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Developmental depression-facilitation shift
controls excitation-inhibition balance

David W. Jia', Rui Ponte Costa'?", Tim P. Vogels'>"
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University of Bristol, United Kingdom; 3Institute of Science and Technology, Klosterneuburg, Austria

Abstract Changes in the short-term dynamics of excitatory synapses over development have been observed
throughout cortex, but their purpose and consequences remain unclear. Here, we propose that developmental
changes in synaptic dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously sta-
ble neural activity. Using computational modelling we demonstrate that early in development excitatory short-term
depression quickly stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model
of the commonly observed developmental shift from depression to facilitation and show that neural activity remains
stable throughout development, while inhibitory synaptic plasticity slowly balances excitation, consistent with exper-
imental observations. Our model predicts changes in the input responses from phasic to phasic-and-tonic and more
precise spike timings. We also observe a gradual emergence of synaptic working memory mediated by short-term
facilitation. We conclude that the developmental depression-to-facilitation shift may control excitation-inhibition bal-
ance throughout development with important functional consequences.

Introduction

Short-term synaptic plasticity is a hallmark of synaptic function. It refers to transient and fast changes in synaptic
efficacy in the range of a few milliseconds up to several seconds'3. Different short-term plasticity (STP) profiles
regarding the direction and time scale of change are found across cell types*”, brain regions®'2, and throughout
development®'%13-15 For example, excitatory synapses from pyramidal cells in cortex are predominately short-term
depressing in young animals, whereas adult synapses exhibit short-term facilitation®. Conversely, inhibitory synapses
from cortical fast-spiking inhibitory interneurons are short-term depressing throughout development*%7, Function-
ally, STP is known to homeostatically control synaptic transmission and firing rates in neuronal networks on millisec-
ond timescales'®'®. However, it has remained unclear what is the combined impact of long-term and short-term
plasticity for homeostatic control in neural circuits.

Recent studies suggest that long-term inhibitory plasticity (ISP , acting on the time scale of minutes to hours,
is also responsible for homeostasis, by way of establishing and maintaining excitation-inhibition balance, limiting
the destabilising effects of its excitatory counterpart®*?®, However, the stabilising effects of co-tuning excitatory and
inhibitory tuning curves, the hallmark of inhibitory synaptic plasticity, can only be observed in adult animals. In young
animals, a tight excitation-inhibition balance has not yet formed and receptive are often unbalanced %, Despite this
lack of detailed excitation-inhibition tuning, experimental observations consistently show that neural circuits exhibit
stable firing activity at all stages of development?’-3°, Here, we hypothesise that short-term plasticity provides the
homeostatic control needed in young animals for healthy neural activity.
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Using computational models, we show how short-term plasticity can complement and even control the expression
of inhibitory long-term plasticity, thus acting as a gating mechanism for the emergence of excitation-inhibition balance
across development. In particular, we show that short-term depression is critical to maintain stable neural activity
even with flat inhibitory tuning curves in young animals?®. Further, the gradual shift to short-term facilitation, as
observed throughout development®'%13-1> gljows for excitatory-inhibitory balance to emerge. We show that this
developmental control of STP shapes the properties of neuronal dynamics, making neural responses more diverse
and postsynaptic spike timings more precise over the course of maturation. Finally, the maturation of STP in our
model leads to synapse-based working memory properties in a El balanced neuron model.

Results

Changes in short-term plasticity (STP) are a hallmark of neural development®'%3!, but their impact on neuronal dy-
namics has remained unclear. Here, we study the effects of short-term plasticity in congruence with long-term in-
hibitory plasticity in a developing neuron model, and show that STP can play a crucial role in young neurons, compen-
sating for a lack of inhibitory tuning. Moreover, gradual change of excitatory STP from depression to facilitation over
development allows for excitatory-inhibitory balance to develop in the neuron while guaranteeing stable response
properties.

To investigate these effects, we built a model of a simple feedforward network with a single conductance-based
integrate-and-fire neuron receiving inputs from 800 excitatory and 200 inhibitory afferents?'. To emulate hetero-
geneous inputs we modelled eight different pathways (Fig. 1a) each with 100 excitatory and 25 inhibitory synapses,
whose activity is determined by a time-varying rate signal (Methods). Excitatory and inhibitory synapses were modu-
lated by short-term plasticity, consistent with experimentally observed profiles in young and adult mice®1012-1431-35,
Inhibitory synapses additionally experienced long-term plasticity (ISP)'¥%2. Excitatory afferents were tuned according
to experimentally observed receptive fields, while inhibitory baseline weights were initially flat (Fig. 1b, see also?°)

Inhibitory long-term synaptic plasticity working on a time-scale of hours has been suggested to underlie excitation-
inhibition (E-1) balance in cortical networks 2?2, The slow nature of long-term synaptic plasticity is consistent with
the gradual and slow development of E-l balance over multiple days from young to adult animals2* (Fig. 1b). However,
the lack of detailed balance in young animals could lead to unstable, unnaturally high activity (Fig. 1c,e). Increased
learning rates, on the other hand, lead to unstable learning3%%.

Short-term plasticity can offer an elegant solution to maintain low firing rates throughout development. To this
end, we added experimentally observed*®7 short-term depression to all afferent synapses using a standard Tsodyks-
Markram model'® (Methods). In contrast with the ISP-alone model, the addition of an appropriate STP profile that
features short-term depression at the excitatory synapses, led to lower firing rates in the 'young’ model, despite
unbalanced excitation-inhibition (Fig. 1d,e).

Notably, the low postsynaptic firing rates that resulted from short-term depression in the excitatory afferents
effectively prevented long-term plasticity from tuning inhibitory tuning curves as has been observed in adult animals
(Fig. 1b;2°). As we will see below, the shift of short-term plasticity profiles over the course of development®'23' allowed
the gradual tuning of inhibition in ageing animals.

Gradual depression-to-facilitation shift enables stable activity over development

Next we studied how the developmental changes of short-term depression (STD) to short-term facilitation (STF) in
excitatory synapses® 10127143135 may aid the tuning of inhibitory synapses by way of long-term plasticity, and provide
stable postsynaptic firing rates throughout the process.

To simulate ageing in our model, we devised an algorithm that slowly changed the STP parameters between young
and adult profiles fitted to experimental data (Fig. 2a; Methods). The algorithm monitored average postsynaptic firing
over sliding windows of 500 ms. When rates were stable and low, excitatory STP parameters were modified by a small
amount towards facilitation (see Methods and Figs. S2-54 for variations). For computational reasons we used a total
simulation time of 8 hours to model development, but the exact temporal frame does not qualitative change our
results (data not shown).

The developmental STP model (dev-STP) maintained a healthy level of firing activity throughout the simulation
(i.e. approximately 5Hz) while a tight excitation-inhibition balance in the circuit developed (Fig. 2b). As controls, we
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Figure 1. A cortical circuit with short-term synaptic plasticity exhibits healthy neural dynamics in both young and adult
conditions. (a) Schematic of animal development from young with short-term depression (left) to adult with short-term facilitation
(right) at excitatory synapses as observed experimentally®-191314 " Traces of short-term synaptic plasticity (STP) for depression
(orange) and facilitation (purple)®. In the middle is a schematic of the feedforward neural circuit with eight independent input
channels, each with an excitatory (red) and an inhibitory (blue) group synapsing onto a postsynaptic neuron (Fig. S1). (b) Inhibitory
tuning does not mirror excitatory tuning in young animals (left). Once animals reach adulthood, a precise excitation-inhibition
(El) balance can be observed. Panels adapted from Dorrn et al. 2>, (c) Computational model with long-term synaptic plasticity
in inhibitory synapses (ISP; see inset) started from unbalanced excitation-inhibition (top left) and gradually developed El balance
(top right). Neuron with unbalanced excitation-inhibition showed high activity (~20 Hz; bottom left), which was gradually reduced
through ISP (~4.5 Hz; bottom right). Bottom raster plots represents postsynaptic spiking activity. (d) A computational model with
both ISP and STP started from unbalanced excitation-inhibition (top left) and gradually developed El balance (top right). Neuron with
unbalanced excitation-inhibition shows low/healthy firing activity (~4.5Hz; bottom left) throughout development (~4.5Hz; bottom
right). Bottom raster plots represents postsynaptic spiking activity. (e) Firing rates of a model without STP (solid gray line) and a
model with both ISP and STP in young (left, solid orange line) and adult (right, solid purple line) conditions. Desired activity (dashed
green line) represents baseline firing rate as observed experimentally27-30,

considered two other models in which STP was fixed either at STD (fixed-STF) or STF (fixed-STF). The fixed-STF scenario
exhibited high and more variable firing rates before ISP was able to balance the postsynaptic neuron and lower the
firing rates (Fig. 2b,g; Fig. S5). On the other hand, the fixed-STD scenario was able to maintain homeostatic balance
throughout the simulation (Fig. 2b,g), but did not develop a tightly balanced inhibitory receptive field (Fig. 2f,h).
Although the developmental STP and fixed-STF models converged to the same mean inhibitory weights (Fig. 2¢),
the fixed-STF scenario led to substantially higher firing rate variability during development, and large, somewhat
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erratic weight changes (Fig. 2g,d). In contrast dev-STP maintained relatively small weight changes throughout devel-
opment (Fig. 2d). Finally, while the initial changes of receptive field in the fixed-STF scenario arose quickly, the time
of convergence was similar to the dev-STP model (Fig. 2f,i,j), because long-term inhibitory plasticity in the dev-STP
scenario sped up dramatically as facilitation developed (Fig. 2b-f). In the dev-STP model, ISP evolved the inhibitory
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Figure 2. Gradual short-term plasticity shift maintained stable firing rates while detailed El balance developed. (a) Schematic
of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1); bottom: gradual changes
in STP from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f) Different variables of the
model across simulated development for three different models: fixed short-term depression (fixed-STD, orange), fixed short-term
facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale.
(b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e)
Rate of STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised excitatory
and inhibitory tuning curves (cf. h-j) during the course of simulated development. Anormalised area close to 0 represents a perfectly
balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using the area between the firing
rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across simulated development
(cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights
(cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated development: 10s (star), 1000s
(square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. (). (h-j)
Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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tuning to match excitation stepwise (Fig. 2f), incrementally handing over control of the target firing rate to inhibition,
which ensured postsynaptic activity remained relatively low (Fig. 2b). This means that each increase in the excitatory
efficacy through strengthened STF was matched by an increase in the inhibitory efficacy through ISP, until inhibition
was fully tuned and the excitatory synapses reach their adult profile of short-term facilitation.
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Figure 3. Depression-facilitation shift captured inhibitory receptive field development. (a) Comparison of experimentally
observed and simulated (dev-STP model) excitatory and inhibitory tuning curves, for both young (i) and adult (ii) conditions. (b)
Excitatory-inhibitory responses for model (gray) and experiments (black). Different dots represent different tone frequencies in the
data and different input channels in the model. Lines represent linear correlation between excitatory and inhibitory responses in
both model (gray) and experiments (black). Experimental data reproduced from Dorrn et al. 25,

The dev-STP model was able to maintain the neuron in a (globally) balanced state throughout development while
allowing inhibition to gradually mirror the excitatory tuning. In line with experimental in vivo observations in rat
auditory cortex across development?? inhibitory tuning curves were initially flat (Fig. 3a). In the adult neuron, both
model and experiment showed E-I balance. Using the same linear correlation analysis as in the experimental work,
we confirmed that excitatory and inhibitory responses in 'young’ models were not correlated, but became strongly
correlated in the adult profile (Fig. 3b).

Developmental changes in STP shape signal dynamics and transmission
In line with the establishment of detailed balance?', the postsynaptic firing rates in the dev-STP model were ini-
tially more correlated with the fixed-STD model, and gradually became more correlated with the fixed-STF model
(Fig. 4a,b,c; Fig. S5). Across all input channels we found a gradual decrease of input-output correlation (Fig. 4d)). This
was largely due to the fact that the output responses became less correlated with the preferred channel versus the
non-preferred channels (Fig. 4e).

Another functional consequence of the changes in short-term dynamics could be observed in the phasic and tonic
stimulus responses profiles. Transient (phasic) and steady state (tonic) neural activity has been observed in sensory
cortical circuits as part of their stimulus response repertoire?*3%39  We examined these properties by probing
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Figure 4. Input-output response correlations over development. (a) Schematic of the modelled development from young with
depressing synapses (left) to adult facilitating synapses (right). Bottom color bar indicates the gradual shift in STP (as in Fig. 2).
(b) Correlation of the dev-STP model response profiles to that of the fixed-STD (orange) and fixed-STF (purple) scenarios during
development. (c) Example output responses (cf. Fig. S5) for the fixed-STD (orange), fixed-STF (purple), and dev-STP (green) models
at three points in simulated development (i: 10s, stars; ii: 2000s, squares; iii: 30000s, triangles). (d) Normalised range of correlation
to input (Methods). (e) Example of output correlations at specific times during the course simulated development (same timings as
in ). Results shown here were averaged over 50 trials.

the neuron responses using a step input stimulus (see Methods) (Fig. 5b) to the preferred input channel (channel
5), simulating the sudden presence of a strong sensory feature. We defined the phasic response as the average
activity over the first 50ms after stimulus onset, and the tonic response as the average rate over the remaining
stimulus duration (200ms). Over development, the average phasic activity of the circuit decreased, while the tonic
activity increased (Fig. 5b; Fig. S6). These changes in the dynamics are a direct consequence of the gradual change
from depressing to facilitating synapses, interacting with the strengthening inhibition. The shift in tonic and phasic
responses to a single stimulus also affected subsequent input responses when using two paired step inputs (Fig. 5d
inset; Methods). This interaction between subsequent responses was largest for the phasic response, which grew
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Figure 5. Developmental STP shaped tonic and phasic input-output transmission. (a) Schematic of the modelled development
from young with depressing synapses (left) to adult facilitating synapses (right), as in previous figures. (b) Average phasic (red) and
tonic (blue) postsynaptic firing rates for a step-input of 150Hz (inset; cf. Figs. S5,56). (c) Example output responses for the phasic
(red) and tonic (blue) activities at three points during development. (d) Ratios of the average phasic (red) and tonic (blue) firing rates
between two consecutive step stimuli (inset). (e) Examples of responses to the first (light red) and second (dark red) phasic activities
in response to the double step input stimulus at specific points during development. Results shown here were averaged over 50
trials.

substantially over development, as seen by the increasing ratio of firing rate between the two stimuli (Fig. 5d,e). On
the other hand, the tonic response decreased, but only slightly.

We also investigated the phasic response to a step stimulus on very short time scales (Fig. 6a), specifically focusing
on the temporal jitter of the first evoked spike (Fig. 6b). In line with previous experimental observations of reduced
jitter over development?, we observed substantially more stimulus-locked spike times in the adult model than in
the young model (Fig. 6¢,d). The young scenario showed higher normalized jitter (Methods) than the adult scenario

7 of 24


https://doi.org/10.1101/2021.02.23.431593
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.431593; this version posted March 12, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

a | Step stimulus in preferred channel b |
. ___________________|
J 30mv
50 ms
0 50 100 150 200 250 300
Time (ms)
” Step stimulus in preferred channel ”
_, 30mv
10ms
5
o
<
0 50 100 150 200 250 300
Time (ms)
d Adult normalized jitter e
25 25 25 5Hz bg
—— 10Hz bg
15Hz bg
2 2 E, 2 20Hz bg
=15 E 3
3 3 s
N N g
e I I I © =
£ £ 2
o o c
Zo05 = =
£

50 100 150 200 50 100 150 200 50 100 150 200
Stimulus strength (Hz) Stimulus strength (Hz) Stimulus strength (Hz)

Figure 6. Adult STP improves temporal precision of postsynaptic spikes. (a) Examples of postsynaptic voltage responses with
preferred-channel input for both young STP model (i) and adult STP model (ii); gray bar at top represents time during which preferred
channelis stimulated. (b) Stimulus evoked responses in in vivo recordings across a few trials in young (i) and adult (i) animals. Panels
adapted from Dorrn et al. 2>, In (a,b) the background firing rate is 5 Hz. (c,d) Normalized jitter of postsynaptic spikes in the young (c)
and adult (d) model for different background firing rates (denoted by different shades of gray; see Methods). (e) Difference between
normalized jitter of young STP model (c) and adult STP model (d).

across all stimulus strength, and particularly when the background activity before stimulus onset was low (Fig. 6e).

Developmental STP enables working memory properties in a balanced neuron

Finally, we also investigated the longer term effects of changing STP over development with regard to its implications
for short-term memory. Short-term plasticity has recently been proposed as a substrate for working memory“%4',
owing to the fact that STF can promote increased response to previously displayed stimuli. Here, we tested these
ideas in the dev-STP model, by comparing the responses to "recall" stimuli that were or were not preceded by a
"preloaded" stimulus.

Models with no STP mechanism, as well as the 'young' dev-STP model showed identical firing rates during the
recall period (Fig. 7a,b) independently of whether they had experienced a preloaded stimulus or not. In other words,
the 'young' model could not rely on silent working memory traces. The ‘adult’ dev-STP model, on the other hand,
showed substantially higher firing rates during the recall period (Fig. 7c,d) when the recall stimulus was preceded by
a preloaded cue that activated the short-term facilitation in excitatory synapses. Dev-STP thus allowed the neuron to
gradually utilise this silent working memory mechanism in a neuron with El balance (Fig. 3a,b, Fig. 7e,f).
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Figure 7. Gradual emergence of synaptic-based working memory over development. (a-c) Raster plot of a working memory test
(WMT, i-top)) with a preloaded stimulus and subsequent recall stimulus (black and gray bars respectively) compared with rasterplot
of trials without the preloaded stimulus (i-bottom). Average firing rates (ii) for both memory preloaded (light green) and control
conditions (dark brown). (a) WMT in a model with only inhibitory synaptic plasticity (i.e. no STP) (b) WMT in a model with young STP
profile. (¢) WMT in a model with adult STP profile. (d) Firing rates during the recall period with (light green) or without (dark brown)
preloaded stimulus. WMTs were preformed every 50 seconds during dev-STP development simulation (cf. Fig. 2) as STP changes
from depression to facilitation at excitatory synapses. We only highlight the first 4000s of the simulation as after this point STP
become minimal. (e) Normalised recall firing rates to the average firing rate of the control case (i.e. without memory preloading).
The STP paired-pulse ratio (black) measuring the STP strength of the excitatory synapses for this period is also plotted as reference.
(f) Normalized recall rate for three model conditions: no STP (gray), young STP (orange), and adult STP (purple).

Discussion
It has been widely observed that short-term synaptic dynamics of the cortex change from depressing to facilitating
throughout the course of development®'12-1431-35 Here, we show that this commonly observed shift in STP may
interact with long-term plasticity at inhibitory synapses to form the fundamental architecture of neuronal process-
ing. According to our model, short-term depressing synapses could help to stabilize neural networks in the absence
of properly tuned inhibition in young animals (Fig. S5). A gradual change from short-term depression to facilita-
tion then allows for stable dynamics throughout development while inhibitory synaptic plasticity-mediated, detailed
excitation-inhibition balance can emerge (Fig. 2). In addition to this stabilising interplay, we show that the develop-
mental maturation of STP also shapes signal processing, by allowing for more temporally precise coding (Fig. 6), and
the emergence of synaptic working memory (Fig. 7).

There are currently two dominant views on how changes in STP throughout development may arise. One view
is that these changes are caused by sensory experience?; the other view poses that these are hard-wired, pre-

9of 24


https://doi.org/10.1101/2021.02.23.431593
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.431593; this version posted March 12, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

programmed changes'®. Our developmental STP model suggests a way to reconcile these two views, in that both
the sensory-dependent®? and non-sensory-dependent ' changes observed experimentally may be simply caused by
changes in the neural baseline activity. However, although we have modelled changes in STP as a function of neural
activity, it is in principle possible to allow for these changes to be purely hard-wired and continuous (cf. Fig. S4). In
our hands, the latter mode, i.e. unilateral maturation of STP without heeding the co-development of inhibitory tun-
ing curves, can also lead to stable development (Fig. S4), but this requires fine tuning of a STP change interval, and
additional experimental work remains to be done to further study this scenario.

Our work highlights how developmental-STP may shape temporal aspects of synaptic transmission. In particular,
our model predicts that young animals primarily encode stimuli with transient, phasic activity, whereas adult animals
may transmit both phasic transients and sustained tonic rates equally well. Interestingly, both modes of transmission
have been observed in sensory cortices?’ at different developmental stages. In our model we have assumed that
STP changes at all excitatory synapses happen in lockstep over development. However, in the brain not all synapses
are modified coincidentally®'°, and it is possible that this degree of variability gives a tighter homeostatic control
throughout development.

We have focused on long-term inhibitory synaptic plasticity, but excitatory synapses also undergo long-term
synaptic plasticity. Importantly, long-term excitatory synaptic plasticity also changes the short-term synaptic dynam-
ics 184244 It is possible that the gradual changes of STP at excitatory synapses that we have considered here are
mediated by long-term excitatory plasticity. In future work it would be interesting to explore the effects of long-term
excitatory plasticity with realistic inputs in conjunction with inhibitory synaptic plasticity as a potential model for de-
velopmental STP 193645,

Our model shows a gradual increase in temporal precision of spiking over development, consistent with experi-
mental observations in the auditory cortex of rats %, suggesting that STP maturation plays an important role in tempo-
ral encoding*®->°, Our findings add to the growing experimental literature showing that inhibition-excitation balance
sharpens spike timings 25495152,

Working memory is traditionally thought of as being a property of recurrent neural network dynamics in the
prefrontal cortex. However, forms of working memory are also known to exist in sensory cortices>>**, Moreover,
short-term facilitation has been proposed as a biologically plausible mechanism of working memory at the synaptic
level®55, We have shown that working memory-like properties in line with previous theoretical work*® gradually
emerge in our model as short-term facilitation becomes more dominant. Moreover, we show here that retaining El
balance does not interfere with this type of silent working memory. Our results suggest that silent synaptic working
memory properties are more likely prevalent in adult cortex, potentially enabling animals to retain information about
the recent past even in sensory cortices.

Finally, dysfunctions in the regulation of excitation-inhibition balance underlie numerous neurological disorders
In our model we show that short-term plasticity can dynamically control the expression of long-term inhibitory synap-
tic plasticity, thus modulating E-I balance. Maldaptive developmental STP should thus be reflected in E-I malfunction.
Interestingly, this is supported by disease animal models, in which STP and excitation-inhibition balance are both
altered in animal models of dysplasia®%®’.

Overall, our results suggest important functional roles for the commonly observed shift in STP during develop-
ment.

56-65
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Supplementary material

Materials and Methods

Neuron models
In this study, we used a conductance-based integrate-and-fire neuron model for simulations®. In this model, the
membrane voltages are calculated following
dv

Tgp = " Bleak (Viest = V) + gexc - (Eexc — V) + &inh * (Einh — V) (1)
where V is the membrane potential of the neuron as a function of time ¢, 7 is the membrane time constant, Vies: is
the resting membrane potential, Eex is the excitatory reversal potential, and E;, is the inhibitory reversal potential.
Our neuron parameters are the same as in Vogels and Abbott®. In particular, we used a membrane capacitance,
C, of 200pF with membrane resistance, R, of T00MQ, which gives a membrane time constant 7 = 20ms. gexc and
ginh, €xpressed in the units of the resting membrane conductance, are the synaptic conductances, and g is the leaky

dgexc dginn
conductance. The synaptic conductances are modelled as 7exc—— = —gex and 7ipn—— = —gin Where 7exc and 7

are the synaptic time constants for the excitatory and the inhibitory conductances, respectively. When the neuron
receives a presynaptic action potential, its conductance increases by gexc — gexc+ Wexc OF ginh — &inh+Winh fOr excitatory
and inhibitory synapses, respectively. The model parameters used are summarized in Table 1.

Parameter Value

T 20.0ms
R 100.0MQ
c 200.0pF
8leak 10.0nS
Texc 5.0ms
Tinh 10.0ms
Eexc Oomv
Einn -70mV
Viest -60mV
Vinresh -50mv
Vreset -60mV
Trefrac 4ms
Wexc 0.5ns
Winh 0.1ns

Table 1. Parameter values for conductance-based leaky integrate-and-fire model.

Synaptic plasticity models
We used both short-term plasticity and long-term inhibitory synaptic plasticity models in our work. Both were calcu-
lated separately in the simulations and combined as explained below.

Short-term synaptic plasticity (STP)
Short-term plasticity was used in the simulations following the model defined by>¢°7° following

m _ 1_71'?(” —u(t)R(t) - 6(t — tap)

dt D (2)
dil(tt) - U%“(t) + (1 —u(t)) o(t — tap)
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Synaptic dynamics D (s) F (s) V) f PPR
Depression 0.3134 0.0798 0.3917 0.062 0.70
Facilitation 0.0845 0.2959 0.1973 0.1168 1.24

Table 2. STP parameter values. Paired-pulse ratio (PPR) is given by dividing the second postsynaptic response by the first.

where R models vesicle depletion and u models the presynaptic release probability. Every presynaptic spike at tap
causes a decrease in R, the number of vesicles available by uR, which then recovers exponentially to its baseline value
of 1 with a time constant D. At the same time every presynaptic spike at tap also causes an increase in the release
probability u by f - (1 — u(t)) (where f is the facilitation rate) and recovers exponentially to its baseline U with a time
constant F. Finally, the postsynaptic potential, or the weight of the STP component for a synapse exhibiting STP at
time t is computed as wesrp(t) = AR(t)u(t), where A is baseline amplitude factor. In simulations, the initial value of u
is set to U, and the initial value of R is set to 1. We used the four-parameter version of the TM model (D, F, U, f) as it
provides an overall better fit of short-term dynamics data’®.

STP model fitting

We found STP parameters which produced excitatory STP paired-pulse responses (PPRs) that matched those found
in experiments for young and adult animals. Specifically, we used the STP PPRs observed by Reyes and Sakmann &,
with excitatory STP PPRs of 0.7 and 1.24 for young and adult animals respectively. In order to find STP parameter
values that matched these PPRs, we interpolated between strong STD and strong STF parameter values’® (Fig. S1e).
Using this interpolation we then calculated the PPR across all parameter sets. We use these PPRs to compared with
experimental data from young and adult animals as observed in Reyes and Sakmann &. Finally we used least squares
to obtain STP parameters that best matched the data in both young (STD) and adult conditions (STF) (see Table 2).

Inhibitory synaptic plasticity
Long-term inhibitory synaptic plasticity (ISP) is implemented in all inhibitory synapses in all simulations unless other-
wise specified. We used the same model as Vogels et al.?'. In this model, each synapse i has a presynaptic trace x;,
which increases with each spike by x; — x; + 1 and decays exponentially following TSTDP% = —x;. Then, the synaptic
weight of a given synapse following pre- or postsynaptic spikes are updated by
wisp — wisp + N(Xpost — &)  With each presynaptic spikes 3)
wisp — wisp + Nxpre  With each postsynaptic spikes
where 7 is the learning rate, o = 2 rarget - 7s10p IS the depression factor, where 7srpp = 20ms is the STDP time constant,
and rarger = 5Hz is a constant parameter that defines the target postsynaptic firing rate. In simulations, the initial
values of wsp is set to zero.

ISP with STP

In our simulations, ISP is combined with STP in some cases at the inhibitory synapses. In these cases, the total synaptic
weight win, is computed as the product of the STP and ISP weight components at the time of the postsynaptic spike
Winh = wiih - wisp While the excitatory weight was given by wexc = we.

Simulations

Input signals and connectivity

To model the neural responses with naturalistic inputs we used 8 independently generated traces of low-pass filtered,

half-wave rectified white noise signals. Each of the 8 independent channels represents a signal pathway, and consists

of 100 excitatory neurons and 25 inhibitory neurons, giving a total of 1000 presynaptic neurons?'. All presynaptic

neurons synapse onto a single postsynaptic neuron with a total of 1000 synapses, 800 excitatory and 200 inhibitory.
As in Vogels et al.?' for each of the 8 channels, we generated its time-varying rates iteratively as 8 (t + dt) =

&—(&—3(t))- e % where & is the k-th signal, £ € [-0.5,0.5] is drawn from a uniform distribution, dt = 0.1ms is the
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simulation time step, and the filtering time constant is - = 50ms. We normalized all rates to a preferred firing rate
of 100Hz, and negative values were remove and replaced with a background activity level of 5Hz.

These traces represent the firing rates across time of each of the 8 input signal channels (see examples in Fig. S1b).
We used these rates as seeds to generate Poisson spike trains for each of the eight channels. These inputs were used
in the simulations shown in Figures 1, 2, and S5.

Developmental and fixed STP

When simulating dev-STP, we first found the STP parameters whose paired-pulse ratio (PPR, i.e. EPSP,/EPSP:) best
matched experimental data®. To this end, we started with STP parameters which give strong depression and strong
facilitation”°. Next, we conducted a parameter sweep of the STP parameters from strong depression to strong facil-
itation using a dense linear space between these two conditions. We then simulated 50 Poisson input spike trains
at 35Hz®, calculated the average PPRs of each train for all STP parameters. We then used the STP parameter values
that best matched those of Reyes and Sakmann 8 for our simulations. These parameter values are summarized in
Table 2.

Calibrating the parameters for dev-STP

Using the STD and STF parameters given in Table 2, we then calculated a set of 3600 parameter values spaced loga-
rithmically between the STD and the STF parameter values. Log interpolation was used instead of linear interpolation
because a marginal change towards facilitation generates a higher marginal change in PPR when closer to facilitation
than to depression. For each of the 3600 STP parameter values, each time we changed STP parameters, we normal-
ized the STP magnitude parameter A to equal

exc
Whaseline

A= Lt=0)-R(t=0)

4

exc
_ Whaseline

U
where wiisine = 0.35 NS is the baseline excitatory weight. This normalization fixed the amplitude of the first PSP to
the same value, regardless of the STP parameters, thus keeping the baseline weight of excitatory synapses the same
throughout development during the simulation (see below for alternative normalizations). Note that the initial value
of uis setto U, the initial value of R is set to 1, and the total excitatory weight for a first pre-synaptic spike is given by

exc

Wexc(t = O) = WSTP(t = 0)

= AR(t = 0)u(t =0)
Wl:m(sceline 1-U (5)
U

exc
Whaseline

regardless of the STP parameters, thus the baseline excitatory weight is invariant across development in our simula-
tions.

To start the dev-STP simulation, we used the baseline STD parameters given in Table 2 at the beginning of the
simulation, and slowly changed the parameters from depressing to facilitating at excitatory synapses. Toward this
end, we averaged the postsynaptic neuron'’s firing rate over a 500ms window and monitored how often it exceeded
the ISP target rate of 5Hz by way of a variable xexceeq that was updated as follows

post H
Xexceed 1 ’V,tgrget-‘ if Ipost = arget

(6)

Xexceed =
Xexceed — 1 if fpost < ltarget

where ryost is the postsynaptic firing rate and rarger is the ISP target rate (see above). We increment STP to the next
set of more facilitating STP parameters when xexceed < 0. In other words, the STP parameters are incremented only
when the postsynaptic firing rate is equal to or below the ISP target rate for a sufficient period of time, i.e. a time
that is proportional to the degree to which the postsynaptic firing rate has exceeded the target rate in the recent past.
Changing the excitatory STP to a more facilitating state raises the postsynaptic firing rate, which increases xexceeq, thus
preventing further facilitating changes in STP until inhibitory synaptic weights strengthen and subsequently decrease
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the postsynaptic firing rate to the target rate, and the cycle starts over. Eventually, the STP parameter values reach
the final (experimentally observed?®) STF parameter values (given in Table 2).

For both the fixed-STF and fixed-STD simulations, STP parameters at all excitatory synapses were set to depression
and facilitation (Table 2), respectively, for the duration of the simulation.

Further, we quantified the level of “pathological activity” in all three models as the cumulative difference between
the observed firing rate and the target firing rate for all input channels (Fig. 2g.i). We also considered the variability
of firing rates, i.e. the coefficient of variation (standard deviation divided by the mean) of the firing rates averaged
across 10s bins using a sliding window (Fig. 2g.ii).

Variants of developmental STP model

We conducted additional simulations to test three variants of the dev-STP model introduced above. In the first control
variant we normalized the steady-state PSP amplitudes when using a 5 Hz presynatic Poisson input (Fig. S2) instead
of normalizing to the first PSP. STP parameters in this dev-STP model were modified over development as described
above. Inthisvariant, the fixed-STF model displayed a lower initial firing rate than that of the standard model (Fig. S2b),
failing to reach the ISP target rate and experimentally observed firing rates in young animals?-3. Receptive field
development in this variant is otherwise qualitatively similar to our dev-STP model, if somewhat more slowly (Fig. S2g).

In the second control variant we normalized the steady-state PSP of both STD and STF to be equal when using
a 10Hz (instead of 5Hz as in the standard model) presynatic Poisson input (Fig. S3). In this case, STF was weakened
enough that fixed-STF in young animals exhibited firing rates near the ISP target rate as observed experimentally 2’3,
However, because of weakened STF, the model failed to develop fine-tuned tuning curves over development (Fig. S3f-
h).

Finally, we tested a variant of our model in which the developmental shift from STD in young neurons to STF in
adult neurons was not activity-dependent. Instead, we altered the dev-STP model to a model in which STP changes
occurred at fixed intervals of 3 seconds (Fig. S4e). If these changes occur too frequently, unstable dynamics unfolded
so some fine tuning of how often STP changes was required. This third variant also produced qualitatively similar
results to our standard dev-STP model (compare Fig. S4, Fig. 2).

Excitatory and inhibitory tuning curves
To calculate the excitatory and inhibitory tuning curves, we monitored the excitatory and inhibitory conductances for
each of the 8 input channels separately, and calculated the respective currents using

(t) = g (t)(Eexc — V(1))

inh inh (7)
Ik (t) = 8k (t)(Einh - V(t)) + gleak(Vrest - V(t))/K

where I2(t) and I""(t) are the excitatory and inhibitory currents and g&*“(t) and gi"™"(t) are the excitatory and in-
hibitory conductances of the k-th channel at time t, respectively?'. Ee and E, are the excitatory and inhibitory
reversal potentials, respectively. V(t) is the postsynaptic membrane potential at time t, giax is the leaky conduc-
tance, and Viest is the resting membrane potential. After calculating the excitatory and inhibitory currents for each
channel at all time points, we averaged the excitatory and inhibitory currents across 10 seconds to generate the
tuning curves shown in the figures.

Output response dynamics across development
To measure how the neuron output response changed over the course of simulated development, we stopped the
dev-STP simulation (Fig. 2) at 10s, 500s, 1,000s, 2,000s, 10,000s, and 30,000s simulated time and examined the neu-
ron response dynamics of the model. For each snapshot, we ran 50 step current trials with frozen parameters and
compared the average firing rates of the dev-STP scenario with those of the fixed-STD and fixed-STF scenarios (Fig. 4b).
To investigate how input tuning changed over development, we calculated the cross correlations between the
input and output rates for each of the 8 channels?®'. We obtained the correlation range by subtracting the minimum
from the maximum correlation and normalized the range by dividing by the mean correlation of all channels with the
output (Fig. 4d).
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Signal transmission across development

To investigate signal transmission across development, we presented a 250ms long 150Hz input stimulus to the
preferred input channel every 100 seconds of the dev-STP simulation (Fig. 2). We analysed the output firing rates
during the first 50ms after stimulus onset (phasic period) and the remaining 200ms afterwards (tonic period); Fig. 5b,c).
We also tested a double step input stimulus, two 250ms 150 Hz input stimuli separated by 250ms of spontaneous
activity (Fig. 5d,e).

Temporal precision simulations

We compared the temporal precision of postsynaptic spikes in our model with experimental observations®. To
this end, we stimulated the preferred channel (5) of the output neuron with a 200ms step current, imitating a pure
tone in the preferred frequency in the auditory cortex®. To quantify the temporal precision of the response, we
calculated the standard deviation of the delay between the stimulus onset and the first postsynaptic spike, denoted
as the jitter %, To allow comparison across different firing rates, we also calculated a normalized jitter, i.e., the jitter's
coefficient of variation. The normalized jitter was compared for different preferred-channel stimulus strengths as
well as for varying spontaneous activity levels (Fig. 6¢c-e).

Working memory

To test for working memory-like properties, we used two simulation protocols. In the “memory preloaded” trials,
we stimulated the neuron with a 300ms long 150Hz steady state stimulus (a memory) in the preferred channel. All
remaining channels received spontaneous rates at 5Hz. After the memory preloading period, the preferred channel
input received spontaneous firing rate inputs for a 300ms delay period, followed by a weaker, 100ms long 50Hz
“recall cue” stimulus. For “control” trials, the input channels of the neuron only received the 100ms recall cue, to the
preferred channel, without preloading.

We then compared the firing rates during recall between the memory preloaded and control trials, to study the
'silent’ working memory effects in our model. We tested this throughout simulated development, by freezing the
dev-STP simulation every 50s and simulating 500 trials of the memory-preloaded simulations and 500 trials of the
control simulations.

Simulator
Simulations were conducted in Python using Brian Simulator 2. Code to reproduce our key findings is available at
github.com/djia/dev-stp.

15 0f 24


https://github.com/djia/dev-stp
https://doi.org/10.1101/2021.02.23.431593
http://creativecommons.org/licenses/by/4.0/

362

371

372

373

376

377

378

379

388

389

390

391

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.431593; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

References

1
[2]
[3]
[4]

[5]

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

)

[20]

[21]

[22]

[23]

R. S. Zucker and W. G. Regehr. Short-term synaptic plasticity. Annu Rev Physiol, 64(1):355-405, January 2002.
L. F. Abbott and W. Regehr. Synaptic computation. Nature, 431(7010):796-803, 2004.
W. G. Regehr. Short-Term Presynaptic Plasticity. Cold Spring Harbor Perspectives in Biology, 4(7):a005702-a005702, July 2012.

A. Reyes, R. Lujan, A. Rozov, N. Burnashev, P. Somogyi, and B. Sakmann. Target-cell-specific facilitation and depression in
neocortical circuits. Nature neuroscience, 1(4):279-285, 1998.

H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl.
Acad. Sci. USA, 95(9):5323-5328, 1998.

A. E. Takesian, V. C. Kotak, and D. H. Sanes. Presynaptic GABAB receptors regulate experience-dependent development of
inhibitory short-term plasticity. The Journal of Neuroscience, 30(7):2716-2727, 2010.

A. Reyes. Synaptic short-term plasticity in auditory cortical circuits. Hearing research, 2011.

A. Reyes and B. Sakmann. Developmental switch in the short-term modification of unitary epsps evoked in layer 2/3 and layer
5 pyramidal neurons of rat neocortex. Journal of Neuroscience, 19(10):3827-3835, 1999.

Z. Zhang. Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function.
Journal of Neurophysiology, (91):1171-1182, 2004.

A.-M. M. Oswald and A. D. Reyes. Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse
auditory cortex. Journal of Neurophysiology, 99(6):2998-3008, June 2008.

S. Dasari and Y. Yuan. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic
plasticity in the visual cortex of rat. Toxicology and applied pharmacology, 240(3):412-422, 2009.

C.E.J. Cheetham and K. Fox. Presynaptic development at L4 to 12/3 excitatory synapses follows different time courses in visual
and somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(38):12566-12571,
September 2010.

W. X. Chen and D. V. Buonomano. Developmental shift of short-term synaptic plasticity in cortical organotypic slices. Neuro-
science, 213:38-46, June 2012.

M. I. Kerr, M. J. Wall, and M. J. E. Richardson. Adenosine A1 receptor activation mediates the developmental shift at layer 5
pyramidal cell synapses and is a determinant of mature synaptic strength. The Journal of physiology, 591(Pt 13):3371-3380, July
2013.

H. Ko, S. B. Hofer, B. Pichler, K. A. Buchanan, P. J. Sjostrom, and T. D. Mrsic-Flogel. Functional specificity of local synaptic
connections in neocortical networks. Nature, 473(7345):87-91, April 2011.

M. Tsodyks and H. Markram. The neural code between neocortical pyramidal neurons depends on neurotransmitter release
probability. Proc. Natl. Acad. Sci. USA, 94(2):719-723, 1997.

D. Sussillo, T. Toyoizumi, and W. Maass. Self-tuning of neural circuits through short-term synaptic plasticity. Journal of Neuro-
physiology, 97(6):4079-4095, June 2007.

R. P. Costa, B. E. P. Mizusaki, P. J. Sjostrom, and M. C. W. van Rossum. Functional consequences of pre- and postsynaptic
expression of synaptic plasticity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 372(1715):
20160153, March 2017.

J. A. D'amour and R. C. Froemke. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron, 86
(2):514-528, 2015.

R. C. Froemke. Plasticity of Cortical Excitatory-Inhibitory Balance. Annual Review of Neuroscience, 38(1):150421150146009, April
2015.

T. P. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory plasticity balances excitation and inhibition in
sensory pathways and memory networks. Science, 334(6062):1569-1573, 2011.

T.P.Vogels, R. C. Froemke, N. Doyon, M. Gilson, J. S. Haas, R. Liu, A. Maffei, P. Miller, C. Wierenga, M. A. Woodin, et al. Inhibitory
synaptic plasticity: spike timing-dependence and putative network function. Frontiers in neural circuits, 7:119, 2013.

G. Hennequin, E. J. Agnes, and T. P. Vogels. Inhibitory plasticity: balance, control, and codependence. Annual Review of Neuro-
science, 40:557-579, 2017.

16 of 24


https://doi.org/10.1101/2021.02.23.431593
http://creativecommons.org/licenses/by/4.0/

406

407

408

409

410

411

423

424

425

426

427

428

439

440

441

442

443

444

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.431593; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[4e]

[47]

available under aCC-BY 4.0 International license.

R. C. Froemke, M. M. Merzenich, and C. E. Schreiner. A synaptic memory trace for cortical receptive field plasticity. Nature, 450
(7168):425, 2007.

A. L. Dorrn, K. Yuan, A. J. Barker, C. E. Schreiner, and R. C. Froemke. Developmental sensory experience balances cortical
excitation and inhibition. Nature, 465(7300):932-936, 2010.

A. Marin-Burgin, L. A. Mongiat, M. B. Pardi, and A. F. Schinder. Unique processing during a period of high excitation/inhibition
balance in adult-born neurons. Science, 335(6073):1238-1242, 2012.

S. Sakata and K. D. Harris. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron,
64(3):404-418, 20009.

C. M. Niell and M. P. Stryker. Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience, 28(30):7520-7536,
2008.

P. Charlesworth, E. Cotterill, A. Morton, S. G. Grant, and S. J. Eglen. Quantitative differences in developmental profiles of
spontaneous activity in cortical and hippocampal cultures. Neural development, 10(1):1, 2015.

E. Cotterill, D. Hall, K. Wallace, W. R. Mundy, S. J. Eglen, and T. J. Shafer. Characterization of early cortical neural network
development in multiwell microelectrode array plates. Journal of biomolecular screening, 21(5):510-519, 2016.

F. Jia, H. Wei, X. Li, X. Xie, and Y. Zhou. Short-term synaptic plasticity in the rat geniculo-cortical pathway during development
in vivo. Neuroscience letters, 398(1-2):73-77, 2006.

C. Cheetham and K. Fox. The role of sensory experience in presynaptic development is cortical area-specific. The Journal of
physiology, 2011.

A. Frick, D. Feldmeyer, and B. Sakmann. Postnatal development of synaptic transmission in local networks of L5A pyramidal
neurons in rat somatosensory cortex. The Journal of physiology, 585(1):103-116, November 2007.

S.J. Etherington and S. R. Williams. Postnatal development of intrinsic and synaptic properties transforms signaling in the layer
5 excitatory neural network of the visual cortex. Journal of Neuroscience, 31(26):9526-9537, 2011.

P. Wasling. Developmental Changes in Release Properties of the CA3-CA1 Glutamate Synapse in Rat Hippocampus. Journal of
Neurophysiology, 92(5):2714-2724, July 2004.

C. Clopath, T. P. Vogels, R. C. Froemke, and H. Sprekeler. Receptive field formation by interacting excitatory and inhibitory
synaptic plasticity. bioRxiv, page 066589, 2016.

S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.

A. Luczak, B. L. McNaughton, and K. D. Harris. Packet-based communication in the cortex. Nature Reviews Neuroscience, 16(12):
745, 2015.

P. Bartho, C. Curto, A. Luczak, S. L. Marguet, and K. D. Harris. Population coding of tone stimuli in auditory cortex: dynamic
rate vector analysis. European Journal of Neuroscience, 30(9):1767-1778, 2009.

G. Mongillo, O. Barak, and M. Tsodyks. Synaptic theory of working memory. Science, 319(5869):1543-1546, 2008.

D. Hansel and G. Mato. Short-term plasticity explains irregular persistent activity in working memory tasks. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 33(1):133-149, January 2013.

H. Markram and M. Tsodyks. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature, 1996.

P. ). Sjostrom, G. G. Turrigiano, and S. Nelson. Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses.
Neuropharmacology, 52(1):176-184, 2007.

R. P. Costa, R. C. Froemke, P. J. Sjostrom, and M. C. W. van Rossum. Unified pre- and postsynaptic long-term plasticity enables
reliable and flexible learning. eLife, 4:e09457, 2015.

L. Wang and A. Maffei. Inhibitory plasticity dictates the sign of plasticity at excitatory synapses. Journal of Neuroscience, 34(4):
1083-1093, January 2014. doi: 10.1523/jneurosci.4711-13.2014. URL https://doi.org/10.1523 /jneurosci.4711-13.2014.

M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys.
Journal of neurophysiology, 70(4):1629-1638, 1993.

A. Riehle, S. Grlin, M. Diesmann, and A. Aertsen. Spike synchronization and rate modulation differentially involved in motor
cortical function. Science, 278(5345):1950-1953, 1997.

17 of 24


https://doi.org/10.1523/jneurosci.4711-13.2014
https://doi.org/10.1101/2021.02.23.431593
http://creativecommons.org/licenses/by/4.0/

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.431593; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[48]

[49]

[50]

[51]

available under aCC-BY 4.0 International license.

S. Panzeri, R. S. Petersen, S. R. Schultz, M. Lebedev, and M. E. Diamond. The role of spike timing in the coding of stimulus
location in rat somatosensory cortex. Neuron, 29(3):769-777, 2001.

M. Wehr and A. M. Zador. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965):
442, 2003.

M. A. Montemurro, S. Panzeri, M. Maravall, A. Alenda, M. R. Bale, M. Brambilla, and R. S. Petersen. Role of precise spike timing
in coding of dynamic vibrissa stimuli in somatosensory thalamus. Journal of neurophysiology, 98(4):1871-1882, 2007.

F. Pouille and M. Scanziani. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293
(5532):1159-1163, 2001.

[52] J. Kremkow, A. Aertsen, and A. Kumar. Gating of signal propagation in spiking neural networks by balanced and correlated

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

excitation and inhibition. The Journal of neuroscience, 30(47):15760-15768, 2010.
T. Pasternak and M. W. Greenlee. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2):97, 2005.

T. B. Christophel, P. C. Klink, B. Spitzer, P. R. Roelfsema, and J.-D. Haynes. The distributed nature of working memory. Trends in
Cognitive Sciences, 21(2):111-124, February 2017. doi: 10.1016/;.tics.2016.12.007. URL https://doi.org/10.1016/].tics.2016.12.007.

M. G. Stokes. ‘activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends in Cognitive Sciences,
19(7):394-405, July 2015. doi: 10.1016//j.tics.2015.05.004. URL https://doi.org/10.1016/].tics.2015.05.004.

S. A. Eichler and J. C. Meier. Ei balance and human diseases-from molecules to networking. Frontiers in molecular neuroscience,
1:2,2008.

K. Gale. Gaba and epilepsy: basic concepts from preclinical research. Epilepsia, 33:53-12, 1992.
H. Bradford. Glutamate, gaba and epilepsy. Progress in neurobiology, 47(6):477-511, 1995.

S. M. Thompson, C. Fortunato, R. A. McKinney, M. Muller, and B. H. Gahwiler. Mechanisms underlying the neuropathological
consequences of epileptic activity in the rat hippocampus in vitro. Journal of Comparative Neurology, 372(4):515-528, 1996.

R. W. Olsen and M. Avoli. Gaba and epileptogenesis. Epilepsia, 38(4):399-407, 1997.

I. Cobos, M. E. Calcagnotto, A. J. Vilaythong, M. T. Thwin, J. L. Noebels, S. C. Baraban, and J. L. Rubenstein. Mice lacking dIx1
show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nature neuroscience, 8(8):1059, 2005.

D. A. Lewis, L. A. Glantz, J. N. Pieppi, and R. A. Sweet. Altered cortical glutamate neurotransmission in schizophrenia: evidence
from morphological studies of pyramidal neurons. Annals of the New York Academy of Sciences, 1003(1):102-112, 2003.

C. Kehrer, N. Maziashvili, T. Dugladze, and T. Gloveli. Altered excitatory-inhibitory balance in the nmda-hypofunction model of
schizophrenia. Frontiers in molecular neuroscience, 1:6, 2008.

S.Jamain, H. Quach, C. Betancur, M. Rastam, C. Colineaux, I. C. Gillberg, H. Soderstrom, B. Giros, M. Leboyer, C. Gillberg, et al.
Mutations of the x-linked genes encoding neuroligins nign3 and nign4 are associated with autism. Nature genetics, 34(1):27,
2003.

F. Laumonnier, F. Bonnet-Brilhault, M. Gomot, R. Blanc, A. David, M.-P. Moizard, M. Raynaud, N. Ronce, E. Lemonnier, P. Calvas,
et al. X-linked mental retardation and autism are associated with a mutation in the nign4 gene, a member of the neuroligin
family. The American Journal of Human Genetics, 74(3):552-557, 2004.

H.-X. Chen, H. Xiang, and S. N. Roper. Impaired developmental switch of short-term plasticity in pyramidal cells of dysplastic
cortex. Epilepsia, 48(1):141-148, 2007.

F.-W. Zhou, H.-X. Chen, and S. N. Roper. Balance of inhibitory and excitatory synaptic activity is altered in fast-spiking interneu-
rons in experimental cortical dysplasia. Journal of neurophysiology, 102(4):2514-2525, 2009.

T. P. Vogels and L. F. Abbott. Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 25(46):10786-10795, November 2005.

M. Tsodyks, K. Pawelzik, and H. Markram. Neural Networks with Dynamic Synapses. Neural Computation, 1998.

R. P. Costa, P. J. Sjostrom, and M. C. W. van Rossum. Probabilistic inference of short-term synaptic plasticity in neocortical
microcircuits. Frontiers in computational neuroscience, 7:75, 2013.

18 of 24


https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2015.05.004
https://doi.org/10.1101/2021.02.23.431593
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.431593; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s Supplementary figures

a b c
jeh ! R
= A\ : :
Z3 NN 80 w%
o £ Pl § TRLL B T |’|l| g
g € 4 ©5
< 30O e RN (N R o &
Gy o pre—iis @ 6 o | £
Hror g 7l 20 &5
R s |l I Iy,
A o 0 1 2 3 4
Time (s)
d STP parameters for dev-STP

STP parameter value

T T
n n
@ o

0.6 -

T T T T T T 1
m o] ~ n © o o~ ~
n o ~ o —~ o~ < n
o o =} o o — — — — —
STP paired-pulse ratio (PPR)
e i STD Youg excitatory STD i A stF Adult excitatory STF
75: 0.3 s Tp: 0.09 s
T 0.25s T 0.46 s
> U:0.38 > U: 0.2
& f:0.08 & f0.14
Q Simulation PPR: 0.7 < Simulation PPR: 1.24
©150me Experimental PPR: 0.7 ©C150me Experimental PPR: 1.24

Figure S1. Details of the cortical circuit and plasticity models. (a) Schematic of a single channel feedforward circuit with correlated
excitatory and inhibitory input, and the respective forms of plasticity. (b) Feedforward neural circuit with 8 channels and correlated
excitatory and inhibitory inputs. (c) Left: example of input given to the 8 channel feedforward neural circuit; right: excitatory tuning
curve strength for each of the 8 channels. (d) Each of the four STP parameters, 7p, 7, U, and f resulting in different paired-pulse
ratios (PPRs) (Table 2). Parameters matching the young (orange star) and adult (purple triangle) STP PPRs as used in the dev-STP
model are highlighted. (e) Example postsynaptic potential traces for the STP parameter values of both young (i) and adult animals
(ii; cf. d).
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Figure S2. Developmental STP model with depression and facilitation normalized to the steady-state firing rate at 5Hz
input. (a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1);
bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f)
Different variables of the model across simulated development for three different models: fixed short-term depression (fixed-STD,
orange), fixed short-term facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green line).
Note x-axis on log-scale. (b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory
synaptic afferents. (e) Rate of STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between
normalised excitatory and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close to
0 represents a perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using
the area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across
simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average
change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated
development: 10s (star), 1000s (square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and
inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF
(i) and dev-STP models (j).
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Figure S3. Developmental STP model with depression and facilitation normalized to the steady-state firing rate at 10Hz
input. (a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1);
bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f)
Different variables of the model across simulated development for three different models: fixed short-term depression (fixed-STD,
orange), fixed short-term facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green line).
Note x-axis on log-scale. (b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory
synaptic afferents. (e) Rate of STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between
normalised excitatory and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close to
0 represents a perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using
the area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across
simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average
change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated
development: 10s (star), 1000s (square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and
inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF
(i) and dev-STP models (j).
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Figure S4. Developmental STP model in which STP changes are pre-defined. (a) Schematic of our developmental short-term
plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1); bottom: gradual changes in STP from depressing to
facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f) Different variables of the model across simulated
development for three different models: fixed short-term depression (fixed-STD, orange), fixed short-term facilitation (fixed-STF,
purple) and developmental model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale. (b) Receiver neuron
firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e) Rate of STP change
(note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised excitatory and inhibitory
tuning curves (cf. h-j) during the course of simulated development. A normalised area close to 0 represents a perfectly balanced
neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using the area between the firing rate
n (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across simulated development (cf.
(b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights
(cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated development: 10s (star), 1000s
(square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. (f)). (h-j)
Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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Figure S5. Developmental STP shapes firing statistics. (a) Input activity for each of the 8 channels over 3 seconds. Activity at
the start of simulated development (i, young condition) and after 8 hours of simulation (ii, adult condition) as in Fig. 2; color code
represents firing rate of input. (b-d) Raster plot of receiver neuron for fixed-STD model (b), fixed-STF (c) and developmental STP
model (d). (e-g) Summary statistics of the three models (as in b-d) for both young (i) and adult conditions (ii). (e) Coefficient of
variation of the inter-spike intervals. (f) Average firing rates of the receiver neuron over 50 trials. (g) Average net current of the
receiver neuron.
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Figure S6. Spike rasters for step inputs at various snapshots. (a) Spike responses to two 150Hz step inputs to the preferred
channel when using the dev-STP model at 100s (i), 2,500s (ii), and 10,000s (iii); color bars on top represent the time at which the step
inputs were given; the first 50ms corresponds to the phasic activity (red), and the rest of the input time period to the tonic activity
(cyan); b Firing rates of the spikes in (a) averaged across trials using 5ms bins.
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