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Abstract

Genetic networks are characterized by extensive buffering. During tumour evolution, disruption of these
functional redundancies can create de novo vulnerabilities that are specific to cancer cells. In this regard,
paralog genes are of particular interest, as the loss of one paralog gene can render tumour cells
dependent on a remaining paralog. To systematically identify cancer-relevant paralog dependencies, we
searched for candidate dependencies using CRISPR screens and publicly available loss-of-function
datasets. Our analysis revealed >2,000 potential candidate dependencies, several of which were
subsequently experimentally validated. We provide evidence that DNAJC15-DNAJC19, FAM50A-FAM50B
and RPP25-RPP25L are novel cancer relevant paralog dependencies. Importantly, our analysis also
revealed unexpected redundancies between sex chromosome genes. We show that chrX- and chrY-
encoded paralogs, as exemplified by ZFX-ZFY, DDX3X-DDX3Y and EIF1AX-EIF1AY, are functionally linked
so that tumour cell lines from male patients with Y-chromosome loss become exquisitely dependent on
the chrX-encoded gene. We therefore propose genetic redundancies between chrX- and chrY- encoded
paralogs as a general therapeutic strategy for human tumours that have lost the Y-chromosome.

Introduction

Paralog genes that fulfill similar functions provides a degree of robustness of gene regulatory networks
to deleterious events'™. These paralog genes arise as a result of gene duplications and subsequent
divergent evolution*®. Paralog redundancies are of interest to cancer biology, as tumour-specific
processes like hypermethylation, mutations or copy number alterations can inactivate genes and
thereby reduce the extent of genetic buffering. Genes whose loss is buffered in non-neoplastic cells by a
paralog can thus become dependencies in tumours where the redundant paralog is absent. Examples for
such paralog dependencies in cancer cells have been identified and validated before, and include ENO1-
ENO2°, SMARCA2-SMARCA4"™, ARID1A-ARID1B* or STAG1-STAG2™*.
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In all validated cases, the tumour-specific loss of one paralog gene creates a specific dependency on a
remaining paralog. Accordingly, therapeutic inhibition of the remaining paralog gene is assumed to be
safe, because non-tumour cells still retain the genetic buffer to tolerate the inhibition without systemic
side effects. Another advantage of tumour-specific vulnerabilities created by loss of a paralogous gene is
the availability of a tractable biomarker; i.e. measuring loss of Paralog A in tumours allows to select
patients that would respond to inhibition of the synthetic lethal Paralog B. Therefore, paralog
dependencies represent a highly attractive concept for cancer drug target identification. However, a
systematic understanding of cancer-relevant paralog dependencies is still elusive to date, although
CRISPR-based combinatorial screens and bioinformatics discovery pipelines are beginning to shed light
on the tumour redundancy map>*>~°.

In addition to mutagenic processes such as gene silencing, point mutations or gene amplification, human
cancers frequently lose large amounts of their genetic material during the process of tumourigenesis".
Deletions can involve one or multiple genes or, as is being appreciated, extend to loss of whole
chromosomes, one of the most prevalent being loss of chromosome Y (LOY). Cancer incidence is
generally higher in males®***, a fact that has been attributed to the general protective effect of the
chrXX status in females that allows buffering of deleterious mutations**?>. LOY has been reported in ~93%
of esophageal adenocarcinomas?®, ~12% of male breast cancers?’ and ~23% of urothelial bladder cancer
samples®®. Mosaic loss of chrY has also been observed outside of the oncology context, where it has
been correlated with increased age®®>'. LOY has been associated with a number of pathophysiological
conditions, including clonal hematopoiesis and Alzheimer's disease®>**. Due to the plethora of disease
states in which LOY occurs, strategies to eliminate cells involved in pathological conditions, including
neoplastic transformation is clearly of general medical interest.

We set out to discover cancer-relevant paralog dependencies by an integrative approach of combining
multiple -omics datasets in panels of human cancer cell lines. This analysis reveals 2,040 candidate
paralog gene interactions, a subset of which we validate experimentally. Importantly, we uncover a sex-
chromosome-specific set of genes that is functionally buffered between the X and Y chromosomes. We
demonstrate that targeted depletion of the chrX-encoded gene in LOY tumour cell lines offers an
attractive strategy to treat tumours that have lost chrY. In addition, these results provide a generalizable
framework of how to eliminate putative pre-pathogenic LOY cells.

Results
CRISPR/Cas9 screens identify CSTF2-CSTF2T as a paralog dependency

We devised a set of proof-of-principle CRISPR screens to investigate the concept of cancer-specific
paralog dependencies. We started by cataloging potential human paralog genes from Ensembl BioMarT,
as defined by all genes with at least one other paralog in the same family without any further
constraints on homology or family size. Most of the multi-gene families contain two to five paralog
genes and the biggest class of genes are protein-coding genes (Figure 1a,b). A compact protein domain-
focused CRISPR gRNA library®* of ~10,000 gRNAs was generated to permit screening across multiple
tumour cell lines. The library genes were manually curated to contain genes that are frequently deleted
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76  in human solid tumours, including 460 unique paralog genes from 199 families. Loss-Of-Function (LOF)
77 screens were then carried out across seven cancer cell lines (Hep 3B2.1-7, HuP-T4, MIA PaCa-2, NCI-
78 H1373, NCI-H1993, NCI-H2009, PC-9) with annotated deep deletions (see Methods).

79 Paralog genes scoring as significantly depleted in our screens were cross-referenced across the different
80 cell lines to understand whether any of their family members were annotated as deleted (Figure 1c,
81  Supplementary Table 1). Accordingly, we found that ATP4B was specifically required in Hep 3B2.1-7 cells
82 that harbor a deletion of ATP1B2. Both genes are subunits of potassium-transporting ATPases, but
83 physical or functional interactions have not been described. Furthermore, we observed that NCI-H1993
84  cells were particularly sensitive to loss of CSTF2, likely due to a deletion of its paralog CSTF2T. CSTF2 and
85 CSTF2T encode the CstF-64 and CstF-64tau proteins respectively, that have partially overlapping
86  functions in the Cleavage stimulation Factor (CstF) complex, a regulatory component of the mRNA
87 cleavage and polyadenylation machinery®>>’. We confirmed the sensitivity of CSTF2T-negative cells to
88  depletion of CSTF2 (Figure 1d, Supplementary Figure 1). Mechanistically, we observed that depletion of
89  (STF2 leads to compensatory induction of CSTF2T in CSTF2T-proficient cells (Figure 1le), confirming
90  previous reports describing that CSTF2 and CSTF2T can regulate each other’s expression®*. This
91  compensatory upregulation is not observed in CSTF2T-deficient cell lines (Figure 2f), providing a
92 hypothesis for the dependency on CSTF2. Of note, CSTF2 and CSTF2T are encoded by a single essential
93  gene in yeast, RNA15 (YGL044C)*, suggesting that cellular viability might depend on the activity of both
94 paralogues in mice and humans. In mice, previous studies suggest that Cstf2 and Cstf2t form a
95 functionally redundant pair of genes with an essential function in certain contexts. Embryonic stem cells
96  lacking Cstf2 had altered pluripotency and could be differentiated into mesoderm and ectoderm, but
97  not endoderm®**°. Autosomally encoded CSTF2T is required in pachytene spermatocytes to overcome
98  the lack of expression of X-encoded CSTF2 due to meiotic sex chromosome inactivation, leading to male
99  sterility’>. Hence, some but not all functions of Cstf2 can be assumed by Cstf2t.

100 Insummary, this set of proof-of-concept screens - despite their limited scope - demonstrates that bona
101  fide paralog dependencies are detectable using pooled LOF screens in cancer cell lines.

102
103 Bioinformatic identification of cancer-relevant candidate paralog dependencies

104 Due to the limited search space and number of paralog dependencies retrieved from our focused
105  experimental approach, we decided to search for candidate interactions in a systematic manner,
106 leveraging publicly available LOF and expression data from hundreds of cancer cell lines. We
107 hypothesized that candidate genetic interactions between paralogous genes could be detected by
108 looking at the relationship between expression of Paralog A and dependency on Paralog B. In essence, if
109 low expression of Paralog A (“biomarker”) was correlated with sensitivity to loss of Paralog B (“query”),
110  this would identify a potential genetic interaction that could subsequently be evaluated. Depletion
111  scores from complementary datasets* of pooled CRISPR and shRNA screens (AVANA*, Sanger® and
112 DRIVE™) and corresponding gene and protein expression data**® for paralog genes were collected.
113 Correlation coefficients and corresponding p-values between expression levels of biomarkers and
114  depletion scores of queries for as many pairs within each paralog family where expression/depletion
115  data were available were then calculated. This approach resulted in a large matrix of correlation tests,
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116 containing 14,064 unique genes (biomarkers or queries) and 108,092 unique biomarker-query pairs
117  (Supplementary Table 2), hereafter called PaCT (Paralog Cancer Targets). The obtained correlation
118  coefficients was then filtered via a cutoff of 3*SD (standard deviation) and p-value < 0.05 to generate a
119 hit set (Figure 2a,b; Supplementary Table 2). Simulating the distribution of Spearman correlation
120  coefficients by randomly assigning each query to a gene from different family yields very few
121 interactions at similarly strong correlations, indicating the specificity of PaCT candidate pairs (see
122 Methods; Figure 2c).

123 In contrast to other recent paralog studies, we did not limit the PaCT search space to paralog pairs by a
124  similarity cutoff or membership in a paralog gene family of a given (small) size"***. An additional
125 advantage of PaCT is the ability to identify candidate interaction partners for genes that have not been
126  targeted themselves as queries, as long as expression data are available for them to act as biomarkers.
127  Overall, of 3,084,147 possible pairs (including self-interactions) from 3,587 paralogue families, PaCT is
128 blind to 2,975,741 pairs (2,795 genes), due to missing depletion and/or expression data for either query
129 or biomarker or both. This also includes pairs where information is available only for a single cell line and,
130  therefore, where no correlation can be calculated. From the remaining 108,406 paralogue pairs, 2,040
131 unique pairs (1.9%) were identified as significant interactions, and for 106,366 paralogue pairs (98.1%;
132 14,055 genes), we identified a non-significant correlation in our analysis (Figure 2d).

133  We then sought to identify possible differences between hit and non-hit paralogue pairs. Insufficient
134  variability in gene/protein expression and/or depletion scores across the cell lines could underlie low
135 correlation coefficients across our dataset. We investigated this for gene expression levels and depletion
136 scores from the AVANA dataset as an example. Indeed, we identified a small, but statistically significant
137  difference in variabilities for both modalities (p-value < 2.2x10™°, Kolmogorov-Smirnov test) between
138 hits and non-hits (Figure 2e,f). We further hypothesized that sequence similarity between individual
139 paralog genes could impact the likelihood for an interaction between them. Indeed, based on Ensembl
140 BioMarT DNA sequence similarity, we observed a significant trend that genes involved in significant
141 paralog interactions exhibit higher similarity than those of non-significant pairs (Figure 2g).

142  Interestingly, significant pairwise candidate interactions are observed between paralogs in families of
143  any size (Figure 2h). Even though many candidate pairs are interactions within 2-member paralog
144 families, we scored significant correlations in larger families of up to 20 members or more. In smaller
145  families, the majority are positive correlations; with increasing family size, the balance shifts towards an
146  even split with negative correlations. On average (AVANA data), we identified 8.4% significant
147 interactions per family when family size is <= 10 that decreased to 1.4% for families containing more
148 than 10 genes (Figure 2i, Supplementary Figure 2 a,b). Finally, we looked at connectivity within paralog
149 families and observed that this varies widely (Figure 2j,k, Supplementary Figure 2c-f). Among the hit
150  pairs, some queries and biomarkers act as hubs, being involved in multiple or all significant interactions,
151 independent of family size. However, other candidates have a more uniform distribution, being
152  identified in only a subset of hit pairs. It remains to be determined what factors underlie these different
153 degrees of connectivity.

154  As previously described by others'®*’, some gRNAs in the Sanger and AVANA datasets are promiscuous

155 and match to sites beyond the intended target. For PaCT, we used processed AVANA and Sanger scores
156  *** and we confirmed (for the AVANA data as an example) that most genes had zero or one gRNA
157  excluded from the analysis for reasons identified by the investigators of the study (Supplementary
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158 Figure 2g; Supplementary Table 2). However, we confirmed previous observations that a sizeable
159  fraction of query genes (25%) had non-uniquely mapping gRNAs assigned to them (Supplementary
160  Figure 2h; Supplementary Table 2), constituting a potential source of false negatives ***” in our analysis.

161 Of the 2,472 candidate hit query-biomarker pairs (2,040 of which are non-redundant, involving 2,451
162 unique genes), 57% displayed a positive correlation between query dependency score and biomarker
163  expression. Most pairs (70%) were found using gene expression data, reflecting the greater robustness
164  of this dataset. We also included genes whose genetic dependency correlates with their own expression,
165  and 20% of our hits are indeed such “self-pairs”. 20 of them have been previously described as CYCLOPS
166 (copy number alterations yielding cancer fiabilities owing to partial loss) genes***° that, when expressed
167 at low levels, are associated with greater sensitivity to further LOF. Similar to previous observations*,
168  CYCLOPS genes are overrepresented among the significant hits identified by PaCT (20%), compared to
169  their representation among all potential interactions (13%), mirroring the high frequency of genomic
170  loss in cancer cell lines. In total, our PaCT analysis highlighted 370 unique candidate self-interactions.

171  The largest proportion of candidate hit query-biomarker pairs (46%) was detected in the AVANA dataset
172 —representing the largest and most comprehensive database in terms of cell lines included -, followed
173 by Sanger (37%) and DRIVE (17%). The covered cell lines and genes overlap to a certain extent, but each
174  dataset contains unique cell lines and genes, in addition to differences in methodologies for generating
175 LOF phenotypes (RNAi in DRIVE vs. CRISPR in AVANA and Sanger)*’. Thus, it is not surprising that many
176 hits are found uniquely within one dataset or data domain (gene or protein expression; Figure 3a).
177 Nevertheless, 17% (432/2,472) of candidate pairs are recovered more than once, strengthening our
178 confidence in the PaCT approach. The largest overlap was observed between AVANA and Sanger
179 positive correlations pairs using gene expression as a biomarker, confirming those as high-quality
180 candidates. To illustrate the PaCT approach, Figure 3b shows examples of strong negative or positive
181  correlations within small paralog families along the diagonal, i.e. between expression and depletion of
182  the same gene or closely related paralogs, which are listed next to each other.

183  We complemented the PaCT approach by an additional analysis of the AVANA, DRIVE and Sanger data.
184  First, we classified cell lines as sensitive and resistant to depletion of a given query gene by k-means
185 clustering (k=3, leaving out the intermediate group). Then, we tested whether the expression of a given
186 biomarker gene was significantly different between the sensitive and resistant cluster. The most significant
187 negative correlation hits are almost exclusively self-interactions (Supplementary Figure 3a-c), consistent
188 with the notion of increased sensitivity to loss of highly expressed genes that might act as proliferation
189 drivers. On the other hand, the most significant positive correlation hits are pairs of paralogs
190 (Supplementary Figure 3a-c), supporting the hypothesis of functional redundancy and synthetic lethality
191 between those genes. Overall, the PaCT top hits also emerged as most significant in this analysis.

192 In order to characterize the PaCT hits, we investigated gene-centric parameters of the candidate pairs
193 (without self-interactions) that have been hypothesized by us and others to affect the likelihood of
194  genetic interaction between paralog genes™'?. We observed that some of our candidate interacting
195  paralog pairs (13%) are involved in protein-protein interactions (PPI) with each other, as annotated in
196 BIOGRID™ (v4.3.196; Supplementary Figure 3d). We then checked the candidate pairs for homo- and
197 heteromeric interactions’, where homomeric means the assembly of a protein with itself whereas
198 heteromeric paralogs assemble with each other. None of the candidate pairs is found on the (short) list
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of heteromers, and ~3% of queries or biomarkers are annotated as homomers (Supplementary Figure
3d). We also compared our list of candidate pairs to the Critical Paralog Groups (CPGs) defined by
Modos et al.”, i.e. paralog groups that play important roles in signaling flow and pathway cross-talk. ~2%
of PaCT pairs and 4-6% of query or biomarker genes are annotated as members of CPGs (Supplementary
Figure 3d). Finally, we investigated whether the candidate interacting pairs share the same common
ortholog and whether that ortholog is essential in different model organisms (Supplementary Figure 3e).
While these numbers provide a mere estimate, due to the caveats of ambiguous and incomplete
ortholog mapping, we expected and observed increasing fractions of common essential orthologs with
increasing evolutionary distance — from 0.4% in M. musculus to >5.5% in S. cerevisiae. Accordingly, the
fraction of orthologs that could not be mapped also increased, while the fraction of non-shared
orthologs decreased.

Together, these characteristics of shared evolutionary origin and essentiality, or physical interaction,
describe some but not all parameters that underlie potential genetic and functional interaction between
paralogous genes. Recently, several groups have investigated paralog redundancy and interaction using
various computational and experimental methods™>2°. We compared our PaCT candidates with their
sets of potentially interacting paralogs and recovered 12-67% of published pairs in our hit list
(Supplementary Figure 3f). Conversely, 15% of PaCT pairs are found in any other dataset. The published
sets originate from vastly different search spaces — from a few hundred experimentally tested pairs to
computational predictions of the complete interaction matrix of all annotated paralogs. Therefore, the
variation in recovery is not surprising and consistent with comparisons between the published
datasets'>™.

In addition, PaCT also identified several paralog dependencies that have recently been described,
including SMARCA2-SMARCA4 or SLC25A28-SLC25A37"°. We used CRISPR GFP-depletion assays to
experimentally validate the genetic dependencies on FAM50A in cells where FAM50B expression is low,
and on VPS4A in VPS4B-low cell lines (Figure 3c,d and Supplementary Figure 3g,h), two paralog
interactions that have recently been functionally characterized™*>*>*.

While most hits from dual-LOF screens and experimentally validated paralog dependencies rely on the
absence of Paralog A to detect dependency on Paralog B (or partial loss in a CYCLOPS interaction), PaCT
in principle identifies candidate interactions at any level of expression. To illustrate this, we calculated
the fraction of hit pairs with a relevant query depletion (AVANA or Sanger score < -0.5 or DRIVE score < -
3) in at least one cell line when the biomarker expression is low, medium or high (Supplementary Figure
3i). Indeed, the theoretical validation rate of candidate interactions is ~60% for all expression bins.

Overall, these findings validate PaCT as a complementary approach to retrieve validated as well as novel
candidates for interactions between paralog genes.

RPP25-RPP25L and DNAJC15-DNAJC19 are novel cancer-relevant paralog interactions

In addition to previously described paralog interactions, we discovered several novel high-confidence
candidate dependencies, among them RPP25-RPP25L. RPP25 has been described as a component of the
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RNase P and RNAse MRP ribonuclease complexes that process pre-tRNA and pre-rRNA sequences,
respectively>™’. Little is known about RPP25L, a role in tRNA or rRNA processing has not been
functionally validated. Sensitivity to loss of RPP25L was observed to be correlated with low expression of
RPP25 (Figure 4a, Supplementary Figure 4a,b). This was then experimentally validated using CRISPR
depletion assays. No depletion of RPP25[-targeting gRNAs was observed in cell lines that express RPP25
(Figure 4b,c). Overexpression of either RPP25 or RPP25L in the sensitive U-20S and KYSE-150 fully
rescued sensitivity to RPP25L LOF, demonstrating functional redundancy between these two paralogs
(Figure 4d, Supplementary Figure 4c). Interestingly, we observed a reduction in levels of endogenous
RPP25L upon ectopic overexpression of RPP25 (Supplementary Figure 4d,e) suggesting the existence of
feedback mechanisms that regulate the levels of RPP25L in response to changes in the abundance of its
paralog protein. In order to elucidate the underlying molecular mechanism of this paralog interaction,
further investigation of their role in pre-tRNA and pre-rRNA processing will be required.

Gene silencing is often accompanied by promoter hypermethylation®. We calculated the correlation of
methylation levels*® of Paralog A with depletion scores of Paralog B and compared the methylation
correlation coefficients to the expression correlation coefficients from PaCT. As shown in Figure 5a,
(Supplementary Figure 5a,b; Supplementary Table 2) for some of the pairs, methylation status of Paralog
A could be a useful biomarker for dependency on Paralog B. In particular, we could also detect a
negative correlation between methylation and gene expression for multiple CpGs in the promoter
regions of FAM50B and DNAJC15 (Figure 5b,c, Supplementary Figure 5c). Although correlation does not
necessarily imply causation, it is feasible that methylation could underlie low expression of the
biomarker paralog in these cases. DNAJC15-DNAJC19 has not been described as a paralog redundancy
before, therefore we set out to validate this interaction experimentally. DNAJC15 expression levels
predict sensitivity of cell lines to loss of its paralog DNAJC19 according to our PaCT analysis (Figure 5d,
Supplementary Figure 5d,e). We confirmed the sensitivity to DNAJC19 knockout in cell lines that do not
express DNAJC15 (Figure 5e) in CRISPR depletion assays (Figure 5f), including cells with high levels of
DNAJC15 as negative controls. Cell lines that do express DNAJC15 were predicted to be insensitive to
loss of DNAJC19 and accordingly, DNAJC19-targeting gRNAs are not depleted from the pool of cells over
time. To conclusively demonstrate functional redundancy between the two paralogs, we overexpressed
DNAJC15j in the sensitive cell line NCI-H1975 and found that we could thereby rescue the dependency
on DNAJC19 (Figure 5g and h).

Paralog buffering between chrX- and chrY-encoded genes

Loss of chromosomes have been reported to be frequently occur during cancer development™.
Assessing gene expression and copy number data across The Cancer Genome Atlas (TCGA), did not
reveal obvious bimodal distributions for any chromosome except chrY, suggesting that that whole
chromosome loss is not frequent enough to be detected in this manner across this dataset
(Supplementary Figure 6a,b). As described above, LOY has been associated with increasing age and
noted in some cancers derived from male patients*°%, In agreement with this, a bimodal expression
distribution for chrY genes within 1.5% of all male TCGA samples, was observed (Figure 6a). Binning
samples by tumour purity shows that LOY is more prevalent in samples with higher tumour purity,
indicating that LOY could indeed happen more frequently in cancers compared to adjacent normal tissue
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278  (Supplementary Figure 6¢c). Due to the absence of matched non-tumour samples from TCGA, we used
279  data from the Genotype-Tissue Expression (GTEx) project to estimate the frequency of LOY in normal
280 tissues. In corroboration of our hypothesis, at the same 99" percentile cutoff, no LOY was observed
281 across normal samples GTEx (Supplementary Figure 6d).

282  These studies were further strengthened by analysis of the prevalence of LOY across cancer cell lines

283 used for the AVANA, DRIVE and Sanger screens. LOY was calculated as for the TCGA samples using copy
284 number and expression data and observed in 142 of 459 male cell lines (31% of male, 14% of all cell lines)
285 in our dataset (Figure 6b,c). These studies were supported by analysis of STR profiles for 455 cell lines
286  (46% of cell lines used for PaCT) and analysis of the amelogenin marker for presence or absence of chrY
287  (Figure 6i, Supplementary Table 3)(Figure 6i, Supplementary Table 3). We found that the previous sex
288 assignment was accurate, and LOY status was confirmed for all previously identified cell lines. We

289  further validated the sex chromosome status for a subset of cell lines by a PCR strategy (Figure 6j).

290  We next investigated whether PaCT retrieved any candidate interactions where the biomarker gene is
2901 located on chrY to potentially exploit tumour LOY. Only 24 chrY genes were screened in the AVANA,
292 DRIVE or Sanger datasets, 22 of which are part of our paralog families. Interestingly, in four of these
293 pairs, the query genes are located on chrX: DDX3X-DDX3Y, RPS4X-RPS4Y1, ZFX-ZFY, EIF1AX-EIF1AY

294 (Figure 6d). These pairs also rank highly in the predictions by DeKegel et al.*. Notably, all four chrX

295  query genes are genes that escape X chromosome inactivation®>®°, and DDX3X is among a small set of
296 tumour-suppressor genes that escape from X-inactivation (EXITS genes)el, where mutations occur more
297  frequently in male cancers and co-occur with LOY.

298 In order to validate dependency on the chrX paralog when the chrY paralog is not expressed (or chrY is
299 lost), we used CLIFF (Cell Line dIFFerences)®, a web application for the analysis of differences between
300 two sets of cell lines in terms of differential gene or protein expression, DNA copy number, gene signatures,
301 sensitivity to shRNA depletion or CRISPR gene knock-out and other parameters. First, we used k-means
302 clustering to classify cell lines as sensitive and resistant (k=3, leaving out the intermediate group) based on
303  their depletion scores in the AVANA dataset for each of the four chrX paralog hit genes. We then analyzed
304  these groups in CLIFF and looked for the parameters that are most significantly different between the
305  sensitive and resistant cell lines. As a control, we checked that the top gene in the AVANA category is the
306 respective query, i.e. DDX3X for the classification run on the DDX3X depletion scores (Figure 6e,
307 Supplementary Figure 6e-g). Other AVANA discriminators included some or all of the other chrX hit genes.
308 Conversely, chrY genes, with the respective paralog gene at the top, are the main discriminators based on
309 gene and protein expression, confirming LOY as a potential biomarker that predicts sensitivity to loss of
310 the four selected chrX genes (Figure 6e, Supplementary Figure 6e-g). As expected, LOY cell lines are
311  therefore enriched among the sensitive cell lines for all four chrX genes (Figure 6f, Supplementary Figure
312 6h-j; p-value sensitive vs. resistant = 10™* for all four genes, Fisher’s exact test). Accordingly, AVANA
313  depletion scores for DDX3X (Figure 6g), EIF1AX, ZFX and RPS4X (Supplementary Figure 6h-m) are generally
314  lower in LOY cell lines than male cell lines. However, some male cell lines are also sensitive to loss of the
315 chrX-encoded paralog, indicating that the genetic buffering by the chrY-encoded gene might be
316 incomplete in some contexts.

317 Consistent with these analyses, a Random Forest (RF) machine-learning model trained with chrY gene and
318  DDX3X paralog family gene expression data on the Sanger depletion dataset predicted sensitive and
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319 insensitive cells for the AVANA dataset with an accuracy of 0.82. A variable importance analysis revealed
320 KDM5D, DDX3Y, EIF1AY and RPS4Y1 expression as the top predictors for DDX3X sensitivity (Figure 6h).
321 Similar models for ZFX and EIF1AX were trained on Sanger data, predicted AVANA data with an accuracy of
322  0.715 and 0.82 respectively (Supplementary Figure 6n,0).

323 Genetic rescue experiments were performed to validate the putative functional redundancy between
324  chrX/Y-encoded paralogs. DDX3X dependency negatively correlates with the expression levels of DDX3Y
325 across a panel of >600 cancer cell lines (Figure 7a) i.e. across the AVANA dataset, low expression of
326 DDX3Y- but not other family members correlated with sensitivity to DDX3X depletion (Supplementary
327 Figure 7a, b). The DDX3X-DDX3Y functional redundancy was previously suggested in a hamster cell line®®
328  and Raji cells® but has not been studied in the context of LOY. In HT-1080 cells, that possess chrY,
329 whereas gRNAs targeting DDX3X do not impact the proliferative capacity of these cells, rapid depletion
330 was observed in the context of a gRNA simultaneously targeting DDX3X and DDX3Y (Figure 7b).
331 Importantly, the effects of the DDX3X-DDX3Y dual-specific guide could be completely rescued by
332 expression of gRNA-resistant cDNA constructs for DDX3X or DDX3Y. Similar results were obtained for
333  another male cancer cell line, HCT 116 (Supplementary Figure 7c). KURAMOCHI cells, derived from a
334  female patient, are dependent on DDX3X (Supplementary Figure 7d) demonstrating that buffering of the
335 Y-encoded gene is a priori not part of the genetic makeup. Finally, loss of Y-chromosome was confirmed
336 in KNS-42 cells by PCR (Figure 6j). Rapid depletion was observed with gRNAs targeting both DDX3X and
337  DDX3Y simultaneously as well as gRNA targeting DDX3X alone (Figure 7c). Ectopic expression of either
338 DDX3X or DDX3Y completely reversed the phenotype whereas a functionally unrelated X chromosome
339 located gene X, ZFX, did not.

340 These findings were then extended to additional PaCT genes with a putative chrX/Y-encoded
341 redundancy. Sensitivity to E/IF1AX correlates with the expression of EIF1AY, similar to DDX3X-DDX3Y,
342 (Figure 7d, Supplementary Figure 7e, f). LOY resulted in a strong dependency on EIF1AX (Figure 7f)
343  whereas cells retaining chrY were only sensitive to gRNAs simultaneously targeting EIFIAX and EIFIAY
344 (Figure 7e). Depletion could be reversed upon expression of gRNA-resistant cDNA constructs encoding
345 for EIF1AX or EIF1AY (Figure 7e, f). Similar results were obtained with gRNAs targeting RPS4X or RPS4Y,
346 (Supplementary Figure 7g). In addition to DDX3X-DDX3Y and EIF1AX-EIF1AY, ZFX-ZFY emerged as an
347 additional functionally redundant paralog pair from our PaCT analysis. Sensitivity of cancer cell lines to
348  the loss of ZFX correlates with the expression of ZFY and, less strongly, with ZNF711 (Figure 7g,
349  Supplementary Figure 7h,j). As the sensitivity to ZFX loss-of-function is less pronounced in KNS-42 cells
350 in the AVANA dataset®”, we turned to female Cal-120 cells for depletion and rescue experiments.
351  CRISPR/Cas9-mediated loss of ZFX resulted in depletion of GFP- and gRNA-expressing cells. This
352 phenotype could be rescued with gRNA-resistant cDNA constructs encoding for ZFX or ZFY, validating
353  the functional redundancy between the two proteins (Figure 7h).

354  In order to confirm that loss of chrY is the causative event in dependency on the paralogs encoded on
355 chrX we designed an approach to engineer removal of chrY (induced LOY, iLQY). Similar to published
356 approaches that have demonstrated loss of the targeted chromosome °>*, a pool of 18 gRNAs targeting
357 chrY genes was introduced in HT-1080 cells ectopically expressing either DDX3X or ZFX ®*® (Figure 7i).
358 LOY was validated by PCR (Figure 6j). Two independent clones were derived and subsequently treated
359  with gRNAs targeting DDX3X, ZFX and EIF1IAX. Whereas no phenotype was observed in parental HT-1080
360 cells (Figure 7b,f), LOY clones were sensitive to gRNAs for the chrX-encoded paralog genes. This
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sensitivity was lost or reduced upon ectopic expression of corresponding gRNA resistant constructs, e.g
HT-1080 iLOY ZFX are sensitive to a gRNA targeting DDX3X whereas HT-1080 iLOY DDX3X are not (Figure
7j and Supplementary Figure 7j).

Altogether, these data suggest that selective targeting of paralogs encoded on the X-chromosome, for
which genetic buffering with a chrY-encoded gene exists, might be a generalizable strategy to target LOY
tumours. The iLOY experiments validate the loss of chrY as the root cause for this dependency. To the
best of our knowledge, these are the first examples for synthetic lethal interactions between paralogs
located on the X and Y chromosomes.

Discussion

Exploiting distorted genetic buffering in human malignancies represents a promising therapeutic
concept. The clinical activity of poly ADP ribose polymerase (PARP) inhibitors in cancers with defects in
the homologous recombination-based DNA damage repair pathway®’ ™ underlines this point. Paralog
genes, originating from gene duplication events, represent an additional subset of these general
synthetic lethal genetic interactions where tumour-specific loss of a paralog gene creates a
therapeutically exploitable dependency on the remaining paralog gene. In this study, we
identified >2000 candidate paralog dependencies relevant to human cancer. We have experimentally
validated a subset of these paralog pairs and provide evidence that genetic buffering between the sex
chromosomes could provide an attractive therapeutic strategy for human cancers of individuals that
have lost the Y chromosome in malignant cells.

Our analysis was confined to cancer-relevant interactions that can be identified in the respective cell
lines used and genes targeted in publicly available CRISPR/RNAi LOF screens. Due to lack of equal
representation of different cancers within the datasets this could lead to a bias for certain tumour types.
As described, our discovery pipeline is also “blind” to certain other cases, including uniform expression
or depletion of a paralog across all screened cell lines. This is because expression-dependency
calculations rely on varying gene expression and depletion scores of one paralog gene across these cell
lines. Therefore, approaches like PaCT together with combinatorial genetic screens will further advance
our understanding of genetic redundancies. It will be interesting to determine if paralog interactions can
be tissue specific and if, within larger families, subsets of genes can have a greater or lesser functional
redundancy — a result suggested by our study. If true, this could hint towards the resistance of sub-
families and help to functionally annotate understudied paralog genes.

As the PaCT approach relies on publicly available screening data, the caveats of the original experiments,
such as suboptimal gRNA design in some instances, are carried over into our dataset. The DNAJC15-
DNAJC19 example illustrates such a case, where all gRNAs in the public dataset also target a pseudogene
sequence. While our experimental validation uses independently designed gRNAs, a potential partial
function of the presumed pseudogene will have to be determined. Furthermore, additional
investigations will show whether DNAJC15 and DNAJC19 indeed both play a role in mitochondrial
morphogenesis, and whether RPP25L is a bona fide subunit of the RNase P/MRP complexes.
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399 A number of mechanisms can underlie the paralog loss. In addition to mutation and deletion we provide
400  evidence that epigenetic mechanisms can also play a role. Validated paralog pairs DNAJC15-DNAJC19
401  and FAM50A-FAM50B, provide examples where high promoter methylation could, in part, account for
402 decreased expression of one paralog gene. This suggests that DNA hypermethylation in tumours could
403 expose novel vulnerabilities that could be exploited therapeutically. Future research will have to clarify if
404  vulnerabilities originating from DNA hypermethylation are stable enough to permit long-term treatment.

405  Our study revealed extensive genetic redundancy between the sex chromosomes. We identified four
406 candidate paralog dependencies (EIFIAX-EIF1AY, DDX3X-DDX3Y, RPS4AX-RPS4Y1 and ZFX-ZFY) of which
407 we validated three experimentally. Our data suggest that cell lines originating from individuals with chrX
408 and chrY become sensitive to the loss of the chrX-encoded gene upon loss of chrY. While this concept
409 could in principle be exploited therapeutically to treat LOY tumours, premalignant states of mosaic LOY
410 in hematopoiesis or ageing-associated LOY, several hurdles would have to be overcome. It would be
411 important to ensure selectivity of the targeting therapeutic between highly similar paralogs. Although
412  we have not observed LOY across the GTEx dataset, it is possible that alternative mechanisms may also
413 lead to down-regulation of the chrY expressed paralog in normal tissues. While not explicitly addressed,
414 recent studies imply incomplete redundancy for EIF1IAX-EIF1IAY and DDX3X-DDX3Y in different contexts
415 in absence of LOY"® 2,

416 Overall, our study identifies cancer-relevant paralog dependencies and provides a framework for
417  validation and future discovery as further panels of functionally validated cancer cell lines become
418 available. While our PaCT approach currently addresses gene expression, deletion and methylation in
419 the paralog genetic space, the approach is generalizable and could be performed analogously for non-
420 paralog genes as queries, and mutations, passenger deletions or other tractable aberrations as
421 biomarkers. We envisage that this will identify additional testable hypotheses for targeted cancer
422 treatment.

423
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Materials and Methods
Cell culture

All cell lines and the respective media are listed in Supplementary Table 4. Cell lines were regularly
checked for mycoplasma, authenticated by STR profiling (Eurofins Genomics) and kept at low passage
numbers in humidified incubators at 37°C and 5% CO,.

Generation of Cas9- and paralog-expressing cell lines

cDNA sequences for Cas9 and paralog genes were human codon-optimized, synthesized and cloned into
their respective vector backbone (Supplementary Table 4) at Genscript Biotech Corporation. Cells were
lentivirally transduced. Viral particles were generated using the Lenti-X Single Shot System (Clontech).
72 hours later, stable transgenic cell pools were selected using puromycin or blasticidin (see
Supplementary Table 4 for details).

CRISPR/Cas9 library design, cloning and virus production

The majority of genes in the gRNA library were manually selected from (i) paralog families of 2-5
members, (ii) genes frequently deleted in TCGA samples with a focus on deep deletions in lung
adenocarcinoma, lung squamous cell carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma,
pancreatic adenocarcinoma, ovarian serous cystadenocarcinoma and prostate adenocarcinoma. gRNA
sequences were selected to target protein domains (annotated using PFAM domain identifiers) as
described™, as well as control sequences for a total of 9574 gRNAs (Supplementary Table 1).

Pooled gRNA oligonucelotides (20-mer target sequences plus cloning adapters;
TGCTGTTGACAGTGAGCGCGTCTCTCACCG[20xN]GTTTGGAGACGCCTAGGATCGACGCGGACAACA; Twist
Bioscience) were PCR-amplified (0.1 ng DNA input, 24 parallel reactions, 15 cycles). Pooled reactions
were purified using the QlAquick PCR purification kit (Qiagen) and digested with BsmBI. The vector
backbone (lentiviral vector coexpressing sgRNA, GFP and NeoR, similar to sgETN’®) was prepared by
BsmBI digestion, dephosphorylation and purification as above. Ligation was performed in 14 parallel
reactions using T7 ligase and remaining uncut backbone was removed by BsmBI digestion. Ligation
products were purified by phenol extraction, transformed into MegaX DH10B T1 electrocompetent
bacterial cells (Invitrogen) following manufacturer’s protocol and plated on LB/Ampicillin plates.
Colonies were combined and maxi-preps were performed at ~7000x colonies per sgRNA.

Lentivirus was produced in 293T-Lenti-X cells (Clontech) using 10 pg of library DNA and Ready-to-use
Lentiviral Packaging Plasmid Mix (Cellecta, 0.5 pg/uL) per 10 cm dish (20 dishes in total). 293T-Lenti-X
were plated without antibiotics and transfected the next day using Lipofectamine LTX & Plus (Thermo
Fisher). Medium was changed after 7 h of incubation and viral supernatant was harvested after 48 h.
Virus titration was carried out individually for each cell line using three different amounts of viral
supernatant in the presence of 8 pg/mL polybrene. Transduction efficacy was evaluated 72 h after
infection by measuring GFP expression by flow cytometry.

Primer sequences are listed in Supplementary Table 4.
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CRISPR/Cas9 screens

Cas9-expressing cell lines were transduced with the sgRNA library at a multiplicity of infection of ~0.3 in
the presence of 8 pg/mL polybrene. To this end, 44 x 10° cells were cultured in four or more T175 flasks
for 12/18 population doublings, representing 1000-fold library coverage. Cell numbers were adapted
according to measured GFP percentage after initial infection. From a pellet of the respective cell number
at the end point, genomic DNA was isolated using the QlAamp DNA Mini Kit (Qiagen). Amplicons around
the sgRNA sequences were PCR amplified (1 pg input per PCR reaction, 29 cycles) with barcoded primers.
The total amount of genomic DNA input was calculated by dividing the used total cell number by the
assumed value of 6 pg genomic DNA per cell. PCR products were purified using the QlAquick PCR
purification kit (Qiagen) and a 2% agarose gel using the QIAquick gel extraction kit (Qiagen). In a second
PCR, 10 ng of the purified product per reaction were amplified (5 cycles). The pooled PCR products were
purified using the QlAquick PCR purification kit. 50 ng of amplicons were used for the library generation
with the TruSeq Nano DNA Library Prep kit for NeoPrep (lllumina). The sequencing was conducted on a
HiSeq1500 (lllumina) in rapid mode with the paired end protocol for 50 cycles. For the 7 cell lines (MIA
PaCa-2, Hep 3B2.1-7, NCI-H1373, NCI-H1993, NCI-H2009, PC-9, HuP-T4) total read counts ranging from
3.1M to 41.6M were generated. Primer sequences are listed in Supplementary Table 4.

CRISPR/Cas9 library quality control and screen analysis

For the plasmid library, 20 million reads were generated and the gRNA representation was tested for
uniformity. gRNA counts ranged from 50 to 8708 reads (25" percentile: 983; median: 1682; 75"
percentile 2560 reads). For screen analysis, we used the 'mageck test' function of the MAGECK tool
(version 0.5.6)"* to determine the log2-fold-changes and significance estimates (p-values, FDR) for gRNA
representation differences between any of the 7 cell lines and those observed in the plasmid library
using the following parameters: "mageck test --norm-method control --gene-Ifc-method median".

To further assess the technical quality of the screens, we overlapped the library with known core-
essential (n=625) and never-essential (n=1344) genes constructed from genome scale screens. We found
that 307 and 596 gRNAs targeted a subset of the core- and never-essential genes, respectively. We
observed a good separation of both guide sets (strictly standardized mean difference <-0.9) and a
strong enrichment of core-essential genes in the top depleted genes (AUC > 0.9). Both quality metrics
were calculated based on log2-fold-changes from the comparison to the gRNA representation in the
plasmid library.

To compensate for the variable effect sizes from the different cell lines, we scaled all gene-level log2-
fold-changes such that the median log2-fold-change of all never-essential and core-essential genes
where set to 0 and —1, respectively. We call this scaled log2-fold-change escore (essentiality score).

For hit calling, we selected genes that were specifically depleted (cutoffs for escore <-0.4 and FDR < 0.1)
in cell lines that harbor a deletion of a member of the same paralog family (absolute copy number =0
and log2 relative copy number < -1).

TCGA data
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For gene expression data, the GDC Data Portal's interface (https://portal.gdc.cancer.gov/) was used to
compile all data files that mapped the fields “Program” = “TCGA”, “Data Type” = “Aligned Reads”,
“Experimental Strategy” = “RNA-Seq”, and “Workflow Type” = “STAR 2-Pass”. Using the GDC Data
Transfer Tool, the data was transferred and pre-processed using samtools’ collate and fastq to generate
FASTQ files, containing the unmapped reads. All samples were subsequently processed with a
harmonized RNA-seq pipeline’®.

TCGA SNP6 copy number segmentation data was downloaded from NIH GDC
(https://portal.gdc.cancer.gov/) on December 3 2018. The segmentation information was obtained from
the files *nocnv\_grch38.seg.v2.txt. Gene-wise copy numbers were determined by overlapping the
segmentation information with Ensembl v86 gene annotation. If a gene was covered by a single segment,
the copy number of the segment was assigned to the gene. If a gene was covered by multiple segments,
a weighted average copy number was computed based on the size of the overlap between the gene and
each segment. Relative copy numbers <= 1.0 were considered as “deep deletion”.

The R package TCGAbiolinks (v2.5.9)"” was used to extract sample and patient information for TCGA
samples by using a custom-made R script.

The sample cohorts COADREAD, FPPP, GBMLGG, KIPAN, and STES were excluded.

Data for TCGA methylation loci plots were downloaded from http://www.bioinfo-zs.com/smartapp/’®.
Gene expression levels (log2(TPM)) were plotted against methylation levels of CpGs belonging to islands
located in promoter regions of genes of interest.

Cancer Cell Line Encyclopedia (CCLE) data

Cell line names and descriptions (including sex) were taken from the provider’s cell-line data sheet. If a
cell line was available from various vendors, the cell-line name was taken from the top rank in a
hierarchy of vendors in the following order: ATCC, DSMZ, ECACC, ICRB, ICLC, RIKEN, KCLB.

For gene expression, raw FASTQ data for all CCLE cell lines*® were downloaded via the European
Nucleotide Archive (accession number PRINA523380). All data were processed identically to TCGA data
as described above.

For copy number determination, SNP6 CEL files were downloaded from https://cghub.ucsc.edu/ in
October 2012. Relative copy number segments were computed using the R packages aroma.affymetrix
(v3.1.0)”® and Rawcopy (v1.1)*: SNP6 data were processed with the AROMA method CRMA v2, where
the 50 samples with the least amount of copy number alterations based on Rawcopy were used to
calculate the reference intensities. This was followed by CBS segmentation. Afterwards, the copy
number segments were overlapped with Ensembl v86 gene annotation as described for the TCGA data
in order to obtain gene-wise relative copy number values. “Deep deletion” status was assigned as for
TCGA data. Absolute copy number segments were computed using PICNIC version c_release 2010-10-
29%! with reference files adapted for reference genome hg38 and default parameters. The resulting
segments were overlapped with Ensembl v86 gene annotation as for TCGA data in order to obtain gene-
wise absolute copy number values.

Methylation®® data are 'CCLE_RRBS_TSS1kb 20181022.txt.gz', downloaded from
https://portals.broadinstitute.org/ccle/data. Protein expression®® data were directly exported from the
indicated reference.

GTEx data
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GTEx v8 gene expression data (phs000424.v8) where processed as described above (RNA-seq pipeline
v2.0 (C-GET)’®). For 4 samples processing failed, and 582 samples failed QC based on sequence length,
GC content, assigned reads, intronic bases, 3’/5’ biases, uniquely mapped reads or GAPDH detection,
and were not included into the final object. Samples from the “Cells - Transformed fibroblast”, “Cells -
EBV-transformed lymphocytes” and “Cells - Leukemia cell line (CML)” classes are omitted from the data
set.

CRISPR/Cas9 depletion assays

All CRISPR/Cas9 depletion assays were conducted as previously described®. In brief, gRNA sequences
were cloned into their respective vector backbone, typically containing GFP (Supplementary Table 4), at
Genscript Biotech Corporation. Lentiviral particles were produced in 293T-Lenti-X (Clontech) cells
cultured in DMEM, 10% Tet-system approved FCS, 1X Glutamax, 1X NaPyr. 4 x 10° cells were plated in 8
ml medium in 10 cm dishes and transiently transfected with 7 pg of plasmid DNA mixed with Lenti-X
Packaging Single Shots (VSV-G) (TakaraBio) according to the manufacturer’s instructions on the following
day. 4 hours after transfection, 6 ml fresh medium was added to the plates. Supernatant was harvested
48 hours after transfection, filtered through a 0.45 um PVDF filter (Millipore) and stored at -80°C in
unconcentrated aliquots until further use. Relevant cell lines stably expressing Cas9 (see Supplementary
Table 4) were plated at approximately 50 —60 % confluence in 12 or 24 well plates and transduced with
250-500 pl of gRNA virus to achieve 10%-95% transduction efficiency. After transduction, the fraction of
GFP positive cells was determined at indicated timepoints using flow cytometry.

Where cell lines expressing doxycycline-inducible cDNA constructs were included in depletion assays,
expression was induced at the start of the experiment by addition of 0.5-1 pg/ml doxycycline to the
medium, which was thereafter replenished twice per week.

siRNA assay
Cells were seeded at a density of 4 x 10° in 6-well plates in standard culture media. 24 hours after

seeding, cells were transfected with OTP Smartpool reagents (Horizon Discovery) targeting CSTF2
individually or in an equimolar mixture, CSTF2T or negative control at a final concentration of 20 nM
using RNAIMAX (Invitrogen) as specified by the manufacturer. 24 hours post transfection media was
exchanged and cells further incubated for 48 hours. siRNA details are listed in Supplementary Table 4.

cDNA overexpression

Constructs based on the pMSCV-Linker-PGK-Blasti backbone (see Supplementary Table 4) were
packaged into viral particles using the Platinum-GP Retrovial Packaging Cell line (). Briefly, 5 x 10° cells
were plated in 10 cm dishes and co-transfected with 3 pg VSV-G plasmid and 9 pg of the respective
construct Lipofectamine LTX (Thermo Fisher) the following day. Medium was exchanged after 16 h and
harvested 48 h later for filtration using 0.45 pum PVDF filter (Millipore) and subsequent storage at —80 °C
before transduction of target cells and subsequent selection of successfully transduced cells through
addition of Blasticidin to the medium.

Constructs based on the RT3REN backbone (see Supplementary Table 4) were packaged into lentiviral
particles using the Platinum-E packaging cell line (Cell Biolabs). In brief, 600,000 cells were plated in 6
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586 well plates and transfected with 2 pg plasmid DNA using 6 pl Lipofectamine LTX reagent (Thermo Fisher).
587  Medium was exchanged after 16 h and harvested 24 h later, filtered through a 0.45 um PVDF filter

588  (Millipore) and added directly to recipient cells stably expressing an ecotropic receptor (pRRL-RIEH),

589  followed by selection with Geneticin. Lentivirus for pRRL-RIEH was produced in lenti X 293T-Lenti-X

590 (Clontech). 4 x 10° cells were plated in 8 ml medium in 10 cm dishes and transiently transfected with 7
591 ug of plasmid DNA mixed with Lenti-X Packaging Single Shots (VSV-G) (TakaraBio) according to the

592 manufacturer’s instructions on the following day. 4 hours after transfection, 6 ml fresh medium was

593  added to the plates. Supernatant was harvested 48 hours after transfection, filtered through a 0.45 pum
594  PVDFfilter (Millipore) before addition to cells and subsequent selection with Hygromycin.

595
596 Western blot

597  Cells were lysed using RIPA buffer (Sigma) supplemented with HALT protease and phosphatase inhibitor
598 cocktail (Thermo Fisher). Lysates were incubated on ice for 30 min, centrifuged at 14,000 rcf for 20 min
599 at 4°C and protein amounts in the supernatant determined using the Bradford assay (BioRad) according
600  to the manufacturer’s instructions. Laemmli buffer was added to samples followed by boiling at 95 °C for
601 5 min. Samples were loaded on a pre-cast gel (Criterion XT Precast 4-12 % Bis-Tris Gel, BioRad), run at
602 150 V for 1.5 hours in XT MOPS running buffer (BioRad) before transfer onto a nitrocellulose membrane
603 (Transblot Turbo Transfer Pack Midi 0.2 um) for 7 min using the Transblot Turbo Transfer System

604 (BioRad, program: Quickblot Mixed MW, Midi Gel). Membranes were incubated for 1 hour in blocking
605 buffer (10% BSA, 10% PBS-T in water) followed by overnight incubation at 4 °C with primary antibody in
606 BSA antibody buffer (5 % BSA in PBS-T). The next day, membranes were washed three times with PBS-T
607 (10 min per wash) and incubated with secondary antibody in Casein antibody buffer (0,1% Casein in PBS-
608  T)for 1 hourinthe dark at room temperature. Membranes were washed three times in PBS-T {10 min
609 per wash) and visualized on an Odyssey CLx imaging system (LI-COR Biosciences).

610  All antibody details can be found in Supplementary Table 4.
611

612 Correlation analysis (PaCT)

613  Depletion data for individual genes were obtained from three studies: DRIVE** (2017-10-01), AVANA*
614  (21Q1) and Sanger® (Release 1). Subsequently, depletion values for every screened gene with unique
615  gene symbols were correlated to expression values (TPM, see above), methylation®® or protein

616  expression® data across the screened cell lines. Methylation data were summarized for genomic regions
617 mapping to a gene. Pearson, Spearman and Kendall correlation coefficients and corresponding p-values
618 were collected. The gene with depletion data is referred to as query (gq) gene and the gene with

619 expression/methylation data is referred to as biomarker (b) for pairwise correlations. Subsequently, data
620  were filtered for genes which are part of a paralog family, such that every pairwise correlation between
621 g and b is considered if g and b are part of the same paralog family:

A ={q,b|q N b € of same paralog family} where A € B

622 where B denotes all correlations between query and biomarker pairs (screened genes (g) and genes with
623  protein and/or mRNA expression values(b)) and A denotes all correlations for a given paralog family.
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We used Spearman coefficients and p-values for all subsequent analyses to account for possible non-
normal distributions in the data and minimize the impact of outlier values. Due to differences in query
and cell line libraries used, and different scoring systems, each sub-dataset that was processed
separately (AVANA, Sanger and DRIVE scores for gene and protein expression). For each sub-dataset, we
calculated its own cutoff at 3*SD (standard deviation) and additionally filtered for p-value < 0.05. For
gene expression data, all p-values at the 3*SD cutoff were highly significant, likely due to the more
complete source data for this domain.

The complete PaCT results can be found in Supplementary Table 2.

PaCT exploratory space

For all 3,587 paralog families with at least two members, we computed all possible pairwise interactions
across members of the same paralog family, including self-interactions. This approach resulted in a total
of 3,0841,147 potential pairs. We then assessed the potential of our approach to detect and quantify
pairwise dependencies by depletion-expression correlation. Pairs where the query gene was not
targeted in any depletion dataset and/or targeted in zero cell lines, and without gene expression data
for the biomarker gene expression were labeled as “no info both”. Pairs for which information was
missing for either depletion or gene expression were labeled as “no info query” and “no info biomarker”,
respectively. Pairs for which information was available in only a single cell line do not allow calculation
of a correlation and were labeled “1 cell line”. Pairs for which information was available both for the
qguery and biomarker in at least two cell lines was labeled as “info query & biomarker”. Protein
expression data were not included in this analysis.

PaCT simulation analysis

To identify the difference between PaCT hit correlations and random correlations, we performed 1000
simulations for each gene from each family with significant interactions. For each query gene g from
each family f, we generated a vector of genes v with same size as f. The new set of genes in v contains
only the query gene from f but the remaining genes in v are sampled without replacement from the
remaining paralogue families. Then pairwise correlations were computed as above.

Wilcoxon-test analysis

Cell lines were split into sensitive, resistant and intermediate groups using a k-means clustering
algorithm with k=3 for the depletion scores of every gene in the DRIVE**, AVANA** and Sanger® datasets.
For cell lines in the sensitive and resistant bins, gene and protein expression data were collected.
Subsequently, a non-parametric test (Wilcoxon test) was conducted for all query-biomarker pairs. p-
values were collected and corrected for multiple testing (Benjamini-Hochberg). The query-biomarker
pairs were then filtered as described above.

Random Forest model

CCLE gene expression data of chrY-encoded and DDX3X, EIF1AX, ZFX and RPS4X paralog family genes
were used to train a Random Forest (RF) model on the Sanger®® depletion data. k-means clustering (as
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described above) was used to separate sensitive and insensitive cell lines. Subsequently, AVANA*
sensitivity data were predicted using the RF model.

Ortholog analysis

We first converted our list of human paralogs to the best match ortholog in M. musculus, D.
melanogaster, D. rerio, C. elegans or S. cerevisiae using DIOPT® (v8). Then we added information on
each gene’s essentiality from OGEE® (v2), with a majority vote decision on calling a gene essential or
non-essential in cases where more than one dataset with ambiguous calls existed. For all paralog
interaction hit pairs, we then checked whether query and biomarker share the same ortholog gene and
if so, whether the ortholog is essential.

Multi-mapping gRNA analysis

We downloaded information on dropped gRNAs and gRNA mapping for the AVANA library from
https://depmap.org/portal/download/. Based on this information, we extracted the number of dropped,
uniquely mapped or multi-mapping gRNAs for each query gene in the list of PaCT pairs.

LOY inference

In addition to gene expression and copy number (CN) data, TCGA, GTEx and CCLE provide annotation of
the sex of the patients where a sample/cell line originated from. We calculated (i) the average TPM, (ii)
the maximum TPM, (iii) the average raw count, (iv) the average relative CN, and (v) the average absolute
CN for all genes located on chrY for all samples. TCGA and GTEx do not provide CN data for chrY. For
samples originally annotated as male, we checked whether all of their values (i)-(v) for cell lines and (i)-
(iii) for tissue samples were below the respective 99" percentile of female samples. If this was the case,
we re-annotated the sample as LOY.

PCR validation of LOY

Genotyping primer pairs for different genes on chrX and chrY were designed and tested for specificity.
Genomic DNA was extracted from female, male and LOY cells using the QlAamp DNA Mini Kit (Qiagen)
following the manufacturer’s protocol. PCR was run using AmpliTaqgGold DNA polymerase (Thermo
Fisher Scientific) with 100 ng genomic DNA as input. 55°C annealing temperature was used for all primer
pairs. Resulting amplicons analyzed on a 2% agarose gel. All primer sequences are listed in
Supplementary Table 4.

Induction of LOY

One million HT-1080 cells expressing Cas9 (puromycin) and DDX3X (blasticidin) or ZFX (blasticidin)
constructs were transiently transfected with a pool of 18 GFP-containing plasmids encoding for gRNAs
targeting different chrY genes (RN-gRNA_429-434, RN-gRNA_441-443, RN-gRNA_458-466 using
Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer's instructions. 48 hours
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after transfection, GFP-positive cells were isolated by FACS and diluted to obtain single cell clones.
Clones were screened for LOY by PCR from genomic DNA (as described above) using standard laboratory
techniques. Clones with PCR products for chrX but without PCR products for chrY were selected. gRNA
sequences are listed in Supplementary Table 4.

Software and data availability

All calculations were performed in R. Data were visualized using R or GraphPad Prism. All data are
publicly available through the indicated references and provided as Supplementary Material, including
an R Markdown script containing all code and versioning information to reproduce analyses and figures.

Acknowledgements

We wish to thank Norbert Schweifer, Tamara Trols, Harald Studensky and Silvia Blaha-Ostermann for
technical assistance, Johannes Zuber for help with cloning the paralog gRNA library, and all colleagues at
Boehringer Ingelheim RCV Cancer Research Target Discovery for discussions and critical input to the
manuscript.

Conflict of Interest

Authors are full time employees of Boehringer Ingelheim.

Author Contributions

AK., AH., FS,T.P,S.0. CW., M.C., and C.R. conducted wet lab experiments. AK., AS., AP, V.T, F.S,
B.M. and R.A.N. conducted bioinformatic analyses. R.A.N. and B.M. conceived study. B.M., R.A.N. and
M.P. oversaw study. J.P., SSW., A.S., led paralog library screens. A.S. helped conceptualize study. A.K,,
B.M. and R.A.N. wrote manuscript with input from all other

19


https://doi.org/10.1101/2021.05.21.445116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.21.445116; this version posted June 4, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

727 Figures and Figure Legends
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728 Figure 1: Proof-of-concept paralog dependency CRISPR screens reveal a functional interaction of CSTF2
729 and CSTF2T.

730  a-b) Distribution of paralog families in study by family size (a) and gene type (b).
731 c)  CRISPR screen results in 7 cancer cell lines. Only genes with escore <-0.4 and FDR < 0.1 are

732 displayed. Shades of green indicate effect size (escore), box color indicates whether paralog

733 family contains deleted gene different from listed gene (del) or not (wt).

734 d) CRISPR/Cas9 depletion assay in cell lines resistant (green) and sensitive (purple) to loss of CSTF2.
735 gRNASs targeting positive control genes (RPA3, POLR2A, PCNA), negative controls (NegCon03/-07),
736 and CSTF2 are indicated. Cells were lentivirally transduced with the gRNA plasmid containing GFP;
737 GFP percentage in transduced cell line pool was measured by flow cytometry at the indicated time
738 points and normalized to day 3 post-transduction.

739  e-f) Western blots for CSTF2 and CSTF2T in lysates from indicated cell lines after siRNA treatment

740 (3d). B-actin was used as loading control.

741

742
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Figure 2: Correlation analysis of public loss-of-function screens yield to identify paralog genetic

interactions.

a)

b)

c)

d)

PaCT analysis workflow and volcano plot of tested pairs by dataset (CYCLOPS, self-interactions;
Paralogs, pairwise paralog interactions within same family). See Methods for details.
Distribution of PaCT correlations (Spearman) by input datasets. Triangles indicate specific hit
pairs mentioned in subsequent analyses. Dashed lines mark the 3-standard-deviations cutoff
used for hit filtering.

Distribution of Spearman correlation coefficients of randomly assigned genes to each query
compared to the correlation distribution of original PaCT hits.

Pie chart displaying different categories of query-biomarker pairs across the complete
theoretical PaCT exploratory space. Only pairs for which information for both query and
biomarker is available can yield hit interactions. See Methods for details.

e, f) Expression (e) and depletion score (f) variability distribution of genes involved in hit and non-hit
interactions across cell lines.

g)
h)
i)

Nucleotide sequence similarity difference between hit and non-hit pairs.

Number of unique hit pairs in paralog families of different size, grouped by type of correlation.
Percentage of hit pairs identified in each family plotted against family size. Color legend
indicates the percentage of genes of the respective family involved in hit interactions, either as
query or biomarker.

j, k) Percentage of hit interactions per gene as a query (j) and as a biomarker (k) is plotted against
percentage of hit interactions per family. Color indicates family size.
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Figure 3: Correlation analysis of public loss-of-function screens yield known and novel candidate paralog

genetic interactions.

a)

b)

c)

d)

Overlap of hit pairs between different input datasets. Y-axis shows the number of overlapping
pairs by dataset. Comparisons are indicated by dots and lines on the x-axis, colored by type of
expression data (gene, protein) and interaction (pos, neg). Inset shows number of hit pairs by
dataset.

Exemplary pairwise correlation matrix for paralog families of 2-4 members and Spearman
correlation > 0.42 for at least one pair in the family including CYCLOPS interactions.
CRISPR/Cas9 depletion assay in cell lines resistant (green) and sensitive (purple) to loss of
FAMS50A. gRNAs targeting positive control genes (POLR2A), negative controls (AAVS1) and
FAMS50A are indicated. Cells were lentivirally transduced with the gRNA plasmid containing GFP;
GFP percentage in the transduced cell line pool was measured by flow cytometry at the
indicated time points and normalized to day 3 post-transduction.

CRISPR/Cas9 depletion assay in cell lines resistant (green) and sensitive (purple) to loss of
VPS4A. gRNAs targeting positive control genes (POLR2A), negative controls (non-targeting) and
VPS4A are indicated. Cells were lentivirally transduced with the gRNA plasmid containing GFP;
GFP percentage in the transduced cell line pool was measured by flow cytometry at the
indicated time points and normalized to day 3 post-transduction.
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786 Figure 4: Validation of paralog redundancy between RPP25 and RPP25L.

787 a) AVANA-based depletion scores (CERES) for RPP25L, color-coded by RPP25 expression levels.

788 b) Western blot for RPP25 in indicated cancer cell lines. 3-actin was used as loading control.

789 c) CRISPR/Cas9 depletion assay in cell lines predicted to be sensitive (purple) or resistant (green) to
790 loss of RPP25L. gRNAs targeting RPP251 (gRNA-290, gRNA-291, gRNA-292, sRNA-293), positive
791 controls (PCNA, POLR2A) and negative controls (non-targeting, AAVS1) are indicated. Cells were
792 lentivirally transduced with the gRNA plasmid containing GFP; GFP percentage in transduced cell
793 line pool was measured by flow cytometry at the indicated time points and normalized to day 3
794 post-transduction (n=3 independent replicates of the experiment).

795 d) CRISPR/Cas9 depletion assay as in (c) following ectopic expression of RPP25 or RPP25L in KYSE-
796 150 cells that are sensitive to loss of RPP25L (parental). DNAJC15 expression served as a

797 negative control.

798

799
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Figure 5: Paralog redundancies for FAM50A-FAM50B and DNAJC15-DNAJC19 can be attributed to

expression loss by DNA methylation.

a)

b)

c)

d)

g)

h)

Scatter plot identifying putative paralog dependencies due to DNA hypermethylation. X-axis:
Spearman correlation coefficient between depletion data (CERES score (AVANA data)) and DNA
methylation. Y-axis: Spearman correlation coefficient between depletion data (CERES score
(AVANA data)) and gene expression (TPM). Pairs with correlation coefficients <|0.2| are
displayed as density plots, strongest correlations are labeled.

Scatter plot of mMRNA expression levels (log2(TPM)) of FAM50B versus CpG island methylation at
indicated loci across tumour types from TCGA. Samples from bladder urothelial carcinoma
(BLCA), prostate adenocarcinoma (PRAD) and stomach adenocarcinoma (STAD) studies are
highlighted.

Scatter plot of mMRNA expression levels (log2(TPM)) of DNAJC15 versus CpG island methylation at
indicated loci across tumour types from TCGA. Samples from bladder urothelial carcinoma
(BLCA), prostate adenocarcinoma (PRAD) and stomach adenocarcinoma (STAD) studies are
highlighted.

Boxplot summarizing expression data (log2(TPM)) for members of the DNAJC19-DNAJC15
paralog family in cell lines resistant and sensitive to DNAJC19 loss.

Western blot of DNAJC15 levels in selected sensitive (CAL-12T, NCI-H1915, NCI-H1975) and
resistant (DMS53, IPC-298, SCC-25) cell lines. B-actin was included as a loading control.
CRISPR/Cas9 depletion assay in cell lines predicted to be sensitive (purple) or resistant (green) to
loss of DNAJC19. gRNAs targeting DNAJC19 (gRNA-318, gRNA-523, gRNA-565, gRNA-566),
positive controls (PCNA, POLR2A) and negative controls (non-targeting, AAVS1) are indicated.
Cells were lentivirally transduced with the gRNA plasmids also containing a GFP expression
cassette. The percentage of GFP expressing cells in the transduced cell line pool was measured
by flow cytometry at the indicated time points and normalized to day 3 post-transduction (n=3
independent replicates of the experiment).

CRISPR/Cas9 depletion assay in cell lines following ectopic expression of DNAJC15 in NCI-H1975
cells that are sensitive to loss of DNAJC19. Expression was induced by addition of 1 pug/ml
doxycycline to the medium at the start of the experiment, which was replenished twice per
week. Cells were lentivirally transduced with a gRNA targeting DNAJC19 (gRNA-318), positive
control (POLR2A) or negative control (non-targeting). The plasmid also expresses GFP. The
percentage of GFP-positive cells in transduced cell line pool was measured by flow cytometry at
the indicated time points and normalized to day 3 post-transduction (n=2 independent
replicates of the experiment).

Western blot for RPP25, DNAJC15, and DNAJC19 in NCI-H1975 cells expressing the indicated
overexpression constructs upon culture in the presence of doxycycline (1 ug/ml) for 72 hours. 3-
actin was included as a loading control.
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Figure 6: Loss of chrY as potential biomarker for paralog dependencies between sex chromosome genes.

a)

Distribution of average gene expression (TPM) across genes located on chrY for TCGA samples
for which data were available. Sex (male, female) as annotated in TCGA or inferred (LOY) as
described in Methods.

As in (a) for cell lines (CCLE) with available gene expression data.

As in (b) for average relative copy number (CN).

Schematic depiction of chrX and chrY with location of interacting paralogs indicated.

Analysis of factors that are most significantly different between DDX3X-loss-sensitive and
DDX3X-loss-resistant cell lines, as defined using k-means clustering based on AVANA data. For
each data domain, the most significant discriminators are displayed.

Sensitive vs. resistant cell lines (as in (e)) by sex (as in (b and c)).

DDX3X sensitivity (CERES depletion score from AVANA dataset) by sex (as in (b and c)). p-values
were calculated using a two-sided Fisher's exact test for count data with Monte-Carlo-simulated
p-value (based on 10000 replicates).

Variable importance plot for Random Forest model to predict DDX3X sensitivity. Gene
expression values were used as variables for the Indicated genes on y-axis.

Fraction of cell lines that harbor chrX and chrY or chrX only, grouped by sex ((as in (b and c)), as
assessed by the amelogenin marker in standard STR analysis.

PCR validation of sex chromosome status in selected cell lines used for further analyses. 8 chrY-
specific primer pairs and 2 chrX-specific primer pairs were tested in female patient-derived
(KURAMOCHI and Cal-120), male patient-derived chrY retaining (HT-1080 and HCT 116), and
male LOY cells (KNS-42).
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Figure 7: Validation of chrX-chrY paralog dependencies.

a)
b)

g)
h)

AVANA-based depletion scores (CERES) for DDX3X, color-coded by DDX3Y expression levels.
CRISPR/Cas9 depletion assay in male HT-1080 cells that carry chrY. gRNAs targeting a positive
control gene (PCNA), negative control locus (AAVS1), DDX3X (gRNA-395, gRNA-396) and DDX3X
and DDX3Y simultaneously are indicated. Cells were lentivirally transduced with the gRNA
plasmid containing GFP; GFP percentage in transduced cell line pool was measured by flow
cytometry at the indicated time points and normalized to day 3 post-transduction. Cells were
additionally transduced with empty vector (control), unrelated cDNA encoding ZFX (control), or
rescue constructs with cDNA encoding DDX3X or DDX3Y. Points in line graph represent mean,
and error bars denote the standard deviation (n= 3 independent experiments).

CRISPR/Cas9 depletion assay in male KNS-42 cells that lost chrY (LOY). Assay, gRNAs and cDNA
constructs as in (b). Points in line graph represent mean, and error bars denote the standard
deviation (n= 3 independent experiments).

AVANA-based depletion scores (CERES) for EIF1AX, color-coded by EIFIAY expression levels.
CRISPR/Cas9 depletion assay in male HCT 116 cells that carry chrY. gRNAs targeting positive
control (PCNA), negative control (AAVS1), and EIF1AX and EIF1AY simultaneously are indicated.
Cells were additionally transduced with empty vector (control), unrelated cDNA encoding ZFX
(control), or rescue constructs with cDNA encoding EIF1IAX or EIF1IAY. Assay as in (b), points in
line graph represent mean, and error bars denote the standard deviation (n= 3 independent
experiments).

CRISPR/Cas9 depletion assay in male KNS-42 cells that lost chrY (LOY). gRNAs targeting positive
control (PCNA), negative control (AAVS1), EIF1AX, EIF1AX/EIF1AXP1, and EIF1IAX/EIF1IAXP1 and
EIF1AY simultaneously are indicated. Cells were additionally transduced with empty vector
(control) or rescue constructs with cDNA encoding EIF1IAX or EIF1AY. EIF1AX/XP1 indicates
EIF1AX and the EIF1AXP1 pseudogene. Assay as in (b), points in line graph represent mean, and
error bars denote the standard deviation (n= 3 independent experiments).

AVANA-based depletion scores (CERES) for ZFX, color-coded by ZFY expression levels.
CRISPR/Cas9 depletion assay in female Cal-120 cells. gRNAs targeting positive control (PCNA),
negative control (AAVS1), and ZFX (gRNA-569, gRNA-571) are indicated. Cells were additionally
transduced with empty vector (control) or rescue constructs with cDNA encoding ZFX or ZFY.
Assay as in (b), points in line graph represent mean, and error bars denote the standard
deviation (n= 3 independent experiments).

Schematic depiction of workflow for induction of LOY in male HT-1080 cells expressing Cas9 and
DDX3X or ZFX.

CRISPR/Cas9 depletion assay in male HT-1080 cells where LOY was induced. Two clones each
expressing cDNA constructs encoding DDX3X or ZFX were transduced with gRNAs targeting
positive control (POLR2A), negative control (AAVS1), DDX3X, ZFX or EIF1AX/EIF1AXP1.
EIF1AX/XP1 indicates EIFIAX and the EIF1IAXP1 pseudogene. Assay as in (b), points in line graph
represent mean, and error bars denote the standard deviation (n= 3 independent experiments).
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