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Abstract 
Cognitive performance can be predicted from an individual’s functional brain connectivity 

with modest accuracy using machine learning approaches. As yet, however, predictive models 

have arguably yielded limited insight into the neurobiological processes supporting cognition. 

To do so, feature selection and feature weight estimation need to be reliable to ensure that 

important connections and circuits with high predictive utility can be reliably identified. We 

comprehensively investigate feature weight test-retest reliability for various predictive 

models of cognitive performance built from resting-state functional connectivity networks in 

healthy young adults (n=400). Despite achieving modest prediction accuracies (r=0.2-0.4), we 

find that feature weight reliability is generally poor for all predictive models (ICC<0.3), and 

significantly poorer than predictive models for overt biological attributes such as sex 

(ICC≈ 0.5). Larger sample sizes (n=800), the Haufe transformation, non-sparse feature 

selection/regularization and smaller feature spaces marginally improve reliability (ICC<0.4). 

We elucidate a tradeoff between feature weight reliability and prediction accuracy and find 

that univariate statistics are marginally more reliable than feature weights from predictive 

models. Finally, we show that measuring agreement in feature weights between cross-

validation folds provides inflated estimates of feature weight reliability. We thus recommend 

for reliability to be estimated out-of-sample, if possible. We argue that rebalancing focus from 

prediction accuracy to model reliability may facilitate mechanistic understanding of cognition 

with machine learning approaches.             

 

Keywords: Cognition, Functional MRI, Connectivity, Prediction reliability, Machine learning  
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Introduction  
Predicting an individual’s cognitive abilities and behavioral traits remains a major goal in 

neuroscience (Finn et al., 2015; Poldrack et al., 2017; Poldrack et al., 2020; Sui et al., 2020). 

Facets of human cognition, including intelligence, attention and working memory can be 

predicted with modest accuracy using machine and deep learning techniques applied to 

functional magnetic resonance imaging (fMRI) data. Current studies report cross-validated 

correlations between predicted and actual measures of cognition varying between r=0.1~0.5, 

depending on the specific cognitive measure, predictive model and other factors (Chen et al., 

2020; Cui and Gong, 2018; Dhamala et al., 2021; Finn and Bandettini, 2021; Finn et al., 2015; 

Greene et al., 2018; Kong et al., 2019; Li et al., 2019; Mansour et al., 2021; Seguin et al., 2020; 

Shen et al., 2017). Research efforts are currently focused on improving prediction accuracies 

through enhanced fMRI modeling, feature engineering, deep learning and larger samples 

(Abrol et al., 2021; He et al., 2020; Pervaiz et al., 2020; Schulz et al., 2020). As such, prediction 

accuracy has emerged as one of the most decisive factors differentiating good and bad 

predictive models of cognitive ability in neuroimaging: My model is better than yours because 

it is more accurate!   

 

While several predictive models can afford practical utility regardless of whether they are 

explainable (e.g., prediction of disease outcomes in a clinical setting), accurately predicting 

intelligence is arguably not an end goal per se. Even if future advances lead to outstanding 

prediction accuracies, practical, ethical and other considerations may limit use of this 

technology for often-hyped, real-world applications, such as intelligence testing, cognitive 

screening tools and similar (Eickhoff and Langner, 2019). A more tangible, realistic and 

immediate goal of predictive neuroimaging models in cognitive neuroscience is to explain 

neurobiological processes supporting cognition and to test theoretical cognitive models. 

While numerous top-down and bottom-up models of cognition have been developed 

(Kveraga et al., 2007), the brain regions, circuits, networks and dynamic neural processes 

underlying these models are only partly understood.  

 

A first step toward explaining a machine learning “black box” is through examining feature 

importance. Feature importance can be quantified using the fitted feature weights (i.e., beta 
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coefficients), usually after appropriate transformation (Haufe et al., 2014). Notwithstanding 

certain caveats, predictive utility is greatest for features with large weights. As such, neural 

processes underpinning specific cognitive functions can, in principle, be elucidated and 

localized to brain regions, connections and networks with large feature weights. However, 

this requires predictive models that are not only accurate, but also reliable with respect to 

feature selection and estimation of feature importance. Without reliable feature weights, it 

is challenging to interpret and explain predictive models, irrespective of how accurate the 

model can predict a behavior.          

 

Because predictive models are (by definition) validated on independent samples (Rosenberg 

et al., 2018a), is reproducibility and reliability ensured? Current cross-validation methods are 

geared toward validating prediction accuracy and can thus furnish confidence intervals 

quantifying the reliability for accuracy measures, but reliable prediction accuracies do not 

necessarily imply reliable estimates of feature importance.  

 

Several recent machine learning studies predicting cognitive performance from fMRI-derived 

brain networks have commented on the test-rest reliability of connectivity feature weights, 

variably referred to as either consistency, occurrence rate, overlap or consensus  (Cui and 

Gong, 2018; Dhamala et al., 2021; Finn and Bandettini, 2021; Finn et al., 2015; Jiang et al., 

2019; Rosenberg et al., 2016). These studies suggest that feature importance estimation is 

moderately reliable, although reliability has not typically been a core focus of these studies 

and strong agreement in beta coefficients between cross-validation folds has not always been 

interpreted in terms of reliable feature weights. Features that overlap between cross-

validation folds have been computed to enable succinct visualization of important features 

and to facilitate external model validation using independent datasets (Rosenberg et al., 2016; 

Rosenberg et al., 2018b). External validation based on an independent dataset is one of the 

strongest forms of validation and can provide insight into model generalizability. However, 

many studies do not have the luxury of an independent/external dataset, and thus model 

validation has often been performed “internally” on the same dataset using cross-validation 

schemes. Given that training splits generally do not comprise independent samples between 

cross-validation folds, this can lead to inflated test-retest reliability estimates, as we 
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demonstrate here. Further work is therefore needed to establish the extent to which the 

estimation of feature importance and model selection is reliable and reproducible.  

 

If the primary goal is to explain mechanisms underpinning cognition, significance testing may 

seem a more appropriate instrument than machine learning approaches. However, predictive 

modelling can alleviate several limitations of conventional statistical inference, including 

overfitting and p-hacking (Rosenberg et al., 2018a; Yarkoni and Westfall, 2017). Predictive 

and explanatory models are thus complementary, and they can both ultimately assist with 

elucidating a mechanistic understanding of cognition. Moreover, predictive models can 

potentially reveal unique insights, given that connectivity features that are important to 

predicting a cognitive measure do not necessarily correspond with connections that 

significantly covary with that measure (Bzdok et al., 2020). 

 

The reliability of functional connectivity measurements may impact feature weight reliability. 

If connectivity features themselves cannot be reliably measured, it is unlikely that feature 

importance can be reliably estimated. The reliability of resting-state functional connectivity 

is poor to modest (Noble et al., 2019) and depends on the precise functional connectivity 

measure, fMRI acquisition length, parcellation scale and many other factors (Birn et al., 2013; 

Noble et al., 2017; Pannunzi et al., 2017; Shirer et al., 2015; Taxali et al., 2021). The extent to 

which the reliability (or lack thereof) of functional connectivity measurements impacts the 

reliability of feature weight estimation remains unclear. 

           

The goal of this study is to evaluate the test-retest reliability of resting-state functional 

connectivity feature weights estimated by predictive models of intelligence and cognitive 

function. We consider feature spaces of varying dimensionality, from ~100 connections 

between broad canonical brain networks, to high-resolution atlas-defined networks 

comprising more than 10,000 connections. Prediction accuracies and feature weight test-

retest reliability are evaluated under several realistic conditions, including different predictive 

models, varying sample sizes and use of the Haufe transformation. We also compare the 

reliability of univariate statistics and investigate whether predictive models of overt biological 

attributes (i.e., sex) yield more reliable feature weights than cognitive models.  Finally, we 

provide recommendations for maximizing feature weight reliability and elucidate a tradeoff 
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between reliability and prediction accuracy. We emphasize that our conclusions and 

recommendations do not necessarily generalize to predictive models of diagnostic status, 

disease outcomes and other clinical variables. Here, we focus on predictive modeling of 

cognition in healthy young adults. We hope that our work encourages researchers to consider 

both feature weight reliability and prediction accuracy when evaluating predictive models of 

cognitive performance.   
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Material and methods 

Participants and neuroimaging data  

Minimally preprocessed resting-state functional magnetic resonance imaging (fMRI) data 

were sourced from the Human Connectome Project (HCP) S1200 release (Van Essen et al., 

2013). Participants were young healthy adults (n=1113) aged between 22 and 37 years. Two 

sessions of resting-state fMRI (REST1 and REST2) were acquired for each participant on two 

consecutive days, where each session comprised two runs (right-to-left and left-to-right 

phase encoding) of 14m33s each (TR=720ms, TE=33.1ms, voxel dimension: 2×2×2 mm3). All 

images were acquired on a customized Siemens Skyra 3 Tesla MR scanner using a multiband 

echo planar imaging sequence. Further image acquisition details can be found elsewhere 

(Smith et al., 2013). Participants who completed all four runs and cognitive assessments were 

included in this study, yielding a final sample of 958 individuals (mean age 28.7±3.7 years, 453 

males).  

 

The minimal preprocessing pipeline included removal of spatial artifacts and distortions, 

correction of head motion and spatial registration to the MNI (Montreal Neurological Institute) 

standard space, as described in detail elsewhere (Glasser et al., 2013). Data were analyzed in 

CIFTI (Connectivity Informatics Technology Initiative) format. Cortical data were projected 

onto a standard surface mesh (fs_LR) comprising ~32k vertices in each hemisphere, using a 

multimodal surface matching approach, referred to as MSM-ALL (Robinson et al., 2014). 

Subcortical data remained in volumetric format and were spatially aligned to the MNI space 

using the FNIRT nonlinear registration algorithm (Woolrich et al., 2009). The data were then 

spatially smoothed with surface and parcel constrained smoothing of 2mm FWHM (full width 

at half maximum). Motion-related artifacts and structured physiological noise were removed 

with ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). In addition, Wishart filtering, 

a PCA-based data denoising method, was performed on the denoised fMRI time series 

(Glasser et al., 2018; Glasser et al., 2016a; Glasser et al., 2016b) to further improve the signal-

to-noise ratio.  Head motion was quantified using framewise displacement (Power et al., 2012) 

and was included as a covariate in all statistical analyses.  
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Functional connectivity estimation 

The preprocessed fMRI time series were temporally concatenated across the four runs, 

yielding approximately one hour of data for each individual. Concatenation of the four runs 

ensured sufficient data to enable stable estimates of functional connectivity (Birn et al., 2013; 

Gordon et al., 2017; Gratton et al., 2018). Whole-brain functional connectivity matrices were 

mapped using established cortex (Glasser et al., 2016a) and subcortex atlases (Tian et al., 

2020). Specifically, fMRI signals were averaged across all vertices and voxels comprising each 

cortical (N=360) and subcortical (N=16) region, respectively. The Pearson correlation 

coefficient was used to estimate the temporal dependence between each pair of regional 

time series, yielding a symmetric functional connectivity matrix of dimension 376 × 376 for 

each individual. The connectivity matrix was r-to-z transformed (Fisher transformation), 

followed by vectorization of the upper triangle, resulting in (376 ×  375)/2=70,500 

connectivity features. While the Pearson correlation coefficient is the most widely used 

measure of functional connectivity, alternative measures may yield improved prediction 

models (Pervaiz et al., 2020).    

  

In complementary analyses, connectivity features were also derived from whole-brain 

functional networks previously mapped using independent component analysis (ICA) and a 

dual regression approach (Beckmann and Smith, 2004; Filippini et al., 2009). Spatial scales 

comprising 15, 24, 50, 100, 200 and 300 components (nodes) were mapped, yielding feature 

spaces ranging between 105 and 31,350 functional connections for the current study. Further 

details about the ICA-based networks are available as part of the HCP S1200 PTN data release: 

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-

DenseConnectome+PTN+Appendix-July2017.pdf  

 

Cognitive measures 

Cognitive performance was measured using: i) fluid intelligence (fIQ); ii) crystalized 

intelligence (cIQ); and iii) an overall composite measure of cognition (IC-Cognition). Measures 

of fluid and crystallized intelligence acquired by the HCP were used without modification. 

Fluid intelligence is one of the most extensively studied cognitive phenotypes in the 

neuroimaging literature (Finn et al., 2015). It was measured in the HCP using the Penn Matrix 
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Test, an abbreviated version of the Raven’s Progressive Matrices test, with 24 items (Bilker et 

al., 2012). Crystalized intelligence was measured using the NIH Toolbox Picture Vocabulary 

Test, which assesses general vocabulary, providing an indicator of crystalized ability 

(Weintraub et al., 2013). A composite measure of overall cognition was derived using 

independent component analysis applied to 109 behavioral items, as described elsewhere 

(Tian et al., 2020). This provided a single continuous summary score of overall cognitive 

performance across a range of tasks and behaviors, referred to as IC-Cognition in the current 

study. 

 

Cross-validation 

Cross-validated predictive models were trained to predict fIQ, cIQ and IC-Cognition. A half-

split cross-validation procedure was designed to estimate the test-retest reliability of the 

feature weights (i.e., beta coefficients) constituting each of these models (Figure 1). The 

cross-validation procedure controlled for genetic relatedness, as defined by the 420 families 

among the 958 individuals in the final sample. Specifically, to ensure independence of the test 

and train sets, we randomly selected one individual from each family among a random set of 

400 families, resulting in a group of 400 genetically unrelated individuals. The selected 400 

individuals were further subdivided into two subgroups of 200 each, defining the train and/or 

test set, respectively. To minimize sampling biases, this sampling and half-split procedure was 

repeated 100 times, resulting in 100 pairs of independent train-test data splits. Leaving out 

20 families from each random sample ensured that individuals who were the sole member of 

a family (n=90) were not selected in all 100 train-test pairs. Sex ratios did not significantly 

differ between half-split pairs (𝜒!=0-5.7, p>0.05, FDR corrected across 100 pairs).   
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Figure 1. Cross-validation procedure to estimate feature weight test-retest reliability and catalogue 
of predictive models. (a), For each half-split cross-validation iteration, 400 genetically unrelated 
individuals were randomly selected from 958 individuals. The 400 individuals were split into two folds 
(Split 1 and Split 2) to define the train and/or test set, respectively. Models were independently 
trained on each of two half splits to predict fIQ, cIQ and IC-Cognition, yielding two sets of beta 
coefficients (𝜷!  and 𝜷" ) for each cognitive measure. The intraclass correlation coefficient (ICC) 
between the two sets of beta coefficients provided an out-of-sample estimate of feature weight test-
retest reliability. (b), Test-retest reliability is more commonly estimated based on agreement in 
feature weights across cross-validation folds. Within each data split (Split 1 or Split 2), 10-fold cross-
validation yielded 10 sets of beta coefficients (𝜷! … 𝜷!#) estimated from each of 10 training sets. The 
ICC across the 10 sets of beta coefficients provided a within-sample estimate of feature weight test-
retest reliability. (c), Predictive models investigated included least absolute shrinkage and selection 
operator (lasso), ridge, kernel ridge regression and connectome-based predictive modeling (CPM). As 
a comparison, test-retest reliability was also estimated for inferential statistical methods, including 
univariate statistics for each connection as well as significant connections identified by the network-
based statistic (NBS) and the false discovery rate (FDR).
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Out-of-sample test-retest reliability 

For each train-test data split, predictive models were trained using one of the two splits to 

predict fIQ, cIQ and IC-Cognition. The trained model was then applied to the other split (test 

set) to evaluate prediction accuracy. The same procedure was repeated twice to ensure that 

each split was treated as a train and test set separately. This yielded two sets of beta 

coefficients (𝜷" and 𝜷!), one for each of the two data splits (Split 1 and Split 2), consistent 

with two-fold cross-validation. The intraclass correlation coefficient (ICC), a commonly used 

measure for test-retest reliability estimation in fMRI (Noble et al., 2019; Noble et al., 2021) 

was used to quantify the extent of consistency in beta coefficients between the two splits. 

The ICC formulation originally proposed by Fisher was used, as given by,  

 

𝑟 =
1
𝑁𝑠!+,𝛽#," − 𝛽̅0,𝛽#,! − 𝛽̅0

%

#&"

, 

 
where 𝑁 is the number of features, 𝛽#," is the feature weight for the nth feature estimated 

in the first split and analogously for 𝛽#,!. In this formulation, 𝑠! and 𝛽̅ are pooled estimates 

of the variance and mean, respectively, defined as,  

𝛽̅ =
1
2𝑁+(𝛽#," + 𝛽#,!)

%

#&"

,								𝑠! =
1
2𝑁+,𝛽#," − 𝛽̅0

! + ,𝛽#,! − 𝛽̅0
!

%

#&"

. 

 
This is sometimes referred to as the 1-1 formulation of the ICC. The ICC is sometimes 

conceptualized in terms of the extent of agreement in measurements made by a set of 

observers measuring the same set of objects. In the above formulation, each connection (i.e., 

feature weight) corresponds to a separate “object”, while the two “observers” are Split 1 and 

Split 2. This differs from many other neuroimaging studies using the ICC, where “objects” 

typically correspond to different subjects and “observers” are subject measurements taken 

across different days/sessions (Noble et al., 2019). Given that our aim is to assess the 

consistency in feature weights between half split pairs, this is the most appropriate 

formulation here because our “objects” of interest (i.e., feature weights) are not measured 

at the level of individual subjects. 

 

Before computing 𝑟, the feature weight vectors 𝜷" and 𝜷! were each z-scored, rendering the 

ICC equivalent to the Pearson correlation coefficient (i.e., 𝑟 = 𝜷"'𝜷!/𝑁	because 𝛽̅ = 0 and 
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𝑠! = 1 after z-scoring). Without z-scoring, ICC values were marginally lower in rare cases, but 

otherwise unchanged.      

 

Given that individuals comprising the two data splits were completely independent and the 

model was independently trained in each data split, the estimated consistency in beta 

coefficients between the two data splits is referred to as out-of-sample test-retest reliability 

(Figure 1a). High ICC values indicate that feature importance can be reliably localized to 

specific functional connections.  

 

Within-sample test-retest reliability 

In contrast to out-of-sample estimation, the consistency in feature selection (i.e., test-retest 

reliability of feature weights) is more commonly evaluated by  i) averaging (or summing) 

feature weights across k-fold or leave-one-out cross-validation iterations (Chen et al., 2020; 

Dhamala et al., 2021; Greene et al., 2018); and/or, ii) selecting features with beta coefficients 

exceeding a certain threshold in a proportion of all cross-validation training folds (Finn and 

Bandettini, 2021; Finn et al., 2015; Jiang et al., 2019; Rosenberg et al., 2016; Shen et al., 2017). 

The first (averaging across training sets) and second approaches (consensus across training 

sets) both provide within-sample measures of reliability because the training sets are not 

mutually exclusive between folds, except for the case of two-fold cross-validation. The lack of 

mutual exclusivity between trainings sets is greatest for leave-one-out cross-validation, 

potentially resulting in inflated estimates of test-retest reliability.  

 

As exemplified in Figure 1b, k-fold (k=10) cross-validation was performed in each of the two 

data splits (Split 1 and Split 2). Each fold was treated as a test set once and the remaining 9 

folds were used to train the prediction model. This yielded 10 sets of beta coefficients (𝜷" … 

𝜷"(). Within-sample test-retest reliability was defined as the ICC across the 10 sets of beta 

coefficients. For out-of-sample test-retest reliability, the 10 sets of beta coefficients were first 

averaged within each data split, consistent with previous studies (Chen et al., 2020; Dhamala 

et al., 2021; Greene et al., 2018), and the ICC was computed between the two averaged beta 

coefficients. We also computed within-sample and out-of-sample reliability using leave-one-

out cross-validation, enabling comparison with previous studies (Finn et al., 2015; Jiang et al., 

2019; Rosenberg et al., 2016; Shen et al., 2017). 
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Predictive models and prediction accuracy  

Four commonly used linear regression models were trained to predict fIQ, cIQ and IC-

Cognition (Figure 1c): i) the least absolute shrinkage and selection operator (lasso) (Tibshirani, 

1996); ii) ridge regression (Hoerl and Kennard, 1970); iii) kernel ridge regression (Li et al., 

2019); and, iv) connectome-based predictive modelling (CPM) (Shen et al., 2017). We did not 

consider deep neural networks and nonlinear models because they do not allow for 

straightforward decoding of the relationship between predictive features and the target 

variable of interest. Regularization and model training are described in Supplementary 

Materials. In brief, a nested 20-fold cross-validation was used for hyperparameter 

optimization to minimize the cross-validation error in each training split for lasso, ridge and 

kernel ridge regression. Least-squares regression was used for continuous cognitive variables, 

whereas logistic regression was used for sex prediction. The hyperparameters resulting in the 

smallest error averaged across all inner test folds were selected to compute the beta 

coefficients, using all individuals in the outer training split. Similarly, nested 20-fold cross-

validation was used for CPM to find the optimal p-value threshold to maximize the positive 

or negative association between the summation of functional connectivity strengths and the 

cognitive measure.   

 

Individual variation in age, sex and head motion (FD) was regressed from each of the three 

cognitive measures before model training. Beta coefficients for these confounds were 

estimated in the training set and then applied to the test set to avoid leakage. No confound 

regression was performed prior to sex prediction to preserve the binary nature of this variable.  

 

Following previous studies (Finn et al., 2015; Li et al., 2019), prediction accuracy was 

quantified based on the Pearson correlation coefficient between the observed and the out-

of-sample predicted cognitive scores across all individuals in the test set. For sex, FD as well 

as age were controlled when evaluating prediction accuracy (partial correlation), given the 

significant age difference between males (mean age 27.9±3.7 years) and females (mean age 

29.5±3.6 years) in the sample (t=6.80, p=1.82×10-11).   
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Prediction accuracy and test-retest reliability was computed separately in each pair of the 100 

train-test data splits, as described above, resulting in 100 out-of-sample and 200 within-

sample (100 per half split) estimates of feature weights test-retest reliability and 200 out-of-

sample prediction accuracy estimates for each cognitive variable and sex. For kernel ridge 

regression, the feature space comprised interindividual similarity in connectivity matrices 

between individuals in the training set. Connectivity feature weights were thus computed as 

the weighted mean of functional connectivity values across individuals in the training set, 

where individuals were weighted by their beta coefficients (Chen et al., 2020). 

 

Haufe transformation 

The Haufe transformation (Haufe et al., 2014) was applied to the beta coefficients before 

evaluating test-retest reliability. This transformation improves the interpretability of feature 

weights and ensures that important features are weighted highly. The Haufe-transformed 

beta coefficient for a given connection was computed as 𝛽)*+,- = 𝜌.𝑦</𝑁, where 𝜌 is the 

𝑁 × 1  vector of standardized functional connectivity values and 𝑦<  is the 𝑁 × 1  vector of 

predicted cognitive scores for each of the 𝑁  individuals in the training set. The Haufe 

transformation was not used for CPM (Shen et al., 2017).  

   

Randomization 

Cognitive measures were randomly permuted across individuals, thereby randomizing 

associations between cognition and functional connectivity. Randomization was performed 

independently for each data split and the predictive models were retrained using the 

randomized data. The test data within each split was not randomized. This yielded 100 

samples of test-retest reliability and 200 samples of prediction accuracy to establish chance-

level expectations. Two-sample t-tests were used to assess whether the observed prediction 

accuracies and reliability were significantly greater than chance-level expectations. The false 

discovery rate (FDR) was controlled at a threshold of 5% across all predictive models for each 

cognitive variable and sex.  
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Results 

We sought to determine whether predictive utility (i.e., feature importance) can be reliably 

assigned to resting-state functional connectivity features comprising predictive models of 

cognitive performance. To this end, we evaluated the test-retest reliability of feature weights 

estimated using predictive models of fluid intelligence (fIQ), crystallized intelligence (cIQ), and 

overall cognitive performance (IC-Cognition) in a cohort of healthy young adults. Samples of 

400 (or 800) individuals were repeatedly drawn from the cohort and split into halves (i.e., 

half-split cross-validation; see Methods). Various machine learning approaches were used to 

train predictive models for each half-split and the intraclass correlation coefficient (ICC) was 

used to evaluate feature weight test-retest reliability between the two halves.  

 

We found that fIQ, cIQ and IC-Cogntion can be predicted with modest accuracy (r=0.2-0.4) 

using resting-state functional connectivity strengths (Figure 2a), consistent with previous 

literature (Chen et al., 2020; Dhamala et al., 2021; Finn et al., 2015; Li et al., 2019; Mansour 

et al., 2021; Seguin et al., 2020). However, estimated feature weights consistently showed 

poor reliability (ICC<0.3) across all machine learning models and measures of cognitive 

performance (Figure 2b). In comparison, feature weights for sex prediction showed moderate 

reliability (ICC>0.6) for several models (Figure 2b). Therefore, unlike an overt biological 

attribute such as sex, cognitive performance could not be reliably localized to specific 

connections defining the most important features of a predictive model. This motivated 

investigation of whether feature weight test-retest reliability could be improved by using 

mass univariate approaches, larger sample sizes, larger/smaller feature spaces and/or more 

sophisticated predictive models. But first, we investigated prediction accuracy and feature 

weight reliability in more detail for the nominal sample size of 400 individuals (200 per half-

split) and a feature space comprising 70,500 resting-state functional connections. 
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Figure 2. Prediction accuracy and feature weight test-retest reliability estimated using half-split 
cross-validation in 400 unrelated individuals. (a), Pearson correlation coefficient between observed 
and out-of-sample predicted fluid intelligence (fIQ), crystalized intelligence (cIQ), overall cognition (IC-
Cognition) as well as sex (partial linear correlation, 0-female; 1-male). Violin plots show the 
distribution of correlation coefficients across 100 half-split pairs (left: chance; right: observed). 
Asterisks are shown to indicate mean Pearson correlation coefficients significantly exceeding chance-
level predictions (two-sample t-test, p<0.05, false discovery rate (FDR) correction across five models). 
Violin plots are shown for each predictive model; namely, lasso regression, ridge regression, kernel 
ridge regression and connectome-based predictive modeling (CPM). CPM-P, positive associations; 
CPM-N, negative associations. (b), Feature weight test-retest reliability (out-of-sample) quantified 
with the intraclass correlation coefficient (ICC). Raw refers to the univariate test statistic for each 
connection, which assesses the null hypothesis of an absence of association between cognitive 
performance and functional connectivity strength. Violin plots show the distribution of ICC values 
across 100 half-split pairs (left: chance; right: observed). Asterisks are shown to indicate ICC mean 
values significantly greater than chance (two-sample t-test, p<0.05, FDR correction across five models). 
(c), Same as (b), but with the Haufe transformation applied to feature weights before evaluating test-
retest reliability. (d), The network-based statistic (NBS) and false discovery rate (FDR) were used to 
identify connections with functional connectivity strengths that significantly correlated with cognitive 
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performance (family-wise error rate and FDR controlled at 0.05, respectively). Violin plots show the 
distribution of dice coefficients quantifying overlap in connections declared statistically significant 
across 100 half-split pairs. Central mark on each violin plot indicates the mean value.  
 
 
Prediction accuracy 

As shown in Figure 2a, correlation coefficients between predicted and actual cognitive 

performance significantly exceeded chance-level predictions for all cognitive measures: fIQ 

(mean±  standard deviation (SD), lasso: r=0.16±0.07; ridge: r=0.19±0.07; kernel ridge: 

r=0.14 ± 0.09; CPM-positive: r=0.10 ± 0.08; CPM-negative: r=0.02 ± 0.06), cIQ (Lasso: 

r=0.29±0.09; ridge: r=0.32±0.07; kernel ridge: r=0.30±0.07; CPM-positive: r=0.09±0.07; 

CPM-negative: r=0.11±0.07), IC-Cognition (lasso: r=0.25±0.08; ridge: r=0.26±0.07; kernel 

ridge: r=0.23±0.08, CPM-positive: r=0.07±0.07; CPM-negative: r=0.11±0.07). Sex could be 

predicted with greater accuracy than cognitive performance (lasso: r=0.73±0.03; ridge: 

r=0.73 ± 0.03; kernel ridge: r=0.71 ± 0.04; CPM-positive: r=0.29 ± 0.07; CPM-negative: 

r=0.38±0.07). 

 

Feature weight test-retest reliability 

Feature weight test-retest reliability was evaluated using ICC. ICC was computed between 

pairs of feature weights (i.e., beta coefficients) across 100 half-split pairs, yielding 100 ICC 

values. As shown in Figure 2b, ICC values significantly exceeded chance-level expectations for 

all cognitive measures: fIQ (mean± SD, lasso: ICC=0.01±0.02; ridge: ICC=0.11±0.04; kernel 

ridge: ICC=0.16±0.08; CPM-positive: ICC=0.007±0.02), cIQ (lasso: ICC=0.04±0.04; ridge: 

ICC=0.15±0.04; kernel ridge: ICC=0.25±0.06; CPM-positive: ICC=0.008±0.02; CPM-negative: 

ICC=0.01±0.02), IC-Cognition (lasso: ICC=0.03±0.03; ridge: ICC=0.13±0.04; kernel ridge: 

ICC=0.20 ± 0.09; CPM-pos: ICC=0.009 ± 0.02; CPM-negative: ICC=0.01 ± 0.03). While 

significantly greater than chance, feature weight test-retest reliability was poor for all three 

cognitive measures (ICC<0.3), regardless of the predictive model, and substantially lower than 

the feature weight reliability of connectivity features predicting sex (lasso: ICC=0.29±0.06; 

ridge: ICC=0.34±0.04; kernel ridge: ICC=0.48±0.03; CPM-positive: ICC=0.09±0.07; CPM-

negative: ICC=0.21±0.06). Of the predictive models considered, ICC was highest for kernel 

ridge regression, but use of a kernel also increased the variability of ICC values across half-

split pairs.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.05.27.446059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 

Poor feature weight reliability was not due to stochasticity in hyperparameter optimization 

and model fitting. Repeated model fitting with random initial conditions in the same set of 

individuals yielded highly consistent beta coefficients for lasso and ridge regression (ICC>0.99 

across 20 repetitions). Moreover, feature weights for lasso and ride regression are unique 

and well-defined when all predictors are continuous variables (Tibshirani, 2013), such as 

functional connectivity strengths. 

 

Haufe transformation 

We next investigated the impact of the Haufe transformation on feature weight test-retest 

reliability. This transformation is often applied to feature weights to improve their 

interpretability (Haufe et al., 2014). We found that while transformation improved ICC values 

between half-split pairs on average, ICC variability markedly increased (Figure 2c). ICC values 

once again significantly exceeded chance-level expectations for all cognitive measures: fIQ 

(mean± SD, lasso: ICC=0.20±0.21; ridge: ICC=0.18±0.25; kernel ridge: ICC=0.23±0.30), cIQ 

(lasso: ICC=0.33±0.16; ridge: ICC=0.36±0.18; kernel ridge: ICC=0.39±0.21), IC-Cognition 

(lasso: ICC=0.32±0.17; ridge: ICC=0.32±0.19; kernel ridge: ICC=0.36±0.25). Feature weight 

reliability for sex prediction also benefited from transformation (lasso: ICC=0.56±0.30; ridge: 

ICC=0.53±0.32; kernel ridge: ICC=0.44±0.39). We conclude that the Haufe transformation 

can improve feature weight reliability on average, but increased variability following 

transformation can potentially result in unpredictable performance.     

 

Mass univariate significance testing 

Having found relatively poor feature weight test-retest reliability, we next investigated 

whether mass univariate significance testing would enable more reliable inference than 

predictive modeling. A test statistic and corresponding uncorrected p-value was 

independently computed for each connection to test the null hypothesis of an absence of 

association between functional connectivity strength and cognitive performance. The 

network-based statistic (NBS) (Zalesky et al., 2010) and false discovery rate (FDR) were then 

used to correct for multiple testing across the set of 70,500 connections, controlling the 

family-wise error rate and FDR at 0.05, respectively (NBS primary threshold: t-statistic=2; 
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5,000 permutations). These methods were repeated for 100 half-split pairs, using the same 

random sampling procedure described above to generate each pair. The Dice coefficient was 

then used to evaluate the extent of overlap in significant connections between each half-split 

pair, analogous to the use of ICC for feature weights. This yielded 100 Dice coefficients for 

each cognitive measure. As shown in Figure 2d, we found that Dice values were exceedingly 

small for all cognitive measures, whereas sex differences showed moderate Dice values 

between half-split pairs (FDR: 0.44±0.17; NBS: 0.61±0.09). Furthermore, the proportion of 

half-split pairs for which the null hypothesis was rejected for at least one connection was 

relatively small for all cognitive measures: fIQ (FDR: 24/200; NBS: 32/200; 100 half-split pairs 

= 200 splits), cIQ (FDR: 26/200; NBS: 32/200) and IC-Cognition (FDR: 36/200; NBS: 36/200). In 

contrast, the null hypothesis was rejected for all half-split pairs when testing for sex 

differences (FDR: 200/200; NBS: 200/200). We conclude that mass univariate significance 

testing does not enable more reliable inference about connections governing cognitive 

performance than predictive modeling.  

 

We also investigated the test-retest reliability of the univariate test statistic (i.e., t-statistic) 

computed for each connection during mass univariate significance testing. Test-retest 

reliability was once again evaluated using the ICC between half-split pairs.  We found that the 

univariate statistics showed the greatest test-retest reliability in the current study (Figure 2b, 

violin plots labeled “Raw”). This suggests that dichotomization based on a statistical 

significance threshold or categorical feature selection (i.e., lasso) is detrimental to reliability. 

However, it is important to note that the improvement in test-retest reliability achieved by 

avoiding dichotomization was modest and the ICC remained below 0.4 for all cognitive 

measures.    

 

Impact of sample size 

While the sample size (n=400) is comparable or larger than many neuroimaging studies (Finn 

et al., 2015; Greene et al., 2018; Jiang et al., 2019; Li et al., 2019; Liégeois et al., 2019; 

Varoquaux, 2018) that have investigated predictive models of cognition, we next aimed to 

test whether prediction accuracy and test-retest reliability would improve for larger sample 

sizes. To this end, we doubled the sample size (n=800, with 400 per half-split) and repeated 
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the above experiments (Supplementary Figure 1). While it was no longer possible to ensure 

that all 800 individuals were genetically unrelated, members of the same family were 

allocated to either the train or test set, but not both. In Figure 3, the left (n=800) and right 

(n=400) lobes of each violin plot compare prediction accuracies and feature weight test-retest 

reliabilities between the two sample sizes. For most predictive models, prediction accuracy 

(Figure 3a) and feature weight test-retest reliability (Figure 3b) significantly improved for 

n=800 compared to n=400, although the improvement was modest in most cases, and was 

most prominent for sex prediction. Doubling the sample size also marginally improved the 

Haufe-transformed feature weight reliability (Figure 3c) and the reliability of mass univariate 

significance testing (Figure 3d), although these improvements were only significant for sex 

prediction. Taken together, these results suggest that substantial increases in sample size lead 

to relatively modest improvements in the reliability of feature weights.  
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Figure 3. Comparison of half-split cross-validation using 400 and 800 individuals. Figure layout is the 
same as Figure 2, except the two lobes of each violin plot now compare sample sizes of 800 (left lobe, 
400 per half-split) and 400 (right lobe, 200 per half-split). Asterisks are shown to indicate significant 
differences in mean ICC and Dice values between the two sample sizes. Central mark on each violin 
plot indicates the mean value. fIQ: fluid intelligence. cIQ: crystalized intelligence. IC-Cognition: overall 
cognitive performance. K-Ridge: kernel ridge regression. CPM: connectome-based predictive 
modelling. CPM-P, positive associations; CPM-N, negative associations.  FDR: false discovery rate. NBS: 
network-based statistic. ICC: intraclass correlation coefficient.   
 

Within-sample estimation of feature weight reliability   

Previous studies have suggested relatively high feature weight reliability for the predictive 

models investigated here (Cui and Gong, 2018; Finn and Bandettini, 2021; Finn et al., 2015; 

Jiang et al., 2019; Rosenberg et al., 2016). Why have we found substantially poorer feature 

weight reliability? In all the above experiments (Figures 2 and 3), test-retest reliability was 
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evaluated out-of-sample, whereas most previous studies report within-sample estimates 

based on agreement in beta coefficients across cross-validation folds and iterations. 

Therefore, we next aimed to explicitly compare within-sample and out-of-sample estimates 

of prediction accuracy and feature weight test-retest reliability. We focused on ridge 

regression and compared: i) k-fold (k=10), ii) leave-one-out and iii) half-split (k=2) cross-

validation procedures. In the case of k-fold (k=10) and leave-one-out cross-validation, within-

sample reliability was estimated by fitting beta coefficients to the pooled sample of k-1 folds 

and ICC was computed between the resulting k sets of beta coefficients, consistent with 

common practices in the literature (Cui and Gong, 2018; Finn and Bandettini, 2021; Finn et 

al., 2015; Jiang et al., 2019; Rosenberg et al., 2016). For out-of-sample reliability, ICC was 

computed for the averaged feature weights over training sets (Chen et al., 2020; Dhamala et 

al., 2021; Greene et al., 2018) between the two independent data splits. Leave-one-out and 

k-fold cross-validation were repeated for 10 genetically unrelated samples of individuals 

(n=400), given the large amount of computation required, yielding 10 estimates of within-

sample ICC (five out-of-sample estimates) and prediction accuracy for each cognitive measure 

and sex.    

                 

We found that correlation coefficients between predicted and actual cognitive performance 

were highly comparable between the three cross-validation procedures, with comparable 

variability in accuracy estimates across data samples (Figure 4a). However, within-sample 

estimates of feature weight test-retest reliability were substantially inflated relative to out-

of-sample estimates for all cognitive measures and sex (Figure 4b). Within-sample ICC 

suggested excellent feature weight reliability (ICC>0.98), whereas out-of-sample estimates 

suggested poor reliability for cognition and fair reliability for sex prediction. We conclude that 

within-sample estimates of feature weight reliability can be inflated and out-of-sample 

estimation should be used, if possible.  
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Figure 4. Comparison of within-sample and out-of-sample estimates of feature weight test-retest 
reliability. (a), Pearson correlation coefficient between observed and out-of-sample predicted fluid 
intelligence (fIQ), crystalized intelligence (cIQ), overall cognition (IC-Cognition) as well as sex (partial 
linear correlation, 0-female; 1-male). All predictions are out-of-sample and derived from ridge 
regression models trained using half-split, 10-fold and leave-one-out cross-validation. Boxplots show 
sampling variation in correlation coefficients across 100 (half-split) and 10 (10-fold and leave-one-out) 
random samples of genetically unrelated individuals (n=400). Each data points represents a sample.   
(b), Out-of-sample and within-sample estimates of feature weight test-retest reliability, quantified 
with the intraclass correlation coefficient (ICC). Boxplots show sampling variation in ICC across 100 
(half-split) and 10 (10-fold and leave-one-out) random samples of genetically unrelated individuals 
(n=400). The central mark of the box plot indicates the median and the bottom and top edges of the 
box indicate 25th and 75th percentiles of the distribution, respectively. The whiskers extend to the 
most extreme data points that are not considered outliers (1.5 × interquartile range). 
 

Consistency in feature weights between predictive models  

We next evaluated the extent of agreement in feature weights between the four predictive 

models (lasso, ridge and kernel ridge regression and CPM) using ICC. ICC values were 

computed between all pairs of models using either the same half-split (within-sample ICC) or 

different half-splits (out-of-sample ICC) for each model in a pair.  Figure 5 shows out-of-

sample (lower triangle + diagonal) and within-sample mean ICC values (upper triangle), 

averaged over 100 half-split pairs. This was repeated for n=400 (Figure 5a) and n=800 sample 

sizes (Figure 5b). We found that feature weights were most consistent between ridge and 
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kernel ridge regression, particularly for sex prediction, but also for the three cognitive 

measures (within-sample ICC>0.8). Lasso showed fair consistency with the ridge regression 

(within-sample ICC>0.4), while CPM showed lower consistency with the three regression 

models for both cognition and sex prediction (within-sample ICC<0.2). The Haufe 

transformation improved consistency in feature weights between models (Supplementary 

Figure 2).  

 
Figure 5. Consistency in feature weights between different predictive models. Matrix cells are 
colored according to within-sample (upper triangle) and out-of-sample (lower triangle + diagonal) 
intraclass correlation (ICC) values. ICC values quantify consistency in feature weights estimated by two 
distinct predictive models and represent averages over 100 half-split pairs. ICC values are shown for 
samples sizes of n=400, with 200 per half-split (a) and n=800, with 400 per half-split (b). fIQ: fluid 
intelligence. cIQ: crystalized intelligence. IC-Cognition: overall cognitive performance. K-Ridge: kernel 
ridge regression. CPM: connectome-based predictive modelling. CPM-P, positive associations; CPM-N, 
negative associations.   
 

Regional analysis 

In all the above experiments, feature weight test-retest reliability was quantified globally, 

without regard for possible differences in reliability between connections and regions 

comprising the feature space. Therefore, we next investigated regional variation in feature 

weight reliability in the case of ridge regression prediction of fIQ. We considered the 

symmetric 376 × 376 matrix of feature weights, where element (𝑖, 𝑗) is the estimated beta 

coefficient for the connection between regions 𝑖 and 𝑗.  Summing across either the positive 

or negatives values in the rows of this matrix provided a region-specific characterization of 
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feature importance, which we visualized on the cortical surface for Split 1 and Split 2 of a 

representative half-split pair. These regional features weights can be interpreted such that 

higher fluid intelligence is predicted for individuals with stronger connectivity with positively 

weighted regions and lower (negative) connectivity with negatively weighted regions. We 

observed substantial regional variation in summed feature weights between Split 1 and Split 

2 (Figure 6a). The Haufe transformation marginally reduced variation between half-split pairs, 

although reliable attribution of feature importance to specific regions remained challenging 

(Figure 6b). For example, the temporal cortex was associated with positive feature weights in 

Split 1, whereas the prefrontal cortex and striatum were weighted more positively in Split 2 

(Figure 6b). Similar variation was evident for negatively weighted regions, where the 

ventromedial prefrontal cortex was weighted most negatively in Split 1, but regions of the 

parietal cortex and temporal pole were instead associated with negative feature weights in 

Split 2 (Figure 6b). In contrast, feature importance could be ascribed more reliably to specific 

regions and canonical brain networks in the case of sex prediction (Figure 6c & 6d). For 

example, the most prominent predictive features of male sex were strong between-network 

connections, particularly between regions in the default mode network and regions in other 

networks, such as the dorsal attention, visual and ventral attention network. Contrastingly, 

strong within-network connections were generally more predictive of females. Following the 

Haufe transformation, male-predictive features showed significantly greater spatial 

consistency on average, compared to female-predictive features (median±SD across 100 

half-split pairs: male: r=0.53±0.29; female: r=0.38±0.35; t=3.87, p=1.5×10-4); however, sex 

differences were not observed in the original feature space (male: r=0.29±0.06; female: 

r=0.31±0.60; t=1.38, p=0.17). Taken together, these regional analyses suggest that reliably 

explaining predictive utility in terms of specific brain regions and canonical functional 

networks is challenging for predictive models of cognitive performance.  
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Figure 6. Regional representation of connectivity feature weights. Estimated connectivity feature 
weights are shown as a 376 × 376 matrix, where element (𝑖, 𝑗) is the estimated beta coefficient for 
the connection between regions 𝑖 and 𝑗. Matrices are shown for Split 1 and Split 2 of a representative 
half-split pair (i.e., the half-split pair closest to the median intraclass correlation coefficient, ICC). 
Matrix rows/columns are ordered to group regions according to large-scale functional brain networks, 
as demarcated by solid white lines (Yeo et al., 2011). Positive and negative feature weights were 
summed separately across each matrix row to provide a regional characterization of feature 
importance.  Cortical renderings and subcortical slices of regional feature weights are shown for ridge 
regression prediction of fluid intelligence (a, b) and sex (c, d). Feature weights are shown with (b, d) 
and without (a, c) the Haufe transformation. Higher fluid intelligence (or female sex) is predicted for 
individuals with stronger connectivity with positively weighted regions and lower (negative) 
connectivity with negatively weighted regions. DorsAttn, dorsal attention network; FrontoPar, 
frontoparietal network; SmoMot, somatomotor network; VenAttn, ventral attention network. 
 

Impact of feature space dimensionality 

Finally, we investigated the impact of feature space dimensionality on prediction accuracy 

and feature weight rest-retest reliability. The above experiments were based on a relatively 

high-dimensional feature space comprising 70,500 connections (376 nodes). We therefore 

reduced feature space dimensionality by using progressively coarser whole-brain parcellation 

atlases previously mapped with spatial independent component analysis (ICA; see Methods). 
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We considered atlases comprising 15, 25, 50, 100, 200 and 300 spatial ICA components 

(nodes), yielding 105, 300, 1225, 4950, 19900 and 44850 connectivity features, respectively. 

For each dimensionality, prediction accuracy and feature weight test-retest reliability were 

evaluated using ridge regression and the same half-split procedure described above.  

 

We found that correlation coefficients between predicted and actual cognitive performance 

increased with feature space dimensionality, particularly for sex prediction, and to a lesser 

extent for fIQ, cIQ and IC-Cognition (Figure 7a). However, gains in prediction accuracy 

achieved through increased feature space dimensionality were at the expense of poorer 

feature weight test-retest reliability (Figure 7b). Specifically, for all three cognitive measures, 

mean ICC values increased from less than 0.1 for the highest dimensional feature space (300 

ICA components), to above 0.3 for the lowest dimensional feature space (15 components). 

Therefore, a more than two-fold increase in ICC can be achieved by reducing feature space 

dimensionality from 300 to 15 nodes, albeit at the cost of a 9-45% reduction in prediction 

accuracy. Interestingly, the cortex (Glasser et al., 2016a) and subcortex (Tian et al., 2020) 

atlases (376 nodes) provided a feature space that was more reliable than the comparably 

sized feature space derived from spatial ICA components (300 nodes). We conclude that the 

choice of brain parcellation and resolution at which functional connectivity is mapped 

provides a means to arbitrate an inherent tradeoff between prediction accuracy and feature 

weight reliability. 
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Figure 7. Tradeoff between prediction accuracy and feature weight test-retest reliability arbitrated 
by feature space dimensionality. (a), Pearson correlation coefficients between observed and out-of-
sample predicted fluid intelligence (fIQ), crystalized intelligence (cIQ), overall cognition (IC-Cognition) 
as well as sex (partial linear correlation, 0-female; 1-male). Boxplots characterize variation in 
correlation coefficients across 100 half-split samples and are shown for six feature space 
dimensionalities derived from spatial ICA components (number of nodes: 15, 25, 50, 100, 200, 300; 
green). Boxplots are also shown for connectivity features derived from established parcellation atlases 
(376 nodes, blue). All predictions computed using ridge regression. (b), Feature weight test-retest 
reliability (out-of-sample) quantified with the intraclass correlation coefficient (ICC). Boxplots 
characterize variation in ICC across 100 half-split samples and are shown for the same feature space 
dimensionalities.  The central mark of the box plot indicates the median and the bottom and top edges 
of the box indicate 25th and 75th percentiles of the distribution, respectively. The whiskers extend to 
the most extreme data points that are not considered outliers (1.5 × interquartile range). 
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Discussion 
Although cognitive performance and intelligence can be reliably predicted with modest 

accuracy from an individual’s resting-state functional connectivity, we found that feature 

weight test-retest reliability is poor. Reliably mapping predictive importance to specific 

connections, regions and networks is therefore challenging. Poor feature weight reliability 

limits the extent to which a machine learning approach can be used to explain neurobiological 

mechanisms of cognition and to test theoretical cognitive models. We found that large 

sample sizes, certain feature weight transformations and connectivity mapped at coarse 

spatial resolutions marginally improved feature weight reliability. However, ICC values 

between pairs of feature weights remained poor (ICC<0.4), even in the most favorable 

settings. In contrast, using the same features to predict an individual’s sex yielded 

substantially more reliable feature weights, suggesting that the integrity of the features 

themselves (i.e., resting-state functional connectivity measurements) was not entirely to 

blame for poor feature weight reliability when predicting cognitive performance.    

 

While providing a barrier to explainable machine learning, not being able to reliably localize 

predictive utility to specific connectivity features can provide clues about the neural basis of 

cognition. Poor feature weight reliability may be a consequence of the dynamic nature of 

resting-state functional connectivity and significant heterogeneity among individuals in 

preferred cognitive strategies to make decisions (Finn and Rosenberg, 2021; Marewski and 

Schooler, 2011). Given that different cognitive strategies can differentially impact functional 

connectivity (Park et al., 2019), in a diverse sample of individuals, there may be multiple 

feature weight solutions that achieve comparable prediction accuracy, each of which 

characterizes a distinct cognitive strategy. In this scenario, a machine learning algorithm will 

learn only one of the many solutions, without providing explicit insight into alternative 

solutions providing comparable prediction accuracy. A change in the composition of the 

training sample through addition of individuals favoring a certain cognitive strategy could, in 

principle, result in the model learning an alternative solution. Therefore, given that cognitive 

functions are complex and heterogenous, and resting-state functional connectivity is an 

inherently dynamic phenotype, we hypothesize that broad measures of cognitive 
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performance, such as fluid and crystalized intelligence, cannot be neatly pinned down to a 

unique set of connectivity features. 

  

This hypothesis is supported by the limited reproducibility among classical significance testing 

studies that have sought to map group-level associations between complex behavioral traits 

and resting-state functional connectivity (Poldrack et al., 2017). If distinct functional circuits 

are indeed engaged by different cognitive strategies, group-level network maps will likely 

capture a mix of circuits inherent to each strategy, and thus might not necessarily represent 

any given individual comprising the sample.  

 

Throughout this study, the extent of agreement in feature weights between half-split samples 

was interpreted from the standpoint of test-retest reliability. However, low ICC values 

between feature weights can also be construed as evidence for feature selection instability 

and solution non-uniqueness (machine learning perspective), sampling variability (statistical 

perspective) and poor measurement validity (cognitive psychology perspective). Instability in 

feature selection is a well-known issue in machine learning, where small changes to the 

training sample can lead to large changes in feature weights (Nogueira et al., 2017). However, 

we confirmed that stochasticity in hyperparameter optimization and the model fitting process 

introduced minimal instability. Regarding measurement validity, the instruments used to 

measure fluid and crystallized intelligence in the Human Connectome Project are validated 

and extensively used (Bilker et al., 2012; Weintraub et al., 2013). For these reasons, we 

believe that our findings are most appropriately contextualized in terms of test-retest 

reliability, although all three of the above perspectives are relevant and interrelated.  

 

Several recent studies have sought to predict cognitive performance from an individual’s 

resting-state functional connectivity. Most recently, Dhamala and colleagues found that 

distinct functional and structural connections predict fluid and crystallized intelligence 

(Dhamala et al., 2021). In earlier work, Kong and colleagues considered predicting cognitive 

performance from individual-specific functional brain networks. They found that 

individualized cortical topographies generalized more readily to new fMRI data from the same 

individual, compared to group-consensus parcellations (Kong et al., 2019). Li and colleagues 

found that global signal regression—a controversial fMRI preprocessing step—improved 
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prediction accuracy (Li et al., 2019). Several recent studies have focused on comparing deep 

and machine learning approaches for neuroimaging-based prediction of cognitive 

performance and behavioral traits  (Abrol et al., 2021; He et al., 2020; Schulz et al., 2020). 

While evaluating and maximizing prediction accuracy is a key consideration of these previous 

studies, some previous studies have also evaluated consensus in feature importance for the 

purpose of visualization or external validation of the accuracy of predictive models (Cui and 

Gong, 2018; Finn and Bandettini, 2021; Finn et al., 2015; Jiang et al., 2019; Rosenberg et al., 

2016). To the best of our knowledge, while these previous studies did not explicitly evaluate 

feature weight reliability, consensus in feature importance was computed based on 

agreement in feature weights between cross-validation folds or iterations. Several of these 

studies observed relatively high consensus in feature importance between cross-validation 

folds, but they did not necessarily claim high feature weight reliability based on this 

observation. We found that such within-sample measurements can lead to inflated estimates 

of feature weight reliability (Figure 4). Out-of-sample estimates computed using rigorous half-

split experiments were found to be substantially lower than previous studies suggested and 

suggest poor feature weight test-retest reliability.  

 

We identified a tradeoff between prediction accuracy and feature weight reliability. 

Specifically, increasing feature space dimensionality by using higher resolution parcellation 

atlases led to increased prediction accuracy, at the expense of poorer feature weight 

reliability. Improved reliability could be due to the higher signal-to-noise ratio afforded by 

averaging fMRI signals over broader spatial extents, leading to more accurate functional 

connectivity measurements, compared to those derived from high-resolution parcellation 

atlases. Reliable interpretation of feature importance can therefore benefit from low-

dimensional connectome mapping, if the decrease in prediction accuracy and spatial 

resolution can be tolerated. 

 

Some remarks on the relative performance of the four predictive models are warranted. 

Feature weight reliability was poor for all predictive models and cognitive measures, although 

subtle differences were evident. Kernel ridge and ridge regression yielded the most reliable 

feature weights and the most accurate predictions, whereas the performance of lasso and 

CPM was lower for both measures. Unlike the other three predictive models, CPM uses a 
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univariate feature selection strategy, and this may impact feature weight reliability. O’Connor 

and colleagues recently incorporated resample aggregation into CPM, which was found to 

improve CPM generalizability (O'Connor et al. 2021). This resampling procedure can provide 

insight into feature weight reliability and stability. The authors report that fewer than 1% of 

the 35,778 connectivity features were selected in more than 90% of the resamples (200-

subsample: 1.95 ± 1.5 connections; 300-subsample: 58 ± 20; bagged model: 46 ± 16). While 

these percentages are not directly comparable with the Dice coefficients reported here, they 

also suggest considerable variation in selected features between samples. Another difference 

obscuring direct comparison is that we compared feature selection between independent 

samples of individuals, whereas individuals can be included in more than one of the samples 

generated by O’Connor and colleagues. We also note that CPM prediction accuracies for fIQ 

reported by these authors are marginally higher than those reported here. This may be due 

to the use of different parcellation atlases, samples and cross-validation to optimize the p-

value feature selection threshold. CPM is an important predictive model and further work is 

needed to evaluate feature selection reliability under resample aggregation. 

 

We also investigated the test-retest reliability of mass univariate significance testing. For each 

connection, this involved independently testing the null hypothesis of an absence of 

association between cognitive performance and resting-state functional connectivity 

strength. Interestingly, the connection-wise univariate test statistic used to assess this null 

hypothesis showed greater reliability than predictive feature weights. Therefore, if the 

researcher’s principal goal is to elucidate relationships between cognitive performance and 

brain connectivity, classical statistical inference should not be overlooked because it can 

provide improved reliability compared to predictive modelling. However, the set of significant 

connections derived from thresholding the corresponding p-values to control the family-wise 

error or false discovery rate showed low Dice coefficients between half-split pairs. We 

conclude that while dichotomization based on statistical significance can aid interpretation 

by categorically localizing effects to distinct connections, continuous measures of association 

between cognitive performance and connectivity strength are more reliable.  

 

Using larger samples may improve feature weight reliability, although we found the doubling 

the sample size from n=400 to n=800 led to only a marginal increase in ICC values. Increasing 
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the sample size beyond n=800 may gradually saturate the reliability estimates or approach a 

plateau (Schulz et al., 2020). However, studies often only focus on the impact of sample sizes 

on prediction accuracies (Marek et al., 2020; Poldrack et al., 2020; Schulz et al., 2020; 

Varoquaux, 2018) and feature weight test-retest reliability as a function of sample size 

remains to be characterized using even larger neuroimaging datasets such as the UK Biobank 

(Miller et al., 2016). Future work should also focus on investigating the reliability of predictive 

models derived from task-evoked fMRI, given that task-evoked brain connectivity can yield 

more accurate predictions of cognitive performance compared to resting-state connectivity 

(Chen et al., 2020; Finn and Bandettini, 2021; Greene et al., 2018; Jiang et al., 2020). Future 

studies should also investigate the impact of personalized brain atlases (Fair, 2018; Gordon 

et al., 2017; Kong et al., 2019; Wang et al., 2020) on the reliability of feature weights. 

Additionally, future evaluations incorporating multiple independent datasets would enable 

testing of the generalizability of feature weights between different cohorts acquired at 

different sites. This is a stronger form of out-of-sample test-retest reliability than the one 

evaluated here. For example, Rosenberg and colleagues (2016; 2018b) identified networks 

predicting attentional task performance in two independent datasets and report statistically 

significant overlap between the two networks, providing evidence of model reliability and 

generalizability. This measure of overlap is not necessarily comparable to the feature weight 

reliability reported here based on the ICC. 

 

Finally, it is important to remark that feature importance can be deduced in ways other than 

interrogating feature weights. Certain features can be excluded from the feature space and 

the predictive models retrained using the reduced feature space. Any reduction in prediction 

accuracy provides an indirect measure of the importance of the omitted features (Yarkoni 

and Westfall, 2017). While this approach has not been widely adopted for functional 

connectivity, perhaps due to high feature space dimensionality, Cropley and colleagues 

systematically omitted specific brain lobes from a predictive model of brain age based on gray 

matter morphology. They found that omitting frontal regions reduced the strength of the 

association between brain age gap and psychosis symptoms, providing evidence for the 

importance of the frontal lobes in psychopathology (Cropley et al., 2021). The reliability of 

feature importance estimates deduced from this hierarchical model comparison approach 

remains to be investigated. 
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Conclusion 

Neuroimaging-based predictive models in cognitive neuroscience are burgeoning. However, 

predicting for the sake of prediction is an easy trap to fall into and we hope that our work 

prompts a rebalance of attention from maximizing prediction accuracy to establishing 

explainable models built on reliable feature weights. For current predictive models of 

cognitive performance based on resting-state functional connectivity, feature importance is 

difficult to reliably estimate, meaning that localizing predictive utility to specific connections 

and circuits is challenging. This limits the extent to which predictive models can be explained 

in terms of neurobiological mechanisms. We found that larger sample sizes, coarser 

parcellation atlases and non-sparse feature selection/regularization can marginally improve 

feature weight test-retest reliability. We recommend estimating reliability out-of-sample, if 

possible. The more common approach of measuring agreement in feature weights between 

cross-validation folds and iterations provides inflated estimates of feature weight reliability.  
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Supplementary Materials 

Regularization and hyperparameter optimization 

A nested 20-fold cross-validation was used for hyperparameter optimization for the three 

regression methods, including lasso (Tibshirani 1996), ridge (Hoerl and Kennard 1970) and 

kernel ridge regression (Li et al. 2019). This was performed using the MATLAB function 

fitrlinear.m for continuous cognitive measures and fitclinear.m for the binary sex variable. 

The nested 20-fold cross-validation was performed for each half-split cross-validation 

iteration. For each inner training iteration, a grid search was used to randomly search over a 

sequence of 100 logarithmically spaced hyperparameters (𝜆), ranging from 10-5/N to 105/N, 

where N is the number of training subjects comprising the inner fold. The sparse 

reconstruction by separable approximation (SpaRSA) technique (Wright et al. 2009) was used 

to minimize the objective function for lasso, and a combination of average stochastic gradient 

descent (ASGD) and limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton 

algorithm (LBFGS) (Nocedal and Wright 2006) was used for ridge and kernel ridge regression. 

A maximal number of 1000 iterations were specified, and the optimization terminated when 

∥ /!0/!"#
/!

∥!<10-4, where 𝐵' is the regression coefficients and the intercept at optimization 

iteration 𝑡. The 𝜆 value resulting in the smallest error across all inner test folds were selected 

to compute the beta coefficients using all individuals in the outer training split.  

 

Similarly, a nested 20-fold cross-validation was used for the connectome-based predictive 

modeling (CPM) (Shen et al. 2017), in which a sequence of 100 logarithmically spaced p-values 

ranging from 10-5 to 1 was tested. The p-value threshold resulting in maximal positive or 

negative association between the summation of functional connectivity (FC) strengths and 

cognitive performance (or sex) was selected to compute the summation of FC strengths 

across all individuals in the outer training split.  
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Figure S1. Prediction accuracy and feature weight test-retest reliability estimated using half-split 
cross-validation in 800 individuals. (a), Pearson correlation coefficient between observed and out-of-
sample predicted fluid intelligence (fIQ), crystalized intelligence (cIQ), overall cognition (IC-Cognition) 
as well as sex (partial linear correlation, 0-female; 1-male) using Lasso regression, ridge regression, 
kernel ridge regression and connectome-based predictive modeling (CPM). CPM-P, positive 
associations; CPM-N, negative associations. Violin plots show the distribution of correlation 
coefficients across 100 half-split pairs (left: chance; right: observed). Asterisks are shown to indicate 
mean Pearson correlation coefficients significantly exceeding chance-level predictions (two-sample t-
test, p<0.05, false discovery rate (FDR) correction across five models). (b), Feature weight test-retest 
reliability (out-of-sample) quantified with intraclass correlation coefficient (ICC) for the five predictive 
models and the raw test statistic. Violin plots show the distribution of ICC across 100 half-split pairs 
(left: chance; right: observed). Asterisks are shown to indicate ICC mean values significantly greater 
than chance (two-sample t-test, p<0.05, FDR correction across six models). Raw refers to the 
univariate test statistic for each connection assessing the null hypothesis of an absence of association 
between cognitive performance and functional connectivity strength. (c), Same as (b), but with the 
Haufe transformation applied to feature weights before evaluating test-retest reliability. (d), The 
network-based statistic (NBS) and false discovery rate (FDR) were used to identify connections with 

a

b

c d

Prediction accuracy

Feature weight reliability 

Haufe transformation Significance testing
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functional connectivity strengths that significantly correlated with cognitive performance (family-wise 
error rate and FDR controlled at 0.05, respectively). Violin plots show distribution of dice coefficients 
quantifying overlap in connections declared statistically significant between 100 half-split pairs. 
Central mark on each violin plot indicates the mean value.  
 
 

 
Figure S2. Consistency in feature weights between different predictive models with the Haufe 
transformation. Matrix cells are colored according to within-sample (upper triangle) and out-of-
sample (lower triangle + diagonal) intraclass correlation (ICC) values. ICC values quantify consistency 
in feature weights with the Haufe transformation estimated by two distinct predictive models and 
represent averages over 100 half-split pairs. ICC values are shown for samples sizes of n=400, with 200 
per half-split (a) and n=800, with 400 per half-split (b). fIQ: fluid intelligence. cIQ: crystalized 
intelligence. IC-Cognition: overall cognitive performance. K-Ridge: kernel ridge regression. CPM: 
connectome-based predictive modelling. CPM-P, positive associations; CPM-N, negative associations.   
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