

Cell- and non-cell-autonomous ARF3 coordinates meristem proliferation and organ patterning in *Arabidopsis*

Ke Zhang^{1,¶*}, Hao Zhang^{2, 3, ¶}, Yanyun Pan³, Lin Guo^{2, 4}, Shijun Tian¹, Jiarong Wei¹, Yunze Fu¹, Cong Wang¹, Ping Qu¹, Liantao Liu¹, Yongjiang Zhang¹, Hongchun Sun¹, Zhiying Bai¹, Jingao Dong³, Cundong Li^{1,*}, Xigang Liu^{2,4,*}

1State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University; Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei, 071001, China

2Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei

Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China.

3State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China.

4State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China.

¶These authors contributed equally to this work.

*Corresponding authors Email: xgliu@hebtu.edu.cn, zhangke0126@163.com, nxylcd@hebau.edu.cn.

ABSTRACT

In cell-cell communication, non-cell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR 3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that *ARF3* expression is mainly activated at the periphery of the SAM by

31 auxin, where ARF3 cell-autonomously regulates the expression of meristem–organ
32 boundary-specific genes, such as *CUP-SHAPED COTYLEDON1-3* (*CUC1-3*),
33 *BLADE ON PETIOLE1-2* (*BOP1-2*) and *TARGETS UNDER ETTIN CONTROLS*
34 (*TEC3*) to determine organ patterning. We also show that ARF3 is translocated into
35 the organizing center, where it represses cytokinin activity and *WUSCHEL* expression
36 to regulate meristem activity non-cell-autonomously. Therefore, ARF3 acts as a
37 molecular link that mediates the interaction of auxin and cytokinin signaling in the
38 SAM while coordinating the balance between meristem maintenance and
39 organogenesis. Our findings reveal an ARF3-mediated coordination mechanism
40 through cell–cell communication in dynamic SAM maintenance.

41

42 INTRODUCTION

43 Multicellular organisms possess groups of cells with diverse identities and specific
44 responsibilities. To orchestrate this diversity, complex signaling networks control stem
45 cell fate based on hard-wired developmental programs (cell-autonomous effects) and
46 environmental signals (non-cell-autonomous effects) (Gaillochet et al., 2017; Pfeiffer
47 et al., 2017). Non-cell autonomy relies on two forms of intercellular communication:
48 ligand-receptor-mediated perception that occurs in the apoplast and involves peptides
49 or compounds such as phytohormones (Matsubayashi, 2003) and direct symplastic
50 transport of signaling molecules such as mRNAs, siRNAs and non-cell-autonomous
51 transcription factors (TFs) from cell to cell (Kurata et al., 2005).

52 In *Arabidopsis* (*Arabidopsis thaliana*), the shoot apical meristem (SAM) gives rise to
53 all aerial structures over a plant’s lifetime (Miwa et al., 2009). Stem cells are located
54 in the center zone (CZ) of the SAM, consisting of three cell layers. The CZ is
55 surrounded by the peripheral zone (PZ), which is composed of transit amplifying cells
56 derived from the stem cell niche and will differentiate into organ primordia with much
57 higher cell division rates (Gaillochet and Lohmann, 2015). The organizing center
58 (OC), located below the CZ, plays a vital role in stem cell maintenance (Carles and
59 Fletcher, 2003). The SAM maintains the balance between stem cell self-renewal and
60 indefinite lateral organ initiation and also establishes organ boundaries to properly

61 sustain continuous growth (Lee et al., 2019; Zadnikova and Simon, 2014). After
62 transition to reproductive development, the inflorescence meristem (IM) produces
63 floral meristems (FMs) with a regular pattern of 137.5° between consecutive FMs
64 (Chandler, 2012; Reinhardt et al., 2000). The FM contains stem cell populations
65 during early growth stages to generate floral organs of genus- or species-specific size
66 and number (Lee et al., 2019; Sun et al., 2009). In contrast to the SAM, each FM is
67 genetically programmed to terminate stem cell activities after the initiation of carpels
68 (Cao et al., 2015a; Chang et al., 2020; Sun and Ito, 2015; Sun et al., 2009).
69 The intertwined communication systems required for meristem maintenance,
70 primordium initiation and organ boundary formation have been identified, including
71 local transcriptional networks and non-cell-autonomous phytohormone signals (Brand
72 et al., 2000; Cao et al., 2015b; Gaillochet et al., 2015; Gordon et al., 2009; Jasinski et
73 al., 2005; Lee et al., 2019; Sun and Ito, 2015; Sun et al., 2009; Zadnikova and Simon,
74 2014). The *WUSCHEL* (*WUS*)–*CLAVATA* (*CLV*) feedback regulatory pathway plays a
75 critical role in the maintenance of the stem cell pool. *WUS*, encoding a homeobox TF,
76 is specifically expressed in the OC to specify stem cell fate by activating *CLV3*
77 expression in the CZ in a non-cell-autonomous manner (Daum et al., 2014; Yadav et
78 al., 2011). *CLV3* encodes a signal peptide that in turn represses *WUS* expression by
79 binding to the CLV1 receptor complex. In addition, both cytokinins and auxin
80 contribute to the fine-tuning of meristem maintenance in the SAM and FM (Lee et al.,
81 2019). Cytokinins show a peak accumulation in the OC and control cell division by
82 promoting *WUS* expression in the meristem (Chickarmane et al., 2012; Gordon et al.,
83 2009; Riou-Khamlichi et al., 1999; Schaller et al., 2015). Sites of primordia formation
84 are characterized by auxin maxima, while auxin accumulates to low levels in the OC
85 of the SAM to determine organ patterning (Schaller et al., 2015; Shi et al., 2018;
86 Vernoux et al., 2010). Auxin interacts both antagonistically and synergistically with
87 cytokinins to regulate SAM and FM activity (Schaller et al., 2015). *WUS* restricts
88 auxin signaling and response pathways in apical stem cells, where a low level of
89 auxin signaling output is required for stem cell maintenance (Ma et al., 2019).
90 However, the interactions between auxin and cytokinins within and between meristem

91 zones as well as with *WUS* in meristem maintenance remain elusive. Our previous
92 findings showed that AUXIN RESPONSE FACTOR3 (ARF3, also named ETTIN
93 [ETT]) promotes FM determinacy by repressing cytokinin biosynthesis and signaling
94 (Zhang et al., 2018). ARF3 can directly inhibit the expression of
95 *ISOPENTENYLTRANSFERASE* (*IPT*) family members, encoding cytokinin
96 biosynthetic enzymes, and *ARABIDOPSIS HISTIDINE KINASE4* (*AHK4*), encoding a
97 cytokinin receptor, to reduce cytokinin activity (Cheng et al., 2013; Zhang et al.,
98 2018). How ARF3 mediates the interaction between auxin and cytokinins is unclear.
99 The dynamic maintenance of meristems depends on a precise balance between
100 meristem self-renewal and lateral organ formation. MONOPTEROS (MP, also named
101 ARF5) acts downstream of auxin and plays a key role in primordium initiation (Lee et
102 al., 2019; Zhao et al., 2010). ARF3, ARF4 and MP are essential for organogenesis.
103 ARF3 directly, and MP indirectly, represses *SHOOT MERISTEMLESS* (*STM*)
104 expression to control organogenesis (Chung et al., 2019). *STM*, encoding a mobile
105 KNOTTED-like homeobox TF repressing cell differentiation, is expressed throughout
106 the SAM but is downregulated in incipient organ primordia (Chang et al., 2020;
107 Jasinski et al., 2005; Long et al., 1996; Scofield et al., 2018). Formation of successive
108 lateral organs on the flanks of the SAM requires the establishment of boundaries
109 between meristems and organs to separate these two cell groups. Establishment of
110 organ boundaries is determined by auxin accumulation due to directional auxin
111 transport (Reddy et al., 2004; Vernoux et al., 2010; Zhao et al., 2013). *CUP-SHAPED*
112 *COTYLEDON1-3* (*CUC1-3*) regulate the specification of organ boundaries
113 (Bilsborough et al., 2011; Peaucelle et al., 2007): auxin regulates the establishment of
114 organ boundaries by regulating the expression of *CUC2* and *BLADE ON PETIOLE*
115 (*BOP*) (Zhao et al., 2013). In *Arabidopsis*, the divergence angle between successive
116 primordia is approximately 137.5°. Loss-of-function mutants of boundary genes often
117 cause alterations in phyllotactic patterning, such as the divergence angle, or internode
118 length (Bencivenga et al., 2016; Peaucelle et al., 2007). Plants lacking ARF3 activity
119 display dramatically altered phyllotaxis, as ARF3 regulates many target genes in an
120 auxin-dependent manner, such as *TARGETS UNDER ETTIN CONTROL* (*TEC*):

121 *TEC1* (corresponding to the TF gene basic helix-loop-helix [bHLH] *bHLH094*), *TEC2*,
122 and *TEC3* (Byrne et al., 2003; Simonini et al., 2017). However, *arf3* also shows
123 defects in floral patterning, such as more sepals and petals and fewer stamens
124 (Nemhauser et al., 2000; Sessions et al., 1997). How ARF3 regulates pattern
125 formation is unclear.

126 ARF3 plays a crucial role in regulating FM determinacy, gynoecium morphogenesis,
127 self-incompatibility, phyllotactic patterning and floral organ patterns during floral
128 development (Nemhauser et al., 2000; Sessions et al., 1997; Tantikanjana and
129 Nasrallah, 2012; Zhang et al., 2018). *In situ* hybridization analysis revealed that *ARF3*
130 is transcribed in clusters of cells giving rise to new FMs and floral organ primordia,
131 which are similar to auxin maxima in these regions (Sessions et al., 1997). However,
132 ARF3 is distributed throughout the IM and FM at stages 1–2, suggesting that ARF3
133 may coordinate meristem development in a non-cell-autonomous manner (Liu et al.,
134 2014). In this study, we demonstrate that ARF3 migrates from the PZ into adjacent
135 cells of the OC after being induced by auxin. ARF3 therefore controls organ
136 patterning cell autonomously and regulates meristem activity non-cell-autonomously
137 by mediating the interaction between auxin and cytokinins.

138

139 **RESULTS**

140 **ARF3 regulates meristem activity and organ patterning**

141 To investigate the roles of ARF3 in regulating meristem maintenance, we
142 characterized the meristem phenotypes of the *arf3-29* mutant (Liu et al., 2014). We
143 previously demonstrated that the SAM is larger in the *arf3* mutant than in its wild
144 type *Ler* (Figure 1A, 1B and 1K) (Zhang et al., 2018). *arf3-29* produced more L1
145 layer cells (the outermost layer of the SAM) (26.5 ± 2.9 , $n = 15$) than *Ler* (22.3 ± 1.8 ,
146 $n = 15$) (Figure 1C, 1D and 1L), which was consistent with a previous report (Zhang
147 et al., 2018). Moreover, the *arf3-29* mutant bore more siliques (62 ± 5.4 , $n = 21$) than
148 *Ler* (38 ± 2.7 , $n = 25$) and had a longer flowering period due to delayed global
149 proliferative arrest (GPA) (Figure 1G, 1H, 1M and Supplemental Figure 1). We
150 previously isolated *arf3-29* as an enhancer of FM determinacy defects in the weak

151 *agamous* (*ag*) mutant allele *ag-10* (Liu et al., 2014), causing altered carpel polarity
152 and enhanced FM indeterminacy in *ag-10 arf3-29* relative to *ag10*, with additional
153 tissues in carpels (Figure 1E and 1F). These results indicated that ARF3 represses
154 SAM activity by regulating meristem proliferation and stem cell termination.

155 Previous studies indicated that *ARF3* participates in the correct emergence of
156 reproductive organ primordia (Sessions et al., 1997; Simonini et al., 2017). The
157 *arf3-29* mutant displayed dramatically altered phyllotaxis and floral organ patterning
158 compared to the wild type (Figure 1G, 1J, 1N and 1P). The *arf3-29* inflorescence was
159 compact with very short internodes (Figure 1N). The divergence angle was near 137.5°
160 in *Ler* (141.7°), while it was around 119.3° in *arf3-29* (Figure 1O). Moreover, *arf3-29*
161 produced more floral organs (sepals: 4.4 ± 0.05; petals: 4.4 ± 0.06 ; stamens: 5.6
162 ± 0.11) than did *Ler* (Figure 1I, 1J, 1P and Supplemental Table 1). These results
163 showed that *ARF3* functions on the regular organ patterning.

164

165 **Dynamic patterns of *ARF3* mRNA and ARF3 protein**

166 To investigate *ARF3* expression in meristems, we analyzed auxin activity during early
167 floral development by reanalyzing published data dissecting the architecture of gene
168 regulatory networks controlling flower development using *ap1 cal 35Spro:AP1-GR*
169 plants accumulating a fusion protein between APETALA1 (AP1) and the rat
170 glucocorticoid receptor (GR) (Chen et al., 2018). AP1-GR induces FM initiation and
171 floral development upon treatment with dexamethasone (DEX) (Wellmer et al., 2006).
172 The expression of several genes was induced shortly after FM initiation in the
173 published dataset (Figure 2A and Supplemental Data 1) and we validated these results
174 by quantitative reverse transcription PCR (RT-qPCR) (Figure 2B–2F). These included
175 auxin transporter genes such as *PIN-FORMED1* (*PIN1*) and *AUXIN1* (*AUX1*), auxin
176 signaling components like *ARF3*, *ARF4* and *ARF17*, and auxin response genes such as
177 *Small Auxin-up RNA8/53/54* (*SAUR8/53/54*). These results indicated increased auxin
178 activity during early floral development, consistent with the role of auxin in
179 promoting floral organ initiation. In agreement, we determined that *ARF3* expression
180 was repressed following treatment with the auxin biosynthesis inhibitor yucasin or

181 with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) but was
182 induced by indole-3-acetic acid (IAA) treatment, in line with our previous findings
183 (Figure 2G) (Zhang et al., 2018).

184 To determine the distribution of ARF3 in meristems, we introduced
185 *ARF3p:ARF3-GFP* encoding a functional fusion protein between ARF3 and the green
186 fluorescent protein (GFP) into the *ap1 cal 35Spro:AP1-GR* background (Guo et al.,
187 2018). After DEX treatment, ARF3 accumulation increased after FM initiation and
188 peaked at stages 1-2 of early floral development with an even distribution throughout
189 the meristem before becoming more concentrated in the OC at later floral
190 development stages (Figure 2H-2L), illustrating the dynamic distribution pattern of
191 ARF3. Given that auxin antagonistically interacts with cytokinins to regulate SAM
192 and FM activity (Schaller et al., 2015), we also examined cytokinin signaling activity
193 in the SAM by introducing the cytokinin reporter construct *TCSn:GFP* (Zürcher et al.,
194 2013) into the *ap1 cal 35Spro:AP1-GR* background. Without DEX treatment, we
195 observed an even distribution for cytokinin activity during very early stages (stages
196 0-1) of FM development (Figure 2N, 2O and 2S), in line with the role of cytokinins in
197 maintaining stem cell activity by suppressing cell differentiation (Bartrina et al., 2011;
198 Gordon et al., 2009; Sablowski, 2009). Following DEX treatment, cytokinin activity
199 decreased and became restricted to the OC during late floral development (Figure
200 2N-2R). As ARF3 represses cytokinin biosynthesis and signaling (Zhang et al., 2018)
201 and has a dynamic distribution (Figure 2H-2L), we hypothesized that ARF3 may
202 mediate the dynamic repression of cytokinin activity by auxin during early floral
203 development.

204

205 **ARF3 migrates from the PZ and CZ to the OC/niche**

206 We previously showed that *ARF3* is expressed in clusters of cells that give rise to new
207 FMs and floral organ primordia (Supplemental Figure 2A), while we detected ARF3
208 throughout the IM and stage 1-2 FMs (Figure 2M) (Liu et al., 2014), suggesting that
209 ARF3 may act as a non-cell-autonomous TF. To confirm this hypothesis, we
210 generated *ARF3pro:ARF3-nls-GFP* transgenic lines, harboring a transgene consisting

211 of *GFP* with an in-frame nuclear localization signal (nls) downstream of *ARF3*. The
212 addition of the nls restricted ARF3-nls-GFP to the nucleus, whereas ARF3-GFP
213 localized to the cytoplasm, suggesting that the nls is effective in sequestering ARF3 to
214 the nucleus and may prevent its cell-to-cell movement (Supplemental Figure 3).
215 Longitudinal sections based on three-dimensional 3D reconstructions of IMs showed
216 that ARF3-GFP signals are detected throughout the IM structure, including the CZ,
217 PZ and OC zones containing the center region of L4-L6 layer cells (Figure 3A and
218 3B). However, we detected ARF3-nls-GFP signals only in L1-L3 layer cells but not in
219 the OC zone (Figure 3E and 3F). In addition, we separately introduced
220 *WUSpro:DsRed* (Liu et al., 2014), a *WUS* reporter specifically marking OC regions,
221 into the *ARF3pro:ARF3-GFP* and *ARF3pro:ARF3-nls-GFP* transgenic lines via
222 crossing. Compared to the even distribution of ARF3-GFP in the IM and early FMs
223 (Figure 3C), ARF3-nls-GFP signals appeared limited to the new FM primordia and
224 showed a weaker signal in the PZ and CZ zones (Figure 3G). Moreover, DsRed
225 thoroughly overlapped with ARF3-GFP in the OC but only partially overlapped with
226 ARF3-nls-GFP in the cells under the L2 layer (Figure 3D and 3H). DsRed signals
227 were much weaker in the *ARF3pro:ARF3-GFP* transgenic lines than in
228 *ARF3pro:ARF3-nls-GFP* lines (Figure 3C, 3D, 3G and 3H), indicating that ARF3
229 represses *WUS* expression directly.

230 To precisely explore the dynamic distribution of ARF3 in meristems, we examined the
231 ARF3-GFP fluorescence signals in FMs at different stages. According to the 3D
232 reconstructions, ARF3-GFP was ubiquitously distributed throughout IMs and early
233 stages (1-3) of FMs in *ARF3pro:ARF3-GFP* lines (Figure 3I1-3I3). By contrast,
234 ARF3-nls-GFP signals were enriched at the initiation sites of new organ primordia
235 and the CZ (Figure 3J1-3J3), which also displayed high auxin activity, as evidenced
236 by the synthetic auxin response reporter *DR5:GFP* (Figure 3K1-3K3), consistent with
237 the induction of *ARF3* expression by auxin (Figure 2G) (Cheng et al., 2013). The
238 *TCSn:GFP* reporter established that cytokinin activity is restricted to the OC during
239 very early FM development (Figure 3L1-3L3). These findings indicated that auxin
240 may induce *ARF3* expression, after which ARF3 migrates from the PZ and CZ to the

241 OC/niche to regulate organ initiation or patterning during early floral development
242 (stages 1-3).

243

244 **ARF3 migration is required for proper SAM activity maintenance**

245 We further investigated the role of ARF3 movement in the regulation of SAM activity.
246 The *arf3-29* mutant produced a larger SAM than *Ler*, in agreement with enhanced
247 SAM activity (Figure 1A, 1D and Figure 4A, 4B and 4E). The *arf3-29*
248 *ARF3pro:ARF3-GFP* line displayed a normal SAM size, indicating that ARF3-GFP
249 fully rescues the *arf3-29* mutant phenotype (Figure 4C and 4E). We also crossed
250 *ARF3pro:ARF3-nls-GFP* to *arf3-29* to assess whether ARF3-nls-GFP, unable to
251 migrate from cell to cell, would function as ARF3-GFP. The *arf3-29*
252 *ARF3pro:ARF3-nls-GFP* line had SAMs intermediate in size between *arf3-29* and
253 *Ler* (Figure 4D and 4E). SAM size was positively correlated with the number of cells
254 in the L1 layer across the four genotypes tested here (Supplemental Figure 4). These
255 results suggested that the migration of ARF3 protein is required for SAM activity
256 maintenance. Extended SAM activity resulted in delayed GPA responsible for the rise
257 in flower number in the *arf3-29* mutant and in the *arf3-29 ARF3pro:ARF3-nls-GFP*
258 line (Figure 4F and Figure 5A).

259 The *ARF3pro:ARF3-nls-GFP* transgene fully rescued the organ initiation defect of
260 *arf3-29* (compare Figure 4D to Figure 4A and 4B), indicating that proper organ
261 initiation does not require ARF3 migration. ARF3, ARF4 and MP (ARF5) promote
262 flower organogenesis by repressing *STM* expression (Chung et al., 2019), prompting
263 us to measure *MP* and *STM* expression by RT-qPCR. While *STM*, the target of MP
264 and ARF3, was expressed to comparable levels in *Ler*, *arf3-29 ARF3pro:ARF3-GFP*
265 and *arf3-29ARF3pro:ARF3-nls-GFP*, *MP* expression increased significantly in
266 *arf3-29*, which was rescued by both *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29*
267 *ARF3pro:ARF3-nls-GFP* transgenes (Figure 4H). We concluded that ARF3 migration
268 in the SAM is required for the maintenance of meristem activity but not for organ
269 initiation.

270

271 **ARF3 controls organ patterning cell-autonomously**

272 To dissect the molecular mechanism underlying the cell-autonomous role of ARF3 in
273 organ initiation, we compared the silique emergence sites and internodes in *Ler*,
274 *arf3-29*, *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP*, as they
275 showed different phyllotaxy patterns (Figure 5A). The average divergence angle
276 between successive primordia in *arf3-29* inflorescence apices was $123.3^\circ \pm 39.64$ (n =
277 205), which was smaller than the theoretical angle of 137.5° . Only 27.3% of the
278 divergence angles fell into the $120-150^\circ$ range in the mutant (Figure 5B), compared to
279 56.5% in *Ler*, 55.2% in *arf3-29 ARF3pro:ARF3-GFP* and 51.2% in *arf3-29*
280 *ARF3pro:ARF3-nls-GFP* (Figure 5A and 5B). We also measured internode length
281 between successive organs along the main inflorescence stem. Most internodes ranged
282 from 0 mm to 3 mm in length (67.9% of total tested plants) in *arf3-29* (Figure 5C),
283 whereas the other genotypes displayed fewer internodes in this range: 40.0% for *Ler*,
284 35.5% in *arf3-29 ARF3pro:ARF3-GFP*, and 43.4% in *arf3-29*
285 *ARF3pro:ARF3-nls-GFP*. Internodes tended to be longer in these genotypes, with
286 31.7% (*Ler*), 29.9% (*arf3-29 ARF3pro:ARF3-GFP*), and 33.1% (*arf3-29*
287 *ARF3pro:ARF3-nls-GFP*) in the 3- to 6-mm range, compared to only 15.9% for
288 *arf3-29* (Figure 5C). These results suggested that ARF3 controls the phyllotactic
289 pattern in a cell-autonomous manner. The *arf3-29* mutant produced abnormal flowers
290 with more sepals and petals but with fewer stamens, indicative of impaired floral
291 organ initiation (Figure 5D, 5E, 5H and Supplemental Figure 5) (Sessions et al., 1997).
292 Both *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* lines
293 exhibited the same number of floral organs as *Ler* (Figure 5F-5I). Neither
294 *ARF3pro:ARF3-GFP* nor *ARF3pro:ARF3-nls-GFP* fully rescued the aberrant number
295 of stamens, suggesting that ARF3 may affect stamen development via some unknown
296 mechanism(s) (Supplemental Figure 5).

297 *TEC3* participates in spiral phyllotaxis formation, as well as the meristem-organ
298 boundary-specific genes, such as *CUC3*, *BOP1* and *BOP2*; all are target genes of
299 ARF3 (Simonini et al., 2017). We performed chromatin immunoprecipitation
300 followed by quantitative PCR (ChIP-qPCR) using stage 6 inflorescences and younger

301 flowers to test whether ARF3 regulates these boundary-specific genes in a
302 migration-dependent manner. We purified chromatin bound by ARF3-GFP or
303 ARF3-nls-GFP with anti-GFP antibodies. Both ARF3-GFP and ARF3-nls-GFP bound
304 to the *CUC3*, *BOP1*, *BOP2* and *TEC3* loci with similar enrichment levels in *arf3-29*
305 *ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* (Figure 5J and
306 Supplemental Figure 6). Furthermore, *CUC1*, *CUC2* and *CUC3* transcript levels
307 decreased, while the expression of *BOP1*, *BOP2* and *TEC3* increased, in the *arf3-29*
308 mutant (Figure 5K). Introduction of the *ARF3pro:ARF3-GFP* and
309 *ARF3pro:ARF3-nls-GFP* transgenes into the *arf3-29* mutant returned the expression
310 of these genes to wild-type levels (Figure 5K). These findings suggest that ARF3
311 plays a role in phyllotactic patterning by regulating boundary-specific gene expression
312 in a cell-autonomous manner.

313

314 **ARF3 controls SAM activity and FM determinacy non-cell-autonomously**

315 Precise stem cell activity maintenance and termination are critical for SAM and FM
316 maintenance and programmed FM determinacy (Chang et al., 2020). We previously
317 demonstrated that ARF3 promotes FM determinacy by mediating the interaction
318 between auxin and cytokinins (Zhang et al., 2018). We thus examined what role, if
319 any, ARF3 migration may play in meristem maintenance and FM determinacy. Our
320 working hypothesis was that ARF3 protein migration is required for FM determinacy.
321 To test this idea, we separately introduced the *ARF3pro:ARF3-GFP* and
322 *ARF3pro:ARF3-nls-GFP* transgenes into the *ag-10 arf3-29* double mutant, which
323 displayed a severe FM determinacy defect, with unfused and bulging carpels with
324 hyperplastic tissue and lacking seeds inside (Supplemental Figure 7B and 7F) (Liu et
325 al., 2014; Zhang et al., 2018). The *ARF3pro:ARF3-nls-GFP* transgene only partially
326 rescued the FM indeterminacy phenotype seen in *ag-10 arf3-29* (Supplemental Figure
327 7D and 7H), while *ARF3pro:ARF3-GFP* fully rescued this defect (Figure 7C and 7G).
328 About 68.7% of *ag-10 arf3-29 ARF3pro:ARF3-nls-GFP* siliques appeared normal, as
329 in *ag-10* or *ag-10 arf3-29 ARF3pro:ARF3-GFP*, but the remaining 31.3% of siliques
330 exhibited bulging carpels with additional tissue growing inside and some seeds

331 (Supplemental Figure 7I and 7J). These results indicated that ARF3 migration is
332 required for proper FM determinacy.

333 The WUS-CLV3 negative feedback regulatory loop is critical for stem cell
334 maintenance and is fine-tuned by cytokinin signaling at the OC (Lee et al., 2019). We
335 previously demonstrated that ARF3 promotes FM determinacy by repressing
336 cytokinin signaling and biosynthesis (Liu et al., 2014; Zhang et al., 2018). To
337 investigate the molecular mechanism underlying the role of mobile ARF3 in SAM
338 maintenance and FM determinacy, we examined the expression of *WUS* and
339 *ARABIDOPSIS HISTIDINE KINASE4* (*AHK4*), encoding a cytokinin receptor, in *Ler*,
340 *arf3-29*, *arf3-29 ARF3pro:ARF3-nls-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* by
341 RT-qPCR. While *WUS* expression was comparable in the inflorescences of all tested
342 genotypes, *AHK4* expression was higher in *arf3-29* relative to *Ler*, but returned to
343 wild-type levels in *arf3-29 ARF3pro:ARF3-GFP*, and was intermediate between *Ler*
344 and *arf3-29* in *arf3-29 ARF3pro:ARF3-nls-GFP* (Figure 6A). We confirmed this
345 observation qualitatively and quantitatively with the *AHK4pro:GUS* reporter line
346 (Figure 6B-6D and Supplemental Figure 8), indicating that ARF3 migration is
347 required for the repression of cytokinin activity by ARF3 in the OC. Since *WUS* is
348 expressed in a very limited number of cells, we visualized the *WUS* expression pattern
349 using a *WUSpro:DsRed* reporter construct. As evidenced by quantitative fluorescence
350 analysis of DsRed signal and RT-qPCR detection of *DsRed*, *WUS* was derepressed in
351 *arf3-29* and *arf3-29 ARF3pro:ARF3-nls-GFP* relative to *Ler* and *arf3-29*
352 *ARF3pro:ARF3-GFP* (Figure 6E-6G). ChIP-PCR analysis revealed the stronger
353 occupancy of ARF3 at the *WUS* and *AHK4* loci in *arf3-29 ARF3pro:ARF3-GFP*
354 compared to *arf3-29 ARF3pro:ARF3-nls-GFP*.

355 The weak *wus* mutant allele *wus-7* and *ahk4* mutants have smaller SAMs
356 (Supplemental Figure 9). We separately introduced *wus-7* and the *AHK4* mutant allele
357 *cre1-10* (*cytokinin response1-10*) into *arf3-29 ARF3pro:ARF3-nls-GFP*, which
358 revealed that both mutants fully suppress the enlarged SAM size phenotype (Figure
359 6I-6Q). These results demonstrated that ARF3 mobility is required for its
360 non-cell-autonomous maintenance of SAM activity and FM determinacy by

361 repressing cytokinin activity and *WUS* expression in the OC.

362

363 **DISCUSSION**

364 SAM maintenance results from a balance between the rate of meristem proliferation
365 and the rate of new organ primordium initiation, which is controlled by the
366 *WUS*-*CLV3* feedback regulatory loop and the interaction between *STM* and
367 meristem–organ boundary genes, respectively (Chang et al., 2020). How these two
368 mechanisms interact and which factors mediate the crosstalk between stem cell
369 renewal and organ initiation are not clear. We demonstrated here that *ARF3*
370 independently represses organ initiation and stem cell renewal cell-autonomously and
371 non-cell-autonomously, respectively (Figure 7). At the meristem–organ boundary and
372 new organ primordium, *ARF3* is translated locally and regulates the expression of *MP*
373 and meristem–organ boundary genes such as *CUC1-3* and *BOP1-2* as well as *TEC3* to
374 fine-tune organ initiation (Figure 5J-5K). In agreement, *ARF3* loss of function
375 resulted in the initiation of ectopic FMs and floral organs, phenotypes that were
376 rescued by an immobile version of *ARF3* trapped in the nucleus (Figure 4A, 4B, 4D
377 and Figure 5D, 5E and 5G). The *arf3 arf4 mp* triple mutant produces pin-like SAM
378 structures, indicating that the combined activity of *ARF3*, *ARF4*, and *MP* is required
379 for organ initiation (Chung et al., 2019). The differential rescue of the *arf3-29* mutant
380 by *ARF3*-GFP and *ARF3*-nls-GFP indicates that *ARF3* exerts a complex function in
381 organ initiation, at the center of which the dynamic distribution of *ARF3* or other
382 interacting factors is essential. *ARF3* migrating from the PZ to the OC directly
383 repressed *WUS* expression (Figure 6E-H) (Liu et al., 2014), which regulates stem cell
384 activity and leads to altered SAM GPA and FM determinacy in the *arf3-29* and
385 *arf3-29 ag-10* mutants (Figure 5A and Supplemental Figure 7A, 7B, 7E and 7F).
386 Nucleus-localized *ARF3* failed to rescue the enlarged SAM of *arf3-29* or the FM
387 indeterminacy of *arf3-29 ag-10* (Figure 4D-4E and Supplemental Figure 7D and 7H),
388 demonstrating that *ARF3* mobility is critical for its regulation of stem cell activity.
389 Therefore, mobile *ARF3* mediates the crosstalk between meristem differentiation and
390 proliferation.

391 Auxin and cytokinins exhibit distinct activity patterns and antagonistically regulate
392 SAM maintenance. Auxin maxima are detected in regions of primordia formation and
393 meristem-organ boundaries, where auxin promotes meristem differentiation. By
394 contrast, cytokinins are concentrated in the OC, where they regulate *WUS* expression
395 to fine-tune stem cell proliferation (Schaller et al., 2015). Auxin induces *MP*
396 expression, which in turn represses the expression of type-A *ARABIDOPSIS*
397 *RESPONSE REGULATORs* (*ARRs*) to regulate cytokinin activity in the OC. We
398 determined that *ARF3* mediates the repression of cytokinin activity and *WUS*
399 expression by auxin (Zhang et al., 2018). *WUS* restricts and maintains minimal auxin
400 activity in the CZ by globally regulating the auxin pathway (Ma et al., 2019),
401 although the exact nature of the elaborate regulatory networks between auxin,
402 cytokinins and *WUS* is still unclear. We showed here that auxin and cytokinins exhibit
403 dynamic activity patterns during early FM development. Auxin showed an increased
404 activity gradient in the developing FM, with high auxin activity concentrated at floral
405 organ primordium initiation sites (Figure 3K1), consistent with its function in
406 inducing cell differentiation. In addition, we detected strong auxin activity in the CZ
407 of stage 3 FMs (Figure 3K3), which disappeared at later stages (Ma et al., 2019). By
408 contrast, cytokinin activity was low during FM development and high in the OC
409 (Figure 3L), where cytokinins promote *WUS* expression. *ARF3* and *MP* mediate the
410 interaction between auxin and cytokinin to regulate meristem maintenance (Zhang et
411 al., 2018; Zhao et al., 2010). The *ARF3* expression pattern and the distribution pattern
412 of immobile *ARF3*-nls-GFP highly overlapped with the auxin activity pattern in
413 meristems (Figure 3J and Supplemental Figure 2), consistent with the induction of
414 *ARF3* expression by auxin. We previously observed that *ARF3* directly regulates
415 cytokinins in the OC (Zhang et al., 2018). However, compared to *ARF3*-GFP,
416 *ARF3*-nls-GFP failed to rescue the FM indeterminacy phenotype seen in *arf3-29*
417 *ag-10*, showing prolonged *WUS* expression and enhanced *AHK4* expression (Figure
418 6A–6G), indicating that cell-to-cell *ARF3* mobility is required for its role in
419 regulating stem cell activity. We thus unraveled an *ARF3*-mediated post-translational
420 regulatory mechanism (Figure 7), whereby *ARF3* is induced by auxin in the PZ and in

421 new organ primordia before migrating to the OC, where it directly represses *WUS*
422 expression and cytokinin activity to balance stem cell proliferation and meristem
423 differentiation.

424

425 **METHODS**

426 **Plant Materials and Growth Conditions**

427 Mutants and transgenic *Arabidopsis thaliana* lines are in the *Ler* background, except
428 for *TCSn: GFP* (Zürcher et al., 2013), *ahk4* (originally *cre1-10*) (Higuchi et al., 2004),
429 and *AHK4pro:GUS* (Higuchi et al., 2004), which are in the *Col-0* background. *ag-10*
430 (Ji et al., 2011), *arf3-29* (Liu et al., 2014), *arf3-29 ag-10* (Liu et al., 2014),
431 *ARF3pro:ARF3-GFP* (Liu et al., 2014), *arf3 ag-10 ARF3pro:ARF3-GFP* (Zhang et al.,
432 2018), *arf3 ARF3pro:ARF3-GR* (Zhang et al., 2018), *ap1 cal 35Spro:AP1-GR* (Liu et
433 al., 2011), *WUSpro:DsRed* (Liu et al., 2014), and *wus-7* (Lin et al., 2016) were
434 previously described. All plants were grown at 23°C under long-day conditions (16-h
435 light [100 $\mu\text{mol m}^{-2} \text{s}^{-1}$]/8-h dark).

436

437 **Vector Construction and Transformation**

438 To construct *ARF3pro:ARF3-nls-GFP*, the *nls-GFP* fragment containing the sequence
439 for the nuclear localization signal (*nls*) and *GFP* with stop codon was amplified by
440 PCR using pMDC107 as a template (Liu et al., 2014) and then digested with *AscI* and
441 inserted into the *AscI* restriction site of pMDC107-*ARF3pro:ARF3-GFP*. The
442 resulting *ARF3pro:ARF3-nls-GFP* construct was transformed into *arf3-29* and
443 *arf3-29 ag-10* via the floral dip method (Clough and Bent, 1998), and primary
444 transformants were selected for resistance to hygromycin.

445

446 **Generation of Mutant Combinations**

447 To produce *ap1 cal arf3 ARF3pro:ARF3-GFP 35Spro:AP1-GR* and *ap1 cal*
448 *TCSn:GFP 35Spro:AP1-GR* lines, *arf3-29 ARF3pro:ARF3-GFP* and *TCSn:GFP*
449 plants were crossed to *ap1 cal 35Spro:AP1-GR*. In the F₂ population, *arf3-29* plants
450 were identified by genotyping; *ap1 cal* plants were identified based on phenotypes;

451 the presence of the *TCSn:GFP* transgene was determined by watering or spraying the
452 plants with the herbicide; the *35Spro:AP1-GR* transgene was selected by growth on
453 medium containing kanamycin; the *ARF3pro:ARF3-GFP* transgene was selected on
454 medium containing hygromycin.

455 To produce *arf3 WUSpro:DsRed ARF3pro:ARF3s-GFP* and *arf3 WUSpro:DsRed*
456 *ARF3pro:ARF3-nls-GFP* lines, *arf3 ARF3pro:ARF3-nls-GFP* and *arf3*
457 *ARF3pro:ARF3-GFP* were crossed to *WUSpro:DsRed*. Plants harboring the
458 *WUSpro:DsRed* transgene were selected based on DsRed signals on a confocal
459 microscope.

460 To produce the *arf3 AHK4pro:GUS ARF3pro:ARF3s-GFP* and *arf3 AHK4pro:GUS*
461 *ARF3pro:ARF3-nls-GFP* lines, *arf3 ARF3pro:ARF3-nls-GFP* and *arf3*
462 *ARF3pro:ARF3-GFP* were crossed to *AHK4pro:GUS*. Plants carrying the
463 *AHK4pro:GUS* transgene were selected based on positive GUS staining.

464 To produce the *arf3 cre1-10 ARF3pro:ARF3s-GFP*, *arf3 cre1-10*
465 *ARF3pro:ARF3-GFP*, *arf3 wus-7 ARF3pro:ARF3s-GFP*, *arf3 wus-7*
466 *ARF3pro:ARF3-nls-GFP* lines, *arf3 ARF3pro:ARF3-nls-GFP* and *arf3*
467 *ARF3pro:ARF3-GFP* were crossed to *cre-10* and *wus-7*. Plants homozygous for
468 *cre1-10* or *wus-7* were selected by genotyping.

469 All primers used for genotyping are listed in Supplemental Data Set 1.

470

471 **Microscopy**

472 Optical photographs were taken under a Leica M205d/ DFC450 stereoscopic
473 microscope. Confocal images were taken with a Leica TCS SP8 confocal microscope
474 according a previously described protocol (Wei et al., 2020). Appropriate filter sets
475 and lasers were selected for fluorescence excitation and scanning. Chlorophyll
476 autofluorescence was excited at 488 nm and detected in the 660- to 700-nm range.
477 GFP was excited at 488 nm, and detected in the 510- to 550-nm range. For FM4-64,
478 the excitation wavelength was 561 nm, and the detection range was 570-620 nm. All
479 live imaging experiments were performed as previously described (Wei et al., 2020).

480

481 **Plant Treatments and Tissue Collection**

482 For chemical treatments, inflorescences from 3-week-old plants were treated with 5
483 μ M 6-BA (Sigma-Aldrich), 50 μ M IAA (Sigma-Aldrich), 100 μ M yucasin
484 (Sigma-Aldrich), 1 μ M DEX (Sigma-Aldrich) in DMSO along with 0.015% (v/v)
485 Silwet L-77.

486 For RT-qPCR analysis, inflorescences were dissected under a stereomicroscope to
487 remove stage 7 and older flowers; 20–40 flowers were pooled for RNA extraction for
488 each biological replicate with independently prepared inflorescence materials.

489

490 **RNA Extraction and Gene Expression Analysis**

491 Total RNA was isolated after tissue collection above using TransZol reagent
492 (TransGen Biotech); genomic DNA contamination was eliminated with DNase I
493 (Roche). M-MLV reverse transcriptase (Thermo Scientific) was used for first-strand
494 cDNA synthesis. qPCR was conducted in technical triplicates on a Bio-Rad CFX
495 Connect real-time PCR system using SYBR Green PCR master mix (DBI Bioscience).
496 *UBQ* was used as the reference gene. Three to four biological replicates were
497 performed; the results were analyzed with SPSS statistics 17.0 (IBM).

498

499 **RNA-seq data analysis**

500 The RNA-seq data in *35Spro: AP1-GR ap1 cal* was collected from a published article
501 (Chen et al., 2018). Heat map visualizes the expression patterns of DEGs based on
502 FPMK (fragments per kilobase of transcript per million mapped reads). The resulting
503 p-values were adjusted for multiple comparisons by false discovery rate (FDR).

504

505 ***in Situ* Hybridization**

506 For the *ARF3* mRNA probe, the *ARF3* coding region was amplified by RT-PCR and
507 cloned into pGEM-T-easy (Promega). The resulting plasmid was digested with SpeI
508 and transcribed with T7 RNA polymerase to generate the antisense probe. *In situ*
509 hybridization was performed as previously described (Liu et al., 2011).

510

511 **ChIP Assay**

512 ChIP was performed as previously described (Liu et al., 2011). Inflorescences were
513 collected as above and ground in liquid nitrogen and crosslinked in 1% (w/v)
514 formaldehyde (Sigma-Aldrich). Chromatin was extracted with M1, M2, M3 buffers
515 and sonicated into DNA fragments of 500-1,000 bp. The lysate was precleared by
516 incubation with 50 µL protein-A agarose beads (Roche) for 1 h and then incubated
517 with anti-GFP (Abcam) antibodies overnight. The bound chromatin was purified on
518 columns by using Qiagen Plasmid Extraction kit. qPCR was performed in technical
519 triplicates.

520

521 **Histochemical Staining and Quantitative Analysis of β-Glucuronidase (GUS)
522 Activity**

523 For GUS staining, plant materials were immersed in GUS staining buffer (Leagene)
524 and incubated for several hours in the dark at 37°C. Chlorophyll was removed by
525 incubation in 70% (v/v) ethanol. Quantitative analysis of GUS activity was performed
526 as described (Zhang et al., 2018).

527

528 **Accession Numbers**

529 Sequence data from this article can be found in the Arabidopsis Genome Initiative or
530 GenBank/EMBL data libraries under the following accession numbers: *AG*
531 (At4g18960), *CRE/AHK4* (At2g01830), *ARF3* (At2g33860), *BOP1* (At3g57130),
532 *BOP2* (At2g41370), *CUC1* (At3g15170), *CUC2* (At5g53950), *CUC3* (At1g76420),
533 *eIF4A* (At3g13920), *MP/ARF5* (At1g19850), *STM* (At1g62360), *TEC3* (At2g28080),
534 *UBQ* (At3g62250), and *WUS* (At2g17950).

535

536 **SUPPLEMENTAL INFORMATION**

537 Supplemental information

538 **AUTHOR CONTRIBUTIONS**

539 X.L., C.L. and K.Z. conceived and designed the project. K.Z., H.Z., Y.P. and L.G.
540 performed the experiments with the help of S.T. J.W., Y.F. and C.W. conducted

541 phenotypic statistics. T.L., Y.Z., H.S., Z.B. and J.D. analyzed data. K.Z. and P.Q.
542 performed the confocal imaging. K.Z. and X.L. wrote the manuscript.

543

544 **ACKNOWLEDGMENTS**

545 We thank all members of the Liu Lab for helpful discussion. This work was supported
546 by grants from the National Science Foundation of China (31900623 to K.Z.;
547 31970824 to X.L.); the Natural Science Foundation of Hebei Province in China
548 (C2019204041; C2021205013); the project (2020HBQZYC004; A202105008) from
549 Hebei province; the Science and Technology Research Project of University of Hebei
550 Province, China (QN202037). The study was funded by State Key Laboratory of
551 North China Crop Improvement and Regulation (NCCIR2021ZZ-7).

552

553 **REFERENCES**

554 Bartrina, I., Otto, E., Strnad, M., Werner, T., and Schmülling, T. (2011). Cytokinin
555 regulates the activity of reproductive meristems, flower organ size, ovule formation,
556 and thus seed yield in *Arabidopsis thaliana*. *Plant Cell* 23, 69-80.

557 Bencivenga, S., Serrano-Mislata, A., Bush, M., Fox, S., and Sablowski, R. (2016).
558 Control of Oriented Tissue Growth through Repression of Organ Boundary Genes
559 Promotes Stem Morphogenesis. *Dev Cell* 39, 198-208.

560 Bilsborough, G.D., Runions, A., Barkoulas, M., Jenkins, H.W., Hasson, A., Galinha,
561 C., Laufs, P., Hay, A., Prusinkiewicz, P., and Tsiantis, M. (2011). Model for the
562 regulation of *Arabidopsis thaliana* leaf margin development. *Proceedings of the*
563 *National Academy of Sciences of the United States of America* 108, 3424-3429.

564 Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000).
565 Dependence of stem cell fate in *Arabidopsis* on a feedback loop regulated by CLV3
566 activity. *Science (New York, NY)* 289, 617-619.

567 Byrne, M.E., Groover, A.T., Fontana, J.R., and Martienssen, R.A. (2003). Phyllotactic
568 pattern and stem cell fate are determined by the *Arabidopsis* homeobox gene
569 **BELLINGER**. *Development* 130, 3941-3950.

570 Cao, X., He, Z., Guo, L., and Liu, X. (2015). Epigenetic Mechanisms Are Critical for

571 the Regulation of WUSCHEL Expression in Floral Meristems. *Plant physiology* *168*,
572 1189-1196.

573 Carles, C.C., and Fletcher, J.C. (2003). Shoot apical meristem maintenance: the art of
574 a dynamic balance. *Trends in plant science* *8*, 394-401.

575 Chandler, J.W. (2012). Floral meristem initiation and emergence in plants. *Cell Mol
576 Life Sci* *69*, 3807-3818.

577 Chang, W., Guo, Y., Zhang, H., Liu, X., and Guo, L. (2020). Same Actor in Different
578 Stages: Genes in Shoot Apical Meristem Maintenance and Floral Meristem
579 Determinacy in *Arabidopsis*. *Frontiers in Ecology and Evolution* *8*, 89.

580 Chen, D., Yan, W., Fu, L.Y., and Kaufmann, K. (2018). Architecture of gene
581 regulatory networks controlling flower development in *Arabidopsis thaliana*. *Nature
582 communications* *9*, 4534.

583 Cheng, Z.J., Wang, L., Sun, W., Zhang, Y., Zhou, C., Su, Y.H., Li, W., Sun, T.T., Zhao,
584 X.Y., Li, X.G., *et al.* (2013). Pattern of auxin and cytokinin responses for shoot
585 meristem induction results from the regulation of cytokinin biosynthesis by AUXIN
586 RESPONSE FACTOR3. *Plant physiology* *161*, 240-251.

587 Chickarmane, V.S., Gordon, S.P., Tarr, P.T., Heisler, M.G., and Meyerowitz, E.M.
588 (2012). Cytokinin signaling as a positional cue for patterning the apical-basal axis of
589 the growing *Arabidopsis* shoot meristem. *Proc Natl Acad Sci U S A* *109*, 4002-4007.

590 Chung, Y., Zhu, Y., Wu, M.F., Simonini, S., Kuhn, A., Armenta-Medina, A., Jin, R.,
591 Ostergaard, L., Gillmor, C.S., and Wagner, D. (2019). Auxin Response Factors
592 promote organogenesis by chromatin-mediated repression of the pluripotency gene
593 SHOOTMERISTEMLESS. *Nature communications* *10*, 886.

594 Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for
595 Agrobacterium-mediated transformation of *Arabidopsis thaliana*. *The Plant journal* *16*,
596 735-743.

597 Daum, G., Medzihradzky, A., Suzuki, T., and Lohmann, J.U. (2014). A mechanistic
598 framework for noncell autonomous stem cell induction in *Arabidopsis*. *Proc Natl
599 Acad Sci U S A* *111*, 14619-14624.

600 Gaillochet, C., Daum, G., and Lohmann, J.U. (2015). O cell, where art thou? The

601 mechanisms of shoot meristem patterning. *Current opinion in plant biology* *23*, 91-97.

602 Gaillochet, C., and Lohmann, J.U. (2015). The never-ending story: from pluripotency
603 to plant developmental plasticity. *Development* *142*, 2237-2249.

604 Gaillochet, C., Stiehl, T., Wenzl, C., Ripoll, J.J., Bailey-Steinitz, L.J., Li, L., Pfeiffer,
605 A., Miotk, A., Hakenjos, J.P., Forner, J., *et al.* (2017). Control of plant cell fate
606 transitions by transcriptional and hormonal signals. *Elife* *6*.

607 Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M. (2009). Multiple
608 feedback loops through cytokinin signaling control stem cell number within the
609 *Arabidopsis* shoot meristem. *Proc Natl Acad Sci U S A* *106*, 16529-16534.

610 Guo, L., Cao, X., Liu, Y., Li, J., Li, Y., Li, D., Zhang, K., Gao, C., Dong, A., and Liu,
611 X. (2018). A chromatin loop represses *WUSCHEL* expression in *Arabidopsis*. *The*
612 *Plant journal : for cell and molecular biology* *94*, 1083-1097.

613 Higuchi, M., Pischke, M.S., Mahonen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M.,
614 Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., *et al.* (2004). In planta functions of
615 the *Arabidopsis* cytokinin receptor family. *Proceedings of the National Academy of*
616 *Sciences of the United States of America* *101*, 8821-8826.

617 Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P.,
618 and Tsiantis, M. (2005). KNOX action in *Arabidopsis* is mediated by coordinate
619 regulation of cytokinin and gibberellin activities. *Current biology : CB* *15*, 1560-1565.

620 Kurata, T., Okada, K., and Wada, T. (2005). Intercellular movement of transcription
621 factors. *Current opinion in plant biology* *8*, 600-605.

622 Lee, Z.H., Hirakawa, T., Yamaguchi, N., and Ito, T. (2019). The Roles of Plant
623 Hormones and Their Interactions with Regulatory Genes in Determining Meristem
624 Activity. *International journal of molecular sciences* *20*.

625 Lin, T.F., Saiga, S., Abe, M., and Laux, T. (2016). OBE3 and WUS Interaction in
626 Shoot Meristem Stem Cell Regulation. *PLoS One* *11*, e0155657.

627 Liu, X., Dinh, T.T., Li, D., Shi, B., Li, Y., Cao, X., Guo, L., Pan, Y., Jiao, Y., and Chen,
628 X. (2014). AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS
629 and APETALA2 in floral meristem determinacy. *The Plant journal : for cell and*
630 *molecular biology* *80*, 629-641.

631 Liu, X., Kim, Y.J., Muller, R., Yumul, R.E., Liu, C., Pan, Y., Cao, X., Goodrich, J.,
632 and Chen, X. (2011). AGAMOUS terminates floral stem cell maintenance in
633 Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb
634 Group proteins. *The Plant cell* *23*, 3654-3670.

635 Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the
636 KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis.
637 *Nature* *379*, 66-69.

638 Ma, Y., Miotk, A., Sutikovic, Z., Ermakova, O., Wenzl, C., Medzihradzky, A.,
639 Gaillochet, C., Forner, J., Utan, G., Brackmann, K., *et al.* (2019). WUSCHEL acts as
640 an auxin response rheostat to maintain apical stem cells in Arabidopsis. *Nature*
641 *communications* *10*, 5093.

642 Matsubayashi, Y. (2003). Ligand-receptor pairs in plant peptide signaling. *Journal of*
643 *cell science* *116*, 3863-3870.

644 Miwa, H., Kinoshita, A., Fukuda, H., and Sawa, S. (2009). Plant meristems:
645 CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical
646 meristem. *J Plant Res* *122*, 31-39.

647 Nemhauser, J.L., Feldman, L.J., and Zambryski, P.C. (2000). Auxin and ETTIN in
648 Arabidopsis gynoecium morphogenesis. *Development* *127*, 3877-3888.

649 Peaucelle, A., Morin, H., Traas, J., and Laufs, P. (2007). Plants expressing a
650 miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance
651 of phyllotaxy in Arabidopsis. *Development* *134*, 1045-1050.

652 Pfeiffer, A., Wenzl, C., and Lohmann, J.U. (2017). Beyond flexibility: controlling
653 stem cells in an ever changing environment. *Current opinion in plant biology* *35*,
654 117-123.

655 Reddy, G.V., Heisler, M.G., Ehrhardt, D.W., Meyerowitz, E.M., Sakai, H., Hua, J.,
656 Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., *et al.* (2004). Real-time lineage
657 analysis reveals oriented cell divisions associated with morphogenesis at the shoot
658 apex of *Arabidopsis thaliana*. *Development* *131*, 4225-4237.

659 Reinhardt, D., Mandel, T., and Kuhlemeier, C. (2000). Auxin regulates the initiation
660 and radial position of plant lateral organs. *Plant Cell* *12*, 507-518.

661 Riou-Khamlich, C., Huntley, R., Jacqmard, A., and Murray, J.A. (1999). Cytokinin
662 activation of *Arabidopsis* cell division through a D-type cyclin. *Science* *283*,
663 1541-1544.

664 Sablowski, R. (2009). Cytokinin and WUSCHEL tie the knot around plant stem cells.
665 *Proceedings of the National Academy of Sciences of the United States of America*
666 *106*, 16016-16017.

667 Schaller, G.E., Bishopp, A., and Kieber, J.J. (2015). The Yin-Yang of Hormones:
668 Cytokinin and Auxin Interactions in Plant Development. *The Plant cell* *27*, 44-63.

669 Scofield, S., Murison, A., Jones, A., Fozard, J., Aida, M., Band, L.R., Bennett, M.,
670 and Murray, J.A.H. (2018). Coordination of meristem and boundary functions by
671 transcription factors in the SHOOT MERISTEMLESS regulatory network.
672 *Development* *145*.

673 Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A., and Zambryski,
674 P.C. (1997). ETTIN patterns the *Arabidopsis* floral meristem and reproductive organs.
675 *Development* *124*, 4481-4491.

676 Shi, B., Guo, X., Wang, Y., Xiong, Y., Wang, J., Hayashi, K.I., Lei, J., Zhang, L., and
677 Jiao, Y. (2018). Feedback from Lateral Organs Controls Shoot Apical Meristem
678 Growth by Modulating Auxin Transport. *Dev Cell* *44*, 204-216 e206.

679 Simonini, S., Bencivenga, S., Trick, M., and Ostergaard, L. (2017). Auxin-Induced
680 Modulation of ETTIN Activity Orchestrates Gene Expression in *Arabidopsis*. *The*
681 *Plant cell* *29*, 1864-1882.

682 Sun, B., and Ito, T. (2015). Regulation of floral stem cell termination in *Arabidopsis*.
683 *Frontiers in plant science* *6*, 17.

684 Sun, B., Xu, Y., Ng, K.H., and Ito, T. (2009). A timing mechanism for stem cell
685 maintenance and differentiation in the *Arabidopsis* floral meristem. *Genes &*
686 *development* *23*, 1791-1804.

687 Tantikanjana, T., and Nasrallah, J.B. (2012). Non-cell-autonomous regulation of
688 crucifer self-incompatibility by Auxin Response Factor ARF3. *Proceedings of the*
689 *National Academy of Sciences of the United States of America* *109*, 19468-19473.

690 Vernoux, T., Besnard, F., and Traas, J. (2010). Auxin at the shoot apical meristem.

691 Cold Spring Harb Perspect Biol 2, a001487.

692 Wei, J., Qi, Y., Li, M., Li, R., Yan, M., Shen, H., Tian, L., Liu, Y., Tian, S., Liu, L., *et*
693 *al.* (2020). Low-cost and efficient confocal imaging method for arabidopsis flower.

694 Developmental biology 466, 73-76.

695 Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jonsson, H., and Reddy, G.V. (2011).
696 WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis
697 shoot apex. Genes & development 25, 2025-2030.

698 Zadnikova, P., and Simon, R. (2014). How boundaries control plant development.
699 Curr Opin Plant Biol 17, 116-125.

700 Zhang, K., Wang, R., Zi, H., Li, Y., Cao, X., Li, D., Guo, L., Tong, J., Pan, Y., Jiao, Y.,
701 *et al.* (2018a). AUXIN RESPONSE FACTOR3 Regulates Floral Meristem
702 Determinacy by Repressing Cytokinin Biosynthesis and Signaling. The Plant cell 30,
703 324-346.

704 Zhao, H., Liu, L., Mo, H., Qian, L., Cao, Y., Cui, S., Li, X., and Ma, L. (2013). The
705 ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation
706 in Arabidopsis. PloS one 8, e60809.

707 Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., and
708 Lohmann, J.U. (2010). Hormonal control of the shoot stem-cell niche. Nature 465,
709 1089-1092.

710 Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P.T., and Müller, B.
711 (2013). A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional
712 Output of the Cytokinin Signaling Network in *Planta*. Plant physiology 161,
713 1066-1075.

714

715 **Figure 1. ARF3 regulates meristem activity and organ patterning.**

716 **A and B**, Representative 3D reconstructed top view of the SAM of *Ler* (A) and the
717 *arf3-29* mutant (B). **C and D**, Longitudinal section of the SAM in *Ler* (C) and the
718 *arf3-29* mutant (D). **E and F**, The *arf3-29* mutant enhances the FM determinacy
719 defects of *ag-10*. Siliques in *ag-10* plants (E) and *ag-10 arf3-29* plants (F). **G and H**,
720 Representative siliques on the main stem of *Ler* (G) and the *arf3-29* mutant (H) 14

721 days after bolting. **I and J**, Flowers of wild type (*Ler*) (I) and *arf3-29* (J). **K**, Size of
722 the SAM in *Ler* (n = 16) and *arf3-29* (n = 16) 7 days after bolting. **P < 0.01
723 (Student's t test). **L**, Cell number of the SAM L1 layer in *Ler* (n = 15) and *arf3-29* (n
724 = 15). **P < 0.01 (Student's t test). **M**, Number of flowers on the main stem during
725 one life cycle in *Ler* (n = 25) and *arf3-29* (n = 21). **P < 0.01 (Student's t test). **N**,
726 Distribution of internode length between two successive flowers along the stem in
727 representative *Ler* and *arf3-29* plants. **O**, Divergence angles between successive
728 siliques in representative *Ler* and *arf3-29* siliques. The insets show a representative
729 example for *Ler* and *arf3-29*. **P**, Percentages of abnormal floral organs in *Ler* (163
730 flowers, 5 plants) and *arf3-29* (327 flowers, 6 plants). Bars = 25 μ m in A–D; 1 mm in
731 E, F, I and J; 1 cm in G and H.

732 **Figure 2. Dynamic patterns of ARF3 expression and ARF3 distribution.**

733 **A**, Heatmap representation of differentially expressed gene expression patterns in
734 auxin signaling during early floral development in *ap1 cal 35Spro:AP1-GR* (data from
735 Chen et al., 2018). **B–F**, Comparison of expression levels of auxin-related genes
736 estimated from published RNA-seq data (orange) and validated by RT-qPCR (blue).
737 FPKM: fragments per kilobase of transcript per million mapped reads. qPCR:
738 transcript levels measured by real-time RT-PCR. **G**, *ARF3* expression levels in *Ler*
739 inflorescences treated with IAA, NPA or yucasin. **H–M**, *ARF3* distribution pattern
740 during floral development in *Arabidopsis*. Comparison of *ARF3-GFP* protein
741 abundance in *ap1 cal 35Spro:AP1-GR ARF3pro:ARF3-GFP* on day 0 (H), day 1 (I),
742 day 2 (J), day 3 (K), day 4 (L) and No DEX (M) after a one-time treatment with 1 μ M
743 DEX. **N–S**, *TCSn:GFP* expression pattern during floral development in *Arabidopsis*.
744 Comparison of GFP signals in *ap1 cal 35Spro:AP1-GR ARF3pro:ARF3-GFP* on day
745 0 (N), day 1 (O), day 2 (P), day 3 (Q), day 4 (R) and No DEX (S) after a one time
746 treatment with 1 μ M DEX. Bars = 100 μ m in H–S.

747 **Figure 3. ARF3 protein migrates from cell to cell in the meristem.**

748 **A, B, E and F**, Transverse section and longitudinal section showing the distribution
749 pattern of *ARF3-GFP* (A, B) and *ARF3-nls-GFP* (E, F) in inflorescence meristems. **C,**
750 **D, G and H**, Transverse section and longitudinal section showing the distribution

751 pattern of ARF3-GFP (C, D) and ARF3-nls-GFP (G, H) in *WUSpro:DsRed* (shown in
752 magenta). **I1–I3**, ARF3-GFP distribution pattern in flowers. I1, early stages 1–2; I2,
753 whole inflorescences and flower buds; I3, stages 2–3. **J1–J3**, ARF3-nls-GFP
754 distribution pattern in flowers. J1, early stages 1–2; J2, whole inflorescences and
755 flower buds; J3, stages 2–3. **K1–K3**, *DR5pro:GFP* expression in flowers. K1, early
756 stages 1–2; K2, whole inflorescences and flower buds; K3, stages 2–3. **L1–L3**,
757 *TCSn:GFP* expression in flowers. L1, early stages 1–2; L2, whole inflorescences and
758 flower buds; L3, stages 2–3. Bars = 25 μ m.

759 **Figure 4. ARF3 independently regulates meristem maintenance and organ**
760 **patterning.**

761 **A–D**, Representative top view of SAM size in the indicated genotypes. **E**, Boxplot
762 representation of SAM size distribution in the indicated genotypes. **F**, Cumulative
763 flower number over time in *Ler* (n = 15), *arf3-29* (n = 15), *arf3-29*
764 *ARF3pro:ARF3-GFP* (n = 15) and *arf3-29 ARF3pro:ARF3-nls-GFP* (n = 15). **G**,
765 Relative *STM* and *MP* expression levels in the indicated genotypes. *P < 0.05
766 (Student's t test). Bars = 25 μ m in A–D.

767 **Figure 5. ARF3 controls phyllotactic pattern cell-autonomously.**

768 **A**, Representative images of inflorescence stems for the indicated genotypes. Scale
769 bars = 1 cm. **B**, Distribution of divergence angle between two successive flowers, in
770 30° intervals. **C**, Distribution of internode length between two successive flowers, in
771 3-mm intervals. **D–G**, Flowers and floral organs for the indicated genotypes. Insets
772 show the sepals marked by red arrows. **H**, Percentages of abnormal floral organs in
773 *Ler* (173 flowers from 4 plants), *arf3-29* (273 flowers from 5 plants), *arf3-29*
774 *ARF3pro:ARF3-GFP* (183 flowers from 5 plants) and *arf3-29*
775 *ARF3pro:ARF3-nls-GFP* (184 flowers from 4 plants). **P < 0.01 (Student's t test). **I**,
776 Schematic diagrams of floral organs formation in the indicated genotypes. Each
777 column represents a single plant, and each square represents a flower. Green, normal
778 flower with four sepals and four petals; yellow, flower with abnormal number of
779 sepals or petals; magenta, flower with abnormal number of sepals and petals. **J**, ChIP
780 assay for ARF3-GFP binding with anti-GFP antibody at *CUC3P1*, *BO2P1* and *TEC3*

781 in *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* inflorescences.
782 The fragments examined are shown in Supplemental Figure 6. *eIF4A (EUKARYOTIC*
783 *TRANSLATION INITIATION FACTOR4A)* served as a negative control. Error bars
784 represent standard deviation (SD) from three biological repeats. **K**, Relative *CUC1-3*,
785 *BOP2* and *TEC3* transcript levels in the indicated genotypes. * $P < 0.05$ and ** $P <$
786 0.01 (Student's t test). Bars = 1 cm in A, 1 mm in D–G.

787 **Figure 6. ARF3 controls meristem activity non-cell-autonomously.**

788 **A**, Relative *AHK4* and *WUS* transcript levels in the indicated genotypes. * $P < 0.05$
789 and ** $P < 0.01$ (Student's t test). **B and C**, *AHK4pro:GUS* expression pattern in
790 *arf3-29 ARF3pro:ARF3-GFP* (B) and *arf3-29 ARF3pro:ARF3-nls-GFP* (C)
791 inflorescences under the same staining conditions. **D**, Quantification of GUS activity
792 in inflorescences of the indicated genotypes. Data are shown as means of three
793 biological replicates with independently prepared inflorescence materials containing
794 unopened flowers. * $P < 0.05$ (Student's t test). **E and F**, *WUSpro:DsRed* expression
795 (magenta) in the SAM of *arf3-29 ARF3pro:ARF3-GFP* (E) and *arf3-29*
796 *ARF3pro:ARF3-nls-GFP* (F). The insets show the average fluorescence signal of
797 DsRed, ARF3-GFP and ARF3-nls-GFP signals. y-axis, signal intensity; x-axis,
798 position along the SAM (μm). * $P < 0.05$ and ** $P < 0.01$ (Student's t test). **G**, Relative
799 *DsRed* transcript levels in the indicated genotypes. **H**, ChIP assay with anti-GFP
800 antibody to examine ARF3 binding to *AHK4P1*, *AHK4P2* and *WUSP2* in *arf3-29*
801 *ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* inflorescences. *eIF4A*
802 served as a negative control. Error bars represent the SD from three biological repeats
803 with independently prepared inflorescence materials containing unopened flowers.
804 ** $P < 0.01$ (Student's t test) between *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29*
805 *ARF3pro:ARF3-nls-GFP* inflorescences. **I–L**, Representative SAM top view in the
806 indicated genotypes. **M**, Boxplot representation of SAM size distribution in the
807 indicated genotypes. Statistical test: Student's t test (p); Effect size: Hedges' coefficient
808 (g). Bars = 25 μm in B, C, E, F, I and L.

809 **Figure 7. Model of meristem activity and phyllotactic pattern control by ARF3 in**
810 **a non-cell- and cell-autonomous manner.**

811 In the IM, auxin promotes *ARF3* expression, which in turn regulates meristem–organ
812 boundary-specific genes (*CUC1–3*, *BOP1–2* and *TEC3*) and *MP* in a cell-autonomous
813 manner. *ARF3* also migrates from the PZ to the OC, where it directly represses *AHK4*
814 and *WUS* expression to control meristem activity in a non-cell-autonomous manner.
815 P0 and P4, primordia of flower buds at different developmental stages; B, meristem–
816 organ boundary; OP, flower organ primordia.

817

818 **Supplemental Figure 1. *Ler* and *arf3-29* mature plants.**

819 *arf3-29* mutants produce more siliques with delayed GPA than *Ler*. Bars = 1 cm.

820 **Supplemental Figure 2. Distribution of *ARF3* mRNA and protein in IM and early**

821 stages of FMs.

822 **A–D**, *ARF3* expression in IM (A) and FM at stage 3 (B), stage 6 (C) and stage 9–10
823 (D) examined by *in situ* hybridization. Bars = 50 μ m.

824 **Supplemental Figure 3. The nls restricts the subcellular localization of ARF3.**

825 **A and B**, Subcellular localization of ARF3-GFP (A) and ARF3-nls-GFP (B). Bars = 5
826 μ m.

827 **Supplemental Figure 4. Cell number in the SAM L1 layer of the indicated**

828 genotypes.

829 **A–D**, Longitudinal section view of the indicated genotypes. **E**, Cell number of the
830 SAM L1 layer of the plants in A–D. ** $P < 0.01$ (Student's t test). Bars = 25 μ m in A–
831 D.

832 **Supplemental Figure 5. Percentages of abnormal stamens in the indicated**

833 genotypes.

834 **Supplemental Figure 6. Schematic diagram of the genomic regions of ARF3**
835 **target genes.**

836 Arrows indicate the transcription start site (+1). Dark gray rectangles, untranslated
837 regions; black rectangles, exons; black lines, introns; red lines, fragments examined
838 by ChIP-qPCR; green rectangles, ChIP-seq peaks regions (Simonini et al, 2017). Bar
839 = 500 bp.

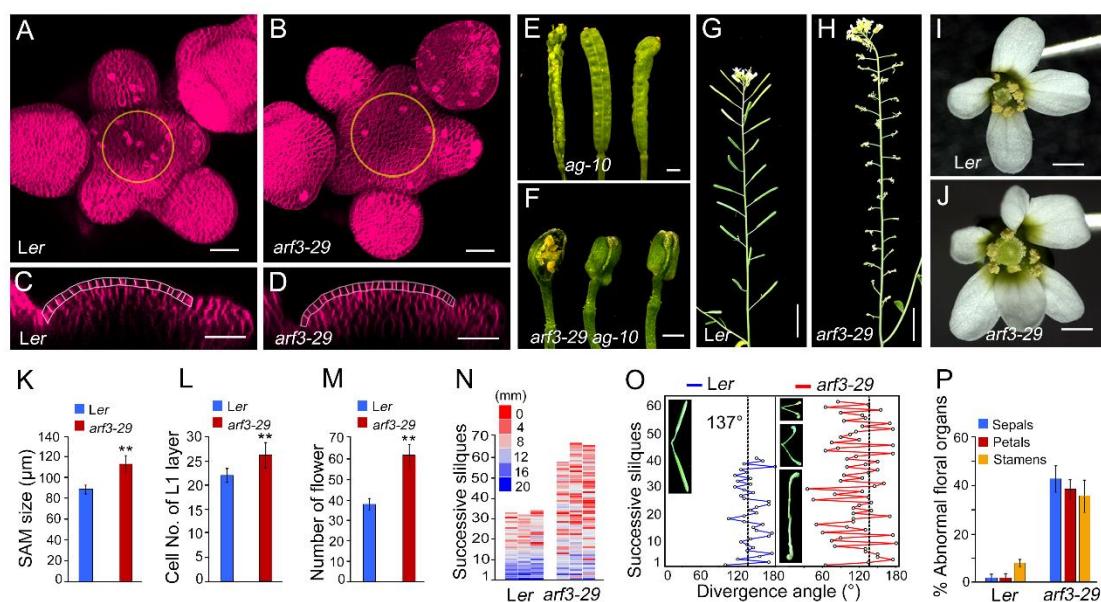
840 **Supplemental Figure 7. Representative siliques and phenotypes of the indicated**

841 **genotypes.**

842 **A–D**, Representative siliques and plants of *ag-10* (A), *arf3-29 ag-10* (B), *arf3-29*
843 *ag-10 ARF3pro:ARF3-GFP* (C) and *arf3-29 ag-10 ARF3pro:ARF3-nls-GFP* (D). **E–**
844 **H**, FM determinacy in the indicated genotypes: *ag-10* (E), *ag-10 arf3-29* (F), *ag-10*
845 *arf3-29 ARF3pro:ARF3-GFP* (G), *ARF3pro:ARF3-nls-GFP* (H). White arrow,
846 hyperplastic tissue; yellow arrow, seed. **I**, Schematic diagrams of siliques phenotypes
847 of the indicated genotypes. Each column represents a single plant, and each square
848 represents a siliques. Green, normal siliques; yellow, intermediate-type siliques (siliques
849 bear seeds containing hyperplastic tissue inside); magenta, severe indeterminacy-type
850 siliques (siliques containing hyperplastic tissue inside without seeds). **J**, Percentages of
851 total siliques from each type. Bars = 1 cm in A–D and 1 mm in E–G.

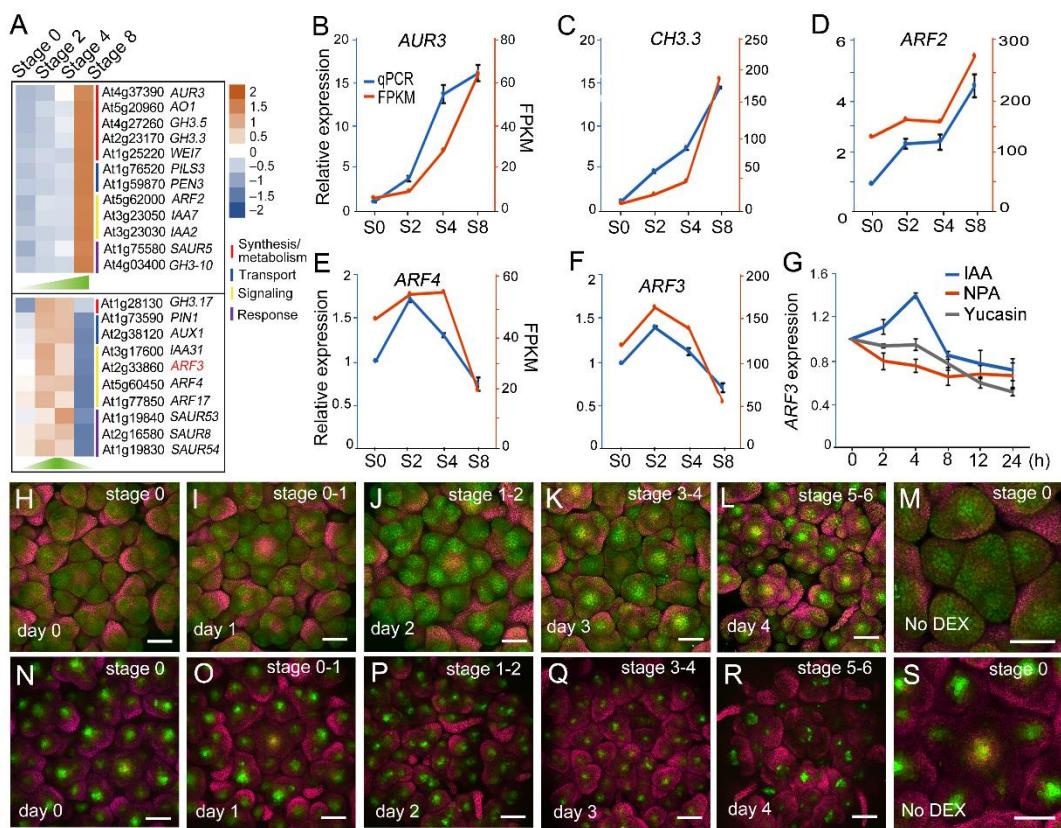
852 **Supplemental Figure 8. Expression of *AHK4pro:GUS*.**

853 **A and B**, Expression of *AHK4pro:GUS* in *Ler* (A) and *arf3-29* (B) inflorescences
854 under the same staining conditions. Bars = 25 μ m.

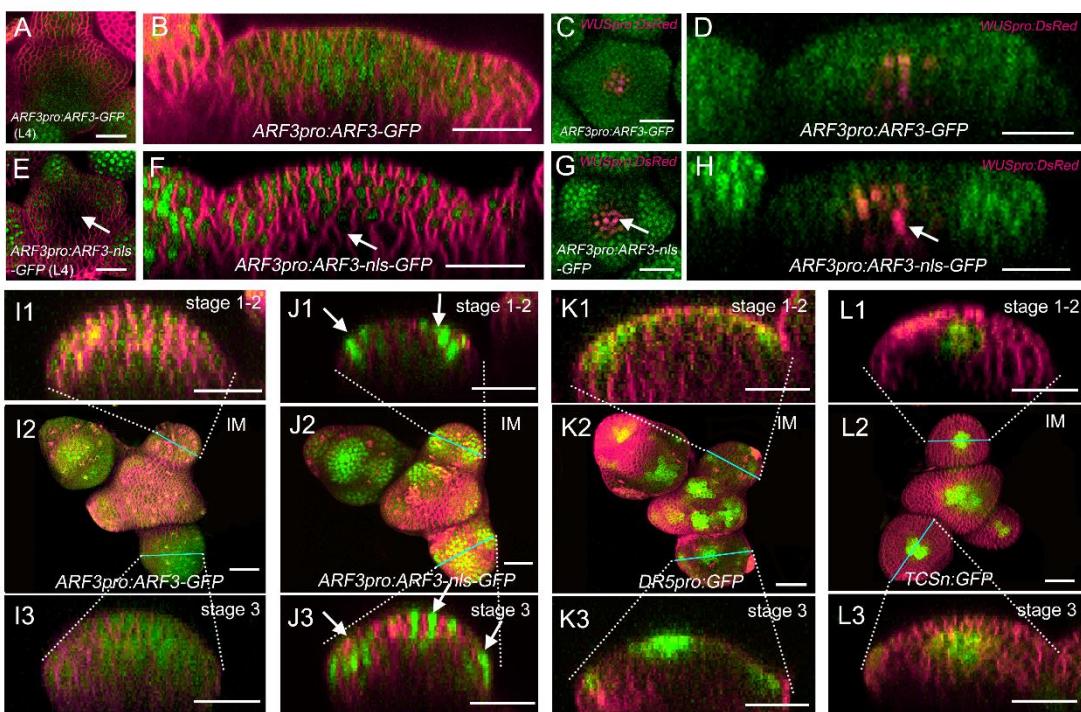

855 **Supplemental Figure 9. Representative size of SAM in the indicated genotypes.**

856 **A–D**, Representative SAM of *wus-7* (A), *wus-7 arf3-29* (B), *cre1-10* (C) and *cre1-10*
857 *arf3-29* (D). **E**, Boxplot representation of SAM size distribution of the indicated
858 genotypes. Statistical test: Student' t test (p); Effect size: Hedges' coefficient (g). Bars
859 = 25 μ m in A–D.

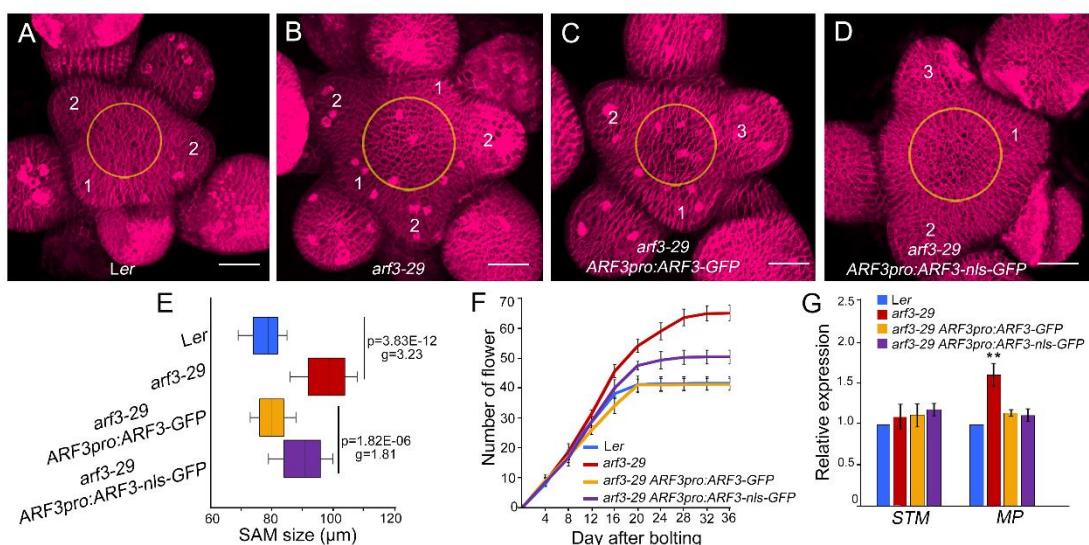
860 **Supplemental Table 1. Floral organ numbers in *Ler* and *arf3-29* plants.**


861 **Supplemental Data 1. Expression patterns of genes in auxin signaling during**
862 **early floral development in *ap1 cal 35Spro:API-GR*.**

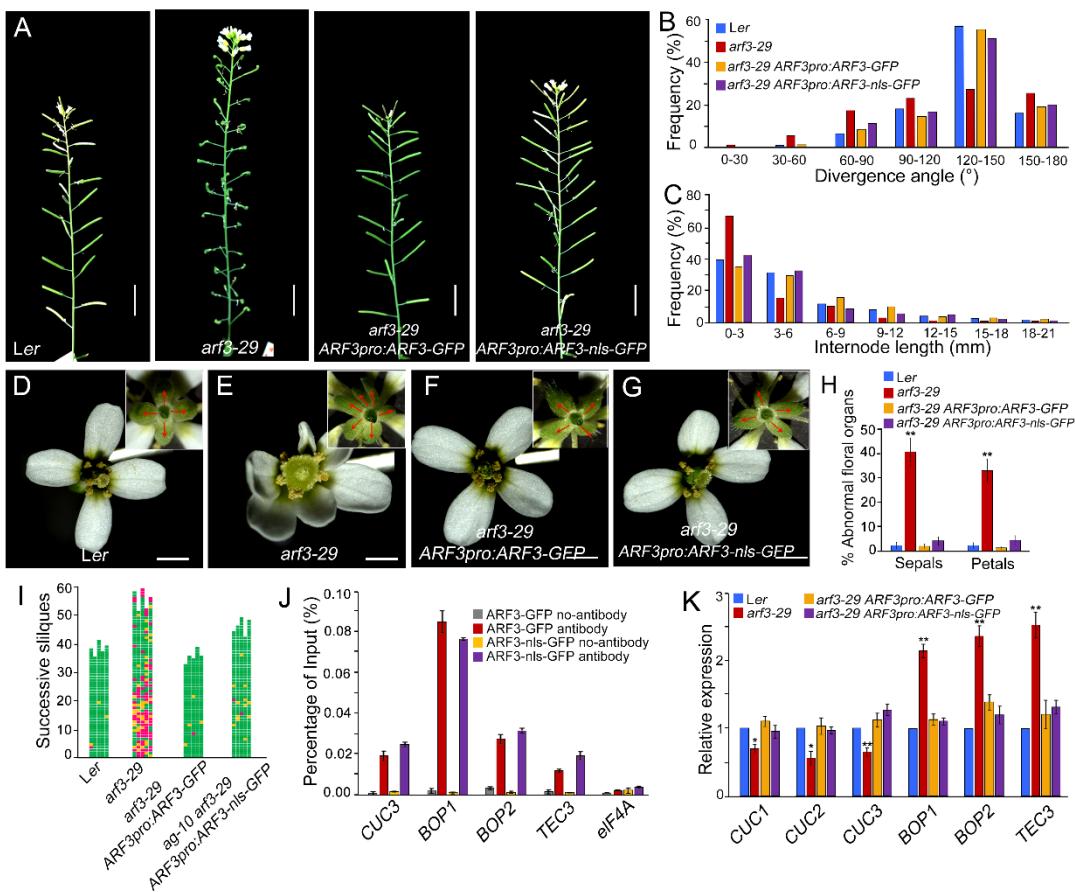
863 **Supplemental Data 2. List of primers used in this study.**


Figure 1. ARF3 regulates meristem activity and organ patterning.

A and B, Representative 3D reconstructed top view of the SAM of *Ler* (A) and the *arf3-29* mutant (B). **C and D**, Longitudinal section of the SAM in *Ler* (C) and the *arf3-29* mutant (D). **E and F**, The *arf3-29* mutant enhances the FM determinacy defects of *ag-10*. Siliques in *ag-10* plants (E) and *ag-10 arf3-29* plants (F). **G and H**, Representative siliques on the main stem of *Ler* (G) and the *arf3-29* mutant (H) 14 days after bolting. **I and J**, Flowers of wild type (*Ler*) (I) and *arf3-29* (J). **K**, Size of the SAM in *Ler* (n = 16) and *arf3-29* (n = 16) 7 days after bolting. **P < 0.01 (Student's t test). **L**, Cell number of the SAM L1 layer in *Ler* (n = 15) and *arf3-29* (n = 15). **P < 0.01 (Student's t test). **M**, Number of flowers on the main stem during one life cycle in *Ler* (n = 25) and *arf3-29* (n = 21). **P < 0.01 (Student's t test). **N**, Distribution of internode length between two successive flowers along the stem in representative *Ler* and *arf3-29* plants. **O**, Divergence angles between successive siliques in representative *Ler* and *arf3-29* siliques. The insets show a representative example for *Ler* and *arf3-29*. **P**, Percentages of abnormal floral organs in *Ler* (163 flowers, 5 plants) and *arf3-29* (327 flowers, 6 plants). Bars = 25 μm in A–D; 1 mm in E, F, I and J; 1 cm in G and H.


Figure 2. Dynamic patterns of *ARF3* expression and *ARF3* distribution.

A, Heatmap representation of differentially expressed gene expression patterns in auxin signaling during early floral development in *ap1 cal 35Spro:API-GR* (data from Chen et al., 2018). **B–F**, Comparison of expression levels of auxin-related genes estimated from published RNA-seq data (orange) and validated by RT-qPCR (blue). FPKM: fragments per kilobase of transcript per million mapped reads. qPCR: transcript levels measured by real-time RT-PCR. **G**, *ARF3* expression levels in *Ler* inflorescences treated with IAA, NPA or yucasin. **H–M**, *ARF3* distribution pattern during floral development in *Arabidopsis*. Comparison of *ARF3-GFP* protein abundance in *ap1 cal 35Spro:API-GR ARF3pro:ARF3-GFP* on day 0 (H), day 1 (I), day 2 (J), day 3 (K), day 4 (L) and No DEX (M) after a one-time treatment with 1 μ M DEX. **N–S**, *TCSn:GFP* expression pattern during floral development in *Arabidopsis*. Comparison of GFP signals in *ap1 cal 35Spro:API-GR ARF3pro:ARF3-GFP* on day 0 (N), day 1 (O), day 2 (P), day 3 (Q), day 4 (R) and No DEX (S) after a one time treatment with 1 μ M DEX. Bars = 100 μ m in H–S.


Figure 3. ARF3 protein migrates from cell to cell in the meristem.

A, B, E and F, Transverse section and longitudinal section showing the distribution pattern of ARF3-GFP (A, B) and ARF3-nls-GFP (E, F) in inflorescence meristems. **C, D, G and H**, Transverse section and longitudinal section showing the distribution pattern of ARF3-GFP (C, D) and ARF3-nls-GFP (G, H) in *WUSpro:DsRed* (shown in magenta). **I1–I3**, ARF3-GFP distribution pattern in flowers. I1, early stages 1–2; I2, whole inflorescences and flower buds; I3, stages 2–3. **J1–J3**, ARF3-nls-GFP distribution pattern in flowers. J1, early stages 1–2; J2, whole inflorescences and flower buds; J3, stages 2–3. **K1–K3**, *DR5pro:GFP* expression in flowers. K1, early stages 1–2; K2, whole inflorescences and flower buds; K3, stages 2–3. **L1–L3**, *TCSn:GFP* expression in flowers. L1, early stages 1–2; L2, whole inflorescences and flower buds; L3, stages 2–3. Bars = 25 μ m.

Figure 4. ARF3 independently regulates meristem maintenance and organ patterning.

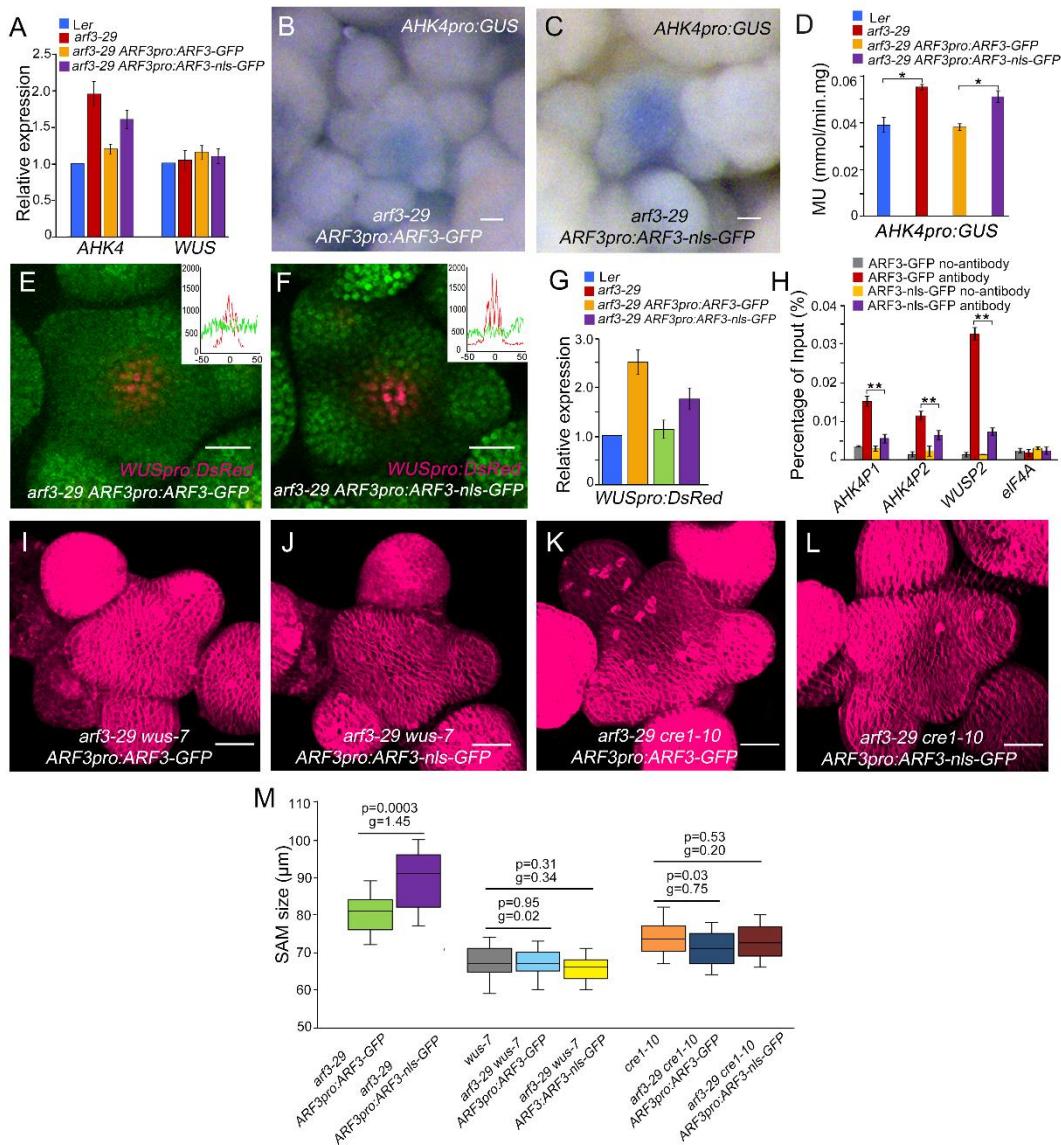

A–D, Representative top view of SAM size in the indicated genotypes. **E**, Boxplot representation of SAM size distribution in the indicated genotypes. **F**, Cumulative flower number over time in *Ler* (n = 15), *arf3-29* (n = 15), *arf3-29 ARF3pro:ARF3-GFP* (n = 15) and *arf3-29 ARF3pro:ARF3-nls-GFP* (n = 15). **G**, Relative *STM* and *MP* expression levels in the indicated genotypes. *P < 0.05 (Student's t test). Bars = 25 μ m in A–D.

Figure 5. ARF3 controls phyllotactic pattern cell-autonomously.

A, Representative images of inflorescence stems for the indicated genotypes. Scale bars = 1 cm. **B**, Distribution of divergence angle between two successive flowers, in 30° intervals. **C**, Distribution of internode length between two successive flowers, in 3-mm intervals. **D–G**, Flowers and floral organs for the indicated genotypes. Insets show the sepals marked by red arrows. **H**, Percentages of abnormal floral organs in *Ler* (173 flowers from 4 plants), *arf3-29* (273 flowers from 5 plants), *arf3-29 ARF3pro:ARF3-GFP* (183 flowers from 5 plants) and *arf3-29 ARF3pro:ARF3-nls-GFP* (184 flowers from 4 plants). ** $P < 0.01$ (Student's t test). **I**, Schematic diagrams of floral organs formation in the indicated genotypes. Each column represents a single plant, and each square represents a flower. Green, normal flower with four sepals and four petals; yellow, flower with abnormal number of sepals or petals; magenta, flower with abnormal number of sepals and petals. **J**, ChIP assay for ARF3-GFP binding with anti-GFP antibody at *CUC3P1*, *BO2P1* and *TEC3* in *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29*. **K**, Relative expression of *CUC1*, *CUC2*, *CUC3*, *BOP1*, *BOP2*, and *TEC3* in *Ler*, *arf3-29*, *arf3-29 ARF3pro:ARF3-GFP*, and *arf3-29 ARF3pro:ARF3-nls-GFP*.

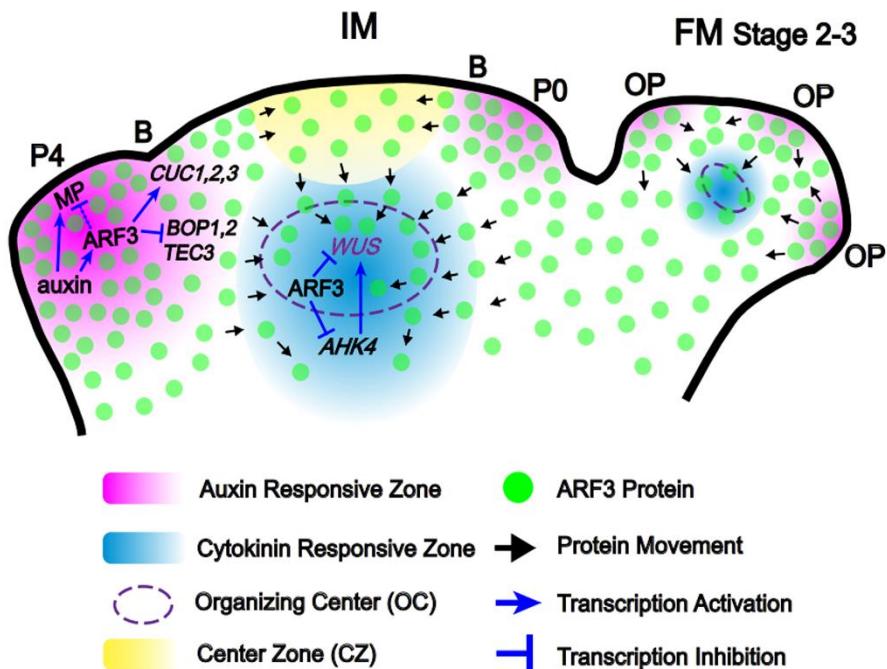

29 *ARF3pro:ARF3-nls-GFP* inflorescences. The fragments examined are shown in Supplemental Figure 6. *eIF4A* (*EUKARYOTIC TRANSLATION INITIATION FACTOR4A*) served as a negative control. Error bars represent standard deviation (SD) from three biological repeats. **K**, Relative *CUC1-3*, *BOP2* and *TEC3* transcript levels in the indicated genotypes. * $P < 0.05$ and ** $P < 0.01$ (Student's t test). Bars = 1 cm in A, 1 mm in D–G.

Figure 6. ARF3 controls meristem activity non-cell-autonomously.

A, Relative *AHK4* and *WUS* transcript levels in the indicated genotypes. * $P < 0.05$ and ** $P < 0.01$ (Student's t test). **B** and **C**, *AHK4pro:GUS* expression pattern in *arf3-29 ARF3pro:ARF3-GFP* (B) and *arf3-29 ARF3pro:ARF3-nls-GFP* (C) inflorescences under the same staining conditions. **D**, Quantification of GUS activity in inflorescences of the indicated genotypes. Data are shown as means of three biological replicates with independently prepared inflorescence materials containing unopened flowers. * $P < 0.05$ (Student's t test). **E** and **F**, *WUSpro:DsRed* expression (magenta) in the SAM of *arf3-29 ARF3pro:ARF3-GFP* (E) and *arf3-29 ARF3pro:ARF3-nls-GFP* (F). The insets show the average fluorescence signal of DsRed, ARF3-GFP and ARF3-nls-GFP signals.

y-axis, signal intensity; x-axis, position along the SAM (μm). $*P < 0.05$ and $**P < 0.01$ (Student's t test). **G**, Relative *DsRed* transcript levels in the indicated genotypes. **H**, ChIP assay with anti-GFP antibody to examine ARF3 binding to *AHK4P1*, *AHK4P2* and *WUSP2* in *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* inflorescences. *EIF4A* served as a negative control. Error bars represent the SD from three biological repeats with independently prepared inflorescence materials containing unopened flowers. $**P < 0.01$ (Student's t test) between *arf3-29 ARF3pro:ARF3-GFP* and *arf3-29 ARF3pro:ARF3-nls-GFP* inflorescences. **I–L**, Representative SAM top view in the indicated genotypes. **M**, Boxplot representation of SAM size distribution in the indicated genotypes. Statistical test: Student's t test (p); Effect size: Hedges' coefficient (g). Bars = 25 μm in B, C, E, F, I and L.

Figure 7. Model of meristem activity and phyllotactic pattern control by ARF3 in a non-cell- and cell-autonomous manner.

In the IM, auxin promotes *ARF3* expression, which in turn regulates meristem–organ boundary-specific genes (*CUC1–3*, *BOP1–2* and *TEC3*) and *MP* in a cell-autonomous manner. *ARF3* also migrates from the PZ to the OC, where it directly represses *AHK4* and *WUS* expression to control meristem activity in a non-cell-autonomous manner. P0 and P4, primordia of flower buds at different developmental stages; B, meristem–organ boundary; OP, flower organ primordia.

Parsed Citations

Bartrina, I., Otto, E., Strnad, M., Werner, T., and Schmülling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in *Arabidopsis thaliana*. *Plant Cell* 23, 69-80.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bencivenga, S., Serrano-Mislata, A., Bush, M., Fox, S., and Sablowski, R. (2016). Control of Oriented Tissue Growth through Repression of Organ Boundary Genes Promotes Stem Morphogenesis. *Dev Cell* 39, 198-208.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bilsborough, G.D., Runions, A., Barkoulas, M., Jenkins, H.W., Hasson, A., Galinha, C., Laufs, P., Hay, A., Prusinkiewicz, P., and Tsiantis, M. (2011). Model for the regulation of *Arabidopsis thaliana* leaf margin development. *Proceedings of the National Academy of Sciences of the United States of America* 108, 3424-3429.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000). Dependence of stem cell fate in *Arabidopsis* on a feedback loop regulated by CLV3 activity. *Science (New York, NY)* 289, 617-619.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Byrne, M.E., Groover, A.T., Fontana, J.R., and Martienssen, R.A. (2003). Phyllotactic pattern and stem cell fate are determined by the *Arabidopsis* homeobox gene BELLRINGER. *Development* 130, 3941-3950.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cao, X., He, Z., Guo, L., and Liu, X. (2015). Epigenetic Mechanisms Are Critical for the Regulation of WUSCHEL Expression in Floral Meristems. *Plant physiology* 168, 1189-1196.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Carles, C.C., and Fletcher, J.C. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. *Trends in plant science* 8, 394-401.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chandler, J.W. (2012). Floral meristem initiation and emergence in plants. *Cell Mol Life Sci* 69, 3807-3818.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chang, W., Guo, Y., Zhang, H., Liu, X., and Guo, L. (2020). Same Actor in Different Stages: Genes in Shoot Apical Meristem Maintenance and Floral Meristem Determinacy in *Arabidopsis*. *Frontiers in Ecology and Evolution* 8, 89.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen, D., Yan, W., Fu, L.Y., and Kaufmann, K. (2018). Architecture of gene regulatory networks controlling flower development in *Arabidopsis thaliana*. *Nature communications* 9, 4534.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cheng, Z.J., Wang, L., Sun, W., Zhang, Y., Zhou, C., Su, Y.H., Li, W., Sun, T.T., Zhao, X.Y., Li, X.G., et al. (2013). Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. *Plant physiology* 161, 240-251.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chickarmane, V.S., Gordon, S.P., Tarr, P.T., Heisler, M.G., and Meyerowitz, E.M. (2012). Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing *Arabidopsis* shoot meristem. *Proc Natl Acad Sci U S A* 109, 4002-4007.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chung, Y., Zhu, Y., Wu, M.F., Simonini, S., Kuhn, A., Armenta-Medina, A., Jin, R., Ostergaard, L., Gillmor, C.S., and Wagner, D. (2019). Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. *Nature communications* 10, 886.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *The Plant journal* 16, 735-743.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Daum, G., Medzihradzky, A., Suzuki, T., and Lohmann, J.U. (2014). A mechanistic framework for noncell autonomous stem cell induction in *Arabidopsis*. *Proc Natl Acad Sci U S A* 111, 14619-14624.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gallochet, C., Daum, G., and Lohmann, J.U. (2015). O cell, where art thou? The mechanisms of shoot meristem patterning. *Current opinion in plant biology* 23, 91-97.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gallochet, C., and Lohmann, J.U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. *Development* 142, 2237-2249.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gaillochet, C., Stiehl, T., Wenzl, C., Ripoll, J.J., Bailey-Steinitz, L.J., Li, L., Pfeiffer, A., Miotk, A., Hakenjos, J.P., Forner, J., et al. (2017). Control of plant cell fate transitions by transcriptional and hormonal signals. *Elife* 6.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M. (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the *Arabidopsis* shoot meristem. *Proc Natl Acad Sci U S A* 106, 16529-16534.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo, L., Cao, X., Liu, Y., Li, J., Li, Y., Li, D., Zhang, K., Gao, C., Dong, A., and Liu, X. (2018). A chromatin loop represses **WUSCHEL** expression in *Arabidopsis*. *The Plant journal : for cell and molecular biology* 94, 1083-1097.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Higuchi, M., Pischke, M.S., Mahonen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., et al. (2004). In planta functions of the *Arabidopsis* cytokinin receptor family. *Proceedings of the National Academy of Sciences of the United States of America* 101, 8821-8826.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., and Tsiantis, M. (2005). KNOX action in *Arabidopsis* is mediated by coordinate regulation of cytokinin and gibberellin activities. *Current biology : CB* 15, 1560-1565.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kurata, T., Okada, K., and Wada, T. (2005). Intercellular movement of transcription factors. *Current opinion in plant biology* 8, 600-605.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lee, Z.H., Hirakawa, T., Yamaguchi, N., and Ito, T. (2019). The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. *International journal of molecular sciences* 20.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lin, T.F., Saiga, S., Abe, M., and Laux, T. (2016). OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation. *PLoS One* 11, e0155657.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, X., Dinh, T.T., Li, D., Shi, B., Li, Y., Cao, X., Guo, L., Pan, Y., Jiao, Y., and Chen, X. (2014). AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. *The Plant journal : for cell and molecular biology* 80, 629-641.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, X., Kim, Y.J., Muller, R., Yumul, R.E., Liu, C., Pan, Y., Cao, X., Goodrich, J., and Chen, X. (2011). AGAMOUS terminates floral stem cell maintenance in *Arabidopsis* by directly repressing **WUSCHEL** through recruitment of Polycomb Group proteins. *The Plant cell* 23, 3654-3670.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of *Arabidopsis*. *Nature* 379, 66-69.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ma, Y., Miotk, A., Sutikovic, Z., Ermakova, O., Wenzl, C., Medzihradzky, A., Gaillochet, C., Forner, J., Utan, G., Brackmann, K., et al. (2019). **WUSCHEL** acts as an auxin response rheostat to maintain apical stem cells in *Arabidopsis*. *Nature communications* 10, 5093.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Matsubayashi, Y. (2003). Ligand-receptor pairs in plant peptide signaling. *Journal of cell science* 116, 3863-3870.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miwa, H., Kinoshita, A., Fukuda, H., and Sawa, S. (2009). Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. *J Plant Res* 122, 31-39.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nemhauser, J.L., Feldman, L.J., and Zambryski, P.C. (2000). Auxin and ETTIN in *Arabidopsis* gynoecium morphogenesis. *Development* 127, 3877-3888.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Peaucelle, A., Morin, H., Traas, J., and Laufs, P. (2007). Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in *Arabidopsis*. *Development* 134, 1045-1050.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pfeiffer, A., Wenzl, C., and Lohmann, J.U. (2017). Beyond flexibility: controlling stem cells in an ever changing environment. *Current opinion in plant biology* 35, 117-123.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reddy, G.V., Heisler, M.G., Ehrhardt, D.W., Meyerowitz, E.M., Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., et al. (2004). Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of *Arabidopsis thaliana*. *Development* 131, 4225-4237.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reinhardt, D., Mandel, T., and Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs. *Plant Cell* 12, 507-518.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Riou-Khamliche, C., Huntley, R., Jacqmar, A., and Murray, J.A. (1999). Cytokinin activation of *Arabidopsis* cell division through a D-type cyclin. *Science* 283, 1541-1544.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sablowski, R. (2009). Cytokinin and WUSCHEL tie the knot around plant stem cells. *Proceedings of the National Academy of Sciences of the United States of America* 106, 16016-16017.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schaller, G.E., Bishopp, A., and Kieber, J.J. (2015). The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. *The Plant cell* 27, 44-63.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Scofield, S., Murison, A., Jones, A., Fozard, J., Aida, M., Band, L.R., Bennett, M., and Murray, J.A.H. (2018). Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. *Development* 145.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A., and Zambryski, P.C. (1997). ETTIN patterns the *Arabidopsis* floral meristem and reproductive organs. *Development* 124, 4481-4491.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shi, B., Guo, X., Wang, Y., Xiong, Y., Wang, J., Hayashi, K.I., Lei, J., Zhang, L., and Jiao, Y. (2018). Feedback from Lateral Organs Controls Shoot Apical Meristem Growth by Modulating Auxin Transport. *Dev Cell* 44, 204-216 e206.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Simonini, S., Bencivenga, S., Trick, M., and Oستergaard, L. (2017). Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in *Arabidopsis*. *The Plant cell* 29, 1864-1882.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun, B., and Ito, T. (2015). Regulation of floral stem cell termination in *Arabidopsis*. *Frontiers in plant science* 6, 17.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun, B., Xu, Y., Ng, K.H., and Ito, T. (2009). A timing mechanism for stem cell maintenance and differentiation in the *Arabidopsis* floral meristem. *Genes & development* 23, 1791-1804.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tantikanjana, T., and Nasrallah, J.B. (2012). Non-cell-autonomous regulation of crucifer self-incompatibility by Auxin Response Factor ARF3. *Proceedings of the National Academy of Sciences of the United States of America* 109, 19468-19473.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vernoux, T., Besnard, F., and Traas, J. (2010). Auxin at the shoot apical meristem. *Cold Spring Harb Perspect Biol* 2, a001487.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wei, J., Qi, Y., Li, M., Li, R., Yan, M., Shen, H., Tian, L., Liu, Y., Tian, S., Liu, L., et al. (2020). Low-cost and efficient confocal imaging method for *arabidopsis* flower. *Developmental biology* 466, 73-76.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jonsson, H., and Reddy, G.V. (2011). WUSCHEL protein movement mediates stem cell homeostasis in the *Arabidopsis* shoot apex. *Genes & development* 25, 2025-2030.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zadnikova, P., and Simon, R. (2014). How boundaries control plant development. *Curr Opin Plant Biol* 17, 116-125.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, K., Wang, R., Zi, H., Li, Y., Cao, X., Li, D., Guo, L., Tong, J., Pan, Y., Jiao, Y., et al. (2018a). AUXIN RESPONSE FACTOR3 Regulates Floral Meristem Determinacy by Repressing Cytokinin Biosynthesis and Signaling. *The Plant cell* 30, 324-346.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao, H., Liu, L., Mo, H., Qian, L., Cao, Y., Cui, S., Li, X., and Ma, L. (2013). The ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation in *Arabidopsis*. *PloS one* 8, e60809.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., and Lohmann, J.U. (2010). Hormonal control of the shoot stem-cell niche. *Nature* 465, 1089-1092.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P.T., and Müller, B. (2013). A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in *Arabidopsis*. *Plant physiology* 161, 1066-1075.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)