

1 **The AAA+ ATPase RavA-ViaA complex sensitizes *Escherichia***
2 ***coli* to aminoglycosides under anaerobic low energy**
3 **conservation conditions**

4 Jessica Y. El Khoury¹✉, Jordi Zamarreño Beas^{2,✉}, Allison Huguenot², Béatrice Py^{2*}, Frédéric Barras^{1*}

5

6 [✉] These authors contributed equally to this work and their names are listed in alphabetical order

7

8 * Co-corresponding authors

9 E-mail: frederic.barras@pasteur.fr

10 py@imm.cnrs.fr

11

12

13 Affiliations

14

15 ¹ SAMe Unit, Département de Microbiologie, Université de Paris, UMR CNRS IMM 2001, Institut
16 Pasteur, France.

17 ² Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de
18 Microbiologie de la Méditerranée, Marseille, France

19 # Current Address: Instituto Tecnologia Química e Biológica António Xavier, Universidade Nova de
20 Lisboa Avenida da Repúblca; 2780-157 Oeiras, Portugal

21

22

23

24

25

26 **Abstract**

27 Aminoglycosides have been used against Gram-negative bacteria for decades. Yet, uncertainties
28 remain about various aspects of their uptake mechanism. Moreover their killing efficiency is well
29 known to vary as a function of growth conditions and types of metabolism used by the targeted
30 bacterium. Here we show that RavA, an AAA+ ATPase from the MoxR subfamily, associated with its
31 VWA-containing partner, ViaA sensitize *E. coli* to lethal concentrations of AG, including gentamycin
32 (Gm) and tobramycin, but not of antibiotics of other classes. We show this sensitizing effect to be due
33 to enhanced Gm uptake in a proton motive force dependent manner. We evaluated the influence of
34 RavA ViaA throughout a series of growth conditions, including aerobiosis and anaerobiosis. This led us
35 to observe that the sensitizing effect of RavA ViaA varies with the respiratory chain used, i.e. RavA ViaA
36 influence was prominent in the absence of exogenous electron acceptor or with fumarate, i.e. in poor
37 energy conservation conditions, and dispensable in the presence of nitrate or oxygen, i.e. in high level
38 of energy conservation. We propose RavA ViaA to be able to sense energetic state of the cell and to
39 be used under low energy conditions for facilitating uptake of chemicals across the membrane,
40 including Gm.

41

42 **Author Summary**

43 Antibiotic resistance is a major public health, social and economic problem. Aminoglycosides are
44 known for their high efficiency against Gram-negative bacteria but their use is restricted to life
45 threatening infections because of their nephrotoxicity and ototoxicity at therapeutic dose. Elucidation
46 of AG sensitization mechanisms in bacteria will allow the use of a decreased effective dose of AGs.
47 Here we identified new molecular actors, RavA and ViaA, which sensitize *E. coli* to AG under
48 anaerobiosis. RavA belongs to the AAA+ ATPase family while ViaA bears a VWA motif. Moreover we
49 show here that the influence of RavA ViaA on AG sensitivity varies with growth conditions and
50 respiratory metabolism used by *E. coli*. This is a significant step forward as anaerobiosis is well known

51 to reduce antibacterial activity of AG. This study emphasizes the crucial importance of the relationships
52 between culture conditions, metabolism and antibiotic resistance.

53 **Introduction**

54 Antibiotic resistance is an important biomedical problem that challenges the ability to treat bacterial
55 infections [1]. Modulation of intracellular concentrations of antibiotics is one of the most frequent
56 processes leading to resistance whether it is due to limiting antibiotic entry, or increasing efflux [2].
57 The aminoglycosides (AGs) class of antibiotics targets the ribosome, leading to mistranslation and
58 eventually cell death. AGs comprise kanamycin, tobramycin, gentamycin (Gm), neomycin, amikacin
59 and streptomycin and are commonly used worldwide, thanks to their high efficacy and low cost. The
60 mechanism of action of AG has been studied for decades. Yet, uncertainties remain on key mechanistic
61 issues, such as mode of killing and penetration into cells. For instance, although ribosome as the
62 primary targets of AG has been established for years, several studies have in the last decade challenged
63 the idea that ribosome targeting was the actual reason for AG toxicity, giving to reactive oxygen species
64 an equally important contribution to bacterial death [3–6]. Another issue under debate pertains to the
65 mechanism of entry of AG and various non-exclusive mechanisms have been described. The current
66 model [7,8] is that uptake starts with the entry of a small amount of AG through proton motive force
67 (*pmf*)-dependent mechanisms [9–11] or other transport systems [12–14] priming mistranslation by the
68 ribosome, which leads to membrane damage by incorporation of mistranslated proteins and a second
69 wave of massive AG uptake [9,15]. The *pmf* is especially important during the first phase of uptake
70 [16], while the second phase occurs in response to impaired translation. *pmf* is produced by the activity
71 of electron transfer chains arising within respiratory complexes and we previously showed that
72 maturation of respiratory complexes is directly impacting AG uptake efficiency and level of resistance
73 [4].
74 The AAA+ ATPases are widely used as part of macromolecular machines [17]. AAA+ ATPases share
75 structural features such as forming oligomers or coupling ATPase hydrolysis with remodeling of

76 substrates. AAA+ ATPases have been classified in different 7 clades [17]. Actual physiological role of
77 several AAA+ ATPase remains to be elucidated, in particular within members of the MoxR subfamily,
78 which is part of the AAA+ ATPase clade 7 [17]. Studies on different members of the MoxR family
79 indicate that they could fulfill chaperone-like roles assisting assembly of protein complexes [18]. A
80 hallmark of this type of AAA+ ATPase is that they interact with proteins containing the von Willebrand
81 factor (VWA) domain, a domain that mediates protein-protein interactions. Among the MoxR family
82 we are interested in the protein **regulatory variant A** (RavA) with its VWA containing partner ViaA.
83 RavA ViaA (RV) complex was reported to interact physically with the respiratory complex fumarate
84 reductase (Frd) but the role for RV in fumarate respiration remains unclear [19]. Briefly, Frd allows *E.*
85 *coli* to use fumarate as terminal electron acceptor when oxygen is lacking. Frd complex is made of four
86 subunits, including the cytosolic soluble FrdA and FrdB subunits and the membrane spanning FrdC and
87 D subunits. FrdB hosts a flavin adenine dinucleotide (FAD) and FrdA three iron-sulfur (Fe-S) cluster
88 cofactors. FrdB is a menaquinone (MQ) oxidoreductase, which relays electron from MQH₂ to FrdA
89 active site that reduces fumarate into succinate [20]. RV was found to decrease Frd activity and it was
90 proposed that RV complex might participate to the multi-step assembly process leading to functional
91 Frd. A link between RV and anaerobic respiratory metabolism is also supported by the fact that *ravA-*
92 *viaA* genes form an operon regulated by the anaerobic sensing transcriptional regulator Fnr [19]. Other
93 potential partners/substrates of RV are some members of the Nuo respiratory complex and of proteins
94 of the iron-sulfur cluster biogenesis machinery Isc [21].
95 RV activity appears to be important for sustaining stress imposed by the presence of sublethal
96 concentration of AGs, both in *Escherichia coli* and *Vibrio cholerae* [21–23]. Precisely, *E. coli* strains
97 lacking *ravA*, *viaA* or both reached a higher final cell density than WT, in rich medium supplemented
98 with sub-lethal concentrations of AGs [21]. Importantly, these observations were collected with *E. coli*
99 strains growing under aerobic conditions, i.e. conditions in which neither Fnr transcriptional activating
100 nor fumarate reductase activities are expected to intervene.

101 In the present work, we tested whether RV plays a role in *E. coli* sensitivity to lethal doses of AG. We
102 carried out analyses both under anaerobic and aerobic growth conditions. Our study establishes RavA
103 and ViaA as AG toxicity enhancers and found this activity to depend upon *pmf*. Unexpectedly,
104 importance of RV in mediating AG toxicity varies with the growth conditions and nature of the electron
105 acceptor provided to *E. coli* for respiring. We propose RV to connect the energetic status of the cell
106 and AG uptake.

107

108 **Results**

109 **RavA and ViaA sensitize *E. coli* to Gm under anaerobic fumarate**

110 **respiratory conditions.**

111 The *ravA-viaA* operon is activated under anaerobiosis by the Fnr transcriptional activator [19].
112 Moreover, previous studies have pointed out a link between RV complex and Frd fumarate reductase
113 activity [19]. Therefore we tested the effect of RavA ViaA on AG sensitivity of *E. coli* grown under
114 anaerobic fumarate respiratory conditions. First, we investigated the importance of the fumarate
115 respiration for Gm survival. We found that in a time-dependent killing experiment using a
116 concentration of Gm equivalent to 2X MIC (16 µg/mL), the $\Delta frdA$ mutant exhibited increased resistance
117 to Gm compared to the WT strain (Fig. 1A). Under anaerobic respiration, menaquinone is predicted to
118 be a prominent electron carrier [24]. Therefore we tested the $\Delta menA$ mutant, which lacks an 1,4-
119 dihydroxy-2-naphthoate octaprenyltransferase involved in menaquinone biosynthesis. $\Delta menA$ mutant
120 exhibited same level of Gm resistance as $\Delta frdA$ mutant (Fig. 1B). Fumarate respiration might involve
121 the NADH:quinone oxidoreductase (Nuo) or the anaerobic glycerol-3-phosphate dehydrogenase
122 (GlpA, B & C) complexes as primary electron donors [25]. Accordingly, we tested the effect of
123 mutations in both of these complexes, e.g. *nuoC* and *glpA*, on Gm killing. Neither $\Delta nuoC$ nor $\Delta glpA$
124 mutation, isolated or in combination, altered the level of Gm sensitivity (S1 Fig.). These results showed
125 that functional menaquinone and fumarate reductase, as electron carrier and terminal reductase

126 respectively, are required for Gm killing. Then we tested the $\Delta ravaA$ - $viaA$ mutant in a time-dependent
127 killing experiment, using a concentration of Gm equivalent to 2X MIC (16 μ g/mL). We found $\Delta ravaA$ -
128 $viaA$ mutant exhibited increased resistance to Gm compared to the WT strain (Fig. 1A). Last, combining
129 $\Delta ravaA$ - $viaA$ and $\Delta frdA$ mutations showed no additive effect (Fig. 1A). Altogether these results indicated
130 that in fumarate respiratory conditions RavA ViaA sensitize *E. coli* to Gm in a FrdA-dependent
131 mechanism.

132

133 **RavA and ViaA are not needed to grow under fumarate respiration.**

134 Previous analysis showed that RV exerted, if anything, a slight negative effect on FrdA enzymatic
135 activity [19]. We therefore tested if RV provided a growth advantage to strains growing using fumarate
136 respiration. Both WT and $\Delta ravaA$ - $viaA$ strains were grown in LB medium supplemented with 10mM
137 fumarate. Colony-forming unit (CFU) counting showed no difference between $\Delta ravaA$ - $viaA$ mutant and
138 WT strain (S2.A Fig). Next, both strains were mixed at a 1:1 ratio, and grew together in M9-glycerol
139 and fumarate under anaerobic conditions for 48h. Competitive index was determined by counting
140 $\Delta ravaA$ - $viaA$ CFU, using their kanamycin resistance phenotype, and WT strain CFU at t_0 and t_{48} . The
141 competitive index ($CFU_{\text{mutant}}/ CFU_{\text{wt}} t_{48} / (CFU_{\text{mutant}}/ CFU_{\text{wt}} t_0)$) gave a median value of 1.3, revealing no
142 growth advantage of one strain over the other (S2.B Fig). Altogether these results showed that *in vivo*
143 RavA and ViaA do not influence growth under fumarate respiration and presumably do not modulate
144 FrdA enzymatic activity to a large extent, if at all.

145

146 **RavA and ViaA do not sensitize *E. coli* grown under nitrate respiration**

147 **to Gm.**

148 Nitrate can be used as a terminal acceptor yielding to the most energetically favourable anaerobic
149 respiratory chain in *E. coli* [26]. Therefore, we tested if RavA and ViaA were able to sensitize *E. coli* to
150 Gm under nitrate respiration. Nitrate reductase NarGHI is used under anaerobic conditions and is the

151 major enzyme during nitrate respiration. First, we established the MIC value of Gm in LB medium
152 supplemented with NaNO₃ at 10 mM and 0.2 % glycerol and found it was 8 µg/mL for the WT, Δ ravA-
153 viaA, Δ narG and Δ ravA-viaA Δ narG strains. Next, in these conditions we performed a time-dependent
154 killing assay with Gm at 16 µg/mL. The Δ ravA-viaA mutant was as sensitive as the WT strain (Fig. 2),
155 while Δ narG mutation made *E. coli* less susceptible to Gm comparing to the WT. These results indicate
156 that the sensitization of *E. coli* to Gm under nitrate respiration is dependent upon NarG but
157 independent of RavA-ViaA. Note that combining Δ ravA-viaA and Δ narG had a slight additive effect as
158 the resulting strain showed an even higher level of resistance than the Δ narG single mutant (Fig. 2)
159 suggesting that preventing respiration of the exogenously added electron acceptor, nitrate, permitted
160 RV to sensitize *E. coli* to Gm.

161

162 **RavA and ViaA sensitize *E. coli* to Gm in the absence of exogenously
163 added electron acceptor in anaerobiosis.**

164 Next, we investigated the extant of the RV sensitizing effect in the absence of exogenously added
165 electron acceptor, i.e. in LB medium supplemented, or not, with 0.2% glycerol or 0.2% glucose. First,
166 the MIC values for Gm in all of these media were found to be 8 µg/mL. Next, we performed a killing
167 assay using Gm at 16 µg/mL (2x MIC) in LB (Fig. 3A), in LB glycerol (Fig. 3B) and at 30 µg/mL (~4x MIC)
168 in LB glucose (Fig. 3C). The Δ ravA-viaA mutant exhibited increased resistance to Gm compared to the
169 WT strain in all media (Fig. 3). Notably, complementing the Δ ravA-viaA mutant with the pRV plasmid
170 suppressed its enhanced sensitivity (Fig. 3 C). These results indicated that RavA ViaA exerts a sensitizing
171 effect on *E. coli* in anaerobic conditions in the absence of exogenous electron acceptor.

172

173 **RavA and ViaA sensitize *E. coli* to aminoglycosides specifically.**

174 To test whether the effect of RavA and ViaA proteins is specific to Gm, we measured the survival rate
175 of the Δ ravA-viaA strain to other antibiotics: another aminoglycoside (Tobramycin), a protein synthesis

176 inhibitor (tetracycline), a fluoroquinolone (Nalidixic Acid) and a β -lactam (ampicillin). We observed that
177 the Δ ravA-viaA mutant was more resistant to tobramycin than the WT strain (Fig. 4A). A modest
178 resistance effect was noticed at short time exposure to tetracycline (Fig. 4B). The Δ ravA-viaA mutation
179 had no effect on the toxic effect of nalidixic acid and ampicillin as its survival rate was the same as the
180 WT strain (Fig. 4C & 4D). Altogether these results showed that in anaerobiosis, RavA and ViaA sensitize
181 *E. coli* specifically to aminoglycosides.

182

183 **RavA and ViaA increase the intracellular gentamycin concentration
184 under anaerobic conditions.**

185 To understand the role of RavA ViaA in AG sensitization under anaerobic conditions, we performed a
186 Gm uptake assay using 3 H-Gm. Gm uptake assay was done with strains that had grown in LB-glucose
187 under anaerobic conditions. Accumulation of 3 H-Gm in the WT strain progressively increased to reach
188 1200 ng Gm/ 10^8 cells after 2.5 hours (Fig. 5). Instead, in the Δ ravA-viaA mutant, the accumulation of
189 3 H-Gm remained below 100 ng of Gm/ 10^8 cells after 2.5 hours. Our results indicated that RavA and
190 ViaA sensitize *E. coli* to Gm by enhancing its uptake and as a consequence its intracellular
191 concentration.

192

193 **Increased ravA-viaA gene dosage enhances aminoglycoside killing
194 of *E. coli* in aerobiosis.**

195 The previously reported implication of RV in AG sensitivity was derived from studying *E. coli* grown in
196 the presence of O₂ [21]. Moreover, this study monitored growth in the presence of sublethal
197 concentrations of kanamycin, another AG. Therefore, we decided to reinvestigate the influence of RV
198 in aerobiosis using killing assays. The MIC of Gm was found to be 2 μ g/mL for both wild type (WT) and
199 Δ ravA-viaA strains. In a time-dependent killing experiment using a concentration of Gm equivalent to

200 2.5x MIC (5 μ g/mL), *E. coli* WT and Δ ravA-viaA strains exhibited similar sensitivities to Gm (Fig. 6A).
201 Hence these results failed to confirm previous data reporting a role of *ravA-viaA* in AG resistance in
202 the presence of O_2 . To further solve this apparent conundrum, we constructed a plasmid carrying the
203 *ravA-viaA* operon (pRV plasmid) and tested whether this would sensitize *E. coli* to Gm. We observed a
204 drastically altered survival of the WT/pRV strain (Fig. 6B) showing the capacity of RavA ViaA to sensitize
205 *E. coli* to Gm killing under aerobiosis. Thus, we concluded that RV can sensitize *E. coli* to Gm in the
206 presence of O_2 as well but only when they are produced above a threshold level value, that seems not
207 to be reached in exponentially growing cells.

208

209 **RavA-ViaA mediated *E. coli* killing by aminoglycosides in aerobiosis**
210 **requires *pmf*.**

211 Survival rate to Gm of the WT/pRV was tested in the presence of cyanide-m-chlorophenylhydrazone
212 (CCCP), an ionophore, which dissipates the *pmf*. The data showed that addition of CCCP prevented Gm
213 from killing the WT/pRV strain (Fig. 6C), demonstrating that pRV-mediated killing required *pmf*. Since
214 *pmf* results from respiratory metabolism, we tested whether pRV-mediated sensitization was
215 dependent upon electron transfer chain (ETC)-forming components. We analysed survival to Gm of
216 strains defective for the synthesis of ubiquinones, the lipid that acts as electron carrier within aerobic
217 ETCs. A Δ ubiA strain was highly resistant to Gm treatment and pRV plasmid failed to sensitize the strain
218 defective for ubiquinones (Fig. 6D). Similarly, a Δ nuo Δ ndh strain lacking both NADH dehydrogenase I
219 and II, canceled pRV-mediated sensitization (Fig. 6E). These data supported the notion that respiration
220 is required for pRV-mediated killing in aerobiosis.

221

222 **RavA-ViaA have no effect on Nuo activity.**

223 To test if RavA and ViaA affect the activity of the Nuo respiratory complex, the Nuo complex activity
224 was measured using deamino-NADH as specific substrate and O_2 as a final electron acceptor. The level

225 of activity of the Nuo complex was in the Δ ravA-viaA mutant comparable whether it carried the pRV
226 plasmid or the empty vector control (S3 Fig). This result led us to conclude that RavA ViaA has no effect
227 on Nuo activity level.

228

229 **Discussion**

230 AGs have been used for decades to treat Gram-negative infections. Yet our understanding of their
231 mode of action, and in particular their mode of entry into the cells remains uncertain. A two step model
232 has been put forward, including a first step wherein AG cross the membrane via a *pmf*-dependent
233 pathway followed by a second step wherein aborted translational misfolded polypeptides allow
234 massive entry [27]. In this work, we report the influential role of an AAA+ ATPase from the MoxR
235 subfamily, RavA, associated with its VWA-containing partner, ViaA, in Gm uptake under anaerobiosis.
236 We show that the first *pmf* dependent step is required for RavA-ViaA-dependent facilitating Gm
237 uptake. We discuss a hypothesis wherein RavA-ViaA role would take place when cells are in low
238 energetic state.

239

240 *E. coli* possess a highly versatile arsenal of respiratory chains. *E. coli* synthesizes multiple
241 dehydrogenases and terminal reductases, which act as quinone reductases and oxydases, respectively
242 [26,28]. Likewise, from the sole bioenergetic point of view, quinones can connect most of the
243 dehydrogenases with most of the reductases and a great variety of respiratory chains be formed
244 [26,28]. However, not all possible respiratory chain afford redox energy conservation as this requires
245 redox-loop mechanism, which couples electron transfer across the membrane to expulsion of a proton
246 in the periplasm. Energy conservation is maximal in aerobiosis, decreases under fumarate respiration
247 while it gets to its lowest level in the absence of exogenously added electron acceptor [26]. Satisfyingly
248 enough, we found predicted redox energy conservation level to parallel Gm sensitivity level (Fig. 7).
249 Oxygen, nitrate and fumarate as electron acceptors, in this order, yield to higher level of *pmf* and

250 decreasing level of susceptibility of *E. coli* to Gm. Surprisingly, the importance of RavA ViaA in
251 sensitizing *E. coli* to Gm appeared to follow the redox energy hierarchy defined above. Indeed influence
252 of RV was apparent when exogenous electron acceptors providing lowest energy conservation, i.e. no
253 exogenous electron acceptor or with fumarate (Fig. 7). It is unclear which mode *E. coli* is relying on to
254 grow in the absence of “exogeneous added electron acceptor” and we assume that endogenously
255 produced acetate as well as amino acids present in the rich medium can act as electron acceptors. In
256 contrast, with nitrate or oxygen as electron acceptors, which yields to the two highest energy
257 conservation processes, RavA and ViaA had no significant influence. Thus it is tempting to propose as
258 a working hypothesis that RV sensitizing effect takes place only when cell energy goes beyond a
259 threshold value.

260

261 The *ravA-viaA* operon is under Fnr control [19] and consistently we found a phenotype for Δr *avA-viaA*
262 mutant under anaerobiosis. In contrast, killing assays failed to show evidence of the expected
263 enhanced Gm resistance of Δr *avA-viaA* mutant in the presence of O₂. Yet our subsequent analysis using
264 plasmid carrying RavA-ViaA copies revealed that RavA ViaA was able to sensitize *E. coli* to Gm, in other
265 words, that aerobic condition was not intrinsically inhibitory to the RavA ViaA activity. Previous study
266 showed the *ravA viaA* operon to be under sigma S control under aerobiosis, with an optimal synthesis
267 of both RavA and ViaA proteins occurring in cells under stationary phase [19]. Hence it is likely that in
268 our killing assays performed on cells growing exponentially in the presence of O₂, RavA and ViaA
269 protein levels were not high enough for an influence to be detected. It will be interesting to
270 reinvestigate the issue of RavA ViaA influence on Gm lethal activity on stationary resting cells. Besides,
271 if RavA ViaA were to bear a sensitizing effect on starving cells, it would somehow be consistent with
272 the hypothesis above predicting a capacity of RV to sense cells under low energetic metabolism.

273

274 We showed that RV complex sensitizes *E. coli* to AG via a *pmf*-dependent mechanism. A simplest
275 explanation to account for the sensitizing role of RV is that RV enhanced respiratory chain activity,

276 thereby yielding to high *pmf* level and enhanced Gm uptake. Yet this explanation seems to fall short.
277 Indeed, no positive effect of RV was found neither on Frd nor on Nuo activity. The effect of RV on Frd
278 was previously investigated and no significant effect was found either [19]. Instead, it was proposed
279 that RV could assist step-wise assembly of the multi-subunits Frd complex in the membrane [19]. Such
280 an hypothesis was in line with the fact that several AAA+ ATPases do assist folding and assembly of
281 multiprotein complexes. Yet, the experiments performed in this study did not show any advantage of
282 the presence of RV on fumarate based growth, casting some doubt on the importance of RavA ViaA
283 for Frd functioning *in vivo*. RavA ViaA were proposed to target the Nuo complex based upon pull-down
284 assays [21]. Actually, only a subset of Nuo subunits did interact with RavA and/or ViaA, and these
285 putative partnerships changed depending upon the growth conditions : NuoA and F interacting with
286 RavA and ViaA under aerobiosis and NuoCD interacting with both RavA and ViaA under anaerobiosis.
287 Yet in their phenotypic analysis, mutating *nuo* genes bore no effect on RavA-ViaA mediated
288 sensitization to sublethal concentration of kanamycin, raising questions about the functional
289 consequences of the interactions between RV and some Nuo subunits by pull-down assays. Moreover,
290 we found no effect of RavA ViaA onto the level of Nuo activity. Thus, if the use of Gm toxicity as a read-
291 out as we used here, clearly demonstrates a physiological link between RV and respiratory complexes,
292 the mode of action of RV on these complexes remains enigmatic.

293
294 Antibiotic resistance is a major public health, social and economic problem. AGs are known for their
295 high efficiency against Gram-negative bacteria but their use is restricted to life threatening infections
296 because of their nephrotoxicity and ototoxicity at therapeutic doses [29]. Elucidation of AG
297 sensitization mechanisms in bacteria will allow the use of a decreased effective dose of AGs, to safely
298 treat a wider proportion of infections. Here we identified new molecular actors, RavA and ViaA, which
299 sensitize *E. coli* to AG under anaerobiosis. This is a significant step forward as anaerobiosis is well
300 known to reduce antibacterial activity of AG. This study extends our previous work [4,30,31] and

301 further emphasizes the influence that environmental conditions and composition can bear on level of
302 antibiotic resistance.

303

304

305 Materials and methods

306 Bacterial strains and growth conditions

307 The *E. coli* K-12 strain MG1655 and its derivatives used in this study are listed in Table 1. Deletion
308 mutations ($\Delta ravA::Kan^R$, $\Delta viaA::Kan^R$, $\Delta ndh::Kan^R$, $\Delta frdA::Kan^R$, $\Delta menA::Kan^R$, $\Delta nuoC::Kan^R$,
309 $\Delta glpA::Kan^R$, $\Delta narG::Kan^R$) from the KEIO collection were introduced by P1 transduction. The $\Delta ravA$ -
310 $viaA::Kan^R$ mutant was constructed using the procedure described by Datsenko K. and Wanner B. [32],
311 using oligos ravAwanner_up and viaAwanner_do, followed by a transduction in clean MG1655
312 background. Transductants were verified by polymerase chain reaction (PCR), using primers pair
313 hybridizing upstream and downstream the deleted genes. When performed, excision of the kanamycin
314 cassette was done using the pCP20 plasmid [32]. Oligonucleotides used in this study are listed in Table
315 2. *E. coli* strains were grown at 37°C in Luria-Bertani (LB) rich medium or in minimal M9 medium.
316 Glucose (0.2%), Glycerol (0.2%), IPTG (1 mM), CCCP (5 μ g/mL), fumarate (10 mM) or nitrate (10mM)
317 were added when indicated. Solid media contained 1.5% agar. For standard molecular biology
318 techniques antibiotics were used at the following concentrations, kanamycin at 50 μ g/mL, and
319 ampicillin at 50 or 100 μ g/mL.

320

321 Plasmid construction

322 Plasmid pRV was constructed by, first, PCR amplification of the coding region of *ravA-viaA* from the *E.*
323 *coli* MG1655 chromosomal DNA using the following primers pair: ravA UP BamHI/ viaA DO HindIII
324 (Table 2). The PCR product was then digested by *Bam*HI and *Hind*III and cloned into the *Bam*HI/*Hind*III
325 linearized ptrC99A vector [33]. The sequence of the inserted fragment was checked by DNA
326 sequencing.

327

328

329 **Time-dependent killing assay**

330 Overnight cultures were diluted (1/100) and grown aerobically or anaerobically in specific medium as
331 indicated in the figures' legends at 37°C to an OD₆₀₀ of 0.2. At this point (T0) antibiotics at the indicated
332 concentration were added to the cells. At different incubation times, 100 µL of cells were diluted in
333 sterile phosphate buffered saline solution (PBS buffer), spotted on LB agar and then incubated at 37°C
334 for 24 to 48h. Cell survival was determined by counting colony-forming units per mL (CFU/mL). The
335 absolute CFU at time-point 0 (used as the 100%) was $\approx 5 \times 10^7$ CFU/mL. Survival rate in anaerobic
336 conditions was performed in anaerobic chamber (Coy and Jacomex Chambers). Materials (medium,
337 tubes, plates...) were all previously equilibrated in the anaerobic chamber for at least 18 h.

338

339 **MIC determination**

340 The MICs were determined by the microdilution method in a 96 wells plate according to the Clinical
341 Laboratory Standards Institute (CLSI) guideline. Briefly, serial dilutions of Gm in a 2-fold manner were
342 done in 100 µL Cation Adjusted Müller-Hinton or in LB supplemented or not with either glucose (0.2%)
343 or fumarate (10 mM) or nitrate (10mM). *E. coli* inoculum were prepared by suspending colonies grown
344 overnight on LB agar using 1×PBS to achieve a turbidity of 0.5 McFarland (1×10^8 CFU/ml) and the final
345 concentration of the inoculum in each well was around 5×10^5 CFU/mL. The plates were incubated at
346 37°C for 18 hours under aerobic or anaerobic conditions. MIC was defined as the lowest drug
347 concentration that exhibited complete inhibition of microbial growth. All MICs were determined from
348 at least three independent biological replicates.

349

350 **Gentamycin uptake**

351 [³H]-Gm (20 µCi/mg; Hartmann Analytic Corp.) was added at the indicated final concentration and
352 cultures were incubated at 37°C on a rotary shaker. At given times, 500 µL aliquots were removed and
353 collected on a 0.45 µM-pore-size HAWP membrane filter (Millipore) pre-treated with 1 mL of

354 unlabelled Gm (250 µg/mL). Filters were subsequently washed with 10 ml of 3 % NaCl, placed into
355 counting vials, dried for 30 min at 52°C whereafter 8 mL of scintillation liquid were added and
356 incubated overnight at room temperature. Vials were counted for 5 min. Gm uptake efficiency is
357 expressed as total accumulation of Gm (ng) per 10⁸ cells.

358

359 **Competition experiment in batch culture**

360 The two strains tested were first grown separately overnight in M9 medium supplemented with
361 casamino acids (0.1%). The cell density of each suspension was measured by OD_{600nm} reading and by
362 CFU count. Each overnight culture containing approximately 3x10⁸ cells/mL was diluted 1/100-fold and
363 mixed in a ratio of 1:1 to inoculate 25 mL of M9 supplemented with casamino acids (0.1%) (time 0 h)
364 and incubated for 24 h at 37°C for a competitive growth. The co-culture was diluted 1/100 in 25 ml of
365 fresh M9 medium and grown for another 24 h at 37°C. The initial density of each strain was determined
366 in the initial co-culture (0 h) from CFU data by diluting and plating population samples onto LB agar
367 and LB agar supplemented with kanamycin. Similarly, the final density of each strain was determined
368 for all the co-cultures.

369

370 **Enzymatic assay**

371 Cells grown in LB (100 mL) to OD_{600nm} 0.6 were harvested by centrifugation, washed once in 50 mM
372 phosphate buffer pH 7.5, and resuspended in 50 mM phosphate buffer pH 7.5 (6 mL), lysed using a
373 French press, aliquoted (100 mL) and frozen immediately in liquid nitrogen. Nuo activity was assayed
374 at 30°C by adding thawed samples to 50 mM phosphate buffer pH 7.5 containing reduced nicotinamide
375 hypoxanthine dinucleotide (deamino-NADH) (250 mM) as specific substrate, and by following A_{340nm}.
376 Protein concentration was determined using the protein A_{280nm} method on NanoDrop2000
377 spectrophotometer.

378

379 **Table 1. *E. coli* strains used in this study**

<i>E. coli</i> strains	Relevant genotype	Source
BP897	MG1655 Δ nuo::nptI Kan ^R	Ezraty B. <i>et al.</i> [4]
BP1046	MG1655 Δ nuo::nptI Δ ndh::FRT	This study
FBE051	MG1655 Wild type	Lab collection
FBE501	MG1655 Δ menA::FRT	This study
FBE706	MG1655 Δ ravA-viaA::FRT	This study
FBE790	MG1655 Δ frdA::FRT	This study
FBE829	MG1655 Δ narG::FRT	This study
FBE830	MG1655 Δ ravA-viaA Δ narG::FRT	This study
FBE831	MG1655 Δ ravA-viaA Δ frdA::FRT	This study
FBE950	MG1655 Δ glpA::FRT	This study
FBE951	MG1655 Δ ravA-viaA Δ glpA::FRT	This study
FBE1055	MG1655 Δ glpA Δ nuoC::FRT	This study
FBE1057	MG1655 Δ nuoC::FRT	This study
LL922	Δ ubiA	Kazemzadeh K. <i>et al.</i> [34]

380

381

382

383

384

385

386

387

388

389

390

Table 2. Oligonucleotides used in this study

Primer name	Sequence (5'-3')
Construction of the ΔravA-<i>viaA</i> mutant	
ravAwanner_up	CTCGCAATTACGCAGAACCTTGACGAAAGGACGCCACTCATTGTGTAGGCTGGAGC
viaAwanner_do	GCCAGCTGCTGTTCGCGAGAGCGTCCCTCTGCTGTAATAATCATATGAATATCCTCC
Construction of the pRV plasmid	
ravA UP BamHI	GGCCGGATCCATGGCTACCCCTCATTATTAA
viaA DO HindIII	GGCCAAGCTTTATCGCCGCCAGCGTCTGAG
Checking the Knock-out mutants	
frdA_Frd	GTGGAATAGCGTCGCAGACC
frdA_Rv	GCTATGCGGTGCGGTATCGAC
glpA_Frd	ATGAGCGAATATGCGCGAAATCAA
glpA_Rv	GCAGTTGCAGGCCACAGAGTAA
menA_Frd	AACATCTGGATGCGTTGGTGG
menA_Rv	TAGGCTTAACATTAGTGTGCTGC
narG_frd	AGGCTCCCACAGGAGAAAACCG
narG_Rv	CACCATGCCACTTGTGAACGAATT
nuoC_Frd_2	TGCTCGATCGCTTCACGCTC
nuoC_Rv_2	TCGGCAAAGGGATTTTCTCGC
ravA_up_verif	CCTAAATGCGGCCACATTAACC
viaA_do_verif	GGCGGCGGTATGCCAGTCTCG

391

392

393

394

395

396

397 **Figures legend**

398

399 **Fig 1. The *ravA-viaA* operon sensitizes fumarate respiring *E. coli* to gentamycin under fumarate**
400 **respiration.**

401 **(A & B)** Survival of WT (FBE051), Δ ravA-viaA (FBE706), Δ frdA (FBE790), Δ ravA-viaA Δ frdA (FBE831) and
402 Δ menA (FBE501) strains after Gm treatment. Cells were grown anaerobically in LB supplemented with
403 fumarate at 10 mM and then Gm was added at 16 μ g/mL. The survival values after 1.5 and 3 hours of
404 treatment are represented. Black and red lines are for untreated and Gm-treated bacteria,
405 respectively. For Δ ravA-viaA Δ frdA (FBE831) strain, lines of treated and untreated cells are overlapping.
406 Survival measured by CFU per mL, was normalized relative to time zero at which Gm was added (early
407 log phase cells; $\sim 5 \times 10^7$ CFU/mL) and plotted as Log_{10} of % survival. The Minimal Inhibitory
408 Concentration (MIC) value of Gm was 8 μ g/mL in LB medium supplemented with fumarate at 10 mM
409 for the four strains, WT, Δ ravA-viaA, Δ frdA and Δ menA, grown anaerobically. Values are expressed as
410 means of at least 3 biological replicates and error depict standard deviation. One-way ANOVA tests
411 followed by Sidak's multiple comparison tests were performed to compare at each time point (1.5
412 and 3 hours) the treated WT to each of the treated mutant, in (A) asterisks were similar for the three
413 mutants and therefore were represented once for all (** adjusted p Value = 0.0002 & ***
414 adjusted p Value < 0.0001).

415

416 **Fig 2. RavA and ViaA do not sensitize nitrate respiring *E. coli* to gentamycin.**

417 Survival of WT (FBE051), Δ ravA-viaA (FBE706), Δ narG (FBE829), Δ ravA-viaA Δ narG (FBE830) strains
418 after Gm treatment. Cells were grown anaerobically in LB supplemented with nitrate at 10 mM and
419 glycerol at 0.2% and then Gm was added at 16 μ g/mL. The survival values after 1.5 and 3 hours of
420 treatment are represented. Black and red lines are for untreated and Gm-treated bacteria,
421 respectively. Lines of untreated WT and Δ ravA-viaA (FBE706) strains are overlapping. Lines of

422 untreated $\Delta narG$ (FBE829) and $\Delta ravA-viaA \Delta narG$ (FBE830) are overlapping. Survival measured by CFU
423 per mL, was normalized relative to time zero at which Gm was added (early log phase cells; $\sim 5 \times 10^7$
424 CFU/mL) and plotted as \log_{10} of % survival. Values are expressed as means of at least 3 biological
425 replicates and error depict standard deviation. One-way ANOVA tests followed by Sidak's multiple
426 comparaison tests were performed to compare at each time point (1.5 and 3 hours) the treated WT to
427 each of the treated mutant as well as treated $\Delta narG$ (FBE829) to $\Delta ravA-viaA \Delta narG$ (FBE830) (ns: not
428 significant, * adjusted pValue < 0.05 and **** adjusted pValue < 0.0001).

429

430 **Fig 3. RavA and ViaA sensitize *E. coli* to gentamycin under anaerobic conditions in the absence of**
431 **exogenous added electron acceptor.**

432 **(A and B)** Survival of WT (FBE051) and the $\Delta ravA-viaA$ (FBE706) strains after Gm treatment. Cells were
433 grown in LB **(A)** or in LB supplemented with 0.2% glycerol **(B)** until $OD_{600nm} \sim 0.2$ and then Gm was added
434 at 16 $\mu g/mL$. The survival values after 1.5 and 3 hours of treatment are represented. Black and red
435 lines are for untreated and Gm-treated bacteria, respectively. Values are expressed as means of at
436 least 3 biological replicates and error depict standard deviation. One-way ANOVA tests followed by
437 Sidak's multiple comparaison tests were performed to compare at each time point (1.5 and 3 hours)
438 the treated WT to $\Delta ravA-viaA$ mutant (* adjusted pValue < 0.05, *** adjusted pValue = 0.0002 and
439 **** adjusted pValue < 0.0001).

440 **(C)** Survival of WT (FBE051) and the $\Delta ravA-viaA$ (FBE706) strains carrying either the pRV plasmid or the
441 control empty vector (p \emptyset). Cells were grown in LB supplemented with glucose (0.2 %), IPTG (1 mM)
442 and ampicillin (50 $\mu g/mL$) until $OD_{600nm} \sim 0.2$ and then Gm was added at 30 $\mu g/mL$. The survival values
443 after 3 hours of treatment are represented. Black and red bars are for untreated and antibiotic-treated
444 bacteria, respectively. Survival measured by CFU per mL, was normalized relative to time zero at which
445 Gm was added (early log phase cells; $\sim 5 \times 10^7$ CFU/mL) and plotted as \log_{10} of % survival. One-way

446 ANOVA tests followed by Dunnett's multiple comparison tests were performed to compare the
447 treated WT to the treated Δ ravA-viaA mutant (ns = not significant and ** adjusted pValue < 0.05).

448

449 **Fig 4. RavA and ViaA sensitize specifically to aminoglycosides.**

450 Survival of WT (FBE051) and Δ ravA-viaA (FBE706) strains after antibiotic treatment. Cells were grown
451 in LB supplemented with glucose (0.2 %) until $OD_{600nm} \sim 0.1$ and antibiotics were added: **(A)** Tobramycin
452 (30 μ g/mL); **(B)** Tetracycline (5 μ g/mL); **(C)** Nalidixic acid (5 μ g/mL); and **(D)** Ampicillin (5 μ g/mL).
453 Black and red lines are for untreated and antibiotic-treated bacteria, respectively. The survival values
454 after 1.5 and 3 hours of treatment are represented. Survival, measured by CFU per mL, was normalized
455 relative to time zero at which the antibiotic was added and plotted as \log_{10} of % survival. Values are
456 expressed as means (n=3) and error bars depict standard deviation. One-way ANOVA tests followed
457 by Sidak's multiple comparison tests were performed to compare at each time point (1.5 and 3 hours)
458 the treated WT to the treated Δ ravA-viaA mutant (ns = not significant, * adjusted pValue < 0.05 and
459 *** adjusted pValue < 0.0001).

460

461 **Fig 5. RavA and ViaA increase gentamycin uptake.**

462 3 H-Gm uptake in WT (FBE051) and Δ ravA-viaA (FBE706) strains was measured by incubating early
463 exponential-phase cultures ($OD_{600nm} \sim 0.1$) with 30 μ g/mL 3 H-Gm at 37 °C under anaerobic conditions
464 (LB supplemented with glucose at 0.2%). Values are expressed as means (n=3) and error bars depict
465 standard deviation. Unpaired t-test followed by Welch's correction was performed to compare the WT
466 strain to the Δ ravA-viaA mutant at each time point (ns = not significant, * adjusted pValue < 0.05 and
467 *** adjusted pValue = 0.0003).

468

469

470

471

472 **Fig 6. Effect of RavA-ViaA on *E. coli* sensitivity to gentamycin under aerobiosis.**

473 **(A-B) Increased *ravA* and *viaA* genes dosage alters survival to gentamycin in killing assay.**

474 Survival of the strain WT (FBE051) and the mutant Δ *ravA-viaA* (FBE706) **(A)** or of the WT (FBE051)
475 strain containing either a plasmid that carries the *ravA-viaA* operon (pRV) or the empty vector control
476 (p \emptyset) **(B)** after treatment with Gm (5 μ g/mL) for 1.5 and 3 hours.

477 **(C-E) The RavA-ViaA gentamycin sensitization phenotype is abolished by p.m.f. inhibitor and is**
478 **dependent upon a functional respiratory chain.**

479 **(C)** Survival of the WT (FBE051) strain containing a plasmid that carries the *ravA-viaA* operon (pRV)
480 after treatment with Gm (5 μ g/mL), in the presence or absence of CCCP (5 μ g/mL). Survival of Δ *ubiA*
481 (LL922) **(D)** and Δ *nuo* Δ *ndh* (BP1046) **(E)**, containing a plasmid that carries the *ravA-viaA* operon (pRV)
482 or the empty vector control (p \emptyset), after Gm treatment. Cells were grown in LB supplemented with IPTG
483 (1 mM) and ampicillin (50 μ g/mL) until $OD_{600nm} \sim 0.1$ and Gm (5 μ g/mL) was added.

484 Survival, measured by CFU per mL, was normalized relative to time zero at which the antibiotic was
485 added (early log phase cells; $\sim 5 \times 10^7$ CFU/mL) and plotted as Log_{10} of % survival. Values are expressed
486 as means (n=3) and error bars depict standard deviation. Black and red lines are for untreated and Gm-
487 treated, respectively. One-way ANOVA tests followed by Sidak's multiple comparaison tests were
488 performed (ns = not significant and **** adjusted pValue < 0.0001).

489

490 **Fig 7. Energy conservation level affects gentamycin sensitivity under anaerobic conditions.**

491 Survival of WT (FBE051) and the Δ *ravA-viaA* (FBE706) strains after Gm treatment. Cells were grown in
492 LB-glycerol (black), added with 10 mM fumarate (grey) or with 10 mM nitrate (white) until $OD_{600nm} \sim 0.2$
493 and then Gm was added at 16 μ g/mL. The survival values after 3 hours of treatment are represented.
494 The first two groups represent the untreated strains and the two last groups represent the treated
495 strains (+Gm). Values are expressed as means of at least 3 biological replicates and error depict
496 standard deviation. One-way ANOVA tests followed by Sidak's multiple comparaison tests were

497 performed (ns = not significant, * adjusted *p*Value < 0.05, ** adjusted *p*Value < 0.005, ***
498 adjusted *p*Value = 0.0003 and **** adjusted *p*Value < 0.0001).

499 Acknowledgments

500 We thank all members of the Py group (Marseille), the Barras unit (Paris) and Irina Gutsche (IBS,
501 Grenoble) for fruitful discussions.

502

503 Authors Contributions

504 **Conceptualization:** Frédéric Barras, Béatrice Py.

505 **Funding acquisition:** Frédéric Barras.

506 **Investigation and methodology:** Jessica Y. El Khoury, Jordi Zamarreño Beas, Allison Huguenot,
507 Béatrice Py.

508 **Supervision:** Frédéric Barras, Béatrice Py.

509 **Writing review & editing:** Frédéric Barras, Béatrice Py, Jessica Y. El Khoury.

510

511 References

- 512 1. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic
513 resistance-the need for global solutions. *Lancet Infect Dis.* 2013;13: 1057–1098. doi:10.1016/S1473-
514 3099(13)70318-9
- 515 2. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. *Microbiol Spectr.* 2016;4:
516 10.1128/microbiolspec.VMBF-0016-2015. doi:10.1128/microbiolspec.VMBF-0016-2015
- 517 3. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular
518 death induced by bactericidal antibiotics. *Cell.* 2007;130: 797–810. doi:10.1016/j.cell.2007.06.049
- 519 4. Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, Brochado AR, et al. Fe-S cluster

520 biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. *Science*. 2013;340:
521 1583–1587. doi:10.1126/science.1238328

522 **5.** Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. Killing by bactericidal antibiotics does not
523 depend on reactive oxygen species. *Science*. 2013;339: 1213–1216. doi:10.1126/science.1232688

524 **6.** Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species.
525 *Science*. 2013;339: 1210–1213. doi:10.1126/science.1232751

526 **7.** Davis BD. Mechanism of bactericidal action of aminoglycosides. *Microbiol Rev*. 1987;51: 341–
527 350.

528 **8.** Mechanism of Bactericidal Action of Aminoglycosides. *Microbiol Rev*. 1988;52: 153.

529 **9.** Taber HW, Mueller JP, Miller PF, Arrow AS. Bacterial uptake of aminoglycoside antibiotics.
530 *Microbiol Rev*. 1987;51: 439–457.

531 **10.** Fraimow HS, Greenman JB, Leviton IM, Dougherty TJ, Miller MH. Tobramycin uptake in
532 *Escherichia coli* is driven by either electrical potential or ATP. *J Bacteriol*. 1991;173: 2800–2808.

533 **11.** Herisse M, Duverger Y, Martin-Verstraete I, Barras F, Ezraty B. Silver potentiates
534 aminoglycoside toxicity by enhancing their uptake. *Mol Microbiol*. 2017;105: 115–126.
535 doi:10.1111/mmi.13687

536 **12.** Bryan LE, Van Den Elzen HM. Effects of membrane-energy mutations and cations on
537 streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and
538 gentamicin in susceptible and resistant bacteria. *Antimicrob Agents Chemother*. 1977;12: 163–177.
539 doi:10.1128/AAC.12.2.163

540 **13.** Alper MD, Ames BN. Transport of antibiotics and metabolite analogs by systems under cyclic
541 AMP control: positive selection of *Salmonella typhimurium* cya and crp mutants. *J Bacteriol*. 1978;133:
542 149–157. doi:10.1128/jb.133.1.149-157.1978

543 **14.** Nichols WW, Young SN. Respiration-dependent uptake of dihydrostreptomycin by *Escherichia*
544 *coli*. Its irreversible nature and lack of evidence for a uniport process. *Biochem J*. 1985;228: 505–512.
545 doi:10.1042/bj2280505

546 **15.** Davis BD, Chen LL, Tai PC. Misread protein creates membrane channels: an essential step in
547 the bactericidal action of aminoglycosides. *Proc Natl Acad Sci U S A.* 1986;83: 6164–6168.
548 doi:10.1073/pnas.83.16.6164

549 **16.** Eisenberg ES, Mandel LJ, Kaback HR, Miller MH. Quantitative association between electrical
550 potential across the cytoplasmic membrane and early gentamicin uptake and killing in *Staphylococcus*
551 *aureus*. *J Bacteriol.* 1984;157: 863–867. doi:10.1128/jb.157.3.863-867.1984

552 **17.** Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass.
553 *Curr Opin Struct Biol.* 2021;66: 119–128. doi:10.1016/j.sbi.2020.10.027

554 **18.** Snider J, Houry WA. MoxR AAA+ ATPases: a novel family of molecular chaperones? *J Struct*
555 *Biol.* 2006;156: 200–209. doi:10.1016/j.jsb.2006.02.009

556 **19.** Wong KS, Bhandari V, Janga SC, Houry WA. The RavA-ViaA Chaperone-Like System Interacts
557 with and Modulates the Activity of the Fumarate Reductase Respiratory Complex. *J Mol Biol.* 2017;429:
558 324–344. doi:10.1016/j.jmb.2016.12.008

559 **20.** Cole ST, Grundström T, Jaurin B, Robinson JJ, Weiner JH. Location and nucleotide sequence of
560 *frdB*, the gene coding for the iron-sulphur protein subunit of the fumarate reductase of *Escherichia*
561 *coli*. *Eur J Biochem.* 1982;126: 211–216. doi:10.1111/j.1432-1033.1982.tb06768.x

562 **21.** Wong KS, Snider JD, Graham C, Greenblatt JF, Emili A, Babu M, et al. The MoxR ATPase RavA
563 and Its Cofactor ViaA Interact with the NADH:Ubiquinone Oxidoreductase I in *Escherichia coli*. *PLOS*
564 *ONE.* 2014;9: e85529. doi:10.1371/journal.pone.0085529

565 **22.** Girgis HS, Hottes AK, Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. *PloS*
566 *One.* 2009;4: e5629. doi:10.1371/journal.pone.0005629

567 **23.** Baharoglu Z, Babosan A, Mazel D. Identification of genes involved in low aminoglycoside-
568 induced SOS response in *Vibrio cholerae*: a role for transcription stalling and Mfd helicase. *Nucleic*
569 *Acids Res.* 2014;42: 2366–2379. doi:10.1093/nar/gkt1259

570 **24.** Unden G. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron
571 transport of *E. coli* and their *fnr*-independent expression. *Arch Microbiol.* 1988;150: 499–503.

572 doi:10.1007/BF00422294

573 **25.** Unden G, Steinmetz PA, Degreif-Dünnwald P. The Aerobic and Anaerobic Respiratory Chain of
574 *Escherichia coli* and *Salmonella enterica*: Enzymes and Energetics. *EcoSal Plus*. 2014;6.

575 doi:10.1128/ecosalplus.ESP-0005-2013

576 **26.** Unden G, Bongaerts J. Alternative respiratory pathways of *Escherichia coli*: energetics and
577 transcriptional regulation in response to electron acceptors. *Biochim Biophys Acta*. 1997;1320: 217–
578 234. doi:10.1016/s0005-2728(97)00034-0

579 **27.** Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An Overview. *Cold Spring Harb
580 Perspect Med*. 2016;6: a027029. doi:10.1101/cselperspect.a027029

581 **28.** Kaila VRI, Wikström M. Architecture of bacterial respiratory chains. *Nat Rev Microbiol*.
582 2021;19: 319–330. doi:10.1038/s41579-020-00486-4

583 **29.** Croes S, Koop AH, van Gils SA, Neef C. Efficacy, nephrotoxicity and ototoxicity of
584 aminoglycosides, mathematically modelled for modelling-supported therapeutic drug monitoring. *Eur
585 J Pharm Sci Off J Eur Fed Pharm Sci*. 2012;45: 90–100. doi:10.1016/j.ejps.2011.10.022

586 **30.** Gerstel A, Beas JZ, Duverger Y, Bouveret E, Barras F, Py B. Oxidative stress antagonizes
587 fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. *PLOS Genet*. 2020;16:
588 e1009198. doi:10.1371/journal.pgen.1009198

589 **31.** Chareyre S, Barras F, Mandin P. A small RNA controls bacterial sensitivity to gentamicin during
590 iron starvation. *PLoS Genet*. 2019;15: e1008078. doi:10.1371/journal.pgen.1008078

591 **32.** Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12
592 using PCR products. *Proc Natl Acad Sci*. 2000;97: 6640–6645. doi:10.1073/pnas.120163297

593 **33.** Amann E, Ochs B, Abel KJ. Tightly regulated tac promoter vectors useful for the expression of
594 unfused and fused proteins in *Escherichia coli*. *Gene*. 1988;69: 301–315. doi:10.1016/0378-
595 1119(88)90440-4

596 **34.** Kazemzadeh K, Chehade MH, Hourdoir G, Brunet CD, Caspar Y, Loiseau L, et al. The
597 Biosynthetic Pathway of Ubiquinone Contributes to Pathogenicity of *Francisella novicida*. *J Bacteriol*.

598 2021. doi:10.1128/JB.00400-21

599

600 Supporting information

601

602 **S1 Fig. The Nuo complex and the GlpA complex are dispensable for the RavA/ViaA-dependent**
603 **sensitization of *E. coli* to gentamycin under fumarate respiration.**

604 **(A, B, C)** Survival of WT (FBE051), Δ nuoC (FBE1057), Δ glpA (FBE950) and Δ glpA Δ nuoC (FBE1055) strains
605 after Gm treatment. Cells were grown in LB supplemented with fumarate at 10 mM **(A)** and glycerol at
606 0.2% **(B, C)** and then Gm was added at 16 μ g/mL. The survival values after 1.5 and 3 hours of treatment
607 are represented. Black and red lines are for untreated and Gm-treated bacteria, respectively. Most of
608 the lines of untreated cells are overlapping. Survival measured by CFU per mL, was normalized relative
609 to time zero at which Gm was added (early log phase cells; $\sim 5 \times 10^7$ CFU/mL) and plotted as Log_{10} of %
610 survival. For **A** and **B**, values are expressed as means of at least 3 biological replicates and error depict
611 standard deviation. One-way ANOVA tests followed by Sidak's multiple comparaison tests were
612 performed to compare at each time point (1.5 and 3 hours) the treated WT to each of the treated
613 mutant (ns = not significant).

614

615 **S2 Fig. RavA-ViaA have no effect on fumarate respiration dependent growth.**

616 **(A)** CFU/mL of WT (FBE051) and Δ ravA-viaA (FBE706) strains were determined when grown
617 anaerobically in LB medium supplemented with fumarate (10 mM). At time 0, the $\text{OD}_{600\text{nm}}$ of the
618 culture was approximately 0.1. **(B)** Strains WT (FBE051) and Δ ravA-viaA (FBE706) were grown
619 separately overnight in minimum M9 medium supplemented with glycerol (0.2 %), fumarate (10 mM)
620 and casamino acids (0.1 %), in anaerobic conditions. Cultures were then diluted 1/100 into fresh
621 medium and co-inoculated in a 1:1 ratio (t_0). The co-culture was incubated for 48h at 37°C for a
622 competitive growth. The competitive index was calculated as follow

623 $(CFU_{\text{mutant}}/CFU_{\text{wt}})t_{48}/(CFU_{\text{mutant}}/CFU_{\text{wt}})t_0$ (circles represent the values obtained in three independent
624 experiments, n=3, lines represent the medians).

625 **S3 Fig. RavA-ViaA have no effect on Nuo activity.**

626 Nuo specific activity in the WT (FBE051) and the $\Delta rava\text{-}viaA$ (FBE706) strains containing the plasmid
627 carrying the *rava\text{-}viaA* genes (pRV) or the corresponding empty vector (pØ). Nuo specific activity was
628 measured in cells extracts using deamino-NADH as substrate. Values are expressed as means (n≥3) and
629 error bars depict mean deviation. One-way ANOVA tests followed by Dunnett's multiple comparaison
630 tests were performed (ns = not significant). The 100 % correspond to the activity in the WT strain is
631 127 nmol/min/mg protein.

632

633

634

635

636

637

638

639

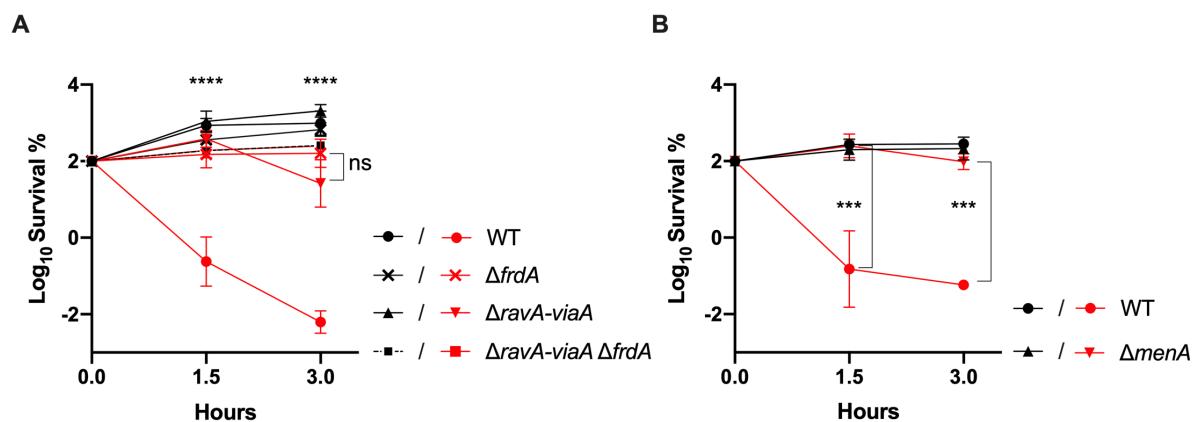
640

641

642

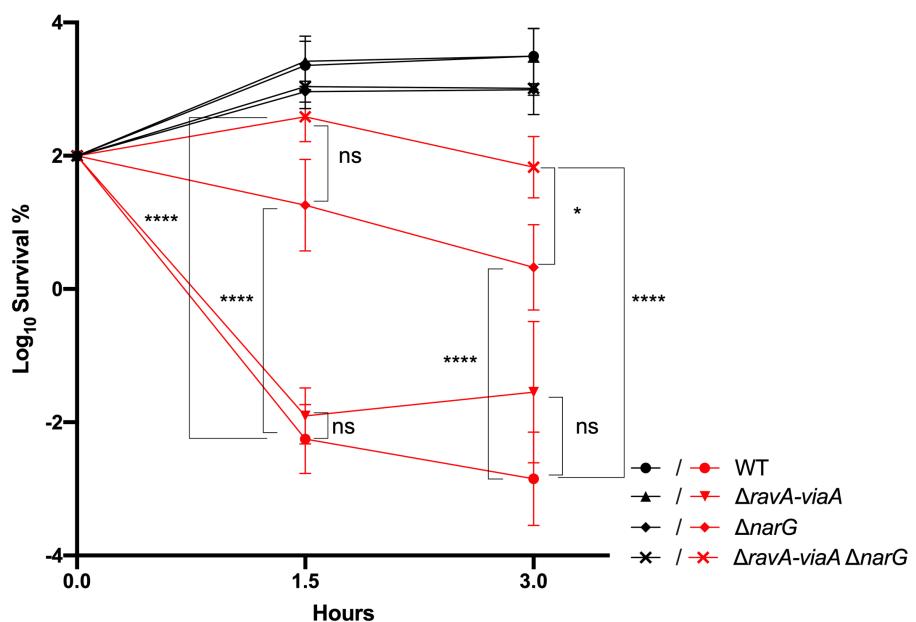
643

644

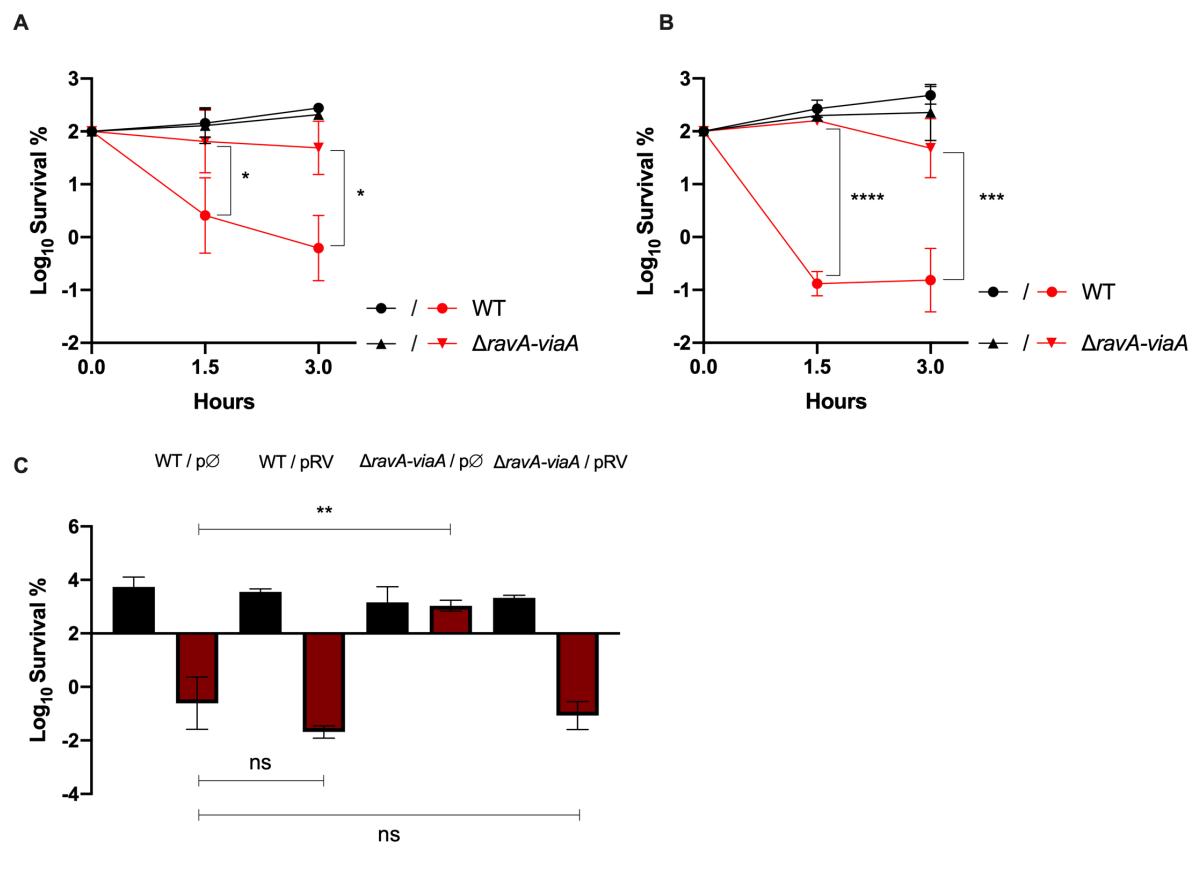

645

646

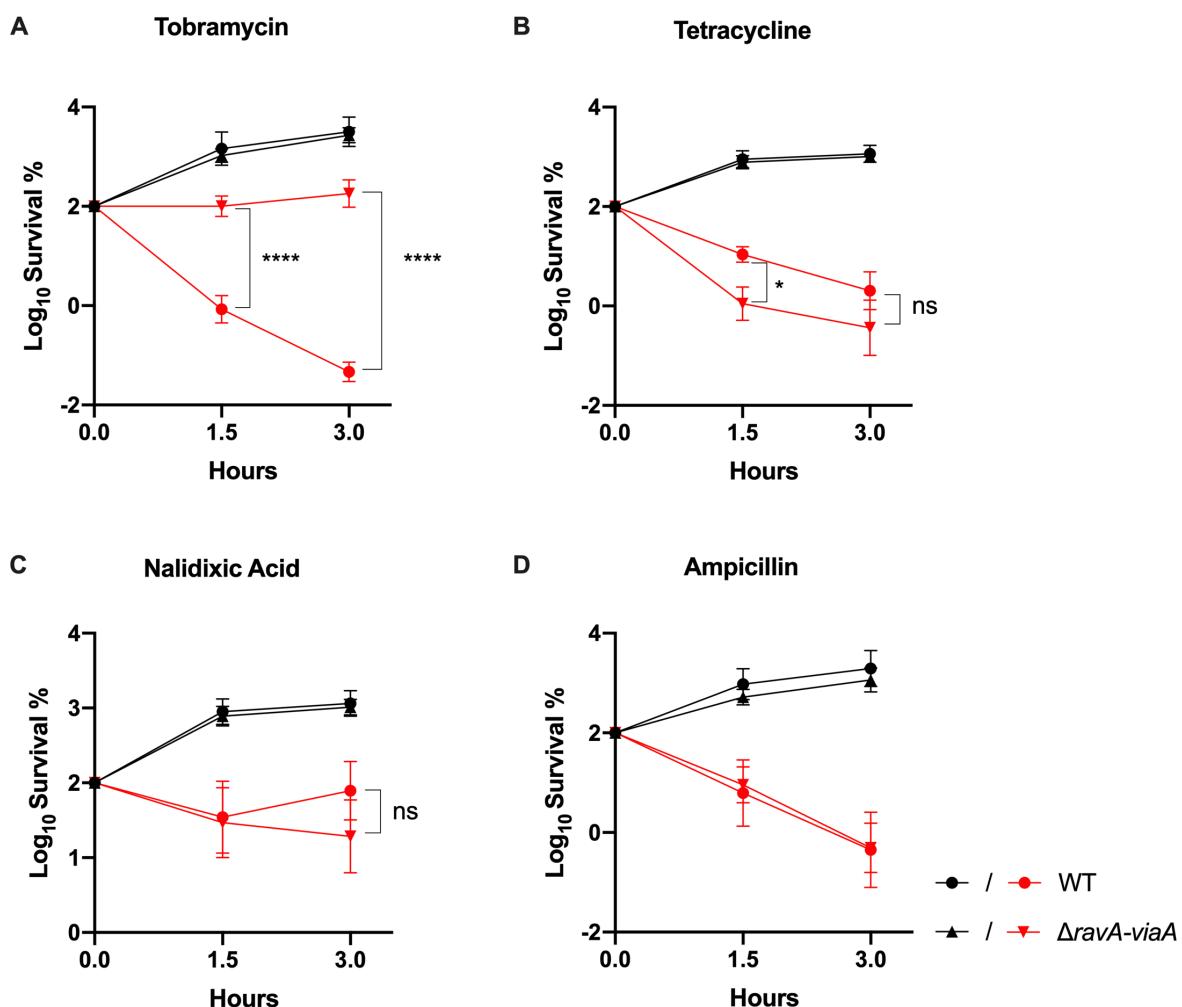
647


648

649 **Figures**

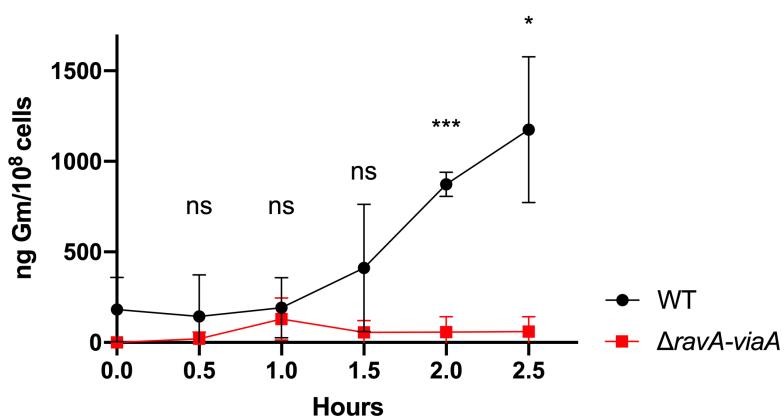

650

651 **Fig 1. The *ravA-viaA* operon sensitizes fumarate respiration *E. coli* to gentamycin under fumarate
652 respiration.**

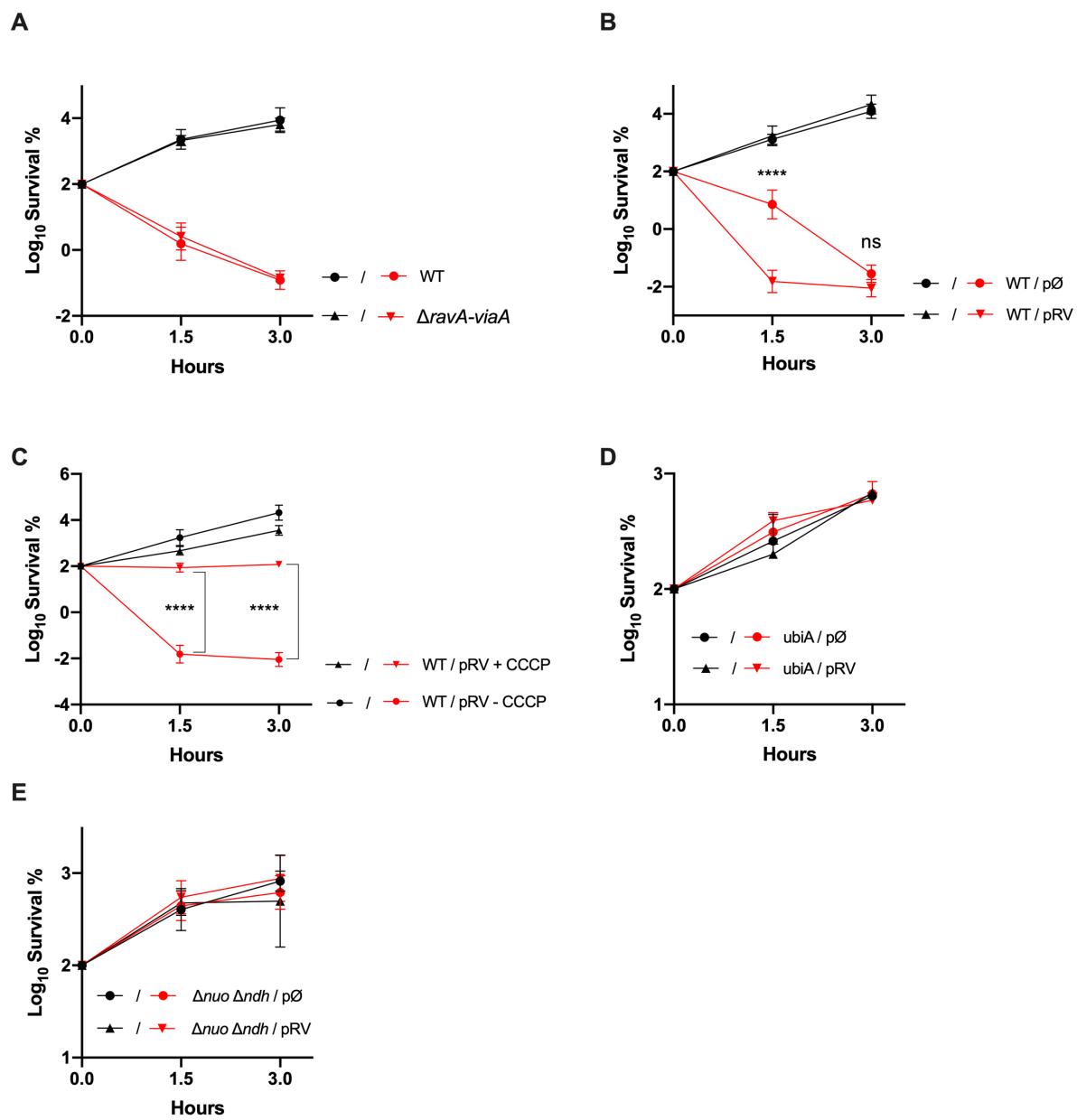


653

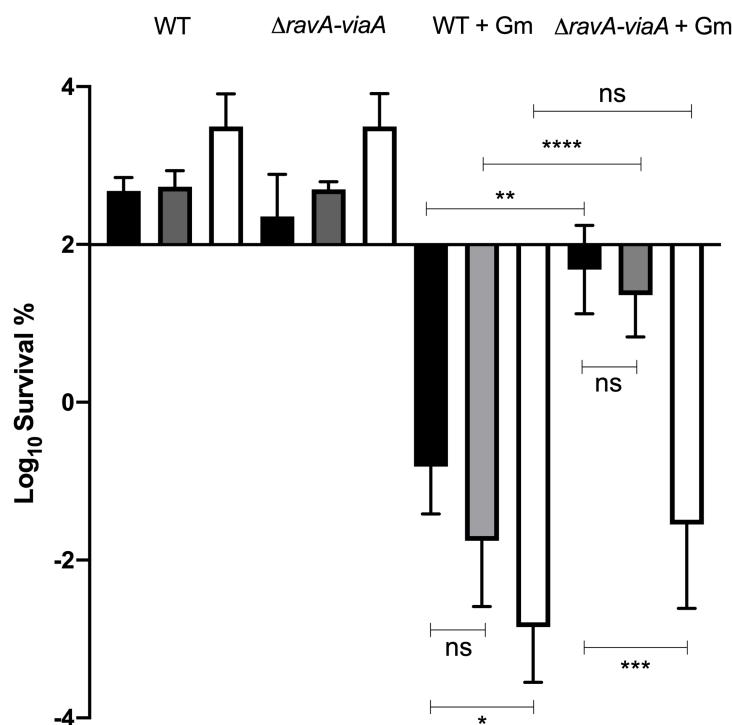
654 **Fig 2. RavA and ViaA do not sensitize nitrate respiration *E. coli* to gentamycin.**


656 **Fig 3. RavA and ViaA sensitize *E. coli* to gentamycin under anaerobic conditions in the absence of**
657 **exogenous added electron acceptor.**

658


659 **Fig 4. RavA and ViaA sensitize specifically to aminoglycosides.**

660


661

662 **Fig 5. RavA and ViaA increase gentamycin uptake.**

663

664 **Fig 6. Effect of RavA-ViaA on *E. coli* sensitivity to gentamycin under aerobiosis.**

665

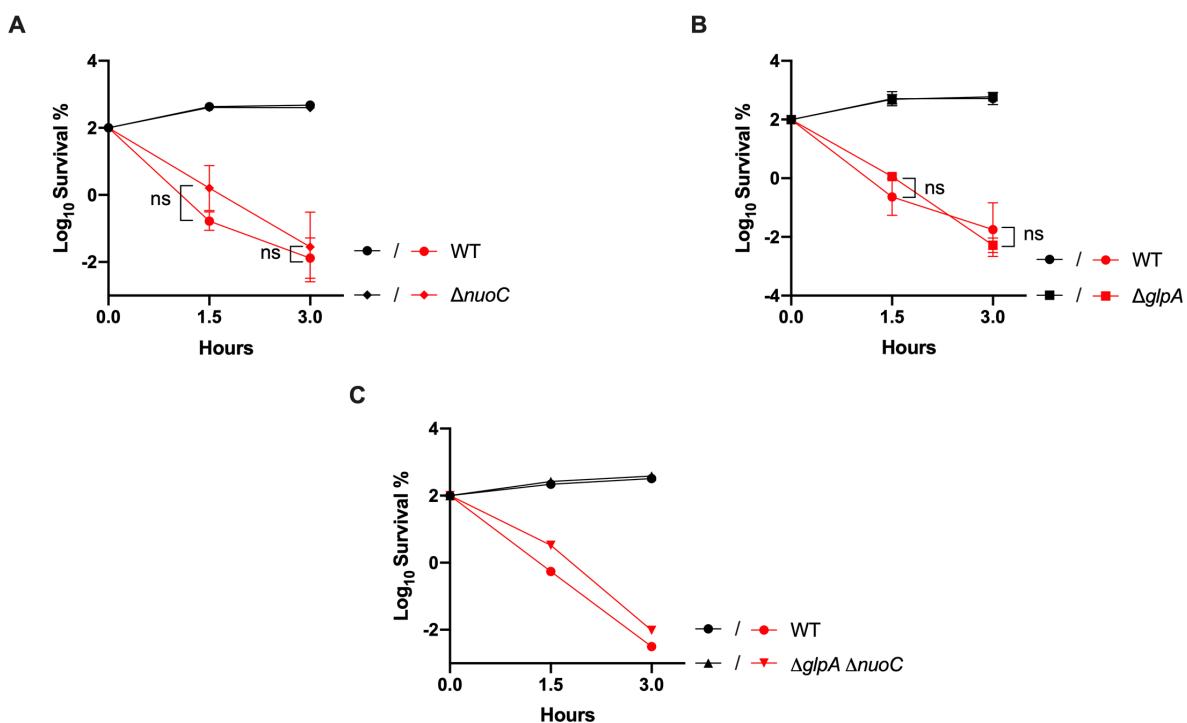
666 **Fig 7. Energy conservation level affects gentamycin sensitivity under anaerobic conditions.**

667

668

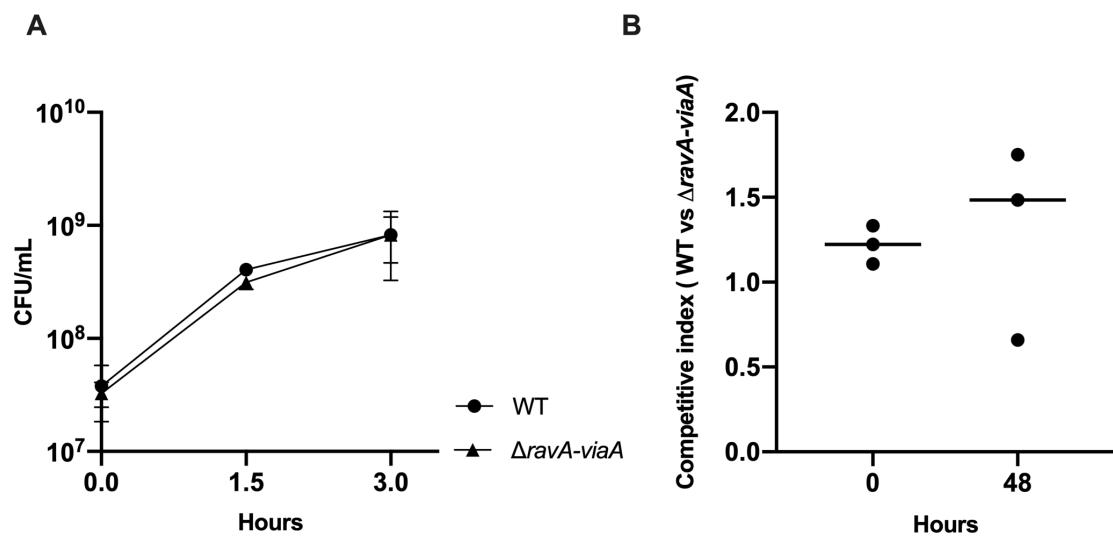
669

670

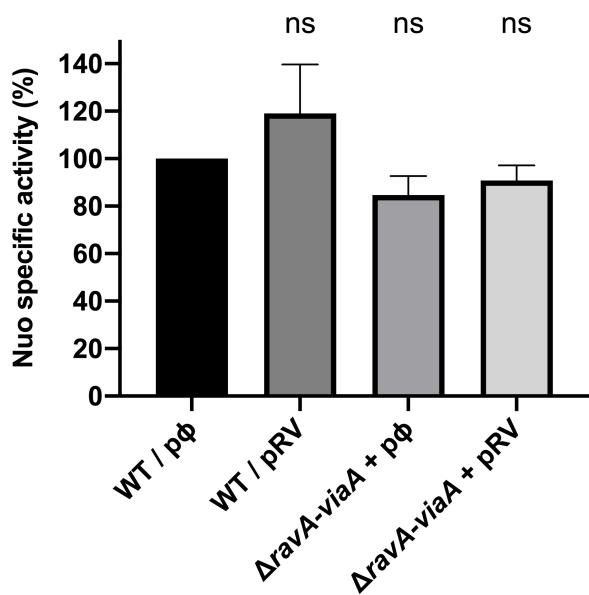

671

672

673


674

675 **Supporting figures**


676

677 **S1 Fig. The Nuo complex and the GlpA complex are dispensable for the RavA/ViaA-dependent**
678 **sensitization of *E. coli* to gentamycin under fumarate respiration.**

679

680 **S2 Fig. RavA-ViaA have no effect on fumarate respiration dependent growth.**

681

682 **S3 Fig. RavA-ViaA have no effect on Nuo activity.**

683

684