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Abstract

Untargeted metabolomics enables direct quantification of metabolites without apriori
knowledge of their identity. Liquid chromatography mass spectrometry (LC-MS), a popular
method to implement untargeted metabol omics, identifies metabolites via combined mass/charge
(m/z) and retention time as mass features. Improvements in the sensitivity of mass spectrometers
has increased the complexity of data produced, leading to computational obstacles. One
outstanding challenge is calling metabolite mass feature peaks rapidly and accurately in large
LC-M S datasets (dozens to thousands of samples) in the presence of measurement and other
noise. While existing algorithms are useful, they have limitations that become pronounced at
scale and lead to false positive metabolite predictions aswell as signal dropouts. To overcome
some of these shortcomings, biochemists have devel oped hybrid computational and carbon
labeling techniques, such as credentialing. Credentialing can validate metabolite signals, but is
laborious and its applicability islimited. We have developed a suite of three computational tools
to overcome the challenges of unreliable algorithms and inefficient validation protocols: isolock,
autoCredential and anovAlign. Isolock usesisopairs, or metabolite-istopologue pairs, to
calculate and correct for mass drift noise across LC-M S runs. autoCredential leverages statistical
features of LC-M S datato amplify naturally present 13C isotopologues and validate metabolites
through isopairs. This obviates the need to artificially introduce carbon labeling. anovAlign, an
anova-derived algorithm, is used to align retention time windows across samples to accurately
delineate retention time windows for mass features. Using alarge published clinical dataset as
well as a plant dataset with biological replicates across time, genotype and treatment, we
demonstrate that this suite of tools is more sensitive and reproducible than both an open source
metabolomics pipelines, XCM S, and the commercial software progenesis Ql. This software
suite opens anew era for enhanced accuracy and increased throughput for untargeted
metabolomics.
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Figure 1l (A & B): Picking peaksin LC-MSdatais challenging. A. Shownisasdliver of a
chromatogram within +/- 200 ppm of the metabolite citrulline’'s pesk (176.1034 Da, red and
orange regions). This represents only afraction of fraction of a percent of the total datain an
LC-MS run with atypical (m/z) range of 80-1000 Da. Signals from different metabolite mass
features (colored) must be distinguished from noise (grey), as well as each other. Peak pickingis
even more complicated when hundreds of samples are pooled together, as mass and retention
time drift cause seriousissues for existing signal processing algorithms. This noise causes peak
splitting in many algorithms (Fig 1B) (red and orange regions are actually a single pesk,
citrulline)

Accurately identifying and quantifying metabolites in an untargeted fashionisan
important goal for the medical and life sciences. If achieved, it will improve the ability to
characterize biochemistry in disease and health states, improve establishment of better clinical
biomarkers (Clish, 2015) aswell as enable better understanding of biochemistry in organisms
across all kingdoms. The orbitrap (Zubarov and Makarov, 2013) and other high-resolution
machines, which offer mass resolution at the single digit parts per million (ppm) error range,
now produce larger and more complex datasets. However, detection of meaningful signals still
remains challenging because of the high degree of random noise incurred by these sensitive
instruments, as well as the prevalence of contaminants such as salts. Novel informatics
techniques are needed to increase the signal to noise ratio in the LC-MS dataiin order to
accurately identify mass feature signals of metabolites. Despite decades of method devel opment,
LC-M S driven untargeted metabolomics faces numerous challenges which have only been
partially solved (Gertsman and Barshop, 2018). In LC-MS, metabolites are identified as mass
features, or regions of signal which occur at a unigque point in the space of retention time and
mass. The mass and retention time, are both stored in vendor specific binary files which are
often converted to open source text formats (Martens et al., 2011). Unfortunately, these files are
large and unwieldy, and contain abundant noise produced by the sensitive machinery. When
existing algorithms analyze this data, the noise frequently causes peak splitting and other
detection issues. The problems of distinguishing signal from noise are amplified when large
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numbers of samples are used (dozens to hundreds of samples) because a compound must be
reproducibly tracked in each sample in order to be reliably detected in the dataset.

There are three major sources of noise that limit the ability of existing informatics
approaches to reproducibly detect compounds across samples. Two of these sources of noise,
mass drift between runs and across samples, relate to the mass spectrometry aspect of LC-MS.
The third source of noise, retention time drift, derives from the high pressures needed to be
maintained to ensure consistent elution from the chromatography column, and transient
fluctuations.

Mass Drift Decreases Resolution

Even with high resolution instruments, maintaining a mass resolution within intended
rangesisdifficult (Gorshkov et al., 2011). In order to resolve metabolites, mass spectrometry
must be both accurate, meaning an ion of acertain mass will be detected at that mass using the
instrumentation, and precise, meaning that repeated measurement of the given mass closely agree
with one another across time (Brenton et al., 2010). Effective and frequent calibration is
required to maintain suitable accuracy and precision. Initial calibration ensures that the machine
accurately resolves a target ion to within an acceptable range of error, such as +/- 5 parts per
million (ppm). To put this sensitivity in perspective, effective calibration at 5 ppm accuracy
would ensure that all signals associated with a compounds of mass 100 Dawill fall within
99.9995 Dato 100.0005 Da. Owing to practical limitations, high resolution mass spectrometers
are usually calibrated once aweek. A typical machine may then drift up to 1-3 ppm aday from
its point of calibration, causing the precision to degrade (citation). Over time, this drift becomes
substantial, effectively “smearing” mass signals between calibrations and reducing resolution.
Frequent calibration isan imperfect solution to massdrift. Thisis because the accuracy of a
single calibration attempt, while generally within 2-3 ppm (Hecht et al., 2019), will depend on
uncontrollable external factors such as fluctuations in temperature, humidity or other stochastic
variables. Thisresultsin asubtle batch effect, as each week’s calibration may disagree with one
another by up to several ppm, causing decay of resolution. Taken together, variability in
calibration efficacy and the degradation of precision between calibrations, are serious problems
that reduce the resolution of high resolution mass spectrometers when datasets of hundredsto
thousands of samples which must be run on timescales of weeks to months are being analyzed.
Using spike-ins asinternal standards is not an ideal solution to capture this variation, as the set of
standards will be unlikely to match the diversity of compounds detect by untargeted
metabolomics, and thus can introduce measurement bias. Additionally, these standards will be
prone to their own peak picking concerns which would interfere with the ability to detect drift.

Stochastic Noise Signals Interferewith Mass | dentification

In addition to the smearing of signals from mass drift, the production of stochastic noise
signals makesit difficult to resolve the masses of true mass features from noise (Du et 2008).
Owing to the extreme sensitivity of high-resolution mass spectrometers, spurious m/z signal
intensities are produced stochastically (Kaur et al., 2006). These signals are distributed
randomly across masses, and their intensities range between 0 to 10"5 counts, overlapping with
the abundance of many metabolites. The signal-to-noise ratio in single samplesis frequently too
low to delineate metabolite masses from noise, causing a proliferation of dropouts as the number
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of samplesin a dataset increases. The high prevalence of missing values due to technical reasons
limits the detection of important biology and has required statistical solutions (Wel et al., 2018).

Chromatography Performance I slimited by Retention Time Drift

Once the mass of a metabolite isidentified, the compound’ s retention window in a
chromatography column (such asHILIC or RPLC for polar and nonpolar compounds,
respectively) must also be determined in order to define metabolite as a mass feature. Using
retention time as an additional dimension of measurement enables separation of isomers (Pan et
al., 2005). Consistent retention times can be difficult to maintain across multiple samples due to
the high required pressures and the impact of transient temperature and pressure gradients
(Asberg et al., 2017). Shiftsin retention time can also cause fal se peak-splitting events and
dropoutsin large datasets.
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Existing algorithms such as centWave essentially view the 3-Dimensional mass feature peaks as
2D ion heatmaps, in which 2 dimensional sliding windows are fit around plausible regions of
metabolite signals regions of interest (ROI's). While powerful, thisimperfect approach can split
signals (Citrullineis split into two features) as noise accumulates across samples as well as miss
true metabolites if filtering parameters are too stringent. Mass feature boundaries depicted in
Figures 1 & 2, were determined using Progenesis QI on a previously published, 600 sample
human microbiome dataset (Lloyd-Price et al., 2019).

Limitations of Existing M ethods
to Cope with Noise
Existing peak-picking algorithms, such as centWave, identify metabolites by extracting

signals concentrated in a unique window of mass and retention time. These are called regions of
interest (ROI) (Tautenhahn et al, 2008). centWave attempts to overcome noise in both domains
(mass drift or retention time drift) by using a 2-dimensional binning heuristic to define ROI’s,
with the parameters of this binning procedure allowing variability in mass and retention time
across samples. However, this paradigm creates serious trade-offs between sensitivity and
specificity when defining ROI’ s (Figure 2). If noise thresholds are set too stringently, the
number of metabolites detected plummets. Conversdly, if thresholds are too relaxed, noise
regions are turned into false positive metabolite predictions. The strategy identifying metabolites
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as ROI’ s through the 2-dimensional bins compounds uncertainty in both the mass and retention
time domain and forces unacceptable tradeoffs between sensitivity and specificity, regardless of
how parameters are determined. This causes both a high number of dropouts and false positives
in large datasets. While companion software (such as IPO) can be used to tune parameters for
these algorithms, performance gains will be limited by the drawbacks of ROI based algorithms.
For example, XCM S, an open source software which implements centWave, finds ROI’ s in each
fileindividually and then attempts to align predictions across multiple samples (Alboniga et al.,
2020). This strategy of analyzing individual files separately can propagate errors, even when
optimize parameters are used. A new paradigm, which rigorously models and fully accounts for
noisein LC-MS data, addressing each source independently, is needed to define metabolite mass
features.

Big-Data oriented Solutions:

One of the factors limiting approaches to handling metabol omics datasets was the large
file sizes associated with each run. Increased availability of large-scale computing resources has
made it possible to design novel peak picking algorithms which can effectively handle the
multifaceted sources of LC-M S noise. We propose a hovel software suite (isolock,
autoCredential and anovAlign, from here on called the IAA suite) that is capable of analyzing
large scale LC-M S datasets (hundreds to thousands of files) in asingle analysis, thereby
exploiting statistical features of the datato distinguish signal from noise in ways that are only
evident when LC-M Sfiles are pooled. This software suite uses 3 novel algorithms to first
correct for mass drift (isoLock), then identifies masses most likely to belong to true metabolites
(autoCredential), and, finally, correct for retention time drift (anovAlign) to refine the signals
associated with these masses into high confidence mass features.
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Figure 3: isopairs are signals separated by a mass shift corresponding to the approximate mass
difference between 12C and 13C. This mass can now be determined to multiple decimal points
using HRMS. Spread between peaksis not to scale.

RESULTS

Growing the signal to noiseratio: Merged mass spectra and isopairs

When multiple samples are merged together into single mass spectra, there is an extreme
amplification of signals associated with both metabolites (MQ's) and their substantially less
abundant isotopologues (M1's). Thisamplification of isotopologues makesit possible to
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correspond mass-intensity signals of a metabolite with the signal of itsisotopologue. These pairs
of corresponding signals between a metabolite MO and M1 will be equivalent to the mass gain
derived from a 13C atom (1.00336 Da), which isresolvable using HRMS. These pairs of mass-
intensity signals between metabolite MO’'sand M1's are known asisopairs. Because the masses
determined by HRM S are accurate to several decimal places, and isopairs require two signals
spaced at the exact mass of a 13C atom, the probability of two noise signals belonging to an
isopair is extremely low.
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L egend 4A: Citrulline, an abundant metabolite, demonstrates
substantial mass drift across a set of 600 human fecal microbiome samples analyzed in batches
across multiple days. This causes peak splitting when analyzed by existing algorithms,
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Legend 4B: After correction for drift using the algorithm isoLock, the datais resolvable as a
single peak.

I solock usesisopairsto correct for massdrift
Although signal to noise ratios increase when mass spectra are pooled together, mass drift
interferes with successful alignment of signalsin amerged spectra. When spectrafrom large
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batches are pooled together, mass signals can spread well outside the intended limits of high
resolution mass spectrometers. Fig 4A illustrates an example of mass drift across a dataset of
hundreds of samples.

Figure5:
Isopairs can quantify deviations in the measured mass from true mass.
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Figure6:

The determination by isoLock of a2 ppm mass drift in aquery sample relative to reference (via
isopoairs) is shown. Isopairs are calculated in afashion such that the MO will belong to a
reference file, and the M1 component will belong to a query file, with the separation between
isopairs being allowed to vary across plausible mass shifts ( + the mass gain of 13C atom). The
correct shift (2 ppm) isthat which produces the highest number of isopairs.

Isopairs, however, can be used to capture the effect of drift across the mass spectra so that
it can beremoved (Figure 5). When mass drift is present, the separation between isopairs will no
longer be equal to the mass gain of 13C atom, but 1.00336 + the mass drift (in ppm). The correct
amount of mass drift between sets of samples can be determined by first selecting a sample early
in theinjection queue as areference. The number of isopairs generated (across all masses) by
the mass gain of a 13C atom + plausible mass drift values (+/- 20 ppm) can be calculated (Figure
6). Isolock determines the optimal mass drift value as that which maximizes isopairs and all
mass values can then be adjusted by thisvalue. After alignment of spectraviaisolLock, spectra
from hundreds to thousands of samples can be pooled into a single merged mass spectrain which
signal to noise ratios are dramatically enhanced (Figure 4B).
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autoCredential uses background distribution and isopairsto identify high priority mass-
intensities on a mer ged mass spectra

Figure 7: Signals around a metabolite (M0) and its isotopologue (M 1) increase as samples are
pooled together in a merged mass spectra. Because noise signals are random, noise regions do
not show the dramatic growth in signal as samples are pooled.

In atypical large-scale LC-M S metabol omics experiment, the combined mass spectra of
hundreds of samples may contain billions of signals. However, these correspond to only
thousands (at most) of metabolites (Mahieu et al., 2014). Thus, the vast majority of mass-
intensity signals are noise. While the sheer number of noise signalsis daunting, the statistical
power resulting from a merged mass spectra enables effective filtering of metabolite masses
from noise. The signal to noise ratio of a merged mass spectrais maximized by correcting for
drift using isolock prior to merging spectra, as signals hyperconcentrate around the mass of valid
mass features (Figure 7). While the vast majority of signalsin a merged mass spectra are noise
by raw number, they are spread out across the many millions of possible masses detectable by a
high resolution instrument. Thus, their information density islow.

Dividing a merged mass spectrainto .0001 Da bins (well within theidealized 1 ppm level
of resolution for all relevant masses) and resampling at random, demonstrated that a single .0001
Dabin rarely contains more than several dozen noise signals even when hundreds of files are
merged (Figure S1). Mass bins of this same size (.0001 Da) associated with either a metabolite
or even its related and less abundant species (isotopes and adducts), however, will contain
hundreds to thousands of signals. Thus, purely noise regions of a merged mass spectra can be
pruned by removing any .0001 Da bin with less than several dozen signals. In our test set of 600
human fecal metabolome samples, this reduced >2 Billion masses to ~1 million masses. The
merged mass spectra, however, still contains many artifactual signals, such as those belonging to
inorganic salts. These can be removed by keeping only mass signals which are members of
isopairs. Even if asingular region escapes denoising, the probability of detecting noise as a peak
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is especially low on a denoised mass spectra, as doing so requires two noise signals to occur at
the exact interval equivalent to mass gain of a13C atomislow.

Calculating isopairs reduced the number of plausible masses ~another order of
magnitude. As highly abundant metabolites will spawn multiple distinct isopairs, collapsing
isopairs within 1ppm yields a realistic number of metabolite masses (several dozens of
thousands).
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Figure 8: In the test dataset, we further checked to seeif the masses were present in the
majority of samples (>300), finding 80% of the masses met that criteria. To ascertain how many
samples were required for autoCredential to effectively find isopairs for compounds, we
resampled random combinations of the 600 runs of size 3-600 and tracked how many of our
high-confidence metabolites had isopairsin each resample. We show that, on average, half the
signals have isopairs with only two samples pooled into a merge mass spectra and that this
fraction increases to eighty percent by the time 10 samples included in the merged mass spectra.
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anovAlign: Accounting for retention time drift to identify massfeatures
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Figure 9: Theretention time of citrulline shows visible drift across the first batch (injection
date 1) and the final batch (injection date 16).

Although isolock corrects for mass drift, and autoCredential ensures that masses belong
to metabolites (as opposed to inorganic salts - which would lack an isopair), retention time drift
still makes it difficult to define the bounds of a mass feature. Once masses are accurately
identified, chromatogram slices around a mass can be effectively extracted on a mass-specific
basis for compound specific modeling. anovAlign uses signal to noise thresholds and
identification of localized regions of scans whose signals are correlated to identify the likely
region chromatographic peak of the signal. Once identified, the drift in each sample from the
peak of areference sample can be modeled as the trandation of a gaussian, via anova (Figure 9).
Thisisaccomplished by running a t-test on the array of scan numbers for all samples compared
to areference sample (chosen as that with the highest signal). If the p-valueisless than .05, the
difference between the two means is subtracted from the query file. A signal-to-noisefilter isre-
run on this drift adjusted chromatogram slice to identify the refined mass feature bounds.
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Figure 10 a: Before application of our pipeline (isoLock, autoCredential and anovAlign) the
diffuse sgnal around a metabolite mass (such as citrulline) has substantial mass and RT drift
which makes it difficult to call the mass feature correctly. This noise causes splitting in mass
feature prediction using commercial software (the bounds determined by Progenesis QI are
shown).

@

g 176.108

=) : .
2 Signal Density
@ 176.106- 50

T 40

< l go

x 10

8 176.104

ad ——

3 =

@

{ CoOwg
176.102

1500 1600 1700 1800 1900 2000
anovAlign Adjusted Scan

Figure 10 b: After running our full pipeline and examining the predicted bounds around single
returned citrulline mass feature, it is clear that mass drift is corrected by isoLock, the massis
correctly called by autoCredential, and the retention time bounds are accurately called using
anovAlign (correctly identifying the citrulline signal as a single mass feature).
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Examining the prediction for citrulline mass feature using our suite (isolock,
autoCredential, anovAlign) makesit clear that the paradigm of data pre-polishing (isoLock)
followed by validation of masses viaisopairs (autoCredential) and, finally, delineation and
cleaning of the retention time bounds via anovAlign (Figures 10a and 10b). Considering the
signal of amass feature, such as citrulline, in isolation effectively captures the sequential
progression of data through our pipeline. Much of the noise likely responsible for mass feature
splitting in Progenesis QI prediction (Figure 10) resides in the mass domain. Oncethisis
resolved, autoredential validates the correct mass using isopairs and the complete signal
effectively falls out, allowing anovAlign to define the final mass feature boundaries (Figure
10b). This combined workflow of polishing AND feature selection effectively takes care of the
“noisy datain, noisy data out” conundrum of traditional LC-M S software pipelines. While
citrulline provides a good proof of concept as single signal in alarge dataset, it isimportant to
view the global performance of these algorithmsin large, complex datasets.

We present analyses of two datasets that reflect the ability of our software to capture
biologically important metabolite signals. The first dataset isare-analysis of apreviously
published untargeted metaoblomics study consisting of hundreds of human microbiome samples.
Using this dataset, we show that the suite of isoL ock, autoCredential and anovAlign detects the
majority of mass features found through a commercial program, Progenesis Ql. We also show
that a number of mass features, validated viaisotopologue signals, are uniquely detected using
our software (Figure 11). The second dataset isa smaller untargeted plant metabolomics
experiment, but contains 4 replicate samples from 3 Setaria viridis genotypes under two watering
conditions at 3 time points, allowing for the comparison of the percentage of variance accounted
for by the experimental factors. Using this second dataset, we show that our pipeline
outperforms the open source software, XCMS, in terms of detecting numbers of mass features
and those with high levels of variance explained by genotype, time and treatment (Figure 12).
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Figure 11: High Priority Mass-Feature Signalsat +/- 15 ppm and +/- 3.5 min

Analyzing alarge (600 samples) previously published human clinical dataset (Lloyd-Price et al.,
2019) demonstrates that the isolock, autoCredential and anovAlign suite captures the majority of
mass features predicted by a commercial software, Progenesis Ql. We also show that our
pipeline predicts thousands of additional mass features.

Application:
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Explained Variance in Metabolites Depending on Analysis
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Figure 12: The lAA suite outperforms XCMS. Using a plant dataset with replicates and three
experimental factors (genotype, treatment and time) enables the calculation of variance explained
by the factors. A. Number of compounds detected plotted against the variance explained by the
modéd (Intensity ~ genotype + time + treatment + genotype* time* treatment).

M ethods

Current peak picking paradigms identify metabolite mass features as 2-dimensional
regions of likely metabolite signal known as regions of interest (ROI's). The first innovation of
the IAA suiteisto recognize that this problem can be rephrased as a much smpler one: simply
taking the intersection of two arraysin order to identify isopairs. Mass spectrometry data are
typically reported to multiple decimal points beyond the resolution of a high-resolution mass
spectrometry machine. At even single ppm resolution, only the 4™ to 5 decimal points are
relevant for effective mass resolution within relevant small molecule mass ranges (80-1200 Da).
Thus, a complete mass spectra can be effectively discretized by rounding every mass-intensity
signal to the fifth decimal point without aloss of resolution. This discretization is critical for
determination of important statistical attributes, without incurring information loss.
Discretization also enables rapid calculation of isopairs. In order to provide an interface between
raw mass spectra and the IAA suite, vendor binary converting libraries (RawFileReader 5.0) are
used to convert .raw files to tab delimited text files of the following format: The IAA suite
utilizes extensive parallelization to manage the hundreds of gigabytes to terabytes of data
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contained in alarge scale LC-M S study. Parallelization and sequential execution of all stepsin
the IAA suite (whether accomplished via Python or R) are managed via a Python dask workflow
and interface with a robust job engine (such as HTCondor).

"File" "Mass" "Intensity" "scan" "polarity" "Mstype"
"20180920_T6A16-11001_HILIC.rawoutput.txt" 125.043518066406 850.619384765625 0.0042801486 "Positive" "Ms"
"20180920_T6A10-11001_HILIC.rawoutput.txt" 125.045806884766 B270.4052734375 0.0042801486 "Positive" "Ms"

Figure 13: Input to the IAA suite requires .tsv’ s with columns containing only data relevant to
construction of a merged mass spectra and subsequent peak picking (name of file, Mass,
Intensity, retention time, polarity and MsType)

Shift = 1.00336
Al = Table[Mass]
A2 = Table[Mass] — Shift

Isopairs = Al m A2
Figure 14: isopairs, which are used extensively in the |AA suite, are calculate by determining

signal pairsin raw mass spectra with mass separation equivalent to the mass gain between a 12C
an 13C atom (1.00336 Da)

To accommodate large-scale calculations, these .txt files are then converted to hdf5 files
using the python package Vaex. Hdf5 isahierarchical dataformat that allows rapid
mani pulation of larger-than-memory datafiles. These hdf5 files are manipulated in python
(Python 3.7.4) for all subsequent calculations involving isopairs (Figure 14). Isopair calculations
on amass spectra involves two arrays representing the mass values from a spectra containing
data from one or more hdf5 files. Isopairs are calculated viathe following operations, which are
essentially set intersections. Isopairs are fundamental to isoLock and autoCredential.
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Algorithm 1 isoLock

1: procedure ISOLOCK(Re ference, Query) > Reference and Query
2 Optimnal Shi ft =0

5 Most]sopairs = ()

4 while —20ppm < Drift < 20ppm do = Iterate through drift values
G Separation = 100336 + Dvift  © no longer JUST C13 mass gain
T Al = Re ference[Mass| > Set up isopair caleulation
o9 A2 = Query[Mass]|

10: A2 = A2 — Separation

11: Isopairs = A1{) A2 = Caleulate isopairs
12:

13: How Manyl sopairs = length({sopairs)  © Get number of isopairs
14:

15: if HowManylsopairs > Most!sopairs then

16:

17 Mostisopairs = HowManyl sopairs

18: Optimal Shift = Drift = Update shfit with most isopairs
19: end if
20
21 end while
22 return MostIsopairs, Optimal Shi ft

23: end procedure

Figure 15: isopairs are used to determine mass drift between a reference and query sample. One
array used in the calculation of isopairs(Al) contains the mass signals in the reference sample,
while another (A2) contains the mass signalsin the query.

IsoL ock Calculations:

During isoLock (Figure 15), isopairs are calculated in an iterative fashion. Alisthe
array of masses from areference file, while the array A2 contains the masses from a query file.
In each iterative calculation of isoLock, isopairs are calculated between A1 and A2. In each
iteration, the shift between isopairswill vary across arange of 1.00336 (the mass gain of a 13C
vs 12C element) +/- plausible drift values between samples (up to 20 ppm). The most likely
value of drift isthe shift which maximizes the number of isopairs. Thisdrift valueisthen
subtracted from the query file in order to align it with the reference This drift valueisthen
subtracted from the original mass and added as a new column in the hdf5 file, providing a
column of drift corrected mass. isoLock can be run on each filein parallel, allowing rapid drift
correction of thousands of files. isoLock isimplemented in Python, using the Vaex library to
mani pulate hdf5 files.
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Algorithm 1 autoCredential

1: procedure AUTOCREDENTIAL > Read in multiple spectra to merge
2 mergedMassSpectra

3: for <A in each file> do

4 <MergedMassSpectra = MergedMassSpectra + A>

5 end for

Shift = 1.00336
6: Al = mergedMassSpectra/Mass|
7. A2 = mergedMassSpectra|Mass| - Shift
8: Isopairs = Al () A2 > Calculate isopairs from merged spectra
9: end procedure

Figure 16: In autoCredential, isoLock adjusted samples are used to create a merged mass
spectra, and isopairs are used to identify only mass signals with corresponding M1’s.

autoCredential

autoCredential (Figure 16) uses filesisoLock corrected filesin to create a merged mass
spectra. Isopairs are used to identify metabolite masses from the merged mass spectra. The
merged mass spectra object is created and manipulated in Python viathe Vaex and Pandas
libraries. In addition to containing the MO and M1 signals needed to calculate isopairs, the
merged mass spectra also contains noise regions. However, using the enhanced signal to noise
gualities of a merged mass spectra, these are easily identified and removed viadenoising. Thisis
accomplished via permutation testing in R. Resampling of randomly generated masses
determines the median signal count in .0001 Da mass bin in noiseregions. Bins of the same span
(.0001 Da) which do not surpass this threshold are removed. From the remaining space of
signals, isopairs are calculated, thereby determining the small fraction of masses associated with
carbon containing mass-features. Because single metabolite may create multiple isopairs,
masses within 1ppm are collapsed (the .00001 Da resolution of each isopair iswithin this 1ppm,
range for relevant small molecule masses).


https://doi.org/10.1101/2021.12.05.471237
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.05.471237; this version posted December 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Algorithm 1 Create Bounds via Correlation

1: procedure DrawBounDs(EIC) = Take in an EIC
2 previousScanWindow = ()

3

4 for <scanWindow in EIC> do = Loop through each scan window
B correlation = cor(scanWindow, previousScanWindow)

6: if correlation > threshold then

T: Add scans to correlatedSecans

8: end if

9 previous ScanWindow = scanWindow > Update window
10: end for
11:
12: collapsedScans = collapse(correlatedScans)
13: return collapsedScans

14: end procedure

Algorithm 2 Utilize ANOVA
1: procedure ANOVALIGN(ELC) = Read in EIC
2: peak Regions = FindCorrelated Regions(E1C)
Reference = EIC[referenceSample] & Reference = 3rd highest signal
3 IECAdjusted = EIC

4

5 for <sample in samples> do = Run ANOVA on each tertile

6: Query = EIC|[samples]

T: shilt = t.test(Re ference, Query) = Get shift

8: TEC Adjusted|sample|[scans] = TECAdjusted|sample|[scans] —
shift = Subtract shift

9: end for

1

11: RevisedPeak Regions = FindCorrelated Regions(£1C)
12: end procedure

Figure 17: In anovAlign, correlations across local regions of scans are first used to draw
approximate boundaries (Algorithm 1). Within these boundaries, ANOV A isused to align
signalsto areference (Algorithm 2) before refined bounds are drawn on aligned signals using
Algorithm 1.

anovAlign

The anovAlign (Figure 17) algorithm models retention time drift on an individual mass-
feature by mass-feature basis. Once masses are accurately determined using isoLock and
autoCredential, regions of the chromatogram around each mass (+/- 5 ppm) can be extracted
from each sample. In the IAA suite, chromatogram slices are extracted mass by mass from each
sample's hdf5 file and concatenated into merged EIC slices. Each merged extracted ion
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chromatogram (EIC) slice containsthe signal (+/- 5 ppm) associated with amass across ALL
samples. The extraction of these regions is parallelized by file, using the Python package Vaex
to query each hdf5 file.

Modeling drift on a metabolite by metabolite basis in each merged EICslice avoids the
common compromises of state of the art warping algorithms such as obiWarp (Prince and
Marcotte, 2006) or the more refined warpGroup (Mahieu et al., 2016). Warping algorithms,
such as obiWarp, attempt to align large regions of chromatogram to one another using global fits.
However, the actual drift function for individual metabolites varies substantially across
compound classes within these regions. Thus, corrections calculated by current warping
algorithms can be biased in favor of certain mass-features, at the expense of others.

anovAlign first denoises amerged EICslice (keeping only the 95™ percentile of scans).
As an analyte flows through its retention time window, adjacent regions will be statistically
similar to each other. This means that adjacent windows will contain data from many of the
same files, despite some dropouts, and these signals will correlate with each other. Preliminary
bounds (prior to drift correction) are drawn by treating a denoised, merged EIC dlice as agrid of
5 scan intervals, and identifying adjacent regions that correlate with one another. Within each of
these regions of a potential mass-feature, drift is modeled via ANOV A to produce refined
bounds.

In order to implement ANOV A towards alignment, the sample with the third highest
signal (to avoid potential outliers) within aregion of correlated scansis chosen as an alignment
reference. Thesignal in potential mass feature region isfirst divided into thirds by intensity.
Signals are divided into tertiles for alignment to minimize the effect of intensity dependent drift.
Within each tertile of intensity, the average difference in scans between a query sample and the
reference is determined viathet.test() function in R (ANOVA). Thisdifference (if significant) is
subtracted from the query, in order to align the query signal with the reference. Following the
alignment within each provisional mass feature region, final bounds are determined by again
searching the merged EIC dlice for correlated scan windows, thistime using the ANOVA
corrected scans. In addition to capturing the intuitive notion of retention time drift asthe
trandation of Gaussians, this approach is not constrained to Gaussian profiles, but merely
assumes that drift itself is the introduction of an (approximately) Gaussian source of error.
Modeling individual masses in isolation avoids propagation of biases across metabolites,
allowing errors to become independent and randomly distributed at alarge scale. Structuring the
problem in this fashion also sets the stage to easily incorporate standards-based adjustmentsto
anovAlign.

Data Production and Procurement
Broad dataset

600 positive mode HILIC raw Thermo-Fisher QE files were downloaded from
metabolomics workbench (project ID: ST000923) from the experiments described in this
manuscript (600 human microbiome samples from Lloyd-Price et al., 2019 ). RawFileReader
version 5.0 was used to convert binariesto .txt filesin order to run the IAA suite. Previously
published mass features for the positive mode HILIC quantified from the Progenesis QI were
downloaded from the supplementary data at: https.//www.nature.com/articles/s41586-019-1237-
9. In order to resolve peak splitting in the Progenesis QI, a custom R script was used to collapse
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mass features within 2 minutes and 5 ppm of one another into a single mass feature, averaging
retention time and masses across collapsed mass features.

Plant Growth Conditions, Harvesting and Data Analysis

As part of alarger water deficit study, 216 Setaria plants representing 3 genoptypes
(TB12-48, A10, TB12-201,) were grown at the Donald Danforth Plant Science Center for 7 days
prior to transplantation to the Bellwether phenotyper system (Fahlgren et al., 2015). Plants were
allowed to equilibrate to Bellwether conditions for 6 days before a water deficit treatment (45
percent of field capacity) was implemented on half of the plants. Plants were then harvested at
the following timepoints following the equilibration period: 4 Days, 6 Days and 8 Days. Leaves
from 3 plants of the same genotype, treatment and timepoint were pooled into a single test tube
upon harvesting in order to average out individual plant characteristics. Thus, the 216 plants
across the 3 genotypes, 2 treatments and 3 timepoints resulted in 72 test tubes (3 genotypes
* 3timepoi nts* 2treatments* 4 replicates) * 3 = 216. Plants were taken off the phenotyper and the
the youngest fully emerge leaf was removed at the node, placed in a 15ml centrifuge tube with
stainless steel ball bearings, and placed in liquid nitrogen, until it could be stored at -80C. Then,
a paint shaker was used to grind the samples, keeping them cold with liquid nitrogen. Finally,
they were aliquoted into 2 ml tubes, weighed, and submitted to the Donald Danforth Proteomics
and Mass Spectrometry Facility (PMSF).

LC-MSAnalyss

Samples were resuspended for RPLC by addition of 50 uL of 30% methanol. For HILIC,
samples were resuspended in 50 pL of 80% methanol. For both analyses, plate d with
resuspension solvent were sealed with RAPID EPS pierceable sealing mats (BioChromato,
Kanakawa, Japan) and shaken at 900 rpm at 10°C for 15 minutes on an Eppendorf Thermomixer
then centrifuged 2 minutes at 3800 xg to collect the dissolved metabolites at the bottom of the
wells and pellet any remaining particulates before transferring 45 uL of each sample to anew
well-plate, sealed and stored in a4°C cold room until use (1-2 days). Just prior to analysis, an
additional 15 uL of methanol was added to each well.

LC-M S was performed using a custom built 2D microLC Ultra (Eksigent
Technologies, Dublin, CA) attached to a Q-Exactive mass spectrometer (Thermo-Fisher
Scientific, San Jose, CA) using electrospray ionization. Data were acquired in either polarity
switching full MS only or in data-dependent MS/M S acquisition mode. Full MS scanswere
taken at aresolution of 70,000 (FWHM at myz 200) with and automatic gain control setting of
500,000 charges and a maximum inject time of 100 ms. MSM S scans were taken at aresolution
of 17,500 (FWHM at m/z 200) with and automatic gain control setting of 50,000 charges and a
maximum inject time of 50 ms. The top 12 precursors from the previous full M scan were
selected with an isolation window of 2 and fragmented with stepped collisional energy of 15, 25
and 35 NCE. Positive ion mode scans were taken with a spray voltage of 4.2 kV while negative
ion mode scans used a spray voltage of 3.9 kV. The sheath gas flow, aux gas flow, aux gas
temperature and capillary temperature settings were the same for all scans at 15 units, 5 units,
50°C and 250°C, respectively.
For HILIC analysis a custom packed (Higgins Analytical, Mountain View, CA)

0.5 x 150 mm Zic-pHILIC (Merck-Sequant, Darmstadt, Germany) column with 5 um particle
sizewas used. The solvents used were 10 mM ammonium bicarbonate in water (A) and 10 mM
ammonium bicarbonate in 95% acetonitrile. The gradients began with ahold at 100% B for two
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minutes followed by a linear ramp to 85% B over one minute, then alinear ramp to 50% B over
13 minutes, followed by alinear ramp to 30% B with a hold for one minute before ramping back
to 100% B over two minutes with a re-equilibration time of 10 minutes. For RPLC analysisa 0.5
x150 mm TARGA C18 column with 3 um particle size was used (Higgins Analytical, Mountain
View, CA). The solventsfor RPLC were 0.1% formic acid in water (A) and 0.1% formic acid in
acetonitrile (B). The gradient consisted of an initial hold at 2% B for 3 minutes followed by a
linear ramp to 100%B over 10 minutes and a hold for 3 minutes before ramping back to initial
conditions over 3 minutes with an 11-minute re-equilibration time. Both methods used a flow
rate of 15 puL/minute and injection volume of 2 uL.

Data Analysis

.raw files were converted to .txt files using RawFileReader version 5.0 in order to run the IAA
suite. Thermo Fisher .raw files were converted to mzML format via msConvert (ProteoWizard
release: 3.0.20287), downloaded from: https.//hub.docker.com/r/chambm/pwiz-skyline-i-agree-
to-the-vendor-licenses. Relevant msConvert flags were : --filter "peakPicking true 1-1" --filter
"polarity positive" --filter "threshold count .00001 least-intense." XCM S commandsin relevant
functions used to process mzML files for peak picking from mzML files were:
xcmsSet(method="centWave", peakwidth=c(22.25,109.5), mzdiff=.0084, snthresh=5.7, ppm =
3, noise = 100, bw = 6, minfrac = .8 ), xset2 <- group(xset, bw = 6, minfrac = .8), and retcor(
xset2, method="loess").

Discussion

Aslarge scale LC-M S datasets proliferate, robust peak-picking software are needed to
reliably convert the gigabytes to terabytes of raw spectra data to mass features. Optimally, these
informatics solutions must be sensitive enough to detect biological signals, but have safeguards
to prevent flagging non-metabolite signals (salts, contaminants) as mass features. They must
also contend with drift in the mass and retention time domains. Our software suite addresses the
common problem of “noisy datain, noisy-data out” issue encountered by many LC-MS pipelines
by first leveraging isoLock to correct for mass drift. This represents a significant improvement
in the ability to quantify mass featuresin LC-M S data. Essentially, this software suite provides a
statistical workaround to the fact that metabolomics lags behind the other -omics partly because
the discipline lacks a foundational technology equivalent to polymerase chain reaction (PCR).
While other -omics (i.e. many forms of genomics and transcriptomics) frequently overcome
signal to noise issues by using PCR to physically amplify genetic material, no such resource
exists to selectively amplify metabolites. We demonstrate that this should no longer be a
stumbling block, however, as merging mass spectra and chromatograms can exponentially
increase signal to noise ratios, and paves the way for new, more powerful peak-picking
algorithms. Our suite addresses the concerns that arise with pooling datainto a merged datafile
such as mass drift (isoLock) and retention time drift (anovAlign).

Application of the IAA suiteto real world data demonstrates that it improves sensitivity,
without incurring the tradeoff of false positives. Thisisaccomplished, generally, by formulating
the computational problems of LC-MS peak picking in away such that the law of large numbers
is utilized advantageously. For example, while individual spectra are noisy, pooling samples
increases signal to noiseratios. Thisis somewhat counterintuitive, but immediately evident,
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when the datais examined. On average, signal hyperconcentrates around metabolite masses
across multiple runs. This pooling would, ordinarily, cause signal smearing due to mass drift.
However, solving for mass drift (isoLock) beforehand avoids this complication. This can explain
many of the significant advantages of our workflow when re-analyzing the previously published
dataset from the Broad Institute. Many of the peaksin this dataset demonstrated substantial
splitting (when processed using Progenesis QI) due to noise in both the mass and retention time
domains. Resolving these issues viaisoLock did not reduce sengitivity, and rigorous denoising
via permutation tests, assured restriction of false positives. This made it possible for the IAA to
recapitul ate the vast majority of high priority peaks predicted by Progenesis, while being able to
detect many more.

The second application of the IAA suite, on a smaller but more complex plant metabolomics
dataset (multiple biological replicates across genotype, time and treatment) demonstrates that
these computational advantages translate into enhanced biological signal, compared to peaks
guantified using atypical XCM S workflow. Thisanalysis shows that the IAA suite resultsin not
only more peaks but also, peaks with greater average variance explained by a biological modd.

Importantly, the principles undernesth these algorithms are highly generalizable and our
suite is modular — allowing effective application to other workflows besides LC-M S, such as
direct injection experiments which are popular in burgeoning single cell metabolomics, a context
which could benefit immediately from these tools. These tools will also have utility to other
contexts which require accurate LC-M S signal processing beyond untargeted metabolomics,
such as proteomics or the use of mass spectrometry for non-traditional analytical settings, such
as satellite applications in the space sciences (Arevalo et al., 2020). Additionally, autoCredential
can be modified such that the mass spacing in an isopair is reflective of the mass gain of various
chemical species (not simply the difference between 12C and 13C), making this pipeline
amenable to labeling experiments and detection of inorganic compounds.

Despite the improvements represented by our software package, significant hurdlies
remainin LC-MSinformatics. This software provides an excellent platform whose future
devel opment can address these issues. One such challenge is to match mass features to
compounds of known molecular identity. Another related problem is how to associate adducts
and other degeneracies with parent ions. Our suite of isolock, autoCredential and anovAlign
provides powerful tools whose future development will address these challenges which are
particularly important for pharmaceutical and academic applications. For example, knowing that
a predicted mass feature is accompanied by an isotopol ogue provides confidence that anionis
not a salt or artifact of noise. Future agorithms will leverage the isotopic signature of polished
mass spectra to not only determine metabolite masses, but aso the most likely number of
carbons via modeling the decay in intensity between MO and M1 peaks. Thiswill improve
confidence in the annotation of degenerate mass features, by ensuring that adducts (and higher
level isotopologues) agree in the molecular formula of their parent ions, at least in terms of the
number of carbons and improve database matching. Future modifications of these algorithms
will also be applicable to Ms2 data, further improving the ability to translate signal into
biological insight via determination of the molecular formula for high confidence peaks.
Ultimately, we believe that the extremely effective peak picking capacities of our software suite
(isoLock, autoCredential and anovAlign) will allow LC-M S driven metabolomics to affordably
and accurately interrogate the compl ete metabolome.
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Softwar e availability:
Code for each of the algorithmsis available at https://github.com/kilgain/MassSpec/tree/main.
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Supplementary Figures

Median Number of Signals in .0001 Da Mass Bin Across Sets of Resampled Masses
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Supplementary Figure 1:

1,000 Masses were chosen at random. A mass slice of 5 ppm around the region of each
mass was then selected in order to create a signal profile representatitve of the region around the
mass. These mass regions were then randomly resampled into subsets of 100 masses, thus
creating a representative subpopulations of mass-intensity background signals. The median
number of signalsin each .0001 DaBin in each 100 Mass subpopulation was then calculated in
order to determine the number of signals expected in each .0001 Da Mass region due to purely
background noise signals. The cutoff for autoCredential (50 counts per each .0001 Da)
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