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Highlights 

 

● We propose a novel multi-scale semi-supervised clustering method, termed MAGIC, to disentangle the 

heterogeneity of brain diseases. 

● We perform extensive semi-simulated experiments on large control samples (UK Biobank, N=4403) to 

precisely quantify performance under various conditions, including varying degrees of brain atrophy, 

different levels of heterogeneity, overlapping disease subtypes, class imbalance, and varying sample 

sizes. 

● We apply MAGIC to MCI and Alzheimer’s disease (ADNI, N=1728) and schizophrenia (PHENOM, 

N=1166) patients to dissect their neuroanatomical heterogeneity, providing guidance regarding the use 

of the semi-simulated experiments to validate the subtypes found in actual clinical applications.   
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Graphical abstract 
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Table of Abbreviations 
Item Abbreviation 

Alzheimer’s disease AD 

Schizophrenia SCZ 

Grey matter GM 

Mild cognitive impairment MCI 

Healthy control CN 

Machine learning ML 

Adjusted Rand index ARI 

Atrophy strength level ASL 

Patients PT 

Subtype Sub 

Cross-validation CV 

Quality control QC 

ARIs during CV ARI_CV 

ARIs for ground truth ARI_GT 

T1-weighted MRI T1w MRI 

Magnetic resonance imaging MRI 

Non-negative matrix factorization NMF 

Voxel-based analysis VBA 

Multivariate pattern analysis MVPA 

Support vector machine SVM 

 

Table of variables 
Item Abbreviation 

Number of clusters/subtypes k 

Number of components M 

Number of subjects N 

Number of voxels D 

Input matrix X 

Component matrix C 

Loading coefficient matrix L 

Input label y 

SVM weight w 

SVM bias b 

Subtype membership matrix S 

Final subtype membership matrix after consensus clustering S* 

Index of number of subjects i 

Index of number of clusters/subtypes j 
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Abstract 

Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision 

diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into 

subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering 

approaches are often confounded by anatomical and functional variations not related to a disease or pathology 

of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture 

disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised 

conventional machine learning methods is that they typically model, learn and infer from data using a basis of 

feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein 

we propose a novel method, “Multi-scAle heteroGeneity analysIs and Clustering” (MAGIC), to depict the multi-

scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering 

method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a 

double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease 

subtypes. More importantly, to understand the conditions under which the clustering model can estimate true 

heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to 

evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N=4403). We then 

applied MAGIC to imaging data from Alzheimer’s disease (ADNI, N=1728) and schizophrenia (PHENOM, 

N=1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of 

common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed 

or should be taken with caution. The code of the proposed method is publicly available at 

https://github.com/anbai106/MAGIC. 

Keywords: semi-supervised, clustering, multi-scale, heterogeneity, semi-simulated 
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1. Introduction 

Statistical and machine learning (ML) methods have been widely applied to neuroimaging data to derive 

disease-specific imaging signatures (Davatzikos, 2019). Voxel-based analysis (VBA) techniques generally 

involve performing independent mass univariate statistical tests on all voxels (Ashburner et al., 1998; Ashburner 

and Friston, 2000; Davatzikos et al., 2001; Friston et al., 1994), aiming to unveil detailed spatial maps of brain 

structures that are associated with clinical variables of interest. However, VBA approaches suffer from limited 

statistical power since they ignore multivariate data interactions. In contrast, multivariate pattern analysis 

(MVPA) techniques have gained traction due to their ability to capture complex multivariate interactions in data. 

Classical multivariate models, such as support vector machine (SVM), have been extensively utilized in the 

neuroimaging community to reveal imaging signatures for several brain diseases and disorders (Cuingnet et al., 

2011; Ecker et al., 2010; Gaonkar and Davatzikos, 2013; Habes et al., 2016; Koutsouleris et al., 2015; Lao et 

al., 2004; Rathore et al., 2017; Samper-González et al., 2018; Varol et al., 2018). More recently, highly nonlinear 

and multivariate deep learning models have also been applied to brain modeling (Bashyam et al., 2020; Schulz 

et al., 2020b; Wen et al., 2020a). However, due to possible over-fitting, these models’ interpretability and 

generalizability in low sample size regimes have been under scrutiny. 

Whether performing mass univariate or multivariate analysis, it is typically assumed that a relatively 

pure pathological pattern exists in the disease population. The disease signature is often presented via a voxel-

wise or region of interest (ROI)-wise statistical map of the case-control group differences, i.e., between healthy 

controls (CN) and patients (PT). However, in nature, disease effects are commonly heterogeneously presented 

across different subpopulations due to the diversity of underlying risk factors. Such model assumption violations 

may cause the statistical learning to yield underpowered or false-positive results (Dwyer et al., 2018). Tackling 

this issue is of great importance given ample evidence of disease heterogeneity (Murray et al., 2011; Noh et al., 

2014; Whitwell et al., 2007) and increasing appreciation that this may undermine the precision of clinical 

treatment guidelines and obscure research findings (Insel and Cuthbert, 2015).  

Disentangling disease heterogeneity elucidates the underlying pathological mechanisms and potentially 

enables clinicians to offer targeted treatment options to different patient subpopulations. Nonlinear methods, 

such as deep neural networks, implicitly handle heterogeneity. However, there still exists a gap between these 

models and human interpretability, especially for clinicians who frequently seek discrete disease subtypes 

(Miotto et al., 2018). Thus, many recent efforts to discover the heterogeneous nature of brain diseases have 

investigated different clustering algorithms (Chand et al., 2020; Dong et al., 2016a, 2016b; Dwyer et al., 2018; 

Ezzati et al., 2020; Filipovych et al., 2012; Honnorat et al., 2019; Jeon et al., 2019; Jung et al., 2016; Lubeiro et 

al., 2016; Nettiksimmons et al., 2014; Ota et al., 2016; Pan et al., 2020; Park et al., 2017; Planchuelo-Gómez et 

al., 2020; Poulakis et al., 2020, 2020, 2018; Sugihara et al., 2016; Ten Kate et al., 2018; Varol et al., 2017; 

Young et al., 2018; Zhang et al., 2016). These methods can be divided into two categories depending on whether 

the clustering algorithm is unsupervised or semi-supervisedb. Unsupervised clustering techniques, such as K-

means (Hartigan and Wong, 1979), hierarchical clustering (Day and Edelsbrunner, 1984), and non-negative 

matrix factorization (NMF) (Lee and Seung, 2001), aim to directly cluster the patients based on their 

demographic information, clinical presentation, or imaging biomarkers. However, the results of these methods 

have often been confounded by non-pathologic processes, such as demographics. To cope with these covariate 

confounds, semi-supervised clustering methods (Dong et al., 2016a; Varol et al., 2017) leverage the group-level 

information and attempt to nullify the effect of nuisance variables. These methods generate clusters based on 

the pattern differences between the CN population and the subpopulations of patients (i.e., subtypes/clusters), 

hypothesizing that each pattern represents a distinct disease dimension or subtype. The main limitation of this 

family of methods is that they usually seek subtypes on a single scale set of features (e.g., atlas-based ROIs, 

voxels, networks), which makes the result heavily dependent on the level of granularity of the feature space. 

However, there has been abundant evidence that the brain is fundamentally constructed by multi-scale entities 

(Bassett and Siebenhühner, 2013; Betzel and Bassett, 2017). Therefore, it is beneficial to analyze disease 

heterogeneity on multiple spatial scales and seek a compatible clustering solution across scales, which will 

potentially better align with the brain’s multi-scale nature. 

                                                      

b The term semi-supervised refers to the lack of subtype labels and the use of CN as a reference group to guide 

the clustering.  
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Despite the fact that these clustering analyses have always led to a cluster solution, there are no clear 

guidelines enabling the validity of the cluster solution to be determined, presumably due to the lack of the 

ground truth in clustering problems or the “curse of dimensionality” in brain imaging settings. A previous study 

(Varol et al., 2017) designed simulation experiments to validate the proposed model. However, the simulation 

data were generated by adding noise in the low-dimensional feature space under a specific distribution (i.e., 

Gaussian distribution), which was far less realistic than actual neuroimaging data. Thus, a more sophisticated 

and systematic simulation is needed to understand the conditions under which clustering succeeds or fails with 

high-dimensional brain imaging data. Specifically, in the current work, we performed an extensive and 

systematic evaluation of clustering performance using a large healthy control sample (UK Biobank, N=4403) 

in a semi-simulated setting. The term semi-simulated here refers to the fact that brain heterogeneity may stem 

from various sources, and the simulation was performed with data from real healthy control individuals. We 

simulated the heterogeneity due to disease effects by imposing abnormalities (i.e., increasing or decreasing 

voxel intensity) on specific regions of tissue images. Notably, the heterogeneity caused by normative brain 

aging was inevitably retained in the original data because this is biologically realistic and contributs to the semi-

simulated variability (refer to Section 4.2 for more details). With known ground truth for the number of clusters 

(k) and the cluster/subtype membership assignment, we quantitatively investigated the clustering model’s 

performance under a variety of conditions, including varying degrees of brain atrophy, different levels of 

heterogeneity, overlapping disease subtypes, class imbalance, and varying sample sizes. 

This work is a comprehensive extension of our preliminary results presented in Medical Image 

Computing and Computer Assisted Interventions (MICCAI) 2020 (Wen et al., 2020b). The contribution is two-

fold. First, to address the aforementioned multi-scale limitations, we propose a data-driven and multi-scale semi-

supervised method termed MAGIC for “Multi-scAle heteroGeneity analysIs and Clustering”. Specifically, 

MAGIC extracts multi-scale features, from coarse to fine granularity, via orthogonal projective non-negative 

matrix factorization (opNMF) applied for varying scales (i.e., number of components). opNFM has been a very 

effective unbiased, data-driven method for extracting biologically interpretable and reproducible feature 

representations in the context of neuroimaging datasets (Sotiras et al., 2015), leading to disease subtypes in an 

explainable space (Schulz et al., 2020a). A convex polytope classifier, based on principles of the method in 

(Varol et al., 2017), is applied to these multi-scale features through a double-cyclic optimization procedure to 

yield robust clusters that are consistent across different scales. Secondly, the results of our semi-simulated 

experiments allow us to compare MAGIC with previous standard clustering methods and provide future 

clustering analysis guidelines. Specifically, applying the proposed method to Alzheimer’s disease (AD) and 

mild cognitive impairment (MCI) and schizophrenia (SCZ) patients provides greater confidence regarding the 

validity of the subtypes claimed in actual clinical applications. 

We organize the remainder of the paper as follows. In Section 2, we provide the details of the proposed 

algorithm. Section 3 details the primary datasets and image preprocessing steps. Section 4 presents the results 

of the experiments. Section 5 concludes the paper by discussing our main observations, method limitations, and 

future directions.        
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2. Methods 

MAGIC builds upon the HYDRA formulation (Varol et al., 2017) and opNMF algorithms (Sotiras et al., 2015) 

to yield an inter-scale-consistent clustering solution. It generates an interpretable and spatially adaptive multi-

scale representation via opNMF, which drives semi-supervised clustering. The schematic diagram of MAGIC 

is shown in Fig. 1. 

 

Figure 1. Schematic diagram of the MAGIC algorithm. MAGIC first generates multi-scale feature 

representations of the brain anatomy from coarse to fine resolutions and then cyclically solves semi-supervised 

clustering subproblems with each of these feature representations. Generally, it consists of three key components. 

A) opNMF enables the extraction of multi-scale, biologically interpretable feature representations in a data-

driven manner. B) max-margin multiple SVM classifiers are utilized to construct a nonlinear polytope for 

simultaneous classification and clustering. In this fashion, the patients’ subtypes or subpopulations are clustered 

based on their distance from the polytope. C) the double-cyclic optimization procedure is adopted to fuse the 

knowledge from multi-scale features for inter-scale consistent clustering solutions. Specifically, the cluster 

polytope is first initialized at a specific representation scale. After optimization, the cluster polytope is 

transferred to the next representation scale, allowing the clustering routine to be guided by all anatomical scales. 

Furthermore, the polytope initialization is performed at different anatomical scales to further remove bias from 

the clustering solutions. Lastly, the resulting multi-scale clustering solutions are fused through consensus 

clustering to yield a final stable subtype membership assignment. X: input matrix; C: component matrix; L: 

loading coefficient matrix; CN: healthy control; Sub: subtype; M: number of components. S is the initial 

polytope solution. S1, S2, and S3 are the fine-tuned polytope for different initialization models, and S* is the 

final polytope after the consensus clustering procedure. 

We detail the mathematical formulation of the optimization routine in the following subsections. To 

establish notation, let N denote the number of subjects and D the number of voxels in each image. We denote 

the data as a matrix X that is organized by arranging each image as a vector per column (X = [x1, …, xN], xi ∈ 

RD). We use binary labels to distinguish the patient and control groups, where 1 represents patients (PT) and -

1 means healthy controls (CN) (i.e., 𝒚 ∈ {−1, 1}𝑁). For subtype results, the subtype membership matrix (a.k.a., 

polytope) is denoted as S∈ RN x k before consensus clustering and S* as the final subtype membership matrix 

after consensus clustering.    
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2.1. Multi-scale feature extraction via orthogonal projective non-negative matrix 

factorization 

MAGIC utilizes opNMF, an unsupervised representation learning algorithm, to extract multi-scale and 

interpretable anatomical components covering the whole brain. The number of components (M) is optimized in 

opNMF and controls the granularity of the anatomical components (e.g., opNMF components at different 

granularities can be seen in Fig. 1C).  

The opNMF aims to represent the input matrix X as a rank-M matrix that is the product of two non-

negative matrices: i) C, termed as the component matrix, captures the groups of voxels that covary most and 

offers an interpretable anatomical parcellation (C = [c1, …, cM], ci ∈RD), and ii) L ∈RMxN, termed as the loading 

coefficient matrix, captures the amount of each spatial component that makes up each subject. The opNMF 

objective is to be minimized as follows:  

min
𝑐

‖𝑿 − 𝑪𝑳‖𝐹
2     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑪 ≥ 0, 𝑳 ≥ 0, 𝑪𝑻𝑪 = 𝑰 , 𝑳 =  𝑪𝐓𝑿  (1)   

This formulation differs from the standard NMF in that the loading coefficient matrix is obtained by projecting 

the input data X to the estimated component matrix C (i.e., L = CTX), and the orthogonality constraint is imposed 

on the component matrix (CTC = I, where I denotes the identity matrix). Therefore, the opNMF searches only 

the parameters of the component matrix during optimization (Zhirong Yang and Oja, 2010).  

The solution of minimizing the abovementioned objective is a non-convex problem and can be achieved 

by iteratively updating the multiplicative rule proposed in (Zhirong Yang and Oja, 2010): 

𝐶′ = 𝐶
𝑋𝑋𝑇𝐶

𝐶𝐶𝑇𝑋𝑋𝑇𝐶
   (2) 

Please refer to (Sotiras et al., 2015) for more details about opNMF and (Zhirong Yang and Oja, 2010) 

for convergence analyses. Once the algorithm converges, we recover the loading coefficients by the projective 

step: 𝑳 =  𝑪𝐓𝑿 . Moreover, this property allows us to readily apply the trained model to external unseen data. 

2.2. Max-margin multiple SVM classifiers for clustering 

Once the high dimensional imaging data is reduced to a lower-dimensional representation using opNMF, we 

apply the HYDRA algorithm (Varol et al., 2017) on the set of loading coefficients, L ∈ RMxN and the 

corresponding set of diagnostic labels 𝒚 ∈ {−1, 1}𝑁 to perform clustering of the patients.  

The HYDRA algorithm utilizes multiple large margin classifiers (e.g.., k SVMs) to estimate a nonlinear 

polytope that separates the two classes with maximized distance (or margin) from the decision boundaries for 

each sample, thus simultaneously serving for classification and clustering. The fundamentals of the HYDRA 

algorithm are presented in supplementary eMethod 1. Please refer to (Varol et al., 2017) for more details. In 

general, this algorithm solves for a convex polytope classification boundary that discriminates patients from 

controls with a maximum margin. In essence, the polytope is composed of the k hyperplanes of the k linear 

SVMs, and each face corresponds to one subtype/cluster. The objective of maximizing the polytope’s margin 

can be summarized as: 

min
{𝒘𝑗,𝒃𝑗}𝑗=1

𝑘
∑

‖𝒘𝑗‖
2

2

2

𝑘

𝑗=1

+ 𝜇 ∑
1

𝑘
max{0, 1 − 𝒘𝑗

𝑇𝑳𝑖
𝑇 − 𝒃𝑗}

𝑖|𝑦𝑖=+1
𝑗

+ 𝜇 ∑ 𝑺𝑖,𝑗max{0, 1 + 𝒘𝑗
𝑇𝑳𝑖

𝑇 + 𝒃𝑗}
𝑖|𝑦𝑖=−1

𝑗

   (3) 

where 𝒘𝑗 and 𝒃𝑗 are the weight and bias for each hyperplane, respectively. 𝜇 is a penalty parameter on the 

training error, and S is the subtype membership matrix of dimension NxK containing information regarding 

whether a sample i belongs to subtype j. In general, this optimization problem is non-convex and is jointly 

optimized by iterating on solving for the polytope faces’ parameters using standard SVM solvers (Chang and 

Lin, 2011) and solving for the cluster memberships as follows:  
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𝑺𝒊,𝒋 = {

1, 𝑗 =  argmax
𝑗

(𝒘𝑗
𝑇𝑳𝑇 + 𝒃𝑗)

0,   𝑗 ≠  argmax
𝑗

(𝒘𝑗
𝑇𝑳𝑇 + 𝒃𝑗)

    (4) 

 

2.3. Double-cyclic optimization procedure for scale-independent subtypes 

MAGIC optimizes the clustering objective, i.e., Eq. 3, for each anatomical scale as a sub-optimization 

problem. To fuse the multi-scale clustering solutions and enforce the clusters to be scale-independent, MAGIC 

adopts a double-cyclic procedure that transfers and fine-tunes the subtype membership matrix (S) between 

different scales of features, i.e., solving the sub-optimization problems with the single-scale feature 

representation in a loop (Fig. 1).  

The double-cyclic fine-tuning procedure aims to offer scale-independent clustering solutions across 

multi-scale features. Cycle 1 (Fig. 1C components M1, M2, and M3 in a row) aims to derive a clustering solution 

that is informed by features across all scales. This is achieved by iteratively solving Eq. 2 using features derived 

at different scales. Specifically, the clustering membership matrix S is first solved for a particular set of features. 

It is then transferred to the next block, where it is used as initialization for fine-tuning driven by features from 

a different scale. This procedure is repeated till features from all anatomical scales have been used to inform the 

final clustering membership matrix (S1 in Fig. 1C). Since each optimization cycle starts at a pre-determined 

anatomical scale, an additional Cycle 2 (Fig. 1C components M1, M2, and M3 in a column) is executed using 

all different anatomical scales to initialize the model. This eliminates any initialization biases (S1, S2, and S3 

in Fig. 1C) and results in multiple clustering solutions. To determine the final subtype assignment (S* in Fig. 

1C), we perform consensus clustering. Consensus is achieved by grouping together samples that are assigned 

to the same cluster across the solutions estimated as part of Cycle 2 (Varol et al., 2017). Precisely, we first 

compute a co-occurrence matrix based on the clustering results of Cycle 2 and then use it to perform spectral 

clustering (Ng et al., 2001). 

MAGIC can be directly applied to unseen external data with the following procedure. First, opNMF is 

not required to be retrained to unseen data because multi-scale feature extraction can be achieved via the 

projection 𝑳 =  𝑪𝐓𝑿. Subsequently, each single-scale feature is fit to each polytope (S1, S2, and S3 in Fig. 1) 

to derive the single-scale clustering solution. Finally, a similar consensus procedure is used to derive the final 

membership (S* in Fig. 1). 

 

3. Materials 

3.1. Datasets 

Three datasets are used in the current study: the UK Biobank (UKBB) study (Miller et al., 2016), the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Petersen et al., 2010), and the Psychosis 

Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) study (Chand et al., 2020; Rozycki et al., 

2018; Satterthwaite et al., 2010; Schnack et al., 2014, 2014; Wolf et al., 2014; Wood et al., 2001; T. Zhang et 

al., 2015; Zhu et al., 2016; Zhuo et al., 2016).  

The UKBB is a dataset of approximately 500,000 UK adults sampled via population-based registries 

(http://www.ukbiobank.ac.uk). Participants were recruited from across the United Kingdom, and initial 

enrolment was carried out from 2006 to 2010. Participants provided socio-demographic, cognitive, and medical 

data via questionnaires and physical assessments. Starting in 2014, a subset of the original sample later 

underwent brain magnetic resonance imaging (MRI). The UKBB data used in this work comprises 4403 CN 

participants whose T1-weighted (T1w) MRI was collected using Siemens 3T Skyra. The parameters of the 3D 

MPRAGE sequences are as follows: resolution=1.0×1.0×1.0 mm; field-of-view=256 mm x256 mm; TR = 2000 

ms; TE = 2.01 ms; TI = 880 ms; slices = 208; flip angle = 8 degrees (Miller et al., 2016).  
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The ADNI was launched in 2003 as a public-private partnership (https://www.adni-info.org/). The 

primary goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to measure the progression 

of MCI and early AD. The ADNI dataset used in our experiments comprises 1728 participants from ADNI 1, 2, 

3, and GO, for whom a T1w MRI was available at baseline: 339 AD, 541 CN, and 848 MCI were finally 

included. ADNI T1w images were performed both on 1.5T and 3T scanners with similar protocol parameters: 

256×256 matrix; voxel size=1.2×1.0×1.0 mm; TI=400 ms; TR=6.98 ms; TE=2.85 ms; flip angle=11°.  

The PHENOM dataset is an international consortium spanning five continents to better understand 

neurobiological heterogeneity in schizophrenia. The consortium aims to delineate schizophrenia brain subtypes 

with large sample sizes, enriched sample heterogeneity, and methodological advances that generalize across 

disparate sites and ethnicities. The PHENOM dataset used in this study includes 1166 participants (583 CN, and 

583 SCZ patients). In the current study, we included T1w images from eight sites of the PHENOM consortium 

with diverse imaging protocols.  

These datasets are described in detail in supplementary eMethod 2. Table 1 summarizes the basic 

demographics of all participants from the three datasets. 

 

Table 1. Summary of participant demographics for UKBB, ADNI, and PHENOM datasets. Values for age are 

presented as mean ± SD [range]. M: male, F: female. 

Study Diagnosis Subjects Age Gender 

UKBB CN 4403 63.21±7.41 [45, 80] 

 

2068 M / 2335 F 

 

 

 

ADNI 

CN 541 74.02±5.79 [56, 90] 253 M / 288 F 

MCI 848 73.15±7.56 [54, 89] 504 M / 344 F 

AD 339 74.78±7.87 [55, 90] 186 M / 153 F 

PHENOM CN 583 32.20±11.98 [13, 86] 

 

302 M / 281 F 

SCZ 583 33.70±11.04 [14, 78] 392 M / 191 F 

 

3.2. Image preprocessing 

Raw T1w MRIs were quality checked for motion, image artifacts, or restricted field-of-view. Images passing 

this quality check (QC) were corrected for magnetic field inhomogeneity (Tustison et al., 2010). A robust multi‐

atlas label fusion‐based method, MUSE (Doshi et al., 2016), was applied for tissue segmentation of the brain. 

Voxel-wise regional volumetric maps (RAVENS) (Davatzikos et al., 2001) were generated for grey matter (GM) 

tissues by registering skull-stripped images to a population-based template residing in the MNI-space using a 

deformable registration method (Ou et al., 2011). Another QC procedure was performed to control the quality 

of the images further. Specifically, the images were first checked by manually evaluating for pipeline failures 

(e.g., poor brain extraction, tissue segmentation, and registration errors). Furthermore, a second-step automated 

procedure automatically flagged images based on outlying values of quantified metrics (i.e., ROI values), and 

those flagged images were re-evaluated. 
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4. Experiments and results 

We first validated the proposed model using semi-simulated data in which we knew the ground truth for the 

number of clusters (k) and subtype membership assignment. In this setting, we quantitatively assessed how 

several key components influenced the clustering performance and compared our method’s performance to 

other common clustering approaches. Finally, we applied MAGIC to real clinical datasets for dissecting the 

heterogeneity of AD plus MCI and SCZ. In our experiments, different nuisance variables (i.e., age and sex or 

site) were controlled with a linear regression model in MAGIC for the multi-scale features. Specifically, the 

beta was estimated on healthy control subjects and then applied to all populations. 

 

4.1. Evaluation strategy 

We adopted a cross-validation (CV) procedure with repeated and stratified random splits for 100 repetitions to 

determine the appropriate number of clusters. Specifically, during each repetition, 80% of the data was for 

training. The “optimal” number of clusters was guided by the clustering stability across the 100 repetitions. The 

Adjusted Rand index (ARI) was used for that purpose, which we denoted as ARIs during CV (ARI_CV). 

Moreover, for simulation experiments, where the ground truth for subtype membership was known, ARI was 

also used to quantify the clustering performance, referred to as ARIs for ground truth (ARI_GT).  

After obtaining the assignment of subtype membership, we performed voxel-wise group comparisons for 

RAVENS GM maps between each subtype with CNs using the 3dttest++ program (Cox et al., 2017) in AFNI 

(Cox, 1996) to detect the distinct neuroanatomical patterns of the corresponding subtypes. The two-sample t-

test T-value map of AFNI was further converted to a P-value map applying correction for multiple comparisons 

with the Benjamini-Hochberg procedure. Effect sizes can for some purposes be more useful than P-values, since 

P-values are highly dependent on the sample size (Sullivan and Feinn, 2012). Thus, we calculated the effect 

size, Cohen’s f2 (Selya et al., 2012), for voxels that are significantly different between subtypes after adjusting 

the confounding covariates (i.e., age and sex). We chose Cohen’s f2 over Cohen’s d because the formulation of 

Cohen’s f2 takes into account the confounding covariates in a general linear model set-up, whereas Cohen’s d 

is simply the mean difference of two groups divided by the pooled standard deviation. We present the voxel-

wise effect size maps to delineate the subtypes’ neuroanatomical patterns for all experiments. For reference, 

Cohen’s f2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent small, medium, and large effect sizes, respectively (Selya et al., 

2012). 

 

4.2. Experiments using UKBB semi-simulated data 

The UKBB RAVENS GM maps were used to generate semi-simulated data. We first divided all CN subjects 

(N=4403) into pre-defined number of splits. Part of the splits was regarded as the true CN, and the remainder 

(i.e., pseudo-PT) was further divided into another number of splits for subtype simulations. The sample size of 

each subtype was balanced. Brain atrophy was then imposed onto RAVENS maps of each of the subtypes within 

different patterns. To simplify the simulation, we assume that patterns across the k subtypes are orthogonal with 

each other (we further tested the influence of overlapping patterns between subtypes). These regions were 

chosen a priori based on the segmentation image of the template image in the MNI space. Different choices for 

the number of subtypes (k) and atrophy strength level (ASL) were tested. For instance, for experiments with 

k=2 and ASL=0.1, voxel intensity values inside the two pre-defined patterns were reduced by 10% compared 

to their original values. Moreover, the ASL varied by ±2% across images to add randomness. In total, nine 

experiments were performed and summarized in Table 2. The ground truth of the pre-defined atrophy patterns 

of each subtype is shown in Fig. 3 (i.e., the first column). During simulation, we ensured that the subtype groups 

did not significantly differ in sex and age. Of note, the UKBB subjects were primarily diagnosed as 

neurodegenerative-speaking healthy controls, but they were also self-reported for various comorbidities (see 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41202). Therefore, age or comorbidity-related heterogeneity 

already exist in the original data. This setting is more realistic because heterogeneity caused by brain aging and 

pathologies often intertwine with each other.  
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In sum, we sought to compare MAGIC’s clustering performance to other unsupervised or semi-

supervised clustering methods. Since the influence of confounds on clustering performance may vary under 

different conditions, our second goal was to test under what conditions MAGIC can discover i) the true 

membership of the subtypes, ii) the true number of clusters (k); iii) its simulated atrophy patterns, and iv) its 

severity of the abnormal patterns (i.e., voxel-wise effect size map).  

 

Table 2. Summary of the original semi-simulated experiments. The number of subjects for each group is shown 

in parentheses. ASL: atrophy strength level; k: the number of clusters. Sub: Subtype. 

Experiment Subtype and sample size 

k=2 & ASL=0.1 CN (2201), Sub1 (1101), Sub2 (1101) 

k=2 & ASL=0.2 CN (2201), Sub1 (1101), Sub2 (1101) 

k=2 & ASL=0.3 CN (2201), Sub1 (1101), Sub2 (1101) 

k=3 & ASL=0.1 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k=3 & ASL=0.2 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k=3 & ASL=0.3 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k=4 & ASL=0.1 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

k=4 & ASL=0.2 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

k=4 & ASL=0.3 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

 

4.2.1. MAGIC discovers the correct number of clusters and corresponding 

simulated neuroanatomical patterns 

MAGIC was able to discover the correct number of clusters for the following experiments: k=2 & ASL=0.1, 

0.2 or 0.3 (Fig. 2A, B and C), k=3 & ASL=0.2 (Fig. 2E) or ASL=0.3 (Fig. 2F), and k=4 & ASL=0.3 (Fig. 2I). 

For other experiments, MAGIC failed to find the true k (Fig. 2D, G, and H), indicating that in the presence of 

high heterogeneity (K>2 or 3) and very subtle disease effect (10%-20%), the algorithm reaches a detection 

threshold.  

Voxel-wise effect size maps were generated to demonstrate whether MAGIC can find the ground truth 

of neuroanatomical atrophy patterns of subtypes. Of note, the actual neuroanatomical patterns revealed by the 

voxel-wise maps include heterogeneity due to both the simulation effects (i.e., disease effect) and normative 

brain aging, e.g., those voxels without any simulation in the P-value mask map (Fig. 3). To further support the 

normative brain aging heterogeneity, we derived the voxel-wise effect size map for the original images (without 

any simulation) of subjects from Sub1 and healthy control groups in Fig. 3A (supplementary eFigure 1), which 

showed specific abnormality patterns with small effect sizes. Moreover, we quantitatively evaluated how well 

MAGIC can recover the simulated voxels. For that purpose, we proposed a simulation accuracy metric (ACC): 

the proportion of the number of voxels that passed the statistical significance in the P-value mask maps over the 

number of voxels in the ground truth mask that was masked by the population-based RAVENS GM tissue mask 

(Fig. 3).  

In short, MAGIC was able to find the ground truth for all experiments, except for k=4 & ASL=0.1 (Fig. 

3G), in which small effects (Cohen’s f2<0.06) were detected in subcortical structures for all four subtypes. The 

voxels showing the largest effect sizes discovered by the effect size map were from the simulated regions. 

Furthermore, the P-value mask maps quantitatively showed that most of the simulated voxels could be detected 
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by MAGIC (Fig. 3). Lastly, the effect size of the subtype patterns increased with increasing ASL (refer to the 

effect sizes in each row of Fig. 3).  

 
Figure 2. MAGIC finds the ground truth of the number of clusters (k) when the clustering conditions are 

favorable, i.e., higher ASL or lower k. The “optimal” k was determined by ARI_CV. A) k=2 & ASL=0.1; B) 

k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & 

ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. The bold lines represent the ground truth of k for each 

experiment. 
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Figure 3. MAGIC finds the ground truth of subtype’s neuroanatomical patterns when the clustering conditions 

are favorable, i.e., higher ASL or lower k. Neuroanatomical patterns are displayed using effect size maps based 

on voxel-wise group comparisons between CN and subtypes. Positive values denote brain atrophy (CN > Sub), 

while negative values correspond to larger brain volume in subtypes (CN < Sub). The ground truth of the 

subtypes pattern is presented with a binary mask (white) for each k in the first column. Moreover, we proposed 

a simulation accuracy metric (ACC): the proportion of the number of voxels that passed the statistical 

significance in the P-value mask maps over the number of voxels in the ground truth mask that was masked by 

the population-based RAVENS GM tissue mask. A) k=2 & ASL=0.1, Sub1: ACC=0.77, Sub2: ACC=0.81; B) 

k=2 & ASL=0.2, Sub1: ACC=0.78, Sub2: ACC=0.84; C) k=2 & ASL=0.3, Sub1: ACC=0.78, Sub2: ACC=0.89; 

D) k=3 & ASL=0.1, Sub1: ACC=0.67, Sub2: ACC=0.70, Sub3: ACC=0.82; E) k=3 & ASL=0.2, Sub1: 

ACC=0.73, Sub2: ACC=0.74, Sub3: ACC=0.87; F) k=3 & ASL=0.3, Sub1: ACC=0.76, Sub2: ACC=0.72, Sub3: 

ACC=0.89; G) k=4 & ASL=0.1, Sub1: ACC=0.55, Sub2: ACC=0.54, Sub3: ACC=0.66, Sub4: ACC=0.59; H) 

k=4 & ASL=0.2, Sub1: ACC=0.66, Sub2: ACC=0.64, Sub3: ACC=0.65, Sub4: ACC=0.77; I) k=4 & ASL=0.3, 

Sub1: ACC=0.63, Sub2: ACC=0.66, Sub3: ACC=0.64, Sub4: ACC=0.79. For reference, Cohen’s f2 ≥ 0.02, ≥ 

0.15, and ≥ 0.35 represent small, medium, and large effect sizes, respectively. 

 

4.2.2. Comparison of MAGIC to other clustering methods  

We compared MAGIC to other commonly used unsupervised clustering methods and HYDRA. Specifically, 

K-means is a vector quantification method that aims to partition the patient population into k clusters in which 

each participant belongs to the cluster with the nearest mean (Hartigan and Wong, 1979). GMM performs 

clustering by assuming that there are specific numbers of Gaussian distributions in patients, and each of these 

distributions belongs to one cluster (McLachlan and Basford, 1988). NMF aims to factorize the input matrix 
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into two low-rank matrices with non-negative values. Intrinsically, the loading coefficient matrix conveys the 

clustering membership assignment (Lee and Seung, 2001). Lastly, the agglomerative hierarchical clustering 

(AHC) method is another unsupervised clustering method that seeks to build a hierarchy of clusters in a “bottom-

up” fashion (Day and Edelsbrunner, 1984). Moreover, we fit the unsupervised methods and HYDRA with i) 

single-scale features (dotted curve lines in Fig. 4) and ii) multi-scale features (solid straight lines in Fig. 4) 

together for comprehensive comparisons, since MAGIC always take multi-scale features. 

As displayed in Fig. 4, MAGIC obtained slightly better clustering results than HYDRA and 

substantially outperformed all other unsupervised clustering methods (i.e., K-means, GMM, NMF, and 

agglomerative hierarchical clustering). Specifically, MAGIC obtained higher ARI_GTs for the following 

experiments: k=2 & ASL=0.1 (Fig. 4A), k=3 & ASL=0.1 or 0.2 or 0.3 (Fig. 4D, E and F), and k=4 & ASL=0.2 

or 0.3 (Fig. 4H and I). All methods failed in clustering for experiment k=4 & ASL=0.1 (Fig. 4G). Furthermore, 

fitting all multi-scale features for HYDRA did not always perform better than the single-scale features and 

performed worse than MAGIC. Of note, fitting all multi-scales features (i.e., 910 features) for HYDRA took a 

much longer time to converge the model than single-scale HYDRA or MAGIC. For all experiments, we showed 

the consensus clustering performance and the standard deviation of the clustering performance across the 100 

repetitions (Fig. 4). We decided not to report P-values because the “probability” of a false positive in this cross-

validation scenario tends to be inflated. After all, no unbiased estimator of the correlation between the results 

obtained on the different repetitions exists (Nadeau and Bengio, 2003). 

 
Figure 4. MAGIC outperforms other common clustering methods. Comparisons of clustering performance 

between different methods: MAGIC, HYDRA, K-means, GMM, NMF, and agglomerative hierarchical 

clustering (AHC) (M=40 to 100 with a step as 5). The solid straight lines show clustering results for models that 

take multi-scale features as input and are drawn over all Ms only for visualization purposes. The dotted curve 

lines represent clustering results for models that take single-scale features as input. A) k=2 & ASL=0.1; B) k=2 

& ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & 
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ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. We report the final consensus clustering performance 

(ARI_GT) for all models, together with the standard deviation of the 100-repetition clustering results during 

CV. For models using single-scale features, we show the results with the single-scale obtaining the highest 

ARI_GT.  

 

4.2.3. Influence of the number of clusters 

When the number of clusters k increased, MAGIC’s clustering performance gradually decreased (i.e., each 

column in Fig. 4 represents the three experiments with the same ASL), except for experiments k=4 & ASL=0.3. 

For ASL=0.1, the ARI_GTs are 0.610, 0.368 and 0.091 for k=2, 3 and 4, respectively. For ASL=0.2, the 

ARI_GT decreased from 0.960 to 0.934 and to 0.713 for k=2, 3 and 4, respectively. For ASL=0.3, the ARI_GTs 

are 0.994, 0.995 and 0.966 for k=2, 3 and 4, respectively.  

 

4.2.4. Influence of atrophy strength levels 

With the increase of ASL, MAGIC's clustering performance gradually improved (i.e., each row in Fig. 4 

represents the three experiments with the same k). For k=2, the ARI_GTs are 0.610, 0.960 and 0.994 for 

ASL=0.1, 0.2 and 0.3, respectively. For k=3, the ARI_GT increased from 0.368 to 0.934 and to 0.995 for 

ASL=0.1, 0.2 and 0.3, respectively. For k=4, the ARI_GTs are 0.091, 0.713 and 0.966 for ASL=0.1, 0.2 and 

0.3, respectively. 

We visualized the subtypes/clusters in 2D space for all experiments using multidimensional scaling 

(Cox and Cox, 2008) (Fig. 5). With the increase of ASL at a given k, the clusters become more separable (i.e., 

each row in Fig. 5 represents the three experiments with the same k). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.04.19.440501doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440501
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 
Figure 5. Clusters found by MAGIC become more distinguishable when the clustering conditions are favorable, 

i.e., higher ASL or lower k. The clusters were projected into 2D space for visualization. Dimension 1 and 

Dimension 2 represent the two components projected by multidimensional scaling methods. A) k=2 & ASL=0.1; 

B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 

& ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. 

 

4.2.5. Influence of overlapping atrophy patterns 

We generated overlapping atrophy patterns based on the original experiments for each k. For k=2, Sub2 had 

subcortical atrophy in the initial experiments (Fig. 3), and we additionally simulated parietal atrophy. Similarly, 

for k=3 and 4, global cortical atrophy was imposed within Sub1 (frontal atrophy subtype in the original 

experiments) and Sub3 (temporal atrophy subtype in the initial experiments) members, respectively. The ground 

truth of overlapping neuroanatomical patterns is detailed in supplementary eFigure 2.  

As shown in Table 3, MAGIC obtained inferior clustering performance compared to the original 

experiments for i) k=2 & ASL=0.1, ii) k=3 & ASL=0.1, iii) k=3 & ASL=0.2 and iv) k=4 & ASL=0.2, and 

comparable results for experiments with ASL=0.3. The results for the ARI_CV, voxel-wise effect size maps 

and the 2D visualization of subtypes are presented in supplementary eFigure 2, 3 and 4, respectively. 
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Table 3. Comparison of the original clustering performance (left column) to the influence of overlapping 

atrophy patterns (middle column) and the larger brain volume (right column). Compared to the original 

experiments, overlapping atrophy patterns result in lower clustering performance, while larger brain volume 

shows no extensive clustering performance effects. 

Experiment Original experiments Overlapping atrophy patterns Larger brain volume 

k=2 & ASL=0.1 0.610 0.501 0.562 

k=2 & ASL=0.2 0.960 0.946 0.947 

k=2 & ASL=0.3 0.962 0.962 0.962 

k=3 & ASL=0.1 0.368 0.281 0.393 

k=3 & ASL=0.2 0.934 0.879 0.926 

k=3 & ASL=0.3 0.995 0.977 0.976 

k=4 & ASL=0.1 0.091 0.111 0.210 

k=4 & ASL=0.2 0.713 0.628 0.731 

k=4 & ASL=0.3 0.966 0.967 0.965 

 

4.2.6. Influence of larger regional brain volumes 

Instead of simulating brain atrophy as in the original experiments (Fig. 3), we introduced larger brain volumes 

by increasing the voxel’s intensity value inside the pre-defined patterns for Sub2 members for experiments k=2, 

Sub3 members for experiments k=3 and Sub4 members for experiments k=4. The simulated neuroanatomical 

patterns are detailed in supplementary eFigure 5. 

As shown in Table 3, MAGIC obtained comparable clustering performance to all settings’ original 

experiments. The results for the ARI_CV, voxel-wise effect size maps, and the 2D visualization of subtypes are 

presented in supplementary eFigure 5, 6, and 7, respectively. 

 

4.2.7. Influence of data imbalance 

We first evaluated the influence of data imbalance for CN vs. subtypes. The imbalance ratios were achieved by 

randomly subsampling from the groups of subtypes. As shown in Fig. 6 A, B, and C, clustering performance 

considerably increased when the groups became more balanced. With the highest imbalance ratio (8:1), all 

experiments obtained the lowest ARI_GTs. Generally, the ratios of 2:1 performed on par with the ratios of 1:1 

and 1:2.   

We then evaluated the influence of data imbalance among subtypes by assuming that CN and PT (sum 

of all subtypes) were balanced (Fig. 6D, E, and F). Similarly, clustering performance considerably increased 

with more balanced data. On the other hand, when ASL is large (i.e., 0.3), data imbalance showed a limited 

impact on clustering performance (e.g., Fig. 6D and E). 
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Figure 6. The influence of different ratios of imbalanced data between CN vs. subtypes is presented in Fig. A, 

B, and C, among subtypes in Fig. D, E and F. The influence of sample size is displayed in Fig. G, H, and I. A) 

influence of data imbalance between CN and subtypes for k=2; B) influence of data imbalance between CN and 

subtypes for k=3; C) influence of data imbalance between CN and subtypes for k=4; D) influence of data 

imbalance among subtypes for k=2. Clustering performance improves with the increase of the sample size. E) 

influence of data imbalance among subtypes for k=3; F) influence of data imbalance among subtypes for k=4; 

G) influence of sample sizes for k=2; H) influence of sample sizes for k=3; I) influence of sample sizes for k=4. 

 

4.2.8. Influence of sample size 

The influence of the sample size on clustering performance was assessed (Fig. 6G, H and I). For each experiment, 

MAGIC was run with data ranging from 10% to 100% of the sample size by keeping the original group ratios 

unchanged (i.e., CN vs. Sub1 vs. Sub2 vs ...). 

 Generally, clustering performance improved with the increasing sample size. For experiments k=2 & 

ASL=0.3 and k=3 & ASL=0.3, clustering performance was almost perfect at all different sample size choices. 

For experiment k=4 & ASL=0.1 (Fig. 6I), MAGIC obtained poor clustering performance.  
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4.3. Experiments using Alzheimer’s disease data 

When applied to ADNI data, ARI_CV was the highest at k=2 (<0.5), compared to other values of k (Fig. 7A). 

For k=2, The effect size maps revealed two distinct neuroanatomical patterns: i) Sub1 (N=396) showed relatively 

normal brain anatomy, except for focalized brain atrophy in subcortical regions. In contrast, Sub2 (N=791) had 

diffuse atrophy with the largest effect size (Cohen’s f2 = 0.45) in the hippocampus, amygdala, and temporal 

regions (Fig. 7B). For k=3, the three subtypes all presented diffuse brain atrophy (Fig. 7C). For k=4, Sub1 

(N=363) showed only focal atrophy in temporal regions. Sub2 (N=416) is the typical AD pattern showing whole-

brain atrophy and most severe atrophy in temporal and hippocampus regions. Sub3 (N=210) showed atypical 

AD patterns without affecting the hippocampus and temporal lobes (Fig. 7D). Sub4 (N=198) preserved 

relatively normal brain anatomy. Large effect sizes were detected in all subtypes but the neuroanatomical 

patterns overlapped and were focalized. 

The CV procedure obtained consistently higher ARI_CV for k=2. It generally divides the patients into 

mild and severe atrophied groups, which might not be clinically interesting. Using different semi-supervised 

clustering techniques but similar populations (AD and MCI from ADNI), we previously found four distinct 

subtypes (Dong et al., 2016b; Yang et al., 2021). Moreover, these subtypes have been previously reported in the 

works from other groups (see the Discussion section). To sum up, the results of ARI_CV, together with our 

semi-simulated experiments (Fig. 2D), might indicate that the CV procedure does not detect the true k due to 

unfavorable clustering conditions (e.g., the focalized effects or small sample size). Taken all together, we 

focused on k=4 for subsequent ADNI analyses.  

To support our claims, we compared the clinical characteristics of the four subtypes (Fig. 7E). Details 

are presented in supplementary eTable 1 for statistics and data availability. In general, Sub2 showed the highest 

TTau (127.62) and PTau (45.16), the highest ApoE Ɛ4 carrier rate (68%), and the most deficient cognitive 

performance across the four domains, whereas Sub4 showed the opposite trend and represented a more normal-

like clinical and neuroimaging profile.   

We demonstrated the utility of MAGIC for a binary classification task (541 CN vs 339 AD) using ADNI 

data and compared it to HYDRA and a linear SVM. We adopted the same cross-validation (CV) procedure as 

MAGIC for all models for a fair comparison. The constructed polytope was used for classification with MAGIC 

and HYDRA. MAGIC (0.85±0.03) obtained slightly better performance than HYDRA (0.84±0.04) and a linear 

SVM (0.82±0.04) (supplementary eFigure 8). 
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Figure 7. Applying MAGIC to AD and MCI patients of ADNI. A) Cross-validation for choosing the “optimal” 

k. In general, the ARI_CV is low for all different choices of k and with the highest for k=2. B) Voxel-wise effect 

size (Cohen’s f2) maps for the neuroanatomical patterns between the two subtypes and CN. C) Effect size maps 

for the three subtypes and CN neuroanatomical patterns. D) Effect size maps for the neuroanatomical patterns 

between the four subtypes and CN. E) Clinical characteristics for the four subtypes and CN. Mann–Whitney–

Wilcoxon test was used for continuous variables and the Chi-square test of independence for categorical 

variables. The significance threshold is 0.05 and * denotes statistical significance. All continuous variables were 

normalized for visualization purposes. We harmonized the low-dimensional components using the Combat-

GAM model (Pomponio et al., 2019) to mitigate the site effect. 
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4.4. Experiments using schizophrenia data 

We then applied MAGIC to PHENOM data. For model selection, the CV procedure showed consistently higher 

ARI_CV values for k=2 (ARI_CV>0.6) compared to other resolutions (Fig. 8A). For k=2, the effect size maps 

revealed two distinct neuroanatomical patterns: Sub1 (N=383) showed widespread brain atrophy compared to 

CN, with the highest effect size (Cohen’s f2=0.35) in the thalamus and insula. In contrast, Sub2 (N=200) 

exhibited no brain atrophy but larger brain volumes than CN in the pallidum and putamen (Fig. 8B). For k=3, 

the first two subtypes [Sub1 (N=302) and Sub2 (N=185)] persisted, and Sub3 (N=96) showed atrophy in frontal 

lobe and insula regions (Fig. 8C). For k=4, Sub4 (N=109) showed diffuse atrophy patterns with a small effect 

size (Cohen’s f2<0.07) (Fig. 8D).  

For k=2, MAGIC validated the two subtypes revealed in our previous work, in which HYDRA and a 

smaller sample size (364 CN and 307 SCZ) were used to derive the two subtypes (Chand et al., 2020). 

Subsequently, we compared the clinical characteristics of the two subtypes (Fig. 8E). Details are presented in 

supplementary eTable 2. Sub2 showed better performance in the global assessment of functioning (GAF) scale.   
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Figure 8. Applying MAGIC to schizophrenia patients from PHENOM. A) Cross-validation for choosing the 

“optimal” k. B) Voxel-wise effect size maps for the neuroanatomical patterns between the 2 subtypes and CN. 

C) Effect size maps for the neuroanatomical patterns between the three subtypes and CN. D) Effect size maps 

for the neuroanatomical patterns between the four subtypes and CN. E) Clinical characteristics for the two 

subtypes. Mann–Whitney–Wilcoxon test was used for continuous. The significance threshold is 0.05 and * 

denotes statistical significance. All continuous variables were normalized for visualization purposes. GAF: 

global assessment of functioning. We harmonized the low-dimensional components using the Combat-GAM 

model (Pomponio et al., 2019) to mitigate the site effect. Disease onset: age at onset. 
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5. Discussion 

Synopsis 

This paper presents MAGIC, a novel multi-scale semi-supervised clustering method for dissecting disease 

heterogeneity. The proposed method seamlessly integrates multi-scale representation learning and semi-

supervised clustering in a coherent framework via a double-cyclic optimization procedure to yield scale-

agnostic delineation of heterogeneous disease patterns. In contrast to existing unsupervised approaches 

presented in (Ezzati et al., 2020, 2020; Jeon et al., 2019, 2019; Jung et al., 2016; Lubeiro et al., 2016; 

Nettiksimmons et al., 2014; Ota et al., 2016; Pan et al., 2020; Park et al., 2017; Planchuelo-Gómez et al., 2020; 

Poulakis et al., 2020, 2020, 2018; Sugihara et al., 2016; Ten Kate et al., 2018), MAGIC is a semi-supervised 

approach, leveraging the patient-control dichotomy to drive subtypes that reflect distinct pathological processes. 

In contrast to the existing state-of-the-art semi-supervised clustering method (i.e., HYDRA), MAGIC can 

accurately delineate effect patterns that are both global and focal, thanks to its multi-scale optimization routine. 

The validity of MAGIC is demonstrated in semi-simulated experiments. We show MAGIC’s ability to discern 

disease subtypes and their neuroanatomical patterns under various simulated scenarios constructed by varying 

the ASL, sample size, and sample imbalance, respectively. More importantly, we showcased that the results of 

the analyses on ADNI and PHENOM datasets and the semi-simulated experiments exquisitely echo each other. 

Two clinically distinct subtypes of SCZ patients are established with high confidence, corresponding to the 

simulation where the clustering conditions are favorable. In contrast, the four subtypes in AD and MCI are less 

convincing, reflecting the simulation where the conditions are hard to disentangle.  

 

MAGIC outperforms comparable heterogeneity analysis methods 

Concerning clustering performance, MAGIC outperformed competing methods. On the one hand, compared to 

HYDRA, the minor gain in clustering accuracy in MAGIC is likely driven by multi-scale features that can better 

explain the variance due to heterogeneity. We hypothesize that the opNMF multi-scale components accurately 

reflect multi-scale brain organization that has previously been demonstrated in network analysis (Betzel and 

Bassett, 2017), brain modeling (Schirner et al., 2018), and signal processing (Starck et al., 1998) in the literature. 

Furthermore, multi-scale learning has shown great potential in medical imaging for different tasks, such as 

segmentation (Doshi et al., 2016; Kamnitsas et al., 2017) or classification (Cui et al., 2016; Hu et al., 2016). On 

the other hand, MAGIC substantially outperforms unsupervised clustering methods. Since unsupervised 

clustering methods directly partition patient samples into clusters based on similarity/dissimilarity or distance 

(Altman and Krzywinski, 2017), they may be more likely driven by confounding factors such as brain size, age, 

and sex instead of pathology-related variations, which is partially addressed by MAGIC. Namely, MAGIC can 

derive pathology-driven subtypes in a multi-scale manner by leveraging the reference label (i.e., CN) and the 

fuzzy patient labels (i.e., PT). 

Under what conditions does MAGIC succeed or fail? 

The critical yet challenging choice to be made in all algorithms related to clustering is to choose the appropriate 

number of clusters (Climescu-Haulica, 2007; Fu and Perry, 2020; Mirkin, 2011), since all clustering methods 

find patterns in data - whether they are real or not (Altman and Krzywinski, 2017). In addition to providing a 

new clustering method, we provided guidelines to these heterogeneity analysis algorithms’ practitioners. 

Specifically, our experiments shed light on selecting the number of clusters and provide criteria when the 

clustering analysis is reliable and when it needs to be approached with caution. In general, we suggest 

performing model selection using a cross-validation strategy based on clustering stability. In our experiments, 

ARI reliably recovered the ground truth number of clusters when the ASL and sample size were large and data 

was reasonably balanced. However, one should note that a lower number of clusters intrinsically gives more 

stable results (i.e., higher ARI_CV). In such cases, in actual clinical applications, other insights may be required 

to support further the subtypes found, such as the effect size map or prior clinical knowledge.   

Different choices of the key components (e.g., sample size or data imbalance) have detrimental or 

positive influences on clustering. With the increase of the complexity of clustering (e.g., increasing the number 

of clusters or decreasing ASL), MAGIC’s clustering performance degrades gradually. This is to be expected as 

the boundaries between clusters become increasingly blurred and indivisible. Moreover, imbalanced data have 
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adverse effects on clustering results. This is in line with previous findings (Dubey et al., 2014; Samper-González 

et al., 2018). The authors found that balanced data obtained better classification results than the imbalanced 

using T1w MRI from ADNI. Note that MAGIC essentially performs clustering and supervised classification 

simultaneously. Unsurprisingly, increased sample size leads to better clustering performance, consistent with 

the findings from previous studies (Abdulkadir et al., 2011; Chu et al., 2011; Franke et al., 2010; Samper-

González et al., 2018; Schulz et al., 2020b). The rule of thumb in semi-supervised clustering is to collect 

moderately balanced data and large samples in practice. Finally, instead of larger brain patterns, adding 

overlapping patterns made it more difficult to disentangle these effects. The former situation is more commonly 

present in practice. In these cases, larger sample cohorts may be needed to unravel the overlapping heterogeneity. 

Our semi-simulated experiments are of great value for assessing clustering results. They enable us to 

understand potential false-positive results. Namely, suppose the sample size, ARI_CV, and/or the effect sizes 

are low. In that case, none of the existing methods may uncover the true heterogeneity or may reveal a lower 

number of subtypes than what is present.  

 

Subtypes in AD and MCI   

Applying the proposed method to structural imaging data from ADNI indicates that the current sample size or 

technique cannot detect the “true” number of clusters. This result is consistent with the semi-simulated 

experiment, in which the resolution of k=2 intrinsically tends to be higher when the clustering conditions are 

less favorable (Fig. 2D). In such cases, clinical priors and external validation of the claimed subtypes are highly 

demanded. Furthermore, neurodegenerative diseases are highly heterogeneous, and the neuroanatomical 

patterns might be highly overlapping. For instance, previous autopsy studies (DeTure and Dickson, 2019; Perl, 

2010) have shown that pure AD cases are relatively infrequent, as AD and other comorbid conditions (e.g., 

vascular disease or Lewy body disease) often co-exist (Rabinovici et al., 2016).  

Among the four subtypes, Sub4 displays normal brain anatomy (Fig. 7D). This was supported by the 

distribution of AD/MCI. Sub4 (164 MCI & 34 AD) has the highest proportion of MCI. The normal anatomy 

subtype has been confirmed in previous works both from semi-supervised and unsupervised methods (Dong et 

al., 2016b; Ezzati et al., 2020; Jung et al., 2016; Nettiksimmons et al., 2014; Ota et al., 2016; Poulakis et al., 

2020, 2018; Ten Kate et al., 2018; Yang et al., 2020). Sub2 showed typical AD-like neuroanatomical patterns 

with diffuse atrophy over the whole brain, with the largest effect size in the hippocampus and medial temporal 

lobe. Those affected regions have been widely reported as hallmarks of AD in case-control studies (Hanyu et 

al., 1998; Müller et al., 2005; Varghese et al., 2013) and have been confirmed in previous clustering literature 

(Dong et al., 2016b; Nettiksimmons et al., 2014; Noh et al., 2014; Poulakis et al., 2018; Ten Kate et al., 2018; 

Varol et al., 2017; Yang et al., 2020; Young et al., 2018). Conversely, Sub3 showed an atypical widespread 

atrophy pattern that did not include the hippocampus and the temporal lobe (Dong et al., 2016b; Poulakis et al., 

2018; Yang et al., 2020).  

The clinical characteristics of the four subtypes are in line with their neuroanatomical patterns (Fig. 7E). 

The normal-like subtype had the lowest level with respect to CSF amyloid-b 1-42, CSF-tau levels, most minor 

cognitive impairment. Moreover, despite the methodological differences across studies, the resulting subtypes’ 

agreement emphasizes that AD should be considered a neuroanatomically heterogeneous disease. These distinct 

imaging signatures or dimensions may elucidate different brain mechanisms and pathways leading to AD and 

eventually contribute to the refinement of the “N” dimension in the “A/T/N” system (Jack et al., 2016).  

 

Subtypes in schizophrenia  

MAGIC discovered two highly reproducible and neuroanatomically distinct subtypes in schizophrenia patients. 

MAGIC obtained consistently higher clustering stability for k=2 (ARI_CV>0.6) and large effect size for 

subtypes’ neuroanatomical patterns. Furthermore, these two subtypes were retained for a higher resolution of 

the number of subtypes (k>2). Sub1’s neuroanatomical patterns are in line with previous case-control literature, 

demonstrating widespread GM atrophy (Okada, N et al., 2016; Rozycki et al., 2018; van Erp et al., 2016). In 

contrast, Sub2 showing larger brain volume in basal ganglia corresponds to previous works reporting subcortical 

GM increases (Brugger and Howes, 2017; Okada, N et al., 2016, 2016; W. Zhang et al., 2015). Moreover, Sub2 
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showed less functional disability (higher GAF). The two subtypes found by MAGIC reinforce the need for the 

refinement of the neuroanatomical dimensions in schizophrenia.  

 

Potential and challenges 

The application of clustering methods to neuroimaging data has recently drawn significant attention and has led 

to several key publications in recent years. Herein we demonstrated MAGIC’s potential for dissecting the 

neuroanatomical heterogeneity of brain diseases, indicating that the current “all-in-one-bucket” diagnostic 

criteria may not be appropriate for certain neurodegenerative and neuropsychiatric disorders. On the other hand, 

clustering methods always end up with clusters, even if there are no natural clusters in the data (Altman and 

Krzywinski, 2017). If they indeed exist, the disease subtypes often present neuroanatomically overlapping 

patterns, unlike the semi-simulated conditions with purely defined orthogonal patterns. None of the 

heterogeneity analysis tools were sufficiently powered to accurately disentangle heterogeneity in small sample 

cohorts or with weak discriminative power of pattern identifiability in our experiments. In this case, care must 

be taken to provide additional information, such as external validation of subtypes to clinical profiles, to 

substantiate any clinical interpretation of the identified subtypes. 

To sum up, our semi-simulated results and the application to ADNI and PHENOM datasets emphasize 

the value of the current work. We provide the semi-simulated experiments and the proposed model to the 

community and offer new vistas for future research in refining subtypes in brain diseases. The reproducibility 

of clustering, effect size maps of subtypes, and sample imbalance should be carefully examined. Ultimately, 

good practices, such as extensive reproducibility analyses, including permutation tests (Chand et al., 2020), 

should be performed to support the subtypes’ stability and robustness. However, we observed a steady 

improvement of clustering performance with increased sample sizes even with overlapping anatomical patterns. 

This is a promising sign for the utility of these machine learning-based clustering tools with the increasing 

demand for large neuroimaging consortia.  

Our model nevertheless has the following limitations. First, MAGIC is designed for “pure” clustering 

tasks that seek the disease’s subtypes without considering the disease progression factors or stages (Young et 

al., 2018). A future direction is extending MAGIC to assign subtypes to longitudinal scans and study disease 

progression. Moreover, the sample size of AD necessary to draw a solid conclusion for those subtypes may be 

larger than analyzed. Clustering performance was positively associated with sample size in our simulation. 

Moreover, a possible extension of the proposed method is integrating clinical or genetic data to derive subtypes 

that show consistency across different modalities. Lastly, external validation of the claimed AD subtypes to an 

independent dataset, such as the Dementias Platform UK (DPUK) (Bauermeister et al., 2020), is another future 

direction.  
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eMethod 1. HYDRA 

The core motor of the HYDRA algorithm is the non-linear polytope that is constructed by multiple (number of 

clusters) linear hyperplanes from linear SVMs. Herein, we briefly introduce the mathematical fundamentals of 

HYDRA. For more details, we encourage the readers to refer to (Varol et al., 2017). 

Support vector machine 

SVM aims to estimate a hyperplane that separates the two groups by a half-space while ensuring that the 

distance/margin from the hyperplane is maximized for each data point. Let us denote 𝒘 as all possible linear 

classifiers in the set Ƒ for a given dataset Ɗ. The goal of an SVM is to find the classifier belonging to the set Ƒ 

that maximizes the margin: 

𝒘𝑻𝒖 + 𝑏 = +1 and   𝒘𝑻𝒗 + 𝑏 = -1  

where the set of points from both groups 𝒖 and v satisfy the equation. The margin can be derived as ‖𝒖 −𝒗‖2 =

 
2

‖𝒘‖2
, since u and v are parallel with each other. 

 This leads to the well-known SVM objective:  

min
𝑤,𝑏,𝜉 

‖𝒘‖2
2

2
+ 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘𝑻𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  𝑎𝑛𝑑 𝜉𝑖 ≥ 0 

where 𝜉𝑖 represents the slack term when the two groups are non-separable. 

Convex polytope construction via linear SVMs 

HYDRA exquisitely constructs a “polytope” that can separate each cluster/subtype with a face of the polytope 

– that is, derived from a linear SVM. Let’s confine the control group to its interior region of the polytope and 

the patient group to its exterior. Thus, the search space Ƒ𝑘 can be defined as: 

Ƒ𝑘 {{𝑤𝑗, 𝑏𝑗 }
𝑗=1

𝑘
|∀𝑗, 𝑤𝑗

𝑇𝑥𝑖 + 𝑏𝑗 ≥ 1 if 𝑦𝑖 = −1, ∃𝑗: 𝑤𝑗
𝑇𝑥𝑖 + 𝑏𝑗 ≤ −1 if  𝑦𝑖 = +1}

=

∆

 

 In short, the set Ƒ𝑘 comprises all sets of k linear SVMs such that all CN subjects were correctly classified, 

while every patient was at least precisely classified by one hyperplane. Subsequently, deriving the clustering 

membership is straightforward. The search space can be rewritten as: 

Ƒ𝑘(𝑺−) {{𝑤𝑗, 𝑏𝑗 }
𝑗=1

𝑘
|∀𝑗, 𝑤𝑗

𝑇𝑥𝑖 + 𝑏𝑗 ≥ 1, if 𝑦𝑖 = −1, 𝑤𝑗
𝑇𝑥𝑖 + 𝑏𝑗 ≤ −1 if  𝑦𝑖 = +1 and 𝑠𝑖,𝑗 = 1}

=

∆

 

where 𝑺− ∈ {0, 1}𝑛−x𝑘 denotes the binary matrix that describes the assignment of the i-th patient sample to the 

j-th face of the polytope. HYDRA maximizes the average margin across all faces of the polytope. The objective 

of HYDRA is separable into k-independent subproblems; each subproblem is analogous to the SVM formulation: 

min
𝒘𝑗,𝑏𝑗,𝜉𝑗  

‖𝑤𝑗‖
2

2

2
+ 𝜇 ∑ 𝜉𝑖,𝑗

𝑛

𝑖=1

 

Where 𝜇 is the penalty parameter on the training error. If we consider all k-hyperplanes together, this leads to 

the Equation. 3 in the main manuscript. 

 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.04.19.440501doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440501
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

eMethod 2. Main datasets  

Three datasets have been mainly used for the current study: the UK Biobank (UKBB) studies, the Alzheimer's 

Disease Neuroimaging Initiative (ADNI), and the Psychosis Heterogeneity Evaluated via Dimensional 

Neuroimaging (PHENOM) study. In the following, we briefly describe these datasets. 

● UK Biobank (UKBB) 

For our study sample, we used the UK Biobank, a dataset of approximately 500,000 UK adults sampled via 

population-based registries (http://www.ukbiobank.ac.uk). The UK Biobank received ethical approval from the 

National Research Ethics Service Committee North West–Haydock (reference 11/NW/0382). All participants 

provided informed consent and were aged from approximately 40 to 69 years of age at the time of enrollment 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). Participants were recruited from across the United 

Kingdom, and initial enrollment was carried out from 2006 to 2010. Participants provided socio-demographic, 

cognitive, and medical data via questionnaires and physical assessments. Starting in 2014, a subset of the 

original sample later underwent magnetic-resonance brain imaging (MRI) (UK Biobank Brain Imaging 

Documentation, http://www.ukbiobank.ac.uk). The MRI data used in the current study were acquired between 

2014 and 2019. Specifically, in our semi-simulated experiments, we finally included 4403 subjects whose T1-

weighted (T1w) MRI was available (UKBB Application Number 35148). 

● Alzheimer's Disease Neuroimaging Initiative (ADNI) 

Part of the data used in the preparation of this article was obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, 

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information, see www.adni-info.org.1 

The ADNI study is composed of 4 cohorts: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. These cohorts are 

dependent and longitudinal, meaning that one cohort may include the same patient more than once and that 

different cohorts may include the same patients. Diagnosis labels are given by a physician after a series of tests 

(Petersen et al., 2010). The existing labels are: 

- AD (Alzheimer's disease): mildly demented patients, 

- MCI (mild cognitive impairment): patients in the prodromal phase of AD, 

- NC (normal controls): elderly control participants, 

- SMC (significant memory concern): participants with cognitive complaints and no pathological 

neuropsychological findings. The designations SMC and subjective cognitive decline (SCD) are 

equivalently found in the literature. 

Since the ADNI-GO and ADNI-2 cohorts, new patients at the very beginning of the prodromal stage 

have been recruited (Aisen et al., 2010), hence the MCI label has been split into two labels: 

- EMCI (early MCI): patients at the beginning of the prodromal phase, 

- LMCI (late MCI): patients at the end of the prodromal phase (similar to the previous label MCI of 

ADNI-1). 

This division is made on the basis of the score obtained on memory tasks corrected by the education 

level. However, both classes remain very similar, and they are fused in many studies under the MCI label. We 

downloaded ADNI 1 and 2 data in December 2017, then added a small set of ADNI 3 in June 2020 for this 

work. 

● Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) 

Progress in delineating schizophrenia brain subtypes requires increased sample sizes, increased sample 

heterogeneity, and methodological advances that generalize across disparate sites and ethnicities. To respond to 

this challenge, we established a consortium spanning three continents called PHENOM ('Psychosis 

Heterogeneity Evaluated via Dimensional Neuroimaging') (Chand et al., 2020; Satterthwaite et al., 2010; Wolf 

et al., 2014; T. Zhang et al., 2015; Zhu et al., 2016; Zhuo et al., 2016). We included chronic schizophrenia 
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patients from eight international cohorts in the current study. The PHENOM sample comprises individuals with 

established schizophrenia (N=583) and healthy controls (N=583), including data from the USA, Germany, 

China, Australia, and Netherland. In the USA, subjects were recruited at the University of Pennsylvania and 

provided written informed consent under a protocol approved by the Institutional Review Board. Expert 

clinicians conducted the subject assessment. Diagnostic assessment employed the Structured Clinical Interview 

for DSM-IV (SCID). Subject exclusion criteria were a history of substance abuse in the past six months or a 

positive urine drug screen on the day of the study. Healthy control subjects were excluded if they met any DSM-

IV psychiatric disorder criteria. Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the 

Assessment of Negative Symptoms (SANS) was assessed for patients. In Germany, subjects were recruited at 

Ludwig-Maximilians University following the ethics committee's study approval. Subjects provided their 

written informed consent. Patient assessments were carried out by expert clinicians. The assessment included 

the SCID for Axis I & II disorders (SCID-I/-II), a clinical semi-standardized evaluation of medical and 

psychiatric history, review of medical records and psychotropic medications, and the evaluation of the Positive 

and Negative Syndrome Scale (PANSS) for disease severity and psychopathology. Individuals were excluded 

if they had other psychiatric and/or neurological diseases, past or present regular alcohol abuse, consumption 

of illicit drugs, past head trauma with loss of consciousness or electroconvulsive treatment, insufficient 

knowledge of German, IQ < 70, and age < 18 or > 65 years. Healthy controls with a positive familial history 

for mental illnesses (first-degree relatives) were also excluded. In China, subjects were recruited at Tianjin 

Medical University General Hospital following the Ethics Committee's study approval. Each subject provided 

written informed consent. Diagnosis of patients was assessed following two clinical psychiatrists' consensus 

using DSM-IV/SCID. Inclusion criteria were 16–60 years of age and right-handedness. Exclusion criteria were 

MRI contraindications, pregnancy, histories of systemic medical illness, central nervous system disorder and 

head trauma, and substance abuse within the last three months or lifetime history of substance abuse or 

dependence. The exclusion criteria were a history of psychiatric disease and first-degree relatives with a 

psychotic disorder for healthy control subjects. PANSS scores were assessed for patients for disease severity 

and psychopathology. 
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eFigure 1. Voxel-wise effect size maps for original UKBB subjects from Sub1 and healthy control group before 

any simulation. Abnormality patterns exist in healthy control populations caused by typical brain aging. 

Therefore, the heterogeneity the proposed method recovered includes two sources: i) the simulated effect to 

mimic the disease effects and ii) the heterogeneity caused by typical brain aging in the original voxels.  
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eFigure 2. MAGIC finds the ground truth of the number of clusters (k) when the clustering conditions are 

favorable, i.e., higher ASL or lower k. The “optimal” k was determined based on the ARI (ARI_CV). A) k=2 

& ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & 

ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. The bold lines represent the ground 

truth of k for each experiment.  
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eFigure 3. MAGIC finds the ground truth of subtype’s neuroanatomical patterns when the clustering conditions 

are favorable, i.e., higher ASL or lower k. Neuroanatomical patterns are displayed using effect size maps based 

on voxel-wise group comparisons between CN and subtypes. Positive values denote brain atrophy (CN > Sub), 

while negative values correspond to larger brain volume in subtypes (CN < Sub). The ground truth of the 

subtypes pattern is presented with a binary mask (white) for each k in the first column. A) k=2 & ASL=0.1; B) 

k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & 

ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. For reference, Cohen’s f2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent 

small, medium, and large effect sizes, respectively. 
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eFigure 4. Clusters found by MAGIC become more distinguishable when the clustering conditions are 

favorable, i.e., higher ASL or lower k. The clusters were projected into the 2D space for visualization. 

Dimension 1 and Dimension 2 represent the two components projected by multidimensional scaling methods. 

A) k=2 & ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 

& ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3.   
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eFigure 5. MAGIC finds the ground truth of the number of clusters (k) when the clustering conditions are 

favorable, i.e., higher ASL or lower k. The “optimal” k was determined based on the ARI (ARI_CV). A) k=2 & 

ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; 

G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. The bold lines represent the ground truth of k for 

each experiment.  
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eFigure 6. MAGIC finds the ground truth of subtype’s neuroanatomical patterns when the clustering conditions 

are favorable, i.e., higher ASL or lower k. Neuroanatomical patterns are displayed using effect size maps based 

on voxel-wise group comparisons between CN and subtypes. Positive values denote brain atrophy (CN > Sub), 

while negative values correspond to larger brain volume in subtypes (CN < Sub). The ground truth of the 

subtypes pattern is presented with a binary mask (white for positive and red for negative direction) for each k 

in the first column. A) k=2 & ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 

& ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. For reference, 

Cohen’s f2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent small, medium, and large effect sizes, respectively. 
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eFigure 7. Clusters found by MAGIC become more distinguishable when the clustering conditions are 

favorable, i.e., higher ASL or lower k. The clusters were projected into the 2D space for visualization. 

Dimension 1 and Dimension 2 represent the two components projected by multidimensional scaling methods. 

A) k=2 & ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 

& ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. 
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eFigure 8. Classification performance for ADNI CN vs AD task across different models, i.e., MAGIC, HYDRA, 

and a linear SVM. We adopted the same cross-validation (CV) procedure as MAGIC for all models for a fair 

comparison. Specifically, a non-nested CV with repeated and stratified random splits for 250 repetitions was 

performed. During each repetition, 80% of the data was for training. We did not adopt a nested CV procedure 

as in (Samper-González et al., 2018) because this is computationally heavy and technically complex for MAGIC. 

Therefore, the clustering accuracies reported here are lower than their reproducible baseline performance. For 

MAGIC, the final polytope (created by 4 SVM hyperplanes) of each repetition was used to classify CN vs AD. 

MAGIC: 0.85±0.03; HYDRA: 0.84±0.04 and SVM: 0.82±0.04. 

 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.04.19.440501doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440501
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

eTable 1. Clinical characteristics of the 4 subtypes found by MAGIC in ADNI.  

Table A: For a continuous variable, mean and standard deviation are shown; for categorical variables, the 

percentage is shown. The number of subjects that are available for the data is shown in parentheses. Composite 

cognitive scores across several domains have been previously validated in ADNI, including a memory 

composite (ADNI-MEM) (Crane et al., 2012), an executive function composite (ADNI-EF) (Gibbons et al., 

2012), a language composite (ADNI-LAN) (Deters et al., 2017), and a visuospatial composite (ADNI-VS) 

(Choi et al., 2020). For ADNI, data are from three phases, ADNI1, 2, and 3. In Table A, the number was shown 

for each phase (ADNI1/ADNI2/ADNI3). 

Table B: We computed the P-value pairwise across the four subtypes. Mann–Whitney–Wilcoxon test was used 

for continuous variables (e.g., age) and the Chi-Square test of independence for categorical variables (e.g., sex). 

The significance threshold was 0.05.  

Table A Sub1 (363) Sub2 (416) Sub3 (210) Sub4 (198) CN (541) 

Age 75.36±6.90 73.26±8.16 71.86±7.75 73.62±7.17 74.12±5.83 

Sex (% female) 35% 44% 47% 45% 53% 

Phase* 246/113/4 252/159/5 105/102/3 106/90/2 291/225/25 

TTau 100.76±67.12 

(94) 

127.62±62.38 

(149) 

101.72±56.07 

(56) 

93.49±46.99 

(62) 

69.76±34.62 

(132) 

PTau 38.43±23.67 

(94) 

45.16±21.11 

(149) 

39.59±19.50 

(56) 

38.19±22.32 

(62) 

29.28±17.54 

(133) 

Abeta-β 156.33±48.00 

(94) 

146.18±42.47 

(149) 

158.42±52.87 

(56) 

169.43±56.46 

(62) 

202.25±52.00 

(132) 

ApoE Ɛ4 carriers 53%  

(294) 

63%  

(370) 

58%  

(185) 

46%  

(161) 

29%  

(506) 

ADNI-EF -0.15±0.97 

(165) 

-0.55±0.99 

(278) 

-0.42±0.98 

(121) 

0.15±0.82 

(123) 

0.71±0.74 

(295) 

ADNI-MEM -0.24±0.67 

(165) 

-0.49±0.67 

(278) 

-0.21±0.70 

(121) 

-0.06±0.69 

(123) 

0.98±0.54 

(295) 

ADNI-LAN -0.22±0.82 

(165) 

-0.46±0.90 

(278) 

-0.26±0.89 

(121) 

0.16±0.75 

(123) 

0.80±0.69 

(295) 

ADNI-VS -0.16±0.76 

(165) 

-0.42±0.89 

(278) 

-0.35±0.90 

(121) 

-0.09±0.79 

(123) 

0.24±0.59 

(295) 

 

Table B Sub1 vs Sub2 Sub1 vs Sub3 Sub1 vs Sub4 Sub2 vs Sub3 Sub2 vs Sub4 Sub3 vs Sub4 

Age 0.003 <0.001 0.004 0.07 0.43 0.06 

Sex (% female) 0.02 0.002 0.57 0.29 0.92 0.47 

Phase <0.001 <0.001 <0.001 0.06 0.08 0.17 

TTau <0.001 0.28 0.40 <0.001 <0.001 0.17 

PTau <0.001 0.16 0.49 0.04 0.001 0.21 

Abeta-β 0.08 0.43 0.11 0.10 0.007 0.22 

ApoE Ɛ4 0.23 0.31 0.70 0.01 0.10 0.57 
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carriers 

ADNI-EF <0.001 0.03 0.008 0.17 <0.001 <0.001 

ADNI-MEM 0.003 0.19 <0.001 0.001 <0.001 0.008 

ADNI-LAN 0.03 0.30 0.001 0.03 <0.001 0.02 

ADNI-VS 0.003 0.09 0.38 0.20 0.03 0.23 
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eTable 2. Clinical characteristics of the 2 subtypes found by MAGIC in PHENOM.  

For a continuous variable, mean and standard deviation are shown; for a categorical variable, the percentage is 

shown. The number of subjects that are available for the data is shown in parentheses. We computed the P-value 

pairwise across the two subtypes. Mann–Whitney–Wilcoxon test was used for continuous variables (i.e., age) 

and ordinal variable (i.e., education), and the Chi-Square test of independence for categorical variables (e.g., 

sex). The significance threshold was 0.05. -- denotes data not available; PANSS: positive and negative syndrome 

scale; GAF: global assessment of functioning.  

Variable Sub1 (383) Sub2 (200) CN (583) Sub1 vs Sub2 

Age 34.89±11.33 31.42±10.11 32.20±11.98 0.02 

Sex (% female) 30% 36% 48% 0.32 

Disease duration 

(years) 
12.76±9.78 

(83) 

11.78±9.07 

(17) 

-- 0.21 

GAF 46.92±12.65 

(83) 

54.05±12.19 

(17) 

-- 0.01 

Age at onset (years) 20.85±5.60 

(83) 

19.05±4.91 

(17) 

-- 0.12 

PANSS positive 15.97±4.51 

(83) 

14.94±3.91 

(17) 

-- 0.25 

PANSS negative 17.09±4.40 

(83) 

16.01±5.67 

(17) 

-- 0.29 

Education 2.45 ±0.50 

(83) 

2.52±0.51 

(17) 

-- 0.29 
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