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ABSTRACT

Observing the spatial characteristics of gene expression by
image-based spatial transcriptomics technology allows study-
ing gene activity across different cells and intracellular struc-
tures. We present a probabilistic approach for the registra-
tion and analysis of transcriptome images and immunostain-
ing images. The method is based on particle filters and jointly
exploits intensity information and image features. We applied
our approach to synthetic data as well as real transcriptome
images and immunostaining microscopy images of the mouse
brain. It turns out that our approach accurately registers the
multi-modal images and yields better results than a state-of-
the-art method.

Index Terms— Spatial transcriptomics, multi-modal im-
ages, registration, probabilistic method

1. INTRODUCTION

Spatial transcriptomics (ST) technologies based on next gen-
eration sequencing (NGS) systematically generate spatial
measurements of gene expression in an entire tissue sample,
which bridge the gap between spatial information and the
whole transcriptome [1]. Advanced spatial transcriptomics
platforms, like Stereo-seq [2] or Seq-scope [3], achieve
nanoscale resolution, enabling determining subcellular com-
partmentalization and visualization of RNA sequencing data.

However, for the current ST technologies with nanoscale
resolution it is difficult to accurately assign spots of the tran-
scriptome images (gene expression matrix images) to specific
organelles or cells [1]. The information about gene expression
can be exploited in different ways, for example, to character-
ize gene expression patterns or to classifiy cell types in the
tissue [4-6]. However, lack of distinct cell boundaries in the
transcriptome images presents a big challenge for automated
analysis. Fast and accurate registration of transcriptome im-
ages and immunostaining images can facilitate the assign-
ment of expressed genes to specific cells to enable studying
sub-cellular gene expression patterns.
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Fig. 1. Registration result of our approach for an image
section: (a) Immunostaining image, (b) transcriptome image
(gene expression matrix image), and (c) overlay of registered
images.

Although in situ sequencing (to generate transcriptome
images) and immunostaining are carried out on the same tis-
sue, there are multiple factors that can cause spatial shifting,
for example, the sample preparation process and dispersion
of RNAs after tissue permeabilization. Manual alignment of
two images is time consuming, and only enables partial align-
ment in most cases [3,6]. Therefore, methods are needed for
efficient and accurate registration of large-scale transcriptome
images and immunostaining images with tens of thousands of
cells.

In previous work on automatic registration of spatial tran-
scriptomics image data only few methods were introduced.
[7] described a multiinformation-based method for registra-
tion of multiplexed in situ sequencing (ISS) datasets from
the Human Cell Atlas project. Multiinformation is defined
as KL divergence between a joint distribution and a product
of marginal distributions, and used in conjunction with FRI
(finite rate of innovation) sampling and swarm optimization.
However, the method is computationally expensive since mul-
tiinformation is costly to compute.

In this work, we introduce a novel probabilistic approach
for registration and analysis of transcriptome images and im-
munostaining images. The approach is based on a probabilis-
tic Bayesian framework and uses particle filters to determine
the transformation between the multi-modal images. Intensity
information and image features are jointly taken into account.
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We applied our approach to synthetic data as well as real tran-
scriptome images and immunostaining microscopy images of
the mouse brain. It turns out that our approach successfully
registers the multi-modal images and yields better results than
a state-of-the-art method.

2. METHODOLOGY

Our probabilistic registration approach consists of three main
steps: (i) Generation of gene expression matrix image, (ii)
spot detection and joint probabilistic registration, and (iii)
Voronoi-based cell region determination.

2.1. Generation of expression matrix image

The gene expression matrix images (transcriptome images)
are generated by inserting white dots on a black canvas (rect-
angular region for drawing dots). The x and y coordinates
represent the horizontal and vertical positions of a pixel, re-
spectively. In addition, the unique molecular identifier (UMI)
count value of each position is used as the intensity value of
the dot.

In order to emulate the real distance between dots, we ad-
just the dot size according to the relation between the dot size
and the canvas image size. Let dp.+ be the diameter of a cir-
cular dot, w the width of a canvas image (unit: inch), h the
horizontal coordinate range of the gene expression matrix im-
age, and fy,q4 the factor for dot magnification. The size of
each dot is then calculated by:

(72 X — X fmag)®- (D

Sdot = dépot

h

2.2. Probabilistic approach for registration

Our aim is to study the relationship between the spatial cell
structure in the immunostaining image and the correspond-
ing gene expression distribution in the gene expression ma-
trix image (transcriptome image). The goal of registration is
to assign N, gene expression spots to IV, cells. Such assign-
ment can be represented by a non-negative assignment matrix
w with elelments w"c that denote the strength of gene expres-
sion for a spot n, within a cell n. (using a binary assignment
w € {0,1}No*Ne ) Some nodes may be assigned to no cells.
In a Bayesian framework, we can formulate this task by esti-
mating the posterior probability density p(w | I%, I9), where
I' is the immunostaining image and I9 is the gene expression
matrix image. We denote the positions of all detected spots
in the immunostaining image by Yfl: ~. and the positions of
all detected spots in gene expression image by Yy, N, To de-
tect and localize multiple bright spots in an image, the spot-
enhancing filter [8,9] is used. Since all cells are located within
the same plane in our application, the transformation between
the multi-modal images can be represented by a homography

H. Since Y, n, and Y{, n, are conditionally independent of
I’ and IY, by using Bayes’ theorem, we can write

p( Zi~N aYélyvN ,H | Ii’Ig) =
p(H | I 19 Y.y 7Y§;Ng>p(Y1N | I)p (Y, [ 19).

2)
In our work, the transformation matrix is represented by
sgcos(f) —sin(0) t,
H(x) = sin(6)  sycos(0) t, |. 3)
0 0 1

To determine H, we need to compute the 5D parameter vec-
tor € = (g, Sy, 8, 5, t,) with rotation angle 6, scaling s, s,,
and translation ?,,t,. As similarity metric between corre-
sponding images we suggest using a combination of mutual
information (MI) for the image intensities and the point set
distance. The metric is maximized to align the multi-modal
images.

Let MI (I*, H(x)17) be the mutual information of I* and
H(z)I9, and D(Y", H(x)Y) be the sum of distances to
closest points (nearest neighbors) between points from Y
and H(x)Y 9. We search the optimal parameter vector x*
by maximizing the following likelihood function

arg mgxp(MI(Ii,H(a:)[g))p(D(Yi,H(m)Yg)) =

MI(I¢, H(z)Y9))
2012\/11

D(Y',H(z)Y?))
(=1) = 202D

arg max exp{ }exp{ 1
x

“

where o, is the standard deviation of MI and o p is the stan-
dard deviation of the point set distance. Since MI(r) > 0 and
D(r) > 0, the first term and the second term in Eq. (4) have
opposite monotonicity.

We could naively search the whole parameter space to
find the maximum likelihood to achieve the best alignment
between the two images. However, this is time consuming.
Here, we suggest using particle filters to efficiently determine
the optimal * in Eq. (4), given a random initialization x.

Furthermore, we can estimate wﬁ; for each gene expres-

sion spot n, at each cell n for a given observations Yi and
Yq We use Voronoi tessellation [10] to identify cell reglons
(rough boundary of a cell) to assign gene expression spots to
cells.

3. EXPERIMENTAL RESULTS

We compared our probabilistic registration approach with the
state-of-the-art registration approach [7] using synthetic as
well as real immunostaining images and gene expression ma-
trix images. For synthetic data, we generated immunostaining
images (500 x 500 pixels) using SimuCell [11] and randomly
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Fig. 2. Results of our method for synthetic data: (a) Im-
munostaining image, (b) gene expression matrix image, (c)
detected spots in immunostaining image (red), and (d) de-
tected spots in gene expression matrix image (blue).

determined transformations as ground truth (GT) transforma-
tions. For the real data of the mouse brain (Stereo-seq [2],
964 x 964 pixels, pixel size 0.65 x 0.65um?), the GT trans-
formation was obtained by manual alignment.

The target registration error (TRE) is used to quantify the
registration result. The TRE is the average distance between
the positions determined by the computed transformation pa-
rameters and the positions using the GT parameters. We em-
ployed six points to compute the TRE and determined the av-
erage position error in the x and y directions of the corre-
sponding aligned points. Let H (x*) be the computed trans-
formation matrix and p,,q € {1,--- ,6} be the manually se-
lected points, then the TRE is computed by

TRE, =+ Y0_, d, (p}, H(z*)p)
(%)
TRE, = Y0_, d, (p), H(z*)p))

where d, d, denote the distance between two corresponding
points in x and y direction. pé, pj are two corresponding
points in the immunostaining image and the gene expression
matrix image.

For our probabilistic registration approach, we used 50
random samples and 10 time steps for the particle filter to
determine the transformation matrix in Eq. (3).

(a) (b)

(© ()

Fig. 3. Results of our method for synthetic data with noise:
(a) Overlay of detected spots in both images before registra-
tion (red: detected spots in immunostaining image, blue: de-
tected spots in gene expression matrix image), (b) overlay of
detected spots in both images after registration, (c) overlay of
registered immunostaining image and gene expression matrix
image, (d) computed cell regions by Voronoi tesselation (each
cell is represented by a different color).

Method [7] Ours
Image  #Cells | 1pp TRE, | TRE, TRE,
1 5 832 1565 | 227  9.78
2 20 | 1514 17.37 | 2.88  13.37
3 80 | 6.84 2074 | 3.29  15.38
4 320 | 12.89 2384 | 517 1716
Average 106 10.80 19.40 3.40 13.92

Table 1. Target registration error for synthetic images.

Method [7] Ours
Images  #Cells | pp " TRE, | TRE, TRE,
1 256 | 22.68 23.17 | 12.21  16.56
2 153 | 18.14 1537 | 844  15.42
3 175 | 22.84  27.74 | 1029 13.38
4 208 | 23.89 22.84 | 10.17 14.16
Average 198 | 21.89 22.28 | 10.28 14.88

Table 2. Target registration error for real images.

Table 1 and Table 2 provide the TRE of our registration
approach and the method in [7] for four pairs of synthetic
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Fig. 4. Results of our method for real data (image section):
(a) Immunostaining image, (b) gene expression matrix image,
(c) overlay of registered images, (d) computed cell regions
(red crosses: detected center points of nuclei in immunos-
taining image using the spot-enhancing filter [8], blue points:
detected spots in gene expression matrix image, yellow lines:
computed cell regions).

images and 4 pairs of real images. For all image pairs, the
TRE of our approach is much lower than that of method [7].
Thus, our approach is much more accurate than the previous
method for the considered challenging data. Further, the com-
putational performance of our approach is about 3 times faster
than the previous method [7].

4. CONCLUSIONS

We have presented a probabilistic approach for multi-modal
registration of transcriptomics image data. Our approach de-
termines the transformation between immunostaining images
and gene expression matrix images. The method jointly ex-
ploits intensity information and image features. Our approach
has been successfully applied to synthetic data and real spa-
tial transcriptomics data of the mouse brain, and we found
that our approach yields better results than a state-of-the-art
method.
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