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Abstract 50

Stochastic simulation is a key tool in population genetics, since the models involved are 51

often analytically intractable and simulation is usually the only way of obtaining ground-truth 52

data to evaluate inferences. Because of this necessity, a large number of specialised simulation 53

programs have been developed, each filling a particular niche, but with largely overlapping 54

functionality and a substantial duplication of effort. Here, we introduce msprime version 1.0, 55

which efficiently implements ancestry and mutation simulations based on the succinct tree 56

sequence data structure and tskit library. We summarise msprime’s many features, and show 57

that its performance is excellent, often many times faster and more memory efficient than 58

specialised alternatives. These high-performance features have been thoroughly tested and 59

validated, and built using a collaborative, open source development model, which reduces 60

duplication of effort and promotes software quality via community engagement. 61

Keywords: Simulation, Coalescent, Mutations, Ancestral Recombination Graphs 62

Introduction 63

The coalescent process (Kingman, 1982a,b; Hudson, 1983b; Tajima, 1983) models the ancestry of a 64

set of sampled genomes, providing a mathematical description of the genealogical tree that relates 65

the samples to one another. It has proved to be a powerful model, and is now central to population 66

genetics (Hudson, 1990; Hein et al., 2004; Wakeley, 2008). The coalescent is an efficient framework 67

for population genetic simulation, because it allows us to simulate the genetic ancestry for a sample 68

from an idealised population model, without explicitly representing the population in memory or 69

stepping through the generations. Indeed, Hudson (1983b) independently derived the coalescent 70

in order to efficiently simulate data, and used these simulations to characterise an analytically 71

intractable distribution. This inherent efficiency, and the great utility of simulations for a wide 72
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range of purposes, has led to dozens of different tools being developed over the decades (Carvajal- 73

Rodríguez, 2008; Liu et al., 2008; Arenas, 2012; Yuan et al., 2012; Hoban et al., 2012; Yang et al., 74

2014; Peng et al., 2015). 75

Two technological developments of recent years, however, pose major challenges to most ex- 76

isting simulation methods. Firstly, fourth-generation sequencing technologies have made complete 77

chromosome-level assemblies possible (Miga et al., 2020), and high quality assemblies are now 78

available for many species. Thus, modelling genetic variation data as a series of unlinked non- 79

recombining loci is no longer a reasonable approximation, and we must fully account for recombi- 80

nation. However, while a genealogical tree relating n samples in the single-locus coalescent can be 81

simulated in O(n) time (Hudson, 1990), the coalescent with recombination is far more complex, and 82

programs such as Hudson’s classical ms (Hudson, 2002) can only simulate short segments under the 83

influence of recombination. The second challenge facing simulation methods is that sample sizes in 84

genetic studies have grown very quickly in recent years, enabled by the precipitous fall in genome 85

sequencing costs. Human datasets like the UK Biobank (Bycroft et al., 2018) and gnomAD (Kar- 86

czewski et al., 2020) now consist of hundreds of thousands of genomes and many other datasets on 87

a similar scale are becoming available (Tanjo et al., 2021). Classical simulators such as ms and even 88

fast approximate methods such as scrm (Staab et al., 2015) simply cannot cope with such a large 89

number of samples. 90

The msprime simulator (Kelleher et al., 2016; Kelleher and Lohse, 2020) has greatly increased 91

the scope of coalescent simulations, and it is now straightforward to simulate millions of whole 92

chromosomes for a wide range of organisms. The “succinct tree sequence” data structure (Kelleher 93

et al., 2016, 2018, 2019; Wohns et al., 2021), originally introduced as part of msprime, makes it 94

possible to store such large simulations in a few gigabytes, several orders of magnitude smaller than 95

commonly used formats. The succinct tree sequence has also led to major advances in forwards- 96

time simulation (Kelleher et al., 2018; Haller et al., 2018), ancestry inference (Kelleher et al., 2019; 97

Wohns et al., 2021) and calculation of population genetic statistics (Kelleher et al., 2016; Ralph 98

et al., 2020). Through a rigorous open-source community development process, msprime has gained 99

a large number of features since its introduction, making it a highly efficient and flexible platform 100

for population genetic simulation. This paper marks the release of msprime 1.0. We provide an 101

overview of its extensive features, demonstrate its performance advantages over alternative software, 102

and discuss opportunities for ongoing open-source community-based development. 103

The efficiency of coalescent simulations depends crucially on the assumption of neutrality, and 104

it is important to note that there are many situations in which this will be a poor approximation 105

of biological reality (Johri et al., 2021). In particular, background selection has been shown to 106

affect genomewide sequence variation in a wide range of species (Charlesworth et al., 1993, 1995; 107

Charlesworth and Jensen, 2021). Thus care must be taken to ensure that the results of purely 108

neutral simulations are appropriate for the question and genomic partition under study. A major 109

strength of msprime, however, is that it can be used in conjunction with forwards-time simulators, 110

enabling the simulation of more realistic models than otherwise possible (Kelleher et al., 2018; 111

Haller et al., 2018). 112

Results 113

In the following sections we describe the main features of msprime 1.0, focusing on the aspects that 114

are either new for this version, or in which our approach differs significantly from classical methods 115

(summarised in Table 1). Where appropriate, we benchmark msprime against other simulators, but 116
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Interface Separation of ancestry and mutation simulations. Ability to store arbitrary
metadata along with simulation results, and automatic recording of provenance
information for reproducibility. Jupyter notebook (Kluyver et al., 2016) inte-
gration. Rich suite of analytical and visualisation methods via tskit library.

Ancestry SMC, SMC’, Beta- and Dirac-coalescent, discrete time Wright-Fisher, and se-
lective sweep models. Instantaneous bottlenecks. Discrete or continuous ge-
nomic coordinates, arbitary ploidy, gene conversion. Output full ARG with re-
combination nodes, ARG likelihood calculations. Record full migration history
and census events. Improved performance for large numbers of populations. In-
tegration with forward simulators such as SLiM and fwdpy11 (“recapitation”).

Demography Improved interface with integrated metadata and referencing populations by
name. Import from Newick species tree, *BEAST (Heled and Drummond,
2009), and Demes (Gower et al., 2022). Numerical methods to compute coa-
lescence rates.

Mutations JC69, HKY, F84, GTR, BLOSUM62, PAM, infinite alleles, SLiM and general
matrix mutation models. Varying rates along the genome, recurrent/back mu-
tations, discrete or continuous genomic coordinates, overlaying multiple layers
of mutations, exact times associated with mutations.

Table 1: Major features of msprime 1.0 added since version 0.3.0 (Kelleher et al., 2016).

the comparisons are illustrative and not intended to be systematic or exhaustive. Please see Kelleher 117

et al. (2016) for a performance comparison of msprime against simulators such as ms, msms, and 118

scrm. 119

User interface 120

The majority of simulation packages are controlled either through a command line interface (e.g. 121

Hudson, 2002; Kern and Schrider, 2016), a text-based input file format (e.g. Guillaume and Rouge- 122

mont, 2006; Excoffier and Foll, 2011; Shlyakhter et al., 2014), or a mixture of both. Command 123

line interfaces make it easy to run simple simulations, but as model complexity and the number 124

of parameters increase, they become difficult to understand and error-prone (Ragsdale et al., 2020; 125

Gower et al., 2022). Specifying parameters through a text file alleviates this problem to a degree, 126

but lacks flexibility, for example, when running simulations with parameters drawn from a distri- 127

bution. In practice, for any reproducible simulation project users will write a script to generate 128

the required command lines or input parameter files, invoke the simulation engine, and process the 129

results in some way. This process is cumbersome and labour intensive, and a number of packages 130

have been developed to allow simulations to be run directly in a high-level scripting language (Staab 131

and Metzler, 2016; Parobek et al., 2017; Gladstein et al., 2018). 132

The more recent trend has been to move away from this file and command-line driven approach 133

and to instead provide direct interfaces to the simulation engines via an Application Programming 134

Interface (API) (e.g. Thornton, 2014; Kelleher et al., 2016; Becheler et al., 2019; Haller and Messer, 135

2019). The primary interface for msprime is through a thoroughly documented Python API, which 136
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(A)
ts = sim_ancestry(3, ...)

Genome position
0 686 1000

(B)
mts = sim_mutations(ts, ...)

Genome position
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Figure 1: Visualisation of the separation between ancestry and mutation simulation. (A) The
result of an invocation of sim_ancestry is two trees along a 1kb chunk of genome relating three
diploid samples. Each diploid individual consists of two genomes (or nodes), indicated by colour.
(B) This ancestry is provided as the input to sim_mutations, which adds mutations. Graphics
produced using tskit’s draw_svg method.

has encouraged the development of an ecosystem of downstream tools (Terhorst et al., 2017; Chan 137

et al., 2018; Spence and Song, 2019; Adrion et al., 2020a,b; Kamm et al., 2020; McKenzie and 138

Eaton, 2020; Montinaro et al., 2020; Terasaki Hart et al., 2021; Rivera-Colón et al., 2021). As 139

well as providing a stable and efficient platform for building downstream applications, msprime’s 140

Python API makes it much easier to build reproducible simulation pipelines, as the entire workflow 141

can be encapsulated in a single script, and package and version dependencies explicitly stated using 142

the pip or conda package managers. For example, the errors made in the influential simulation 143

analysis of Martin et al. (2017) were only detected because the pipeline could be easily run and 144

reanalysed (Ragsdale et al., 2020; Martin et al., 2020). 145

A major change for the msprime 1.0 release is the introduction of a new set of APIs, designed in 146

part to avoid sources of error (see the Demography section) but also to provide more appropriate 147

defaults while keeping compatibility with existing code. In the new APIs, ancestry and mutation 148

simulation are fully separated (see Fig. 1), with the sim_ancestry and sim_mutations functions 149

replacing the legacy simulate function. Among other changes, the new APIs default to discrete 150

genome coordinates and finite sites mutations, making the default settings more realistic and re- 151

solving a major source of confusion and error. The previous APIs are fully supported and tested, 152

and will be maintained for the foreseeable future. The msp program (a command line interface to 153

the library) has been extended to include new commands for simulating ancestry and mutations 154

separately. A particularly useful feature is the ability to specify demographic models in Demes 155

format (Gower et al., 2022) from the command line, making simulation of complex demographies 156

straightforward. We also provide an ms compatible command line interface to support existing 157

workflows. 158
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Figure 2: An example tree sequence describing genealogies and sequence variation for four samples
at ten sites on a chromosome of twenty bases long. Information is stored in a set of tables (the tables
shown here include only essential columns, and much more information can be associated with the
various entities). The node table stores information about sampled and ancestral genomes. The
edge table describes how these genomes are related along a chromosome, and defines the genealogical
tree at each position. The site and mutation tables together describe sequence variation among the
samples. The genotype matrix and tree topologies shown on the left are derived from these tables.

Tree sequences 159

One of the key reasons for msprime’s substantial performance advantage over other simulators (Kelle- 160

her et al., 2016) is its use of the “succinct tree sequence” data structure to represent simulation 161

results. The succinct tree sequence (usually abbreviated to “tree sequence”) was introduced by 162

Kelleher et al. (2016) to concisely encode genetic ancestry and sequence variation and was originally 163

implemented as part of msprime. We subsequently extracted the core tree sequence functionality 164

from msprime to create the tskit library, which provides a large suite of tools for processing genetic 165

ancestry and variation data via APIs in the Python and C languages (Tskit developers, 2022). The 166

availability of tskit as a liberally licensed (MIT) open source toolkit has enabled several other 167

projects (e.g. Kelleher et al., 2019; Haller and Messer, 2019; Wohns et al., 2021; Terasaki Hart 168

et al., 2021) to take advantage of the same efficient data structures used in msprime, and we hope 169

that many more will follow. While a full discussion of tree sequences and the capabilities of tskit 170

is beyond the scope of this article, we summarise some aspects that are important for simulation. 171

Let us define a genome as the complete set of genetic material that a child inherits from one 172

parent. Thus, a diploid individual has two (monoploid) genomes, one inherited from each par- 173

ent. Since each diploid individual lies at the end of two distinct lineages of descent, they will be 174

represented by two places (nodes) in any genealogical tree. In the tree sequence encoding a node 175

therefore corresponds to a single genome, which is associated with its creation time (and other op- 176
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tional information), and recorded in a simple tabular format (Fig. 2). Genetic inheritance between 177

genomes (nodes) is defined by edges. An edge consists of a parent node, a child node and the left 178

and right coordinates of the contiguous chromosomal segment over which the child genome inher- 179

ited genetic material from the parent genome. Parent and child nodes may correspond to ancestor 180

and descendant genomes separated by many generations. Critically, edges can span multiple trees 181

along the genome (usually referred to as “marginal” trees), and identical node IDs across different 182

trees corresponds to the same ancestral genome. For example, in Fig. 2 the branch from node 183

0 to 4 is present in both marginal trees, and represented by a single edge (the first row in the 184

edge table). This simple device, of explicitly associating tree nodes with specific ancestral genomes 185

and recording the contiguous segments over which parent-child relationships exist, generalises the 186

original “coalescence records” concept (Kelleher et al., 2016), and is the key to the efficiency of tree 187

sequences (Kelleher et al., 2018, 2019; Ralph et al., 2020). Note that this formulation is fully com- 188

patible with the concept of an Ancestral Recombination Graph (ARG) and any ARG topology can 189

be fully and efficiently encoded in the node and edge tables illustrated in Fig. 2; see the Ancestral 190

Recombination Graphs section below for more details. 191

The final output of most population genetic simulations is some representation of sequence 192

variation among the specified samples. For coalescent simulations, we usually have three steps: 193

(1) simulate the genetic ancestry, and optionally output the resulting marginal trees; (2) simu- 194

late sequence evolution conditioned on this ancestry by generating mutations (see the Simulating 195

mutations section); and (3) output the resulting nucleotide sequences by percolating the effects of 196

the mutations through the trees. Information about the mutations themselves—e.g., where they 197

have occurred on the trees—is usually not retained or made available for subsequent analysis. In 198

msprime, however, we skip step (3), instead using tskit’s combined data model of ancestry and 199

mutations to represent the simulated sequences. As illustrated in Fig. 2, mutations are a fully 200

integrated part of tskit’s tree sequence data model, and genetic variation is encoded by recording 201

sites at which mutations have occurred, and where each mutation at those sites has occurred on the 202

marginal tree. Crucially, the genome sequences themselves are never stored, or indeed directly rep- 203

resented in memory (although tskit can output the variant matrix in various formats, if required). 204

It may at first seem inconvenient to have only this indirect representation of the genome sequences, 205

but it is extremely powerful. Firstly, the storage space required for simulations is dramatically 206

reduced. For a simulation of n samples with m variant sites, we would require O(nm) space to 207

store the sequence data as a variant matrix. However, if this simulation was of a recombining 208

genome with t trees, then the tskit tree sequence encoding requires O(n+ t+m) space, assuming 209

we have O(1) mutations at each site (Kelleher et al., 2016). For large sample sizes, this difference 210

is profound, making it conceivable, for example, to store the genetic ancestry and variation data 211

for the entire human population on a laptop (Kelleher et al., 2019). As well as the huge difference 212

in storage efficiency, it is often far more efficient to compute statistics of the sequence data from 213

the trees and mutations than it is to work with the sequences themselves. For example, computing 214

Tajima’s D from simulated data stored in the tskit format is several orders of magnitude faster 215

than efficient variant matrix libraries for large sample sizes (Ralph et al., 2020). 216

The vast genomic datasets produced during the SARS-CoV-2 pandemic have highlighted the ad- 217

vantages of storing genetic variation data using the underlying trees. Turakhia et al. (2021) propose 218

the Mutation Annotated Tree (MAT) format (consisting of a Newick tree and associated mutations 219

in a binary format) and the matUtils program as an efficient way to store and process large viral 220

datasets (McBroome et al., 2021), achieving excellent compression and processing performance. 221

Similarly, phastsim (De Maio et al., 2021) was developed to simulate sequence evolution on such 222
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large SARS-CoV-2 phylogenies, and also outputs a Newick tree annotated with mutations (not in 223

MAT format) to avoid the bottleneck of generating and storing the simulated sequences. While 224

these methods illustrate the advantages of the general approach of storing ancestry and mutations 225

rather than sequences, they do not generalise beyond their immediate settings, and no software 226

library support is available. 227

The software ecosystem built around tskit is stable, mature and rapidly growing. Simulators 228

such as fwdpy11 (Thornton, 2014), SLiM (Haller and Messer, 2019), stdpopsim (Adrion et al., 229

2020a), Geonomics (Terasaki Hart et al., 2021) and GSpace (Virgoulay et al., 2021), and inference 230

methods such as tsinfer (Kelleher et al., 2019), tsdate (Wohns et al., 2021) and Relate (Speidel 231

et al., 2019) use either the Python or C APIs to support outputting results in tree sequence format. 232

Tree sequences are stored in an efficient binary file format, and are fully portable across operating 233

systems and processor architectures. The tskit library ensures interoperability between programs 234

by having strict definitions of how the information in each of the tables is interpreted, and stringent 235

checks for the internal consistency of the data model. 236

Data analysis 237

The standard way of representing simulation data is to render the results in a text format, which 238

must subsequently be parsed and processed as part of some analysis pipeline. For example, ms 239

outputs a set of sequences and can also optionally output the marginal trees along the genome in 240

Newick format, and variants of this approach are used by many simulators. Text files have many 241

advantages, but are slow to process at scale. The ability to efficiently process simulation results 242

is particularly important in simulation-based inference methods such as Approximate Bayesian 243

Computation (ABC) (Beaumont et al., 2002; Csilléry et al., 2010; Wegmann et al., 2010) and 244

machine learning based approaches (Sheehan and Song, 2016; Chan et al., 2018; Schrider and Kern, 245

2018; Flagel et al., 2019; Sanchez et al., 2020). Clearly, simulation efficiency is crucial since the 246

size and number of simulations that can be performed determines the depth to which one can 247

sample from the model and parameter space. Equally important, however, is the efficiency with 248

which the simulation results can be transformed into the specific input required by the inference 249

method. In the case of ABC, this is usually a set of summary statistics of the sequence data, and 250

methods avoid the bottleneck of parsing text-based file formats to compute these statistics by either 251

developing their own simulators (e.g. Cornuet et al., 2008; Lopes et al., 2009) or creating forked 252

versions (i.e., modified copies) of existing simulators (e.g. Thornton and Andolfatto, 2006; Hickerson 253

et al., 2007; Pavlidis et al., 2010; Huang et al., 2011; Quinto-Cortés et al., 2018), tightly integrated 254

with the inference method. Modern approaches to ABC such as ABC-RF (Raynal et al., 2019; 255

Pudlo et al., 2016) and ABC-NN (Csilléry et al., 2012; Blum and François, 2010) use large numbers 256

of weakly informative statistics, making the need to efficiently compute statistics from simulation 257

results all the more acute. By using the stable APIs and efficient data interchange mechanisms 258

provided by tskit, the results of an msprime simulation can be immediately processed, without 259

format conversion overhead. The tskit library has a rich suite of population genetic statistics 260

and other utilities, and is in many cases orders of magnitude faster than matrix-based methods for 261

large sample sizes (Ralph et al., 2020). Thus, the combination of msprime and tskit substantially 262

increases the overall efficiency of many simulation analysis pipelines. 263

Classical text based output formats like ms are inefficient to process, but also lack a great deal of 264

important information about the simulated process. The tree-by-tree topology information output 265

by simulators in Newick format lacks any concept of node identity, and means that we cannot 266
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reliably infer information about ancestors from the output. Because Newick stores branch lengths 267

rather than node times, numerical precision issues also arise for large trees (McGill et al., 2013). 268

Numerous forks of simulators have been created to access information not provided in the output. 269

For example, ms has been forked to output information about migrating segments (Rosenzweig et al., 270

2016), ancestral lineages (Chen and Chen, 2013), and ms’s fork msHOT (Hellenthal and Stephens, 271

2007) has in turn been forked to output information on local ancestry (Racimo et al., 2017). All 272

of this information is either directly available by default in msprime, or can be optionally stored 273

via options such as record_migrations or record_full_arg (see the Ancestral Recombination 274

Graphs section) and can be efficiently and conveniently processed via tskit APIs. 275

Simulating mutations 276

Because coalescent simulations are usually concerned with neutral evolution (see the Selective 277

sweeps section, however) the problem of generating synthetic genetic variation can be decomposed 278

into two independent steps: firstly, simulating genetic ancestry (the trees), then subsequently sim- 279

ulating variation by superimposing mutation processes on those trees (see Fig. 1). A number of 280

programs exist to place mutations on trees: for instance, the classical Seq-Gen program (Rambaut 281

and Grassly, 1997) supports a range of different models of sequence evolution, and various exten- 282

sions to the basic models have been proposed (e.g. Cartwright, 2005; Fletcher and Yang, 2009). 283

Partly for efficiency and partly in the interest of simplicity for users (i.e., to avoid intermediate text 284

format conversions), population genetic simulators have tended to include their own implementa- 285

tions of mutation simulation, with most supporting the infinite sites model (e.g. Hudson, 2002) but 286

with several supporting a wide range of different models of sequence evolution (e.g. Mailund et al., 287

2005; Excoffier and Foll, 2011; Virgoulay et al., 2021). Thus, despite the logical separation between 288

the tasks of simulating ancestry and neutral sequence evolution, the two have been conflated in 289

practice. 290

Part of the reason for this poor record of software reuse and modularity is the lack of standard- 291

ised file formats, and in particular, the absence of common library infrastructure to abstract the 292

details of interchanging simulation data. Although msprime also supports simulating both ancestry 293

and mutations, the two aspects are functionally independent within the software; both ancestry 294

and mutation simulators are present in msprime for reasons of convenience and history, and could 295

be split into separate packages. The efficient C and Python interfaces for tskit make it straight- 296

forward to add further information to an existing file, and because of its efficient data interchange 297

mechanisms, there is no performance penalty for operations being performed in a different software 298

package. Thanks to this interoperability, msprime’s mutation generator can work with any tskit 299

tree sequence, be it simulated using SLiM (Haller and Messer, 2019) or fwdpy11 (Thornton, 2014), 300

or estimated from real data (Kelleher et al., 2019; Speidel et al., 2019; Wohns et al., 2021). It is a 301

modular component intended to fit into a larger software ecosystem, and is in no way dependent 302

on msprime’s ancestry simulator. 303

We have greatly extended the sophistication of msprime’s mutation generation engine for version 304

1.0, achieving near feature-parity with Seq-Gen. We support a large number of mutation models, 305

including the JC69 (Jukes et al., 1969), F84 (Felsenstein and Churchill, 1996), and GTR (Tavaré 306

et al., 1986) nucleotide models and the BLOSUM62 (Henikoff and Henikoff, 1992) and PAM (Dayhoff 307

et al., 1978) amino acid models. Other models, such as the Kimura two and three parameter 308

models (Kimura, 1980, 1981), can be defined easily and efficiently in user code by specifying a 309

transition matrix between any number of alleles. Mutation rates can vary along the genome, and 310
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Figure 3: Time required to run sim_mutations on tree sequences generated by sim_ancestry
(with a population size of 104 and recombination rate of 10−8) for varying (haploid) sample size
and sequence length. We ran 10 replicate mutation simulations each for three different mutation
rates, and report the average CPU time required (Intel Core i7-9700). (A) Holding sequence length
fixed at 10 megabases and varying the number of samples (tree tips) from 10 to 100,000. (B) Holding
number of samples fixed at 1000, and varying the sequence length from 1 to 100 megabases.

multiple mutation models can be imposed on a tree sequence by overlaying mutations in multiple 311

passes. We have extensively validated the results of mutation simulations against both theoretical 312

expectations and output from Seq-Gen (Rambaut and Grassly, 1997) and Pyvolve (Spielman and 313

Wilke, 2015). 314

Simulating mutations in msprime is efficient. Fig. 3 shows the time required to generate muta- 315

tions (using the default JC69 model) on simulated tree sequences for a variety of mutation rates 316

as we vary the number of samples (Fig. 3A) and the sequence length (Fig. 3B). For example, the 317

longest running simulation in Fig. 3B required less than 2 seconds to generate an average of 1.5 318

million mutations over 137,081 trees in a tree sequence with 508,125 edges. This efficiency for large 319

numbers of trees is possible because the tree sequence encoding allows us to generate mutations on 320

an edge-by-edge basis (see Fig. 2 and the Mutation generation appendix), rather than tree-by-tree 321

and branch-by-branch as would otherwise be required. Simulating mutations on a single tree is also 322

very efficient; for example, we simulated mutations under the BLOSUM62 amino acid model for a 323

tree with 106 leaves over 104 sites (resulting in ∼260,000 mutations) in about 0.8 seconds, including 324

the time required for file input and output. We do not attempt a systematic benchmarking of 325

msprime’s mutation generation code against other methods, because at this scale it is difficult to 326

disentangle the effects of inefficient input and output formats from the mutation generation algo- 327

rithms. Given the above timings, it seems unlikely that generating mutations with msprime would 328

be a bottleneck in any realistic analysis. 329
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There are many ways in which the mutation generation code in msprime could be extended. For 330

example, we intend to add support for microsatellites (Mailund et al., 2005), codon models (Arenas 331

and Posada, 2007) and indels (Cartwright, 2005; Fletcher and Yang, 2009), although changes may 332

be required to tskit’s data model which is currently based on the assumption of independent sites. 333

Recombination 334

Crossover recombination is implemented in msprime using Hudson’s algorithm, which works back- 335

wards in time, generating common ancestor and recombination events and tracking their effects 336

on segments of ancestral material inherited from the sample (Hudson, 1983a, 1990; Kelleher et al., 337

2016). Common ancestor events merge the ancestral material of two lineages, and result in coa- 338

lescences in the marginal trees when ancestral segments overlap. Recombination events split the 339

ancestral material for some lineage at a breakpoint, creating two independent lineages. Using the 340

appropriate data structures (Kelleher et al., 2016), this process is much more efficient to simulate 341

than the equivalent left-to-right approach (Wiuf and Hein, 1999b,a). In msprime 1.0, recombi- 342

nation rates can vary along a chromosome, allowing us to simulate recombination hotspots and 343

patterns of recombination from empirical maps. The implementation of recombination in msprime 344

is extensively validated against analytical results (Hudson, 1983a; Kaplan and Hudson, 1985) and 345

simulations by ms, msHOT and SLiM. 346

The Sequentially Markovian Coalescent (SMC) is an approximation of the coalescent with re- 347

combination (McVean and Cardin, 2005; Marjoram and Wall, 2006), and was primarily motivated 348

by the need to simulate longer genomes than was possible using tools like ms. The SMC is a 349

good approximation to the coalescent with recombination when we have fewer than five sampled 350

genomes (Hobolth and Jensen, 2014; Wilton et al., 2015), but the effects of the approximation are 351

less well understood for larger sample sizes, and several approaches have been proposed that al- 352

low simulations to more closely approximate the coalescent with recombination (Chen et al., 2009; 353

Wang et al., 2014; Staab et al., 2015). The SMC and SMC’ models are supported in msprime 1.0. 354

However, they are currently implemented using a naive rejection sampling approach, and are some- 355

what slower to simulate than the exact coalescent with recombination. These models are therefore 356

currently only appropriate for studying the SMC approximations themselves, although we intend 357

to implement them more efficiently in future versions. 358

In human-like parameter regimes and for large sample sizes, msprime’s implementation of the 359

exact coalescent with recombination comprehensively outperforms all other simulators, including 360

those based on SMC approximations (Kelleher et al., 2016). However, it is important to note 361

that although the implementation of Hudson’s algorithm is very efficient, it is still quadratic in 362

the population scaled recombination rate ρ = 4NeL, where L is the length of the genome in units 363

of recombination distance. This is because Hudson’s algorithm tracks recombinations not only 364

in segments ancestral to the sample, but also between ancestral segments. As mentioned above, 365

common ancestor events in which the ancestral material of two lineages is merged only result in 366

coalescences in the marginal trees if their ancestral segments overlap. If there is no overlap, the 367

merged segments represent an ancestral chromosome that is a genetic ancestor of the two lineages, 368

but not the most recent common genetic ancestor at any location along the genome. When this 369

happens, the merged lineage carries “trapped” genetic material that is not ancestral to any samples, 370

but where recombinations can still occur (Wiuf and Hein, 1999b). For large ρ, recombination events 371

in trapped ancestral material will dominate, and so we can use this as a proxy for the overall number 372
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of events in Hudson’s algorithm. Hein et al. (2004, Eq. 5.10) gave 373

ρ(ρ+ 1)

(
n−1∑
i=1

1

i

)2

(1)

as an upper bound on the number of recombination events within trapped ancestral material for 374

n samples. As discussed in the Time complexity of Hudson’s algorithm appendix, the quadratic 375

dependence of simulation running time on ρ implied by (1) is well supported by observations, and 376

provides a useful means of predicting how long a particular simulation might require. 377

Gene conversion 378

Gene conversion is a form of recombination that results in the transfer of a short segment of 379

genetic material, for example between homologous chromosomes (Chen et al., 2007). Since gene 380

conversion impacts much shorter segments than crossover recombination (typically below 1kb) it 381

affects patterns of linkage disequilibrium differently (Korunes and Noor, 2017). Wiuf and Hein 382

(2000) modelled gene conversion in the coalescent via a rate at which gene conversion events are 383

initiated along the genome and a geometrically distributed tract length. In terms of the ancestral 384

process, gene conversion differs from crossover recombination (as described in the previous section) 385

in that it extracts a short tract of ancestry into an independent lineage, rather than splitting 386

ancestry to the left and right of a given breakpoint. We have implemented this model of gene 387

conversion in msprime 1.0, and validated the output against ms and analytical results (Wiuf and 388

Hein, 2000). 389

Gene conversion is particularly useful to model homologous recombination in bacterial evolution, 390

and so we compare the performance of msprime with gene conversion to two specialised bacterial 391

simulators, SimBac (Brown et al., 2016) and fastSimBac (De Maio and Wilson, 2017). Figure 4A 392

shows that msprime is far more efficient than both SimBac and the SMC-based approximation 393

fastSimBac. Figure 4B shows that msprime requires somewhat more memory than fastSimBac, (as 394

expected since fastSimBac uses a left-to-right SMC approximation) but is still reasonably modest 395

at around 1GiB for a simulation of 500 whole E. coli genomes. However, msprime is currently 396

lacking many of the specialised features required to model bacteria, and so an important avenue 397

for future work is to add features such as circular genomes and bacterial gene transfer (Baumdicker 398

and Pfaffelhuber, 2014). 399

Demography 400

One of the key applications of population genetic simulations is to generate data for complex de- 401

mographies. Beyond idealised cases such as stepping-stone or island models, or specialised cases such 402

as isolation-with-migration models, analytical results are rarely possible. Simulation is therefore 403

integral to the development and evaluation of methods for demographic inference. The demogra- 404

phy model in msprime is directly derived from the approach used in ms, and supports an arbitrary 405

number of randomly mating populations exchanging migrants at specified rates. A range of demo- 406

graphic events are supported, which allow for varying population sizes and growth rates, changing 407

migration rates over time, as well as population splits, admixtures and pulse migrations. 408

A major change for msprime 1.0 is the introduction of the new Demography API, designed to 409

address a design flaw in the msprime 0.x interface which led to avoidable errors in downstream 410
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Figure 4: Comparison of simulation performance using msprime (sim_ancestry), SimBac, and
fastSimBac for varying (haploid) sample sizes, and the current estimates for E. coli parame-
ters (Lapierre et al., 2016): a 4.6Mb genome, Ne = 1.8×108, gene conversion rate of 8.9×10−11 per
base and mean tract length of 542. We report (A) the total CPU time and (B) maximum memory
usage averaged over 5 replicates (Intel Xeon E5-2680 CPU). We did not run SimBac beyond first
two data points because of the very long running times.
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simulations (Ragsdale et al., 2020). The new API is more user-friendly, providing the ability, for 411

example, to refer to populations by name rather than their integer identifiers. We also provide 412

numerical methods to compute the coalescence rates for two or more lineages which can be inverted 413

to obtain the “inverse instantaneous coalescence rate” of Chikhi et al. (2018). Many popular ap- 414

proaches in population genetics use the distribution of coalescence rates between pairs of lineages 415

to infer effective population sizes over time (Li and Durbin, 2011; Sheehan et al., 2013; Schiffels 416

and Durbin, 2014) or split times and subsequent migration rates between populations (Wang et al., 417

2020). These numerical methods provide a valuable ground-truth when evaluating such inference 418

methods, as illustrated by Adrion et al. (2020a). 419

Instantaneous bottlenecks 420

A common approach to modelling the effect of demographic history on genealogies is to assume 421

that effective population size (Ne) changes in discrete steps which define a series of epochs (Griffiths 422

et al., 1994; Marth et al., 2004; Keightley and Eyre-Walker, 2007; Li and Durbin, 2011). In this 423

setting of piecewise constant Ne, capturing a population bottleneck requires three epochs: Ne is 424

reduced by some fraction b at the start of the bottleneck, Tstart, and recovers to its initial value at 425

time Tend (Marth et al., 2004). If bottlenecks are short both on the timescale of coalescence and 426

mutations, there may be little information about the duration of a bottleneck (Tend − Tstart) in 427

sequence data. Thus a simpler, alternative model is to assume that bottlenecks are instantaneous 428

(Tend − Tstart → 0) and generate a sudden burst of coalescence events (a multiple merger event) in 429

the genealogy. The strength of the bottleneck B can be thought of as an (imaginary) time period 430

during which coalescence events are collapsed, i.e. there is no growth in genealogical branches 431

during B and the probability that a single pair of lineages entering the bottleneck coalesce during 432

the bottleneck is 1 − e−B . Although this simple two parameter model of bottlenecks is attractive 433

and both analytic results and empirical inference (Griffiths et al., 1994; Birkner et al., 2009; Galtier 434

et al., 2000; Bunnefeld et al., 2015) have been developed under this model, there has been no 435

software available to simulate data under instantaneous bottleneck histories. 436

We have implemented instantaneous bottlenecks in msprime 1.0 using a variant of Hudson’s 437

linear time single-locus coalescent algorithm (Hudson, 1990), and validated the results by comparing 438

against analytical expectations (Bunnefeld et al., 2015). 439

Multiple merger coalescents 440

Kingman’s coalescent assumes that only two ancestral lineages can merge at each merger event. 441

Although this is generally a reasonable approximation, there are certain situations in which the 442

underlying mathematical assumptions are violated. For example in certain highly fecund organisms 443

(Hedgecock, 1994; Beckenbach, 1994; Hedgecock and Pudovkin, 2011; Árnason, 2004; Irwin et al., 444

2016; Vendrami et al., 2021), where individuals have the ability to produce numbers of offspring on 445

the order of the population size and therefore a few individuals may produce the bulk of the offspring 446

in any given generation (Hedgecock, 1994). These population dynamics violate basic assumptions 447

of the Kingman coalescent, and are better modelled by ‘multiple-merger’ coalescents (Donnelly and 448

Kurtz, 1999; Pitman, 1999; Sagitov, 1999; Schweinsberg, 2000; Möhle and Sagitov, 2001), in which 449

more than two lineages can merge in a given event. Multiple-merger coalescent processes have also 450

been shown to be relevant for modelling the effects of selection on gene genealogies (Gillespie, 2000; 451

Durrett and Schweinsberg, 2004; Desai et al., 2013; Neher and Hallatschek, 2013; Schweinsberg, 452
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2017). 453

Although multiple merger coalescents have been of significant theoretical interest for around two 454

decades, there has been little practical software available to simulate these models. Kelleher et al. 455

(2013, 2014) developed packages to simulate a related spatial continuum model (Barton et al., 2010), 456

Zhu et al. (2015) simulate genealogies within a species tree based on a multiple-merger model, and 457

Becheler and Knowles (2020) provide a general method for simulating multiple merger processes as 458

part of the Quetzal framework (Becheler et al., 2019). The Beta-Xi-Sim simulator (Koskela, 2018; 459

Koskela and Wilke Berenguer, 2019) also includes a number of extensions to the Beta-coalescent. 460

None of these methods work with large genomes, and very little work has been performed on 461

simulating multiple merger processes with recombination. 462

We have added two multiple merger coalescent models in msprime 1.0, the Beta-coalescent (Schweins-463

berg, 2003) and “Dirac”-coalescent (Birkner et al., 2013a), allowing us to efficiently simulate such 464

models with recombination for the first time. These simulation models have been extensively val- 465

idated against analytical results from the site frequency spectrum (Birkner et al., 2013b; Blath 466

et al., 2016; Hobolth et al., 2019) as well as more general properties of coalescent processes. See 467

the Multiple merger coalescent model appendix for more details and model derivations. 468

Ancestral Recombination Graphs 469

The Ancestral Recombination Graph (ARG) was introduced by Griffiths (Griffiths, 1991; Griffiths 470

and Marjoram, 1997) to represent the stochastic process of the coalescent with recombination as 471

a graph. This formulation is complementary to Hudson’s earlier work (Hudson, 1983a), and sub- 472

stantially increased our theoretical understanding of recombination. In Griffiths’ ARG formulation, 473

a realisation of the coalescent with recombination is a graph in which vertices represent common 474

ancestor or recombination events, and edges represent lineages. There is the “big” ARG, in which 475

we track lineages arising out of recombinations regardless of whether they carry ancestral mate- 476

rial (Ethier and Griffiths, 1990), and the “little” ARG in which we only track genetic ancestors. 477

Over time, usage of the term has shifted away from its original definition as a stochastic process, 478

to being interpreted as a representation of a particular genetic ancestry as a graph, without neces- 479

sarily following the specific details of the Griffiths formulation (e.g. Minichiello and Durbin, 2006; 480

Mathieson and Scally, 2020). Under the latter interpretation, the tree sequence encoding of genetic 481

ancestry (described above) clearly is an ARG: the nodes and edges define a graph in which edges 482

are annotated with the set of disjoint genomic intervals through which ancestry flows. 483

For our purposes, an ARG is a realisation of the coalescent with recombination, in the Griffiths 484

(little ARG) sense. As described in detail by Kelleher et al. (2016), Hudson’s algorithm works 485

by dynamically traversing a little ARG. The graph is not explicitly represented in memory, but is 486

partially present through the extant lineages and the ancestral material they carry over time. We do 487

not output the graph directly, but rather store the information required to recover the genealogical 488

history as nodes and edges in a tree sequence. This is far more efficient than outputting the 489

simulated ARG in its entirety. For a given scaled recombination rate ρ (setting aside the dependency 490

on the sample size n) we know from Eq. (1) that the number of nodes in an ARG is O(ρ2), whereas 491

the size of the tree sequence encoding is O(ρ) (Kelleher et al., 2016). This difference between a 492

quadratic and a linear dependency on ρ is profound, and shows why large simulations cannot output 493

an ARG in practice. 494

Although by default msprime outputs tree sequences that contain full information about the 495

genealogical trees, their correlation structure along the chromosome, and the ancestral genomes on 496

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.08.31.457499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.457499
http://creativecommons.org/licenses/by/4.0/


(A)

0 1 2

3

x = 0.3

4

5

6

(B)

0 1 2 0 1 2

3 3

4 4

5 5

6 6

0.0 0.3 1.0
Genome position

(C)

0 1 2 0 1 2

3

4

5 5

0.0 0.3 1.0
Genome position

Figure 5: (A) A simple ARG in which a recombination occurs at position 0.3; (B) the equivalent
topology depicted as a tree sequence, including the recombination node; (C) the same tree sequence
topology “simplified” down to its minimal tree sequence representation. Note that the internal nodes
have been renumbered in the simplified representation, so that, e.g., node 5 in (C) corresponds to
node 6 in (A) and (B).

which coalescences occurred, some information is lost in this mapping down from ARG space to 497

the minimal tree sequence form. In particular, we lose information about ancestral genomes that 498

were common ancestors but in which no coalescences occurred, and also information about the 499

precise time and chromosomal location of recombination events. In most cases, such information is 500

of little relevance as it is in principle unknowable, but there are occasions such as visualisation or 501

computing likelihoods (see below) in which it is useful. We therefore provide the record_full_arg 502

option in msprime to store a representation of the complete ARG traversed during simulation. This 503

is done by storing extra nodes (marked with specific flags, so they can be easily identified later) and 504

edges in the tree sequence (Fig. 5). One situation in which a record of the full ARG is necessary 505

is when we wish to compute likelihoods during inference. The likelihood is a central quantity in 506

evaluating the plausibility of a putative ancestry as an explanation of DNA sequence data, both 507

directly through e.g. approaches based on maximum likelihood, and as an ingredient of methods 508

such as Metropolis-Hastings (Kuhner et al., 2000; Nielsen, 2000; Wang and Rannala, 2008). We 509

provide functions to compute the likelihood of ARG realisations and mutational patterns under the 510

standard coalescent and infinite sites mutation model. For details, see the appendix: Likelihood 511

calculations. 512

Selective sweeps 513

Another elaboration of the standard neutral coalescent with recombination is the addition of se- 514

lective sweeps (Kaplan et al., 1989; Braverman et al., 1995; Kim and Stephan, 2002). Sweeps 515

are modelled by creating a structured population during the sojourn of the beneficial mutation 516

through the population (i.e., the sweep phase) in which lineages may transit between favoured and 517

unfavoured backgrounds through recombination. This approach allows for many selective sweep 518

scenarios to be simulated efficiently, including recurrent, partial, and soft selective sweeps. How- 519

ever this efficiency comes at the cost of flexibility in comparison to forwards in time simulation. 520

Several specialised simulators have been developed to simulate sweeps in the coalescent, including 521

SelSim (Spencer and Coop, 2004), mbs (Teshima and Innan, 2009), msms (Ewing and Hermisson, 522
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Figure 6: Comparison of selective sweep simulation performance in msprime (sim_ancestry) and
discoal (Intel Xeon Gold 6148 CPU). We report the average CPU time and maximum memory
usage when simulating 3 replicates for 100 diploid samples in a model with a single selective sweep in
its history, where the beneficial allele had a selection coefficient of s = 0.05, a per-base recombination
rate of 10−8, population size of N = 104, and sequence length varying from 100kb–3000kb.

2010), cosi2 (Shlyakhter et al., 2014) and discoal (Kern and Schrider, 2016). 523

Selective sweeps are implemented in the coalescent as a two step-process: first generating an 524

allele frequency trajectory, and then simulating a structured coalescent process conditioned on that 525

trajectory. Following discoal, we generate sweep trajectories in msprime using a jump process ap- 526

proximation to the conditional diffusion of an allele bound for fixation (Coop and Griffiths, 2004), 527

as detailed in the Selective sweeps model appendix. Given a randomly generated allele frequency 528

trajectory, the simulation of a sweep works by assigning lineages to two different structured coa- 529

lescent “labels”, based on whether they carry the beneficial allele. The allele frequency trajectory 530

determines the relative sizes of the “populations” in these labels over time, and therefore the rates 531

at which various events occur. Common ancestor events can then only merge lineages from within 532

a label, but lineages can transfer from one label to the other (i.e., from the advantageous to disad- 533

vantageous backgrounds, and vice versa) as a result of recombination events. Once we have reached 534

the end of the simulated trajectory the sweep is complete, and we remove the structured coalescent 535

labels. Simulation may then resume under any other ancestry model. 536

Fig. 6 compares the performance of msprime and discoal under a simple sweep model, and 537

shows that msprime has far better CPU time and memory performance. Since our implementation 538

uses the abstract label system mentioned above, adding support for similar situations, such as 539

inversions (Peischl et al., 2013), should be straightforward. 540
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Figure 7: Comparison of Discrete Time Wright-Fisher (DTWF) simulation performance in msprime
(sim_ancestry) and ARGON (Intel Xeon E5-2680 CPU). We ran simulations with a population size
of 104 and recombination rate of 10−8, with 500 diploid samples and varying sequence length. We
report (A) total CPU time and (B) maximum memory usage; each point is the average over 5 repli-
cate simulations. We show observations for ARGON, msprime’s DTWF implementation (“DTWF”)
and a hybrid simulation of 100 generations of the DTWF followed by the standard coalescent with
recombination (“DTWF + Hudson”). We ran ARGON with a mutation rate of 0 and with mini-
mum output options, with a goal of measuring only ancestry simulation time. Memory usage for
msprime’s DTWF and hybrid simulations are very similar.

Discrete time Wright-Fisher 541

The coalescent is an idealised model and makes many simplifying assumptions, but it is often 542

surprisingly robust to violations of these assumptions (Wakeley et al., 2012). One situation in 543

which the model does break down is the combination of large sample size and long recombining 544

genomes, where the large number of recombination events in the recent past results in more than the 545

biologically possible 2t ancestors in t diploid generations (Nelson et al., 2020). This pathological 546

behaviour results in identity-by-descent, long-range linkage disequilibrium and ancestry patterns 547

deviating from Wright-Fisher expectations, and the bias grows with larger sample sizes (Wakeley 548

et al., 2012; Bhaskar et al., 2014; Nelson et al., 2020). Precisely this problem occurs when simulating 549

modern human datasets, and we have implemented a Discrete Time Wright-Fisher (DTWF) model 550

in msprime to address the issue. The DTWF simulates backwards in time generation-by-generation 551

so that each gamete has a unique diploid parent, and multiple recombinations within a generation 552

results in crossover events between the same two parental haploid copies. The method is described 553

in detail by Nelson et al. (2020). 554

Fig. 7 shows that msprime simulates the DTWF more quickly and requires substantially less 555
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memory than ARGON (Palamara, 2016), a specialised DTWF simulator. However, the generation-by- 556

generation approach of the DTWF is less efficient than the coalescent with recombination when the 557

number of lineages is significantly less than the population size (the regime where the coalescent 558

is an accurate approximation), which usually happens in the quite recent past (Bhaskar et al., 559

2014). We therefore support changing the simulation model during a simulation so that we can 560

run hybrid simulations, as proposed by Bhaskar et al. (2014). Any number of different simulation 561

models can be combined, allowing for the flexible choice of simulation scenarios. As the DTWF 562

improves accuracy of genealogical patterns in the recent past, we can simulate the recent history 563

using this model and then switch to the standard coalescent to more efficiently simulate the more 564

ancient history. 565

Integration with forward simulators 566

A unique feature of msprime is its ability to simulate genetic ancestries by extending an existing 567

partial genetic ancestry. Given a tree sequence that is complete up until time t ago as input 568

(where marginal trees may or may not have fully coalesced), msprime can efficiently obtain the 569

segments of ancestral material present at this time, and then run the simulation backwards in time 570

from there. This allows a simulated ancestry to be produced by any number of different processes 571

across disjoint time slices. In practice this feature is used to “complete” forwards-time ancestry 572

simulations (Kelleher et al., 2018) that may have not fully coalesced. This process (“recapitation”) 573

can be orders of magnitude faster than the standard approach of neutral burn-in; see Haller et al. 574

(2018) for more details and examples. This interoperability between simulators, where a partial 575

ancestry simulation produced by SLiM (Haller and Messer, 2019) or fwdpy11 (Thornton, 2014) can 576

be picked up and completed by another simulator, with complete information retained—at scale—is 577

unprecedented. There may be an opportunity for other forward genetic simulators (e.g. Gaynor 578

et al., 2021) to leverage the tree sequence data format and associated tools. 579

Development model 580

Msprime has a large number of features, encompassing the functionality of several more specialised 581

simulators while maintaining excellent performance. It is developed by a geographically distributed 582

team of volunteers under an open source community development model, with a strong emphasis 583

on code quality, correctness, good documentation, and inclusive development. As in any large code 584

base, unit tests play a key role in ensuring that new additions behave as expected and msprime 585

has an extensive suite. These tests are run automatically on different operating systems on each 586

pull request (where a contributor proposes a code change), using standard Continuous Integration 587

(CI) methodology. Other CI services check for common errors, code formatting issues, and produce 588

reports on the level of test coverage for the proposed change. 589

Unit tests are vital for ensuring software quality and correctness, but they are usually of little 590

value in assessing the statistical properties of simulations. To validate the correctness of simulation 591

output we maintain a suite of statistical tests (as of 1.0.0, 217 validation tests). These consist of 592

running many replicate simulations to check the properties of the output against other simulators, 593

and where possible against analytical results. For example, simulations of complex demography 594

are validated against ms, selective sweeps against discoal, and Wright-Fisher simulations against 595

forwards in time simulations in SLiM. This suite of tests is run before every release, to ensure that 596

statistical errors have not been introduced. 597
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More visibly to the end user, we also have a high standard for documentation, with precise, 598

comprehensive, and cross-linked documentation that is automatically built from the code base and 599

served through the website https://tskit.dev. With the goal of lowering the entry barrier to 600

new users, we have invested significant effort in writing examples and introductions, and making 601

common tasks discoverable. We also view contributions to documentation as equally important to 602

the project as writing code or designing methods: what use would it be to write reliable, stable 603

software if no-one used it? 604

An important goal of msprime’s development model is to maximise accessibility for prospective 605

users and contributors, and to encourage diversity in our community. Gender and racial inequality 606

caused by discrimination and marginalisation is a major problem across the sciences (Wellenreuther 607

and Otto, 2016; Shannon et al., 2019) and in open source software development (Trinkenreich et al., 608

2021). Within our field, the contribution of women to early computational methods in population 609

genetics was marginalised (Dung et al., 2019), and women continue to be under-represented in 610

computational biology (Bonham and Stefan, 2017). The authorship of our paper reflects these 611

trends, with a skew towards men and affiliations in the USA and Europe. We know the importance of 612

creating and strengthening networks to develop and maintain a diverse community of contributors, 613

and we are committed to fostering a supportive and collaborative environment that helps to address 614

these inequalities in our field. 615

Discussion 616

The 1.0 release of msprime marks a major increase in the breadth of available features and the 617

potential biological realism of simulations. These abilities will allow researchers to perform more 618

robust power analyses, more reliably test new methods, carry out more reliable inferences, and more 619

thoroughly explore the properties of theoretical models. Despite this complexity and generality, 620

msprime’s performance is state-of-the-art and all features are extensively tested and statistically 621

validated. These advances have only been possible thanks to a distributed, collaborative model of 622

software development, and the work of many people. 623

Even though simulation has long been a vital tool in population genetics, such collaborative 624

software development has historically been uncommon. A huge proliferation of tools have been 625

published (the references here are not exhaustive) and only a small minority of these are actively 626

developed and maintained today. The ecosystem is highly fragmented, with numerous different 627

ways of specifying parameters and representing results, and there are significant software quality 628

issues at all stages. This is unsurprising, since the majority of simulation software development is 629

performed by students, often without formal training in software development. The result resembles 630

Haldane’s sieve for new mutations: many new pieces of software stay permanently on a dusty shelf 631

of supplementary materials, while some of those that prove particularly useful when new (like 632

dominant alleles) are quickly adopted. Although this has produced many good tools and enabled 633

decades of research, it also represents a missed opportunity to invest as a community in shared 634

infrastructure and mentorship in good software development practice. 635

Scientific software is vital apparatus, and must be engineered to a high quality if we are to 636

trust its results. There is a growing realisation across the sciences (e.g. Siepel, 2019; Harris et al., 637

2020; Gardner et al., 2021) that investing in shared community infrastructure produces better 638

results than a proliferation of individually maintained tools, allowing scientists to focus on their 639

specific questions rather than software engineering. Msprime 1.0 is the result of such a community 640

process, with features added by motivated users, taking advantage of the established development 641

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.08.31.457499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.457499
http://creativecommons.org/licenses/by/4.0/


practices and infrastructure. Software development in a welcoming community, with mentorship 642

by experienced developers, is a useful experience for many users. The skills that contributors learn 643

can lead to greatly increased productivity in subsequent work (e.g., through more reliable code and 644

better debugging skills). We hope that users who find that features they require are missing will 645

continue to contribute to msprime, leading to a community project that is both high quality and 646

sustainable in the long term. 647

The succinct tree sequence data structure developed for msprime provides a view of not only 648

genetic variation, but also the genetic ancestry that produced that variation. Recent breakthroughs 649

in methods to infer genetic ancestry in recombining organisms (Rasmussen et al., 2014; Kelleher 650

et al., 2019; Speidel et al., 2019; Wohns et al., 2021; Schaefer et al., 2021; Speidel et al., 2021) 651

have made it possible to estimate such ancestry from real data at scale for the first time (Harris, 652

2019; Tang, 2019). Given such inferred ancestry, many exciting applications become possible. 653

For example, Osmond and Coop (2021) developed a method to estimate the location of genetic 654

ancestors based on inferred trees, and other uses are sure to follow. Since the inferred genetic 655

ancestry becomes the input for other downstream inferences, it is vitally important that these 656

primary inferences are thoroughly validated, with the detailed properties of the inferred ancestries 657

catalogued and understood. Msprime will continue to be an important tool for these inferences 658

and validations, and in this context the ability to interoperate with other methods—particularly 659

forwards simulators—through the succinct tree sequence data structure and tskit library will be 660

essential. 661

Availability 662

Msprime is freely available under the terms of the GNU General Public License v3.0, and can be in- 663

stalled from the Python Package Index (PyPI) or the conda-forge conda channel. Development is 664

conducted openly on GitHub at https://github.com/tskit-dev/msprime/. The documentation 665

for msprime is available at https://tskit.dev/msprime/docs/. The source code for all the evalua- 666

tions and figures in this manuscript is available at https://github.com/tskit-dev/msprime-1.0-paper/.667
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Appendix 1159

Mutation generation 1160

The algorithm that msprime uses to simulate mutations on a tree sequence proceeds in two steps: 1161

first, mutations are “placed” on the tree sequence (i.e., sampling their locations in time, along the 1162

genome, and on the marginal tree), and then the ancestral and derived alleles of each mutation are 1163

generated. All mutation models share the code to place mutations, but choose alleles in different 1164

ways. 1165

First, mutations are placed on the tree sequence under an inhomogeneous Poisson model by 1166

applying them independently to each edge. If an edge spans a region [a, b) of the genome and 1167

connected parent and child nodes with times s < t, and the mutation rate locally is µ, then the 1168

number of mutations on the edge is Poisson with mean µ(t− s)(b− a), and each mutation is placed 1169

independently at a position chosen uniformly in [a, b) and a time uniformly in [s, t). In a discrete 1170

genome, all positions are integers and so more than one mutation may occur at the same position 1171

on the same edge. Otherwise (i.e., for an infinite-sites model), positions are rejection sampled to 1172

obtain a unique floating-point number. If an edge spans a region of the genome with more than one 1173

mutation rate, this is done separately for each sub-region on which the mutation rate is constant. 1174

Since each edge is processed independently, the algorithm scales linearly with the number of edges 1175

in the tree sequence. 1176

Next, alleles are chosen for each mutation. If the site was not previously mutated, then a 1177

new ancestral allele is chosen for the site, according to an input distribution of ancestral state 1178

allele probabilities. Then, each mutation on the tree is considered in turn, and a derived allele 1179

is randomly chosen based on the parental allele (which may be the ancestral allele or the derived 1180

allele of a previous mutation). Finally, information about the mutations are recorded in the site 1181

and mutation tables of the tree sequence. 1182

A mutation model must, therefore, provide two things: a way of choosing an ancestral allele 1183

for each new variant site, and a way of choosing a derived allele given the parental allele at each 1184

mutation. Perhaps the simplest mutation model implemented in msprime is the InfiniteAlleles 1185

mutation model, which keeps an internal counter so that the requested alleles are assigned subse- 1186

quent (and therefore unique) integers. 1187

The distribution of ancestral alleles is used to choose the allele present at the root of the tree 1188

at each mutated site, i.e., the root_distribution. Mutation models with a finite possible set 1189

of alleles have a natural choice for this distribution—the stationary distribution of the mutation 1190

process. (All mutation models are Markovian, so this may be found as the top left eigenvector of 1191

the mutation matrix.) This is the default in most models, except, e.g., the BinaryMutationModel, 1192

whose alleles are 0 and 1 and always labels the ancestral allele “0”. However, mutational processes 1193

are not in general stationary, so we often allow a different root distribution to be specified. 1194

Since the general algorithm above applies mutations at a single rate independent of ancestral 1195

state, a model in which different alleles mutate at different rates must necessarily produce some 1196

silent mutations, i.e., mutations in which the derived allele is equal to the parental allele. To 1197
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illustrate this, consider a mutation model in which A or T mutates to a randomly chosen different 1198

nucleotide at rate α and C or G mutates at rate β, with β < α. To implement this, first place 1199

mutations at the largest total rate, which is α. Then, at each site, choose an ancestral allele from 1200

the root distribution, and for each mutation, choose a derived allele as follows: if the parental allele 1201

is A or T , then choose a random derived allele different to the parental allele; if the parental allele 1202

is C or G, then choose the derived allele to be equal to the parent allele with probability β/(α+β), 1203

and randomly choose a different nucleotide otherwise. This produces the correct distribution by 1204

Poisson thinning: a Poisson process with rate α in which each point is discarded independently 1205

with probability β/(α + β) is equivalent to a Poisson process with rate β. All finite-state models 1206

(implemented under the generic MatrixMutationModel class) work in this way: mutations are 1207

placed at the maximum mutation rate, and then some silent mutations will result. 1208

In previous versions of msprime, silent mutations were disallowed, and we could have removed 1209

them from the output entirely. However, we have chosen to leave them in, so that for instance simu- 1210

lating with the HKY mutation model will result in silent mutations if not all equilibrium frequencies 1211

are the same. The presence of silent mutations may at first be surprising but there is a good reason 1212

to leave them in: to allow layering of different mutation models. Suppose that we wanted to model 1213

the mutation process as a mixture of more than one model, e.g., Jukes-Cantor mutations at rate µ1, 1214

and HKY mutations occur at rate µ2. Layering multiple calls to sim_mutations is allowed, so we 1215

could first apply mutations with the JC69 model at rate µ1 and then add more with the HKY model 1216

at rate µ2. However, there is a small statistical problem: suppose that after applying Jukes-Cantor 1217

mutations we have an A→ C mutation, but then the HKY mutations inserts another mutation in 1218

the middle, resulting in A→ C → C. If neither mutation model allows silent transitions, then this 1219

is clearly not correct, i.e., it is not equivalent to a model that simultaneously applies the two models. 1220

(The impact is small, however, as it only affects sites with more than one mutation.) The solution 1221

is to make the Jukes-Cantor model state-independent (also called “parent-independent”), by placing 1222

mutations at rate 4/3µ1 and then choosing the derived state for each mutation independently of the 1223

parent (so that 1/4 of mutations will be silent). If so—and, more generally, if the first mutational 1224

process put down is state-independent—then the result of sequentially applying the two mutation 1225

models is equivalent to the simultaneous model. To facilitate this, many mutation models have 1226

a state_independent option that increases the number of silent mutations and makes the model 1227

closer to state-independent. 1228

Silent mutations are fully supported by tskit, which correctly accounts for their presence when 1229

computing statistics and performing other operations. For example, silent mutations have no effect 1230

on calculations of nucleotide site diversity. 1231

Time complexity of Hudson’s algorithm 1232

As discussed in the Recombination section, the time complexity of Hudson’s algorithm is predicted 1233

to be quadratic in the population scaled recombination rate ρ = 4NeL (where L is the length of 1234

the genome in units of recombination distance) by Eq. (1). Fig. 8 shows the running time for 1235

simulations with a variety of population sizes, chromosome length and sample sizes, and shows this 1236

quadratic prediction is well supported by observations (see also Kelleher et al., 2016, Fig. 2). We 1237

also see that the dependence on n is quite weak, since increasing sample size 100-fold only increases 1238

run time by a factor of 2 or so. However, the log2 n factor implied by Eq. (1) (the sum is a harmonic 1239

number and can be approximated by log n) is not well supported by observed run times (or numbers 1240

of events) except possibly at very large values of ρ. It therefore appears that a different dependence 1241
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Figure 8: Running time of sim_ancestry for (A) small and (B) larger simulations on an Intel i7-
6600U CPU. Each point is the run time of one simulation, for various values of effective population
size (Ne), chromosome length in Morgans (L), and number of diploid samples (n). Run time scales
quadratically with the product of Ne and L, shown on the horizontal axis. For example, (A) shows
that 1,000 samples of 1 Morgan-length chromosomes from a population of Ne = 2, 000 diploids
would take about 2 seconds, and (equivalently) that the same number of 0.01 Morgan segments
with Ne = 200, 000 would take the same time. Since recombination rate in these simulations was
10−8, L is the number of base pairs divided by 108. The black lines are quadratic fits separately in
each panel and sample size. Vertical grey lines show the approximate values of NeL for chromosome
1 in three species, using values from the stdpopsim catalogue (Adrion et al., 2020a).

on n is required to accurately predict simulation time for a given ρ and n. 1242

Fig. 8 is a useful yardstick, allowing us to predict how long simulations should take for a wide 1243

range of species. Taking a typical chromosome to be 1 Morgan in length, these plots show, roughly, 1244

that simulating chromosome-length samples from a population of thousands of individuals takes 1245

seconds, while samples from a population of tens of thousands take minutes. Simulating whole 1246

chromosomes for many species is very fast, with 1000 samples of chromosome 1 for Arabidopsis 1247

thaliana taking less than a second, and a few minutes for dogs and humans. However, the depen- 1248

dence on ρ is quadratic, and if ρ is sufficiently large simulations may not be feasible. For example, 1249

the Drosophila melanogaster chromosome 2L is about 23.5Mb long with an average recombination 1250

rate of around 2.4×10−8, so L ≈ 0.57, and with Ne = 1.7×106 (Li and Stephan, 2006), NeL ≈ 106, 1251

so extrapolating the curve in Fig. 8B predicts that simulation would require around 177 hours for 1252

1000 samples. For such large values of ρ we recommend users consider approximate simulations. 1253

Since msprime does not currently have efficient implementations of approximate coalescent with 1254

recombination models, in these cases we recommend using SMC based methods such as scrm, par- 1255

ticularly if sample sizes are small. In practice, to predict the running time of a given simulation in 1256
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msprime, we recommend that users measure run time in a series of simulations with short genome 1257

lengths and the desired sample size, and then predict run time by fitting a quadratic curve to 1258

genome length as in Fig. 8. It is important to note that the quadratic curves in the two panels 1259

of Fig. 8 are different, and predicting the run times of days-long simulations using the timing of 1260

seconds-long runs is unlikely to be very accurate. 1261

What about simulations with changing population size? To understand how run time depends 1262

on demography it helps to consider why run time is quadratic in ρ. At any point in time, msprime 1263

must keep track of some number of lineages, each of which contains some number of chunks of 1264

genetic material. Common ancestor events reduce the number of lineages, and recombination events 1265

increase their number. However, with long genomes, only a small fraction of the common ancestor 1266

events will involve overlapping segments of ancestry and lead to coalescence in the marginal trees. 1267

Such disjoint segments are often far apart (on average, about distance L/2), and so recombine apart 1268

again immediately; it is these large numbers of rapid and inconsequential events that lead to the 1269

quadratic run time. The maximum number of lineages occurs when the increase and decrease in 1270

numbers of lineages due to common ancestor and recombination events balance out. To get an 1271

idea of run time we can estimate when this balance occurs. Suppose that the maximum number 1272

of lineages is M ; at this time the rate of common ancestor events is M(M − 1)/(4Ne) and the 1273

total rate of recombination is M`, where ` is the mean length of genome carried by each lineage 1274

(including “trapped” non-ancestral material). At the maximum, coalescence and recombination 1275

rates are equal, so a typical segment of ancestry will spend roughly half its time in a lineage with 1276

at least one other such segment—and, since such lineages carry at least two segments, at most 1277

one-third of the lineages carry long trapped segments of ancestry. Since the maximum number of 1278

lineages is reached very quickly (Nelson et al., 2020), this implies that ` ≈ L/6. Setting the rates 1279

of recombination and common ancestor events to be equal and solving for M , we find that M is 1280

roughly equal to LNe. The number of lineages then decreases gradually from this maximum on the 1281

coalescent time scale, and therefore over roughly 2Ne generations. Since the total rate of events 1282

when the maximum number of lineages is present is roughly L2Ne/6, then the total number of 1283

events is proportional to (LNe)
2—i.e., proportional to ρ2. 1284

What does this tell us about run time for simulating time-varying population sizes? Suppose 1285

that population size today is N1, while T generations ago it was N2. Does the run time depend more 1286

on 4N1L or 4N2L? The answer depends on how T compares to N1: if T/N1 � 1 then the number of 1287

extant lineages remaining after T generations is likely to be substantial, and the algorithm runtime 1288

is primarily determined by N2. Conversely, if T/N1 � 1, then few extant lineages are likely to 1289

remain by time T and runtime depends mainly on N1. For instance, in many agricultural species 1290

N1 ≈ 100, while N2 ≈ 105, and the run time will depend critically on T—in other words, simulation 1291

will be quick in a species with a strong domestication bottleneck, and slow otherwise. 1292

Selective sweeps model 1293

Sweep trajectories are generated in msprime using a jump process approximation to the conditional
diffusion of an allele bound for fixation (Coop and Griffiths, 2004). The jump process moves back
in time following the beneficial allele frequency, p, from some initial frequency (e.g., p = 1) back to
the origination of the allele at p = 1/(2N), tracking time in small increments δt. Then, given the
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frequency p at time t, the frequency p′ at time t+ δt is given by

p′ =

{
p+ µ(p)δt+

√
p(1− p)δt with probability 1/2

p+ µ(p)δt−
√
p(1− p)δt with probability 1/2

where 1294

µ(p) =
αp(1− p)

tanh(α(1− p))
.

Here, α = 2Ns and s is the fitness advantage in homozygotes. This model assumes genic selection 1295

(i.e., that the dominance coefficient h = 0.5), but can be generalised straightforwardly to include 1296

arbitrary dominance. We can also define trajectories to model neutral alleles and soft selective 1297

sweeps, which we plan as future additions to msprime. 1298

Likelihood calculations 1299

We provide two functions to facilitate likelihood-based inference. Both are implemented only for 1300

the simplest case of the standard ARG with a constant population size, and require tree sequences 1301

compatible with the record_full_arg option as their arguments. 1302

The msprime.log_arg_likelihood(ts, r, N) function returns the natural logarithm of the
sampling probability of the tree sequence ts under the ARG with per-link, per-generation recom-
bination probability r and population size N (e.g. Kuhner et al., 2000, equation (1)). Specifically,
the function returns the logarithm of(

1

2N

)qc(∏
i:R

rgi

)
exp

(
−

q∑
i=1

[ 1

2N

(
ki
2

)
+ rli

]
ti

)
,

where ti is the number of generations between the (i − 1)th and ith event, ki is the number of 1303

extant ancestors in that interval, li is the number of links in that interval that would split ancestral 1304

material should they recombine, q is the total number of events in the tree sequence ts, qc is the 1305

number of coalescences, R is the set of indices of time intervals which end in a recombination, 1306

and gi is the corresponding gap: the length of contiguous non-ancestral material around the link 1307

at which the recombination in question took place. The gap indicates the number of links (or 1308

length of genome in a continuous model) at which a recombination would result in exactly the 1309

observed pattern of ancestral material in the ARG. For a continuous model of the genome and a 1310

recombination in ancestral material, we set gi = 1 and interpret the result as a density. 1311

The msprime.unnormalised_log_mutation_likelihood(ts, m) function returns the natural
logarithm of the probability of the mutations recorded in the tree sequence ts given the corre-
sponding ancestry, assuming the infinite sites model, up to a normalising constant which depends
on the pattern of mutations, but not on the tree sequence or the per-site, per-generation mutation
probability m. Specifically, the function returns the logarithm of

e−Tm/2
(Tm/2)M

M !

∏
γ∈M

hγ
T
,

where T and M are the total branch length and set of mutations in ts, respectively, and for a 1312

mutation γ, hγ is the total branch length on which γ could have arisen while appearing on all 1313

of the leaves of ts it does, and on no others. Unary nodes on marginal trees arising from the 1314

record_full_arg option mean that, in general hγ corresponds to the length of one or more edges. 1315
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Multiple merger coalescent model 1316

Multiple merger coalescents, in which no more than one group of a random number of ancestral 1317

lineages may merge into a common ancestor at a given time, are referred to as Λ-coalescents. The 1318

rate at which a given group of k out of a total of b lineages merges is 1319

λb,k =

∫ 1

0

xk−2(1− x)b−kΛ(dx) + a1{k=2}, 2 ≤ k ≤ b, (2)

where 1{A} := 1 if A holds, and zero otherwise, a ≥ 0 is a constant, and Λ is a finite measure on
the unit interval without an atom at zero (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999).
There is also a larger class of simultaneous multiple merger coalescents involving simultaneous
mergers of distinct groups of lineages into several common ancestors (Schweinsberg, 2000). These
are commonly referred to as Ξ-coalescents, and often arise from population models incorporating
diploidy or more general polyploidy (Birkner et al., 2013a; Blath et al., 2016). To describe a general
Ξ-coalescent, let ∆ denote the infinite simplex

∆ :=

{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
j=1

xj ≤ 1

}
.

The rate of mergers is determined by Ξ = Ξ0 + aδ0, where a ≥ 0 is a constant, δ0 is the Dirac delta
measure, and Ξ0 is a finite measure on ∆ with no atom at (0, 0, . . . ). For an initial number of
blocks b ≥ 2 and r ∈ {1, 2, . . . , b − 1}, let k1 ≥ 2, . . . , kr ≥ 2 be the sizes of r merger events and
s = b − k1 − · · · − kr be the number of blocks not participating in any merger. The rate of each
possible set of mergers with sizes (k1, . . . , kr) is

λn;k1,...,kr;s =

∫
∆

s∑
`=0

∞∑
i1,...,ir+`=1
all distinct

(
s

`

)
xk1i1 · · ·x

kr
ir
xir+1

· · ·xir+`

1−
∞∑
j=1

xj

s−`
1∑∞

j=1 x
2
j

Ξ0(dx)

+ a1{r=1,k1=2},

and the number of such (k1, . . . , kr) mergers is

N (b; k1, . . . , kr) =

(
b

k1 . . . kr s

)
1∏b

j=2 `j !
,

where `j := #{i ∈ {1, . . . , r} : ki = j} is the number of mergers of size j ≥ 2 (Schweinsberg, 2000). 1320

Viewing coalescent processes strictly as mathematical objects, it is clear that the class of Ξ- 1321

coalescents contains Λ-coalescents as a specific example in which at most one group of lineages can 1322

merge at each time, and the class of Λ-coalescents contain the Kingman-coalescent as a special case. 1323

However, viewed as limits of ancestral processes derived from specific population models they are not 1324

nested. For example, one can obtain Λ-coalescents from haploid population models incorporating 1325

sweepstakes reproduction and high fecundity, and Ξ-coalescents for the same models for diploid 1326

populations (Birkner et al., 2013a). One should therefore apply the models as appropriate, i.e. Λ- 1327

coalescents to haploid (e.g. mtDNA) data, and Ξ-coalescents to diploid or polyploid (e.g. autosomal) 1328

data (Blath et al., 2016). 1329

40

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.08.31.457499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.457499
http://creativecommons.org/licenses/by/4.0/


In msprime we have incorporated two examples of multiple-merger coalescents. One is a diploid 1330

extension (Birkner et al., 2013a) of the haploid Moran model adapted to sweepstakes reproduction 1331

considered by Eldon and Wakeley (2006). Let N denote the population size, and take ψ ∈ (0, 1] 1332

to be fixed. In every generation, with probability 1 − εN a single individual (picked uniformly at 1333

random) perishes. With probability εN , bψNc individuals picked uniformly without replacement 1334

perish instead. In either case, a surviving individual picked uniformly at random produces enough 1335

offspring to restore the population size back to N . Taking εN = 1/Nγ for some γ > 0, Eldon and 1336

Wakeley (2006) obtain Λ-coalescents for which the Λ measure in (2) is a point mass at ψ. The 1337

simplicity of this model does allow one to obtain some explicit mathematical results (see e.g. Der 1338

et al. (2012); Eldon and Freund (2018); Freund (2020); Matuszewski et al. (2018)), and the model 1339

has also been used to simulate gene genealogies within phylogenies (Zhu et al., 2015). As well as 1340

the haploid model of Eldon and Wakeley (2006), msprime provides the diploid version of Birkner 1341

et al. (2013a), in which individuals perish as above, but replacements are generated by sampling 1342

a single pair of diploid individuals as parents, with children sampling one chromosome from each 1343

parent. Hence, there are four parent chromosomes involved in each reproduction event, which can 1344

lead to up to four simultaneous mergers, giving rise to a Ξ-coalescent with merger rate 1345

λDirac
b;k1,...,kr;s =

cψ2/4

1 + cψ2/4

4

ψ2

s∧(4−r)∑
`=0

(
s

`

)
(4)r+`(1− ψ)s−`

(
ψ

4

)k1+···+kr+`

+
1{r=1,k1=2}

1 + cψ2/4
, (3)

The interpretation of (3) is that ‘small’ reproduction events in which two lineages merge occur at 1346

rate 1/(1 + cψ2/4), while large reproduction events with the potential to result in simultaneous 1347

multiple mergers occur at rate (cψ2/4)/(1 + cψ2/4). 1348

The other multiple merger coalescent model incorporated in msprime is the haploid population 1349

model considered by Schweinsberg (2003), as well as its diploid extension (Birkner et al., 2018). 1350

In the haploid version, in each generation of fixed size N , individuals produce random numbers of 1351

juveniles (X1, . . . , XN ) independently, each distributed according to a stable law satisfying 1352

lim
k→∞

CkαP (X ≥ k) = 1 (4)

with index α > 0, and where C > 0 is a normalising constant. If the total number of juveniles 1353

SN := X1 + . . .+XN produced in this way is at least N , then N juveniles are sampled uniformly at 1354

random without replacement to form the next generation. As long as E [X1] > 1, one can show that 1355

{SN < N} has exponentially small probability in N , and does not affect the resulting coalescent 1356

as N → ∞ (Schweinsberg, 2003). If α ≥ 2 the ancestral process converges to the Kingman- 1357

coalescent; if 1 ≤ α < 2 the ancestral process converges to a Λ-coalescent with Λ in (2) given by 1358

the Beta(2− α, α) distribution, i.e. 1359

Λ(dx) = 1{0<x≤1}
1

B(2− α, α)
x1−α(1− x)α−1dx, (5)

where B(a, b) = Γ(a)Γ(b)/Γ(a+b) for a, b > 0 is the beta function (Schweinsberg, 2003). This model 1360

has been adapted to diploid populations by Birkner et al. (2018), and the resulting coalescent is 1361

Ξ-coalescent with merger rate 1362

λBeta
b;k1,...,kr;s =

s∧(4−r)∑
`=0

(
s

`

)
(4)r+`
4k+`

B(k + `− α, s− `+ α)

B(2− α, α)
, (6)
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where k := k1+. . .+kr (Blath et al., 2016; Birkner et al., 2018). The interpretation of (6) is that the 1363

random number of lineages participating in a potential merger is governed by the Λ-coalescent with 1364

rate (5), and all participating lineages are randomly allocated into one of four groups corresponding 1365

to the four parental chromosomes, giving rise to up to four simultaneous mergers. 1366

The stable law (4) assumes that individuals can produce arbitrarily large numbers of juveniles. 1367

Since juveniles are at least fertilised eggs, it may be desirable to suppose that the number of 1368

juveniles surviving to reproductive maturity cannot be arbitrarily large. Hence we also consider 1369

an adaptation of the Schweinsberg (2003) model, where the random number of juveniles has a 1370

deterministic upper bound φ(N), and the distribution of the number of juveniles produced by a 1371

given parent (or pair of parents in the diploid case) is 1372

P (X = k) = 1{1≤k≤φ(N)}
φ(N + 1)α

φ(N + 1)α − 1

(
1

kα
− 1

(k + 1)α

)
. (7)

See Eldon and Stephan (2018) for a related model. One can follow the calculations of Schweinsberg 1373

(2003) or Birkner et al. (2018) to show that if 1 < α < 2 then, recalling that k = k1 + · · ·+ kr, the 1374

merger rate is 1375

λBeta,M
b;k1,...,kr;s =

s∧(4−r)∑
`=0

(
s

`

)
(4)r+`
4k+`

B(M ; k + `− α, s− `+ α)

B(M ; 2− α, α)
(8)

where B(z; a, b) :=
∫ z

0
ta−1(1 − t)b−1dt for a, b > 0 and 0 < z ≤ 1 is the incomplete beta function,

and
M := lim

N→∞

φ(N)/N

φ(N)/N + E [X1]
∈ (0, 1]

(Chetwynd-Diggle et al., 2022). In other words, the measure Λ driving the multiple mergers is of 1376

the same form as in (5) with 0 < x ≤M in the case 1 < α < 2 and limN→∞ φ(N)/N > 0. If α ≥ 2 1377

or φ(N)/N → 0 then the ancestral process converges to the Kingman-coalescent (Chetwynd-Diggle 1378

et al., 2022). 1379
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