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Abstract 50

Stochastic simulation is a key tool in population genetics, since the models involved are 51
often analytically intractable and simulation is usually the only way of obtaining ground-truth 52
data to evaluate inferences. Because of this necessity, a large number of specialised simulation 53
programs have been developed, each filling a particular niche, but with largely overlapping 54
functionality and a substantial duplication of effort. Here, we introduce msprime version 1.0, 55
which efficiently implements ancestry and mutation simulations based on the succinct tree 56
sequence data structure and tskit library. We summarise msprime’s many features, and show 57
that its performance is excellent, often many times faster and more memory efficient than 58
specialised alternatives. These high-performance features have been thoroughly tested and 59
validated, and built using a collaborative, open source development model, which reduces 60
duplication of effort and promotes software quality via community engagement. 61
Keywords: Simulation, Coalescent, Mutations, Ancestral Recombination Graphs 62
Introduction o

The coalescent process (Kingman, 1982a,b; Hudson, 1983b; Tajima, 1983) models the ancestry of a  es
set of sampled genomes, providing a mathematical description of the genealogical tree that relates s
the samples to one another. It has proved to be a powerful model, and is now central to population  ee
genetics (Hudson, 1990; Hein et al., 2004; Wakeley, 2008). The coalescent is an efficient framework e
for population genetic simulation, because it allows us to simulate the genetic ancestry for a sample  es
from an idealised population model, without explicitly representing the population in memory or o
stepping through the generations. Indeed, Hudson (1983b) independently derived the coalescent 7o
in order to efficiently simulate data, and used these simulations to characterise an analytically 7
intractable distribution. This inherent efficiency, and the great utility of simulations for a wide 7
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range of purposes, has led to dozens of different tools being developed over the decades (Carvajal- 73
Rodriguez, 2008; Liu et al., 2008; Arenas, 2012; Yuan et al., 2012; Hoban et al., 2012; Yang et al., 7
2014; Peng et al., 2015). 75

Two technological developments of recent years, however, pose major challenges to most ex- 7
isting simulation methods. Firstly, fourth-generation sequencing technologies have made complete 77
chromosome-level assemblies possible (Miga et al., 2020), and high quality assemblies are now 7
available for many species. Thus, modelling genetic variation data as a series of unlinked non- 7
recombining loci is no longer a reasonable approximation, and we must fully account for recombi- o
nation. However, while a genealogical tree relating n samples in the single-locus coalescent can be &
simulated in O(n) time (Hudson, 1990), the coalescent with recombination is far more complex, and sz
programs such as Hudson’s classical ms (Hudson, 2002) can only simulate short segments under the s
influence of recombination. The second challenge facing simulation methods is that sample sizes in  sa
genetic studies have grown very quickly in recent years, enabled by the precipitous fall in genome ss
sequencing costs. Human datasets like the UK Biobank (Bycroft et al., 2018) and gnomAD (Kar-  se
czewski et al., 2020) now consist of hundreds of thousands of genomes and many other datasets on sz
a similar scale are becoming available (Tanjo et al., 2021). Classical simulators such as ms and even  ss
fast approximate methods such as scrm (Staab et al., 2015) simply cannot cope with such a large  so
number of samples. %

The msprime simulator (Kelleher et al., 2016; Kelleher and Lohse, 2020) has greatly increased o
the scope of coalescent simulations, and it is now straightforward to simulate millions of whole 2
chromosomes for a wide range of organisms. The “succinct tree sequence” data structure (Kelleher o3
et al., 2016, 2018, 2019; Wohns et al., 2021), originally introduced as part of msprime, makes it  os
possible to store such large simulations in a few gigabytes, several orders of magnitude smaller than s
commonly used formats. The succinct tree sequence has also led to major advances in forwards-  os
time simulation (Kelleher et al., 2018; Haller et al., 2018), ancestry inference (Kelleher et al., 2019; o7
Wohuns et al., 2021) and calculation of population genetic statistics (Kelleher et al., 2016; Ralph s
et al., 2020). Through a rigorous open-source community development process, msprime has gained oo
a large number of features since its introduction, making it a highly efficient and flexible platform 1c0
for population genetic simulation. This paper marks the release of msprime 1.0. We provide an 1o
overview of its extensive features, demonstrate its performance advantages over alternative software, 1oz
and discuss opportunities for ongoing open-source community-based development. 103

The efficiency of coalescent simulations depends crucially on the assumption of neutrality, and 1oa
it is important to note that there are many situations in which this will be a poor approximation ios
of biological reality (Johri et al., 2021). In particular, background selection has been shown to 1o
affect genomewide sequence variation in a wide range of species (Charlesworth et al., 1993, 1995; 107
Charlesworth and Jensen, 2021). Thus care must be taken to ensure that the results of purely ios
neutral simulations are appropriate for the question and genomic partition under study. A major 1oe
strength of msprime, however, is that it can be used in conjunction with forwards-time simulators, 110
enabling the simulation of more realistic models than otherwise possible (Kelleher et al., 2018; 11
Haller et al., 2018). 112

Results 113

In the following sections we describe the main features of msprime 1.0, focusing on the aspects that 11a
are either new for this version, or in which our approach differs significantly from classical methods 11s
(summarised in Table 1). Where appropriate, we benchmark msprime against other simulators, but 116
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Interface Separation of ancestry and mutation simulations. Ability to store arbitrary
metadata along with simulation results, and automatic recording of provenance
information for reproducibility. Jupyter notebook (Kluyver et al., 2016) inte-
gration. Rich suite of analytical and visualisation methods via tskit library.

Ancestry SMC, SMC’, Beta- and Dirac-coalescent, discrete time Wright-Fisher, and se-
lective sweep models. Instantaneous bottlenecks. Discrete or continuous ge-
nomic coordinates, arbitary ploidy, gene conversion. Output full ARG with re-
combination nodes, ARG likelihood calculations. Record full migration history
and census events. Improved performance for large numbers of populations. In-
tegration with forward simulators such as SLiM and fwdpy11 (“recapitation”).

Demography Improved interface with integrated metadata and referencing populations by
name. Import from Newick species tree, *BEAST (Heled and Drummond,
2009), and Demes (Gower et al., 2022). Numerical methods to compute coa-
lescence rates.

Mutations JC69, HKY, F84, GTR, BLOSUMG62, PAM, infinite alleles, SLiM and general
matrix mutation models. Varying rates along the genome, recurrent/back mu-
tations, discrete or continuous genomic coordinates, overlaying multiple layers
of mutations, exact times associated with mutations.

Table 1: Major features of msprime 1.0 added since version 0.3.0 (Kelleher et al., 2016).

the comparisons are illustrative and not intended to be systematic or exhaustive. Please see Kelleher 117
et al. (2016) for a performance comparison of msprime against simulators such as ms, msms, and 11s
scrm. 119

User interface 120

The majority of simulation packages are controlled either through a command line interface (e.g. 121
Hudson, 2002; Kern and Schrider, 2016), a text-based input file format (e.g. Guillaume and Rouge- 122
mont, 2006; Excoffier and Foll, 2011; Shlyakhter et al., 2014), or a mixture of both. Command 123
line interfaces make it easy to run simple simulations, but as model complexity and the number 124
of parameters increase, they become difficult to understand and error-prone (Ragsdale et al., 2020; 125
Gower et al., 2022). Specifying parameters through a text file alleviates this problem to a degree, 126
but lacks flexibility, for example, when running simulations with parameters drawn from a distri- 127
bution. In practice, for any reproducible simulation project users will write a script to generate 1zs
the required command lines or input parameter files, invoke the simulation engine, and process the 12o
results in some way. This process is cumbersome and labour intensive, and a number of packages 130
have been developed to allow simulations to be run directly in a high-level scripting language (Staab 1
and Metzler, 2016; Parobek et al., 2017; Gladstein et al., 2018). 132

The more recent trend has been to move away from this file and command-line driven approach 13
and to instead provide direct interfaces to the simulation engines via an Application Programming 1sa
Interface (API) (e.g. Thornton, 2014; Kelleher et al., 2016; Becheler et al., 2019; Haller and Messer, 13s
2019). The primary interface for msprime is through a thoroughly documented Python API, which 136
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Figure 1: Visualisation of the separation between ancestry and mutation simulation. (A) The
result of an invocation of sim_ancestry is two trees along a 1kb chunk of genome relating three
diploid samples. Each diploid individual consists of two genomes (or nodes), indicated by colour.
(B) This ancestry is provided as the input to sim_mutations, which adds mutations. Graphics
produced using tskit’s draw_svg method.

has encouraged the development of an ecosystem of downstream tools (Terhorst et al., 2017; Chan 137
et al., 2018; Spence and Song, 2019; Adrion et al., 2020a,b; Kamm et al., 2020; McKenzie and 13s
Eaton, 2020; Montinaro et al., 2020; Terasaki Hart et al., 2021; Rivera-Colon et al., 2021). As 130
well as providing a stable and efficient platform for building downstream applications, msprime’s 140
Python API makes it much easier to build reproducible simulation pipelines, as the entire workflow 14
can be encapsulated in a single script, and package and version dependencies explicitly stated using 1a2
the pip or conda package managers. For example, the errors made in the influential simulation 13
analysis of Martin et al. (2017) were only detected because the pipeline could be easily run and 1ss
reanalysed (Ragsdale et al., 2020; Martin et al., 2020). 145

A major change for the msprime 1.0 release is the introduction of a new set of APIs, designed in 146
part to avoid sources of error (see the Demography section) but also to provide more appropriate iz
defaults while keeping compatibility with existing code. In the new APIs, ancestry and mutation 1ss
simulation are fully separated (see Fig. 1), with the sim_ancestry and sim_mutations functions 1as
replacing the legacy simulate function. Among other changes, the new APIs default to discrete 1so
genome coordinates and finite sites mutations, making the default settings more realistic and re- 1s:
solving a major source of confusion and error. The previous APIs are fully supported and tested, 1s2
and will be maintained for the foreseeable future. The msp program (a command line interface to 1ss
the library) has been extended to include new commands for simulating ancestry and mutations 1sa
separately. A particularly useful feature is the ability to specify demographic models in Demes 1ss
format (Gower et al., 2022) from the command line, making simulation of complex demographies 1se
straightforward. We also provide an ms compatible command line interface to support existing isz
workflows. 158
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Figure 2: An example tree sequence describing genealogies and sequence variation for four samples
at ten sites on a chromosome of twenty bases long. Information is stored in a set of tables (the tables
shown here include only essential columns, and much more information can be associated with the
various entities). The node table stores information about sampled and ancestral genomes. The
edge table describes how these genomes are related along a chromosome, and defines the genealogical
tree at each position. The site and mutation tables together describe sequence variation among the
samples. The genotype matrix and tree topologies shown on the left are derived from these tables.

Tree sequences 150

One of the key reasons for msprime’s substantial performance advantage over other simulators (Kelle- 160
her et al., 2016) is its use of the “succinct tree sequence”’ data structure to represent simulation 1e:
results. The succinct tree sequence (usually abbreviated to “tree sequence”) was introduced by e
Kelleher et al. (2016) to concisely encode genetic ancestry and sequence variation and was originally 1es
implemented as part of msprime. We subsequently extracted the core tree sequence functionality 1es
from msprime to create the tskit library, which provides a large suite of tools for processing genetic 1es
ancestry and variation data via APIs in the Python and C languages (Tskit developers, 2022). The 166
availability of tskit as a liberally licensed (MIT) open source toolkit has enabled several other e
projects (e.g. Kelleher et al., 2019; Haller and Messer, 2019; Wohns et al., 2021; Terasaki Hart 1es
et al., 2021) to take advantage of the same efficient data structures used in msprime, and we hope 1o
that many more will follow. While a full discussion of tree sequences and the capabilities of tskit 170
is beyond the scope of this article, we summarise some aspects that are important for simulation. 17

Let us define a genome as the complete set of genetic material that a child inherits from one 17
parent. Thus, a diploid individual has two (monoploid) genomes, one inherited from each par- 17
ent. Since each diploid individual lies at the end of two distinct lineages of descent, they will be 17a
represented by two places (nodes) in any genealogical tree. In the tree sequence encoding a node 17
therefore corresponds to a single genome, which is associated with its creation time (and other op- 176
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tional information), and recorded in a simple tabular format (Fig. 2). Genetic inheritance between 177
genomes (nodes) is defined by edges. An edge consists of a parent node, a child node and the left 17
and right coordinates of the contiguous chromosomal segment over which the child genome inher- 17
ited genetic material from the parent genome. Parent and child nodes may correspond to ancestor 1so
and descendant genomes separated by many generations. Critically, edges can span multiple trees 1s
along the genome (usually referred to as “marginal” trees), and identical node IDs across different 1s2
trees corresponds to the same ancestral genome. For example, in Fig. 2 the branch from node 1ss
0 to 4 is present in both marginal trees, and represented by a single edge (the first row in the 1ss
edge table). This simple device, of explicitly associating tree nodes with specific ancestral genomes 1ss
and recording the contiguous segments over which parent-child relationships exist, generalises the 1se
original “coalescence records” concept (Kelleher et al., 2016), and is the key to the efficiency of tree 1s
sequences (Kelleher et al., 2018, 2019; Ralph et al., 2020). Note that this formulation is fully com- 1ss
patible with the concept of an Ancestral Recombination Graph (ARG) and any ARG topology can 1se
be fully and efficiently encoded in the node and edge tables illustrated in Fig. 2; see the Ancestral 1e0
Recombination Graphs section below for more details. 101

The final output of most population genetic simulations is some representation of sequence 1oz
variation among the specified samples. For coalescent simulations, we usually have three steps: 13
(1) simulate the genetic ancestry, and optionally output the resulting marginal trees; (2) simu- 1es
late sequence evolution conditioned on this ancestry by generating mutations (see the Simulating 1es
mutations section); and (3) output the resulting nucleotide sequences by percolating the effects of 1e6
the mutations through the trees. Information about the mutations themselves—e.g., where they 17
have occurred on the trees—is usually not retained or made available for subsequent analysis. In 1es
msprime, however, we skip step (3), instead using tskit’s combined data model of ancestry and 1ee
mutations to represent the simulated sequences. As illustrated in Fig. 2, mutations are a fully 200
integrated part of tskit’s tree sequence data model, and genetic variation is encoded by recording 201
sites at which mutations have occurred, and where each mutation at those sites has occurred on the 202
marginal tree. Crucially, the genome sequences themselves are never stored, or indeed directly rep- 203
resented in memory (although tskit can output the variant matrix in various formats, if required). 2o
It may at first seem inconvenient to have only this indirect representation of the genome sequences, 205
but it is extremely powerful. Firstly, the storage space required for simulations is dramatically 2ce
reduced. For a simulation of n samples with m variant sites, we would require O(nm) space to 2o
store the sequence data as a variant matrix. However, if this simulation was of a recombining 208
genome with ¢ trees, then the tskit tree sequence encoding requires O(n +t +m) space, assuming zo
we have O(1) mutations at each site (Kelleher et al., 2016). For large sample sizes, this difference 210
is profound, making it conceivable, for example, to store the genetic ancestry and variation data 211
for the entire human population on a laptop (Kelleher et al., 2019). As well as the huge difference 212
in storage efficiency, it is often far more efficient to compute statistics of the sequence data from 21s
the trees and mutations than it is to work with the sequences themselves. For example, computing 21a
Tajima’s D from simulated data stored in the tskit format is several orders of magnitude faster 21s
than efficient variant matrix libraries for large sample sizes (Ralph et al., 2020). 216

The vast genomic datasets produced during the SARS-CoV-2 pandemic have highlighted the ad- 217
vantages of storing genetic variation data using the underlying trees. Turakhia et al. (2021) propose 218
the Mutation Annotated Tree (MAT) format (consisting of a Newick tree and associated mutations 21
in a binary format) and the matUtils program as an efficient way to store and process large viral 220
datasets (McBroome et al., 2021), achieving excellent compression and processing performance. 221
Similarly, phastsim (De Maio et al., 2021) was developed to simulate sequence evolution on such 222
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large SARS-CoV-2 phylogenies, and also outputs a Newick tree annotated with mutations (not in 223
MAT format) to avoid the bottleneck of generating and storing the simulated sequences. While 224
these methods illustrate the advantages of the general approach of storing ancestry and mutations 22s
rather than sequences, they do not generalise beyond their immediate settings, and no software 226
library support is available. 227

The software ecosystem built around tskit is stable, mature and rapidly growing. Simulators 22s
such as fwdpy11l (Thornton, 2014), SLiM (Haller and Messer, 2019), stdpopsim (Adrion et al., 220
2020a), Geonomics (Terasaki Hart et al., 2021) and GSpace (Virgoulay et al., 2021), and inference 230
methods such as tsinfer (Kelleher et al., 2019), tsdate (Wohus et al., 2021) and Relate (Speidel 2a
et al., 2019) use either the Python or C APIs to support outputting results in tree sequence format. 232
Tree sequences are stored in an efficient binary file format, and are fully portable across operating 2ss
systems and processor architectures. The tskit library ensures interoperability between programs 2sa
by having strict definitions of how the information in each of the tables is interpreted, and stringent 23s
checks for the internal consistency of the data model. 236

Data analysis 237

The standard way of representing simulation data is to render the results in a text format, which 2ss
must subsequently be parsed and processed as part of some analysis pipeline. For example, ms 230
outputs a set of sequences and can also optionally output the marginal trees along the genome in 240
Newick format, and variants of this approach are used by many simulators. Text files have many 24
advantages, but are slow to process at scale. The ability to efficiently process simulation results 2e2
is particularly important in simulation-based inference methods such as Approximate Bayesian 243
Computation (ABC) (Beaumont et al., 2002; Csilléry et al., 2010; Wegmann et al., 2010) and 2aa
machine learning based approaches (Sheehan and Song, 2016; Chan et al., 2018; Schrider and Kern, zas
2018; Flagel et al., 2019; Sanchez et al., 2020). Clearly, simulation efficiency is crucial since the zas
size and number of simulations that can be performed determines the depth to which one can 247
sample from the model and parameter space. Equally important, however, is the efficiency with 2as
which the simulation results can be transformed into the specific input required by the inference 2a0
method. In the case of ABC, this is usually a set of summary statistics of the sequence data, and 2s0
methods avoid the bottleneck of parsing text-based file formats to compute these statistics by either 251
developing their own simulators (e.g. Cornuet et al., 2008; Lopes et al., 2009) or creating forked s
versions (i.e., modified copies) of existing simulators (e.g. Thornton and Andolfatto, 2006; Hickerson 2s3
et al., 2007; Pavlidis et al., 2010; Huang et al., 2011; Quinto-Cortés et al., 2018), tightly integrated 2sa
with the inference method. Modern approaches to ABC such as ABC-RF (Raynal et al., 2019; 2ss
Pudlo et al., 2016) and ABC-NN (Csilléry et al., 2012; Blum and Frangois, 2010) use large numbers  2se
of weakly informative statistics, making the need to efficiently compute statistics from simulation 2s7
results all the more acute. By using the stable APIs and efficient data interchange mechanisms 2ss
provided by tskit, the results of an msprime simulation can be immediately processed, without zse
format conversion overhead. The tskit library has a rich suite of population genetic statistics 260
and other utilities, and is in many cases orders of magnitude faster than matrix-based methods for ze:
large sample sizes (Ralph et al., 2020). Thus, the combination of msprime and tskit substantially 2e2
increases the overall efficiency of many simulation analysis pipelines. 263

Classical text based output formats like ms are inefficient to process, but also lack a great deal of = zea
important information about the simulated process. The tree-by-tree topology information output =zes
by simulators in Newick format lacks any concept of node identity, and means that we cannot zee


https://doi.org/10.1101/2021.08.31.457499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.31.457499; this version posted December 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

reliably infer information about ancestors from the output. Because Newick stores branch lengths 267
rather than node times, numerical precision issues also arise for large trees (McGill et al., 2013). 2es
Numerous forks of simulators have been created to access information not provided in the output. zes
For example, ms has been forked to output information about migrating segments (Rosenzweig et al., 270
2016), ancestral lineages (Chen and Chen, 2013), and ms’s fork msHOT (Hellenthal and Stephens, 27
2007) has in turn been forked to output information on local ancestry (Racimo et al., 2017). All 27
of this information is either directly available by default in msprime, or can be optionally stored 273
via options such as record_migrations or record_full_arg (see the Ancestral Recombination 27a
Graphs section) and can be efficiently and conveniently processed via tskit APIs. 275

Simulating mutations 276

Because coalescent simulations are usually concerned with neutral evolution (see the Selective 277
sweeps section, however) the problem of generating synthetic genetic variation can be decomposed 27s
into two independent steps: firstly, simulating genetic ancestry (the trees), then subsequently sim- 27
ulating variation by superimposing mutation processes on those trees (see Fig. 1). A number of 2s0
programs exist to place mutations on trees: for instance, the classical Seq-Gen program (Rambaut 2s:
and Grassly, 1997) supports a range of different models of sequence evolution, and various exten- zs
sions to the basic models have been proposed (e.g. Cartwright, 2005; Fletcher and Yang, 2009). zss
Partly for efficiency and partly in the interest of simplicity for users (i.e., to avoid intermediate text 2sa
format conversions), population genetic simulators have tended to include their own implementa- 2ss
tions of mutation simulation, with most supporting the infinite sites model (e.g. Hudson, 2002) but  2se
with several supporting a wide range of different models of sequence evolution (e.g. Mailund et al., 287
2005; Excoffier and Foll, 2011; Virgoulay et al., 2021). Thus, despite the logical separation between 2ss
the tasks of simulating ancestry and neutral sequence evolution, the two have been conflated in zee
practice. 200

Part of the reason for this poor record of software reuse and modularity is the lack of standard- ze1
ised file formats, and in particular, the absence of common library infrastructure to abstract the ze2
details of interchanging simulation data. Although msprime also supports simulating both ancestry 2es
and mutations, the two aspects are functionally independent within the software; both ancestry 2ea
and mutation simulators are present in msprime for reasons of convenience and history, and could 2es
be split into separate packages. The efficient C and Python interfaces for tskit make it straight- 2ee
forward to add further information to an existing file, and because of its efficient data interchange 207
mechanisms, there is no performance penalty for operations being performed in a different software 298
package. Thanks to this interoperability, msprime’s mutation generator can work with any tskit 2ee
tree sequence, be it simulated using SLiM (Haller and Messer, 2019) or fwdpy11 (Thornton, 2014), s
or estimated from real data (Kelleher et al., 2019; Speidel et al., 2019; Wohns et al., 2021). It is a 3o
modular component intended to fit into a larger software ecosystem, and is in no way dependent 3oz
on msprime’s ancestry simulator. 303

We have greatly extended the sophistication of msprime’s mutation generation engine for version soa
1.0, achieving near feature-parity with Seq-Gen. We support a large number of mutation models, sos
including the JC69 (Jukes et al., 1969), F84 (Felsenstein and Churchill, 1996), and GTR (Tavaré soe
et al., 1986) nucleotide models and the BLOSUMG62 (Henikoff and Henikoff, 1992) and PAM (Dayhoff  sor
et al., 1978) amino acid models. Other models, such as the Kimura two and three parameter sos
models (Kimura, 1980, 1981), can be defined easily and efficiently in user code by specifying a so
transition matrix between any number of alleles. Mutation rates can vary along the genome, and 3o
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Figure 3: Time required to run sim_mutations on tree sequences generated by sim_ancestry
(with a population size of 10* and recombination rate of 1078) for varying (haploid) sample size
and sequence length. We ran 10 replicate mutation simulations each for three different mutation
rates, and report the average CPU time required (Intel Core i7-9700). (A) Holding sequence length
fixed at 10 megabases and varying the number of samples (tree tips) from 10 to 100,000. (B) Holding
number of samples fixed at 1000, and varying the sequence length from 1 to 100 megabases.

multiple mutation models can be imposed on a tree sequence by overlaying mutations in multiple s
passes. We have extensively validated the results of mutation simulations against both theoretical 312
expectations and output from Seq-Gen (Rambaut and Grassly, 1997) and Pyvolve (Spielman and sis
Wilke, 2015) 314

Simulating mutations in msprime is efficient. Fig. 3 shows the time required to generate muta- s
tions (using the default JC69 model) on simulated tree sequences for a variety of mutation rates s
as we vary the number of samples (Fig. 3A) and the sequence length (Fig. 3B). For example, the 317
longest running simulation in Fig. 3B required less than 2 seconds to generate an average of 1.5 ss
million mutations over 137,081 trees in a tree sequence with 508,125 edges. This efficiency for large s1o
numbers of trees is possible because the tree sequence encoding allows us to generate mutations on  szo
an edge-by-edge basis (see Fig. 2 and the Mutation generation appendix), rather than tree-by-tree s2:
and branch-by-branch as would otherwise be required. Simulating mutations on a single tree is also 322
very efficient; for example, we simulated mutations under the BLOSUMG62 amino acid model for a 323
tree with 106 leaves over 10* sites (resulting in ~260,000 mutations) in about 0.8 seconds, including sz
the time required for file input and output. We do not attempt a systematic benchmarking of 25
msprime’s mutation generation code against other methods, because at this scale it is difficult to s26
disentangle the effects of inefficient input and output formats from the mutation generation algo- sz
rithms. Given the above timings, it seems unlikely that generating mutations with msprime would s2s
be a bottleneck in any realistic analysis. 320
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There are many ways in which the mutation generation code in msprime could be extended. For a0
example, we intend to add support for microsatellites (Mailund et al., 2005), codon models (Arenas ss:
and Posada, 2007) and indels (Cartwright, 2005; Fletcher and Yang, 2009), although changes may ss2
be required to tskit’s data model which is currently based on the assumption of independent sites. sss

Recombination 334

Crossover recombination is implemented in msprime using Hudson’s algorithm, which works back-  s3s
wards in time, generating common ancestor and recombination events and tracking their effects sse
on segments of ancestral material inherited from the sample (Hudson, 1983a, 1990; Kelleher et al., 337
2016). Common ancestor events merge the ancestral material of two lineages, and result in coa- s3s
lescences in the marginal trees when ancestral segments overlap. Recombination events split the 330
ancestral material for some lineage at a breakpoint, creating two independent lineages. Using the sao
appropriate data structures (Kelleher et al., 2016), this process is much more efficient to simulate s
than the equivalent left-to-right approach (Wiuf and Hein, 1999b,a). In msprime 1.0, recombi- s
nation rates can vary along a chromosome, allowing us to simulate recombination hotspots and sss
patterns of recombination from empirical maps. The implementation of recombination in msprime s
is extensively validated against analytical results (Hudson, 1983a; Kaplan and Hudson, 1985) and  sas
simulations by ms, msHOT and SLiM. 346

The Sequentially Markovian Coalescent (SMC) is an approximation of the coalescent with re- sar
combination (McVean and Cardin, 2005; Marjoram and Wall, 2006), and was primarily motivated sas
by the need to simulate longer genomes than was possible using tools like ms. The SMC is a  3a
good approximation to the coalescent with recombination when we have fewer than five sampled sso
genomes (Hobolth and Jensen, 2014; Wilton et al., 2015), but the effects of the approximation are ss:
less well understood for larger sample sizes, and several approaches have been proposed that al- ss2
low simulations to more closely approximate the coalescent with recombination (Chen et al., 2009;  sss
Wang et al., 2014; Staab et al., 2015). The SMC and SMC’ models are supported in msprime 1.0. 354
However, they are currently implemented using a naive rejection sampling approach, and are some-  sss
what slower to simulate than the exact coalescent with recombination. These models are therefore sse
currently only appropriate for studying the SMC approximations themselves, although we intend ss7
to implement them more efficiently in future versions. 358

In human-like parameter regimes and for large sample sizes, msprime’s implementation of the sso
exact coalescent with recombination comprehensively outperforms all other simulators, including seo
those based on SMC approximations (Kelleher et al., 2016). However, it is important to note se
that although the implementation of Hudson’s algorithm is very efficient, it is still quadratic in se2
the population scaled recombination rate p = 4N.L, where L is the length of the genome in units ses
of recombination distance. This is because Hudson’s algorithm tracks recombinations not only ses
in segments ancestral to the sample, but also between ancestral segments. As mentioned above, ses
common ancestor events in which the ancestral material of two lineages is merged only result in ses
coalescences in the marginal trees if their ancestral segments overlap. If there is no overlap, the ser
merged segments represent an ancestral chromosome that is a genetic ancestor of the two lineages, ses
but not the most recent common genetic ancestor at any location along the genome. When this see
happens, the merged lineage carries “trapped” genetic material that is not ancestral to any samples, 370
but where recombinations can still occur (Wiuf and Hein, 1999b). For large p, recombination events sz
in trapped ancestral material will dominate, and so we can use this as a proxy for the overall number sz
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of events in Hudson’s algorithm. Hein et al. (2004, Eq. 5.10) gave 373
n—1 1 2
1 - 1
plp+1) (2 Z) (1)

as an upper bound on the number of recombination events within trapped ancestral material for s7a
n samples. As discussed in the Time complexity of Hudson’s algorithm appendix, the quadratic s7s
dependence of simulation running time on p implied by (1) is well supported by observations, and  s7e
provides a useful means of predicting how long a particular simulation might require. 377

(Gene conversion s78

Gene conversion is a form of recombination that results in the transfer of a short segment of s7e
genetic material, for example between homologous chromosomes (Chen et al., 2007). Since gene sso
conversion impacts much shorter segments than crossover recombination (typically below 1kb) it  ss:
affects patterns of linkage disequilibrium differently (Korunes and Noor, 2017). Wiuf and Hein s
(2000) modelled gene conversion in the coalescent via a rate at which gene conversion events are ses
initiated along the genome and a geometrically distributed tract length. In terms of the ancestral ssa
process, gene conversion differs from crossover recombination (as described in the previous section) sss
in that it extracts a short tract of ancestry into an independent lineage, rather than splitting sse
ancestry to the left and right of a given breakpoint. We have implemented this model of gene ser
conversion in msprime 1.0, and validated the output against ms and analytical results (Wiuf and sss
Hein, 2000) 389

Gene conversion is particularly useful to model homologous recombination in bacterial evolution, se0
and so we compare the performance of msprime with gene conversion to two specialised bacterial se:
simulators, SimBac (Brown et al., 2016) and fastSimBac (De Maio and Wilson, 2017). Figure 4A 3.2
shows that msprime is far more efficient than both SimBac and the SMC-based approximation ses
fastSimBac. Figure 4B shows that msprime requires somewhat more memory than fastSimBac, (as 3o
expected since fastSimBac uses a left-to-right SMC approximation) but is still reasonably modest —ses
at around 1GiB for a simulation of 500 whole E. coli genomes. However, msprime is currently see
lacking many of the specialised features required to model bacteria, and so an important avenue  ser
for future work is to add features such as circular genomes and bacterial gene transfer (Baumdicker ses
and Pfaffelhuber, 2014). 399

Demography 400

One of the key applications of population genetic simulations is to generate data for complex de- 4oz
mographies. Beyond idealised cases such as stepping-stone or island models, or specialised cases such o2
as isolation-with-migration models, analytical results are rarely possible. Simulation is therefore aos
integral to the development and evaluation of methods for demographic inference. The demogra- soa
phy model in msprime is directly derived from the approach used in ms, and supports an arbitrary aes
number of randomly mating populations exchanging migrants at specified rates. A range of demo- aoce
graphic events are supported, which allow for varying population sizes and growth rates, changing aor
migration rates over time, as well as population splits, admixtures and pulse migrations. 408

A major change for msprime 1.0 is the introduction of the new Demography API, designed to aos
address a design flaw in the msprime 0.x interface which led to avoidable errors in downstream aio
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Figure 4: Comparison of simulation performance using msprime (sim_ancestry), SimBac, and
fastSimBac for varying (haploid) sample sizes, and the current estimates for E. coli parame-
ters (Lapierre et al., 2016): a 4.6Mb genome, N, = 1.8 x 10%, gene conversion rate of 8.9 x 10! per
base and mean tract length of 542. We report (A) the total CPU time and (B) maximum memory
usage averaged over 5 replicates (Intel Xeon E5-2680 CPU). We did not run SimBac beyond first
two data points because of the very long running times.
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simulations (Ragsdale et al., 2020). The new API is more user-friendly, providing the ability, for au
example, to refer to populations by name rather than their integer identifiers. We also provide a2
numerical methods to compute the coalescence rates for two or more lineages which can be inverted s
to obtain the “inverse instantaneous coalescence rate” of Chikhi et al. (2018). Many popular ap- a1a
proaches in population genetics use the distribution of coalescence rates between pairs of lineages ais
to infer effective population sizes over time (Li and Durbin, 2011; Sheehan et al., 2013; Schiffels a6
and Durbin, 2014) or split times and subsequent migration rates between populations (Wang et al., a7
2020). These numerical methods provide a valuable ground-truth when evaluating such inference a1s
methods, as illustrated by Adrion et al. (2020a). 410

Instantaneous bottlenecks 420

A common approach to modelling the effect of demographic history on genealogies is to assume a2:
that effective population size (N, ) changes in discrete steps which define a series of epochs (Griffiths 22
et al., 1994; Marth et al., 2004; Keightley and Eyre-Walker, 2007; Li and Durbin, 2011). In this s
setting of piecewise constant N, capturing a population bottleneck requires three epochs: N, is aza
reduced by some fraction b at the start of the bottleneck, Ts;4r+, and recovers to its initial value at azs
time Tenqg (Marth et al., 2004). If bottlenecks are short both on the timescale of coalescence and 26
mutations, there may be little information about the duration of a bottleneck (Teng — Tstart) I a27
sequence data. Thus a simpler, alternative model is to assume that bottlenecks are instantaneous a2s
(Tend — Tstart — 0) and generate a sudden burst of coalescence events (a multiple merger event) in a0
the genealogy. The strength of the bottleneck B can be thought of as an (imaginary) time period aso
during which coalescence events are collapsed, i.e. there is no growth in genealogical branches as
during B and the probability that a single pair of lineages entering the bottleneck coalesce during as:
the bottleneck is 1 — e 5. Although this simple two parameter model of bottlenecks is attractive a3s
and both analytic results and empirical inference (Griffiths et al., 1994; Birkner et al., 2009; Galtier a3
et al., 2000; Bunnefeld et al., 2015) have been developed under this model, there has been no ass
software available to simulate data under instantaneous bottleneck histories. 436

We have implemented instantaneous bottlenecks in msprime 1.0 using a variant of Hudson’s as7
linear time single-locus coalescent algorithm (Hudson, 1990), and validated the results by comparing ass
against analytical expectations (Bunnefeld et al., 2015). 430

Multiple merger coalescents as0

Kingman’s coalescent assumes that only two ancestral lineages can merge at each merger event. aa
Although this is generally a reasonable approximation, there are certain situations in which the as
underlying mathematical assumptions are violated. For example in certain highly fecund organisms asas
(Hedgecock, 1994; Beckenbach, 1994; Hedgecock and Pudovkin, 2011; Arnason, 2004; Irwin et al., asss
2016; Vendrami et al., 2021), where individuals have the ability to produce numbers of offspring on  aas
the order of the population size and therefore a few individuals may produce the bulk of the offspring  aae
in any given generation (Hedgecock, 1994). These population dynamics violate basic assumptions sz
of the Kingman coalescent, and are better modelled by ‘multiple-merger’ coalescents (Donnelly and  ass
Kurtz, 1999; Pitman, 1999; Sagitov, 1999; Schweinsberg, 2000; Mdhle and Sagitov, 2001), in which a0
more than two lineages can merge in a given event. Multiple-merger coalescent processes have also  aso
been shown to be relevant for modelling the effects of selection on gene genealogies (Gillespie, 2000;  as:
Durrett and Schweinsberg, 2004; Desai et al., 2013; Neher and Hallatschek, 2013; Schweinsberg, as2
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2017). 453

Although multiple merger coalescents have been of significant theoretical interest for around two  asa
decades, there has been little practical software available to simulate these models. Kelleher et al.  ass
(2013, 2014) developed packages to simulate a related spatial continuum model (Barton et al., 2010), ase
Zhu et al. (2015) simulate genealogies within a species tree based on a multiple-merger model, and a5
Becheler and Knowles (2020) provide a general method for simulating multiple merger processes as  ass
part of the Quetzal framework (Becheler et al., 2019). The Beta-Xi-Sim simulator (Koskela, 2018;  aso
Koskela and Wilke Berenguer, 2019) also includes a number of extensions to the Beta-coalescent. a0
None of these methods work with large genomes, and very little work has been performed on se:
simulating multiple merger processes with recombination. 462

We have added two multiple merger coalescent models in msprime 1.0, the Beta-coalescent (Schweinses
berg, 2003) and “Dirac™coalescent (Birkner et al., 2013a), allowing us to efficiently simulate such aea
models with recombination for the first time. These simulation models have been extensively val- aes
idated against analytical results from the site frequency spectrum (Birkner et al., 2013b; Blath aee
et al., 2016; Hobolth et al., 2019) as well as more general properties of coalescent processes. See ae
the Multiple merger coalescent model appendix for more details and model derivations. a8

Ancestral Recombination Graphs a6

The Ancestral Recombination Graph (ARG) was introduced by Griffiths (Griffiths, 1991; Griffiths a0
and Marjoram, 1997) to represent the stochastic process of the coalescent with recombination as an
a graph. This formulation is complementary to Hudson’s earlier work (Hudson, 1983a), and sub- 472
stantially increased our theoretical understanding of recombination. In Griffiths’ ARG formulation, a7
a realisation of the coalescent with recombination is a graph in which vertices represent common aza
ancestor or recombination events, and edges represent lineages. There is the “big” ARG, in which azs
we track lineages arising out of recombinations regardless of whether they carry ancestral mate- a6
rial (Ethier and Griffiths, 1990), and the “little” ARG in which we only track genetic ancestors. sz
Over time, usage of the term has shifted away from its original definition as a stochastic process, as
to being interpreted as a representation of a particular genetic ancestry as a graph, without neces- a7
sarily following the specific details of the Griffiths formulation (e.g. Minichiello and Durbin, 2006; aso
Mathieson and Scally, 2020). Under the latter interpretation, the tree sequence encoding of genetic as:
ancestry (described above) clearly is an ARG: the nodes and edges define a graph in which edges ass2
are annotated with the set of disjoint genomic intervals through which ancestry flows. 483

For our purposes, an ARG is a realisation of the coalescent with recombination, in the Griffiths asa
(little ARG) sense. As described in detail by Kelleher et al. (2016), Hudson’s algorithm works aes
by dynamically traversing a little ARG. The graph is not explicitly represented in memory, but is ase
partially present through the extant lineages and the ancestral material they carry over time. We do sz
not output the graph directly, but rather store the information required to recover the genealogical ass
history as nodes and edges in a tree sequence. This is far more efficient than outputting the aso
simulated ARG in its entirety. For a given scaled recombination rate p (setting aside the dependency aso
on the sample size n) we know from Eq. (1) that the number of nodes in an ARG is O(p?), whereas o1
the size of the tree sequence encoding is O(p) (Kelleher et al., 2016). This difference between a  ae2
quadratic and a linear dependency on p is profound, and shows why large simulations cannot output aes
an ARG in practice. 404

Although by default msprime outputs tree sequences that contain full information about the aes
genealogical trees, their correlation structure along the chromosome, and the ancestral genomes on  ass
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Figure 5: (A) A simple ARG in which a recombination occurs at position 0.3; (B) the equivalent
topology depicted as a tree sequence, including the recombination node; (C) the same tree sequence
topology “simplified” down to its minimal tree sequence representation. Note that the internal nodes
have been renumbered in the simplified representation, so that, e.g., node 5 in (C) corresponds to
node 6 in (A) and (B).

which coalescences occurred, some information is lost in this mapping down from ARG space to ae7
the minimal tree sequence form. In particular, we lose information about ancestral genomes that aes
were common ancestors but in which no coalescences occurred, and also information about the aee
precise time and chromosomal location of recombination events. In most cases, such information is  seo
of little relevance as it is in principle unknowable, but there are occasions such as visualisation or soz
computing likelihoods (see below) in which it is useful. We therefore provide the record_full_arg so:
option in msprime to store a representation of the complete ARG traversed during simulation. This ses
is done by storing extra nodes (marked with specific flags, so they can be easily identified later) and  soa
edges in the tree sequence (Fig. 5). One situation in which a record of the full ARG is necessary sos
is when we wish to compute likelihoods during inference. The likelihood is a central quantity in see
evaluating the plausibility of a putative ancestry as an explanation of DNA sequence data, both sor
directly through e.g. approaches based on maximum likelihood, and as an ingredient of methods socs
such as Metropolis-Hastings (Kuhner et al., 2000; Nielsen, 2000; Wang and Rannala, 2008). We  soo
provide functions to compute the likelihood of ARG realisations and mutational patterns under the sio
standard coalescent and infinite sites mutation model. For details, see the appendix: Likelihood s
calculations. 512

Selective sweeps s13

Another elaboration of the standard neutral coalescent with recombination is the addition of se- sia
lective sweeps (Kaplan et al., 1989; Braverman et al., 1995; Kim and Stephan, 2002). Sweeps sis
are modelled by creating a structured population during the sojourn of the beneficial mutation sie
through the population (i.e., the sweep phase) in which lineages may transit between favoured and  siz
unfavoured backgrounds through recombination. This approach allows for many selective sweep sis
scenarios to be simulated efficiently, including recurrent, partial, and soft selective sweeps. How- s
ever this efficiency comes at the cost of flexibility in comparison to forwards in time simulation. szo
Several specialised simulators have been developed to simulate sweeps in the coalescent, including s21
SelSim (Spencer and Coop, 2004), mbs (Teshima and Innan, 2009), msms (Ewing and Hermisson, sz2
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Figure 6: Comparison of selective sweep simulation performance in msprime (sim_ancestry) and
discoal (Intel Xeon Gold 6148 CPU). We report the average CPU time and maximum memory
usage when simulating 3 replicates for 100 diploid samples in a model with a single selective sweep in
its history, where the beneficial allele had a selection coefficient of s = 0.05, a per-base recombination
rate of 1078, population size of N = 10%, and sequence length varying from 100kb—-3000kb.

2010), cosi2 (Shlyakhter et al., 2014) and discoal (Kern and Schrider, 2016). 523

Selective sweeps are implemented in the coalescent as a two step-process: first generating an  sza
allele frequency trajectory, and then simulating a structured coalescent process conditioned on that s2s
trajectory. Following discoal, we generate sweep trajectories in msprime using a jump process ap- sze
proximation to the conditional diffusion of an allele bound for fixation (Coop and Griffiths, 2004), s2r
as detailed in the Selective sweeps model appendix. Given a randomly generated allele frequency s2s
trajectory, the simulation of a sweep works by assigning lineages to two different structured coa- s2e
lescent “labels”, based on whether they carry the beneficial allele. The allele frequency trajectory sso
determines the relative sizes of the “populations” in these labels over time, and therefore the rates ss:
at which various events occur. Common ancestor events can then only merge lineages from within ss
a label, but lineages can transfer from one label to the other (i.e., from the advantageous to disad- sss
vantageous backgrounds, and vice versa) as a result of recombination events. Once we have reached s3a
the end of the simulated trajectory the sweep is complete, and we remove the structured coalescent sss
labels. Simulation may then resume under any other ancestry model. 536

Fig. 6 compares the performance of msprime and discoal under a simple sweep model, and ss7
shows that msprime has far better CPU time and memory performance. Since our implementation sss
uses the abstract label system mentioned above, adding support for similar situations, such as sse
inversions (Peischl et al., 2013), should be straightforward. 540
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Figure 7: Comparison of Discrete Time Wright-Fisher (DTWF) simulation performance in msprime
(sim_ancestry) and ARGON (Intel Xeon E5-2680 CPU). We ran simulations with a population size
of 10* and recombination rate of 108, with 500 diploid samples and varying sequence length. We
report (A) total CPU time and (B) maximum memory usage; each point is the average over 5 repli-
cate simulations. We show observations for ARGON, msprime’s DTWF implementation (“DTWE”)
and a hybrid simulation of 100 generations of the DTWF followed by the standard coalescent with
recombination (“DTWF + Hudson”). We ran ARGON with a mutation rate of 0 and with mini-
mum output options, with a goal of measuring only ancestry simulation time. Memory usage for
msprime’s DTWEF and hybrid simulations are very similar.

Discrete time Wright-Fisher sa1

The coalescent is an idealised model and makes many simplifying assumptions, but it is often sa2
surprisingly robust to violations of these assumptions (Wakeley et al., 2012). One situation in sas
which the model does break down is the combination of large sample size and long recombining saa
genomes, where the large number of recombination events in the recent past results in more than the sas
biologically possible 2¢ ancestors in ¢ diploid generations (Nelson et al., 2020). This pathological sas
behaviour results in identity-by-descent, long-range linkage disequilibrium and ancestry patterns sz
deviating from Wright-Fisher expectations, and the bias grows with larger sample sizes (Wakeley sas
et al., 2012; Bhaskar et al., 2014; Nelson et al., 2020). Precisely this problem occurs when simulating sao
modern human datasets, and we have implemented a Discrete Time Wright-Fisher (DTWF) model sso
in msprime to address the issue. The DTWF simulates backwards in time generation-by-generation ss
so that each gamete has a unique diploid parent, and multiple recombinations within a generation ss2
results in crossover events between the same two parental haploid copies. The method is described  ss3
in detail by Nelson et al. (2020). s5a

Fig. 7 shows that msprime simulates the DTWF more quickly and requires substantially less sss
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memory than ARGON (Palamara, 2016), a specialised DTWF simulator. However, the generation-by- sse
generation approach of the DTWF is less efficient than the coalescent with recombination when the ssz
number of lineages is significantly less than the population size (the regime where the coalescent sss
is an accurate approximation), which usually happens in the quite recent past (Bhaskar et al., sso
2014). We therefore support changing the simulation model during a simulation so that we can seo
run hybrid simulations, as proposed by Bhaskar et al. (2014). Any number of different simulation se:
models can be combined, allowing for the flexible choice of simulation scenarios. As the DTWF se2
improves accuracy of genealogical patterns in the recent past, we can simulate the recent history ses
using this model and then switch to the standard coalescent to more efficiently simulate the more ses
ancient history. 565

Integration with forward simulators se6

A unique feature of msprime is its ability to simulate genetic ancestries by extending an existing ser
partial genetic ancestry. Given a tree sequence that is complete up until time ¢ ago as input ses
(where marginal trees may or may not have fully coalesced), msprime can efficiently obtain the seo
segments of ancestral material present at this time, and then run the simulation backwards in time sz
from there. This allows a simulated ancestry to be produced by any number of different processes sz
across disjoint time slices. In practice this feature is used to “complete” forwards-time ancestry sz
simulations (Kelleher et al., 2018) that may have not fully coalesced. This process (“recapitation”) s
can be orders of magnitude faster than the standard approach of neutral burn-in; see Haller et al. s7a
(2018) for more details and examples. This interoperability between simulators, where a partial szs
ancestry simulation produced by SLiM (Haller and Messer, 2019) or fwdpy11 (Thornton, 2014) can sze
be picked up and completed by another simulator, with complete information retained—at scale—is sz
unprecedented. There may be an opportunity for other forward genetic simulators (e.g. Gaynor szs
et al., 2021) to leverage the tree sequence data format and associated tools. 570

Development model 580

Msprime has a large number of features, encompassing the functionality of several more specialised ss1
simulators while maintaining excellent performance. It is developed by a geographically distributed sz
team of volunteers under an open source community development model, with a strong emphasis sss
on code quality, correctness, good documentation, and inclusive development. As in any large code ssa
base, unit tests play a key role in ensuring that new additions behave as expected and msprime sss
has an extensive suite. These tests are run automatically on different operating systems on each sse
pull request (where a contributor proposes a code change), using standard Continuous Integration ssz
(CI) methodology. Other CI services check for common errors, code formatting issues, and produce sss
reports on the level of test coverage for the proposed change. 589

Unit tests are vital for ensuring software quality and correctness, but they are usually of little se0
value in assessing the statistical properties of simulations. To validate the correctness of simulation se:
output we maintain a suite of statistical tests (as of 1.0.0, 217 validation tests). These consist of se2
running many replicate simulations to check the properties of the output against other simulators, ses
and where possible against analytical results. For example, simulations of complex demography ses
are validated against ms, selective sweeps against discoal, and Wright-Fisher simulations against ses
forwards in time simulations in SLiM. This suite of tests is run before every release, to ensure that see
statistical errors have not been introduced. 507
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More visibly to the end user, we also have a high standard for documentation, with precise, sos
comprehensive, and cross-linked documentation that is automatically built from the code base and  ses
served through the website https://tskit.dev. With the goal of lowering the entry barrier to eco
new users, we have invested significant effort in writing examples and introductions, and making ee:
common tasks discoverable. We also view contributions to documentation as equally important to ez
the project as writing code or designing methods: what use would it be to write reliable, stable eos
software if no-one used it? 604

An important goal of msprime’s development model is to maximise accessibility for prospective eos
users and contributors, and to encourage diversity in our community. Gender and racial inequality eos
caused by discrimination and marginalisation is a major problem across the sciences (Wellenreuther sor
and Otto, 2016; Shannon et al., 2019) and in open source software development (Trinkenreich et al., eos
2021). Within our field, the contribution of women to early computational methods in population eos
genetics was marginalised (Dung et al., 2019), and women continue to be under-represented in e
computational biology (Bonham and Stefan, 2017). The authorship of our paper reflects these e
trends, with a skew towards men and affiliations in the USA and Europe. We know the importance of 12
creating and strengthening networks to develop and maintain a diverse community of contributors, eis
and we are committed to fostering a supportive and collaborative environment that helps to address e1a
these inequalities in our field. 615

Discussion 616

The 1.0 release of msprime marks a major increase in the breadth of available features and the e17
potential biological realism of simulations. These abilities will allow researchers to perform more es
robust power analyses, more reliably test new methods, carry out more reliable inferences, and more 10
thoroughly explore the properties of theoretical models. Despite this complexity and generality, ezo
msprime’s performance is state-of-the-art and all features are extensively tested and statistically ez
validated. These advances have only been possible thanks to a distributed, collaborative model of 22
software development, and the work of many people. 623

Even though simulation has long been a vital tool in population genetics, such collaborative e2a
software development has historically been uncommon. A huge proliferation of tools have been e2s
published (the references here are not exhaustive) and only a small minority of these are actively 26
developed and maintained today. The ecosystem is highly fragmented, with numerous different e27
ways of specifying parameters and representing results, and there are significant software quality ezs
issues at all stages. This is unsurprising, since the majority of simulation software development is e29
performed by students, often without formal training in software development. The result resembles 630
Haldane’s sieve for new mutations: many new pieces of software stay permanently on a dusty shelf es:
of supplementary materials, while some of those that prove particularly useful when new (like 32
dominant alleles) are quickly adopted. Although this has produced many good tools and enabled 33
decades of research, it also represents a missed opportunity to invest as a community in shared esa
infrastructure and mentorship in good software development practice. 635

Scientific software is vital apparatus, and must be engineered to a high quality if we are to ese
trust its results. There is a growing realisation across the sciences (e.g. Siepel, 2019; Harris et al., o3z
2020; Gardner et al., 2021) that investing in shared community infrastructure produces better ess
results than a proliferation of individually maintained tools, allowing scientists to focus on their eso
specific questions rather than software engineering. Msprime 1.0 is the result of such a community es0
process, with features added by motivated users, taking advantage of the established development ea:
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practices and infrastructure. Software development in a welcoming community, with mentorship es2
by experienced developers, is a useful experience for many users. The skills that contributors learn eas
can lead to greatly increased productivity in subsequent work (e.g., through more reliable code and  ess
better debugging skills). We hope that users who find that features they require are missing will eas
continue to contribute to msprime, leading to a community project that is both high quality and ess
sustainable in the long term. 6a7

The succinct tree sequence data structure developed for msprime provides a view of not only ess
genetic variation, but also the genetic ancestry that produced that variation. Recent breakthroughs eas
in methods to infer genetic ancestry in recombining organisms (Rasmussen et al., 2014; Kelleher eso
et al., 2019; Speidel et al., 2019; Wohns et al., 2021; Schaefer et al., 2021; Speidel et al., 2021) s
have made it possible to estimate such ancestry from real data at scale for the first time (Harris, es2
2019; Tang, 2019). Given such inferred ancestry, many exciting applications become possible. ess
For example, Osmond and Coop (2021) developed a method to estimate the location of genetic esa
ancestors based on inferred trees, and other uses are sure to follow. Since the inferred genetic ess
ancestry becomes the input for other downstream inferences, it is vitally important that these ese
primary inferences are thoroughly validated, with the detailed properties of the inferred ancestries esz
catalogued and understood. Msprime will continue to be an important tool for these inferences ess
and validations, and in this context the ability to interoperate with other methods—particularly ess
forwards simulators—through the succinct tree sequence data structure and tskit library will be eeo
essential. o61

Availability

Msprime is freely available under the terms of the GNU General Public License v3.0, and can be in-  ee3
stalled from the Python Package Index (PyPI) or the conda-forge conda channel. Development is  ess
conducted openly on GitHub at https://github.com/tskit-dev/msprime/. The documentation ees
for msprime is available at https://tskit.dev/msprime/docs/. The source code for all the evalua- ees
tions and figures in this manuscript is available at https://github.com/tskit-dev/msprime-1.0-paper/.
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Appendix
Mutation generation 1160

The algorithm that msprime uses to simulate mutations on a tree sequence proceeds in two steps: 1iex
first, mutations are “placed” on the tree sequence (i.e., sampling their locations in time, along the 11
genome, and on the marginal tree), and then the ancestral and derived alleles of each mutation are 1ies
generated. All mutation models share the code to place mutations, but choose alleles in different 11ea
ways. 1165

First, mutations are placed on the tree sequence under an inhomogeneous Poisson model by 1166
applying them independently to each edge. If an edge spans a region [a,b) of the genome and 1ier
connected parent and child nodes with times s < ¢, and the mutation rate locally is p, then the 1iee
number of mutations on the edge is Poisson with mean p(t — s)(b— a), and each mutation is placed 11e0
independently at a position chosen uniformly in [a,b) and a time uniformly in [s,t). In a discrete 17
genome, all positions are integers and so more than one mutation may occur at the same position 1z
on the same edge. Otherwise (i.e., for an infinite-sites model), positions are rejection sampled to 1172
obtain a unique floating-point number. If an edge spans a region of the genome with more than one 1173
mutation rate, this is done separately for each sub-region on which the mutation rate is constant. 1i7a
Since each edge is processed independently, the algorithm scales linearly with the number of edges 117s
in the tree sequence. 1176

Next, alleles are chosen for each mutation. If the site was not previously mutated, then a 177
new ancestral allele is chosen for the site, according to an input distribution of ancestral state 1izs
allele probabilities. Then, each mutation on the tree is considered in turn, and a derived allele 117e
is randomly chosen based on the parental allele (which may be the ancestral allele or the derived 11s0
allele of a previous mutation). Finally, information about the mutations are recorded in the site 11
and mutation tables of the tree sequence. 1182

A mutation model must, therefore, provide two things: a way of choosing an ancestral allele 11ss
for each new variant site, and a way of choosing a derived allele given the parental allele at each 11sa
mutation. Perhaps the simplest mutation model implemented in msprime is the InfiniteAlleles 1iss
mutation model, which keeps an internal counter so that the requested alleles are assigned subse- 11se
quent (and therefore unique) integers. 1187

The distribution of ancestral alleles is used to choose the allele present at the root of the tree 1iss
at each mutated site, i.e., the root_distribution. Mutation models with a finite possible set 1iso
of alleles have a natural choice for this distribution—the stationary distribution of the mutation 11e0
process. (All mutation models are Markovian, so this may be found as the top left eigenvector of 11e:
the mutation matrix.) This is the default in most models, except, e.g., the BinaryMutationModel, 1102
whose alleles are 0 and 1 and always labels the ancestral allele “0”. However, mutational processes 113
are not in general stationary, so we often allow a different root distribution to be specified. 1104

Since the general algorithm above applies mutations at a single rate independent of ancestral 1ies
state, a model in which different alleles mutate at different rates must necessarily produce some 1106
silent mutations, i.e., mutations in which the derived allele is equal to the parental allele. To 1167
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illustrate this, consider a mutation model in which A or T" mutates to a randomly chosen different 11es
nucleotide at rate o and C' or G mutates at rate 8, with 8 < a. To implement this, first place 11ee
mutations at the largest total rate, which is «. Then, at each site, choose an ancestral allele from 1200
the root distribution, and for each mutation, choose a derived allele as follows: if the parental allele 1201
is A or T', then choose a random derived allele different to the parental allele; if the parental allele 1202
is C or G, then choose the derived allele to be equal to the parent allele with probability 5/(a+ 3), 1203
and randomly choose a different nucleotide otherwise. This produces the correct distribution by 120a
Poisson thinning: a Poisson process with rate « in which each point is discarded independently 1205
with probability 8/(« + ) is equivalent to a Poisson process with rate 5. All finite-state models 1206
(implemented under the generic MatrixMutationModel class) work in this way: mutations are 1207
placed at the maximum mutation rate, and then some silent mutations will result. 1208

In previous versions of msprime, silent mutations were disallowed, and we could have removed 1200
them from the output entirely. However, we have chosen to leave them in, so that for instance simu- 1210
lating with the HKY mutation model will result in silent mutations if not all equilibrium frequencies 1211
are the same. The presence of silent mutations may at first be surprising but there is a good reason 1212
to leave them in: to allow layering of different mutation models. Suppose that we wanted to model 1213
the mutation process as a mixture of more than one model, e.g., Jukes-Cantor mutations at rate 1, 1214
and HKY mutations occur at rate us. Layering multiple calls to sim_mutations is allowed, so we 1215
could first apply mutations with the JC69 model at rate p; and then add more with the HKY model 1216
at rate uo. However, there is a small statistical problem: suppose that after applying Jukes-Cantor 1217
mutations we have an A — C mutation, but then the HKY mutations inserts another mutation in 121s
the middle, resulting in A — C' — C. If neither mutation model allows silent transitions, then this iz1e
is clearly not correct, i.e., it is not equivalent to a model that simultaneously applies the two models. 1220
(The impact is small, however, as it only affects sites with more than one mutation.) The solution 1221
is to make the Jukes-Cantor model state-independent (also called “parent-independent”), by placing 1222
mutations at rate 4/3pu; and then choosing the derived state for each mutation independently of the 1223
parent (so that 1/4 of mutations will be silent). If so—and, more generally, if the first mutational 1224
process put down is state-independent—then the result of sequentially applying the two mutation 122s
models is equivalent to the simultaneous model. To facilitate this, many mutation models have 1226
a state_independent option that increases the number of silent mutations and makes the model 1227
closer to state-independent. 1228

Silent mutations are fully supported by tskit, which correctly accounts for their presence when 1220
computing statistics and performing other operations. For example, silent mutations have no effect 1230
on calculations of nucleotide site diversity. 1231

Time complexity of Hudson’s algorithm 1232

As discussed in the Recombination section, the time complexity of Hudson’s algorithm is predicted 1233
to be quadratic in the population scaled recombination rate p = 4N .L (where L is the length of 1234
the genome in units of recombination distance) by Eq. (1). Fig. 8 shows the running time for iass
simulations with a variety of population sizes, chromosome length and sample sizes, and shows this 1236
quadratic prediction is well supported by observations (see also Kelleher et al., 2016, Fig. 2). We 1237
also see that the dependence on n is quite weak, since increasing sample size 100-fold only increases 1238
run time by a factor of 2 or so. However, the log® n factor implied by Eq. (1) (the sum is a harmonic 1230
number and can be approximated by log n) is not well supported by observed run times (or numbers 1240
of events) except possibly at very large values of p. It therefore appears that a different dependence 1241
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Figure 8: Running time of sim_ancestry for (A) small and (B) larger simulations on an Intel i7-
6600U CPU. Each point is the run time of one simulation, for various values of effective population
size (N.), chromosome length in Morgans (L), and number of diploid samples (n). Run time scales
quadratically with the product of N, and L, shown on the horizontal axis. For example, (A) shows
that 1,000 samples of 1 Morgan-length chromosomes from a population of N, = 2,000 diploids
would take about 2 seconds, and (equivalently) that the same number of 0.01 Morgan segments
with N, = 200,000 would take the same time. Since recombination rate in these simulations was
1078, L is the number of base pairs divided by 10%. The black lines are quadratic fits separately in
each panel and sample size. Vertical grey lines show the approximate values of N.L for chromosome
1 in three species, using values from the stdpopsim catalogue (Adrion et al., 2020a).

on n is required to accurately predict simulation time for a given p and n. 1242

Fig. 8 is a useful yardstick, allowing us to predict how long simulations should take for a wide 1243
range of species. Taking a typical chromosome to be 1 Morgan in length, these plots show, roughly, 124a
that simulating chromosome-length samples from a population of thousands of individuals takes 12es
seconds, while samples from a population of tens of thousands take minutes. Simulating whole 1246
chromosomes for many species is very fast, with 1000 samples of chromosome 1 for Arabidopsis 1247
thaliana taking less than a second, and a few minutes for dogs and humans. However, the depen- 1248
dence on p is quadratic, and if p is sufficiently large simulations may not be feasible. For example, 1240
the Drosophila melanogaster chromosome 2L is about 23.5Mb long with an average recombination izso
rate of around 2.4 x 1078, so L ~ 0.57, and with N, = 1.7 x 10° (Li and Stephan, 2006), N.L a~ 105, 1251
so extrapolating the curve in Fig. 8B predicts that simulation would require around 177 hours for izs:
1000 samples. For such large values of p we recommend users consider approximate simulations. 12ss
Since msprime does not currently have efficient implementations of approximate coalescent with 12sa
recombination models, in these cases we recommend using SMC based methods such as scrm, par- 12ss
ticularly if sample sizes are small. In practice, to predict the running time of a given simulation in 12se
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msprime, we recommend that users measure run time in a series of simulations with short genome 1257
lengths and the desired sample size, and then predict run time by fitting a quadratic curve to 12ss
genome length as in Fig. 8. It is important to note that the quadratic curves in the two panels 1250
of Fig. 8 are different, and predicting the run times of days-long simulations using the timing of 1260
seconds-long runs is unlikely to be very accurate. 1261

What about simulations with changing population size? To understand how run time depends ize2
on demography it helps to consider why run time is quadratic in p. At any point in time, msprime 1263
must keep track of some number of lineages, each of which contains some number of chunks of 12es
genetic material. Common ancestor events reduce the number of lineages, and recombination events 1zes
increase their number. However, with long genomes, only a small fraction of the common ancestor izes
events will involve overlapping segments of ancestry and lead to coalescence in the marginal trees. 1267
Such disjoint segments are often far apart (on average, about distance L/2), and so recombine apart izes
again immediately; it is these large numbers of rapid and inconsequential events that lead to the 12es
quadratic run time. The maximum number of lineages occurs when the increase and decrease in 1270
numbers of lineages due to common ancestor and recombination events balance out. To get an 127
idea of run time we can estimate when this balance occurs. Suppose that the maximum number 1272
of lineages is M; at this time the rate of common ancestor events is M(M — 1)/(4N.) and the 1273
total rate of recombination is M/, where ¢ is the mean length of genome carried by each lineage 1274
(including “trapped” non-ancestral material). At the maximum, coalescence and recombination 1a7s
rates are equal, so a typical segment of ancestry will spend roughly half its time in a lineage with 1276
at least one other such segment—and, since such lineages carry at least two segments, at most 1277
one-third of the lineages carry long trapped segments of ancestry. Since the maximum number of 1278
lineages is reached very quickly (Nelson et al., 2020), this implies that ¢ ~ L/6. Setting the rates 17
of recombination and common ancestor events to be equal and solving for M, we find that M is 12e0
roughly equal to LN,. The number of lineages then decreases gradually from this maximum on the 12
coalescent time scale, and therefore over roughly 2N, generations. Since the total rate of events 12s2
when the maximum number of lineages is present is roughly L?N,./6, then the total number of 12s
events is proportional to (LN,)>—i.e., proportional to p?. 1284

What does this tell us about run time for simulating time-varying population sizes? Suppose 12ss
that population size today is N1, while T" generations ago it was N5. Does the run time depend more 1286
on 4N L or 4Ny L? The answer depends on how T' compares to Ny: if T/N; < 1 then the number of 12s7
extant lineages remaining after 7' generations is likely to be substantial, and the algorithm runtime 12ss
is primarily determined by Ns. Conversely, if T/N; > 1, then few extant lineages are likely to 1280
remain by time 7 and runtime depends mainly on N;. For instance, in many agricultural species 1260
N; =~ 100, while N, = 10°, and the run time will depend critically on T—in other words, simulation 1ze:
will be quick in a species with a strong domestication bottleneck, and slow otherwise. 1202

Selective sweeps model 1203

Sweep trajectories are generated in msprime using a jump process approximation to the conditional
diffusion of an allele bound for fixation (Coop and Griffiths, 2004). The jump process moves back
in time following the beneficial allele frequency, p, from some initial frequency (e.g., p = 1) back to
the origination of the allele at p = 1/(2N), tracking time in small increments é¢. Then, given the
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frequency p at time ¢, the frequency p’ at time ¢ + dt is given by

o = {p + p(p)ot + /p(1 — p)dt with probability 1/2

p+ p(p)dt — (1 — )5t with probability 1/2

where 1204

wp) = TN vl —p)
anh(a(l — p))
Here, o = 2N s and s is the fitness advantage in homozygotes. This model assumes genic selection 12es
(i.e., that the dominance coefficient h = 0.5), but can be generalised straightforwardly to include 1206
arbitrary dominance. We can also define trajectories to model neutral alleles and soft selective 1207
sweeps, which we plan as future additions to msprime. 1208

Likelihood calculations 1200

We provide two functions to facilitate likelihood-based inference. Both are implemented only for 1se0

the simplest case of the standard ARG with a constant population size, and require tree sequences 1so1

compatible with the record_full_arg option as their arguments. 1302
The msprime.log_arg_likelihood(ts, r, N) function returns the natural logarithm of the

sampling probability of the tree sequence ts under the ARG with per-link, per-generation recom-

bination probability r and population size N (e.g. Kuhner et al., 2000, equation (1)). Specifically,

the function returns the logarithm of

() ()or (- Elan(2) o)

where ¢; is the number of generations between the (i — 1)th and ith event, k; is the number of 1303
extant ancestors in that interval, [; is the number of links in that interval that would split ancestral 1zca
material should they recombine, ¢ is the total number of events in the tree sequence ts, q. is the 1so0s
number of coalescences, R is the set of indices of time intervals which end in a recombination, 1see
and g; is the corresponding gap: the length of contiguous non-ancestral material around the link 1307
at which the recombination in question took place. The gap indicates the number of links (or 1sos
length of genome in a continuous model) at which a recombination would result in exactly the 1300
observed pattern of ancestral material in the ARG. For a continuous model of the genome and a 1310
recombination in ancestral material, we set g; = 1 and interpret the result as a density. 1311
The msprime.unnormalised_log_mutation_likelihood(ts, m) function returns the natural
logarithm of the probability of the mutations recorded in the tree sequence ts given the corre-
sponding ancestry, assuming the infinite sites model, up to a normalising constant which depends
on the pattern of mutations, but not on the tree sequence or the per-site, per-generation mutation
probability m. Specifically, the function returns the logarithm of

Tm/2
—Tm/2 H oy
wGM

where T and M are the total branch length and set of mutations in ts, respectively, and for a 1s:.
mutation 7, h, is the total branch length on which 7 could have arisen while appearing on all 131
of the leaves of ts it does, and on no others. Unary nodes on marginal trees arising from the 1sia
record_full_arg option mean that, in general h, corresponds to the length of one or more edges. 1s1s
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Multiple merger coalescent model 1316

Multiple merger coalescents, in which no more than one group of a random number of ancestral 1317
lineages may merge into a common ancestor at a given time, are referred to as A-coalescents. The 1318
rate at which a given group of k out of a total of b lineages merges is 1310

1
)\b,k = / xk_z(l — ;L')b_kA(d:E) + a]l{kzg}, 2< k<, (2>
0

where 1y4) := 1 if A holds, and zero otherwise, a > 0 is a constant, and A is a finite measure on
the unit interval without an atom at zero (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999).
There is also a larger class of simultaneous multiple merger coalescents involving simultaneous
mergers of distinct groups of lineages into several common ancestors (Schweinsberg, 2000). These
are commonly referred to as =-coalescents, and often arise from population models incorporating
diploidy or more general polyploidy (Birkner et al., 2013a; Blath et al., 2016). To describe a general
=-coalescent, let A denote the infinite simplex

A= {(Sﬂl,xg,...) Z$1Z£L’22"'20,Z$j Sl}
j=1

— — =

The rate of mergers is determined by = = = + adg, where a > 0 is a constant, Jy is the Dirac delta

measure, and Zp is a finite measure on A with no atom at (0, 0, ...). For an initial number of
blocks b > 2 and r € {1,2,...,b— 1}, let ky > 2,..., k. > 2 be the sizes of r merger events and
s =b—ky — -+ — k, be the number of blocks not participating in any merger. The rate of each
possible set of mergers with sizes (k1,...,k;) is
s—0
Anskr oo krys = / Z Z (£> X Xy T, | 1 ij 7290 o Eo(dx)
A Y0 i1,rirp =1 =1 j=1"j

all distinct

+alfr=1 k,=2};

and the number of such (kq,...,k,) mergers is

b 1
biki,... k)= e
N (b ki, ... k) </ﬁ...krs> 1, 43!

where ¢; := #{i € {1,...,r} : k; = j} is the number of mergers of size j > 2 (Schweinsberg, 2000). 1320

Viewing coalescent processes strictly as mathematical objects, it is clear that the class of Z- 1321
coalescents contains A-coalescents as a specific example in which at most one group of lineages can 1s22
merge at each time, and the class of A-coalescents contain the Kingman-coalescent as a special case. 1323
However, viewed as limits of ancestral processes derived from specific population models they are not 1sza
nested. For example, one can obtain A-coalescents from haploid population models incorporating 1s2s
sweepstakes reproduction and high fecundity, and =-coalescents for the same models for diploid 1326
populations (Birkner et al., 2013a). One should therefore apply the models as appropriate, i.e. A- 1327
coalescents to haploid (e.g. mtDNA) data, and Z-coalescents to diploid or polyploid (e.g. autosomal) 1328
data (Blath et al., 2016). 1320
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In msprime we have incorporated two examples of multiple-merger coalescents. One is a diploid 1330
extension (Birkner et al., 2013a) of the haploid Moran model adapted to sweepstakes reproduction 1ss:
considered by Eldon and Wakeley (2006). Let N denote the population size, and take ¢ € (0,1] 1332
to be fixed. In every generation, with probability 1 — x5 a single individual (picked uniformly at 1333
random) perishes. With probability ey, [¢N| individuals picked uniformly without replacement 1s3s
perish instead. In either case, a surviving individual picked uniformly at random produces enough 1s3s
offspring to restore the population size back to N. Taking ey = 1/N” for some v > 0, Eldon and 133
Wakeley (2006) obtain A-coalescents for which the A measure in (2) is a point mass at ©. The 1337
simplicity of this model does allow one to obtain some explicit mathematical results (see e.g. Der 1sss
et al. (2012); Eldon and Freund (2018); Freund (2020); Matuszewski et al. (2018)), and the model 133
has also been used to simulate gene genealogies within phylogenies (Zhu et al., 2015). As well as 130
the haploid model of Eldon and Wakeley (2006), msprime provides the diploid version of Birkner 1sa:
et al. (2013a), in which individuals perish as above, but replacements are generated by sampling 1ssz
a single pair of diploid individuals as parents, with children sampling one chromosome from each 1sas
parent. Hence, there are four parent chromosomes involved in each reproduction event, which can 1saa

lead to up to four simultaneous mergers, giving rise to a =-coalescent with merger rate 1345
)\Dirac B 61/12/4 i s/\(i—r) s (4) (1 - w)87£ % ki4-tkpt+l N ]l{r:17k1:2} (3)
bik1,....kr;s 1+ cw2/4 ,¢2 i / r+£ 4 1+ 61/12/4 5

The interpretation of (3) is that ‘small’ reproduction events in which two lineages merge occur at 1sac
rate 1/(1 + cp?/4), while large reproduction events with the potential to result in simultaneous 1se
multiple mergers occur at rate (cy?/4)/(1 + cp?/4). 1348

The other multiple merger coalescent model incorporated in msprime is the haploid population 1sse
model considered by Schweinsberg (2003), as well as its diploid extension (Birkner et al., 2018). 1ss0
In the haploid version, in each generation of fixed size IV, individuals produce random numbers of 1351

juveniles (X1,..., Xx) independently, each distributed according to a stable law satisfying 1352
lim Ck“P (X >k)=1 (4)
k—o0

with index a > 0, and where C' > 0 is a normalising constant. If the total number of juveniles i3s3
Sy = X1 +...+ Xy produced in this way is at least N, then N juveniles are sampled uniformly at 1ssa
random without replacement to form the next generation. As long as IE [X;] > 1, one can show that 1sss
{SNy < N} has exponentially small probability in N, and does not affect the resulting coalescent 1sse
as N — oo (Schweinsberg, 2003). If o > 2 the ancestral process converges to the Kingman- iss-
coalescent; if 1 < a < 2 the ancestral process converges to a A-coalescent with A in (2) given by 1sss
the Beta(2 — a, ) distribution, i.e. 1350

1

A(dz) = 1{0@@1}73(2

o) (1 - 2)* Nz, (5)

where B(a,b) = T'(a)I'(b)/T'(a+b) for a,b > 0 is the beta function (Schweinsberg, 2003). This model 13s0
has been adapted to diploid populations by Birkner et al. (2018), and the resulting coalescent is 1se:

=-coalescent with merger rate 1362
B B sgfr) s\ (4)rr¢ Blk+/{—a,s—{+a) (6)
biki1,..., kris — ~ ¢ 4k+€ B(2 —a, Oé) )
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where k := k1 +...+k, (Blath et al., 2016; Birkner et al., 2018). The interpretation of (6) is that the 1ses
random number of lineages participating in a potential merger is governed by the A-coalescent with 13es
rate (5), and all participating lineages are randomly allocated into one of four groups corresponding 1ses
to the four parental chromosomes, giving rise to up to four simultaneous mergers. 1366

The stable law (4) assumes that individuals can produce arbitrarily large numbers of juveniles. 137
Since juveniles are at least fertilised eggs, it may be desirable to suppose that the number of ises
juveniles surviving to reproductive maturity cannot be arbitrarily large. Hence we also consider isee
an adaptation of the Schweinsberg (2003) model, where the random number of juveniles has a 1370
deterministic upper bound ¢(N), and the distribution of the number of juveniles produced by a 137

given parent (or pair of parents in the diploid case) is 1372
o(N + 1)> ( 1 1 )
P(X=k=1 0 S /AN (S — 7
( ) {1<k<o(N)} d(N+1)>—1\ ke  (k+1) (7)

See Eldon and Stephan (2018) for a related model. One can follow the calculations of Schweinsberg 1s7s
(2003) or Birkner et al. (2018) to show that if 1 < o < 2 then, recalling that k = k1 +--- + k., the 137a

merger rate is 1375
)\Beta,M _ SA(i_T) s (4>T+E B(M7 k+ l— a,Ss — ¢ + a) (8)
bik1,...,kr;s T ~ g 4k+£ B(M, 9 _ a, CY)
where B(z;a,b) := foz te (1 — t)b_ldt for a,b > 0 and 0 < z < 1 is the incomplete beta function,
and
N)/N
M := lim o)/ € (0,1]

= N ST)/N + B X

(Chetwynd-Diggle et al., 2022). In other words, the measure A driving the multiple mergers is of 1376
the same form as in (5) with 0 < z < M in the case 1 < @ < 2 and limy_,00 ¢(N)/N > 0. If & > 2 1377
or ¢(N)/N — 0 then the ancestral process converges to the Kingman-coalescent (Chetwynd-Diggle 1s7s
et al., 2022) 1379
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