

23 **Abstract**

24 Homeothermy requires increased metabolic rates as temperatures decline below the
25 thermoneutral zone, so homeotherms typically select microhabitats within or near their
26 thermoneutral zones during periods of inactivity. However, many mammals and birds
27 are heterotherms that relax internal controls on body temperature when maintaining a
28 high, stable body temperature is energetically costly. Such heterotherms should be less
29 tied to microhabitats near their thermoneutral zones, and because heterotherms spend
30 more time in torpor and expend less energy at colder temperatures, heterotherms may
31 even select microhabitats in which temperatures are well below their thermoneutral
32 zones. We studied how temperature and daily torpor influence selection of diurnal
33 roosts by a heterothermic bat (*Myotis thysanodes*). We (1) quantified the relationship
34 between ambient temperature and daily duration of torpor, (2) simulated daily energy
35 expenditure over a range of microhabitat (roost) temperatures, and (3) quantified the
36 influence of roost temperature on roost selection. While warm roosts substantially
37 reduced energy expenditure of simulated homeothermic bats, heterothermic bats
38 modulated their use of torpor to maintain a constant level of energy expenditure over
39 the course of a day. Daily torpor expanded the range of energetically economical
40 microhabitats, such that roost selection was independent of roost temperature. Our work
41 adds to a growing literature documenting functions of torpor beyond its historical
42 conceptualization as a last-resort measure to save energy during extended or acute
43 energetic stress.

44

45 **Key-words** Bayesian hierarchical models, climate change, daily torpor, fringed
46 myotis (*Myotis thysanodes*), temporal heterothermy, thermal ecology, VHF telemetry

47

48 **Introduction**

49 The thermal environments in which organisms live strongly influence metabolic rates
50 (Huey and Stevenson 1979, Brown et al. 2004, Pörtner and Knust 2007). Among
51 homeotherms—which regulate body temperature internally within a narrow range to
52 optimize physiological processes—metabolic heat production is tightly regulated in
53 response to variation in temperature in the surrounding environment (i.e., ambient
54 temperature; Lowell and Spiegelman 2000). Controlling body temperature thus requires
55 increased energy expenditure by homeotherms when ambient temperatures depart from
56 the thermoneutral zone (i.e., the range of ambient temperatures in which homeotherms
57 can regulate body temperature with minimal metabolic effort; McNab 2002). Because
58 survival and reproduction require that energy intake equal or exceed energy
59 expenditure, operating in ambient temperatures outside the thermoneutral zone can
60 reduce fitness over time (Angilletta et al. 2010, Boyles et al. 2011).

61 Although the influence of ambient temperature on metabolism in homeotherms
62 is understood relatively well, many animals are heterotherms that can temporarily or
63 partially allow body temperature to track ambient temperature (Withers et al. 2016).
64 Heterothermy is common among mammals and birds (Geiser, 2004; Geiser and Ruf,
65 1995; McKechnie and Mzilikazi, 2011; Ruf and Geiser, 2015) and can reduce energy
66 expenditure during both hot and cold periods (Stawski and Geiser 2012, Boyles et al.
67 2016, Nowack et al. 2017, Reher and Dausmann 2021). As ambient temperatures depart
68 the thermoneutral zone, heterotherms can relax internal controls on metabolism; this
69 physiological response allows body temperature to track ambient temperature and
70 reduce or altogether eliminate the energetic costs of maintaining stable body
71 temperatures outside the thermoneutral zone (Levesque et al. 2016). Heterotherms often

72 achieve this by entering daily torpor, a short-term hypometabolic state of inactivity (Ruf
73 and Geiser 2015).

74 Heterotherms use daily torpor more as ambient temperatures decline below the
75 thermoneutral zone (Chruszcz and Barclay, 2002; Geiser and Broome, 1993;
76 Rambaldini and Brigham, 2008; Solick and Barclay, 2006), but it is unclear how this
77 tendency translates to differences in energy expenditure across differences in
78 temperature. For a given period of time, total energy expenditure for heterotherms
79 depends on (1) the duration and frequency of bouts of torpor, (2) ambient temperatures,
80 and (3) the difference in metabolic rates between torpor and homeothermy at a given
81 ambient temperature. Energy expenditure might increase as ambient temperatures fall
82 below the thermoneutral zone: even though heterotherms save energy by using torpor,
83 declines in energy expenditure from using torpor more when it is cold do not fully
84 compensate for the increased energetic costs of maintaining homeothermy in colder
85 ambient temperatures (Fig. 1B). In this scenario, periodic bouts of torpor dampen but
86 do not completely offset increases in energy expenditure during periods of
87 homeothermy at cold ambient temperatures. Alternatively, it is possible that energy
88 expenditure by heterotherms is stable through a wide range of ambient temperatures
89 because energy savings from using progressively more torpor at progressively colder
90 ambient temperatures closely matches increases in energy expenditure from
91 maintaining homeothermy at colder ambient temperatures (Fig. 1C). Finally, as ambient
92 temperatures decline, the energetic savings from torpor could more than offset the
93 increased energy expenditure necessary to maintain homeothermy (Fig. 1D).

94 Such relationships between ambient temperature and energy expenditure have
95 cascading repercussions for other aspects of an animal's life. For example, ambient
96 temperature often influences habitat selection by animals seeking to minimize energy

97 expenditure (e.g., Huey 1991, Freitas et al. 2016, Sarmento et al. 2019, Alston et al.
98 2020). Homeotherms have relatively fixed relationships between ambient temperature
99 and metabolic rate, and thus often consistently select habitats to maintain optimal body
100 temperatures with little metabolic effort (e.g., Poole et al. 2016, Courbin et al. 2017,
101 Sarmento et al. 2019). In contrast, looser relationships between ambient temperature
102 and metabolic rate for heterotherms may allow heterotherms to select habitats with less
103 regard to ambient temperature, or even to prefer habitats that might be colder than
104 optimal for homeotherms. For example, heterothermic Australian owlet-nightjars
105 (*Aegotheles cristatus*) preferentially roost in colder, less thermally stable tree cavities,
106 whereas homeothermic cavity-nesting birds typically select warmer, more thermally
107 stable tree cavities (Doucette et al. 2011). Empirical data on habitat selection by
108 heterotherms is rare, however, particularly for free-ranging animals.

109 Uncertainty surrounding the form and strength of relationships between ambient
110 temperature and energy expenditure limit our understanding of temperature-driven
111 habitat selection by heterotherms. For an animal attempting to minimize energy
112 expenditure during periods of inactivity, each of the hypothetical relationships between
113 energy expenditure and ambient temperature in Fig. 1 would result in a different pattern
114 of habitat selection. A heterotherm exhibiting the relationship shown by the red (B) line
115 in Fig. 1 should select warm microhabitats to save energy, similar to homeotherms. A
116 heterotherm exhibiting the relationship shown by the grey (C) line in Fig. 1 should not
117 select microhabitats based on their thermal characteristics. This pattern of habitat
118 selection would also diverge from the pattern followed by homeotherms. A heterotherm
119 exhibiting the relationship shown by the blue (D) line in Fig. 1 should select cool
120 microhabitats to save energy, opposite of the pattern followed by homeotherms.
121 Empirical tests of the influence of ambient temperature on energy expenditure are thus

122 needed to understand how ambient temperature drives habitat selection for
123 heterotherms.

124 We sought to understand how ambient temperature influences energy
125 expenditure, and how energy expenditure in turn influences habitat selection, in a bat
126 that is widely distributed throughout western North America (fringed myotis, *Myotis*
127 *thysanodes*). Like other bats inhabiting temperate latitudes, fringed myotis are
128 heterotherms that are believed to select diurnal roosts to minimize energy expenditure
129 during diurnal periods of inactivity (Sedgeley 2001, Willis and Brigham 2005,
130 Ruczyński 2006). At temperate latitudes, temperature within roosts can vary
131 substantially throughout the day and year, and ambient temperature influences the
132 amount of time bats spend in torpor each day. Like other heterotherms, bats spend more
133 time in torpor when it is cold than when it is hot (Chruszcz and Barclay 2002, Solick
134 and Barclay 2006, Rambaldini and Brigham 2008). We hypothesized that differences
135 in energy expenditure at roosts of varying temperatures drive patterns of roost selection
136 (i.e., bats select roosts that minimize energy expenditure). Specifically, we weighed
137 evidence for four competing sets of predictions (Fig. 2):

138 *Prediction Set 1:* Bats select warm roosts regardless of ambient temperature. In
139 this scenario, energy expenditure during the day should be higher in cool roosts than in
140 warm roosts (Fig. 2.1A) because the energetic benefits from being warmer when bats
141 are maintaining homeothermy outweigh the energetic costs of spending less time in
142 torpor. If this is the case, bats should select roosts that are warmer compared to available
143 structures on the landscape (Fig. 2.1B); this pattern of selection should be consistent
144 regardless of ambient temperature during the day (Fig. 2.1C).

145 *Prediction Set 2:* Bats select cool roosts regardless of ambient temperature. In
146 this scenario, energy expenditure during the day should be higher in warm roosts than

147 in cool roosts (Fig. 2.2A) because the energetic benefits from spending more time in
148 torpor outweigh the energetic costs of being colder when bats are maintaining
149 homeothermy. If this is the case, bats should select roosts that are cooler compared to
150 available structures on the landscape (Fig. 2.2B); this pattern of selection should be
151 consistent regardless of ambient temperature during the day (Fig. 2.2C).

152 *Prediction Set 3:* Bats do not alter roost selection as ambient temperatures
153 change. In this scenario, energy expenditure during the day is roughly equal across
154 roosts of all temperatures (Fig. 2.3A). This could occur if bats modulate use of torpor
155 such that roost temperatures over the course of a day have little influence on overall
156 energy expenditure. In this case, bats should select roosts that are similar in temperature
157 to available structures on the landscape (Fig. 2.3B), and this pattern of selection should
158 be consistent regardless of ambient temperature during the day (Fig. 2.3C).

159 *Prediction Set 4:* Bats select cool roosts on cool days and warm roosts on warm
160 days (shifting roost selection). In this scenario, energy expenditure is lower in cool
161 roosts than in warm roosts on cool days, lower in warm roosts than in cool roosts on
162 warm days, and consistently higher in roosts at intermediate ambient temperatures (Fig.
163 2.4A). This may arise because of threshold effects from a non-linear relationship
164 between ambient temperature and torpor use. Namely, a threshold may exist above
165 which homeothermy requires relatively little energy even as bats spend little time in
166 torpor, but below which bats save a substantial amount of energy by using torpor. Near
167 the threshold, however, bats may use relatively little torpor even as maintaining
168 homeothermy is relatively energetically costly. In this case, bats should select roosts
169 that are roughly the same temperature on average as available structures on the
170 landscape (though the distribution may be bimodal; Fig. 2.4B), and temperatures in
171 roosts should be positively correlated with ambient temperature (Fig. 2.4C).

172 **Methods**

173 **Study Area and Species.** We conducted our study during the summers of 2017 and 2018
174 on Jewel Cave National Monument (43° 45' N, 103° 45' W) and surrounding areas of
175 Black Hills National Forest in South Dakota, USA. Our study area is described in
176 Alston et al. (2019). Mean monthly summer high temperatures range between 22 – 27°C
177 and mean monthly summer precipitation ranges between 60 – 80 mm (Western
178 Regional Climate Center 2018). Open ponderosa pine (*Pinus ponderosa*) forests
179 dominate, with Rocky Mountain juniper (*Juniperus scopulorum*) and quaking aspen
180 (*Populus tremuloides*) occurring locally. Forests are actively managed to prevent
181 wildfire, and those managed by the US Forest Service and private landowners also
182 undergo intensive logging. Forests form a mosaic with northern mixed-grass prairie
183 where a large stand-replacing fire occurred in 2000. A large network of caves lie
184 underground, and the landscape exhibits substantial topographic relief in the form of
185 intersecting canyon systems and rock outcrops.

186 Fringed myotis roost in caves, mines, rock crevices, tree cavities, and under the
187 sloughing bark of dead trees, and forage in forest canopy and riparian areas (O'Farrell
188 and Studier 1980). We chose to focus on males because sex ratios of bats in the Black
189 Hills are heavily (>90%) male-biased (a common pattern in high-elevation areas;
190 Barclay, 1991; Cryan et al. 2000; Senior et al. 2005), because male *M. thysanodes*
191 usually roost solitarily (O'Farrell and Studier 1980), and because male bats maintain
192 consistent patterns of torpor use throughout the reproductive season (unlike females,
193 which alter patterns of torpor use at different stages of reproduction; Chruszcz and
194 Barclay, 2002; Dzial and Brigham, 2013; Johnson and Lacki, 2014).

195 **Capture and VHF Telemetry.** We used mist nets to capture bats over permanent
196 and semi-permanent water sources (e.g., springs, stock tanks, and stock ponds). From

197 June through August of 2017 and 2018, we netted 20 and 49 nights, respectively, at 15
198 water sources. We opened mist nets at civil sunset and closed them after five hours or
199 during inclement weather.

200 We affixed temperature-sensitive VHF transmitters (LB-2XT model .28/.33 g –
201 Holohil Systems Ltd., Carp, ON, Canada) between the scapulae of adult male fringed
202 myotis with latex surgical adhesive (Osto-Bond, Montreal Ostomy, Montreal, QC,
203 Canada). The transmitters measure and transmit data on skin temperature—an accurate
204 proxy for body temperature—of bats, enabling researchers to delineate bouts of torpor
205 (Barclay et al. 1996, Chruszcz and Barclay 2002, Stawski and Geiser 2010). All
206 transmitters weighed <5% of the mass of the bat (Aldridge and Brigham 1988). We
207 tracked bats to roosts each day transmitters were active, and installed VHF data loggers
208 (SRX800-D1 – Lotek Wireless Inc., Newmarket, ON, Canada) that collected and
209 recorded data transmitted by the VHF transmitters. All protocols were approved by the
210 University of Wyoming and National Park Service Animal Care and Use Committees
211 and met guidelines approved by the American Society of Mammalogists for research
212 on wild mammals (Sikes and the Animal Care and Use Committee of the American
213 Society of Mammalogists 2016).

214 ***Energetic Modelling.*** To quantify torpor use, we delineated bouts of torpor
215 from data logger readings that captured full days (i.e., from roost entry in the morning
216 to roost exit in the evening) of skin temperature data from individual bats. This was a
217 fraction of total days in which we located roosts, because bats typically were not located
218 until after they entered roosts. We defined torpor as beginning when skin temperature
219 dropped below the lowest skin temperature of bats maintaining homeothermy during a
220 day and ending when skin temperature began a steep rise that led to bats re-entering
221 homeothermy or leaving a roost (as recommended by Barclay et al. 2001; Appendix

222 S1: Fig. S1). Because fat reserves and body mass can substantially alter the amount of
223 time spent in torpor (Wojciechowski et al. 2007, Stawski and Geiser 2010, Vuarin et al.
224 2013), we also controlled for the body mass of each individual at time of capture on
225 torpor duration. We then used the modelling software ‘Stan’ (Carpenter et al. 2017) via
226 the R package ‘brms’ (v2.13.0; Bürkner 2017) to build a linear Bayesian hierarchical
227 model to quantify the influence of ambient temperature and body mass on torpor
228 duration while accounting for non-independence among data points collected from the
229 same individual. The model included 3 chains run for 13,000 iterations (1,000 iterations
230 of warm-up and 12,000 iterations of sampling). We assessed chain convergence using
231 the Gelman-Rubin diagnostic (\hat{R}) and precision of parameter estimation using effective
232 sample size. $\hat{R} < 1.01$ and effective sample sizes $> 10,000$ represent acceptable
233 convergence and parameter precision (Gelman et al. 2013, Kruschke 2015). We used
234 leave-one-out cross validation to check model fit using the R packages ‘loo’ (v2.2.0;
235 Vehtari et al. 2017) and ‘bayesplot’ (v1.7.2; Gabry et al. 2019) to visually assess the
236 cross-validated probability integral transform.

237 To quantify energy expenditure in bats, we combined published estimates of
238 metabolic rates of fringed myotis as a function of temperature (Studier and O’Farrell
239 1976) and the linear model of the influence of ambient temperature on torpor use to
240 simulate the influence of roost temperature on energy expenditure. Specifically, we
241 simulated minute-by-minute energy expenditure by bats in each used roost between
242 0445 hrs and 2100 hrs (typical entry and exit times for bats in our study) on each day
243 over the duration of our study period. We modeled torpor use as a function of decision
244 rules that reflect torpor use observed over the course of our study (raw data presented
245 in Appendix S1: Table S1). Specifically, we assumed that bats entered torpor
246 immediately upon entering roosts, exited torpor after an interval determined by roost

247 temperature, and remained in homeothermy for the rest of the time spent in the roost
248 except for a shorter bout of torpor in the evening. We further assumed that bats would
249 use 86.9% of the duration of daily torpor in the morning and 13.1% in the afternoon
250 unless the afternoon bout of torpor would be less than 30 minutes in duration, in which
251 case 100% of the day's torpor would occur in the morning period. We also assumed
252 that the mean duration of torpor that we observed would be used in the baseline
253 "average" roost, with the duration of torpor in warmer and cooler roosts determined by
254 the slope of the modeled relationship between ambient temperature and torpor use
255 described in the above paragraph. To account for uncertainty in our estimate of the slope
256 of the relationship between ambient temperature and daily torpor use, for each roost on
257 each day we randomly drew a different slope estimate for this relationship from the
258 posterior distribution of slope estimates from the model described in the prior
259 paragraph.

260 ***Roost Characterization.*** To characterize rock roost structures, we collected data
261 for 31 roosts and 62 randomly sampled available (i.e., unused by bats in our study)
262 roosts. Hereafter, we distinguish between 'used roosts' and available but unused
263 'available roosts'; we use the term 'roost structure' when we refer to both used and
264 available roosts simultaneously. We identified available rock roosts in two ways: at
265 each used roost, we 1) located the nearest rock crevice large enough to hold a bat, and
266 2) generated a paired point in a random cardinal direction a random distance between
267 100 – 300 m away, then located the nearest rock crevice large enough to hold a bat.

268 To characterize tree roost structures, we collected data for 9 used roosts and 36
269 randomly sampled available roosts. We identified available tree roosts in two ways: at
270 each used roost, we 1) located the nearest snag and selected the nearest cavity large
271 enough to hold a bat, and 2) generated a paired point in a randomly determined distance

272 between 100 – 300 m away, in a randomly-determined (cardinal) direction, then located
273 the nearest tree cavity large enough to hold a bat. For each available point, we placed
274 data loggers in two locations: one in a cavity in the trunk and one underneath sloughing
275 bark. We defined available roost trees as any dead tree with a visible defect (e.g.,
276 sloughing bark or cavities) sufficiently large to hold a bat. This description fit every
277 tree in which we found a bat roosting.

278 In Summer 2018, we monitored temperatures within both used and available
279 roosts using data loggers (Model MX2201; Onset Computer Corporation, Bourne, MA,
280 USA). The first data loggers were deployed on 17 July 2018, and the last data logger
281 was removed on 8 October 2018. This period of time includes the full range of daily
282 high temperatures occurring during the active season for bats at our study site. During
283 data logger deployment and opportunistically thereafter, we checked roost structures
284 for the presence of bats. We sometimes found bats in used roosts, but we never found
285 bats in available roosts. When we found bats in used roosts, we waited to deploy data
286 loggers until there was no bat within the roost.

287 To quantify the thermal characteristics of each roost structure, we calculated the
288 mean temperature within each roost structure for periods between 0445 and 2100 hrs,
289 which corresponds with the period in which a bat is likely to be within a roost
290 (Appendix S1: Table S1). To control for potential confounding variables, we also
291 calculated the timing of the peak temperature in all roost structures (because if two roost
292 structures have the same mean temperature but peak in temperature at different times,
293 the roost structure with the later peak will have cooler temperatures in the morning
294 when bats use torpor most), and the standard deviation of temperature during the day
295 (because stability in roost temperature can be an important factor in roost selection;
296 Sedgeley, 2001). To quantify the timing of the daily temperature peak, we located the

297 peak temperature in each roost structure for each day and calculated the mean time of
298 day at which this occurred over our study period. To quantify thermal stability in roost
299 structures, we calculated the standard deviation of temperatures between 0445 and 2100
300 hrs in each roost structure for each day and calculated the mean daily standard deviation
301 over our study period. To ensure consistency, we only calculated these values for the
302 period between July 28 and September 31 (a period in which all data loggers were
303 actively logging temperatures, and in which average daily high temperatures
304 correspond with the range a bat might be exposed to during the active season in our
305 study area).

306 We used the R statistical software environment (R Core Team 2020) to quantify
307 differences between used and available roosts. To determine whether bats select cooler
308 roosts than those available, we used the modelling software ‘Stan’ (Carpenter et al.
309 2017) via the R package ‘brms’ (v2.13.0; Bürkner 2017) to build a binomial-family
310 Bayesian model to quantify the influence of mean temperature within roost structures,
311 the timing of daily peaks in temperature within roost structures, and the standard
312 deviation of temperatures within roost structures on roost selection. The model included
313 3 chains run for 13,000 iterations (1,000 iterations of warm-up and 12,000 iterations of
314 sampling). We assessed chain convergence using \hat{R} and precision of parameter
315 estimation using effective sample size. We checked predictive performance with
316 receiver operating curve analysis using the R package ‘pROC’ (v1.16.2; Robin et al.
317 2011) and used the R package ‘bayesplot’ (v1.7.2; Gabry et al. 2019) to visually assess
318 binned residual plots.

319

320 **Results**

321 We tracked 46 bats to 107 roosts (93 in rock crevices and 14 in trees) and collected 27
322 full days of skin temperature data from 7 bats. Data from 16 data loggers within roost
323 structures (3 used rock, 12 available rock, 1 available tree) could not be collected
324 because they were not relocated or were dislodged from roost structures. We thus
325 excluded these data from analyses, leaving a total of 122 (78 rock, 44 tree) data loggers
326 that collected data on temperatures within roost structures.

327 Use of torpor stabilized daily energy expenditure across the range of roost
328 temperatures observed during our telemetry study. In our model of the effect of ambient
329 temperature on daily torpor duration, 95% credible intervals for the effect of mean
330 ambient temperature over the course of the day on daily torpor duration did not cross 0
331 (parameter estimate: -37.4 min; 95% credible intervals: -64.0 – -12.6 min), indicating
332 that bats spent ca. 37 minutes less in torpor per day for each additional 1°C in daily
333 mean ambient temperature between 0445 hrs and 2100 hrs (Fig. S2). Assessment of the
334 cross-validated probability integral transform indicated that model fit was adequate.
335 When incorporated into our simulation of bat energy expenditure over the course of a
336 typical day, this estimate of the relationship between ambient temperature and torpor
337 use led to similar estimates of energy expenditure across temperatures within used
338 roosts (Fig. 3; blue points). Daily energy expenditure was roughly equivalent in all
339 roosts. Our estimates for energy expenditure using observed bat behavior were always
340 substantially lower and less variable than our estimates for energy expenditure if bats
341 had remained in homeothermy all day (Fig. 3; red points). Bats that remain in
342 homeothermy would expend substantially more energy in cool roosts than warm roosts.

343 Overall, temperatures in both rock and tree roost structures were similar, though
344 roost structures in trees were slightly cooler and less stable than roost structures in

345 rocks. We therefore pooled rock and tree roost structures in roost selection analyses,
346 but we report descriptive statistics for each type of roost structure in Appendix S1.

347 Despite substantial variation in temperatures among roost structures, we found
348 little evidence that the thermal characteristics of used roosts differed from those of
349 available roosts (Fig. 4). In our model of roost selection, 95% credible intervals for the
350 effect of mean ambient temperature over the course of the day on roost selection did
351 not cross 0 (parameter estimate: 0.30; 95% credible intervals: 0.04 – 0.58), indicating
352 that bats were more likely to roost in warm roost structures than cool ones. However,
353 predictive performance was poor (AUC: 0.650), and overall, used roosts (20.1°C) had
354 similar mean temperatures as available roosts (19.4°C; Fig. 4A). Bats also did not
355 differentiate between roost structures with temperatures peaking late in the day versus
356 roost structures with temperatures peaking early in the day (Fig 4B). In our model of
357 roost selection, 95% credible intervals for the effect of the timing of daily peaks in
358 temperature on roost selection crossed 0 (parameter estimate: -0.10; 95% credible
359 intervals: -0.34 – 0.14). Overall, used roosts (1408 hrs) peaked in temperature at similar
360 times as available roosts (1434 hrs). Bats also did not differentiate between roosts with
361 stable temperatures and those with more variable temperatures (Fig. 4C). In our model
362 of roost selection, 95% credible intervals for the effect of standard deviation in roost
363 temperature over the course of the day on roost selection crossed 0 (parameter estimate:
364 -0.20; 95% credible intervals: -0.47 – 0.06) Overall, there was no difference in the
365 standard deviation of temperatures of used roosts (7.0°C) and available roosts (7.0°C).
366 Finally, there was also no relationship between ambient temperature on a given day and
367 mean temperatures within roosts used on that day ($R^2 = 0.03$; $p = 0.132$; Fig. 5).

368

369 **Discussion**

370 The thermal environments in which animals operate strongly influence physiological
371 processes, and can thereby pose substantial challenges in variable environments. How
372 animals overcome these challenges is a central question in animal ecology. Attempts to
373 address this question have focused largely on poikilotherms and homeotherms. Because
374 heterotherms are neither as strongly tied to narrow ranges of body temperature as
375 homeotherms nor as subject to ambient temperatures as poikilotherms, the relationships
376 between temperature and habitat selection for heterotherms should differ fundamentally
377 from those of either homeotherms or poikilotherms. Specifically, whereas
378 homeotherms select microhabitats near the thermoneutral zone during periods of
379 inactivity, heterotherms should have less incentive to do so.

380 We sought to better understand how variation in ambient temperature influences
381 use of daily torpor and habitat selection for heterotherms, using a species of bat as a
382 model system. Simulations of energy expenditure at varying roost temperatures
383 revealed that bats can modulate use of torpor to maintain constant energy expenditure
384 over the course of a day over a wide range of temperatures within roosts. As a result,
385 roost selection was not driven by temperatures within roosts. Our results provide
386 evidence for Prediction Set 3 (no selection) in our introduction (Fig. 2).

387 The energetic savings associated with torpor—particularly at cooler
388 temperatures—likely result in habitat selection that differs substantially from habitat
389 selection by homeotherms. For example, we showed that use of daily torpor can reduce
390 the energetic costs of inhabiting roosts that are colder than optimal for homeotherms. If
391 bats were strict homeotherms, the energetic costs of inhabiting cool roosts would have
392 been substantially higher (Fig. 3), which would likely result in bats selecting warm
393 roosts. In contrast, heterothermic bats face little pressure to select warm habitats, even
394 on relatively cool days. Daily torpor does not simply loosen the thermal constraints

395 facing homeotherms at temperatures below the thermoneutral zone—it can entirely
396 mitigate them. Additional studies of the relationships between temperature, torpor use,
397 and habitat selection would be valuable for establishing the generality of this finding
398 for other heterothermic species.

399 Individual traits (e.g., sex, age, and reproductive condition) can alter the
400 energetic costs and benefits of using torpor for heterotherms, thereby driving
401 divergence from the pattern demonstrated in this study. For example, roost selection by
402 bats varies by sex, age, and reproductive condition (Elmore et al. 2004, Hein et al.
403 2008). While male bats in our study did not select roosts with specific thermal
404 characteristics, female bats seem to use less torpor and prefer warmer roosts than males
405 while pregnant or raising young, and females typically aggregate in social maternity
406 colonies rather than roosting solitarily (Hamilton and Barclay 1994, Kerth et al. 2001,
407 Ruczyński 2006). Compared to males, then, roost selection by females will likely be
408 governed more strongly by roost temperature (though social thermoregulation via
409 huddling can influence temperatures within roosts more than a roost's physical and
410 environmental characteristics; Pretzlaff et al. 2010; Willis and Brigham, 2007). Further
411 research on the roles of sex, age, and reproductive condition on torpor use in
412 heterotherms (and thus habitat selection by heterotherms) is likely to reveal important
413 context for our findings.

414 Climate warming increases energy expenditure for many animals, including
415 both poikilotherms (Pörtner and Knust 2007, Dillon et al. 2010) and homeotherms
416 (Humphries et al. 2002, Şekercioğlu et al. 2012). However, the degree to which climate
417 warming will impact heterotherms is poorly understood, largely due to a lack of data
418 on relationships between ambient temperature, torpor use, and thermolability that is
419 needed to accurately model the influence of ambient temperature on heterotherm

420 metabolism (Levesque et al. 2016). Our results indicate that temperature-dependent use
421 of torpor may stabilize energy expenditure, and thus buffer against the energetic costs
422 associated with variable ambient temperatures. However, most of the energetic savings
423 from heterothermy arise during periods of cold. Increased temperatures due to climate
424 change may thus reduce the relative energetic benefits of heterothermy compared to
425 homeothermy, as homeotherms experience fewer and milder periods of cold.

426 In conclusion, we showed that a heterothermic bat selected neither warm nor
427 cool roosts, because bats can modulate torpor use to stabilize energy expenditure over
428 the course of a day. Unlike homeotherms, bats face little pressure to select warm
429 habitats to avoid heat loss during periods of inactivity—when maintaining a high, stable
430 body temperature becomes energetically costly, bats can calibrate the duration of torpor
431 such that energy expenditure stays constant through a wide range of ambient
432 temperature. Although such fine-tuning of torpor use to stabilize daily energy
433 expenditure is intuitive, it has not been demonstrated in previous studies to the best of
434 our knowledge.

435

436 **Acknowledgements**

437 Many thanks to L. Boodoo, C. McFarland, E. Greene, B. Tabor, and B. Phillips for
438 help with fieldwork; L. Shoemaker, D. Laughlin, J. Rick, and D. Goodhouse for
439 helpful comments on pre-submission versions of this manuscript; and P. Ortegon, D.
440 Licht, M. Wiles, D. Austin, B. Phillips, E. Thomas, and A. Stover for their logistical
441 support of this project. Research funding was provided by the National Park Service,
442 the Department of Zoology and Physiology at the University of Wyoming, the Berry
443 Ecology Center, the American Society of Mammalogists, Prairie Biotic Research,
444 Inc., and the Wyoming Chapter of The Wildlife Society. The findings and conclusions

445 in this article are those of the authors and do not necessarily represent the views of the
446 U.S. Fish and Wildlife Service or the National Park Service. We conducted field
447 research on the traditional lands of the Lakhóta, Sahnish, Tsitsistas, Hinono’eino,
448 K’oigu, and Ná’ishq̣ peoples. The Lakhóta people know this land as Ḫe Sápa and
449 Pahá Sápa, which was taken by the United States in the Agreement of 1877 in
450 violation of the 1868 Fort Laramie Treaty.

451

452 **Data Availability**

453 Data and code used in analyses for this paper will be archived on *Zenodo* upon
454 acceptance of this manuscript and are available upon request by editors or reviewers.

455

456 **Author Contributions**

457 JA, JG, and MD conceived and designed the study; JA, DK, and IA obtained funding
458 for the study; JA collected and analyzed the data and led writing of the manuscript.
459 All authors contributed to manuscript drafts and gave final approval for publication.

460

461 **References**

462 Aldridge, H.D.J.N., and R.M. Brigham. 1988. Load carrying and maneuverability in
463 an insectivorous bat: a test of the 5% “rule” of radio-telemetry. *Journal of*
464 *Mammalogy* 69:379–382.

465 Alston, J.M., I.M. Abernethy, D.A. Keinath, and J.R. Goheen. 2019. Roost selection
466 by male northern long-eared bats (*Myotis septentrionalis*) in a managed fire-
467 adapted forest. *Forest Ecology and Management* 446:251–256.

468 Alston, J.M., M.J. Joyce, J.A. Merkle, and R.A. Moen. 2020. Temperature shapes
469 movement and habitat selection by a heat-sensitive ungulate. *Landscape*
470 *Ecology*:790048.

471 Angilletta, M.J., B.S. Cooper, M.S. Schuler, and J.G. Boyles. 2010. The evolution of
472 thermal physiology in endotherms. *Frontiers in Bioscience* E2:861–881.

473 Barclay, R.M., C.L. Lausen, and L. Hollis. 2001. What's hot and what's not: defining
474 torpor in free-ranging birds and mammals. *Canadian Journal of Zoology*
475 79:1885–1890.

476 Barclay, R.M.R. 1991. Population structure of temperate zone insectivorous bats in
477 relation to foraging behaviour and energy demand. *Journal of Animal Ecology*
478 60:165–178.

479 Barclay, R.M.R., M.C. Kalcounis, L.H. Crampton, C. Stefan, M.J. Vonhof, L.
480 Wilkinson, and R.M. Brigham. 1996. Can external radiotransmitters be used to
481 assess body temperature and torpor in bats? *Journal of Mammalogy* 77:1102–
482 1106.

483 Boyles, J.G., L.P. McGuire, E. Boyles, J.P. Reimer, C.A.C. Brooks, R.W. Rutherford,
484 T.A. Rutherford, J.O. Whitaker, and G.F. McCracken. 2016. Physiological and
485 behavioral adaptations in bats living at high latitudes. *Physiology & Behavior*
486 165:322–327.

487 Boyles, J.G., F. Seebacher, B. Smit, and A.E. McKechnie. 2011. Adaptive
488 thermoregulation in endotherms may alter responses to climate change.
489 *Integrative and Comparative Biology* 51:676–690.

490 Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage, and G.B. West. 2004. Toward a
491 metabolic theory of ecology. *Ecology*:1771–1789.

492 Bürkner, P.-C. 2017. brms: an R package for Bayesian multilevel models using Stan.
493 Journal of Statistical Software 80:1–28.

494 Carpenter, B., A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M.
495 Brubaker, J. Guo, P. Li, and A. Riddell. 2017. Stan: a probabilistic
496 programming language. Journal of Statistical Software 76.

497 Chruszcz, B.J., and R.M.R. Barclay. 2002. Thermoregulatory ecology of a solitary
498 bat, *Myotis evotis*, roosting in rock crevices. Functional Ecology 16:18–26.

499 Courbin, N., C. Dussault, A. Veillette, M.-A. Giroux, and S.D. Côté. 2017. Coping
500 with strong variations in winter severity: plastic habitat selection of deer at
501 high density. Behavioral Ecology 28:1037–1046.

502 Cryan, P.M., M.A. Bogan, and J.S. Altenbach. 2000. Effect of elevation on
503 distribution of female bats in the Black Hills, South Dakota. Journal of
504 Mammalogy 81:719–725.

505 Cunningham, S.J., J.L. Gardner, and R.O. Martin. 2021. Opportunity costs and the
506 response of birds and mammals to climate warming. Frontiers in Ecology and
507 the Environment, early view.

508 Dillon, M.E., G. Wang, and R.B. Huey. 2010. Global metabolic impacts of recent
509 climate warming. Nature 467:704–706.

510 Doucette, L.I., R.M. Brigham, C.R. Pavey, and F. Geiser. 2011. Roost type influences
511 torpor use by Australian owlet-nightjars. Naturwissenschaften 98:845.

512 Dzial, Y.A., and R.M. Brigham. 2013. The tradeoff between torpor use and
513 reproduction in little brown bats (*Myotis lucifugus*). Journal of Comparative
514 Physiology B 183:279–288.

515 Elmore, L.W., D.A. Miller, and F.J. Vilella. 2004. Selection of diurnal roosts by red
516 bats (*Lasiusurus borealis*) in an intensively managed pine forest in Mississippi.
517 Forest Ecology and Management 199:11–20.

518 Freitas, C., E.M. Olsen, H. Knutsen, J. Albretsen, and E. Moland. 2016. Temperature-
519 associated habitat selection in a cold-water marine fish. Journal of Animal
520 Ecology 85:628–637.

521 Gabry, J., D. Simpson, A. Vehtari, M. Betancourt, and A. Gelman. 2019.
522 Visualization in Bayesian workflow. Journal of the Royal Statistical Society:
523 Series A (Statistics in Society) 182:389–402.

524 Geiser, F. 2004. Metabolic rate and body temperature reduction during hibernation
525 and daily torpor. Annual Review of Physiology 66:239–274.

526 Geiser, F., and L.S. Broome. 1993. The effect of temperature on the pattern of torpor
527 in a marsupial hibernator. Journal of Comparative Physiology B 163:133–137.

528 Geiser, F., and T. Ruf. 1995. Hibernation versus daily torpor in mammals and birds:
529 physiological variables and classification of torpor patterns. Physiological
530 Zoology 68:935–966.

531 Gelman, A., J.B. Carlin, H.S. Stern, D. B. Dunson, A. Vehtari, and D.B. Rubin. 2013.
532 Bayesian Data Analysis. Third. CRC Press, Boca Raton, FL, USA.

533 Hamilton, I.M., and R.M.R. Barclay. 1994. Patterns of daily torpor and day-roost
534 selection by male and female big brown bats (*Eptesicus fuscus*). Canadian
535 Journal of Zoology 72:744–749.

536 Hein, C.D., S.B. Castleberry, and K.V. Miller. 2008. Sex-specific summer roost-site
537 selection by Seminole bats in response to landscape-level forest management.
538 Journal of Mammalogy 89:964–972.

539 Huey, R.B. 1991. Physiological consequences of habitat selection. *American*
540 *Naturalist* 137:S91–S115.

541 Huey, R.B., and R.D. Stevenson. 1979. Integrating thermal physiology and ecology of
542 ectotherms: a discussion of approaches. *Integrative and Comparative Biology*
543 19:357–366.

544 Humphries, M.M., D.W. Thomas, and J.R. Speakman. 2002. Climate-mediated
545 energetic constraints on the distribution of hibernating mammals. *Nature*
546 418:313–316.

547 Johnson, J.S., and M.J. Lacki. 2014. Effects of reproductive condition, roost
548 microclimate, and weather patterns on summer torpor use by a vespertilionid
549 bat. *Ecology and Evolution* 4:157–166.

550 Kerth, G., K. Weissmann, and B. König. 2001. Day roost selection in female
551 Bechstein's bats (*Myotis bechsteinii*): a field experiment to determine the
552 influence of roost temperature. *Oecologia* 126:1–9.

553 Kruschke, J. 2015. Doing Bayesian analysis. Second. Academic Press, Waltham, MA,
554 USA.

555 Levesque, D.L., J. Nowack, and C. Stawski. 2016. Modelling mammalian energetics:
556 the heterothermy problem. *Climate Change Responses* 3:7.

557 Lowell, B.B., and B.M. Spiegelman. 2000. Towards a molecular understanding of
558 adaptive thermogenesis. *Nature* 404:652–660.

559 McKechnie, A.E., and N. Mzilikazi. 2011. Heterothermy in Afrotropical mammals
560 and birds: a review. *Integrative and Comparative Biology* 51:349–363.

561 McNab, B.K. 2002. The physiological ecology of vertebrates: a view from energetics.
562 Cornell University Press, Ithaca, NY, USA.

563 Nowack, J., C. Stawski, and F. Geiser. 2017. More functions of torpor and their roles
564 in a changing world. *Journal of Comparative Physiology B* 187:889–897.

565 O'Farrell, M. J., and E. H. Studier. 1980. *Myotis thysanodes*. *Mammalian Species*:1–
566 5.

567 Poole, K.G., R. Serrouya, I.E. Teske, and K. Podrasky. 2016. Rocky Mountain
568 bighorn sheep (*Ovis canadensis canadensis*) winter habitat selection and
569 seasonal movements in an area of active coal mining. *Canadian Journal of
570 Zoology* 94:733–745.

571 Pörtner, H.O., and R. Knust. 2007. Climate change affects marine fishes through the
572 oxygen limitation of thermal tolerance. *Science* 315:95–97.

573 Pretzlaff, I., G. Kerth, and K.H. Dausmann. 2010. Communally breeding bats use
574 physiological and behavioural adjustments to optimise daily energy
575 expenditure. *Naturwissenschaften* 97:353–363.

576 R Core Team. 2020. R: a language and environment for statistical computing. R
577 Foundation for Statistical Computing, Vienna, Austria.

578 Rambaldini, D.A., and R.M. Brigham. 2008. Torpor use by free-ranging pallid bats
579 (*Antrozous pallidus*) at the northern extent of their range. *Journal of
580 Mammalogy* 89:933–941.

581 Reher, S., and K.H. Dausmann. 2021. Tropical bats counter heat by combining torpor
582 with adaptive hyperthermia. *Proceedings of the Royal Society B: Biological
583 Sciences* 288:20202059.

584 Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller.
585 2011. pROC: an open-source package for R and S+ to analyze and compare
586 ROC curves. *BMC Bioinformatics* 12:77.

587 Ruczyński, I. 2006. Influence of temperature on maternity roost selection by noctule
588 bats (*Nyctalus noctula*) and Leisler's bats (*N. leisleri*) in Białowieża Primeval
589 Forest, Poland. Canadian Journal of Zoology 84:900–907.

590 Ruf, T., and F. Geiser. 2015. Daily torpor and hibernation in birds and mammals.
591 Biological Reviews 90:891–926.

592 Sarmento, W., M. Biel, and J. Berger. 2019. Seeking snow and breathing hard –
593 behavioral tactics in high elevation mammals to combat warming
594 temperatures. PLOS ONE 14.

595 Sedgeley, J.A. 2001. Quality of cavity microclimate as a factor influencing selection
596 of maternity roosts by a tree-dwelling bat, *Chalinolobus tuberculatus*, in New
597 Zealand. Journal of Applied Ecology 38:425–438.

598 Şekercioğlu, Ç.H., R.B. Primack, and J. Wormworth. 2012. The effects of climate
599 change on tropical birds. Biological Conservation 148:1–18.

600 Senior, P., R.K. Butlin, and J.D. Altringham. 2005. Sex and segregation in temperate
601 bats. Proceedings of the Royal Society B: Biological Sciences 272:2467–2473.

602 Sikes, R.S., and Animal Care and Use Committee of the American Society of
603 Mammalogists. 2016. 2016 guidelines of the American Society of
604 Mammalogists for the use of wild mammals in research and education. Journal
605 of Mammalogy 97:663–688.

606 Solick, D.I., and R.M.R. Barclay. 2006. Thermoregulation and roosting behaviour of
607 reproductive and nonreproductive female western long-eared bats (*Myotis*
608 *evotis*) in the Rocky Mountains of Alberta. Canadian Journal of Zoology
609 84:589–599.

610 Stawski, C., and F. Geiser. 2010. Fat and fed: frequent use of summer torpor in a
611 subtropical bat. Naturwissenschaften 97:29–35.

612 Stawski, C., and F. Geiser. 2012. Will temperature effects or phenotypic plasticity
613 determine the thermal response of a heterothermic tropical bat to climate
614 change? PLOS ONE 7:e40278.

615 Studier, E.H., and M.J. O'Farrell. 1976. Biology of *Myotis thysanodes* and *M.*
616 *lucifugus* (Chiroptera: Vespertilionidae)—III. Metabolism, heart rate,
617 breathing rate, evaporative water loss and general energetics. Comparative
618 Biochemistry and Physiology Part A: Physiology 54:423–432.

619 Vehtari, A., A. Gelman, and J. Gabry. 2017. Practical Bayesian model evaluation
620 using leave-one-out cross-validation and WAIC. Statistics and Computing
621 27:1413–1432.

622 Vuarin, P., M. Dammhahn, and P.-Y. Henry. 2013. Individual flexibility in energy
623 saving: body size and condition constrain torpor use. Functional Ecology
624 27:793–799.

625 Western Regional Climate Center. 2018. NCDC 1981-2010 monthly normals: Custer,
626 SD.

627 Willis, C.K.R., and R.M. Brigham. 2005. Physiological and ecological aspects of
628 roost selection by reproductive female hoary bats (*Lasiurus cinereus*). Journal
629 of Mammalogy 86:85–94.

630 Willis, C.K.R., and R.M. Brigham. 2007. Social thermoregulation exerts more
631 influence than microclimate on forest roost preferences by a cavity-dwelling
632 bat. Behavioral Ecology and Sociobiology 62:97–108.

633 Withers, P. C., C. E. Cooper, S. K. Maloney, F. Bozinovic, and A.P. Cruz-Neto. 2016.
634 Ecological and environmental physiology of mammals. First edition. Oxford
635 University Press, Oxford, U.K.

636 Wojciechowski, M.S., M. Jefimow, and E. Tęgowska. 2007. Environmental
637 conditions, rather than season, determine torpor use and temperature selection
638 in large mouse-eared bats (*Myotis myotis*). Comparative Biochemistry and
639 Physiology Part A: Molecular & Integrative Physiology 147:828–840
640

641 **Figure Captions**

642 **Fig. 1.** Heuristic diagram outlining the potential energetic benefit to an individual bat
643 of using periodic bouts of daily torpor rather than remaining in homeothermy at
644 ambient temperatures below the thermoneutral zone. This diagram is similar to a
645 classic Scholander curve except for one detail: while a Scholander curve illustrates
646 metabolic rate or energy expenditure at a constant ambient temperature and
647 physiological state (i.e., either homeothermy or torpor) in laboratory conditions, this
648 diagram illustrates energy expenditure when ambient temperature and physiological
649 state vary through time as they do in field conditions. Specifically, this diagram
650 assumes that (1) bats use more torpor when it is cold than when it is warm, (2)
651 ambient temperatures vary over the course of the day, and (3) ambient temperatures
652 below the thermoneutral zone are more prevalent than ambient temperatures above the
653 thermoneutral zone (see Cunningham et al. 2021). Each hypothetical relationship
654 would result in a different pattern of roost selection by animals seeking to minimize
655 energy expenditure during periods of inactivity. The black (A) line represents energy
656 expenditure over a day while maintaining homeothermy 100% of the time (i.e., never
657 using torpor). The red (B), grey (C), and blue (D) lines indicate energy expenditure
658 over a day while using some amount of torpor. For all three relationships, torpor
659 provides energy savings (i.e., the difference between the black and other lines), and
660 these savings are most pronounced at colder ambient temperatures. (B) For bats that

661 use torpor, energy expenditure *increases* at colder ambient temperatures because
662 while some energy is saved from employing torpor, maintaining homeothermy is
663 more costly at colder than at warmer ambient temperatures. A bat exhibiting this
664 relationship should select *warm* roosts to reduce energy use. (C) For bats that use
665 torpor, energy expenditure is *stable* across a wide range of ambient temperatures
666 because the energy saved from employing torpor matches (and thus offsets) the
667 increase in energy expended to maintain homeothermy at colder temperatures. A bat
668 exhibiting this relationship should not benefit from selecting either warm or cool
669 roosts, and should thus select neither warm nor cool roosts. (D) For bats that use
670 torpor, energy expenditure *decreases* at colder ambient temperatures because
671 relatively more energy is saved from using torpor even as maintaining homeothermy
672 is more costly at colder than at warmer ambient temperatures. A bat exhibiting this
673 relationship should select *cool* roosts to reduce energy use.

674

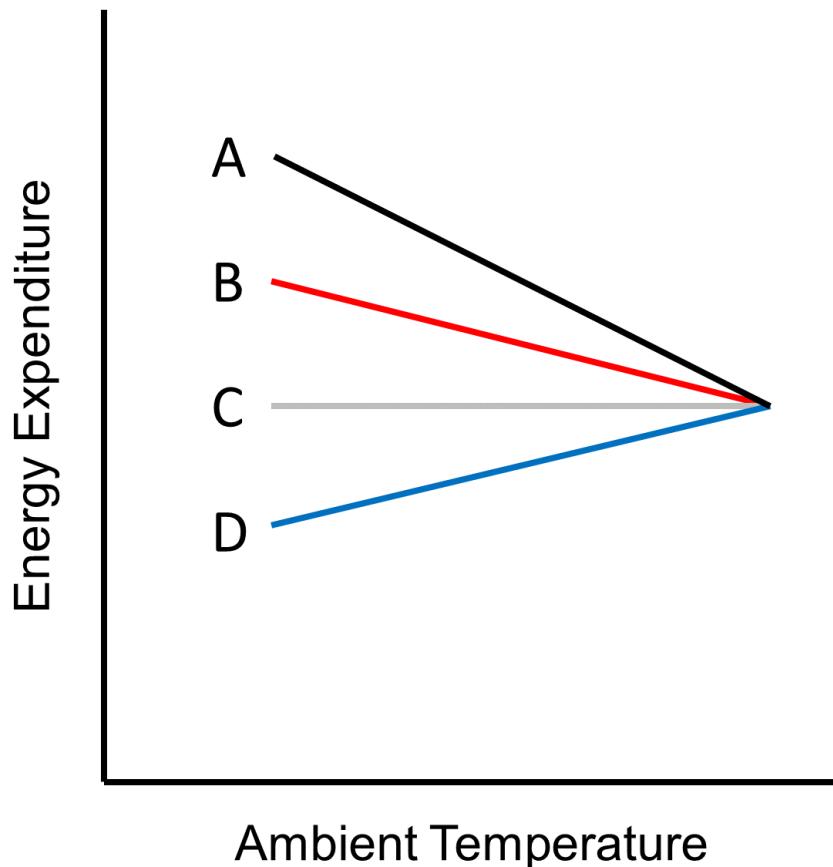
675 **Fig. 2.** Four competing sets of predictions of roost selection by a heterothermic bat.
676 Each column represents one of four sets of predictions, and each row represents a
677 statistical relationship consistent with the predictions. In column 1, energy
678 expenditure over the course of a day is higher in cool roosts than in warm roosts (1A).
679 In response, bats select warm roosts to minimize energy expenditure during the day
680 (1B). In this scenario, there should be no directional relationship between ambient
681 temperature and roost temperature (i.e., bats always select warm roosts regardless of
682 ambient temperature; 1C). In column 2, energy expenditure over the course of a day is
683 higher in warm roosts than in cool roosts (2A). In response, bats select cool roosts to
684 minimize energy expenditure during the day (2B). In this scenario, there should be no
685 directional relationship between ambient temperature and roost temperature (i.e., bats

686 always select cool roosts regardless of ambient temperature; 2C). In column 3, energy
687 expenditure over the course of a day is constant across roosts of all temperatures
688 (because bats can adaptively use torpor so that roost temperatures over the course of a
689 day have little influence on overall energy expenditure; 3A). Because energy
690 expenditure is consistent across roosts of all temperatures, bats do not select roosts
691 due to roost temperature (3B). In this scenario, there is no relationship between
692 ambient temperature and roost temperature (i.e., bats never select roosts due to
693 temperatures within roosts, regardless of ambient temperature; 3C). In column 4,
694 energy expenditure peaks at intermediate roost temperatures where bats use relatively
695 little torpor but the costs of maintaining homeothermy are relatively high (4A). In
696 response, bats select cool roosts on cool days and warm roosts on warm days (4B)
697 because torpor saves more energy in cool roosts than in warm roosts. In this scenario,
698 the relationship between ambient temperature and roost temperature should be
699 positive (i.e., bats select warmer roosts on warmer days; 4C).

700

701 **Fig. 3.** Results of our simulation of daily energy expenditure by fringed myotis over
702 the range of temperatures observed in used roosts. Each point represents one day. The
703 red points represent estimated daily energy expenditure if bats never used torpor. The
704 blue points represent our estimate of energy expenditure over the course of a day if
705 part of the day is spent in torpor (with daily duration of torpor a function of daily
706 ambient temperature as observed in our study). The lines represent loess regressions
707 of the relationship between roost temperature and daily energy expenditure. Estimates
708 of daily energy expenditure incorporating observed bat behavior are steady across all
709 roost temperatures observed during our study. The blue points in this figure
710 correspond with Row A in Fig. 2, and are most closely matched by Fig 2.3A.

711


712 **Fig. 4.** Kernel density plots comparing thermal characteristics within used and
713 available roost structures: mean temperature (A), time of day at peak temperature (B),
714 and the standard deviation of temperature (C). Blue distributions represent used
715 roosts, while orange distributions represent available roosts. These plots illustrate the
716 results of our binomial model of roost selection. Used roosts were slightly warmer on
717 average than available roosts, but their distributions largely overlapped (A).
718 Temperatures peaked slightly earlier in used roosts than available roosts, but this was
719 a function of temperatures in warmer roosts tending to peak earlier in the day ($r = -$
720 0.19 for the relationship between mean temperature within roost structures and time of
721 day at peak temperature) and their distributions largely overlap (B). The standard
722 deviation in temperatures within used roosts is very similar to the standard deviation
723 in temperatures within available roosts, although bats did not use the few roost
724 structures with very high standard deviations (C). Panel A in this figure corresponds
725 with Row B in Fig. 2, and is most closely matched by Fig. 2.3B.

726

727 **Fig. 5.** Scatter plot of the relationship between ambient temperature on a given day
728 and mean temperature within used roosts. Each point is based on observed data, and
729 represents a roost used for one day; some roosts ($n = 14$) were used on multiple days
730 and are thus represented by multiple points on this plot. The line represents the
731 regression line for this relationship and the grey band represents 95% confidence
732 intervals. Ambient temperature on a given day did not influence whether bats used
733 warm or cool roosts ($p = 0.06$; $R^2 = 0.04$). This figure corresponds with Row C in Fig.
734 2, and is most closely matched by Fig. 2.3C.

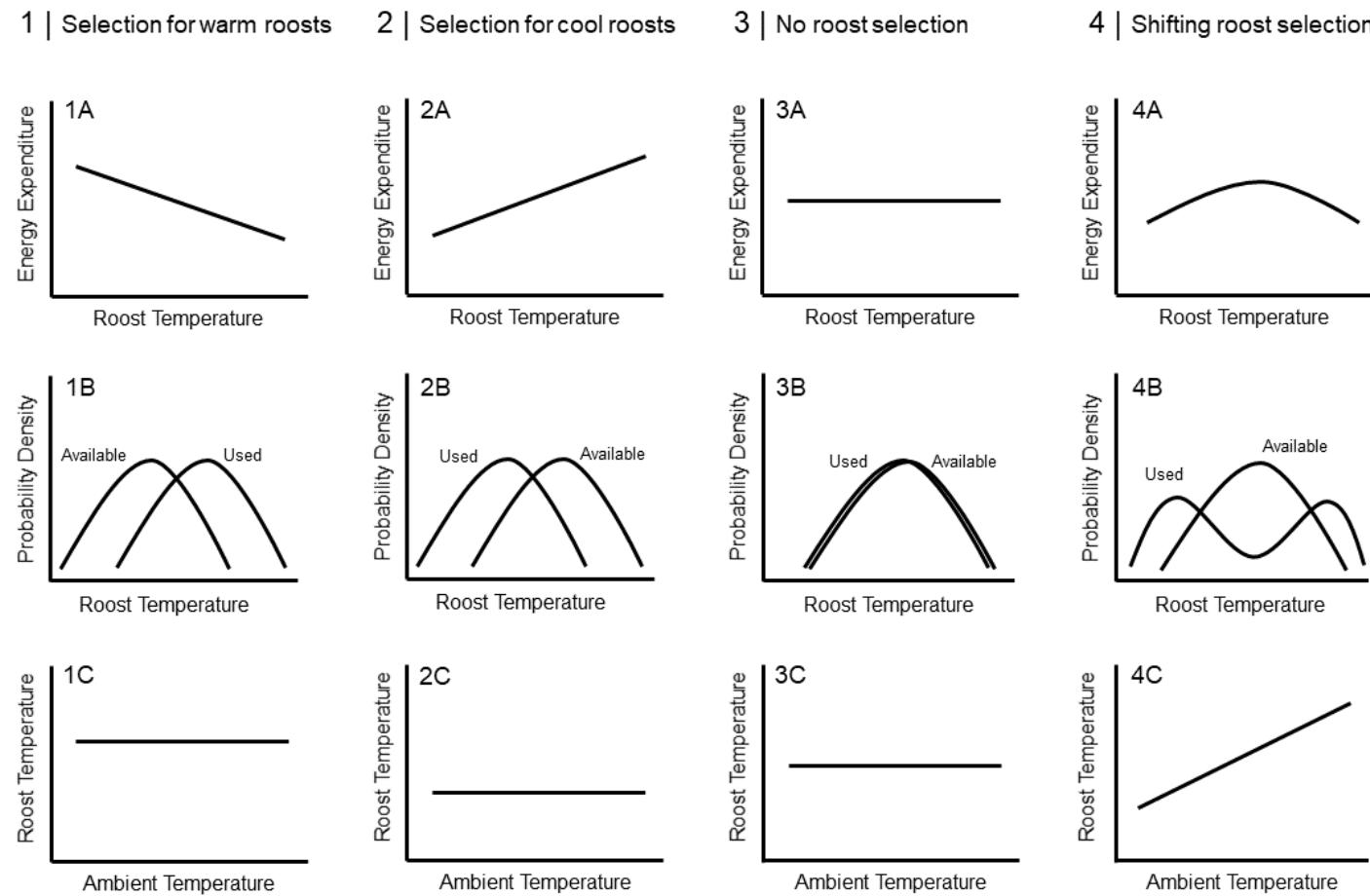

735

Fig. 1

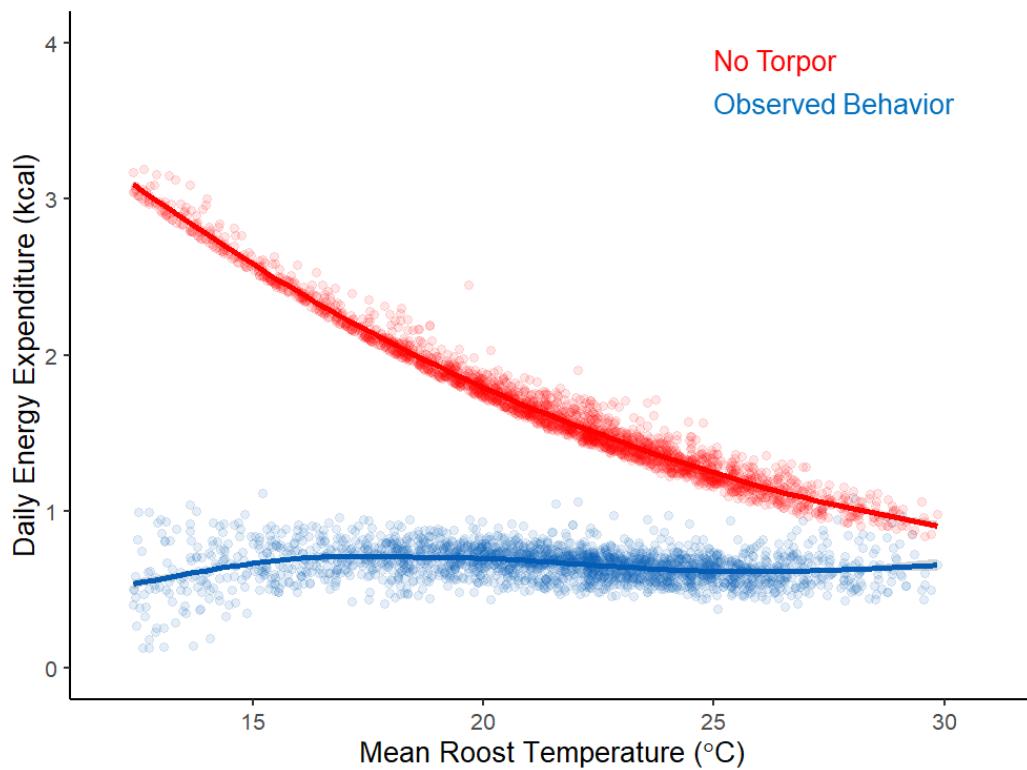

736

Fig. 2

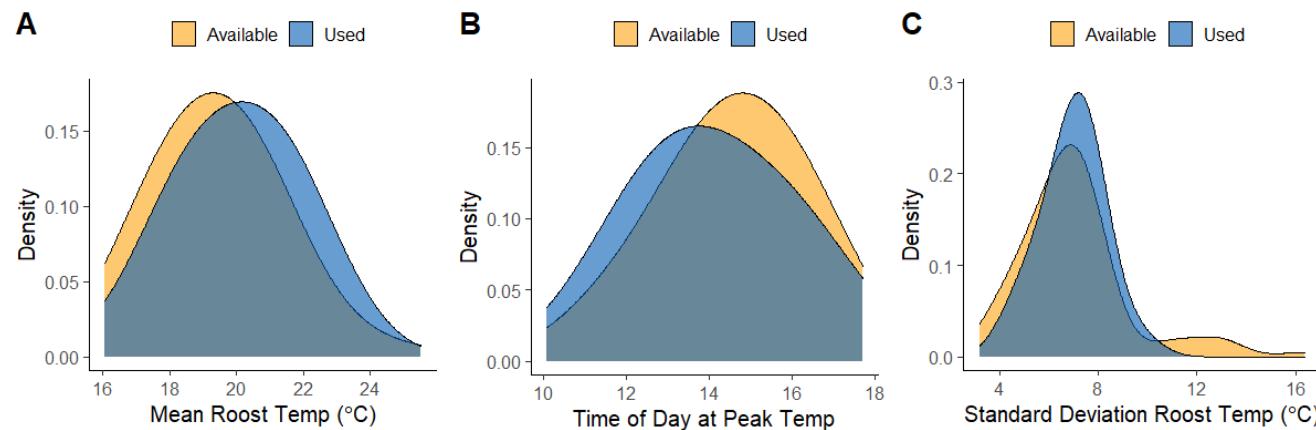

739

Fig. 3

740

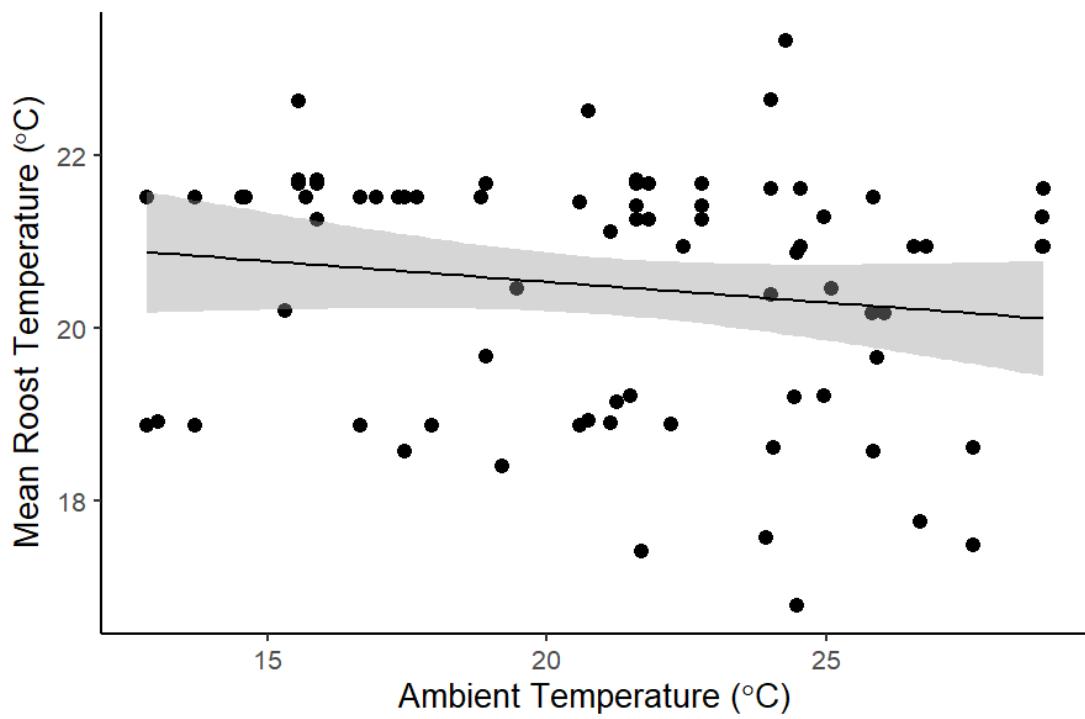

741

Fig. 4

742

743

Fig. 5

744

745 **Appendix S1: Supplementary Data**

746 **Descriptive Statistics for Rock vs. Tree Roost Structures**

747 During the day, rock crevices averaged 20.1°C (range: 16.5° – 24.2°C) while
748 tree roost structures averaged 18.8°C (range: 16.1° – 25.5°C). Daily maximum
749 temperatures within rock crevices averaged 26.1°C (range: 17.9° – 40.8°C), while
750 daily maximum temperatures within tree roost structures averaged 28.3°C (range:
751 21.0° – 52.1°C). Temperatures within rock crevices peaked at 1441 hrs on average
752 (range = 1005 – 1742 hrs), while temperatures within tree roost structures peaked at
753 1357 hrs on average (range = 1056 – 1659 hrs). Ambient temperature strongly
754 influenced temperatures within roost structures. Temperatures within rock crevices at
755 each hour (in °C) followed the equation $7.67 + 0.73 \times \text{ambient temperature}$ ($R^2 = 0.54$),
756 while temperatures within tree roost structures at each hour followed the equation
757 $1.63 + 1.00 \times \text{ambient temperature}$ ($R^2 = 0.63$).

758 Temperatures within used rock crevices averaged 20.5°C (range: 16.8° –
759 23.3°C) while temperatures within available rock crevices averaged 19.9°C (range:
760 16.5° – 24.2°C). Temperatures within used tree roosts averaged 18.6°C (range: 17.4° –
761 20.4°C) while temperatures within available tree cavities averaged 19.2°C (range:
762 16.1° – 25.5°C) and temperatures within available spaces under sloughing bark
763 averaged 18.4°C (range: 16.1° – 21.0°C).

764 Temperatures within used rock crevices peaked on average at 1414 hrs (range:
765 1105 – 1719 hrs), while temperatures within available rock crevices peaked on
766 average at 1458 hrs (range: 1005 – 1742 hrs). Temperatures within used tree roosts
767 peaked on average at 1447 hrs (range: 1125 – 1659 hrs), while temperatures within
768 available tree cavities peaked on average at 1410 hrs (range: 1120 – 1608 hrs) and

769 temperatures within available spaces under sloughing bark peaked on average at 1349

770 hrs (range: 1056 – 1608 hrs).

771 The standard deviation of temperatures within used rock crevices was 6.7°C

772 (range: 4.3° – 10.0°C), while the standard deviation of temperatures within available

773 rock crevices was 6.2°C (range: 3.2° - 11.0°C). The standard deviation of temperatures

774 within used tree roosts was 7.7°C (range: 6.7° - 9.1°C), while the standard deviation of

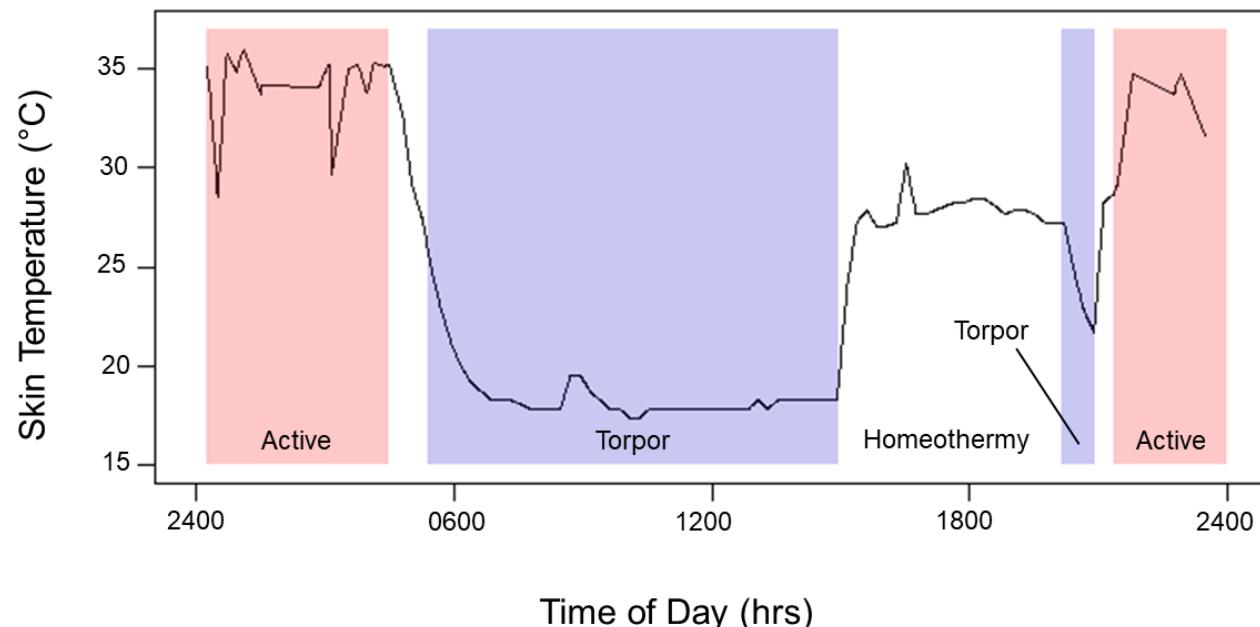
775 temperatures within available tree cavities was 8.7°C (range: 5.9° - 16.4°C) and within

776 available spaces under sloughing bark was 7.7°C (range: 6.5° - 11.0°C).

777 There was no difference in ambient temperature between days where rock

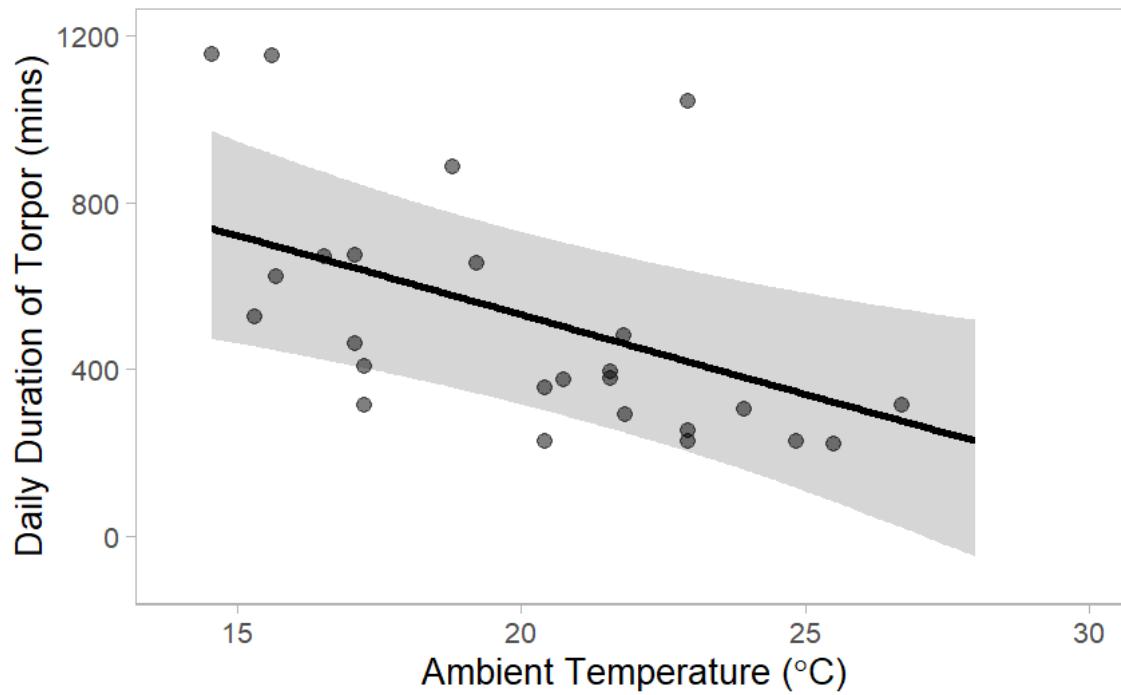
778 crevices were used and days where tree roost structures were used (Mann-Whitney U

779 = 299; $p = 0.968$).


780 **Table S1.** Information on torpor use by bats tracked during our study, including an ID number for each individual, the dates for which we have
 781 data, the mass of bats at time of capture, the timing of torpor entry and exit for morning and afternoon bouts of torpor, the duration of periods of
 782 periods of torpor in both mornings and afternoons, and the total duration of torpor across the day.

Bat ID	Date	Mass	AM Torpor	AM Torpor	Duration of	PM Torpor	PM Torpor	Duration of	Total Torpor
		(grams)	Start Time (hrs)	End Time (hrs)	AM Torpor (mins)	Start Time (hrs)	End Time (hrs)	PM Torpor (mins)	Duration (mins)
172_063	8/5/2017	6.02	517	1456	579	2013	2055	42	621
172_063	8/6/2017	6.02	451	1210	439	1910	2037	87	526
172_063	8/7/2017	6.02	2245	1557	1032	1840	2044	124	1156
172_904	6/28/2018	6.75	425	733	188	1825	2057	125	313
172_904	6/29/2018	6.75	419	1037	378	1603	2114	277	655
172_904	7/3/2018	6.75	525	944	259	1834	2029	115	374
172_904	7/4/2018	6.75	412	1446	634	1709	2122	253	887
172_904	7/5/2018	6.75	424	1458	597	1930	2043	73	670
172_904	7/6/2018	6.75	511	1016	305	-	-	0	305
172_904	7/7/2018	6.75	438	818	220	-	-	0	220
172_692	7/13/2018	6.92	445	830	225	1936	2043	67	292
172_692	7/14/2018	6.92	435	815	220	-	-	0	220
172_632	7/20/2018	8.04	426	1102	396	1916	2041	85	481
172_753	7/27/2018	8.16	133	2045	1152	-	-	0	1152
172_753	7/28/2018	8.16	2300	2031	1291	-	-	0	1291
172_453	8/4/2018	7.1	449	959	310	1915	2039	84	394
172_784	8/4/2018	7.53	442	1028	346	1951	2023	32	378
172_453	8/5/2018	7.1	459	1156	417	1613	2028	255	672

172_784	8/5/2018	7.53	445	1100	375	1852	2019	87	462
172_453	8/6/2018	7.1	441	916	275	1823	2034	131	406
172_784	8/6/2018	7.53	449	1003	314	-	-	0	314
172_453	8/7/2018	7.1	444	1041	357	-	-	0	357
172_784	8/7/2018	7.53	502	850	228	-	-	0	228
172_063	8/8/2018	6.02	2335	1427	892	1737	2009	152	1044
172_453	8/8/2018	7.1	451	839	228	-	-	0	228
172_784	8/8/2018	7.53	439	852	253	-	-	0	253
172_453	8/10/2018	7.1	456	843	227	-	-	0	227


783

784 **Fig. S1.** An example of raw skin temperature data that we used to delineate bouts of torpor. Periods of time in red blocks represent periods of
785 activity (flying, foraging, etc.), periods of time in blue blocks represent periods of torpor, and periods in white represent periods of homeothermy
786 or transition between torpor and homeothermy/activity. To delineate bouts of torpor, we used the definition suggested in Barclay et al. (2001).

787
788

789 **Fig. S2.** Scatter plot illustrating the conditional effect of daily mean ambient temperature on the total duration of bouts of torpor during the day.
790 Each point is based on observed data and represents one day. The line represents the regression line for this relationship and the grey band
791 represents 95% credible intervals around this line. Credible intervals for this conditional effect did not cross zero (parameter estimate: -37.4 min;
792 95% credible intervals: -64.0 – -12.6 min), indicating that bats spent ca. 37 minutes less in torpor per day for each additional 1°C in daily mean
793 ambient temperature between 0445 hrs and 2100 hrs.

794