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Abstract Changes in the short-term dynamics of excitatory synapses over development have been observed8

throughout cortex, but their purpose and consequences remain unclear. Here, we propose that developmental9

changes in synaptic dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously sta-10

ble neural activity. Using computational modelling we demonstrate that early in development excitatory short-term11

depression quickly stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model12

of the commonly observed developmental shift from depression to facilitation and show that neural activity remains13

stable throughout development, while inhibitory synaptic plasticity slowly balances excitation, consistent with exper-14

imental observations. Our model predicts changes in the input responses from phasic to phasic-and-tonic and more15

precise spike timings. We also observe a gradual emergence of synaptic working memory mediated by short-term16

facilitation. We conclude that the developmental depression-to-facilitation shift may control excitation-inhibition bal-17

ance throughout development with important functional consequences.18

19

Introduction20

Short-term synaptic plasticity is a hallmark of synaptic function. It refers to transient and fast changes in synaptic21

efficacy in the range of a few milliseconds up to several seconds1–3. Different short-term plasticity (STP) profiles22

regarding the direction and time scale of change are found across cell types4–7, brain regions8–12, and throughout23

development8–10,13–15. For example, excitatory synapses from pyramidal cells in cortex are predominately short-term24

depressing in young animals, whereas adult synapses exhibit short-term facilitation8. Conversely, inhibitory synapses25

from cortical fast-spiking inhibitory interneurons are short-term depressing throughout development4,6,7. Function-26

ally, STP is known to homeostatically control synaptic transmission and firing rates in neuronal networks on millisec-27

ond timescales16–18. However, it has remained unclear what is the combined impact of long-term and short-term28

plasticity for homeostatic control in neural circuits.29

Recent studies suggest that long-term inhibitory plasticity (ISP)19–23, acting on the time scale of minutes to hours,30

is also responsible for homeostasis, by way of establishing and maintaining excitation-inhibition balance, limiting31

the destabilising effects of its excitatory counterpart24,25. However, the stabilising effects of co-tuning excitatory and32

inhibitory tuning curves, the hallmark of inhibitory synaptic plasticity, can only be observed in adult animals. In young33

animals, a tight excitation-inhibition balance has not yet formed and receptive are often unbalanced25,26. Despite this34

lack of detailed excitation-inhibition tuning, experimental observations consistently show that neural circuits exhibit35

stable firing activity at all stages of development27–30. Here, we hypothesise that short-term plasticity provides the36

homeostatic control needed in young animals for healthy neural activity.37
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Using computationalmodels, we showhow short-termplasticity can complement and even control the expression38

of inhibitory long-termplasticity, thus acting as a gatingmechanism for the emergence of excitation-inhibition balance39

across development. In particular, we show that short-term depression is critical to maintain stable neural activity40

even with flat inhibitory tuning curves in young animals25. Further, the gradual shift to short-term facilitation, as41

observed throughout development8–10,13–15 allows for excitatory-inhibitory balance to emerge. We show that this42

developmental control of STP shapes the properties of neuronal dynamics, making neural responses more diverse43

and postsynaptic spike timings more precise over the course of maturation. Finally, the maturation of STP in our44

model leads to synapse-based working memory properties in a EI balanced neuron model.45

Results46

Changes in short-term plasticity (STP) are a hallmark of neural development8,12,31, but their impact on neuronal dy-47

namics has remained unclear. Here, we study the effects of short-term plasticity in congruence with long-term in-48

hibitory plasticity in a developing neuronmodel, and show that STP can play a crucial role in young neurons, compen-49

sating for a lack of inhibitory tuning. Moreover, gradual change of excitatory STP from depression to facilitation over50

development allows for excitatory-inhibitory balance to develop in the neuron while guaranteeing stable response51

properties.52

To investigate these effects, we built a model of a simple feedforward network with a single conductance-based53

integrate-and-fire neuron receiving inputs from 800 excitatory and 200 inhibitory afferents21. To emulate hetero-54

geneous inputs we modelled eight different pathways (Fig. 1a) each with 100 excitatory and 25 inhibitory synapses,55

whose activity is determined by a time-varying rate signal (Methods). Excitatory and inhibitory synapses were modu-56

lated by short-term plasticity, consistent with experimentally observed profiles in young and adult mice8–10,12–14,31–35.57

Inhibitory synapses additionally experienced long-term plasticity (ISP)19,22. Excitatory afferents were tuned according58

to experimentally observed receptive fields, while inhibitory baseline weights were initially flat (Fig. 1b, see also25)59

Inhibitory long-term synaptic plasticity working on a time-scale of hours has been suggested to underlie excitation-60

inhibition (E-I) balance in cortical networks19,21,22. The slow nature of long-term synaptic plasticity is consistent with61

the gradual and slow development of E-I balance overmultiple days from young to adult animals25 (Fig. 1b). However,62

the lack of detailed balance in young animals could lead to unstable, unnaturally high activity (Fig. 1c,e). Increased63

learning rates, on the other hand, lead to unstable learning36,37.64

Short-term plasticity can offer an elegant solution to maintain low firing rates throughout development. To this65

end, we added experimentally observed4,6,7 short-term depression to all afferent synapses using a standard Tsodyks-66

Markram model16 (Methods). In contrast with the ISP-alone model, the addition of an appropriate STP profile that67

features short-term depression at the excitatory synapses, led to lower firing rates in the ’young’ model, despite68

unbalanced excitation-inhibition (Fig. 1d,e).69

Notably, the low postsynaptic firing rates that resulted from short-term depression in the excitatory afferents70

effectively prevented long-term plasticity from tuning inhibitory tuning curves as has been observed in adult animals71

(Fig. 1b;25). Aswewill see below, the shift of short-termplasticity profiles over the course of development8,12,31 allowed72

the gradual tuning of inhibition in ageing animals.73

Gradual depression-to-facilitation shift enables stable activity over development74

Next we studied how the developmental changes of short-term depression (STD) to short-term facilitation (STF) in75

excitatory synapses8–10,12–14,31–35 may aid the tuning of inhibitory synapses by way of long-term plasticity, and provide76

stable postsynaptic firing rates throughout the process.77

To simulate ageing in ourmodel, we devised an algorithm that slowly changed the STP parameters between young78

and adult profiles fitted to experimental data (Fig. 2a; Methods). The algorithmmonitored average postsynaptic firing79

over sliding windows of 500ms. When rates were stable and low, excitatory STP parameters weremodified by a small80

amount towards facilitation (see Methods and Figs. S2-S4 for variations). For computational reasons we used a total81

simulation time of 8 hours to model development, but the exact temporal frame does not qualitative change our82

results (data not shown).83

The developmental STP model (dev-STP) maintained a healthy level of firing activity throughout the simulation84

(i.e. approximately 5Hz) while a tight excitation-inhibition balance in the circuit developed (Fig. 2b). As controls, we85
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Figure 1. A cortical circuit with short-term synaptic plasticity exhibits healthy neural dynamics in both young and adult
conditions. (a) Schematic of animal development from young with short-term depression (left) to adult with short-term facilitation
(right) at excitatory synapses as observed experimentally8–10,13,14. Traces of short-term synaptic plasticity (STP) for depression
(orange) and facilitation (purple)8. In the middle is a schematic of the feedforward neural circuit with eight independent input
channels, each with an excitatory (red) and an inhibitory (blue) group synapsing onto a postsynaptic neuron (Fig. S1). (b) Inhibitory
tuning does not mirror excitatory tuning in young animals (left). Once animals reach adulthood, a precise excitation-inhibition
(EI) balance can be observed. Panels adapted from Dorrn et al. 25 . (c) Computational model with long-term synaptic plasticity
in inhibitory synapses (ISP; see inset) started from unbalanced excitation-inhibition (top left) and gradually developed EI balance
(top right). Neuron with unbalanced excitation-inhibition showed high activity (∼20 Hz; bottom left), which was gradually reduced
through ISP (∼4.5 Hz; bottom right). Bottom raster plots represents postsynaptic spiking activity. (d) A computational model with
both ISP and STP started from unbalanced excitation-inhibition (top left) and gradually developed EI balance (top right). Neuronwith
unbalanced excitation-inhibition shows low/healthy firing activity (∼4.5Hz; bottom left) throughout development (∼4.5Hz; bottom
right). Bottom raster plots represents postsynaptic spiking activity. (e) Firing rates of a model without STP (solid gray line) and a
model with both ISP and STP in young (left, solid orange line) and adult (right, solid purple line) conditions. Desired activity (dashed
green line) represents baseline firing rate as observed experimentally27–30.

considered two othermodels in which STPwas fixed either at STD (fixed-STF) or STF (fixed-STF). The fixed-STF scenario86

exhibited high and more variable firing rates before ISP was able to balance the postsynaptic neuron and lower the87

firing rates (Fig. 2b,g; Fig. S5). On the other hand, the fixed-STD scenario was able to maintain homeostatic balance88

throughout the simulation (Fig. 2b,g), but did not develop a tightly balanced inhibitory receptive field (Fig. 2f,h).89

Although the developmental STP and fixed-STF models converged to the same mean inhibitory weights (Fig. 2c),90

the fixed-STF scenario led to substantially higher firing rate variability during development, and large, somewhat91
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erratic weight changes (Fig. 2g,d). In contrast dev-STP maintained relatively small weight changes throughout devel-92

opment (Fig. 2d). Finally, while the initial changes of receptive field in the fixed-STF scenario arose quickly, the time93

of convergence was similar to the dev-STP model (Fig. 2f,i,j), because long-term inhibitory plasticity in the dev-STP94

scenario sped up dramatically as facilitation developed (Fig. 2b-f). In the dev-STP model, ISP evolved the inhibitory95
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Figure 2. Gradual short-termplasticity shiftmaintained stablefiring rateswhile detailed EI balancedeveloped. (a) Schematic
of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1); bottom: gradual changes
in STP from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f) Different variables of the
model across simulated development for three different models: fixed short-term depression (fixed-STD, orange), fixed short-term
facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale.
(b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e)
Rate of STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised excitatory
and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close to 0 represents a perfectly
balanced neuron. (g) Additional statistics for the threemodels. (i) Total neuronal activity calculated using the area between the firing
rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across simulated development
(cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights
(cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated development: 10s (star), 1000s
(square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. (f)). (h-j)
Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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tuning to match excitation stepwise (Fig. 2f), incrementally handing over control of the target firing rate to inhibition,96

which ensured postsynaptic activity remained relatively low (Fig. 2b). This means that each increase in the excitatory97

efficacy through strengthened STF was matched by an increase in the inhibitory efficacy through ISP, until inhibition98

was fully tuned and the excitatory synapses reach their adult profile of short-term facilitation.99
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Figure 3. Depression-facilitation shift captured inhibitory receptive field development. (a) Comparison of experimentally
observed and simulated (dev-STP model) excitatory and inhibitory tuning curves, for both young (i) and adult (ii) conditions. (b)
Excitatory-inhibitory responses for model (gray) and experiments (black). Different dots represent different tone frequencies in the
data and different input channels in the model. Lines represent linear correlation between excitatory and inhibitory responses in
both model (gray) and experiments (black). Experimental data reproduced from Dorrn et al. 25 .

The dev-STP model was able to maintain the neuron in a (globally) balanced state throughout development while100

allowing inhibition to gradually mirror the excitatory tuning. In line with experimental in vivo observations in rat101

auditory cortex across development25 inhibitory tuning curves were initially flat (Fig. 3a). In the adult neuron, both102

model and experiment showed E-I balance. Using the same linear correlation analysis as in the experimental work,103

we confirmed that excitatory and inhibitory responses in ’young’ models were not correlated, but became strongly104

correlated in the adult profile (Fig. 3b).105

Developmental changes in STP shape signal dynamics and transmission106

In line with the establishment of detailed balance21, the postsynaptic firing rates in the dev-STP model were ini-107

tially more correlated with the fixed-STD model, and gradually became more correlated with the fixed-STF model108

(Fig. 4a,b,c; Fig. S5). Across all input channels we found a gradual decrease of input-output correlation (Fig. 4d)). This109

was largely due to the fact that the output responses became less correlated with the preferred channel versus the110

non-preferred channels (Fig. 4e).111

Another functional consequence of the changes in short-term dynamics could be observed in the phasic and tonic112

stimulus responses profiles. Transient (phasic) and steady state (tonic) neural activity has been observed in sensory113

cortical circuits as part of their stimulus response repertoire27,33,38,39. We examined these properties by probing114
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Figure 4. Input-output response correlations over development. (a) Schematic of the modelled development from young with
depressing synapses (left) to adult facilitating synapses (right). Bottom color bar indicates the gradual shift in STP (as in Fig. 2).
(b) Correlation of the dev-STP model response profiles to that of the fixed-STD (orange) and fixed-STF (purple) scenarios during
development. (c) Example output responses (cf. Fig. S5) for the fixed-STD (orange), fixed-STF (purple), and dev-STP (green) models
at three points in simulated development (i: 10s, stars; ii: 2000s, squares; iii: 30000s, triangles). (d) Normalised range of correlation
to input (Methods). (e) Example of output correlations at specific times during the course simulated development (same timings as
in c). Results shown here were averaged over 50 trials.

the neuron responses using a step input stimulus (see Methods) (Fig. 5b) to the preferred input channel (channel115

5), simulating the sudden presence of a strong sensory feature. We defined the phasic response as the average116

activity over the first 50ms after stimulus onset, and the tonic response as the average rate over the remaining117

stimulus duration (200ms). Over development, the average phasic activity of the circuit decreased, while the tonic118

activity increased (Fig. 5b; Fig. S6). These changes in the dynamics are a direct consequence of the gradual change119

from depressing to facilitating synapses, interacting with the strengthening inhibition. The shift in tonic and phasic120

responses to a single stimulus also affected subsequent input responses when using two paired step inputs (Fig. 5d121

inset; Methods). This interaction between subsequent responses was largest for the phasic response, which grew122
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Figure 5. Developmental STP shaped tonic and phasic input-output transmission. (a) Schematic of the modelled development
from young with depressing synapses (left) to adult facilitating synapses (right), as in previous figures. (b) Average phasic (red) and
tonic (blue) postsynaptic firing rates for a step-input of 150Hz (inset; cf. Figs. S5,S6). (c) Example output responses for the phasic
(red) and tonic (blue) activities at three points during development. (d) Ratios of the average phasic (red) and tonic (blue) firing rates
between two consecutive step stimuli (inset). (e) Examples of responses to the first (light red) and second (dark red) phasic activities
in response to the double step input stimulus at specific points during development. Results shown here were averaged over 50
trials.

substantially over development, as seen by the increasing ratio of firing rate between the two stimuli (Fig. 5d,e). On123

the other hand, the tonic response decreased, but only slightly.124

We also investigated the phasic response to a step stimulus on very short time scales (Fig. 6a), specifically focusing125

on the temporal jitter of the first evoked spike (Fig. 6b). In line with previous experimental observations of reduced126

jitter over development25, we observed substantially more stimulus-locked spike times in the adult model than in127

the young model (Fig. 6c,d). The young scenario showed higher normalized jitter (Methods) than the adult scenario128
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Figure 6. Adult STP improves temporal precision of postsynaptic spikes. (a) Examples of postsynaptic voltage responses with
preferred-channel input for both young STPmodel (i) and adult STPmodel (ii); gray bar at top represents time duringwhich preferred
channel is stimulated. (b) Stimulus evoked responses in in vivo recordings across a few trials in young (i) and adult (ii) animals. Panels
adapted from Dorrn et al. 25 . In (a,b) the background firing rate is 5 Hz. (c,d) Normalized jitter of postsynaptic spikes in the young (c)
and adult (d) model for different background firing rates (denoted by different shades of gray; seeMethods). (e) Difference between
normalized jitter of young STP model (c) and adult STP model (d).

across all stimulus strength, and particularly when the background activity before stimulus onset was low (Fig. 6e).129

Developmental STP enables working memory properties in a balanced neuron130

Finally, we also investigated the longer term effects of changing STP over development with regard to its implications131

for short-term memory. Short-term plasticity has recently been proposed as a substrate for working memory40,41,132

owing to the fact that STF can promote increased response to previously displayed stimuli. Here, we tested these133

ideas in the dev-STP model, by comparing the responses to "recall" stimuli that were or were not preceded by a134

"preloaded" stimulus.135

Models with no STP mechanism, as well as the ’young’ dev-STP model showed identical firing rates during the136

recall period (Fig. 7a,b) independently of whether they had experienced a preloaded stimulus or not. In other words,137

the ’young’ model could not rely on silent working memory traces. The ’adult’ dev-STP model, on the other hand,138

showed substantially higher firing rates during the recall period (Fig. 7c,d) when the recall stimulus was preceded by139

a preloaded cue that activated the short-term facilitation in excitatory synapses. Dev-STP thus allowed the neuron to140

gradually utilise this silent working memory mechanism in a neuron with EI balance (Fig. 3a,b, Fig. 7e,f).141
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Figure 7. Gradual emergence of synaptic-basedworkingmemory over development. (a-c) Raster plot of aworkingmemory test
(WMT, i-top)) with a preloaded stimulus and subsequent recall stimulus (black and gray bars respectively) compared with rasterplot
of trials without the preloaded stimulus (i-bottom). Average firing rates (ii) for both memory preloaded (light green) and control
conditions (dark brown). (a) WMT in a model with only inhibitory synaptic plasticity (i.e. no STP) (b) WMT in a model with young STP
profile. (c) WMT in a model with adult STP profile. (d) Firing rates during the recall period with (light green) or without (dark brown)
preloaded stimulus. WMTs were preformed every 50 seconds during dev-STP development simulation (cf. Fig. 2) as STP changes
from depression to facilitation at excitatory synapses. We only highlight the first 4000s of the simulation as after this point STP
become minimal. (e) Normalised recall firing rates to the average firing rate of the control case (i.e. without memory preloading).
The STP paired-pulse ratio (black) measuring the STP strength of the excitatory synapses for this period is also plotted as reference.
(f) Normalized recall rate for three model conditions: no STP (gray), young STP (orange), and adult STP (purple).

Discussion142

It has been widely observed that short-term synaptic dynamics of the cortex change from depressing to facilitating143

throughout the course of development8–10,12–14,31–35. Here, we show that this commonly observed shift in STP may144

interact with long-term plasticity at inhibitory synapses to form the fundamental architecture of neuronal process-145

ing. According to our model, short-term depressing synapses could help to stabilize neural networks in the absence146

of properly tuned inhibition in young animals (Fig. S5). A gradual change from short-term depression to facilita-147

tion then allows for stable dynamics throughout development while inhibitory synaptic plasticity-mediated, detailed148

excitation-inhibition balance can emerge (Fig. 2). In addition to this stabilising interplay, we show that the develop-149

mental maturation of STP also shapes signal processing, by allowing for more temporally precise coding (Fig. 6), and150

the emergence of synaptic working memory (Fig. 7).151

There are currently two dominant views on how changes in STP throughout development may arise. One view152

is that these changes are caused by sensory experience32; the other view poses that these are hard-wired, pre-153
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programmed changes13. Our developmental STP model suggests a way to reconcile these two views, in that both154

the sensory-dependent32 and non-sensory-dependent13 changes observed experimentally may be simply caused by155

changes in the neural baseline activity. However, although we have modelled changes in STP as a function of neural156

activity, it is in principle possible to allow for these changes to be purely hard-wired and continuous (cf. Fig. S4). In157

our hands, the latter mode, i.e. unilateral maturation of STP without heeding the co-development of inhibitory tun-158

ing curves, can also lead to stable development (Fig. S4), but this requires fine tuning of a STP change interval, and159

additional experimental work remains to be done to further study this scenario.160

Our work highlights how developmental-STP may shape temporal aspects of synaptic transmission. In particular,161

our model predicts that young animals primarily encode stimuli with transient, phasic activity, whereas adult animals162

may transmit both phasic transients and sustained tonic rates equally well. Interestingly, bothmodes of transmission163

have been observed in sensory cortices27 at different developmental stages. In our model we have assumed that164

STP changes at all excitatory synapses happen in lockstep over development. However, in the brain not all synapses165

are modified coincidentally8–10, and it is possible that this degree of variability gives a tighter homeostatic control166

throughout development.167

We have focused on long-term inhibitory synaptic plasticity, but excitatory synapses also undergo long-term168

synaptic plasticity. Importantly, long-term excitatory synaptic plasticity also changes the short-term synaptic dynam-169

ics18,42–44. It is possible that the gradual changes of STP at excitatory synapses that we have considered here are170

mediated by long-term excitatory plasticity. In future work it would be interesting to explore the effects of long-term171

excitatory plasticity with realistic inputs in conjunction with inhibitory synaptic plasticity as a potential model for de-172

velopmental STP19,36,45.173

Our model shows a gradual increase in temporal precision of spiking over development, consistent with experi-174

mental observations in the auditory cortex of rats25, suggesting that STPmaturation plays an important role in tempo-175

ral encoding46–50. Our findings add to the growing experimental literature showing that inhibition-excitation balance176

sharpens spike timings25,49,51,52.177

Working memory is traditionally thought of as being a property of recurrent neural network dynamics in the178

prefrontal cortex. However, forms of working memory are also known to exist in sensory cortices53,54. Moreover,179

short-term facilitation has been proposed as a biologically plausible mechanism of working memory at the synaptic180

level40,55. We have shown that working memory-like properties in line with previous theoretical work40 gradually181

emerge in our model as short-term facilitation becomes more dominant. Moreover, we show here that retaining EI182

balance does not interfere with this type of silent working memory. Our results suggest that silent synaptic working183

memory properties aremore likely prevalent in adult cortex, potentially enabling animals to retain information about184

the recent past even in sensory cortices.185

Finally, dysfunctions in the regulation of excitation-inhibition balance underlie numerous neurological disorders56–65.186

In our model we show that short-term plasticity can dynamically control the expression of long-term inhibitory synap-187

tic plasticity, thus modulating E-I balance. Maldaptive developmental STP should thus be reflected in E-I malfunction.188

Interestingly, this is supported by disease animal models, in which STP and excitation-inhibition balance are both189

altered in animal models of dysplasia66,67.190

Overall, our results suggest important functional roles for the commonly observed shift in STP during develop-191

ment.192
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Supplementary material198

Materials and Methods199

Neuron models200

In this study, we used a conductance-based integrate-and-fire neuron model for simulations68. In this model, the201

membrane voltages are calculated following202

τ
dV

dt
= −gleak · (Vrest − V ) + gexc · (Eexc − V ) + ginh · (Einh − V ) (1)

where V is the membrane potential of the neuron as a function of time t, τ is the membrane time constant, Vrest is203

the resting membrane potential, Eexc is the excitatory reversal potential, and Einh is the inhibitory reversal potential.204

Our neuron parameters are the same as in Vogels and Abbott 68 . In particular, we used a membrane capacitance,205

C , of 200pF with membrane resistance, R , of 100MΩ, which gives a membrane time constant τ = 20ms. gexc and206

ginh, expressed in the units of the resting membrane conductance, are the synaptic conductances, and gl is the leaky207

conductance. The synaptic conductances are modelled as τexc
dgexc

dt
= −gex and τinh

dginh

dt
= −gin where τexc and τinh208

are the synaptic time constants for the excitatory and the inhibitory conductances, respectively. When the neuron209

receives a presynaptic action potential, its conductance increases by gexc → gexc+wexc or ginh → ginh+winh for excitatory210

and inhibitory synapses, respectively. The model parameters used are summarized in Table 1.211

Parameter Value

τ 20.0ms
R 100.0MΩ

C 200.0pF
gleak 10.0nS
τexc 5.0ms
τinh 10.0ms
Eexc 0mV
Einh -70mV
Vrest -60mV
Vthresh -50mV
Vreset -60mV
τrefrac 4ms
wexc 0.5ns
winh 0.1ns

Table 1. Parameter values for conductance-based leaky integrate-and-fire model.

Synaptic plasticity models212

We used both short-term plasticity and long-term inhibitory synaptic plasticity models in our work. Both were calcu-213

lated separately in the simulations and combined as explained below.214

Short-term synaptic plasticity (STP)215

Short-term plasticity was used in the simulations following the model defined by5,69,70 following216

dR(t)

dt
=

1− R(t)

D
− u(t)R(t) · δ(t − tAP)

du(t)

dt
=

U − u(t)

F
+ f · (1− u(t)) · δ(t − tAP)

(2)
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Synaptic dynamics D (s) F (s) U f PPR

Depression 0.3134 0.0798 0.3917 0.062 0.70
Facilitation 0.0845 0.2959 0.1973 0.1168 1.24

Table 2. STP parameter values. Paired-pulse ratio (PPR) is given by dividing the second postsynaptic response by the first.

where R models vesicle depletion and u models the presynaptic release probability. Every presynaptic spike at tAP217

causes a decrease in R , the number of vesicles available by uR , which then recovers exponentially to its baseline value218

of 1 with a time constant D. At the same time every presynaptic spike at tAP also causes an increase in the release219

probability u by f · (1− u(t)) (where f is the facilitation rate) and recovers exponentially to its baseline U with a time220

constant F . Finally, the postsynaptic potential, or the weight of the STP component for a synapse exhibiting STP at221

time t is computed as wSTP(t) = AR(t)u(t), where A is baseline amplitude factor. In simulations, the initial value of u222

is set to U , and the initial value of R is set to 1. We used the four-parameter version of the TM model (D,F ,U, f ) as it223

provides an overall better fit of short-term dynamics data70.224

STP model fitting225

We found STP parameters which produced excitatory STP paired-pulse responses (PPRs) that matched those found226

in experiments for young and adult animals. Specifically, we used the STP PPRs observed by Reyes and Sakmann 8 ,227

with excitatory STP PPRs of 0.7 and 1.24 for young and adult animals respectively. In order to find STP parameter228

values that matched these PPRs, we interpolated between strong STD and strong STF parameter values70 (Fig. S1e).229

Using this interpolation we then calculated the PPR across all parameter sets. We use these PPRs to compared with230

experimental data from young and adult animals as observed in Reyes and Sakmann 8 . Finally we used least squares231

to obtain STP parameters that best matched the data in both young (STD) and adult conditions (STF) (see Table 2).232

Inhibitory synaptic plasticity233

Long-term inhibitory synaptic plasticity (ISP) is implemented in all inhibitory synapses in all simulations unless other-234

wise specified. We used the same model as Vogels et al. 21 . In this model, each synapse i has a presynaptic trace xi ,235

which increases with each spike by xi → xi + 1 and decays exponentially following τSTDP dxi
dt

= −xi . Then, the synaptic236

weight of a given synapse following pre- or postsynaptic spikes are updated by237

wISP → wISP + η(xpost − α) with each presynaptic spikes
wISP → wISP + ηxpre with each postsynaptic spikes

(3)

where η is the learning rate, α = 2 · rtarget · τSTDP is the depression factor, where τSTDP = 20ms is the STDP time constant,238

and rtarget = 5Hz is a constant parameter that defines the target postsynaptic firing rate. In simulations, the initial239

values of wISP is set to zero.240

ISP with STP241

In our simulations, ISP is combinedwith STP in some cases at the inhibitory synapses. In these cases, the total synaptic242

weight winh is computed as the product of the STP and ISP weight components at the time of the postsynaptic spike243

winh = w inh
STP · wISP while the excitatory weight was given by wexc = wexc

STP.244

Simulations245

Input signals and connectivity246

Tomodel the neural responses with naturalistic inputs we used 8 independently generated traces of low-pass filtered,247

half-wave rectified white noise signals. Each of the 8 independent channels represents a signal pathway, and consists248

of 100 excitatory neurons and 25 inhibitory neurons, giving a total of 1000 presynaptic neurons21. All presynaptic249

neurons synapse onto a single postsynaptic neuron with a total of 1000 synapses, 800 excitatory and 200 inhibitory.250

As in Vogels et al. 21 for each of the 8 channels, we generated its time-varying rates iteratively as ŝk(t + dt) =251

ξ − (ξ − ŝk(t)) · e−
dt
τs where ŝk is the k-th signal, ξ ∈ [−0.5, 0.5] is drawn from a uniform distribution, dt = 0.1ms is the252
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simulation time step, and the filtering time constant is τs = 50ms. We normalized all rates to a preferred firing rate253

of 100Hz, and negative values were remove and replaced with a background activity level of 5Hz.254

These traces represent the firing rates across time of each of the 8 input signal channels (see examples in Fig. S1b).255

We used these rates as seeds to generate Poisson spike trains for each of the eight channels. These inputs were used256

in the simulations shown in Figures 1, 2, and S5.257

Developmental and fixed STP258

When simulating dev-STP, we first found the STP parameters whose paired-pulse ratio (PPR, i.e. EPSP2/EPSP1) best259

matched experimental data8. To this end, we started with STP parameters which give strong depression and strong260

facilitation70. Next, we conducted a parameter sweep of the STP parameters from strong depression to strong facil-261

itation using a dense linear space between these two conditions. We then simulated 50 Poisson input spike trains262

at 35Hz8, calculated the average PPRs of each train for all STP parameters. We then used the STP parameter values263

that best matched those of Reyes and Sakmann 8 for our simulations. These parameter values are summarized in264

Table 2.265

Calibrating the parameters for dev-STP266

Using the STD and STF parameters given in Table 2, we then calculated a set of 3600 parameter values spaced loga-267

rithmically between the STD and the STF parameter values. Log interpolation was used instead of linear interpolation268

because a marginal change towards facilitation generates a higher marginal change in PPR when closer to facilitation269

than to depression. For each of the 3600 STP parameter values, each time we changed STP parameters, we normal-270

ized the STP magnitude parameter A to equal271

A =
wexc
baseline

u(t = 0) · R(t = 0)

=
wexc
baseline
U

(4)

where wexc
baseline = 0.35 nS is the baseline excitatory weight. This normalization fixed the amplitude of the first PSP to272

the same value, regardless of the STP parameters, thus keeping the baseline weight of excitatory synapses the same273

throughout development during the simulation (see below for alternative normalizations). Note that the initial value274

of u is set to U , the initial value of R is set to 1, and the total excitatory weight for a first pre-synaptic spike is given by275

wexc(t = 0) = wexc
STP(t = 0)

= AR(t = 0)u(t = 0)

=
wexc
baseline
U

· 1 · U

= wexc
baseline

(5)

regardless of the STP parameters, thus the baseline excitatory weight is invariant across development in our simula-276

tions.277

To start the dev-STP simulation, we used the baseline STD parameters given in Table 2 at the beginning of the278

simulation, and slowly changed the parameters from depressing to facilitating at excitatory synapses. Toward this279

end, we averaged the postsynaptic neuron’s firing rate over a 500ms window and monitored how often it exceeded280

the ISP target rate of 5Hz by way of a variable xexceed that was updated as follows281

xexceed =

xexceed +
⌈

rpost
rtarget

⌉
if rpost ≥ rtarget

xexceed − 1 if rpost < rtarget
(6)

where rpost is the postsynaptic firing rate and rtarget is the ISP target rate (see above). We increment STP to the next282

set of more facilitating STP parameters when xexceed ≤ 0. In other words, the STP parameters are incremented only283

when the postsynaptic firing rate is equal to or below the ISP target rate for a sufficient period of time, i.e. a time284

that is proportional to the degree to which the postsynaptic firing rate has exceeded the target rate in the recent past.285

Changing the excitatory STP to amore facilitating state raises the postsynaptic firing rate, which increases xexceed, thus286

preventing further facilitating changes in STP until inhibitory synaptic weights strengthen and subsequently decrease287
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the postsynaptic firing rate to the target rate, and the cycle starts over. Eventually, the STP parameter values reach288

the final (experimentally observed8) STF parameter values (given in Table 2).289

For both the fixed-STF and fixed-STD simulations, STP parameters at all excitatory synapseswere set to depression290

and facilitation (Table 2), respectively, for the duration of the simulation.291

Further, we quantified the level of “pathological activity” in all three models as the cumulative difference between292

the observed firing rate and the target firing rate for all input channels (Fig. 2g.i). We also considered the variability293

of firing rates, i.e. the coefficient of variation (standard deviation divided by the mean) of the firing rates averaged294

across 10s bins using a sliding window (Fig. 2g.ii).295

Variants of developmental STP model296

We conducted additional simulations to test three variants of the dev-STPmodel introduced above. In the first control297

variant we normalized the steady-state PSP amplitudes when using a 5 Hz presynatic Poisson input (Fig. S2) instead298

of normalizing to the first PSP. STP parameters in this dev-STP model were modified over development as described299

above. In this variant, the fixed-STFmodel displayed a lower initial firing rate than that of the standardmodel (Fig. S2b),300

failing to reach the ISP target rate and experimentally observed firing rates in young animals27–30. Receptive field301

development in this variant is otherwise qualitatively similar to our dev-STPmodel, if somewhatmore slowly (Fig. S2g).302

In the second control variant we normalized the steady-state PSP of both STD and STF to be equal when using303

a 10Hz (instead of 5Hz as in the standard model) presynatic Poisson input (Fig. S3). In this case, STF was weakened304

enough that fixed-STF in young animals exhibited firing rates near the ISP target rate as observed experimentally27–30.305

However, because of weakened STF, the model failed to develop fine-tuned tuning curves over development (Fig. S3f-306

h).307

Finally, we tested a variant of our model in which the developmental shift from STD in young neurons to STF in308

adult neurons was not activity-dependent. Instead, we altered the dev-STP model to a model in which STP changes309

occurred at fixed intervals of 3 seconds (Fig. S4e). If these changes occur too frequently, unstable dynamics unfolded310

so some fine tuning of how often STP changes was required. This third variant also produced qualitatively similar311

results to our standard dev-STP model (compare Fig. S4, Fig. 2).312

Excitatory and inhibitory tuning curves313

To calculate the excitatory and inhibitory tuning curves, we monitored the excitatory and inhibitory conductances for314

each of the 8 input channels separately, and calculated the respective currents using315

I exck (t) = gexck (t)(Eexc − V (t))

I inhk (t) = g inhk (t)(Einh − V (t)) + gleak(Vrest − V (t))/K
(7)

where I exck (t) and I inhk (t) are the excitatory and inhibitory currents and gexc
k (t) and g inh

k (t) are the excitatory and in-316

hibitory conductances of the k-th channel at time t, respectively21. Eexc and Einh are the excitatory and inhibitory317

reversal potentials, respectively. V (t) is the postsynaptic membrane potential at time t, gleak is the leaky conduc-318

tance, and Vrest is the resting membrane potential. After calculating the excitatory and inhibitory currents for each319

channel at all time points, we averaged the excitatory and inhibitory currents across 10 seconds to generate the320

tuning curves shown in the figures.321

Output response dynamics across development322

To measure how the neuron output response changed over the course of simulated development, we stopped the323

dev-STP simulation (Fig. 2) at 10s, 500s, 1,000s, 2,000s, 10,000s, and 30,000s simulated time and examined the neu-324

ron response dynamics of the model. For each snapshot, we ran 50 step current trials with frozen parameters and325

compared the average firing rates of the dev-STP scenario with those of the fixed-STD and fixed-STF scenarios (Fig. 4b).326

To investigate how input tuning changed over development, we calculated the cross correlations between the327

input and output rates for each of the 8 channels21. We obtained the correlation range by subtracting the minimum328

from themaximum correlation and normalized the range by dividing by themean correlation of all channels with the329

output (Fig. 4d).330
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Signal transmission across development331

To investigate signal transmission across development, we presented a 250ms long 150Hz input stimulus to the332

preferred input channel every 100 seconds of the dev-STP simulation (Fig. 2). We analysed the output firing rates333

during the first 50ms after stimulus onset (phasic period) and the remaining 200ms afterwards (tonic period); Fig. 5b,c).334

We also tested a double step input stimulus, two 250ms 150 Hz input stimuli separated by 250ms of spontaneous335

activity (Fig. 5d,e).336

Temporal precision simulations337

We compared the temporal precision of postsynaptic spikes in our model with experimental observations25. To338

this end, we stimulated the preferred channel (5) of the output neuron with a 200ms step current, imitating a pure339

tone in the preferred frequency in the auditory cortex25. To quantify the temporal precision of the response, we340

calculated the standard deviation of the delay between the stimulus onset and the first postsynaptic spike, denoted341

as the jitter25. To allow comparison across different firing rates, we also calculated a normalized jitter, i.e., the jitter’s342

coefficient of variation. The normalized jitter was compared for different preferred-channel stimulus strengths as343

well as for varying spontaneous activity levels (Fig. 6c-e).344

Working memory345

To test for working memory-like properties, we used two simulation protocols. In the “memory preloaded” trials,346

we stimulated the neuron with a 300ms long 150Hz steady state stimulus (a memory) in the preferred channel. All347

remaining channels received spontaneous rates at 5Hz. After the memory preloading period, the preferred channel348

input received spontaneous firing rate inputs for a 300ms delay period, followed by a weaker, 100ms long 50Hz349

“recall cue” stimulus. For “control” trials, the input channels of the neuron only received the 100ms recall cue, to the350

preferred channel, without preloading.351

We then compared the firing rates during recall between the memory preloaded and control trials, to study the352

’silent’ working memory effects in our model. We tested this throughout simulated development, by freezing the353

dev-STP simulation every 50s and simulating 500 trials of the memory-preloaded simulations and 500 trials of the354

control simulations.355

Simulator356

Simulations were conducted in Python using Brian Simulator 2. Code to reproduce our key findings is available at357

github.com/djia/dev-stp.358
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Figure S1. Details of the cortical circuit and plasticity models. (a) Schematic of a single channel feedforward circuit with correlated
excitatory and inhibitory input, and the respective forms of plasticity. (b) Feedforward neural circuit with 8 channels and correlated
excitatory and inhibitory inputs. (c) Left: example of input given to the 8 channel feedforward neural circuit; right: excitatory tuning
curve strength for each of the 8 channels. (d) Each of the four STP parameters, τD , τF , U , and f resulting in different paired-pulse
ratios (PPRs) (Table 2). Parameters matching the young (orange star) and adult (purple triangle) STP PPRs as used in the dev-STP
model are highlighted. (e) Example postsynaptic potential traces for the STP parameter values of both young (i) and adult animals
(ii; cf. d).
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Figure S2. Developmental STP model with depression and facilitation normalized to the steady-state firing rate at 5Hz
input. (a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1);
bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f)
Different variables of the model across simulated development for three different models: fixed short-term depression (fixed-STD,
orange), fixed short-term facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green line).
Note x-axis on log-scale. (b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory
synaptic afferents. (e) Rate of STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between
normalised excitatory and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close to
0 represents a perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using
the area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across
simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average
change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated
development: 10s (star), 1000s (square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and
inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF
(i) and dev-STP models (j).
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Figure S3. Developmental STP model with depression and facilitation normalized to the steady-state firing rate at 10Hz
input. (a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1);
bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f)
Different variables of the model across simulated development for three different models: fixed short-term depression (fixed-STD,
orange), fixed short-term facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green line).
Note x-axis on log-scale. (b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory
synaptic afferents. (e) Rate of STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between
normalised excitatory and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close to
0 represents a perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using
the area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across
simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average
change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated
development: 10s (star), 1000s (square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and
inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF
(i) and dev-STP models (j).
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Figure S4. Developmental STP model in which STP changes are pre-defined. (a) Schematic of our developmental short-term
plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1); bottom: gradual changes in STP from depressing to
facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f) Different variables of the model across simulated
development for three different models: fixed short-term depression (fixed-STD, orange), fixed short-term facilitation (fixed-STF,
purple) and developmental model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale. (b) Receiver neuron
firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e) Rate of STP change
(note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised excitatory and inhibitory
tuning curves (cf. h-j) during the course of simulated development. A normalised area close to 0 represents a perfectly balanced
neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using the area between the firing rate
in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across simulated development (cf.
(b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights
(cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated development: 10s (star), 1000s
(square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. (f)). (h-j)
Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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Figure S5. Developmental STP shapes firing statistics. (a) Input activity for each of the 8 channels over 3 seconds. Activity at
the start of simulated development (i, young condition) and after 8 hours of simulation (ii, adult condition) as in Fig. 2; color code
represents firing rate of input. (b-d) Raster plot of receiver neuron for fixed-STD model (b), fixed-STF (c) and developmental STP
model (d). (e-g) Summary statistics of the three models (as in b-d) for both young (i) and adult conditions (ii). (e) Coefficient of
variation of the inter-spike intervals. (f) Average firing rates of the receiver neuron over 50 trials. (g) Average net current of the
receiver neuron.
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Figure S6. Spike rasters for step inputs at various snapshots. (a) Spike responses to two 150Hz step inputs to the preferred
channel when using the dev-STP model at 100s (i), 2,500s (ii), and 10,000s (iii); color bars on top represent the time at which the step
inputs were given; the first 50ms corresponds to the phasic activity (red), and the rest of the input time period to the tonic activity
(cyan); b Firing rates of the spikes in (a) averaged across trials using 5ms bins.
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