points D5 and D12 are colored by light blue
and orange respectively. The size of lentivirus libraries and expected number of sgRNA are highlighted
by dashed lines. e, Cell fraction after guide assignment. scAR assignment is based on the probability
matrix, each cell is assigned with the guide(s) with highest probability. Naive assignment is based on
raw count matrix, each cell is assigned with the guide(s) with highest UMI counts. f, Similar to b,
scatterplots show the sgRNA frequencies in cells from 10x scRNAseq (post-assignment) and in bulk
cells. Y-axis here represents cell fractions grouped by distinct sgRNAs post-assignment. The red
dashed lines represent y=x. g-h, Two selected guide groups from D12 samples to demonstrate scAR’s
performance. The Venn diagrams show the number of cells assigned with FOXA1l gl (g) and
FOXA1 g3 (h). scAR assignment is marked with purple and naive assignment is marked with blue.
Cells assigned with the same guide by both approaches are labeled as ‘naive & scAR’. The below violin
plots show the expression of FOXAL in these subgroups. CTL groups represent the cells assigned with
CTL sgRNAs by both approaches. Y-axis represents the log transformed UMI counts after library size
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normalization (Methods). i, the dotplot shows the overall comparison between two assignment
approaches. X-axis represents guide groups. Y-axis represents subgroups of cells as exemplified in g
and h, separated by two time points and assignment approaches. Target genes are shown on the top.
Their expression (log transformed) in each group is compared with that in CTL group and resulting t-
statistics are shown by the dot color (Methods, see t-statics of z-normalized expression in
supplementary Fig. S3a). Blue color indicates down-regulation, and red indicates up-regulation. CTL
group is centered at zero. The bimodal sizes of circles represent the p-values from t-test (the bigger
means p<0.05, the smaller means p>=0.05). * highlights the guide groups where scAR significantly
improves the accuracy and # marks the groups where scAR underperforms naive assignment.

scAR identifies true integrated signals in CROP-seq data.

To identify the true guide, we applied scAR to this CROP-seq dataset and compared
its performance with naive assignment, which considers most highly expressed guides
as the true signal. Combined with an arbitrary threshold, this naive assignment is
widely implemented in current single-cell CRISPR screens!228-30 Here, for
benchmarking purpose, we did not perform any subjective filters on either naive
assignment or scAR-based assignment. All cells that pass the default gene and cell
filtering in Cellranger were included for downstream analysis (Methods). By naive
assignment, ~80% cells (20076 out of 25248, D5 and D12 combined) are assigned to
unique guides and ~20% (5170 out of 25248, D5 and D12 combined) cells are
assigned to multiple (>=2) guides due to equal expression (Fig. 2e). ‘Multiple-infected’
cells are generally filtered out before downstream analysis in CROP-seq experiments,
in other words, naive assignment causes loss of ~20% cells. SCAR estimates the
expected ambient counts then compares to the observed counts via hypothesis testing
to evaluate the probability of presence of native signals (Fig. 1b and Methods). It
assigns 96% cells (24171 out of 25248) to a single guide (Fig. 2e) despite of ~20%
cells with equally expressed guides. We next examined the cell fraction grouped by
distinct sgRNAs after guide assignment. This fraction is expected to be identical to
sgRNA frequencies in bulk sequencing since both reflect sgRNA libraries in the cell
pool. scAR-resulting cell fractions are highly correlated with sgRNA frequencies in bulk
sequencing (R?=0.875 at D5 and R?=0.913 at D12), while naive assignment preferably
over-assigns a few sgRNAs of highest expression (R?=0.369 at D5 and R?=0.861 at
D12, Fig. 2f).

To evaluate the accuracy of the assignment, we checked the expression levels of
targeted genes in cells with certain guides assigned exclusively by either naive or
sCAR (Fig. 2g-i). We consider the cells assigned by both naive and scAR as the


https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476312; this version posted January 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

positive control and cells assigned with CTL sgRNAs by both naive and scAR as the
negative control. In two selected guides shown in Fig. 2g and 2h, naive assignment
assigns 154 cells to FOXA1 g2, 133 cells among which are mutually assigned to the
same guide by scAR. These 133 cells show significant downregulation of FOXA1,
suggesting the effectiveness of this guide. However, the remaining naive assigned 21
cells show similar expression as in CTL cells, suggesting that these cells may not
integrate FOXA1 g2. More importantly, another 18 FOXA1 g2 cells, exclusively
identified by scAR, show as low expression as in the mutually assigned cells. Similarly,
for the other example FOXA1_g3 (Fig. 2h), 26 cells identified by scAR but missed by
naive assignment show similar expression pattern as the mutually assigned cells (Fig.
2h). To systematically assess and visualize the difference, we perform t-test on
expression of targets among these subgroups for each guide and visualize both t-
statics and p-values using dotplots (Fig. 2i and supplementary Fig. 3a). In total, sSCAR
rescues 20 sgRNA groups at each time point which are missed by naive assignment
as confirmed by statical confidences, while only two sgRNA groups are missed by
SCAR at each time points, compared to naive assignment. In addition, we count cell
numbers of each subgroup and visualize the difference (supplementary Fig. 3b).
Clearly, naive assignment over-assigns cells to a few guides, such as CCND1 g3 and
YAP1 gl (supplementary Fig. 3b) likely due to their stronger ambient presence than
other guides, whereas the power of scAR to identify ambient sgRNAs by their
distribution ensures unbiased assignment. Together, by inspecting the guide
assignment in the CROP-seq dataset, we showed that sSCAR significantly improves the
assignment accuracy in feature barcode technologies, where the presence rather than

the quantity of native signals is the key information.

ScAR removes the ambient protein counts in CITE-seq.

Next, we sought to investigate whether scAR precisely learns the quantity of native
signals using a public CITE-seq dataset of peripheral blood mono-nuclear cells from
10x genomics3®! (PBMC5Kk). Prior to sequencing, PBMC cells were stained with a panel
of 32 antibody-conjugated oligos which consist of surface markers of B cells, T cells,
Natural killer cells (NK), monocytes and Dendritic cells (DC) (Fig. 3a). According to
ambient signal hypothesis (Fig. 1a), unbound antibodies in single cell suspension will

interfere with both cell-containing and cell-free droplets and antibody frequencies
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should be highly correlated. We calculated the antibody frequencies in randomly
sampled cell-free droplets (from 0.01% to 100%) and compared them with cell-
containing droplets (Fig. 3b,). As in the CROP-seq experiment (Fig. 2c), we also
observed high correlation, as few as 31 randomly sampled cell-free droplets
consistently show strong correlation to the cell-containing droplets.

We next discriminated cell types by clustering and annotating cells using transcriptome
profiling (Fig. 3c and Methods) and examined antibody detection in cell-types. As
expected, ambient protein signals are observed in cell types which do not express
them (Fig. 3d-e and supplementary Fig. 4-6). For example, CD19 and CD20, which
are specific markers of B cells, are detected in all other cell types (Fig. 3d and
supplementary Fig. 4a), whereas T cell-specific markers like PD-1 and CD3D are
detected in all other cell types (Fig. 3e and supplementary Fig. 4b). Similarly, we
detected NK-specific markers CD56 and CD335 in non-NK cells (supplementary Fig.
4c-d) and monocyte specific marker CD14 in non-monocytes (supplementary Fig. 4e).
By applying scAR, the ambient signals were removed and denoised protein counts
correlated stronger with its corresponding RNA expression per cell type (Fig. 3d-e and
supplementary Fig. 4-6). Our finding is underlined by the fact that these ambient
counts are highly diversified (mean 9.6 £ STD 43.4) per marker per cell. Remarkably,
SCAR identifies the true signals even if the native expression is as low as background
noise. For example, before denoising, B cells, NK cells, monocytes and naive T cells
show similar level of the T cell marker PD-1 (Fig. 3e and supplementary Fig. 4f); after
denoising, all PD-1 counts are removed in B cells, NK cells, monocytes and DC cells
but not in T cells. To test whether scAR over-corrects the signals, we calculated the
scAR-estimated ambient ratios of these specific markers and compared them with a
naive approach, which simply considered all non-specific expression as ambient
signals. The total ambient ratios of these markers are comparable (supplementary Fig.
49), suggesting that scAR assigns reasonable number of UMI counts as ambient
signals.

We next compared the averaged protein counts by cell type before and after denoising
and aligned them with RNA expression (Fig. 3f). We observed strong background
signals in almost all antibodies in raw counts, while scAR significantly reduces the
background noise, leading to more specific expression of markers in subtypes. For
example, denoised CD4 and CD8 are exclusively present in CD4+ T cells and CD8+

T cells, respectively (Fig. 3f and supplementary Fig. 5a-b). Naive and memory T cells
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are distinguishable with CD197 and CD45RA (Fig. 3f and supplementary Fig. 5c-d).
Regulatory T cells (Treg) show high CD25 and negative CD127 as reported®? (Fig. 3f
and supplementary Fig. 5e-f). Similarly, we observed high CD14, negative CD16 in
CD14 monocytes, low CD14 and high CD16 in CD16 monocytes and high HLA-DR
protein counts in intermediate monocytes after scAR denoising (Fig. 3f and
supplementary Fig. 6a-c). In most of these cell types, sSCAR removes fewer than 10%
of raw protein counts (supplementary Fig. 6d). As a result, Spearman correlation
coefficient between RNA-protein pairs is increased in single cells (Fig. 3g). Together,
SCAR removes ambient signals while preserves the true signals, resulting in reliable

guantification of native protein counts in CITE-seq.
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Fig. 3 | scAR removes the ambient protein counts in CITE-seq data. A public CITE-seq dataset
highlights the presence of ambient contamination in protein count data and demonstrates the
functionality of SCAR on removing ambient protein signals. a, Similar to Fig.1a, illustration of the ambient
signal hypothesis in the context of protein counts. b, correlation analysis of protein counts between cell-
containing and -free droplets, as with Fig. 2b-c. The scatterplot shows the fraction of protein counts
between all cell-containing (x-axis) and all cell-free droplets (y-axis). The barplot shows the R? scores,
indicating the correlation of protein frequencies between cells and randomly sampled cell-free droplets.
X-axis shows the proportions of cell-free droplets. The droplet numbers are indicated in brackets. The
error bars indicate the variance of 10 samplings. ¢, UMAP of the PBMC5k dataset. Cell types are
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annotated using transcriptome data (Methods). d-e, Two selected examples, CD20 antibody (d) and
PD-1 antibody (e) to demonstrate scAR’s performance. UMAPSs visualize raw protein counts, denoised
protein counts and corresponding RNA counts, respectively. Color bars represent log2(counts +1).
Barplots below plot the single cell counts grouped by cell types. f, Heatmaps show the average row
protein counts (left), average denoised counts (middle) and average corresponding RNA counts (right)
in different cell types. Columns represent the antibodies used in this dataset; rows represent cell types.
g, scatterplots show the Spearman correlation coefficients between RNA-protein pairs before (x-axis)
and after scAR-denoising of protein counts (y-axis). The red dashed line represents y=x. Dots represent
antibodies.

scAR removes ambient signals for mRNA counts.

To further demonstrate the broad application of scAR, we selected another public
dataset which pools equal numbers of human HEK293T cells and mouse NIH3T3 cells
for single cell RNA sequencing®. Reads were mapped to a combined human-mouse
reference genome with Cellranger and all ambiguous ones which can map to both
species were excluded. We then classified the cells as human, mouse or multiplets by
unsupervised clustering of mMRNA (Methods and supplementary Fig. 7a). It results in
7590 HEK?293 cells, 8006 NIH3T3 cells and 697 mixed droplets which contains both
HEK293 and NIH3T3 cells. We detected similar number of total human and mouse
specific transcripts in cell-free droplets, as expected, they are proportional to those in
cells (supplementary Fig. 7b). In addition, both human cells and mouse cells exhibit
low level exogenous contamination in raw counts (Fig. 4a-b). HEK293 cells contain
~1.4% mouse transcripts on average and NIH3T3 cells contain ~2.2% human
transcripts on average. It should underline that contamination can also happen
between the same species, e.g., a HEK293T cell-containing droplet may not only
contain mouse transcripts but also human transcripts from ambient source. Namely,
the actual contamination ratio should be greater than exogenous contamination.

We applied scAR to cell-containing droplets and observed that scAR removes all
exogenous transcripts (Fig. 4b). In details, nearly all mouse transcripts were identified
and removed in HEK293T cells and nearly all human transcripts were also identified
and removed in mouse cells. On the other hand, the ratio of mouse and human
transcripts remains 1:1 in the multiplets after denoising.

Interestingly, we also noticed that the ambient frequencies (a in Fig. 1b) are varying
between different subpopulations of droplets. We sorted all droplets by their UMI
counts and identified four subgroups of droplets by kneeplot: cell-containing, droplet |
and droplet Il and cell-free droplets (Fig. 4c and Methods). We next found that cell-
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free droplets show stronger correlation (R>=0.85) to the cell-containing droplets than
droplet | (R?=0.33) and Il (R?=0.42) (supplementary Fig. 7c). When taking different
ambient frequencies as input, SCAR outputs different estimated contamination rates
(Fig. 4d-g and supplementary Fig. 7d). Overall, sScCAR can precisely predict the cross-
species ambient signals while the prediction for inter-species ambient signals depends
heavily on the input ambient frequencies. Given that the global ratio of human and
mouse transcripts is ~1.11 in cells (supplementary Fig. 7b), it is reasonable to expect
a similar contamination ratio of human and mouse sources. However, the droplet | and
Il lead to too high estimation of human-source contamination, as much as ~3x of
mouse source (Fig. 4e-f). This may be explained by the over-representation of human
transcripts in droplet | and 1l (supplementary Fig. 7b). The higher human transcripts in
ambient frequencies as input, the more counts to be identified as background noise
by scAR. The best estimate of ambient frequencies should be drawn from population
of cell-free droplets, as the estimated noise ratios are in a reasonable range in both
cell lines — ambient signals from human sources are slightly stronger than mouse
sources in both cell lines (Fig. 4g and supplementary Fig. 7d). These observations
also suggests that compositions in these droplets are clearly different, e.g., droplet |
and Il may contain more human cell debris. In addition, it also suggests that a precise

estimation of ambient frequencies is a key to noise reduction.
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Fig. 4 | scAR reduces the noise in mRNA counts. A public scRNAseq dataset of mixed human
HEK293T and mouse NIH3T3 cells (1:1) was selected to demonstrate scAR’s ability in noise reduction
in transcriptome data. a, Scatterplots show transcript composition before (left) and after (right) denoising
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in three populations, HEK293T, NIH3T3 and multiplets. X- and y-axis show transcripts which are
exclusively mapped to human or mouse genome, respectively. b, Quantification of exogenous
contamination before and after denoising in three populations. Y-axis represents per cell fraction of
exogenous transcripts, i.e. mouse transcript rate in all HEK293T cells and human transcript rate in all
NIH3T3 cells. ¢, The kneeplot shows subpopulations of droplets. d-g, Boxplots show the percentage of
ambient signals in HEK293 cells. The green boxes represent the proportion of observed mouse
transcripts. The blue and orange boxes represent scAR-estimated human and mouse ambient
proportions, respectively. Ambient frequencies are averaged from cells (d), droplet | (e) or droplet Il (f)
or cell-free droplets (g).

Benchmarking of methods for UMI denoising.

To evaluate scAR in comparison with other state-of-the-art methods*!~13, we used the
CITE-seq dataset and calculated the Spearman correlation coefficients of protein-RNA
pairs as the benchmarking metric (Fig. 5 and supplementary Fig. 8, Methods). totalVI
uses the module of scVI to correct for background noise for mMRNA data, so we skipped
scVI to avoid redundance. The results show that scAR outperforms totalVl and DCA
in denoising of both or either of MRNA and protein data (Fig. 5b and supplementary
Fig. 8b). In addition, totalVI trains VAE using both mRNA and protein data as input,
while scAR separately denoises mRNA and protein data, meaning ScAR is a more
unbiased approach. DCA does not show comparative performance mainly because it

is designed to denoise mMRNA data.
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Fig. 5 | Benchmarking of protein and mRNA count denoising. a, Scatterplots show the Spearman
correlation coefficients between RNA-protein pairs before (x-axis) and after denoising of both protein
and mRNA counts (y-axis). The red dashed line represents y=x. Dots represent antibodies. b, Boxplots
show Spearman correlation coefficients between RNA-protein pairs (both denoised, only mRNA
denoised, and only protein denoised). Denoising methods are indicated on X-axis.
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Discussion

Versatile single-cell omics technologies have expanded understanding of single cell
biology and development of new technologies is constantly pushing the boundary
further. In this context, we developed scAR to provide a reliable ‘one-for-all’ solution
to UMI count denoising for multiple single-cell omics technologies.

SCAR can precisely infer the native signals for protein data in CITE-seq and mRNA
data in scRNAseq. Recent approaches!?13263435 introduce deep learning
technologies (such as AE and VAE) for these tasks and show great promise. These
approaches proposed noise models which stick to the zero-inflation pattern of these
count data and estimate all the parameters through neural networks'21435, In scAR,
we constrain the noise model under the ambient signal hypothesis and empirically
estimate a parameter from cell-free droplets, this roughly reduces parameters by one
third and focuses the VAE on learning the biology-related native expression and the
noise ratio. As a result, this hypothesis-driven modeling significantly improves the
performance comparing to the ones that disregard the ambient signal hypothesis and
cell-free droplets (Fig. 5 and supplementary Fig. 9). Moreover, it generalizes scAR to
fit a broader range of single-cell omics datasets, independent of the sparsity of the
data.

SCAR can evaluate the probability of ambient contamination. This can ensure accurate
assignment of identity barcode for a class of single-cell omics technologies, including
single cell CRISPR screens (e.g., CROP-seq, Perturb-seq and CRISP-seq)*?282° and
cell indexing®>1’. We tested scAR on CROP-seq, but it should fit other ones in this
class as they take similar protocols to prepare, construct and sequence the libraries
of feature barcodes (either sgRNA or identity barcode). Most of current studies have
assigned exogenous barcodes by hard filtering approaches?®:3°, which filter out cells
with low depth and perform naive assignment afterwards. This is not only inaccurate
(Fig. 2) but also inefficient as it can further discard as many as >50% of cells3¢. Other
approaches such as MUSIC?® and scMAGeCK?’ propose to model single cell CRISPR
data by linking transcriptome profile to sgRNA assignment. On the one hand, these
methods are specific to single cell CRISPR data, and on the other, there is a risk of
being misled by potentially dominant transcriptional states (e.g. cell cycle), when
several nodes of the same pathway are being interrogated, or when the phenotypic

effect of the perturbation is low (in the case of, e.g., low effective sgRNAs or wrong
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time points). SCAR provides an accurate, unbiased and efficient solution to assignment
of identity barcode for this class of technologies.

Nonetheless, besides ambient contamination, other technical factors®!® can also
introduce background noise. We assume in scAR that ambient source is the most
predominant artifact and in turn this hypothesis seems to be confirmed by the
outstanding performance of scAR. However, further experimental validation may still
be required. In addition, in CITE-seq technology, the non-specific binding of antibodies
may bring in extra noise*4, this is not modeled in scAR as we consider it too specific
(dependent of the antibody and experimental cell lines) to violate the scope of
generality of SCAR. Moreover, identification of this noise may require dedicated well-
designed experiments (e.g., spike-in%), as models can hardly distinguish between
specific and non-specific binding without human knowledge.

Finally, we observed different contamination levels in different datasets. scAR’s ability
to estimate noise ratio may allow to evaluate batch effects and guide the experimental
design, such as the protocols for cell fixation and washing. Furthermore, scAR can
have great potential in facilitating technology development in droplet-based single-cell
omics, given the common and nonnegligible presence of ambient noise. For example,
the most recent scifi-RNA-seq®® achieves ultra-high-throughput by leveraging cell
indexing technologies to encapsulate and sequence multiple cells in a droplet. sSCAR

may have great potential in deconvoluting the cell identity in this complex setting.
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Methods

The scAR model.

SCAR uses hypothesis-driven probabilistic deep learning to infer the biological and
technical variation in droplet-based single-cell omics experiments. The raw counts
consist of biological signals and technical artifacts, which are modelled with a Binomial

model.

Modeling count data using Binomial regression.

We take a generative approach to modeling the observed count matrix X € N,"*¢,
which denotes M cells and G features (i.e., genes, antibodies, sgRNAs or identity
barcodes). A graphic model representation of this generative model is summarized in
supplementary Fig. 10. For a given cell m, x,, represents a G-dimensional vector of
observed expression data. We assume that xm is drawn from a Multinomial model:

Xm ~ Multinomial(d,,, prob = 6,,) (2)
where dm is the library size of cell m, 6,, is the feature frequencies. Therefore, for

feature g in cell m, the observed count x,,, is drawn from a Binomial model:
Xmg ~ Binomial(dm,prob = ng) (2)
where 6,,, represents probability of observing feature g in cell m. It determined by two

factors, native expression n,,, and ambient signals a,,,, which can be modelled as,

Omg = Nmg + Amg 3)
Nmg = 1- gm) X ﬁmg (4)
Amg = Em X Umg (5)

where ¢,, € [0,1] is a hidden variable, representing the fraction of total ambient counts.
Bmg is another hidden variable, representing the feature frequency of native
expression of feature g in cell m. a,,, represents the ambient frequency and according
to ambient signal hypothesis, it is independent of cells, so we get,

A (6)
Notably, the cell-free droplets can be expressed as equation (2), with the native

component being zero and noise ratio being 1, so,

X,g ~ Binomial(dy, prob = ay) (7)
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Where, x., and d, represent counts for feature g and library size in cell-free droplet e,
respectively. According to law of large numbers, we can approximate a, by averaging

feature counts in cell-free droplets,

_ ZExég
% = Spsaxl, (8)

Put all together, we have,

) ) YEXe
Xmg ~ Binomial (dm,prob = (1= &) X Bmg + &m X ZEngég) 9

where only &, and ,,,, are unknown parameters that need to be estimated. According

to Bayes' theorem, we get the posterior probability,

PXmg | €m Bmg) X P(&m. Bmg) 10
P(Xmg) ( )

p(gm, ﬁmg | xmg) =

Since the prior probability p( &y, Bmg) and likelihood p(x;,g4 | &n Bmg) both are
intractable (unknown or difficult to factorize over samples), we implement variational
inference?339 to estimate ¢, and S,,,4, as described in the following section. To ensure
flexibility, we also provide implementations of Poisson model to allow users to choose

and test.

Variational inference for sScCAR
We apply variational autoencoders to optimize the hidden variable ¢, and B,
mentioned above. The architecture of VAE is demonstrated in supplementary Fig. 11.
We introduce an additional latent variable z in bottleneck layers so the marginal log-
likelihood of observation x,, can then be written as,
log py (Xm) = —108 Py (2, €m, Bin| Xm) + 108 Dy (2, &m, Bin, Xm)  (13)

where ¢ represents the parameter space, i.e., model weights. ¢, and g,, are
calculated by deterministic neural networks (decoder),

Ems B = f(2) (14)
where, f represents neural networks and n c ¢ represents the trainable weights of f.
This means,

Py(&m» Bm12) =1 (15)
Therefore, we can integrate out ¢, and f,, and re-write the equation (13) as

log p, (X)) = —log py(z | xn) + log py (2, %) (16)

We construct variational posterior q(¢ | w) to approximate the posterior p(¢ | x,,).

Therefore, we have,
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qw(Z| Xm)
P (Z|xm)

log Py (xm) = E g, [log + E,q,[l0g Py (2, xp) —log g, (2 | x,n)] (17)

where the first term on the right side is the Kullback-Leibler divergence?*®4! between
distributions q and p, reflecting the difference between parameter distributions. It is
non-negative, so we can get the evidence lower bound (ELBO) as follows,

log Py (xm) = E, g [log 0y (2 %) — log 4, (z | xp)] =t L(@, ;%) (18)
Increasing the ELBO will approximate the distribution g to p thereby ensuring the
learnt variables are as close as the expectation. Therefore, the ELBO is generally used
as the objective function to fit the VAE. We can further transformation equation (18)
into,

L(®, w;%m) = —Di1(q0(@%m) || Pp(2) + Ezg, [l0g Py (xin]2)] (19)

The negative of ELBO is used as loss function to simultaneously optimize model
weights and hidden variables in scAR. In case of M cells, the loss function is then
written,

Loss = Dy, (qu(2|%) || p(2)) — E,-q, [X1 log py (x;]2)] (20)
Minimizing the loss function requires a tradeoff between the KL divergence and
expected negative log-likelihood term. On the one hand, the KL divergence between
q,(z|x) and p,(z) should be kept small, preventing the variational posterior from
being too different to the prior. On the other, the variational posterior parameters
should maximize the log likelihood log p,, (x|z), ensuring a small reconstruction error
of sSCAR. We use the reparameterization trick to calculate the gradients with respect to
¢ and w for KL term*1. According to equations (14) and (15), we have,

Py (xml|2) = Py (Xm | €ms Bm) (21)
Since we assume x,, is drawn from Binomial distribution with latent parameters
Em, Pm (S€E Equation (9)), py, (Xm | &m, Bm) also has a closed-form expression, thus
the gradient descents of negative log-likelihood term in equation (20) are easy to
calculate. Together, we use the gradients of the loss function to update the parameters
@ and w to determine the hidden variables noise ratio € and expected native

frequencies .
Bayesian inference and assignment of identity barcode

We infer the expected native signals n,, and ambient signals a,, in cell m using the

following equations,
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= (1— &) Xdpy X Bm (22)

Ap = €n Xdy X« (23)
where n,, is used as denoised counts for CITE-seq and scRNAseq.
For assignment of sgRNAs in CROP-seq, we use Bayesian factor as a metric to
compare two hypotheses: observed counts consist of both native and ambient
sgRNAs (H,) vs observed counts contain only ambient sgRNAs (H,). For a given
SgRNA g in cell m, this can be mathematically expressed as follows,

HIng: = Xmg ~ Binomial(d,,, prob = G4 + Npyg) versus H;”g: =

Xmg ~ Binomial(d,,, prob = @,,4) (24)

The Bayesian factor then is given by,

m,
K = Pr(xmgl Hy9)
MG Pr(xmgl Hy'9)

(25)

The numerator and denominator represent the probability that x,,, is produced under
assumption of H;"Y and H,Y, and we approximate them using the cumulative

distribution function (stats.binom.cdf) and probability mass function (stats.binom.pmf),

respectively. High K,,, (>=3) favors the first hypothesis, meaning the sgRNA g

contains native signal. In the case of multiple high K, we assign the sgRNA of highest
K to the cell.

Model optimization for scAR

To identify a best universal set of hyperparameters as the default setting of scCAR, we
perform grid search on two types of synthetic datasets (see supplementary note 1),
which simulate CROP-seq data type and CITE-seg/scRNAseq data type respectively.
To limit the number of parameters, we fix several less important parameters. For
example, the training epochs are fixed at 800. Additionally, we use the Adam
optimizer*? with exponential decay to schedule the learning rate but the decay rate is
fixed at 0.97 every 5 epochs. The hyperparameters which are optimized include the
number of nodes of neural networks, dimension of latent space, dropout probability of
neurons, initial learning rate and KL divergence weight. As a result, we tested 6912
combinations of parameters for each dataset (supplementary Fig. 12) and identified
the best set listed as follows: units of 1st layer: 150; units of 2nd layer: 100, dimension

of latent space: 15; initial learning rate: 0.001, dropout probability: 0; KLD weight: 1e-
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5. All experiments were performed using these optimized parameters unless otherwise
specified.

It is also worth noticing that we use either ReLU or modified Softplus activation (see
supplementary note Il) functions to output 8 in decoder depending on the sparsity of
expected native matrices. For example, CROP-seq or cell indexing datasets are
extreme sparse as each cell is expected to have a single (or a few) native identity
feature barcode, so we use RelLU as the activation function to generate sparse g;
while CITE-seq datasets are generally denser, so we use a modified Softplus as the

activation function to avoid too many zeros in S.

CROP-seq experiment.

The CROP-seq library was cloned into a modified pLKO-TET-ON plasmid in a pooled
format by Golden Gate. The cloning reaction product was used to transform Endura
electrocompetent cells, which were expanded in LB medium overnight (OD600 = 0.8)
and plasmid DNA was harvested using Genopure plasmid maxi kit (Roche). We
produced lentiviral particles and transduced MCF7-dCas9-KRAB cells (MOI = 0.3) with
the CROP-seq library. The cells were selected with 2ug/ml puromycin (Invitrogen) and
they harvested at defined time points by FACS (mCherry-positive cells). The single-
cell suspensions were fixed in 90% methanol in DPBS (v/v) and stored at -80 °C prior
to rehydration and further processing. The rehydration buffer was supplemented with
1% Bovine serum albumin and 0.5 U/ul RNase inhibitor (Sigma, P/N 3335399001). All
samples were processed using Chromium Next GEM single-cell 3’ reagents kit (10x
Genomics) according to the manufacturer’s protocol and the libraries were sequenced

in an lllumina HiSeq 2500.

Pooled CRISPR screen.

MCF7-CRISPRI cells were transduced with independent lentiviral pools (MOI = 0.3) of
the CROP-seq library. To guarantee a correct representation of all sgRNAs in the cell
population we transduced =1000 cells per plasmid. The cells were selected using
2ug/ml puromycin (Invitrogen) at 24 hours post-transduction, after which they were
expanded and harvested at indicated time points. We extracted gDNA from the cells

using DNeasy kit (Qiagen) and prepared libraries for next generations sequencing.
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Analysis of CROP-seq data.

Single-cell sequencing data were processed using Cell Ranger (version 3.1.0, 10x
Genomics) and sgRNA count matrices were (generated using KITE
(https://github.com/pachterlab/kite). Human genome assembly (Ensembl GRCh38
release-98) was used as the reference to map mRNA reads. The Scanpy package*?
was used to perform quality control, cell filtering, gene filtering and differential
expression analysis. We used two normalization approaches to examine the
knockdown effect. The first one as shown in Fig. 2g-i is library size normalization.
Sequencing depth per cell was normalized to 1.0xe® counts and t-test was performed
on the normalized counts across cell groups using scipy.stats.ttest_ind function. The
second one (supplementary Fig. 3a) is Z-normalization as reported in our previous
publication®. For each gene, we subtracted mean value of CTL group then divided by

standard deviation of CTL group.

Analysis of CITE-seq data.

The cellranger outputs of PBMCs5k®! dataset were downloaded from 10x genomics.
Cells with extreme counts (<1500 counts or >15000 counts) were discarded. Stressed
cells with high presence of mitochondrial genes (>=0.2) were also discarded. The cell
clustering was performed using Scanpy and annotated based on expression of a panel
of marker genes.

Correlation of RNA-protein pairs. Both raw and denoised RNA counts were library size
normalized. Raw and denoised protein counts were used without any normalization as
library sizes of them represent cell type variance. Spearman’s correlation was
performed between RNA and protein counts using scipy.stats.spearmanr function.
Control antibodies were removed for this correlation analysis. CD45RA and CD45R0,
which are encoded by an identical gene PTPRC were also removed due to the difficulty
of identifying isoform transcripts. In addition, several markers (CD15, CD34, CD80,
CD137, CD274, CD278, PD-1) were removed due to extremely low counts of either
protein or corresponding RNAs. On the other hand, a version of full antibodies was

also plotted in supplementary Fig. 8.

Species-mixing experiment.
The cellranger outputs of species-mixing dataset®*®> were downloaded from 10x

genomics. Scanpy was used to perform quality control, gene filtering, cell filtering and
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species identification. In brief, we first took the ‘filtered_feature_bc_matrix’ from
cellranger output and further filtered out genes with extreme counts (<200 or >6000 in
total) and cells with low gene counts (<200). We then performed library size
normalization, log transformation, clustering and UMAP. By checking the differently
expressed genes, we identified 7590 HEK293T cells, 8005 NIH3T3 cells as well as
697 multiplets mixed with both HEK293T and NIH3T3.

Examination of droplets. To identify the best representation of ambient signals, we
examined subpopulations of droplets in the unfiltered matrix — namely,
‘raw_feature_bc_matrix’. All droplets were ranked by their total UMI counts and split
into four subgroups through kneeplot: 1) droplets in filtered_feature_bc_matrix’ were
marked as cells, 2) droplets with high counts (>40) were marked as ‘droplet I’, 3)
droplets with intermediate counts (>12 and <=40) were marked as ‘droplet II', 4)
droplets with low counts (<=12 and >0) were marked as ‘cell-free droplets’. We took
the total gene frequencies in each subpopulation as the ambient frequencies and run

SCAR to compare the estimated noise ratio.

Data availability.

The CROP-seq data discussed in this manuscript have been deposited to the
Sequence Read Archive and are accessible through BioProject accession number:
PRJINA794328. All other datasets are public. The CITE-seq datasets (PBMCs5k) and
HEK293T and NIH3T3 pooled scRNAseq (20k_hgmm dataset) were downloaded from
10x genomics datasets. Other datasets were downloaded from Sequence Read

Archive.

Code availability.

The package of scAR and codes to reproduce the results in this manuscript is available
at Github (https://github.com/CaibinSh/scAR).

Acknowledgements.

We thank Joel Wagner and Joshua Korn for inspiring discussions, Mathias Eder and

Esther Uijttewaal for additional technical support.

Author contributions.

26


https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476312; this version posted January 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C.S. and A.d. conceived and designed the study. C.S., G.L. and A.d. designed the
statistical model and performed analysis. R.L. and G.G.G. designed CROP-seq and
bulk sequencing experiments and R.L. conducted the experiments. A.W. and R.C.
performed scRNAseq and bulk sequencing and S.S. performed preprocessing of
CROP-seq data. S.D., AK., E.D., G.G.G, G.R. and A.d. supervised the study. C.S.
wrote the original draft. C.S., G.L., R.L., S.D., E.D. and A.d. reviewed and edited the
dratft.

27


https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476312; this version posted January 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Supplementary Tables

sgRNA Target Group

number sgRNA name Guide sequence genes names Library name
1 CDH1_gl AGTTCCGACGCCACTGAGAG CDH1 CDH1 CROP-seq_pilot
2 CDH1_g2 GACTTGCGAGGGACGCATTC CDH1 CDH1 CROP-seq_pilot
3 CDH1_g3 CCGAGAGGCTGCGGCTCCAA CDH1 CDH1 CROP-seq_pilot
4 CDH1_g4 CGGTGACGACGGGAGAGGAA CDH1 CDH1 CROP-seq_pilot
5 CDH1_g5 CCTCAGGACCCGAACTTTCT CDH1 CDH1 CROP-seq_pilot
6 ESR1_TSS1_gl TCCGTTCTGAGTCGGTAGAC ESR1 ESR1_TSS1 CROP-seq_pilot
7 ESR1_TSS1_g2 AGCTCTTTAACAGGCTCGAA ESR1 ESR1_TSS1 CROP-seq_pilot
8 ESR1_TSS1_g3 CTATAGAATGGGCAGGAGAA ESR1 ESR1_TSS1 CROP-seq_pilot
9 ESR1_TSS1_g4 GTATGTTATCTGGAACAGAC ESR1 ESR1_TSS1 CROP-seq_pilot
10 ESR1_TSS1_g5 GGTGTGCTGTACTAAGAAAA ESR1 ESR1_TSS1 CROP-seq_pilot
11 FOXA1_gl GCCGCCCGTCGCTTCGCACA FOXA1 FOXA1 CROP-seq_pilot
12 FOXA1_g2 CCAACGCCACCCGGGCGAAG FOXA1 FOXA1 CROP-seq_pilot
13 FOXA1_g3 CGCCTCCGCGGGAAGTGAGC FOXA1 FOXA1 CROP-seq_pilot
14 FOXA1_g4 CAACTGCACTTGCCTCGCAG FOXA1 FOXA1 CROP-seq_pilot
15 FOXA1_g5 GTGAGCGGGCTGCCTCTGCG FOXA1 FOXA1 CROP-seq_pilot
16 GATA3 gl CTGTGGCGCGACGCAACTTA GATA3 GATA3 CROP-seq_pilot
17 GATA3_g2 GCAACGCAATCTGACCGAGC GATA3 GATA3 CROP-seq_pilot
18 GATA3_g3 GCGGCGGCGTACGACCTGCT GATA3 GATA3 CROP-seq_pilot
19 GATA3 g4 TTCGCTACCCAGGTTGGTAC GATA3 GATA3 CROP-seq_pilot
20 GATA3_g5 TTAGGTCCTCCCAAGTGGTT GATA3 GATA3 CROP-seq_pilot
21 GRHL2_g1 ACTAAAGGGTACAAGCCCGA GRHL2 GRHL2 CROP-seq_pilot
22 GRHL2_g2 CGCGGAGTCCTCCTGGATCG GRHL2 GRHL2 CROP-seq_pilot
23 GRHL2_g3 CCTCACCTAGCCGGAAAGGT GRHL2 GRHL2 CROP-seq_pilot
24 GRHL2_g4 GTGTGTGAGAGCGCCCGAGA GRHL2 GRHL2 CROP-seq_pilot
25 GRHL2_g5 CCTTGCGAGAAAGTTACCTG GRHL2 GRHL2 CROP-seq_pilot
26 KMT2D_g1 AACAGACGAGATGCCTCCGG KMT2D KMT2D CROP-seq_pilot
27 KMT2D_g2 GATAGAGGCGTCTCAAGTGC KMT2D KMT2D CROP-seq_pilot
28 KMT2D_g3 GACAAGGGCGACTCCTCCAG KMT2D KMT2D CROP-seq_pilot
29 KMT2D_g4 GGGCAATTCCTCAGGTGGCG KMT2D KMT2D CROP-seq_pilot
30 KMT2D_g5 GGGCGATGCTTCAGGTGGTG KMT2D KMT2D CROP-seq_pilot
31 KMT2C_g1 GACTAGGATGTCGTCGGAGG KMT2C KMT2C CROP-seq_pilot
32 KMT2C_g2 CGCACTCACACACATCGGCG KMT2C KMT2C CROP-seq_pilot
33 KMT2C_g3 GGATCCCGGTCCTCCTCCTG KMT2C KMT2C CROP-seq_pilot
34 KMT2C_g4 AAATGCGAGAGGCTGAGCCG KMT2C KMT2C CROP-seq_pilot
35 KMT2C_g5 TCTCGCATTTCCCGCAGCCC KMT2C KMT2C CROP-seq_pilot
36 CTRL gl TCTCGTCTGATACCTCGGTC OR2L13 CTL CROP-seq_pilot
37 CTRL_g2 CTCATCGTGGTCGGCGGTCG OR2L13 CTL CROP-seq_pilot
38 CTRL_g3 GCGGCGTCTTTGGCAGTAGT OR2L13 CTL CROP-seq_pilot
39 CTRL_g4 GGCGTGCTTGCGGGTCCAGG OR2L13 CTL CROP-seq_pilot
40 CTRL_g5 CGCTGCTGCGAGACCAGCCG OR2L13 CTL CROP-seq_pilot
41 CTRL_g6 ACTCACCTCAACCGTATGGA CTL CTL CROP-seq_pilot
42 CTRL_g7 CTGCAAGTAACCCATGCACC CTL CTL CROP-seq_pilot
43 CTRL_g8 ATGCACTCAGCAAGTCTAAC CTL CTL CROP-seq_pilot
44 CTRL_g9 GGCTGTGAAGAACCAGAAGT CTL CTL CROP-seq_pilot
45 CTRL_g10 GCTGCCTGTCCTTTGAGTCA CTL CTL CROP-seq_pilot
46 CTRL_gl11 CCGCAGCAATATCTTGGCTC CTL CTL CROP-seq_pilot
47 CTRL_g12 GGGCTCTCCAACTCACCAGG CTL CTL CROP-seq_pilot
48 CTRL_g13 TGCTCAGCAGACTAGGCAGC CTL CTL CROP-seq_pilot
49 CTRL_g14 GAAGCTCTGCTCAGCAGACT CTL CTL CROP-seq_pilot
50 CTRL_g15 TCTGTCTCTGAGCTAGACTT CTL CTL CROP-seq_pilot
51 TRPS1_gl GACGTAATGCGCGGAGACTG TRPS1 TRPS1 CROP-seq_pilot
52 TRPS1_g2 CTTGAAACTGACGTAATGCG TRPS1 TRPS1 CROP-seq_pilot
53 TRPS1_g3 AGAGCAATCGAGAGGACGCG TRPS1 TRPS1 CROP-seq_pilot
54 TRPS1_g4 AAGGCGAGAGAGCAATCGAG TRPS1 TRPS1 CROP-seq_pilot
55 TRPS1_g5 GGATGTGCCCGGTGCCGGGT TRPS1 TRPS1 CROP-seq_pilot
56 YAP1_gl CCGCCAGACCAGTGGAGCCG YAP1 YAP1 CROP-seq_pilot
57 YAP1_g2 CCTCCGTCAAGGGAGTTGGA YAP1 YAP1 CROP-seq_pilot
58 YAP1 g3 CGGCGCTGTCCTCGCTCTCA YAP1 YAP1 CROP-seq_pilot
59 YAP1_g4 GGCGAGTTTCTGTCTCAGTC YAP1 YAP1 CROP-seq_pilot
60 YAP1_g5 CTGCGAGGCACTCGGACCTG YAP1 YAP1 CROP-seq_pilot
61 CTL _gl6 TAGATCTGAAAGGCTGGGAT CTL CTL CROP-seq_pilot
62 CTL_g17 TGTCTCCTACTGCGTGTTGA CTL CTL CROP-seq_pilot
63 CTL _g18 TCTTAATGATAGAATCTTCC CTL CTL CROP-seq_pilot
64 CTL_g19 GCTCCCAGTGTCCTGTGATA CTL CTL CROP-seq_pilot
65 CTL_g20 AAGCACCCAGTAGTAAAACA CTL CTL CROP-seq_pilot
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86
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95
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99

CTRL_g21
CTRL_g22
CTRL_g23
CTRL_g24
enh588_gl
enh588_g2
enh588 g3
enh588_g4
enh588_g5
enh588_ g6
CCND1_g1
CCND1_g2
CCND1_g3
CCND1_g4
ESR1_TSS2_g1l
ESR1_TSS2_g2
ESR1_TSS2_g3
ESR1_TSS2_g4
ESR1_TSS2_g5
TP53_gl
TP53_g2
TP53 g3
TP53_g4
TP53_g5
PIK3CA_gl
PIK3CA_g2
PIK3CA_g3
PIK3CA_g4
PIK3CA_g5
suz12_gl
SUz12_g2
suz12_g3
SuUz12_g4
SUZ12_g5

CTGAAAAAGGAAGGAGTTGA
AAGATGAAAGGAAAGGCGTT
TGCGCGGCTTGGGAAGCCCA
GACGCGAGGAAGGAGGGCGC
GGATCTGCAGGCCCAAGGTC
CTCTCAGTCATCCTTGACCTT
GCTCTCAGTCATCCCTGACCT
TCCTCTAGCAGACGGCCCTG
TCTGCTAGAGGATCACTCCT
GGCGGAGTCATGCCAGCTCA
GCAGCAGAGTCCGCACGCTC
GGTGAGTAGCAAAGAAACGT
ACTCCGCCGCAGGGCAGGCG
CTATGAAAACCGGACTACAG
AAGCCGGGCGACCCGAC
GGCGCACGAGGATCTGCTAA
GGAGCCCAGGAGCTGGCGGA
TCAGGGCAAGGCAACAGTCCC
GGAGACCAGTACTTAAAGT
ATGAGTCCTCTCTGAGTCAC
TCAGGAGCTTACCCAATCCA
CCGAGAGCCCGTGACTCAGAG
TGGGGACTTAGCGAGTTT
GGAAGCGTGTCACCGTCG
TCTCCCAGCGTCGGCCCG
AGCGTGAGTAGAGCGCGGAC
GAGAGGGTGCGGCGATCGC
CCCCGAGCGTGAGTAGAGCG
GGAGTCTCCGGCACCCACC

GGGCCGCCCGGCGGGTAGCTGG

CTCCGGCGGACCGAGGGGGGA
CGGAGCGAGGCCAGGGTA
CAGGCTCCGGCGGACCGAGG
TATTGCAGGCGCTTGCTCTC

CTL
CTL
CTL
CTL
CCND1
CCND1
CCND1
CCND1
CCND1
CCND1
CCND1
CCND1
CCND1
CCND1
ESR1
ESR1
ESR1
ESR1
ESR1
TP53
TP53
TP53
TP53
TP53
PIK3CA
PIK3CA
PIK3CA
PIK3CA
PIK3CA
suzi12
suzi2
Suz12
suzi12
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Supplementary Table 1 | CROP-seq libraries.
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Supplementary Fig. 1 | Validation of CROP-seq libraries. a, The gene dependency scores of most

target genes show negative effects on cell growth in MCF7. Data are originally from two pooled

screening projects (DRIVE and Achilles) and obtained from https://depmap.org/. b, Three selected
examples to illustrate an exponential model to evaluate the dropout rate of sgRNASs in cell pool. Dots
represent biology replicates. Lines represent the exponential dropout model, as indicated by the
equation. c, The fitness scores (the parameter alpha in b) of each guide. Green (positive alpha)
indicates cancer cell promotion and red indicates cancer cell inhibition. Sizes of squares indicate p

values.
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Supplementary Fig. 2 | Ambient noise widely exist in single-cell omics technologies. Ambient
contamination is observed in several public datasets and the background noise is highly correlated with
endogenous signal. a, Lopes2021 dataset. b, The A549 5k dataset from 10x genomics. ¢, The
Ryan2019 dataset.
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Supplementary Fig. 3 | Supplementary to Fig. 2. Evaluation of scCAR on CROP-seq. a, Similar to Fig.
2i, the dotplot shows the overall comparison between two assignment approaches on t-statics of z-
normalized expression. X-axis represents guide groups. Y-axis represents subgroups of cells as
exemplified in Fig. 2g and Fig. 2h, separated by two time points and assignment approaches. Target
genes are shown on the top. Their expression (log transformed) in each group is compared with that in
CTL group and resulting t-statistics are shown by the dot color. Blue color indicates down-regulation,
and red indicates up-regulation. CTL group is centered at zero. The bimodal sizes of circles represent
the p-values from t-test (the bigger means p<0.05, the smaller means p>=0.05). * highlights the guide
groups where scAR significantly improves the accuracy and # marks the groups where scAR
underperforms naive assignment. b, The comparison between two assignment approaches on cell
number after assignment. Sizes of squares represent cell numbers of each assignment. ¢, The overall

comparisons of cell number. Each dot represents an sgRNA.
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Supplementary Fig. 4 | scAR reduces the non-specific ambient antibodies.
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Supplementary Fig. 5| scAR identifies markers for subtypes of T cells.
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Supplementary Fig. 6 | scAR identifies marker for subtypes of monocytes.
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Supplementary Fig. 7 | Supplementary to Fig. 4. A public scRNAseq dataset of mixed human

HEK293T and mouse NIH3T3 cells (1:1) was selected to demonstrate scAR’s ability in noise reduction

in transcriptome data. a, UMAP shows three populations of cell-containing droplets, HEK293T, NIH3T3

and multiplets. b, Fraction of transcripts in subpopulations of droplets. c, Correlation of gene

frequencies between subpopulations of droplets and cell-containing droplets. d, Boxplots show the

percentage of ambient signal in NIH3T3 cells. The green boxes represent the proportion of observed

human transcripts. The blue and orange boxes represent scAR-estimated mouse and human ambient

proportions, respectively.
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Supplementary Fig. 8 | Supplementary to Fig. 5 with full list of markers. Benchmarking of protein

and mRNA count denoising. a, The scatterplot shows the Spearman correlation coefficients between

RNA-protein pairs before (x-axis) and after scAR-denoising of both protein and mRNA counts (y-axis).

The red dashed line represents y=x. Dots represent antibodies. b, Boxplots show Spearman correlation

coefficients between RNA-protein pairs (both denoised, only mRNA denoised, and only protein

denoised). Denoising methods are indicated on X-axis.
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Supplementary Fig.9 | The performance of two versions of scAR. We compared two versions of
SCAR to demonstrate the necessary of using cell-free droplets. a, SCAR v1 is an early version of SCAR
in which we fully relied on VAE to learn the ambient frequencies. b, Heatmaps of synthetic CITE-seq
data (supplementary Note I). Native counts represent the ground truth, which are the signals we aimed
to recover from observed counts. scAR refers to the version in Fig. 1, which we use cell-free droplets
to estimate the ambient frequencies. scAR v1 refers to the version in (a). ¢, scAR v1 fails to learn the
real ambient frequencies. Each dot represents a protein marker. d, The noise ratios estimated by two

versions of sSCAR. Each dot represents a cell, colors represent cell type.
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@ featuresg=12 .., G

cellsm=12, ..M cell-free droplets e = 1,2, ..., E

Supplementary Fig. 10 | Graphic model of scAR. The plates (three rectangles) represent
independent replication, here, meaning individual cells, features and cell-free droplets, respectively.
Grey circles represent observed random variables, e.g., dn represents total counts in cell m and Xmg
represents the observed count of feature g in cell m. Open circles represent latent random variables.
Edges denote conditional dependencies among the variables.
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Supplementary Fig.11 | The architecture of VAE in scAR. The optimized dimension numbers

(supplementary Note II) of neural network layers are indicated and used as default parameters in scAR.

They can also be modified by assigning optional arguments in the scAR command line tool

(supplementary Note IlI).

40


https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476312; this version posted January 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a hyperparameter optimization on synthetic CROP-seq data
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Supplementary Fig.12 | Hyperparameter optimization of scAR. Two synthetic datasets
(supplementary Note 1), simulating CROP-seq data type and CITE-seq data type, were used to optimize
sCcAR to allow generalized performance. We performed grid search to identify the optimal parameter
set. In total, there are 6912 sets of parameters in each dataset. a, Hyperparameter optimization on a
synthetic CROP-seq dataset. In this class of single-cell omics technologies, assignment of identify
barcodes is key information (classification problem), so we used assignment accuracy as a metric to

compare performance among parameters. b, Hyperparameter optimization on a synthetic CITE-seq
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dataset. As with scRNAseq, levels of feature barcodes are important information (regression problem).

So, we use Mean Absolute Error (MAE loss) as metric in this case.
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