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Abstract 

Droplet-based single-cell omics, including single-cell RNA sequencing (scRNAseq), 

single cell CRISPR perturbations (e.g., CROP-seq) and single-cell protein and 

transcriptomic profiling (CITE-seq) hold great promise for comprehensive cell profiling 

and genetic screening at the single cell resolution, yet these technologies suffer from 

substantial noise, among which ambient signals present in the cell suspension may 

be the predominant source. Current efforts to address this issue are highly specific to 

a certain technology, while a universal model to describe the noise across these 

technologies may reveal this common source thereby improving the denoising 

accuracy. To this end, we explicitly examined these unexpected signals and observed 

a predictable pattern in multiple datasets across different technologies. Based on the 

finding, we developed single cell Ambient Remover (scAR) which uses probabilistic 

deep learning to deconvolute the observed signals into native and ambient 

composition. scAR provides an efficient and universal solution to count denoising for 

multiple types of single-cell omics data, including single cell CRISPR screens, CITE-

seq and scRNAseq. It will facilitate the application of single-cell omics technologies.
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Introduction 

Single-cell RNA sequencing (scRNAseq) enables researchers to investigate 

transcriptomes at single cell resolution, improving our understanding of cellular 

heterogeneity and interactions between single cells and the microenvironment. Recent 

efforts have extended scRNAseq beyond transcriptomes by encoding additional layers 

of information, resulting in versatile tools for single-cell omics. For instance, by 

combining functional screens with scRNAseq, CROP-seq has enabled the 

interrogation of multiple biological nodes in a single experiment1–3; by combining 

ssDNA-barcoded-antibodies with scRNAseq, CITE-seq has provided simultaneous 

quantification of mRNA and surface proteins in a single cell4, which shows great 

potential especially in immunophenotyping in fundamental and clinical research5. Most 

recent efforts have even combined both technologies to enable multimodal profiling of 

transcriptome and surface proteins in response to gene perturbations in cancer cells6. 

Despite the exciting concepts and anticipated potential, applying these pioneering 

technologies is challenging. One outstanding reason is the wide presence of 

measurement noise. Various technical factors, such as ambient contamination7,8, 

amplification bias9 and index swapping10 generate noise in single-cell omics 

experiments. Several methods have been proposed to correct for the background 

signals7,8,11–13. Most of these are highly specific to transcriptome data7,8,11,12, several 

tools are specific to protein data in CITE-seq13,14, while few attempt to denoise 

exogenous barcode counts in other extended single cell technologies, such as single 

cell CRISPR screens and cell indexing15–17 technologies. Conceptually, however, 

there is little difference in the procedure in which these various technologies are 

capturing their respective information (i.e., mRNA, sgRNA, expressed barcodes and 

antibody counts). All relevant molecules are included in the same reaction solution 

during most of the involved processes, such as droplet formation, cell lysis, library 

construction and sequencing. Background noise likely originates in a similar (if not 

identical) way in each of these layers, meaning an ideal model can, in principle, 

describe the common sources of the artifacts in a non-technology-specific manner. To 

our knowledge, no such algorithm has been proposed so far. 

To this end, we developed single cell ambient remover (scAR), a hypothesis-driven 

model to identify and remove the background noise for transcriptome, protein and 

feature-barcode data in single-cell omics technologies. Cell-free transcripts have been 
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observed in empty droplets18 and are hypothesized to arise from ambient RNAs in 

single cell suspension, which likely originates from damaged cells caused by cell 

lysis7,19,20. This hypothesis suggests that ambient RNAs may not be completely 

random but deterministic signals to a certain extent. Indeed, gene frequencies are 

correlated between cell-containing and cell-free droplets7. These together motivate us 

to explicitly evaluate the ambient signal hypothesis in multiple single-cell omics 

technologies, which rationalizes a universal probabilistic model to describe this type 

of noise. To highlight the generality of our approach, we apply scAR to multiple 

datasets generated using different technologies from different sources, including an 

internal CROP-seq dataset and several public CITE-seq datasets and scRNAseq 

datasets. We also evaluate scAR with competing methods where available.  
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Results 

The scAR model. 

scAR uses a latent variable model to represent the biological and technical 

composition in the observed count data (Fig. 1). It is designed under ambient signal 

hypothesis, which assumes that ambient signals originate from broken cells during 

sample preparation, homogenize in single cell solution (ambient signal pool) and 

contaminate cell-containing and cell-free droplets (Fig. 1a). Mathematically speaking, 

ambient signals are drawn from Binomial distributions with a shared parameter 

(denoted as ambient frequencies, α) in cell-containing and cell-free droplets. This 

parameter therefore can be estimated using cell-free droplets. Besides, we introduce 

two hidden variables noise ratio (ε) and native expression frequencies (β) to represent 

the total contamination level per cell and normalized ‘true’ expression per cell 

respectively (Fig. 1b). scAR simultaneously infers ε and β using the variational 

autoencoder (VAE) framework21–23 (Fig. 1b, Methods).  

We use the optimized variables ε and β to estimate the ‘theoretical’ gene expression, 

which is considered as denoised counts for downstream analysis. In addition, in 

several feature barcode technologies, such as CROP-seq and CellTagging15, the 

presence/absence of native signals is more critical information than the actual level. 

To reflect this, scAR outputs a probability matrix representing the probability whether 

raw observed counts contain native signals. 
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Fig. 1 | The overview of scAR. scAR is a hypothesis-driven model for noise reduction in droplet-based 

single-cell omics. a, Demonstration of the ambient signal hypothesis. During preparation of single cell 

solution, RNA or protein counts are released upon cell lysis and consequently encapsulated by droplets 

with or without a cell. In the case of a cell, these exogenous molecules are mixed with native ones and 

barcoded by the same bead, which results in mixed counts as the final output. Under this assumption, 

the ambient signals in both cell-containing and cell-free droplets are drawn from a same pool (meaning 

an identical distribution). UMI stands for unique molecular identifier. For the purpose of illustration, 

reddish purple, light green and their mixture hint ambient signals, native signals and observed counts, 

respectively. b, scAR takes raw count matrices of RNA or protein as input and learns two sets of 

parameters ( and ) through the variational autoencoder. , a column vector represents noise ratios 

per cell and , a matrix represents cell-wise native frequencies of RNAs or proteins. α, a row vector 

represents the ambient frequencies of RNAs or proteins, which is empirically estimated by averaging 

cell-free droplets. scAR assumes α is an experiment-specific factor thereby using a unique α for all 

cells from a single experiment. The observed raw counts are modelled using a Binomial model which 

contains known parameters α and sequencing depth D and two hidden variables  and . We optimized 

 and  by minimizing the reconstruction errors and K-L divergence (Methods). scAR outputs two 

matrices, a denoised count matrix and a probability matrix. The latter represents the probability that a 

given observed count is not drawn from ambient sources (in other words, native signals exist). Meaning 

of color codes is the same as a. 

 
 

Examination of ambient signal hypothesis.  

We conducted a case study which combines CROP-seq and bulk sequencing to 

evaluate the ambient signal hypothesis (Fig. 2a and Methods). We designed a viral 

pool of 99 sgRNAs targeting 13 different genes (supplementary table I), most of them 

being essential in MCF7 cells24,25 (supplementary Fig. 1). We infected MCF7 cells 

expressing dCas9-KRAB with the lentiviral libraries at extraordinary low multiplicity of 

infection (MOI=0.3) to ensure single integrations of sgRNAs. Excessive sgRNAs in a 

cell are supposed to be ambient signals. Cells were harvested at various time points 

post-transduction and split into two portions, with one portion taken for 10x scRNAseq 
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and the other for bulk sequencing of sgRNAs, which reveals the frequencies of sgRNA 

libraries in the samples. In addition, the gene regulation activity of CRISPRi provides 

an additional way to assess the identification of ‘true’ sgRNAs. 

To validate whether ambient sgRNAs are correlated with the native ones, we 

compared sgRNA frequencies in bulk sequencing and in cell-free droplets from CROP-

seq. Results show high correlation of sgRNA frequencies at both time points (Fig. 2b). 

Randomly sampled subsets of cell-free droplets (from 0.5% to 5%) also show high 

correlation (Fig. 2c), surprisingly, as few as ~200 droplets consistently show high 

correlation to the bulk cells. Together, these observations suggest that ambient signals 

are not random noise but endogenous expression-correlated artifacts. We next 

examined the raw sgRNA counts in cell-containing droplets and observed presence of 

ambient counts (Fig. 2d). ~25 distinct sgRNAs were detected per cell on average while 

<=1 sgRNA is expected because of low multiplicity of infection. We also observed 

significant ambient contamination as well as high correlation to endogenous 

expression in datasets of different technologies and from various laboratories3,26,27 

(supplementary Fig. 2). Altogether, these indicate that the ambient signals are 

systematic noise in single-cell omics and building scAR on this basis is rational. 
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Fig. 2 | scAR identifies integrated signals in CROP-seq data. A CROP-seq experiment shows strong 

ambient contamination, which affects guide assignment when using the naïve approach. scAR enables 

more accurate guide assignment. a, Demonstration of the experimental design (Methods). b, 

Scatterplots of sgRNA frequencies between two sources. X-axis represents sgRNA frequencies 

obtained by bulk DNA sequencing, Y-axis represents sgRNA frequencies obtained by averaging RNA 

counts in cell-free droplets from 10x scRNAseq. Each dot represents an sgRNA, the red dashed lines 

represent y=x and coefficients of determination (R2 scores) are shown. c, coefficients of determination 

(R2 scores) show the correlation of sgRNA frequencies between bulk cells and randomly sampled cell-

free droplets. X-axis shows the proportions of cell-free droplets. The droplet numbers in each group are 

indicated in brackets. The error bars indicate the variance of 10 samplings. d, Distribution of distinct 

sgRNAs per cell in the raw counts. X-axis represents the number (not UMI count) of distinct sgRNAs 

per cell, y-axis shows the density. Samples from two time points D5 and D12 are colored by light blue 

and orange respectively. The size of lentivirus libraries and expected number of sgRNA are highlighted 

by dashed lines. e, Cell fraction after guide assignment. scAR assignment is based on the probability 

matrix, each cell is assigned with the guide(s) with highest probability. Naïve assignment is based on 

raw count matrix, each cell is assigned with the guide(s) with highest UMI counts. f, Similar to b, 

scatterplots show the sgRNA frequencies in cells from 10x scRNAseq (post-assignment) and in bulk 

cells. Y-axis here represents cell fractions grouped by distinct sgRNAs post-assignment. The red 

dashed lines represent y=x. g-h, Two selected guide groups from D12 samples to demonstrate scAR’s 

performance. The Venn diagrams show the number of cells assigned with FOXA1_g1 (g) and 

FOXA1_g3 (h). scAR assignment is marked with purple and naïve assignment is marked with blue. 

Cells assigned with the same guide by both approaches are labeled as ‘naïve & scAR’. The below violin 

plots show the expression of FOXA1 in these subgroups. CTL groups represent the cells assigned with 

CTL sgRNAs by both approaches. Y-axis represents the log transformed UMI counts after library size 
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normalization (Methods). i, the dotplot shows the overall comparison between two assignment 

approaches. X-axis represents guide groups. Y-axis represents subgroups of cells as exemplified in g 

and h, separated by two time points and assignment approaches. Target genes are shown on the top. 

Their expression (log transformed) in each group is compared with that in CTL group and resulting t-

statistics are shown by the dot color (Methods, see t-statics of z-normalized expression in 

supplementary Fig. S3a). Blue color indicates down-regulation, and red indicates up-regulation. CTL 

group is centered at zero. The bimodal sizes of circles represent the p-values from t-test (the bigger 

means p<0.05, the smaller means p>=0.05). * highlights the guide groups where scAR significantly 

improves the accuracy and # marks the groups where scAR underperforms naïve assignment.  

 

scAR identifies true integrated signals in CROP-seq data. 

To identify the true guide, we applied scAR to this CROP-seq dataset and compared 

its performance with naïve assignment, which considers most highly expressed guides 

as the true signal. Combined with an arbitrary threshold, this naïve assignment is 

widely implemented in current single-cell CRISPR screens1,2,28–30. Here, for 

benchmarking purpose, we did not perform any subjective filters on either naïve 

assignment or scAR-based assignment. All cells that pass the default gene and cell 

filtering in Cellranger were included for downstream analysis (Methods). By naïve 

assignment, ~80% cells (20076 out of 25248, D5 and D12 combined) are assigned to 

unique guides and ~20% (5170 out of 25248, D5 and D12 combined) cells are 

assigned to multiple (>=2) guides due to equal expression (Fig. 2e). ‘Multiple-infected’ 

cells are generally filtered out before downstream analysis in CROP-seq experiments, 

in other words, naïve assignment causes loss of ~20% cells. scAR estimates the 

expected ambient counts then compares to the observed counts via hypothesis testing 

to evaluate the probability of presence of native signals (Fig. 1b and Methods). It 

assigns 96% cells (24171 out of 25248) to a single guide (Fig. 2e) despite of ~20% 

cells with equally expressed guides. We next examined the cell fraction grouped by 

distinct sgRNAs after guide assignment. This fraction is expected to be identical to 

sgRNA frequencies in bulk sequencing since both reflect sgRNA libraries in the cell 

pool. scAR-resulting cell fractions are highly correlated with sgRNA frequencies in bulk 

sequencing (R2=0.875 at D5 and R2=0.913 at D12), while naïve assignment preferably 

over-assigns a few sgRNAs of highest expression (R2=0.369 at D5 and R2=0.861 at 

D12, Fig. 2f). 

To evaluate the accuracy of the assignment, we checked the expression levels of 

targeted genes in cells with certain guides assigned exclusively by either naïve or 

scAR (Fig. 2g-i). We consider the cells assigned by both naïve and scAR as the 
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positive control and cells assigned with CTL sgRNAs by both naïve and scAR as the 

negative control. In two selected guides shown in Fig. 2g and 2h, naïve assignment 

assigns 154 cells to FOXA1_g2, 133 cells among which are mutually assigned to the 

same guide by scAR. These 133 cells show significant downregulation of FOXA1, 

suggesting the effectiveness of this guide. However, the remaining naïve assigned 21 

cells show similar expression as in CTL cells, suggesting that these cells may not 

integrate FOXA1_g2. More importantly, another 18 FOXA1_g2 cells, exclusively 

identified by scAR, show as low expression as in the mutually assigned cells. Similarly, 

for the other example FOXA1_g3 (Fig. 2h), 26 cells identified by scAR but missed by 

naïve assignment show similar expression pattern as the mutually assigned cells (Fig. 

2h). To systematically assess and visualize the difference, we perform t-test on 

expression of targets among these subgroups for each guide and visualize both t-

statics and p-values using dotplots (Fig. 2i and supplementary Fig. 3a). In total, scAR 

rescues 20 sgRNA groups at each time point which are missed by naïve assignment 

as confirmed by statical confidences, while only two sgRNA groups are missed by 

scAR at each time points, compared to naïve assignment. In addition, we count cell 

numbers of each subgroup and visualize the difference (supplementary Fig. 3b). 

Clearly, naïve assignment over-assigns cells to a few guides, such as CCND1_g3 and 

YAP1_g1 (supplementary Fig. 3b) likely due to their stronger ambient presence than 

other guides, whereas the power of scAR to identify ambient sgRNAs by their 

distribution ensures unbiased assignment. Together, by inspecting the guide 

assignment in the CROP-seq dataset, we showed that scAR significantly improves the 

assignment accuracy in feature barcode technologies, where the presence rather than 

the quantity of native signals is the key information. 

 

scAR removes the ambient protein counts in CITE-seq.  

Next, we sought to investigate whether scAR precisely learns the quantity of native 

signals using a public CITE-seq dataset of peripheral blood mono-nuclear cells from 

10x genomics31 (PBMC5k). Prior to sequencing, PBMC cells were stained with a panel 

of 32 antibody-conjugated oligos which consist of surface markers of B cells, T cells, 

Natural killer cells (NK), monocytes and Dendritic cells (DC) (Fig. 3a). According to 

ambient signal hypothesis (Fig. 1a), unbound antibodies in single cell suspension will 

interfere with both cell-containing and cell-free droplets and antibody frequencies 
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should be highly correlated. We calculated the antibody frequencies in randomly 

sampled cell-free droplets (from 0.01% to 100%) and compared them with cell-

containing droplets (Fig. 3b,). As in the CROP-seq experiment (Fig. 2c), we also 

observed high correlation, as few as 31 randomly sampled cell-free droplets 

consistently show strong correlation to the cell-containing droplets. 

We next discriminated cell types by clustering and annotating cells using transcriptome 

profiling (Fig. 3c and Methods) and examined antibody detection in cell-types. As 

expected, ambient protein signals are observed in cell types which do not express 

them (Fig. 3d-e and supplementary Fig. 4-6). For example, CD19 and CD20, which 

are specific markers of B cells, are detected in all other cell types (Fig. 3d and 

supplementary Fig. 4a), whereas T cell-specific markers like PD-1 and CD3D are 

detected in all other cell types (Fig. 3e and supplementary Fig. 4b). Similarly, we 

detected NK-specific markers CD56 and CD335 in non-NK cells (supplementary Fig. 

4c-d) and monocyte specific marker CD14 in non-monocytes (supplementary Fig. 4e). 

By applying scAR, the ambient signals were removed and denoised protein counts 

correlated stronger with its corresponding RNA expression per cell type (Fig. 3d-e and 

supplementary Fig. 4-6). Our finding is underlined by the fact that these ambient 

counts are highly diversified (mean 9.6 ± STD 43.4) per marker per cell. Remarkably, 

scAR identifies the true signals even if the native expression is as low as background 

noise. For example, before denoising, B cells, NK cells, monocytes and naïve T cells 

show similar level of the T cell marker PD-1 (Fig. 3e and supplementary Fig. 4f); after 

denoising, all PD-1 counts are removed in B cells, NK cells, monocytes and DC cells 

but not in T cells. To test whether scAR over-corrects the signals, we calculated the 

scAR-estimated ambient ratios of these specific markers and compared them with a 

naïve approach, which simply considered all non-specific expression as ambient 

signals. The total ambient ratios of these markers are comparable (supplementary Fig. 

4g), suggesting that scAR assigns reasonable number of UMI counts as ambient 

signals. 

We next compared the averaged protein counts by cell type before and after denoising 

and aligned them with RNA expression (Fig. 3f). We observed strong background 

signals in almost all antibodies in raw counts, while scAR significantly reduces the 

background noise, leading to more specific expression of markers in subtypes. For 

example, denoised CD4 and CD8 are exclusively present in CD4+ T cells and CD8+ 

T cells, respectively (Fig. 3f and supplementary Fig. 5a-b). Naïve and memory T cells 
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are distinguishable with CD197 and CD45RA (Fig. 3f and supplementary Fig. 5c-d). 

Regulatory T cells (Treg) show high CD25 and negative CD127 as reported32 (Fig. 3f 

and supplementary Fig. 5e-f). Similarly, we observed high CD14, negative CD16 in 

CD14 monocytes, low CD14 and high CD16 in CD16 monocytes and high HLA-DR 

protein counts in intermediate monocytes after scAR denoising (Fig. 3f and 

supplementary Fig. 6a-c). In most of these cell types, scAR removes fewer than 10% 

of raw protein counts (supplementary Fig. 6d). As a result, Spearman correlation 

coefficient between RNA-protein pairs is increased in single cells (Fig. 3g). Together, 

scAR removes ambient signals while preserves the true signals, resulting in reliable 

quantification of native protein counts in CITE-seq.  
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Fig. 3 | scAR removes the ambient protein counts in CITE-seq data. A public CITE-seq dataset 

highlights the presence of ambient contamination in protein count data and demonstrates the 

functionality of scAR on removing ambient protein signals. a, Similar to Fig.1a, illustration of the ambient 

signal hypothesis in the context of protein counts. b, correlation analysis of protein counts between cell-

containing and -free droplets, as with Fig. 2b-c. The scatterplot shows the fraction of protein counts 

between all cell-containing (x-axis) and all cell-free droplets (y-axis). The barplot shows the R2 scores, 

indicating the correlation of protein frequencies between cells and randomly sampled cell-free droplets. 

X-axis shows the proportions of cell-free droplets. The droplet numbers are indicated in brackets. The 

error bars indicate the variance of 10 samplings. c, UMAP of the PBMC5k dataset. Cell types are 
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annotated using transcriptome data (Methods). d-e, Two selected examples, CD20 antibody (d) and 

PD-1 antibody (e) to demonstrate scAR’s performance. UMAPs visualize raw protein counts, denoised 

protein counts and corresponding RNA counts, respectively. Color bars represent log2(counts +1). 

Barplots below plot the single cell counts grouped by cell types. f, Heatmaps show the average row 

protein counts (left), average denoised counts (middle) and average corresponding RNA counts (right) 

in different cell types. Columns represent the antibodies used in this dataset; rows represent cell types. 

g, scatterplots show the Spearman correlation coefficients between RNA-protein pairs before (x-axis) 

and after scAR-denoising of protein counts (y-axis). The red dashed line represents y=x. Dots represent 

antibodies. 

 
 

scAR removes ambient signals for mRNA counts.  

To further demonstrate the broad application of scAR, we selected another public 

dataset which pools equal numbers of human HEK293T cells and mouse NIH3T3 cells 

for single cell RNA sequencing33. Reads were mapped to a combined human-mouse 

reference genome with Cellranger and all ambiguous ones which can map to both 

species were excluded. We then classified the cells as human, mouse or multiplets by 

unsupervised clustering of mRNA (Methods and supplementary Fig. 7a). It results in 

7590 HEK293 cells, 8006 NIH3T3 cells and 697 mixed droplets which contains both 

HEK293 and NIH3T3 cells. We detected similar number of total human and mouse 

specific transcripts in cell-free droplets, as expected, they are proportional to those in 

cells (supplementary Fig. 7b). In addition, both human cells and mouse cells exhibit 

low level exogenous contamination in raw counts (Fig. 4a-b). HEK293 cells contain 

~1.4% mouse transcripts on average and NIH3T3 cells contain ~2.2% human 

transcripts on average. It should underline that contamination can also happen 

between the same species, e.g., a HEK293T cell-containing droplet may not only 

contain mouse transcripts but also human transcripts from ambient source. Namely, 

the actual contamination ratio should be greater than exogenous contamination. 

We applied scAR to cell-containing droplets and observed that scAR removes all 

exogenous transcripts (Fig. 4b). In details, nearly all mouse transcripts were identified 

and removed in HEK293T cells and nearly all human transcripts were also identified 

and removed in mouse cells. On the other hand, the ratio of mouse and human 

transcripts remains 1:1 in the multiplets after denoising.  

Interestingly, we also noticed that the ambient frequencies (α in Fig. 1b) are varying 

between different subpopulations of droplets. We sorted all droplets by their UMI 

counts and identified four subgroups of droplets by kneeplot: cell-containing, droplet I 

and droplet II and cell-free droplets (Fig. 4c and Methods). We next found that cell-
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free droplets show stronger correlation (R2=0.85) to the cell-containing droplets than 

droplet I (R2=0.33) and II (R2=0.42) (supplementary Fig. 7c). When taking different 

ambient frequencies as input, scAR outputs different estimated contamination rates 

(Fig. 4d-g and supplementary Fig. 7d). Overall, scAR can precisely predict the cross-

species ambient signals while the prediction for inter-species ambient signals depends 

heavily on the input ambient frequencies. Given that the global ratio of human and 

mouse transcripts is ~1.11 in cells (supplementary Fig. 7b), it is reasonable to expect 

a similar contamination ratio of human and mouse sources. However, the droplet I and 

II lead to too high estimation of human-source contamination, as much as ~3x of 

mouse source (Fig. 4e-f). This may be explained by the over-representation of human 

transcripts in droplet I and II (supplementary Fig. 7b). The higher human transcripts in 

ambient frequencies as input, the more counts to be identified as background noise 

by scAR. The best estimate of ambient frequencies should be drawn from population 

of cell-free droplets, as the estimated noise ratios are in a reasonable range in both 

cell lines – ambient signals from human sources are slightly stronger than mouse 

sources in both cell lines (Fig. 4g and supplementary Fig. 7d). These observations 

also suggests that compositions in these droplets are clearly different, e.g., droplet I 

and II may contain more human cell debris. In addition, it also suggests that a precise 

estimation of ambient frequencies is a key to noise reduction. 

 

 

Fig. 4 | scAR reduces the noise in mRNA counts. A public scRNAseq dataset of mixed human 

HEK293T and mouse NIH3T3 cells (1:1) was selected to demonstrate scAR’s ability in noise reduction 

in transcriptome data. a, Scatterplots show transcript composition before (left) and after (right) denoising 
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in three populations, HEK293T, NIH3T3 and multiplets. X- and y-axis show transcripts which are 

exclusively mapped to human or mouse genome, respectively. b, Quantification of exogenous 

contamination before and after denoising in three populations. Y-axis represents per cell fraction of 

exogenous transcripts, i.e. mouse transcript rate in all HEK293T cells and human transcript rate in all 

NIH3T3 cells. c, The kneeplot shows subpopulations of droplets. d-g, Boxplots show the percentage of 

ambient signals in HEK293 cells. The green boxes represent the proportion of observed mouse 

transcripts. The blue and orange boxes represent scAR-estimated human and mouse ambient 

proportions, respectively. Ambient frequencies are averaged from cells (d), droplet I (e) or droplet II (f) 

or cell-free droplets (g). 

 

Benchmarking of methods for UMI denoising. 

To evaluate scAR in comparison with other state-of-the-art methods11–13, we used the 

CITE-seq dataset and calculated the Spearman correlation coefficients of protein-RNA 

pairs as the benchmarking metric (Fig. 5 and supplementary Fig. 8, Methods). totalVI 

uses the module of scVI to correct for background noise for mRNA data, so we skipped 

scVI to avoid redundance. The results show that scAR outperforms totalVI and DCA 

in denoising of both or either of mRNA and protein data (Fig. 5b and supplementary 

Fig. 8b). In addition, totalVI trains VAE using both mRNA and protein data as input, 

while scAR separately denoises mRNA and protein data, meaning scAR is a more 

unbiased approach. DCA does not show comparative performance mainly because it 

is designed to denoise mRNA data. 

 

 

 

Fig. 5 | Benchmarking of protein and mRNA count denoising. a, Scatterplots show the Spearman 

correlation coefficients between RNA-protein pairs before (x-axis) and after denoising of both protein 

and mRNA counts (y-axis). The red dashed line represents y=x. Dots represent antibodies. b, Boxplots 

show Spearman correlation coefficients between RNA-protein pairs (both denoised, only mRNA 

denoised, and only protein denoised). Denoising methods are indicated on X-axis.  
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Discussion 

Versatile single-cell omics technologies have expanded understanding of single cell 

biology and development of new technologies is constantly pushing the boundary 

further. In this context, we developed scAR to provide a reliable ‘one-for-all’ solution 

to UMI count denoising for multiple single-cell omics technologies. 

scAR can precisely infer the native signals for protein data in CITE-seq and mRNA 

data in scRNAseq. Recent approaches12,13,26,34,35 introduce deep learning 

technologies (such as AE and VAE) for these tasks and show great promise. These 

approaches proposed noise models which stick to the zero-inflation pattern of these 

count data and estimate all the parameters through neural networks12,14,35. In scAR, 

we constrain the noise model under the ambient signal hypothesis and empirically 

estimate a parameter from cell-free droplets, this roughly reduces parameters by one 

third and focuses the VAE on learning the biology-related native expression and the 

noise ratio. As a result, this hypothesis-driven modeling significantly improves the 

performance comparing to the ones that disregard the ambient signal hypothesis and 

cell-free droplets (Fig. 5 and supplementary Fig. 9). Moreover, it generalizes scAR to 

fit a broader range of single-cell omics datasets, independent of the sparsity of the 

data. 

scAR can evaluate the probability of ambient contamination. This can ensure accurate 

assignment of identity barcode for a class of single-cell omics technologies, including 

single cell CRISPR screens (e.g., CROP-seq, Perturb-seq and CRISP-seq)1,2,28,29 and 

cell indexing15–17. We tested scAR on CROP-seq, but it should fit other ones in this 

class as they take similar protocols to prepare, construct and sequence the libraries 

of feature barcodes (either sgRNA or identity barcode). Most of current studies have 

assigned exogenous barcodes by hard filtering approaches28,30, which filter out cells 

with low depth and perform naïve assignment afterwards. This is not only inaccurate 

(Fig. 2) but also inefficient as it can further discard as many as >50% of cells36. Other 

approaches such as MUSIC36 and scMAGeCK37 propose to model single cell CRISPR 

data by linking transcriptome profile to sgRNA assignment. On the one hand, these 

methods are specific to single cell CRISPR data, and on the other, there is a risk of 

being misled by potentially dominant transcriptional states (e.g. cell cycle), when 

several nodes of the same pathway are being interrogated, or when the phenotypic 

effect of the perturbation is low (in the case of, e.g., low effective sgRNAs or wrong 
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time points). scAR provides an accurate, unbiased and efficient solution to assignment 

of identity barcode for this class of technologies. 

Nonetheless, besides ambient contamination, other technical factors9,10 can also 

introduce background noise. We assume in scAR that ambient source is the most 

predominant artifact and in turn this hypothesis seems to be confirmed by the 

outstanding performance of scAR. However, further experimental validation may still 

be required. In addition, in CITE-seq technology, the non-specific binding of antibodies 

may bring in extra noise4,14, this is not modeled in scAR as we consider it too specific 

(dependent  of the antibody and experimental cell lines) to violate the scope of 

generality of scAR. Moreover, identification of this noise may require dedicated well-

designed experiments (e.g., spike-in4), as models can hardly distinguish between 

specific and non-specific binding without human knowledge. 

Finally, we observed different contamination levels in different datasets. scAR’s ability 

to estimate noise ratio may allow to evaluate batch effects and guide the experimental 

design, such as the protocols for cell fixation and washing. Furthermore, scAR can 

have great potential in facilitating technology development in droplet-based single-cell 

omics, given the common and nonnegligible presence of ambient noise. For example, 

the most recent scifi-RNA-seq38 achieves ultra-high-throughput by leveraging cell 

indexing technologies to encapsulate and sequence multiple cells in a droplet. scAR 

may have great potential in deconvoluting the cell identity in this complex setting.  
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Methods 

The scAR model. 

scAR uses hypothesis-driven probabilistic deep learning to infer the biological and 

technical variation in droplet-based single-cell omics experiments. The raw counts 

consist of biological signals and technical artifacts, which are modelled with a Binomial 

model. 

 

Modeling count data using Binomial regression. 

We take a generative approach to modeling the observed count matrix 𝑋 ∈ ℕ0
𝑀×𝐺 , 

which denotes M cells and G features (i.e., genes, antibodies, sgRNAs or identity 

barcodes). A graphic model representation of this generative model is summarized in 

supplementary Fig. 10. For a given cell m, 𝑥𝑚 represents a G-dimensional vector of 

observed expression data. We assume that xm is drawn from a Multinomial model: 

𝑥𝑚 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑑𝑚 , 𝑝𝑟𝑜𝑏 = 𝜃𝑚)  (1) 

where dm is the library size of cell m, 𝜃𝑚  is the feature frequencies. Therefore, for 

feature g in cell m, the observed count 𝑥𝑚𝑔 is drawn from a Binomial model: 

𝑥𝑚𝑔 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑑𝑚 , 𝑝𝑟𝑜𝑏 = 𝜃𝑚𝑔)   (2) 

where 𝜃𝑚𝑔 represents probability of observing feature g in cell m. It determined by two 

factors, native expression 𝑛𝑚𝑔 and ambient signals 𝑎𝑚𝑔, which can be modelled as, 

𝜃𝑚𝑔  =  𝑛𝑚𝑔  +  𝑎𝑚𝑔     (3) 

𝑛𝑚𝑔  =  (1 − 𝜀𝑚) × 𝛽𝑚𝑔    (4) 

𝑎𝑚𝑔  =  𝜀𝑚 × 𝛼𝑚𝑔      (5) 

where 𝜀𝑚 ∈ [0,1] is a hidden variable, representing the fraction of total ambient counts. 

𝛽𝑚𝑔  is another hidden variable, representing the feature frequency of native 

expression of feature g in cell m. 𝛼𝑚𝑔 represents the ambient frequency and according 

to ambient signal hypothesis, it is independent of cells, so we get, 

𝛼𝑚𝑔 =  𝛼𝑔     (6) 

Notably, the cell-free droplets can be expressed as equation (2), with the native 

component being zero and noise ratio being 1, so, 

𝑥𝑒𝑔
′  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑑𝑒

′ , 𝑝𝑟𝑜𝑏 = 𝛼𝑔)   (7) 
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Where, 𝑥𝑒𝑔
′  and 𝑑𝑒

′  represent counts for feature g and library size in cell-free droplet e, 

respectively. According to law of large numbers, we can approximate 𝛼𝑔 by averaging 

feature counts in cell-free droplets, 

𝛼𝑔 =
∑ 𝑥𝑒𝑔

′
𝐸

∑ ∑ 𝑥𝑒𝑔
′

𝐺𝐸
       (8) 

Put all together, we have, 

𝑥𝑚𝑔 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑑𝑚 , 𝑝𝑟𝑜𝑏 = (1 − 𝜀𝑚) × 𝛽𝑚𝑔 + 𝜀𝑚 ×
∑ 𝑥𝑒𝑔

′
𝐸

∑ ∑ 𝑥𝑒𝑔
′

𝐺𝐸
)  (9) 

where only 𝜀𝑚 and 𝛽𝑚𝑔 are unknown parameters that need to be estimated. According 

to Bayes' theorem, we get the posterior probability,  

𝑝(𝜀𝑚 , 𝛽𝑚𝑔| 𝑥𝑚𝑔) =  
𝑝(𝑥𝑚𝑔 | 𝜀𝑚, 𝛽𝑚𝑔) × 𝑝( 𝜀𝑚, 𝛽𝑚𝑔)

𝑝(𝑥𝑚𝑔)
  (10) 

Since the prior probability 𝑝( 𝜀𝑚 ,  𝛽𝑚𝑔)  and likelihood 𝑝(𝑥𝑚𝑔 | 𝜀𝑚,  𝛽𝑚𝑔)  both are 

intractable (unknown or difficult to factorize over samples), we implement variational 

inference23,39 to estimate 𝜀𝑚 and 𝛽𝑚𝑔, as described in the following section. To ensure 

flexibility, we also provide implementations of Poisson model to allow users to choose 

and test. 

 

Variational inference for scAR 

We apply variational autoencoders to optimize the hidden variable  𝜀𝑚  and   𝛽𝑚𝑔 

mentioned above. The architecture of VAE is demonstrated in supplementary Fig. 11. 

We introduce an additional latent variable z in bottleneck layers so the marginal log-

likelihood of observation  𝑥𝑚 can then be written as,  

log 𝑝𝜑(𝑥𝑚) = −log 𝑝𝜑(𝑧, 𝜀𝑚 , 𝛽𝑚| 𝑥𝑚) + log 𝑝𝜑(𝑧, 𝜀𝑚 , 𝛽𝑚 , 𝑥𝑚)  (13) 

where 𝜑  represents the parameter space, i.e., model weights.  𝜀𝑚 and   𝛽𝑚  are 

calculated by deterministic neural networks (decoder), 

 𝜀𝑚 ,  𝛽𝑚 = 𝑓𝜂(𝑧)   (14) 

where, 𝑓 represents neural networks and 𝜂 ⊂ 𝜑 represents the trainable weights of 𝑓. 

This means,  

𝑝𝜂( 𝜀𝑚 ,  𝛽𝑚 | 𝑧) = 1    (15) 

Therefore, we can integrate out   𝜀𝑚 and  𝛽𝑚 and re-write the equation (13) as 

log 𝑝𝜑(𝑥𝑚) = −log 𝑝𝜑(𝑧 | 𝑥𝑚) + log 𝑝𝜑(𝑧, 𝑥𝑚) (16) 

We construct variational posterior 𝑞(𝜑 | 𝜔) to approximate the posterior 𝑝(𝜑 | 𝑥𝑚). 

Therefore, we have, 
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log 𝑝𝜑(𝑥𝑚) = 𝔼𝑧~𝑞𝜔
[log

𝑞𝜔(𝑧| 𝑥𝑚)

𝑝𝜑(𝑧|𝑥𝑚)
] + 𝔼𝑧~𝑞𝜔

[log 𝑝𝜑(𝑧, 𝑥𝑚) − log 𝑞𝜔(𝑧 | 𝑥𝑚)]   (17) 

where the first term on the right side is the Kullback-Leibler divergence40,41 between 

distributions 𝑞 and 𝑝, reflecting the difference between parameter distributions. It is 

non-negative, so we can get the evidence lower bound (ELBO) as follows, 

log 𝑝𝜑(𝑥𝑚) ≥ 𝔼𝑧~𝑞𝜔
[log 𝑝𝜑(𝑧, 𝑥𝑚) − log 𝑞𝜔(𝑧 | 𝑥𝑚)] =∶ ℒ(𝜑, 𝜔; 𝑥𝑚)   (18) 

Increasing the ELBO will approximate the distribution 𝑞  to 𝑝  thereby ensuring the 

learnt variables are as close as the expectation. Therefore, the ELBO is generally used 

as the objective function to fit the VAE. We can further transformation equation (18) 

into, 

ℒ(𝜑, 𝜔; 𝑥𝑚)  =  −𝐷𝐾𝐿(𝑞𝜔(𝑧|𝑥𝑚) || 𝑝𝜑(𝑧))  +  𝔼𝑧~𝑞𝜔
[log 𝑝𝜑(𝑥𝑚|𝑧)] (19) 

The negative of ELBO is used as loss function to simultaneously optimize model 

weights and hidden variables in scAR. In case of M cells, the loss function is then 

written, 

𝐿𝑜𝑠𝑠 =  𝐷𝐾𝐿(𝑞𝜔(𝑧|𝑥) || 𝑝𝜑(𝑧))  − 𝔼𝑧~𝑞𝜔
[∑ log 𝑝𝜑(𝑥𝑖|𝑧)𝑀

𝑖 ]  (20) 

Minimizing the loss function requires a tradeoff between the KL divergence and 

expected negative log-likelihood term. On the one hand, the KL divergence between 

𝑞𝜔(𝑧|𝑥)  and 𝑝𝜑(𝑧) should be kept small, preventing the variational posterior from 

being too different to the prior. On the other, the variational posterior parameters 

should maximize the log likelihood log 𝑝𝜑(𝑥|𝑧), ensuring a small reconstruction error 

of scAR. We use the reparameterization trick to calculate the gradients with respect to 

𝜑 and 𝜔 for KL term41. According to equations (14) and (15), we have, 

𝑝𝜑(𝑥𝑚|𝑧)  =  𝑝𝜑(𝑥𝑚 | 𝜀𝑚 ,  𝛽𝑚 )  (21) 

Since we assume 𝑥𝑚  is drawn from Binomial distribution with latent parameters 

 𝜀𝑚 ,  𝛽𝑚 (see equation (9)), 𝑝𝜑(𝑥𝑚 | 𝜀𝑚,  𝛽𝑚 ) also has a closed-form expression, thus 

the gradient descents of negative log-likelihood term in equation (20) are easy to 

calculate. Together, we use the gradients of the loss function to update the parameters 

𝜑  and 𝜔  to determine the hidden variables noise ratio 𝜀  and expected native 

frequencies 𝛽. 

 

Bayesian inference and assignment of identity barcode 

We infer the expected native signals 𝑛̅𝑚 and ambient signals 𝑎̅𝑚 in cell m using the 

following equations, 
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𝑛̅𝑚 =  (1 −  𝜀𝑚) × 𝑑𝑚 × 𝛽𝑚   (22) 

𝑎̅𝑚 =  𝜀𝑚  × 𝑑𝑚 × 𝛼     (23) 

where 𝑛̅𝑚 is used as denoised counts for CITE-seq and scRNAseq. 

For assignment of sgRNAs in CROP-seq, we use Bayesian factor as a metric to 

compare two hypotheses: observed counts consist of both native and ambient 

sgRNAs (𝐻1) vs observed counts contain only ambient sgRNAs (𝐻2). For a given 

sgRNA g in cell m, this can be mathematically expressed as follows, 

𝐻1
𝑚𝑔

: =  𝑥𝑚𝑔 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑑𝑚 , 𝑝𝑟𝑜𝑏 = 𝑎̅𝑚𝑔  +  𝑛̅𝑚𝑔) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻2
𝑚𝑔

: =

 𝑥𝑚𝑔 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑑𝑚 , 𝑝𝑟𝑜𝑏 = 𝑎̅𝑚𝑔)  (24) 

The Bayesian factor then is given by, 

𝐾𝑚𝑔 =  
𝑃𝑟(𝑥𝑚𝑔| 𝐻1

𝑚𝑔
)

𝑃𝑟(𝑥𝑚𝑔| 𝐻2
𝑚𝑔

)
    (25) 

The numerator and denominator represent the probability that 𝑥𝑚𝑔 is produced under 

assumption of 𝐻1
𝑚𝑔

 and 𝐻2
𝑚𝑔

, and we approximate them using the cumulative 

distribution function (stats.binom.cdf) and probability mass function (stats.binom.pmf), 

respectively. High 𝐾𝑚𝑔  (>=3) favors the first hypothesis, meaning the sgRNA g 

contains native signal. In the case of multiple high 𝐾, we assign the sgRNA of highest 

𝐾 to the cell. 

  

Model optimization for scAR 

To identify a best universal set of hyperparameters as the default setting of scAR, we 

perform grid search on two types of synthetic datasets (see supplementary note I), 

which simulate CROP-seq data type and CITE-seq/scRNAseq data type respectively. 

To limit the number of parameters, we fix several less important parameters. For 

example, the training epochs are fixed at 800. Additionally, we use the Adam 

optimizer42 with exponential decay to schedule the learning rate but the decay rate is 

fixed at 0.97 every 5 epochs. The hyperparameters which are optimized include the 

number of nodes of neural networks, dimension of latent space, dropout probability of 

neurons, initial learning rate and KL divergence weight. As a result, we tested 6912 

combinations of parameters for each dataset (supplementary Fig. 12) and identified 

the best set listed as follows: units of 1st layer: 150; units of 2nd layer: 100, dimension 

of latent space: 15; initial learning rate: 0.001, dropout probability: 0; KLD weight: 1e-
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5. All experiments were performed using these optimized parameters unless otherwise 

specified. 

It is also worth noticing that we use either ReLU or modified Softplus activation (see 

supplementary note II) functions to output 𝛽 in decoder depending on the sparsity of 

expected native matrices. For example, CROP-seq or cell indexing datasets are 

extreme sparse as each cell is expected to have a single (or a few) native identity 

feature barcode, so we use ReLU as the activation function to generate sparse 𝛽; 

while CITE-seq datasets are generally denser, so we use a modified Softplus as the 

activation function to avoid too many zeros in 𝛽. 

  

CROP-seq experiment. 

The CROP-seq library was cloned into a modified pLKO-TET-ON plasmid in a pooled 

format by Golden Gate. The cloning reaction product was used to transform Endura 

electrocompetent cells, which were expanded in LB medium overnight (OD600 = 0.8) 

and plasmid DNA was harvested using Genopure plasmid maxi kit (Roche). We 

produced lentiviral particles and transduced MCF7-dCas9-KRAB cells (MOI = 0.3) with 

the CROP-seq library. The cells were selected with 2μg/ml puromycin (Invitrogen) and 

they harvested at defined time points by FACS (mCherry-positive cells). The single-

cell suspensions were fixed in 90% methanol in DPBS (v/v) and stored at -80 °C prior 

to rehydration and further processing. The rehydration buffer was supplemented with 

1% Bovine serum albumin and 0.5 U/ul RNase inhibitor (Sigma, P/N 3335399001). All 

samples were processed using Chromium Next GEM single-cell 3’ reagents kit (10x 

Genomics) according to the manufacturer’s protocol and the libraries were sequenced 

in an Illumina HiSeq 2500. 

 

Pooled CRISPR screen.  

MCF7-CRISPRi cells were transduced with independent lentiviral pools (MOI = 0.3) of 

the CROP-seq library. To guarantee a correct representation of all sgRNAs in the cell 

population we transduced ≈1000 cells per plasmid. The cells were selected using 

2μg/ml puromycin (Invitrogen) at 24 hours post-transduction, after which they were 

expanded and harvested at indicated time points. We extracted gDNA from the cells 

using DNeasy kit (Qiagen) and prepared libraries for next generations sequencing.  
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Analysis of CROP-seq data. 

Single-cell sequencing data were processed using Cell Ranger (version 3.1.0, 10x 

Genomics) and sgRNA count matrices were generated using KITE 

(https://github.com/pachterlab/kite). Human genome assembly (Ensembl GRCh38 

release-98) was used as the reference to map mRNA reads. The Scanpy package43 

was used to perform quality control, cell filtering, gene filtering and differential 

expression analysis. We used two normalization approaches to examine the 

knockdown effect. The first one as shown in Fig. 2g-i is library size normalization. 

Sequencing depth per cell was normalized to 1.0xe5 counts and t-test was performed 

on the normalized counts across cell groups using scipy.stats.ttest_ind function. The 

second one (supplementary Fig. 3a) is Z-normalization as reported in our previous 

publication3. For each gene, we subtracted mean value of CTL group then divided by 

standard deviation of CTL group. 

 

Analysis of CITE-seq data. 

The cellranger outputs of PBMCs5k31 dataset were downloaded from 10x genomics. 

Cells with extreme counts (<1500 counts or >15000 counts) were discarded. Stressed 

cells with high presence of mitochondrial genes (>=0.2) were also discarded. The cell 

clustering was performed using Scanpy and annotated based on expression of a panel 

of marker genes. 

Correlation of RNA-protein pairs. Both raw and denoised RNA counts were library size 

normalized. Raw and denoised protein counts were used without any normalization as 

library sizes of them represent cell type variance. Spearman’s correlation was 

performed between RNA and protein counts using scipy.stats.spearmanr function. 

Control antibodies were removed for this correlation analysis. CD45RA and CD45RO, 

which are encoded by an identical gene PTPRC were also removed due to the difficulty 

of identifying isoform transcripts. In addition, several markers (CD15, CD34, CD80, 

CD137, CD274, CD278, PD-1) were removed due to extremely low counts of either 

protein or corresponding RNAs. On the other hand, a version of full antibodies was 

also plotted in supplementary Fig. 8. 

 

Species-mixing experiment.  

The cellranger outputs of species-mixing dataset33 were downloaded from 10x 

genomics. Scanpy was used to perform quality control, gene filtering, cell filtering and 
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species identification. In brief, we first took the ‘filtered_feature_bc_matrix’ from 

cellranger output and further filtered out genes with extreme counts (<200 or >6000 in 

total) and cells with low gene counts (<200). We then performed library size 

normalization, log transformation, clustering and UMAP. By checking the differently 

expressed genes, we identified 7590 HEK293T cells, 8005 NIH3T3 cells as well as 

697 multiplets mixed with both HEK293T and NIH3T3. 

Examination of droplets. To identify the best representation of ambient signals, we 

examined subpopulations of droplets in the unfiltered matrix – namely, 

‘raw_feature_bc_matrix’. All droplets were ranked by their total UMI counts and split 

into four subgroups through kneeplot: 1) droplets in ‘filtered_feature_bc_matrix’ were 

marked as cells, 2) droplets with high counts (>40) were marked as ‘droplet I’, 3) 

droplets with intermediate counts (>12 and <=40) were marked as ‘droplet II’, 4) 

droplets with low counts (<=12 and >0) were marked as ‘cell-free droplets’. We took 

the total gene frequencies in each subpopulation as the ambient frequencies and run 

scAR to compare the estimated noise ratio. 

 

Data availability. 

The CROP-seq data discussed in this manuscript have been deposited to the 

Sequence Read Archive and are accessible through BioProject accession number: 

PRJNA794328. All other datasets are public. The CITE-seq datasets (PBMCs5k) and 

HEK293T and NIH3T3 pooled scRNAseq (20k_hgmm dataset) were downloaded from 

10x genomics datasets. Other datasets were downloaded from Sequence Read 

Archive. 

 

Code availability. 

The package of scAR and codes to reproduce the results in this manuscript is available 

at Github (https://github.com/CaibinSh/scAR). 
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Supplementary Tables 
 

sgRNA 
number sgRNA name Guide sequence 

Target 
genes 

Group 
names Library name 

1 CDH1_g1 AGTTCCGACGCCACTGAGAG CDH1 CDH1 CROP-seq_pilot 
2 CDH1_g2 GACTTGCGAGGGACGCATTC CDH1 CDH1 CROP-seq_pilot 
3 CDH1_g3 CCGAGAGGCTGCGGCTCCAA CDH1 CDH1 CROP-seq_pilot 
4 CDH1_g4 CGGTGACGACGGGAGAGGAA CDH1 CDH1 CROP-seq_pilot 
5 CDH1_g5 CCTCAGGACCCGAACTTTCT CDH1 CDH1 CROP-seq_pilot 
6 ESR1_TSS1_g1 TCCGTTCTGAGTCGGTAGAC ESR1 ESR1_TSS1 CROP-seq_pilot 
7 ESR1_TSS1_g2 AGCTCTTTAACAGGCTCGAA ESR1 ESR1_TSS1 CROP-seq_pilot 
8 ESR1_TSS1_g3 CTATAGAATGGGCAGGAGAA ESR1 ESR1_TSS1 CROP-seq_pilot 

9 ESR1_TSS1_g4 GTATGTTATCTGGAACAGAC ESR1 ESR1_TSS1 CROP-seq_pilot 
10 ESR1_TSS1_g5 GGTGTGCTGTACTAAGAAAA ESR1 ESR1_TSS1 CROP-seq_pilot 
11 FOXA1_g1 GCCGCCCGTCGCTTCGCACA FOXA1 FOXA1 CROP-seq_pilot 
12 FOXA1_g2 CCAACGCCACCCGGGCGAAG FOXA1 FOXA1 CROP-seq_pilot 
13 FOXA1_g3 CGCCTCCGCGGGAAGTGAGC FOXA1 FOXA1 CROP-seq_pilot 
14 FOXA1_g4 CAACTGCACTTGCCTCGCAG FOXA1 FOXA1 CROP-seq_pilot 
15 FOXA1_g5 GTGAGCGGGCTGCCTCTGCG FOXA1 FOXA1 CROP-seq_pilot 
16 GATA3_g1 CTGTGGCGCGACGCAACTTA GATA3 GATA3 CROP-seq_pilot 
17 GATA3_g2 GCAACGCAATCTGACCGAGC GATA3 GATA3 CROP-seq_pilot 
18 GATA3_g3 GCGGCGGCGTACGACCTGCT GATA3 GATA3 CROP-seq_pilot 
19 GATA3_g4 TTCGCTACCCAGGTTGGTAC GATA3 GATA3 CROP-seq_pilot 
20 GATA3_g5 TTAGGTCCTCCCAAGTGGTT GATA3 GATA3 CROP-seq_pilot 
21 GRHL2_g1 ACTAAAGGGTACAAGCCCGA GRHL2 GRHL2 CROP-seq_pilot 
22 GRHL2_g2 CGCGGAGTCCTCCTGGATCG GRHL2 GRHL2 CROP-seq_pilot 
23 GRHL2_g3 CCTCACCTAGCCGGAAAGGT GRHL2 GRHL2 CROP-seq_pilot 
24 GRHL2_g4 GTGTGTGAGAGCGCCCGAGA GRHL2 GRHL2 CROP-seq_pilot 
25 GRHL2_g5 CCTTGCGAGAAAGTTACCTG GRHL2 GRHL2 CROP-seq_pilot 
26 KMT2D_g1 AACAGACGAGATGCCTCCGG KMT2D KMT2D CROP-seq_pilot 
27 KMT2D_g2 GATAGAGGCGTCTCAAGTGC KMT2D KMT2D CROP-seq_pilot 
28 KMT2D_g3 GACAAGGGCGACTCCTCCAG KMT2D KMT2D CROP-seq_pilot 
29 KMT2D_g4 GGGCAATTCCTCAGGTGGCG KMT2D KMT2D CROP-seq_pilot 
30 KMT2D_g5 GGGCGATGCTTCAGGTGGTG KMT2D KMT2D CROP-seq_pilot 
31 KMT2C_g1 GACTAGGATGTCGTCGGAGG KMT2C KMT2C CROP-seq_pilot 
32 KMT2C_g2 CGCACTCACACACATCGGCG KMT2C KMT2C CROP-seq_pilot 
33 KMT2C_g3 GGATCCCGGTCCTCCTCCTG KMT2C KMT2C CROP-seq_pilot 
34 KMT2C_g4 AAATGCGAGAGGCTGAGCCG KMT2C KMT2C CROP-seq_pilot 
35 KMT2C_g5 TCTCGCATTTCCCGCAGCCC KMT2C KMT2C CROP-seq_pilot 
36 CTRL_g1 TCTCGTCTGATACCTCGGTC OR2L13 CTL CROP-seq_pilot 
37 CTRL_g2 CTCATCGTGGTCGGCGGTCG OR2L13 CTL CROP-seq_pilot 
38 CTRL_g3 GCGGCGTCTTTGGCAGTAGT OR2L13 CTL CROP-seq_pilot 
39 CTRL_g4 GGCGTGCTTGCGGGTCCAGG OR2L13 CTL CROP-seq_pilot 
40 CTRL_g5 CGCTGCTGCGAGACCAGCCG OR2L13 CTL CROP-seq_pilot 
41 CTRL_g6 ACTCACCTCAACCGTATGGA CTL CTL CROP-seq_pilot 
42 CTRL_g7 CTGCAAGTAACCCATGCACC CTL CTL CROP-seq_pilot 
43 CTRL_g8 ATGCACTCAGCAAGTCTAAC CTL CTL CROP-seq_pilot 
44 CTRL_g9 GGCTGTGAAGAACCAGAAGT CTL CTL CROP-seq_pilot 
45 CTRL_g10 GCTGCCTGTCCTTTGAGTCA CTL CTL CROP-seq_pilot 
46 CTRL_g11 CCGCAGCAATATCTTGGCTC CTL CTL CROP-seq_pilot 
47 CTRL_g12 GGGCTCTCCAACTCACCAGG CTL CTL CROP-seq_pilot 
48 CTRL_g13 TGCTCAGCAGACTAGGCAGC CTL CTL CROP-seq_pilot 
49 CTRL_g14 GAAGCTCTGCTCAGCAGACT CTL CTL CROP-seq_pilot 
50 CTRL_g15 TCTGTCTCTGAGCTAGACTT CTL CTL CROP-seq_pilot 
51 TRPS1_g1 GACGTAATGCGCGGAGACTG TRPS1 TRPS1 CROP-seq_pilot 
52 TRPS1_g2 CTTGAAACTGACGTAATGCG TRPS1 TRPS1 CROP-seq_pilot 
53 TRPS1_g3 AGAGCAATCGAGAGGACGCG TRPS1 TRPS1 CROP-seq_pilot 
54 TRPS1_g4 AAGGCGAGAGAGCAATCGAG TRPS1 TRPS1 CROP-seq_pilot 
55 TRPS1_g5 GGATGTGCCCGGTGCCGGGT TRPS1 TRPS1 CROP-seq_pilot 
56 YAP1_g1 CCGCCAGACCAGTGGAGCCG YAP1 YAP1 CROP-seq_pilot 
57 YAP1_g2 CCTCCGTCAAGGGAGTTGGA YAP1 YAP1 CROP-seq_pilot 
58 YAP1_g3 CGGCGCTGTCCTCGCTCTCA YAP1 YAP1 CROP-seq_pilot 
59 YAP1_g4 GGCGAGTTTCTGTCTCAGTC YAP1 YAP1 CROP-seq_pilot 
60 YAP1_g5 CTGCGAGGCACTCGGACCTG YAP1 YAP1 CROP-seq_pilot 
61 CTL _g16 TAGATCTGAAAGGCTGGGAT CTL CTL CROP-seq_pilot 
62 CTL _g17 TGTCTCCTACTGCGTGTTGA CTL CTL CROP-seq_pilot 
63 CTL _g18 TCTTAATGATAGAATCTTCC CTL CTL CROP-seq_pilot 
64 CTL _g19 GCTCCCAGTGTCCTGTGATA CTL CTL CROP-seq_pilot 
65 CTL _g20 AAGCACCCAGTAGTAAAACA CTL CTL CROP-seq_pilot 
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66 CTRL_g21 CTGAAAAAGGAAGGAGTTGA CTL CTL CROP-seq_pilot 
67 CTRL_g22 AAGATGAAAGGAAAGGCGTT CTL CTL CROP-seq_pilot 
68 CTRL_g23 TGCGCGGCTTGGGAAGCCCA CTL CTL CROP-seq_pilot 
69 CTRL_g24 GACGCGAGGAAGGAGGGCGC CTL CTL CROP-seq_pilot 
70 enh588_g1 GGATCTGCAGGCCCAAGGTC CCND1 enh588 CROP-seq_pilot 
71 enh588_g2 CTCTCAGTCATCCTTGACCTT CCND1 enh588 CROP-seq_pilot 
72 enh588_g3 GCTCTCAGTCATCCCTGACCT CCND1 enh588 CROP-seq_pilot 
73 enh588_g4 TCCTCTAGCAGACGGCCCTG CCND1 enh588 CROP-seq_pilot 
74 enh588_g5 TCTGCTAGAGGATCACTCCT CCND1 enh588 CROP-seq_pilot 
75 enh588_g6 GGCGGAGTCATGCCAGCTCA CCND1 enh588 CROP-seq_pilot 
76 CCND1_g1 GCAGCAGAGTCCGCACGCTC CCND1 CCND1 CROP-seq_pilot 
77 CCND1_g2 GGTGAGTAGCAAAGAAACGT CCND1 CCND1 CROP-seq_pilot 
78 CCND1_g3 ACTCCGCCGCAGGGCAGGCG CCND1 CCND1 CROP-seq_pilot 
79 CCND1_g4 CTATGAAAACCGGACTACAG CCND1 CCND1 CROP-seq_pilot 
80 ESR1_TSS2_g1 AAGCCGGGCGACCCGAC ESR1 ESR1_TSS2 CROP-seq_pilot 
81 ESR1_TSS2_g2 GGCGCACGAGGATCTGCTAA ESR1 ESR1_TSS2 CROP-seq_pilot 
82 ESR1_TSS2_g3 GGAGCCCAGGAGCTGGCGGA ESR1 ESR1_TSS2 CROP-seq_pilot 
83 ESR1_TSS2_g4 TCAGGGCAAGGCAACAGTCCC ESR1 ESR1_TSS2 CROP-seq_pilot 
84 ESR1_TSS2_g5 GGAGACCAGTACTTAAAGT ESR1 ESR1_TSS2 CROP-seq_pilot 
85 TP53_g1 ATGAGTCCTCTCTGAGTCAC TP53 TP53 CROP-seq_pilot 
86 TP53_g2 TCAGGAGCTTACCCAATCCA TP53 TP53 CROP-seq_pilot 
87 TP53_g3 CCGAGAGCCCGTGACTCAGAG TP53 TP53 CROP-seq_pilot 
88 TP53_g4 TGGGGACTTAGCGAGTTT TP53 TP53 CROP-seq_pilot 
89 TP53_g5 GGAAGCGTGTCACCGTCG TP53 TP53 CROP-seq_pilot 
90 PIK3CA_g1 TCTCCCAGCGTCGGCCCG PIK3CA PIK3CA CROP-seq_pilot 
91 PIK3CA_g2 AGCGTGAGTAGAGCGCGGAC PIK3CA PIK3CA CROP-seq_pilot 
92 PIK3CA_g3 GAGAGGGTGCGGCGATCGC PIK3CA PIK3CA CROP-seq_pilot 
93 PIK3CA_g4 CCCCGAGCGTGAGTAGAGCG PIK3CA PIK3CA CROP-seq_pilot 
94 PIK3CA_g5 GGAGTCTCCGGCACCCACC PIK3CA PIK3CA CROP-seq_pilot 
95 SUZ12_g1 GGGCCGCCCGGCGGGTAGCTGG SUZ12 SUZ12 CROP-seq_pilot 
96 SUZ12_g2 CTCCGGCGGACCGAGGGGGGA SUZ12 SUZ12 CROP-seq_pilot 
97 SUZ12_g3 CGGAGCGAGGCCAGGGTA SUZ12 SUZ12 CROP-seq_pilot 
98 SUZ12_g4 CAGGCTCCGGCGGACCGAGG SUZ12 SUZ12 CROP-seq_pilot 
99 SUZ12_g5 TATTGCAGGCGCTTGCTCTC SUZ12 SUZ12 CROP-seq_pilot 

 
Supplementary Table 1 | CROP-seq libraries. 
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Supplementary Figures 
 

 

 

Supplementary Fig. 1 | Validation of CROP-seq libraries. a, The gene dependency scores of most 

target genes show negative effects on cell growth in MCF7. Data are originally from two pooled 

screening projects (DRIVE and Achilles) and obtained from https://depmap.org/. b, Three selected 

examples to illustrate an exponential model to evaluate the dropout rate of sgRNAs in cell pool. Dots 

represent biology replicates. Lines represent the exponential dropout model, as indicated by the 

equation. c, The fitness scores (the parameter alpha in b) of each guide. Green (positive alpha) 

indicates cancer cell promotion and red indicates cancer cell inhibition. Sizes of squares indicate p 

values. 
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Supplementary Fig. 2 | Ambient noise widely exist in single-cell omics technologies. Ambient 

contamination is observed in several public datasets and the background noise is highly correlated with 

endogenous signal. a, Lopes2021 dataset. b, The A549_5k dataset from 10x genomics. c, The 

Ryan2019 dataset. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 

 

Supplementary Fig. 3 | Supplementary to Fig. 2. Evaluation of scAR on CROP-seq. a, Similar to Fig. 

2i, the dotplot shows the overall comparison between two assignment approaches on t-statics of z-

normalized expression. X-axis represents guide groups. Y-axis represents subgroups of cells as 

exemplified in Fig. 2g and Fig. 2h, separated by two time points and assignment approaches. Target 

genes are shown on the top. Their expression (log transformed) in each group is compared with that in 

CTL group and resulting t-statistics are shown by the dot color. Blue color indicates down-regulation, 

and red indicates up-regulation. CTL group is centered at zero. The bimodal sizes of circles represent 

the p-values from t-test (the bigger means p<0.05, the smaller means p>=0.05). * highlights the guide 

groups where scAR significantly improves the accuracy and # marks the groups where scAR 

underperforms naïve assignment. b, The comparison between two assignment approaches on cell 

number after assignment. Sizes of squares represent cell numbers of each assignment. c, The overall 

comparisons of cell number. Each dot represents an sgRNA. 
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Supplementary Fig. 4 | scAR reduces the non-specific ambient antibodies.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

 

 

Supplementary Fig. 5 | scAR identifies markers for subtypes of T cells.  
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Supplementary Fig. 6 | scAR identifies marker for subtypes of monocytes.  
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Supplementary Fig. 7 | Supplementary to Fig. 4. A public scRNAseq dataset of mixed human 

HEK293T and mouse NIH3T3 cells (1:1) was selected to demonstrate scAR’s ability in noise reduction 

in transcriptome data. a, UMAP shows three populations of cell-containing droplets, HEK293T, NIH3T3 

and multiplets. b, Fraction of transcripts in subpopulations of droplets. c, Correlation of gene 

frequencies between subpopulations of droplets and cell-containing droplets. d, Boxplots show the 

percentage of ambient signal in NIH3T3 cells. The green boxes represent the proportion of observed 

human transcripts. The blue and orange boxes represent scAR-estimated mouse and human ambient 

proportions, respectively. 
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Supplementary Fig. 8 | Supplementary to Fig. 5 with full list of markers. Benchmarking of protein 

and mRNA count denoising. a, The scatterplot shows the Spearman correlation coefficients between 

RNA-protein pairs before (x-axis) and after scAR-denoising of both protein and mRNA counts (y-axis). 

The red dashed line represents y=x. Dots represent antibodies. b, Boxplots show Spearman correlation 

coefficients between RNA-protein pairs (both denoised, only mRNA denoised, and only protein 

denoised). Denoising methods are indicated on X-axis.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 

 

Supplementary Fig.9 | The performance of two versions of scAR. We compared two versions of 

scAR to demonstrate the necessary of using cell-free droplets. a, scAR v1 is an early version of scAR 

in which we fully relied on VAE to learn the ambient frequencies. b, Heatmaps of synthetic CITE-seq 

data (supplementary Note I). Native counts represent the ground truth, which are the signals we aimed 

to recover from observed counts. scAR refers to the version in Fig. 1, which we use cell-free droplets 

to estimate the ambient frequencies. scAR v1 refers to the version in (a). c, scAR v1 fails to learn the 

real ambient frequencies. Each dot represents a protein marker. d, The noise ratios estimated by two 

versions of scAR. Each dot represents a cell, colors represent cell type. 
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Supplementary Fig. 10 | Graphic model of scAR. The plates (three rectangles) represent 

independent replication, here, meaning individual cells, features and cell-free droplets, respectively. 

Grey circles represent observed random variables, e.g., dm represents total counts in cell m and xmg 

represents the observed count of feature g in cell m. Open circles represent latent random variables. 

Edges denote conditional dependencies among the variables. 
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Supplementary Fig.11 | The architecture of VAE in scAR. The optimized dimension numbers 

(supplementary Note II) of neural network layers are indicated and used as default parameters in scAR. 

They can also be modified by assigning optional arguments in the scAR command line tool 

(supplementary Note III). 
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Supplementary Fig.12 | Hyperparameter optimization of scAR. Two synthetic datasets 

(supplementary Note I), simulating CROP-seq data type and CITE-seq data type, were used to optimize 

scAR to allow generalized performance. We performed grid search to identify the optimal parameter 

set. In total, there are 6912 sets of parameters in each dataset. a, Hyperparameter optimization on a 

synthetic CROP-seq dataset. In this class of single-cell omics technologies, assignment of identify 

barcodes is key information (classification problem), so we used assignment accuracy as a metric to 

compare performance among parameters.  b, Hyperparameter optimization on a synthetic CITE-seq 
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dataset. As with scRNAseq, levels of feature barcodes are important information (regression problem). 

So, we use Mean Absolute Error (MAE loss) as metric in this case. 
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