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Abstract 13 

Genetic networks are characterized by extensive buffering. During tumour evolution, disruption of these 14 

functional redundancies can create de novo vulnerabilities that are specific to cancer cells. In this regard, 15 

paralog genes are of particular interest, as the loss of one paralog gene can render tumour cells 16 

dependent on a remaining paralog. To systematically identify cancer-relevant paralog dependencies, we 17 

searched for candidate dependencies using CRISPR screens and publicly available loss-of-function 18 

datasets. Our analysis revealed >2,000 potential candidate dependencies, several of which were 19 

subsequently experimentally validated. We provide evidence that DNAJC15-DNAJC19, FAM50A-FAM50B 20 

and RPP25-RPP25L are novel cancer relevant paralog dependencies. Importantly, our analysis also 21 

revealed unexpected redundancies between sex chromosome genes. We show that chrX- and chrY- 22 

encoded paralogs, as exemplified by ZFX-ZFY, DDX3X-DDX3Y and EIF1AX-EIF1AY, are functionally linked 23 

so that tumour cell lines from male patients with Y-chromosome loss become exquisitely dependent on 24 

the chrX-encoded gene. We therefore propose genetic redundancies between chrX- and chrY- encoded 25 

paralogs as a general therapeutic strategy for human tumours that have lost the Y-chromosome. 26 

 27 

Introduction 28 

Paralog genes that fulfill similar functions provides a degree of robustness of gene regulatory networks 29 

to deleterious events
1–3

. These paralog genes arise as a result of gene duplications and subsequent 30 

divergent evolution
4,5

. Paralog redundancies are of interest to cancer biology, as tumour-specific 31 

processes like hypermethylation, mutations or copy number alterations can inactivate genes and 32 

thereby reduce the extent of genetic buffering. Genes whose loss is buffered in non-neoplastic cells by a 33 

paralog can thus become dependencies in tumours where the redundant paralog is absent. Examples for 34 

such paralog dependencies in cancer cells have been identified and validated before, and include ENO1-35 

ENO2
6
, SMARCA2-SMARCA4

7–9
, ARID1A-ARID1B

10
 or STAG1-STAG2

11,12
.  36 
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In all validated cases, the tumour-specific loss of one paralog gene creates a specific dependency on a 37 

remaining paralog. Accordingly, therapeutic inhibition of the remaining paralog gene is assumed to be 38 

safe, because non-tumour cells still retain the genetic buffer to tolerate the inhibition without systemic 39 

side effects. Another advantage of tumour-specific vulnerabilities created by loss of a paralogous gene is 40 

the availability of a tractable biomarker; i.e. measuring loss of Paralog A in tumours allows to select 41 

patients that would respond to inhibition of the synthetic lethal Paralog B. Therefore, paralog 42 

dependencies represent a highly attractive concept for cancer drug target identification. However, a 43 

systematic understanding of cancer-relevant paralog dependencies is still elusive to date, although 44 

CRISPR-based combinatorial screens and bioinformatics discovery pipelines are beginning to shed light 45 

on the tumour redundancy map
3,13–20

. 46 

In addition to mutagenic processes such as gene silencing, point mutations or gene amplification, human 47 

cancers frequently lose large amounts of their genetic material during the process of tumourigenesis
21

. 48 

Deletions can involve one or multiple genes or, as is being appreciated, extend to loss of whole 49 

chromosomes, one of the most prevalent being loss of chromosome Y (LOY). Cancer incidence is 50 

generally higher in males
22,23

, a fact that has been attributed to the general protective effect of the 51 

chrXX status in females that allows buffering of deleterious mutations
24,25

. LOY has been reported in ~93% 52 

of esophageal adenocarcinomas
26

, ~12% of male breast cancers
27

 and ~23% of urothelial bladder cancer 53 

samples
28

. Mosaic loss of chrY has also been observed outside of the oncology context, where it has 54 

been correlated with increased age
29–31

. LOY has been associated with a number of pathophysiological 55 

conditions, including clonal hematopoiesis and Alzheimer's disease
32,33

. Due to the plethora of disease 56 

states in which LOY occurs, strategies to eliminate cells involved in pathological conditions, including 57 

neoplastic transformation is clearly of general medical interest. 58 

We set out to discover cancer-relevant paralog dependencies by an integrative approach of combining 59 

multiple -omics datasets in panels of human cancer cell lines. This analysis reveals 2,040 candidate 60 

paralog gene interactions, a subset of which we validate experimentally. Importantly, we uncover a sex-61 

chromosome-specific set of genes that is functionally buffered between the X and Y chromosomes. We 62 

demonstrate that targeted depletion of the chrX-encoded gene in LOY tumour cell lines offers an 63 

attractive strategy to treat tumours that have lost chrY. In addition, these results provide a generalizable 64 

framework of how to eliminate putative pre-pathogenic LOY cells. 65 

 66 

Results 67 

CRISPR/Cas9 screens identify CSTF2-CSTF2T as a paralog dependency 68 

We devised a set of proof-of-principle CRISPR screens to investigate the concept of cancer-specific 69 

paralog dependencies. We started by cataloging potential human paralog genes from Ensembl BioMarT, 70 

as defined by all genes with at least one other paralog in the same family without any further 71 

constraints on homology or family size. Most of the multi-gene families contain two to five paralog 72 

genes and the biggest class of genes are protein-coding genes (Figure 1a,b). A compact protein domain-73 

focused CRISPR gRNA library
34

 of ~10,000 gRNAs was generated to permit screening across multiple 74 

tumour cell lines. The library genes were manually curated to contain genes that are frequently deleted 75 
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in human solid tumours, including 460 unique paralog genes from 199 families. Loss-Of-Function (LOF) 76 

screens were then carried out across seven cancer cell lines (Hep 3B2.1-7, HuP-T4, MIA PaCa-2, NCI-77 

H1373, NCI-H1993, NCI-H2009, PC-9) with annotated deep deletions (see Methods).  78 

Paralog genes scoring as significantly depleted in our screens were cross-referenced across the different 79 

cell lines to understand whether any of their family members were annotated as deleted (Figure 1c, 80 

Supplementary Table 1). Accordingly, we found that ATP4B was specifically required in Hep 3B2.1-7 cells 81 

that harbor a deletion of ATP1B2. Both genes are subunits of potassium-transporting ATPases, but 82 

physical or functional interactions have not been described. Furthermore, we observed that NCI-H1993 83 

cells were particularly sensitive to loss of CSTF2, likely due to a deletion of its paralog CSTF2T. CSTF2 and 84 

CSTF2T encode the CstF-64 and CstF-64tau proteins respectively, that have partially overlapping 85 

functions in the Cleavage stimulation Factor (CstF) complex, a regulatory component of the mRNA 86 

cleavage and polyadenylation machinery
35–37

. We confirmed the sensitivity of CSTF2T-negative cells to 87 

depletion of CSTF2 (Figure 1d, Supplementary Figure 1). Mechanistically, we observed that depletion of 88 

CSTF2 leads to compensatory induction of CSTF2T in CSTF2T-proficient cells (Figure 1e), confirming 89 

previous reports describing that CSTF2 and CSTF2T can regulate each other’s expression
36–38

. This 90 

compensatory upregulation is not observed in CSTF2T-deficient cell lines (Figure 2f), providing a 91 

hypothesis for the dependency on CSTF2. Of note, CSTF2 and CSTF2T are encoded by a single essential 92 

gene in yeast, RNA15 (YGL044C)
39

, suggesting that cellular viability might depend on the activity of both 93 

paralogues in mice and humans. In mice, previous studies suggest that Cstf2 and Cstf2t form a 94 

functionally redundant pair of genes with an essential function in certain contexts. Embryonic stem cells 95 

lacking Cstf2 had altered pluripotency and could be differentiated into mesoderm and ectoderm, but 96 

not endoderm
38,40

. Autosomally encoded CSTF2T is required in pachytene spermatocytes to overcome 97 

the lack of expression of X-encoded CSTF2 due to meiotic sex chromosome inactivation, leading to male 98 

sterility
35

. Hence, some but not all functions of Cstf2 can be assumed by Cstf2t. 99 

In summary, this set of proof-of-concept screens - despite their limited scope - demonstrates that bona 100 

fide paralog dependencies are detectable using pooled LOF screens in cancer cell lines. 101 

 102 

Bioinformatic identification of cancer-relevant candidate paralog dependencies 103 

Due to the limited search space and number of paralog dependencies retrieved from our focused 104 

experimental approach, we decided to search for candidate interactions in a systematic manner, 105 

leveraging publicly available LOF and expression data from hundreds of cancer cell lines. We 106 

hypothesized that candidate genetic interactions between paralogous genes could be detected by 107 

looking at the relationship between expression of Paralog A and dependency on Paralog B. In essence, if 108 

low expression of Paralog A (“biomarker”) was correlated with sensitivity to loss of Paralog B (“query”), 109 

this would identify a potential genetic interaction that could subsequently be evaluated. Depletion 110 

scores from complementary datasets
41

 of pooled CRISPR and shRNA screens (AVANA
42

, Sanger
43

 and 111 

DRIVE
44

) and corresponding gene and protein expression data
45,46

 for paralog genes were collected. 112 

Correlation coefficients and corresponding p-values between expression levels of biomarkers and 113 

depletion scores of queries for as many pairs within each paralog family where expression/depletion 114 

data were available were then calculated. This approach resulted in a large matrix of correlation tests, 115 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.05.21.445116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445116
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 

 

containing 14,064 unique genes (biomarkers or queries) and 108,092 unique biomarker-query pairs 116 

(Supplementary Table 2), hereafter called PaCT (Paralog Cancer Targets). The obtained correlation 117 

coefficients was then filtered via a cutoff of 3*SD (standard deviation) and p-value < 0.05 to generate a 118 

hit set (Figure 2a,b; Supplementary Table 2). Simulating the distribution of Spearman correlation 119 

coefficients by randomly assigning each query to a gene from different family yields very few 120 

interactions at similarly strong correlations, indicating the specificity of PaCT candidate pairs (see 121 

Methods; Figure 2c).  122 

In contrast to other recent paralog studies, we did not limit the PaCT search space to paralog pairs by a 123 

similarity cutoff or membership in a paralog gene family of a given (small) size
13,19

. An additional 124 

advantage of PaCT is the ability to identify candidate interaction partners for genes that have not been 125 

targeted themselves as queries, as long as expression data are available for them to act as biomarkers. 126 

Overall, of 3,084,147 possible pairs (including self-interactions) from 3,587 paralogue families, PaCT is 127 

blind to 2,975,741 pairs (2,795 genes), due to missing depletion and/or expression data for either query 128 

or biomarker or both. This also includes pairs where information is available only for a single cell line and, 129 

therefore, where no correlation can be calculated. From the remaining 108,406 paralogue pairs, 2,040 130 

unique pairs (1.9%) were identified as significant interactions, and for 106,366 paralogue pairs (98.1%; 131 

14,055 genes), we identified a non-significant correlation in our analysis (Figure 2d).  132 

We then sought to identify possible differences between hit and non-hit paralogue pairs. Insufficient 133 

variability in gene/protein expression and/or depletion scores across the cell lines could underlie low 134 

correlation coefficients across our dataset. We investigated this for gene expression levels and depletion 135 

scores from the AVANA dataset as an example. Indeed, we identified a small, but statistically significant 136 

difference in variabilities for both modalities (p-value < 2.2x10
-16

, Kolmogorov-Smirnov test) between 137 

hits and non-hits (Figure 2e,f). We further hypothesized that sequence similarity between individual 138 

paralog genes could impact the likelihood for an interaction between them. Indeed, based on Ensembl 139 

BioMarT DNA sequence similarity, we observed a significant trend that genes involved in significant 140 

paralog interactions exhibit higher similarity than those of non-significant pairs (Figure 2g). 141 

Interestingly, significant pairwise candidate interactions are observed between paralogs in families of 142 

any size (Figure 2h). Even though many candidate pairs are interactions within 2-member paralog 143 

families, we scored significant correlations in larger families of up to 20 members or more. In smaller 144 

families, the majority are positive correlations; with increasing family size, the balance shifts towards an 145 

even split with negative correlations. On average (AVANA data), we identified 8.4% significant 146 

interactions per family when family size is <= 10 that decreased to 1.4% for families containing more 147 

than 10 genes (Figure 2i, Supplementary Figure 2 a,b). Finally, we looked at connectivity within paralog 148 

families and observed that this varies widely (Figure 2j,k, Supplementary Figure 2c-f). Among the hit 149 

pairs, some queries and biomarkers act as hubs, being involved in multiple or all significant interactions, 150 

independent of family size. However, other candidates have a more uniform distribution, being 151 

identified in only a subset of hit pairs. It remains to be determined what factors underlie these different 152 

degrees of connectivity. 153 

As previously described by others
18,47

, some gRNAs in the Sanger and AVANA datasets are promiscuous 154 

and match to sites beyond the intended target. For PaCT, we used processed AVANA and Sanger scores 155 
42,43

 and we confirmed (for the AVANA data as an example) that most genes had zero or one gRNA 156 

excluded from the analysis for reasons identified by the investigators of the study (Supplementary 157 
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Figure 2g; Supplementary Table 2). However, we confirmed previous observations that a sizeable 158 

fraction of query genes (25%) had non-uniquely mapping gRNAs assigned to them (Supplementary 159 

Figure 2h; Supplementary Table 2), constituting a potential source of false negatives 
18,47

 in our analysis. 160 

Of the 2,472 candidate hit query-biomarker pairs (2,040 of which are non-redundant, involving 2,451 161 

unique genes), 57% displayed a positive correlation between query dependency score and biomarker 162 

expression. Most pairs (70%) were found using gene expression data, reflecting the greater robustness 163 

of this dataset. We also included genes whose genetic dependency correlates with their own expression, 164 

and 20% of our hits are indeed such “self-pairs”. 20 of them have been previously described as CYCLOPS 165 

(copy number alterations yielding cancer liabilities owing to partial loss) genes
48,49

 that, when expressed 166 

at low levels, are associated with greater sensitivity to further LOF. Similar to previous observations
49

, 167 

CYCLOPS genes are overrepresented among the significant hits identified by PaCT (20%), compared to 168 

their representation among all potential interactions (13%), mirroring the high frequency of genomic 169 

loss in cancer cell lines. In total, our PaCT analysis highlighted 370 unique candidate self-interactions.  170 

The largest proportion of candidate hit query-biomarker pairs (46%) was detected in the AVANA dataset 171 

– representing the largest and most comprehensive database in terms of cell lines included -, followed 172 

by Sanger (37%) and DRIVE (17%). The covered cell lines and genes overlap to a certain extent, but each 173 

dataset contains unique cell lines and genes, in addition to differences in methodologies for generating 174 

LOF phenotypes (RNAi in DRIVE vs. CRISPR in AVANA and Sanger)
41

. Thus, it is not surprising that many 175 

hits are found uniquely within one dataset or data domain (gene or protein expression; Figure 3a). 176 

Nevertheless, 17% (432/2,472) of candidate pairs are recovered more than once, strengthening our 177 

confidence in the PaCT approach. The largest overlap was observed between AVANA and Sanger 178 

positive correlations pairs using gene expression as a biomarker, confirming those as high-quality 179 

candidates. To illustrate the PaCT approach, Figure 3b shows examples of strong negative or positive 180 

correlations within small paralog families along the diagonal, i.e. between expression and depletion of 181 

the same gene or closely related paralogs, which are listed next to each other. 182 

We complemented the PaCT approach by an additional analysis of the AVANA, DRIVE and Sanger data. 183 

First, we classified cell lines as sensitive and resistant to depletion of a given query gene by k-means 184 

clustering (k=3, leaving out the intermediate group). Then, we tested whether the expression of a given 185 

biomarker gene was significantly different between the sensitive and resistant cluster. The most significant 186 

negative correlation hits are almost exclusively self-interactions (Supplementary Figure 3a-c), consistent 187 

with the notion of increased sensitivity to loss of highly expressed genes that might act as proliferation 188 

drivers. On the other hand, the most significant positive correlation hits are pairs of paralogs 189 

(Supplementary Figure 3a-c), supporting the hypothesis of functional redundancy and synthetic lethality 190 

between those genes. Overall, the PaCT top hits also emerged as most significant in this analysis.  191 

In order to characterize the PaCT hits, we investigated gene-centric parameters of the candidate pairs 192 

(without self-interactions) that have been hypothesized by us and others to affect the likelihood of 193 

genetic interaction between paralog genes
13,18

. We observed that some of our candidate interacting 194 

paralog pairs (13%) are involved in protein-protein interactions (PPI) with each other, as annotated in 195 

BIOGRID
50

 (v4.3.196; Supplementary Figure 3d). We then checked the candidate pairs for homo- and 196 

heteromeric interactions
3
, where homomeric means the assembly of a protein with itself whereas 197 

heteromeric paralogs assemble with each other. None of the candidate pairs is found on the (short) list 198 
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of heteromers, and ~3% of queries or biomarkers are annotated as homomers (Supplementary Figure 199 

3d). We also compared our list of candidate pairs to the Critical Paralog Groups (CPGs) defined by 200 

Modos et al.
51

, i.e. paralog groups that play important roles in signaling flow and pathway cross-talk. ~2% 201 

of PaCT pairs and 4-6% of query or biomarker genes are annotated as members of CPGs (Supplementary 202 

Figure 3d). Finally, we investigated whether the candidate interacting pairs share the same common 203 

ortholog and whether that ortholog is essential in different model organisms (Supplementary Figure 3e). 204 

While these numbers provide a mere estimate, due to the caveats of ambiguous and incomplete 205 

ortholog mapping, we expected and observed increasing fractions of common essential orthologs with 206 

increasing evolutionary distance – from 0.4% in M. musculus to >5.5% in S. cerevisiae. Accordingly, the 207 

fraction of orthologs that could not be mapped also increased, while the fraction of non-shared 208 

orthologs decreased.  209 

Together, these characteristics of shared evolutionary origin and essentiality, or physical interaction, 210 

describe some but not all parameters that underlie potential genetic and functional interaction between 211 

paralogous genes. Recently, several groups have investigated paralog redundancy and interaction using 212 

various computational and experimental methods
13–20

. We compared our PaCT candidates with their 213 

sets of potentially interacting paralogs and recovered 12-67% of published pairs in our hit list 214 

(Supplementary Figure 3f). Conversely, 15% of PaCT pairs are found in any other dataset. The published 215 

sets originate from vastly different search spaces – from a few hundred experimentally tested pairs to 216 

computational predictions of the complete interaction matrix of all annotated paralogs. Therefore, the 217 

variation in recovery is not surprising and consistent with comparisons between the published 218 

datasets
13–20

.  219 

In addition, PaCT also identified several paralog dependencies that have recently been described, 220 

including SMARCA2-SMARCA4 or SLC25A28-SLC25A37
19

. We used CRISPR GFP-depletion assays to 221 

experimentally validate the genetic dependencies on FAM50A in cells where FAM50B expression is low, 222 

and on VPS4A in VPS4B-low cell lines (Figure 3c,d and Supplementary Figure 3g,h), two paralog 223 

interactions that have recently been functionally characterized
19,52,53

. 224 

While most hits from dual-LOF screens and experimentally validated paralog dependencies rely on the 225 

absence of Paralog A to detect dependency on Paralog B (or partial loss in a CYCLOPS interaction), PaCT 226 

in principle identifies candidate interactions at any level of expression. To illustrate this, we calculated 227 

the fraction of hit pairs with a relevant query depletion (AVANA or Sanger score < -0.5 or DRIVE score < -228 

3) in at least one cell line when the biomarker expression is low, medium or high (Supplementary Figure 229 

3i). Indeed, the theoretical validation rate of candidate interactions is ~60% for all expression bins.  230 

Overall, these findings validate PaCT as a complementary approach to retrieve validated as well as novel 231 

candidates for interactions between paralog genes. 232 

 233 

RPP25-RPP25L and DNAJC15-DNAJC19 are novel cancer-relevant paralog interactions 234 

In addition to previously described paralog interactions, we discovered several novel high-confidence 235 

candidate dependencies, among them RPP25-RPP25L. RPP25 has been described as a component of the 236 
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RNase P and RNAse MRP ribonuclease complexes that process pre-tRNA and pre-rRNA sequences, 237 

respectively
54–57

. Little is known about RPP25L, a role in tRNA or rRNA processing has not been 238 

functionally validated. Sensitivity to loss of RPP25L was observed to be correlated with low expression of 239 

RPP25 (Figure 4a, Supplementary Figure 4a,b). This was then experimentally validated using CRISPR 240 

depletion assays. No depletion of RPP25L-targeting gRNAs was observed in cell lines that express RPP25 241 

(Figure 4b,c). Overexpression of either RPP25 or RPP25L in the sensitive U-2OS and KYSE-150 fully 242 

rescued sensitivity to RPP25L LOF, demonstrating functional redundancy between these two paralogs 243 

(Figure 4d, Supplementary Figure 4c). Interestingly, we observed a reduction in levels of endogenous 244 

RPP25L upon ectopic overexpression of RPP25 (Supplementary Figure 4d,e) suggesting the existence of 245 

feedback mechanisms that regulate the levels of RPP25L in response to changes in the abundance of its 246 

paralog protein. In order to elucidate the underlying molecular mechanism of this paralog interaction, 247 

further investigation of their role in pre-tRNA and pre-rRNA processing will be required.  248 

Gene silencing is often accompanied by promoter hypermethylation
58

. We calculated the correlation of 249 

methylation levels
46

 of Paralog A with depletion scores of Paralog B and compared the methylation 250 

correlation coefficients to the expression correlation coefficients from PaCT. As shown in Figure 5a, 251 

(Supplementary Figure 5a,b; Supplementary Table 2) for some of the pairs, methylation status of Paralog 252 

A could be a useful biomarker for dependency on Paralog B. In particular, we could also detect a 253 

negative correlation between methylation and gene expression for multiple CpGs in the promoter 254 

regions of FAM50B and DNAJC15 (Figure 5b,c, Supplementary Figure 5c). Although correlation does not 255 

necessarily imply causation, it is feasible that methylation could underlie low expression of the 256 

biomarker paralog in these cases. DNAJC15-DNAJC19 has not been described as a paralog redundancy 257 

before, therefore we set out to validate this interaction experimentally. DNAJC15 expression levels 258 

predict sensitivity of cell lines to loss of its paralog DNAJC19 according to our PaCT analysis (Figure 5d, 259 

Supplementary Figure 5d,e). We confirmed the sensitivity to DNAJC19 knockout in cell lines that do not 260 

express DNAJC15 (Figure 5e) in CRISPR depletion assays (Figure 5f), including cells with high levels of 261 

DNAJC15 as negative controls. Cell lines that do express DNAJC15 were predicted to be insensitive to 262 

loss of DNAJC19 and accordingly, DNAJC19-targeting gRNAs are not depleted from the pool of cells over 263 

time. To conclusively demonstrate functional redundancy between the two paralogs, we overexpressed 264 

DNAJC15i in the sensitive cell line NCI-H1975 and found that we could thereby rescue the dependency 265 

on DNAJC19 (Figure 5g and h). 266 

 267 

Paralog buffering between chrX- and chrY-encoded genes 268 

Loss of chromosomes have been reported to be frequently occur during cancer development
21

. 269 

Assessing gene expression and copy number data across The Cancer Genome Atlas (TCGA), did not 270 

reveal obvious bimodal distributions for any chromosome except chrY, suggesting that that whole 271 

chromosome loss is not frequent enough to be detected in this manner across this dataset 272 

(Supplementary Figure 6a,b). As described above, LOY has been associated with increasing age and 273 

noted in some cancers derived from male patients
21,26–28

. In agreement with this, a bimodal expression 274 

distribution for chrY genes within 1.5% of all male TCGA samples, was observed (Figure 6a). Binning 275 

samples by tumour purity shows that LOY is more prevalent in samples with higher tumour purity, 276 

indicating that LOY could indeed happen more frequently in cancers compared to adjacent normal tissue 277 
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(Supplementary Figure 6c). Due to the absence of matched non-tumour samples from TCGA, we used 278 

data from the Genotype-Tissue Expression (GTEx) project to estimate the frequency of LOY in normal 279 

tissues. In corroboration of our hypothesis, at the same 99
th

 percentile cutoff, no LOY was observed 280 

across normal samples GTEx (Supplementary Figure 6d).  281 

These studies were further strengthened by analysis of the prevalence of LOY across cancer cell lines 282 

used for the AVANA, DRIVE and Sanger screens. LOY was calculated as for the TCGA samples using copy 283 

number and expression data and observed in 142 of 459 male cell lines (31% of male, 14% of all cell lines) 284 

in our dataset (Figure 6b,c). These studies were supported by analysis of STR profiles for 455 cell lines 285 

(46% of cell lines used for PaCT) and analysis of the amelogenin marker for presence or absence of chrY 286 

(Figure 6i, Supplementary Table 3)(Figure 6i, Supplementary Table 3). We found that the previous sex 287 

assignment was accurate, and LOY status was confirmed for all previously identified cell lines. We 288 

further validated the sex chromosome status for a subset of cell lines by a PCR strategy (Figure 6j). 289 

We next investigated whether PaCT retrieved any candidate interactions where the biomarker gene is 290 

located on chrY to potentially exploit tumour LOY. Only 24 chrY genes were screened in the AVANA, 291 

DRIVE or Sanger datasets, 22 of which are part of our paralog families. Interestingly, in four of these 292 

pairs, the query genes are located on chrX: DDX3X-DDX3Y, RPS4X-RPS4Y1, ZFX-ZFY, EIF1AX-EIF1AY 293 

(Figure 6d). These pairs also rank highly in the predictions by DeKegel et al.
13

. Notably, all four chrX 294 

query genes are genes that escape X chromosome inactivation
59,60

, and DDX3X is among a small set of 295 

tumour-suppressor genes that escape from X-inactivation (EXITS genes)
61

, where mutations occur more 296 

frequently in male cancers and co-occur with LOY. 297 

In order to validate dependency on the chrX paralog when the chrY paralog is not expressed (or chrY is 298 

lost), we used CLIFF (Cell Line dIFFerences)
62

, a web application for the analysis of differences between 299 

two sets of cell lines in terms of differential gene or protein expression, DNA copy number, gene signatures, 300 

sensitivity to shRNA depletion or CRISPR gene knock-out and other parameters. First, we used k-means 301 

clustering to classify cell lines as sensitive and resistant (k=3, leaving out the intermediate group) based on 302 

their depletion scores in the AVANA dataset for each of the four chrX paralog hit genes. We then analyzed 303 

these groups in CLIFF and looked for the parameters that are most significantly different between the 304 

sensitive and resistant cell lines. As a control, we checked that the top gene in the AVANA category is the 305 

respective query, i.e. DDX3X for the classification run on the DDX3X depletion scores (Figure 6e, 306 

Supplementary Figure 6e-g). Other AVANA discriminators included some or all of the other chrX hit genes. 307 

Conversely, chrY genes, with the respective paralog gene at the top, are the main discriminators based on 308 

gene and protein expression, confirming LOY as a potential biomarker that predicts sensitivity to loss of 309 

the four selected chrX genes (Figure 6e, Supplementary Figure 6e-g). As expected, LOY cell lines are 310 

therefore enriched among the sensitive cell lines for all four chrX genes (Figure 6f, Supplementary Figure 311 

6h-j; p-value sensitive vs. resistant = 10
-4

 for all four genes, Fisher’s exact test). Accordingly, AVANA 312 

depletion scores for DDX3X (Figure 6g), EIF1AX, ZFX and RPS4X (Supplementary Figure 6h-m) are generally 313 

lower in LOY cell lines than male cell lines. However, some male cell lines are also sensitive to loss of the 314 

chrX-encoded paralog, indicating that the genetic buffering by the chrY-encoded gene might be 315 

incomplete in some contexts. 316 

Consistent with these analyses, a Random Forest (RF) machine-learning model trained with chrY gene and 317 

DDX3X paralog family gene expression data on the Sanger depletion dataset predicted sensitive and 318 
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insensitive cells for the AVANA dataset with an accuracy of 0.82. A variable importance analysis revealed 319 

KDM5D, DDX3Y, EIF1AY and RPS4Y1 expression as the top predictors for DDX3X sensitivity (Figure 6h). 320 

Similar models for ZFX and EIF1AX were trained on Sanger data, predicted AVANA data with an accuracy of 321 

0.715 and 0.82 respectively (Supplementary Figure 6n,o). 322 

Genetic rescue experiments were performed to validate the putative functional redundancy between 323 

chrX/Y-encoded paralogs. DDX3X dependency negatively correlates with the expression levels of DDX3Y 324 

across a panel of >600 cancer cell lines (Figure 7a) i.e. across the AVANA dataset, low expression of 325 

DDX3Y- but not other family members correlated with sensitivity to DDX3X depletion (Supplementary 326 

Figure 7a, b). The DDX3X-DDX3Y functional redundancy was previously suggested in a hamster cell line
63

 327 

and Raji cells
64

 but has not been studied in the context of LOY. In HT-1080 cells, that possess chrY, 328 

whereas gRNAs targeting DDX3X do not impact the proliferative capacity of these cells, rapid depletion 329 

was observed in the context of a gRNA simultaneously targeting DDX3X and DDX3Y (Figure 7b). 330 

Importantly, the effects of the DDX3X-DDX3Y dual-specific guide could be completely rescued by 331 

expression of gRNA-resistant cDNA constructs for DDX3X or DDX3Y. Similar results were obtained for 332 

another male cancer cell line, HCT 116 (Supplementary Figure 7c). KURAMOCHI cells, derived from a 333 

female patient, are dependent on DDX3X (Supplementary Figure 7d) demonstrating that buffering of the 334 

Y-encoded gene is a priori not part of the genetic makeup. Finally, loss of Y-chromosome was confirmed 335 

in KNS-42 cells by PCR (Figure 6j). Rapid depletion was observed with gRNAs targeting both DDX3X and 336 

DDX3Y simultaneously as well as gRNA targeting DDX3X alone (Figure 7c). Ectopic expression of either 337 

DDX3X or DDX3Y completely reversed the phenotype whereas a functionally unrelated X chromosome 338 

located gene X, ZFX, did not.  339 

These findings were then extended to additional PaCT genes with a putative chrX/Y-encoded 340 

redundancy. Sensitivity to EIF1AX correlates with the expression of EIF1AY, similar to DDX3X-DDX3Y, 341 

(Figure 7d, Supplementary Figure 7e, f). LOY resulted in a strong dependency on EIF1AX (Figure 7f) 342 

whereas cells retaining chrY were only sensitive to gRNAs simultaneously targeting EIF1AX and EIF1AY 343 

(Figure 7e). Depletion could be reversed upon expression of gRNA-resistant cDNA constructs encoding 344 

for EIF1AX or EIF1AY (Figure 7e, f). Similar results were obtained with gRNAs targeting RPS4X or RPS4Y, 345 

(Supplementary Figure 7g). In addition to DDX3X-DDX3Y and EIF1AX-EIF1AY, ZFX-ZFY emerged as an 346 

additional functionally redundant paralog pair from our PaCT analysis. Sensitivity of cancer cell lines to 347 

the loss of ZFX correlates with the expression of ZFY and, less strongly, with ZNF711 (Figure 7g, 348 

Supplementary Figure 7h,j). As the sensitivity to ZFX loss-of-function is less pronounced in KNS-42 cells 349 

in the AVANA dataset
42

, we turned to female Cal-120 cells for depletion and rescue experiments. 350 

CRISPR/Cas9-mediated loss of ZFX resulted in depletion of GFP- and gRNA-expressing cells. This 351 

phenotype could be rescued with gRNA-resistant cDNA constructs encoding for ZFX or ZFY, validating 352 

the functional redundancy between the two proteins (Figure 7h).  353 

In order to confirm that loss of chrY is the causative event in dependency on the paralogs encoded on 354 

chrX we designed an approach to engineer removal of chrY (induced LOY, iLOY). Similar to published 355 

approaches that have demonstrated loss of the targeted chromosome 
65,66

, a pool of 18 gRNAs targeting 356 

chrY genes was introduced in HT-1080 cells ectopically expressing either DDX3X or ZFX 
62,63

 (Figure 7i). 357 

LOY was validated by PCR (Figure 6j). Two independent clones were derived and subsequently treated 358 

with gRNAs targeting DDX3X, ZFX and EIF1AX. Whereas no phenotype was observed in parental HT-1080 359 

cells (Figure 7b,f), LOY clones were sensitive to gRNAs for the chrX-encoded paralog genes. This 360 
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sensitivity was lost or reduced upon ectopic expression of corresponding gRNA resistant constructs, e.g 361 

HT-1080 iLOY ZFX are sensitive to a gRNA targeting DDX3X whereas HT-1080 iLOY DDX3X are not (Figure 362 

7j and Supplementary Figure 7j).  363 

Altogether, these data suggest that selective targeting of paralogs encoded on the X-chromosome, for 364 

which genetic buffering with a chrY-encoded gene exists, might be a generalizable strategy to target LOY 365 

tumours. The iLOY experiments validate the loss of chrY as the root cause for this dependency. To the 366 

best of our knowledge, these are the first examples for synthetic lethal interactions between paralogs 367 

located on the X and Y chromosomes. 368 

 369 

Discussion 370 

Exploiting distorted genetic buffering in human malignancies represents a promising therapeutic 371 

concept. The clinical activity of poly ADP ribose polymerase (PARP) inhibitors in cancers with defects in 372 

the homologous recombination-based DNA damage repair pathway
67–69

 underlines this point. Paralog 373 

genes, originating from gene duplication events, represent an additional subset of these general 374 

synthetic lethal genetic interactions where tumour-specific loss of a paralog gene creates a 375 

therapeutically exploitable dependency on the remaining paralog gene. In this study, we 376 

identified >2000 candidate paralog dependencies relevant to human cancer. We have experimentally 377 

validated a subset of these paralog pairs and provide evidence that genetic buffering between the sex 378 

chromosomes could provide an attractive therapeutic strategy for human cancers of individuals that 379 

have lost the Y chromosome in malignant cells.  380 

Our analysis was confined to cancer-relevant interactions that can be identified in the respective cell 381 

lines used and genes targeted in publicly available CRISPR/RNAi LOF screens. Due to lack of equal 382 

representation of different cancers within the datasets this could lead to a bias for certain tumour types. 383 

As described, our discovery pipeline is also “blind” to certain other cases, including uniform expression 384 

or depletion of a paralog across all screened cell lines. This is because expression-dependency 385 

calculations rely on varying gene expression and depletion scores of one paralog gene across these cell 386 

lines. Therefore, approaches like PaCT together with combinatorial genetic screens will further advance 387 

our understanding of genetic redundancies. It will be interesting to determine if paralog interactions can 388 

be tissue specific and if, within larger families, subsets of genes can have a greater or lesser functional 389 

redundancy – a result suggested by our study. If true, this could hint towards the resistance of sub-390 

families and help to functionally annotate understudied paralog genes. 391 

As the PaCT approach relies on publicly available screening data, the caveats of the original experiments, 392 

such as suboptimal gRNA design in some instances, are carried over into our dataset. The DNAJC15-393 

DNAJC19 example illustrates such a case, where all gRNAs in the public dataset also target a pseudogene 394 

sequence. While our experimental validation uses independently designed gRNAs, a potential partial 395 

function of the presumed pseudogene will have to be determined. Furthermore, additional 396 

investigations will show whether DNAJC15 and DNAJC19 indeed both play a role in mitochondrial 397 

morphogenesis, and whether RPP25L is a bona fide subunit of the RNase P/MRP complexes. 398 
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A number of mechanisms can underlie the paralog loss. In addition to mutation and deletion we provide 399 

evidence that epigenetic mechanisms can also play a role. Validated paralog pairs DNAJC15-DNAJC19 400 

and FAM50A-FAM50B, provide examples where high promoter methylation could, in part, account for 401 

decreased expression of one paralog gene. This suggests that DNA hypermethylation in tumours could 402 

expose novel vulnerabilities that could be exploited therapeutically. Future research will have to clarify if 403 

vulnerabilities originating from DNA hypermethylation are stable enough to permit long-term treatment.  404 

Our study revealed extensive genetic redundancy between the sex chromosomes. We identified four 405 

candidate paralog dependencies (EIF1AX-EIF1AY, DDX3X-DDX3Y, RPS4AX-RPS4Y1 and ZFX-ZFY) of which 406 

we validated three experimentally. Our data suggest that cell lines originating from individuals with chrX 407 

and chrY become sensitive to the loss of the chrX-encoded gene upon loss of chrY. While this concept 408 

could in principle be exploited therapeutically to treat LOY tumours, premalignant states of mosaic LOY 409 

in hematopoiesis or ageing-associated LOY, several hurdles would have to be overcome. It would be 410 

important to ensure selectivity of the targeting therapeutic between highly similar paralogs. Although 411 

we have not observed LOY across the GTEx dataset, it is possible that alternative mechanisms may also 412 

lead to down-regulation of the chrY expressed paralog in normal tissues. While not explicitly addressed, 413 

recent studies imply incomplete redundancy for EIF1AX-EIF1AY and DDX3X-DDX3Y in different contexts 414 

in absence of LOY
70–72

. 415 

Overall, our study identifies cancer-relevant paralog dependencies and provides a framework for 416 

validation and future discovery as further panels of functionally validated cancer cell lines become 417 

available. While our PaCT approach currently addresses gene expression, deletion and methylation in 418 

the paralog genetic space, the approach is generalizable and could be performed analogously for non-419 

paralog genes as queries, and mutations, passenger deletions or other tractable aberrations as 420 

biomarkers. We envisage that this will identify additional testable hypotheses for targeted cancer 421 

treatment.  422 

  423 
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Materials and Methods 424 

Cell culture 425 

All cell lines and the respective media are listed in Supplementary Table 4. Cell lines were regularly 426 

checked for mycoplasma, authenticated by STR profiling (Eurofins Genomics) and kept at low passage 427 

numbers in humidified incubators at 37°C and 5% CO2.  428 

 429 

Generation of Cas9- and paralog-expressing cell lines  430 

cDNA sequences for Cas9 and paralog genes were human codon-optimized, synthesized and cloned into 431 

their respective vector backbone (Supplementary Table 4) at Genscript Biotech Corporation. Cells were 432 

lentivirally transduced. Viral particles were generated using the Lenti-X Single Shot System (Clontech). 433 

72 hours later, stable transgenic cell pools were selected using puromycin or blasticidin (see 434 

Supplementary Table 4 for details). 435 

 436 

CRISPR/Cas9 library design, cloning and virus production 437 

The majority of genes in the gRNA library were manually selected from (i) paralog families of 2-5 438 

members, (ii) genes frequently deleted in TCGA samples with a focus on deep deletions in lung 439 

adenocarcinoma, lung squamous cell carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, 440 

pancreatic adenocarcinoma, ovarian serous cystadenocarcinoma and prostate adenocarcinoma. gRNA 441 

sequences were selected to target protein domains (annotated using PFAM domain identifiers) as 442 

described
34

, as well as control sequences for a total of 9574 gRNAs (Supplementary Table 1).  443 

Pooled gRNA oligonucelotides (20-mer target sequences plus cloning adapters; 444 

TGCTGTTGACAGTGAGCGCGTCTCTCACCG[20xN]GTTTGGAGACGCCTAGGATCGACGCGGACAACA; Twist 445 

Bioscience) were PCR-amplified (0.1 ng DNA input, 24 parallel reactions, 15 cycles). Pooled reactions 446 

were purified using the QIAquick PCR purification kit (Qiagen) and digested with BsmBI. The vector 447 

backbone (lentiviral vector coexpressing sgRNA, GFP and NeoR, similar to sgETN
73

) was prepared by 448 

BsmBI digestion, dephosphorylation and purification as above. Ligation was performed in 14 parallel 449 

reactions using T7 ligase and remaining uncut backbone was removed by BsmBI digestion. Ligation 450 

products were purified by phenol extraction, transformed into MegaX DH10B T1 electrocompetent 451 

bacterial cells (Invitrogen) following manufacturer’s protocol and plated on LB/Ampicillin plates. 452 

Colonies were combined and maxi-preps were performed at ~7000x colonies per sgRNA. 453 

Lentivirus was produced in 293T-Lenti-X cells (Clontech) using 10 µg of library DNA and Ready-to-use 454 

Lentiviral Packaging Plasmid Mix (Cellecta, 0.5 µg/µL) per 10 cm dish (20 dishes in total). 293T-Lenti-X 455 

were plated without antibiotics and transfected the next day using Lipofectamine LTX & Plus (Thermo 456 

Fisher). Medium was changed after 7 h of incubation and viral supernatant was harvested after 48 h. 457 

Virus titration was carried out individually for each cell line using three different amounts of viral 458 

supernatant in the presence of 8 µg/mL polybrene. Transduction efficacy was evaluated 72 h after 459 

infection by measuring GFP expression by flow cytometry. 460 

Primer sequences are listed in Supplementary Table 4. 461 

 462 
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CRISPR/Cas9 screens 463 

Cas9-expressing cell lines were transduced with the sgRNA library at a multiplicity of infection of ~0.3 in 464 

the presence of 8 µg/mL polybrene. To this end, 44 x 10
6
 cells were cultured in four or more T175 flasks 465 

for 12/18 population doublings, representing 1000-fold library coverage. Cell numbers were adapted 466 

according to measured GFP percentage after initial infection. From a pellet of the respective cell number 467 

at the end point, genomic DNA was isolated using the QIAamp DNA Mini Kit (Qiagen). Amplicons around 468 

the sgRNA sequences were PCR amplified (1 µg input per PCR reaction, 29 cycles) with barcoded primers. 469 

The total amount of genomic DNA input was calculated by dividing the used total cell number by the 470 

assumed value of 6 pg genomic DNA per cell. PCR products were purified using the QIAquick PCR 471 

purification kit (Qiagen) and a 2% agarose gel using the QIAquick gel extraction kit (Qiagen). In a second 472 

PCR, 10 ng of the purified product per reaction were amplified (5 cycles). The pooled PCR products were 473 

purified using the QIAquick PCR purification kit. 50 ng of amplicons were used for the library generation 474 

with the TruSeq Nano DNA Library Prep kit for NeoPrep (Illumina). The sequencing was conducted on a 475 

HiSeq1500 (Illumina) in rapid mode with the paired end protocol for 50 cycles. For the 7 cell lines (MIA 476 

PaCa-2, Hep 3B2.1-7, NCI-H1373, NCI-H1993, NCI-H2009, PC-9, HuP-T4) total read counts ranging from 477 

3.1M to 41.6M were generated. Primer sequences are listed in Supplementary Table 4. 478 

 479 

CRISPR/Cas9 library quality control and screen analysis 480 

For the plasmid library, 20 million reads were generated and the gRNA representation was tested for 481 

uniformity. gRNA counts ranged from 50 to 8708 reads (25
th

 percentile: 983; median: 1682; 75
th

 482 

percentile 2560 reads). For screen analysis, we used the 'mageck test' function of the MAGECK tool 483 

(version 0.5.6)
74

 to determine the log2-fold-changes and significance estimates (p-values, FDR) for gRNA 484 

representation differences between any of the 7 cell lines and those observed in the plasmid library 485 

using the following parameters: "mageck test --norm-method control --gene-lfc-method median".  486 

To further assess the technical quality of the screens, we overlapped the library with known core-487 

essential (n=625) and never-essential (n=1344) genes constructed from genome scale screens. We found 488 

that 307 and 596 gRNAs targeted a subset of the core- and never-essential genes, respectively. We 489 

observed a good separation of both guide sets (strictly standardized mean difference < -0.9) and a 490 

strong enrichment of core-essential genes in the top depleted genes (AUC > 0.9). Both quality metrics 491 

were calculated based on log2-fold-changes from the comparison to the gRNA representation in the 492 

plasmid library. 493 

To compensate for the variable effect sizes from the different cell lines, we scaled all gene-level log2-494 

fold-changes such that the median log2-fold-change of all never-essential and core-essential genes 495 

where set to 0 and –1, respectively. We call this scaled log2-fold-change escore (essentiality score). 496 

For hit calling, we selected genes that were specifically depleted (cutoffs for escore < -0.4 and FDR < 0.1) 497 

in cell lines that harbor a deletion of a member of the same paralog family (absolute copy number = 0 498 

and log2 relative copy number < -1). 499 

 500 

TCGA data 501 
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For gene expression data, the GDC Data Portal's interface (https://portal.gdc.cancer.gov/) was used to 502 

compile all data files that mapped the fields “Program” = “TCGA”, “Data Type” = “Aligned Reads”, 503 

“Experimental Strategy” = “RNA-Seq”, and “Workflow Type” = “STAR 2-Pass”. Using the GDC Data 504 

Transfer Tool, the data was transferred and pre-processed using samtools
75

 collate and fastq to generate 505 

FASTQ files, containing the unmapped reads. All samples were subsequently processed with a 506 

harmonized RNA-seq pipeline
76

. 507 

TCGA SNP6 copy number segmentation data was downloaded from NIH GDC 508 

(https://portal.gdc.cancer.gov/) on December 3 2018. The segmentation information was obtained from 509 

the files *nocnv\_grch38.seg.v2.txt. Gene-wise copy numbers were determined by overlapping the 510 

segmentation information with Ensembl v86 gene annotation. If a gene was covered by a single segment, 511 

the copy number of the segment was assigned to the gene. If a gene was covered by multiple segments, 512 

a weighted average copy number was computed based on the size of the overlap between the gene and 513 

each segment. Relative copy numbers <= 1.0 were considered as “deep deletion”. 514 

The R package TCGAbiolinks (v2.5.9)
77

 was used to extract sample and patient information for TCGA 515 

samples by using a custom-made R script. 516 

The sample cohorts COADREAD, FPPP, GBMLGG, KIPAN, and STES were excluded. 517 

Data for TCGA methylation loci plots were downloaded from http://www.bioinfo-zs.com/smartapp/
78

. 518 

Gene expression levels (log2(TPM)) were plotted against methylation levels of CpGs belonging to islands 519 

located in promoter regions of genes of interest.  520 

 521 

Cancer Cell Line Encyclopedia (CCLE) data 522 

Cell line names and descriptions (including sex) were taken from the provider’s cell-line data sheet. If a 523 

cell line was available from various vendors, the cell-line name was taken from the top rank in a 524 

hierarchy of vendors in the following order: ATCC, DSMZ, ECACC, JCRB, ICLC, RIKEN, KCLB. 525 

For gene expression, raw FASTQ data for all CCLE cell lines
46

 were downloaded via the European 526 

Nucleotide Archive (accession number PRJNA523380). All data were processed identically to TCGA data 527 

as described above. 528 

For copy number determination, SNP6 CEL files were downloaded from https://cghub.ucsc.edu/ in 529 

October 2012. Relative copy number segments were computed using the R packages aroma.affymetrix 530 

(v3.1.0)
79

 and Rawcopy (v1.1)
80

: SNP6 data were processed with the AROMA method CRMA v2, where 531 

the 50 samples with the least amount of copy number alterations based on Rawcopy were used to 532 

calculate the reference intensities. This was followed by CBS segmentation. Afterwards, the copy 533 

number segments were overlapped with Ensembl v86 gene annotation as described for the TCGA data 534 

in order to obtain gene-wise relative copy number values. “Deep deletion” status was assigned as for 535 

TCGA data. Absolute copy number segments were computed using PICNIC version c_release 2010-10-536 

29
81

 with reference files adapted for reference genome hg38 and default parameters. The resulting 537 

segments were overlapped with Ensembl v86 gene annotation as for TCGA data in order to obtain gene-538 

wise absolute copy number values. 539 

Methylation
46

 data are 'CCLE_RRBS_TSS1kb_20181022.txt.gz', downloaded from 540 

https://portals.broadinstitute.org/ccle/data. Protein expression
45

 data were directly exported from the 541 

indicated reference. 542 

 543 

GTEx data 544 
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GTEx v8 gene expression data (phs000424.v8) where processed as described above (RNA-seq pipeline 545 

v2.0 (C-GET)
76

). For 4 samples processing failed, and 582 samples failed QC based on sequence length, 546 

GC content, assigned reads, intronic bases, 3’/5’ biases, uniquely mapped reads or GAPDH detection, 547 

and were not included into the final object. Samples from the “Cells - Transformed fibroblast”, “Cells - 548 

EBV-transformed lymphocytes” and “Cells - Leukemia cell line (CML)” classes are omitted from the data 549 

set. 550 

 551 

CRISPR/Cas9 depletion assays 552 

All CRISPR/Cas9 depletion assays were conducted as previously described
82

. In brief, gRNA sequences 553 

were cloned into their respective vector backbone, typically containing GFP (Supplementary Table 4), at 554 

Genscript Biotech Corporation. Lentiviral particles were produced in 293T-Lenti-X (Clontech) cells 555 

cultured in DMEM, 10% Tet-system approved FCS, 1X Glutamax, 1X NaPyr. 4 x 10
6
 cells were plated in 8 556 

ml medium in 10 cm dishes and transiently transfected with 7 µg of plasmid DNA mixed with Lenti-X 557 

Packaging Single Shots (VSV-G) (TakaraBio) according to the manufacturer’s instructions on the following 558 

day. 4 hours after transfection, 6 ml fresh medium was added to the plates. Supernatant was harvested 559 

48 hours after transfection, filtered through a 0.45 µm PVDF filter (Millipore) and stored at -80°C in 560 

unconcentrated aliquots until further use. Relevant cell lines stably expressing Cas9 (see Supplementary 561 

Table 4) were plated at approximately 50 –60 % confluence in 12 or 24 well plates and transduced with 562 

250-500 µl of gRNA virus to achieve 10%-95% transduction efficiency. After transduction, the fraction of 563 

GFP positive cells was determined at indicated timepoints using flow cytometry. 564 

Where cell lines expressing doxycycline-inducible cDNA constructs were included in depletion assays, 565 

expression was induced at the start of the experiment by addition of 0.5-1 µg/ml doxycycline to the 566 

medium, which was thereafter replenished twice per week. 567 

 568 

siRNA assay 569 

Cells were seeded at a density of 4 x 10
5
 in 6-well plates in standard culture media. 24 hours after 570 

seeding, cells were transfected with OTP Smartpool reagents (Horizon Discovery) targeting CSTF2 571 

individually or in an equimolar mixture, CSTF2T or negative control at a final concentration of 20 nM 572 

using RNAiMAX (Invitrogen) as specified by the manufacturer. 24 hours post transfection media was 573 

exchanged and cells further incubated for 48 hours. siRNA details are listed in Supplementary Table 4. 574 

 575 

cDNA overexpression 576 

Constructs based on the pMSCV-Linker-PGK-Blasti backbone (see Supplementary Table 4) were 577 

packaged into viral particles using the Platinum-GP Retrovial Packaging Cell line (). Briefly, 5 x 10
6 

cells 578 

were plated in 10 cm dishes and co-transfected with 3 µg VSV-G plasmid and 9 µg of the respective 579 

construct Lipofectamine LTX (Thermo Fisher) the following day. Medium was exchanged after 16 h and 580 

harvested 48 h later for filtration using 0.45 µm PVDF filter (Millipore) and subsequent storage at –80 °C 581 

before transduction of target cells and subsequent selection of successfully transduced cells through 582 

addition of Blasticidin to the medium.  583 

Constructs based on the RT3REN  backbone (see Supplementary Table 4) were packaged into lentiviral 584 

particles using the Platinum-E packaging cell line (Cell Biolabs). In brief, 600,000 cells were plated in 6 585 
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well plates and transfected with 2 µg plasmid DNA using 6 µl Lipofectamine LTX reagent (Thermo Fisher). 586 

Medium was exchanged after 16 h and harvested 24 h later, filtered through a 0.45 µm PVDF filter 587 

(Millipore) and added directly to recipient cells stably expressing an ecotropic receptor (pRRL-RIEH), 588 

followed by selection with Geneticin. Lentivirus for pRRL-RIEH was produced in lenti X 293T-Lenti-X 589 

(Clontech). 4 x 10
6
 cells were plated in 8 ml medium in 10 cm dishes and transiently transfected with 7 590 

µg of plasmid DNA mixed with Lenti-X Packaging Single Shots (VSV-G) (TakaraBio) according to the 591 

manufacturer’s instructions on the following day. 4 hours after transfection, 6 ml fresh medium was 592 

added to the plates. Supernatant was harvested 48 hours after transfection, filtered through a 0.45 µm 593 

PVDF filter (Millipore) before addition to cells and subsequent selection with Hygromycin. 594 

 595 

Western blot 596 

Cells were lysed using RIPA buffer (Sigma) supplemented with HALT protease and phosphatase inhibitor 597 

cocktail (Thermo Fisher). Lysates were incubated on ice for 30 min, centrifuged at 14,000 rcf for 20 min 598 

at 4°C and protein amounts in the supernatant determined using the Bradford assay (BioRad) according 599 

to the manufacturer’s instructions. Laemmli buffer was added to samples followed by boiling at 95 °C for 600 

5 min. Samples were loaded on a pre-cast gel (Criterion XT Precast 4-12 % Bis-Tris Gel, BioRad), run at 601 

150 V for 1.5 hours in XT MOPS running buffer (BioRad) before transfer onto a nitrocellulose membrane 602 

(Transblot Turbo Transfer Pack Midi 0.2 µm) for 7 min using the Transblot Turbo Transfer System 603 

(BioRad, program: Quickblot Mixed MW, Midi Gel). Membranes were incubated for 1 hour in blocking 604 

buffer (10% BSA, 10% PBS-T in water) followed by overnight incubation at 4 °C with primary antibody in 605 

BSA antibody buffer (5 % BSA in PBS-T). The next day, membranes were washed three times with PBS-T 606 

(10 min per wash) and incubated with secondary antibody in Casein antibody buffer (0,1% Casein in PBS-607 

T) for 1 hour in the dark at room temperature. Membranes were washed three times in PBS-T (10 min 608 

per wash) and visualized on an Odyssey CLx imaging system (LI-COR Biosciences). 609 

All antibody details can be found in Supplementary Table 4. 610 

 611 

Correlation analysis (PaCT) 612 

Depletion data for individual genes were obtained from three studies: DRIVE
44

 (2017-10-01), AVANA
42

 613 

(21Q1) and Sanger
43

 (Release 1). Subsequently, depletion values for every screened gene with unique 614 

gene symbols were correlated to expression values (TPM, see above), methylation
46

 or protein 615 

expression
45

 data across the screened cell lines. Methylation data were summarized for genomic regions 616 

mapping to a gene. Pearson, Spearman and Kendall correlation coefficients and corresponding p-values 617 

were collected. The gene with depletion data is referred to as query (q) gene and the gene with 618 

expression/methylation data is referred to as biomarker (b) for pairwise correlations. Subsequently, data 619 

were filtered for genes which are part of a paralog family, such that every pairwise correlation between 620 

q and b is considered if q and b are part of the same paralog family: 621 

� �  ��, � | � 	  � 
  �� 
��� ������� ������� ����� � �  � 

where B denotes all correlations between query and biomarker pairs (screened genes (q) and genes with 622 

protein and/or mRNA expression values(b)) and A denotes all correlations for a given paralog family. 623 
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We used Spearman coefficients and p-values for all subsequent analyses to account for possible non-624 

normal distributions in the data and minimize the impact of outlier values. Due to differences in query 625 

and cell line libraries used, and different scoring systems, each sub-dataset that was processed 626 

separately (AVANA, Sanger and DRIVE scores for gene and protein expression). For each sub-dataset, we 627 

calculated its own cutoff at 3*SD (standard deviation) and additionally filtered for p-value < 0.05. For 628 

gene expression data, all p-values at the 3*SD cutoff were highly significant, likely due to the more 629 

complete source data for this domain. 630 

The complete PaCT results can be found in Supplementary Table 2. 631 

 632 

PaCT exploratory space 633 

For all 3,587 paralog families with at least two members, we computed all possible pairwise interactions 634 

across members of the same paralog family, including self-interactions. This approach resulted in a total 635 

of 3,0841,147 potential pairs. We then assessed the potential of our approach to detect and quantify 636 

pairwise dependencies by depletion-expression correlation. Pairs where the query gene was not 637 

targeted in any depletion dataset and/or targeted in zero cell lines, and without gene expression data 638 

for the biomarker gene expression were labeled as “no info both”. Pairs for which information was 639 

missing for either depletion or gene expression were labeled as “no info query” and “no info biomarker”, 640 

respectively. Pairs for which information was available in only a single cell line do not allow calculation 641 

of a correlation and were labeled “1 cell line”. Pairs for which information was available both for the 642 

query and biomarker in at least two cell lines was labeled as “info query & biomarker”. Protein 643 

expression data were not included in this analysis. 644 

 645 

PaCT simulation analysis  646 

To identify the difference between PaCT hit correlations and random correlations, we performed 1000 647 

simulations for each gene from each family with significant interactions. For each query gene q from 648 

each family f, we generated a vector of genes v with same size as f. The new set of genes in v contains 649 

only the query gene from f but the remaining genes in v are sampled without replacement from the 650 

remaining paralogue families. Then pairwise correlations were computed as above.  651 

 652 

Wilcoxon-test analysis 653 

Cell lines were split into sensitive, resistant and intermediate groups using a k-means clustering 654 

algorithm with k=3 for the depletion scores of every gene in the DRIVE
44

, AVANA
42

 and Sanger
43

 datasets. 655 

For cell lines in the sensitive and resistant bins, gene and protein expression data were collected. 656 

Subsequently, a non-parametric test (Wilcoxon test) was conducted for all query-biomarker pairs. p-657 

values were collected and corrected for multiple testing (Benjamini-Hochberg). The query-biomarker 658 

pairs were then filtered as described above.  659 

 660 

Random Forest model 661 

CCLE gene expression data of chrY-encoded and DDX3X, EIF1AX, ZFX and RPS4X paralog family genes 662 

were used to train a Random Forest (RF) model on the Sanger
43

 depletion data. k-means clustering (as 663 
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described above) was used to separate sensitive and insensitive cell lines. Subsequently, AVANA
42

 664 

sensitivity data were predicted using the RF model. 665 

 666 

Ortholog analysis 667 

We first converted our list of human paralogs to the best match ortholog in M. musculus, D. 668 

melanogaster, D. rerio, C. elegans or S. cerevisiae using DIOPT
83

 (v8). Then we added information on 669 

each gene’s essentiality from OGEE
84

 (v2), with a majority vote decision on calling a gene essential or 670 

non-essential in cases where more than one dataset with ambiguous calls existed. For all paralog 671 

interaction hit pairs, we then checked whether query and biomarker share the same ortholog gene and 672 

if so, whether the ortholog is essential. 673 

 674 

Multi-mapping gRNA analysis 675 

We downloaded information on dropped gRNAs and gRNA mapping for the AVANA library from 676 

https://depmap.org/portal/download/. Based on this information, we extracted the number of dropped, 677 

uniquely mapped or multi-mapping gRNAs for each query gene in the list of PaCT pairs. 678 

 679 

LOY inference 680 

In addition to gene expression and copy number (CN) data, TCGA, GTEx and CCLE provide annotation of 681 

the sex of the patients where a sample/cell line originated from. We calculated (i) the average TPM, (ii) 682 

the maximum TPM, (iii) the average raw count, (iv) the average relative CN, and (v) the average absolute 683 

CN for all genes located on chrY for all samples. TCGA and GTEx do not provide CN data for chrY. For 684 

samples originally annotated as male, we checked whether all of their values (i)-(v) for cell lines and (i)-685 

(iii) for tissue samples were below the respective 99
th

 percentile of female samples. If this was the case, 686 

we re-annotated the sample as LOY. 687 

 688 

PCR validation of LOY 689 

Genotyping primer pairs for different genes on chrX and chrY were designed and tested for specificity. 690 

Genomic DNA was extracted from female, male and LOY cells using the QIAamp DNA Mini Kit (Qiagen) 691 

following the manufacturer’s protocol. PCR was run using AmpliTaqGold DNA polymerase (Thermo 692 

Fisher Scientific) with 100 ng genomic DNA as input. 55°C annealing temperature was used for all primer 693 

pairs. Resulting amplicons analyzed on a 2% agarose gel. All primer sequences are listed in 694 

Supplementary Table 4. 695 

 696 

Induction of LOY 697 

One million HT-1080 cells expressing Cas9 (puromycin) and DDX3X (blasticidin) or ZFX (blasticidin) 698 

constructs were transiently transfected with a pool of 18 GFP-containing plasmids encoding for gRNAs 699 

targeting different chrY genes (RN-gRNA_429-434, RN-gRNA_441-443, RN-gRNA_458-466 using 700 

Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer's instructions. 48 hours 701 
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after transfection, GFP-positive cells were isolated by FACS and diluted to obtain single cell clones. 702 

Clones were screened for LOY by PCR from genomic DNA (as described above) using standard laboratory 703 

techniques. Clones with PCR products for chrX but without PCR products for chrY were selected. gRNA 704 

sequences are listed in Supplementary Table 4. 705 

 706 

Software and data availability 707 

All calculations were performed in R. Data were visualized using R or GraphPad Prism. All data are 708 

publicly available through the indicated references and provided as Supplementary Material, including 709 

an R Markdown script containing all code and versioning information to reproduce analyses and figures. 710 
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Figures and Figure Legends  727 
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Figure 1: Proof-of-concept paralog dependency CRISPR screens reveal a functional interaction of CSTF2 728 

and CSTF2T. 729 

a-b)   Distribution of paralog families in study by family size (a) and gene type (b).  730 

c)       CRISPR screen results in 7 cancer cell lines. Only genes with escore < -0.4 and FDR < 0.1 are 731 

          displayed. Shades of green indicate effect size (escore), box color indicates whether paralog   732 

          family contains deleted gene different from listed gene (del) or not (wt). 733 

d)      CRISPR/Cas9 depletion assay in cell lines resistant (green) and sensitive (purple) to loss of CSTF2.  734 

          gRNAs targeting positive control genes (RPA3, POLR2A, PCNA), negative controls (NegCon03/-07),  735 

          and CSTF2 are indicated. Cells were lentivirally transduced with the gRNA plasmid containing GFP; 736 

         GFP percentage in transduced cell line pool was measured by flow cytometry at the indicated time 737 

         points and normalized to day 3 post-transduction. 738 

e-f)   Western blots for CSTF2 and CSTF2T in lysates from indicated cell lines after siRNA treatment 739 

          (3d). β-actin was used as loading control. 740 

 741 
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Figure 2: Correlation analysis of public loss-of-function screens yield to identify paralog genetic 743 

interactions. 744 

a) PaCT analysis workflow and volcano plot of tested pairs by dataset (CYCLOPS, self-interactions; 745 

Paralogs, pairwise paralog interactions within same family). See Methods for details. 746 

b) Distribution of PaCT correlations (Spearman) by input datasets. Triangles indicate specific hit 747 

pairs mentioned in subsequent analyses. Dashed lines mark the 3-standard-deviations cutoff 748 

used for hit filtering. 749 

c) Distribution of Spearman correlation coefficients of randomly assigned genes to each query 750 

compared to the correlation distribution of original PaCT hits.  751 

d) Pie chart displaying different categories of query-biomarker pairs across the complete 752 

theoretical PaCT exploratory space. Only pairs for which information for both query and 753 

biomarker is available can yield hit interactions. See Methods for details. 754 

e, f) Expression (e) and depletion score (f) variability distribution of genes involved in hit and non-hit 755 

interactions across cell lines. 756 

g) Nucleotide sequence similarity difference between hit and non-hit pairs. 757 

h) Number of unique hit pairs in paralog families of different size, grouped by type of correlation. 758 

i) Percentage of hit pairs identified in each family plotted against family size. Color legend 759 

indicates the percentage of genes of the respective family involved in hit interactions, either as 760 

query or biomarker. 761 

j, k) Percentage of hit interactions per gene as a query (j) and as a biomarker (k) is plotted against 762 

percentage of hit interactions per family. Color indicates family size. 763 

 764 
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Figure 3: Correlation analysis of public loss-of-function screens yield known and novel candidate paralog 766 

genetic interactions. 767 

a) Overlap of hit pairs between different input datasets. Y-axis shows the number of overlapping 768 

pairs by dataset. Comparisons are indicated by dots and lines on the x-axis, colored by type of 769 

expression data (gene, protein) and interaction (pos, neg). Inset shows number of hit pairs by 770 

dataset. 771 

b) Exemplary pairwise correlation matrix for paralog families of 2-4 members and Spearman 772 

correlation > 0.42 for at least one pair in the family including CYCLOPS interactions. 773 

c) CRISPR/Cas9 depletion assay in cell lines resistant (green) and sensitive (purple) to loss of 774 

FAM50A. gRNAs targeting positive control genes (POLR2A), negative controls (AAVS1) and 775 

FAM50A are indicated. Cells were lentivirally transduced with the gRNA plasmid containing GFP; 776 

GFP percentage in the transduced cell line pool was measured by flow cytometry at the 777 

indicated time points and normalized to day 3 post-transduction. 778 

d) CRISPR/Cas9 depletion assay in cell lines resistant (green) and sensitive (purple) to loss of 779 

VPS4A. gRNAs targeting positive control genes (POLR2A), negative controls (non-targeting) and 780 

VPS4A are indicated. Cells were lentivirally transduced with the gRNA plasmid containing GFP; 781 

GFP percentage in the transduced cell line pool was measured by flow cytometry at the 782 

indicated time points and normalized to day 3 post-transduction.  783 

 784 

  785 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.05.21.445116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445116
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

24 

 

Figure 4: Validation of paralog redundancy between RPP25 and RPP25L. 786 

a) AVANA-based depletion scores (CERES) for RPP25L, color-coded by RPP25 expression levels. 787 

b) Western blot for RPP25 in indicated cancer cell lines. β-actin was used as loading control. 788 

c) CRISPR/Cas9 depletion assay in cell lines predicted to be sensitive (purple) or resistant (green) to 789 

loss of RPP25L. gRNAs targeting RPP25L (gRNA-290, gRNA-291, gRNA-292, gRNA-293), positive 790 

controls (PCNA, POLR2A) and negative controls (non-targeting, AAVS1) are indicated. Cells were 791 

lentivirally transduced with the gRNA plasmid containing GFP; GFP percentage in transduced cell 792 

line pool was measured by flow cytometry at the indicated time points and normalized to day 3 793 

post-transduction (n=3 independent replicates of the experiment). 794 

d) CRISPR/Cas9 depletion assay as in (c) following ectopic expression of RPP25 or RPP25L in KYSE-795 

150 cells that are sensitive to loss of RPP25L (parental). DNAJC15 expression served as a 796 

negative control. 797 

 798 
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Figure 5: Paralog redundancies for FAM50A-FAM50B and DNAJC15-DNAJC19 can be attributed to 800 

expression loss by DNA methylation. 801 

a) Scatter plot identifying putative paralog dependencies due to DNA hypermethylation. X-axis: 802 

Spearman correlation coefficient between depletion data (CERES score (AVANA data)) and DNA 803 

methylation. Y-axis: Spearman correlation coefficient between depletion data (CERES score 804 

(AVANA data)) and gene expression (TPM). Pairs with correlation coefficients <|0.2| are 805 

displayed as density plots, strongest correlations are labeled.  806 

b) Scatter plot of mRNA expression levels (log2(TPM)) of FAM50B versus CpG island methylation at 807 

indicated loci across tumour types from TCGA. Samples from bladder urothelial carcinoma 808 

(BLCA), prostate adenocarcinoma (PRAD) and stomach adenocarcinoma (STAD) studies are 809 

highlighted. 810 

c) Scatter plot of mRNA expression levels (log2(TPM)) of DNAJC15 versus CpG island methylation at 811 

indicated loci across tumour types from TCGA. Samples from bladder urothelial carcinoma 812 

(BLCA), prostate adenocarcinoma (PRAD) and stomach adenocarcinoma (STAD) studies are 813 

highlighted. 814 

d) Boxplot summarizing expression data (log2(TPM)) for members of the DNAJC19-DNAJC15 815 

paralog family in cell lines resistant and sensitive to DNAJC19 loss. 816 

e) Western blot of DNAJC15 levels in selected sensitive (CAL-12T, NCI-H1915, NCI-H1975) and 817 

resistant (DMS53, IPC-298, SCC-25) cell lines. β-actin was included as a loading control. 818 

f) CRISPR/Cas9 depletion assay in cell lines predicted to be sensitive (purple) or resistant (green) to 819 

loss of DNAJC19. gRNAs targeting DNAJC19 (gRNA-318, gRNA-523, gRNA-565, gRNA-566), 820 

positive controls (PCNA, POLR2A) and negative controls (non-targeting, AAVS1) are indicated. 821 

Cells were lentivirally transduced with the gRNA plasmids also containing a GFP expression 822 

cassette. The percentage of GFP expressing cells in the transduced cell line pool was measured 823 

by flow cytometry at the indicated time points and normalized to day 3 post-transduction (n=3 824 

independent replicates of the experiment). 825 

g) CRISPR/Cas9 depletion assay in cell lines following ectopic expression of DNAJC15 in NCI-H1975 826 

cells that are sensitive to loss of DNAJC19. Expression was induced by addition of 1 µg/ml 827 

doxycycline to the medium at the start of the experiment, which was replenished twice per 828 

week. Cells were lentivirally transduced with a gRNA targeting DNAJC19 (gRNA-318), positive 829 

control (POLR2A) or negative control (non-targeting). The plasmid also expresses GFP. The 830 

percentage of GFP-positive cells in transduced cell line pool was measured by flow cytometry at 831 

the indicated time points and normalized to day 3 post-transduction (n=2 independent 832 

replicates of the experiment). 833 

h) Western blot for RPP25, DNAJC15, and DNAJC19 in NCI-H1975 cells expressing the indicated 834 

overexpression constructs upon culture in the presence of doxycycline (1 µg/ml) for 72 hours. β-835 

actin was included as a loading control. 836 

 837 
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Figure 6: Loss of chrY as potential biomarker for paralog dependencies between sex chromosome genes. 839 

a) Distribution of average gene expression (TPM) across genes located on chrY for TCGA samples 840 

for which data were available. Sex (male, female) as annotated in TCGA or inferred (LOY) as 841 

described in Methods. 842 

b) As in (a) for cell lines (CCLE) with available gene expression data. 843 

c) As in (b) for average relative copy number (CN). 844 

d) Schematic depiction of chrX and chrY with location of interacting paralogs indicated. 845 

e) Analysis of factors that are most significantly different between DDX3X-loss-sensitive and 846 

DDX3X-loss-resistant cell lines, as defined using k-means clustering based on AVANA data. For 847 

each data domain, the most significant discriminators are displayed. 848 

f) Sensitive vs. resistant cell lines (as in (e)) by sex (as in (b and c)). 849 

g) DDX3X sensitivity (CERES depletion score from AVANA dataset) by sex (as in (b and c)). p-values 850 

were calculated using a two-sided Fisher's exact test for count data with Monte-Carlo-simulated 851 

p-value (based on 10000 replicates). 852 

h) Variable importance plot for Random Forest model to predict DDX3X sensitivity. Gene 853 

expression values were used as variables for the Indicated genes on y-axis.  854 

i) Fraction of cell lines that harbor chrX and chrY or chrX only, grouped by sex ((as in (b and c)), as 855 

assessed by the amelogenin marker in standard STR analysis. 856 

j) PCR validation of sex chromosome status in selected cell lines used for further analyses. 8 chrY-857 

specific primer pairs and 2 chrX-specific primer pairs were tested in female patient-derived 858 

(KURAMOCHI and Cal-120), male patient-derived chrY retaining (HT-1080 and HCT 116), and 859 

male LOY cells (KNS-42). 860 

 861 
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Figure 7: Validation of chrX-chrY paralog dependencies. 863 

a) AVANA-based depletion scores (CERES) for DDX3X, color-coded by DDX3Y expression levels. 864 

b) CRISPR/Cas9 depletion assay in male HT-1080 cells that carry chrY. gRNAs targeting a positive 865 

control gene (PCNA), negative control locus (AAVS1), DDX3X (gRNA-395, gRNA-396) and DDX3X 866 

and DDX3Y simultaneously are indicated. Cells were lentivirally transduced with the gRNA 867 

plasmid containing GFP; GFP percentage in transduced cell line pool was measured by flow 868 

cytometry at the indicated time points and normalized to day 3 post-transduction. Cells were 869 

additionally transduced with empty vector (control), unrelated cDNA encoding ZFX (control), or 870 

rescue constructs with cDNA encoding DDX3X or DDX3Y. Points in line graph represent mean, 871 

and error bars denote the standard deviation (n= 3 independent experiments). 872 

c) CRISPR/Cas9 depletion assay in male KNS-42 cells that lost chrY (LOY). Assay, gRNAs and cDNA 873 

constructs as in (b). Points in line graph represent mean, and error bars denote the standard 874 

deviation (n= 3 independent experiments). 875 

d) AVANA-based depletion scores (CERES) for EIF1AX, color-coded by EIF1AY expression levels. 876 

e) CRISPR/Cas9 depletion assay in male HCT 116 cells that carry chrY. gRNAs targeting positive 877 

control (PCNA), negative control (AAVS1), and EIF1AX and EIF1AY simultaneously are indicated. 878 

Cells were additionally transduced with empty vector (control), unrelated cDNA encoding ZFX 879 

(control), or rescue constructs with cDNA encoding EIF1AX or EIF1AY. Assay as in (b), points in 880 

line graph represent mean, and error bars denote the standard deviation (n= 3 independent 881 

experiments). 882 

f) CRISPR/Cas9 depletion assay in male KNS-42 cells that lost chrY (LOY). gRNAs targeting positive 883 

control (PCNA), negative control (AAVS1), EIF1AX, EIF1AX/EIF1AXP1, and EIF1AX/EIF1AXP1 and 884 

EIF1AY simultaneously are indicated. Cells were additionally transduced with empty vector 885 

(control) or rescue constructs with cDNA encoding EIF1AX or EIF1AY. EIF1AX/XP1 indicates 886 

EIF1AX and the EIF1AXP1 pseudogene. Assay as in (b), points in line graph represent mean, and 887 

error bars denote the standard deviation (n= 3 independent experiments). 888 

g) AVANA-based depletion scores (CERES) for ZFX, color-coded by ZFY expression levels. 889 

h) CRISPR/Cas9 depletion assay in female Cal-120 cells. gRNAs targeting positive control (PCNA), 890 

negative control (AAVS1), and ZFX (gRNA-569, gRNA-571) are indicated. Cells were additionally 891 

transduced with empty vector (control) or rescue constructs with cDNA encoding ZFX or ZFY. 892 

Assay as in (b), points in line graph represent mean, and error bars denote the standard 893 

deviation (n= 3 independent experiments). 894 

i) Schematic depiction of workflow for induction of LOY in male HT-1080 cells expressing Cas9 and 895 

DDX3X or ZFX. 896 

j) CRISPR/Cas9 depletion assay in male HT-1080 cells where LOY was induced. Two clones each 897 

expressing cDNA constructs encoding DDX3X or ZFX were transduced with gRNAs targeting 898 

positive control (POLR2A), negative control (AAVS1), DDX3X, ZFX or EIF1AX/EIF1AXP1. 899 

EIF1AX/XP1 indicates EIF1AX and the EIF1AXP1 pseudogene. Assay as in (b), points in line graph 900 

represent mean, and error bars denote the standard deviation (n= 3 independent experiments). 901 
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