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The intrinsic DNA sequence preferences and cell-type specific cooperative partners of tran-
scription factors (TFs) are typically highly conserved. Hence, despite the rapid evolutionary
turnover of individual TF binding sites, predictive sequence models of cell-type specific
genomic occupancy of a TF in one species should generalize to closely matched cell types in a
related species. To assess the viability of cross-species TF binding prediction, we train neural
networks to discriminate ChIP-seq peak locations from genomic background and evaluate their
performance within and across species. Cross-species predictive performance is consistently
worse than within-species performance, which we show is caused in part by species-specific
repeats. To account for this domain shift, we use an augmented network architecture to
automatically discourage learning of training species-specific sequence features. This domain
adaptation approach corrects for prediction errors on species-specific repeats and improves
overall cross-species model performance. Our results demonstrate that cross-species TF bind-
ing prediction is feasible when models account for domain shifts driven by species-specific
repeats.

Characterizing where transcription factors (TFs) bind
to the genome, and which genes they regulate, is key
to understanding the regulatory networks that estab-
lish and maintain cell identity. A TF’s genomic occu-
pancy depends not only on its intrinsic DNA sequence
preferences, but also on several cell-specific factors, in-
cluding local TF concentration, chromatin state, and co-
operative binding schemes with other regulators (Sig-
gers and Gordân 2014; Slattery et al. 2014; Srivastava
and Mahony 2020). Experimental assays such as ChIP-
seq can profile a TF’s genome-wide occupancy within a
given cell type, but such experiments remain costly, rely
on relatively large numbers of cells, and require either
high-quality TF-specific antibodies or epitope tagging
strategies (Park 2009; Savic et al. 2015). Accurate pre-
dictive models of TF binding could circumvent the need
to perform costly experiments across all cell types and
all species of interest.

Cross-species TF binding prediction is complicated
by the rapid evolutionary turnover of individual TF
binding sites across mammalian genomes, even within
cell types that have conserved phenotypes. For exam-
ple, only 12-14% of binding sites for the key liver regu-

lators CEBPA and HNF4A are shared across orthologous
genomic locations in mouse and human livers (Schmidt
et al. 2010). On the other hand, the general features of
tissue-specific regulatory networks appear to be strongly
conserved across mammalian species. The amino acid
sequences of TF proteins, their DNA binding domains,
and intrinsic DNA sequence preferences are typically
highly conserved (e.g., both CEBPA and HNF4A have at
least 93% whole protein sequence identity between hu-
man and mouse). Further, the same cohorts of orthol-
ogous TFs appear to drive regulatory activities in ho-
mologous tissues. Thus, while genome sequence con-
servation information is not sufficient to accurately pre-
dict TF binding sites across species, it may still be possi-
ble to develop predictive models that learn the sequence
determinants of cell-type specific TF binding and gen-
eralize across species. Indeed, several recent studies
have demonstrated the feasibility of cross-species pre-
diction of regulatory profiles using machine learning ap-
proaches (Chen et al. 2018; Kelley 2020; Schreiber et al.
2020; Huh et al. 2018).

Here, we evaluate different training strategies on
the generalizability of neural network models of cell-
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type specific TF occupancy across species. We train our
model using genome-wide TF ChIP-seq data in a given
cell type in one species, and then assess its performance
in predicting genome-wide binding of the same TF in a
closely matched cell type in a different species. Specifi-
cally, we focus on predicting binding of four TFs (CTCF,
CEBPA, HNF4A, and RXRA) in liver due to the existence
of high quality ChIP-seq data in both mouse and human.
The models for all TFs showed higher predictive perfor-
mance for training and test sets from the same species as
compared to training and test sets from different species.
We show that one source of this cross-species perfor-
mance gap is a systematic misclassification of transpos-
able elements that are specific to the target species (and
which were thus unseen during model training).

We further demonstrate that integrating an unsu-
pervised domain adaptation approach into model train-
ing partially addresses the cross-species performance
gap. Our domain adaptation strategy involves a neural
network architecture with two sub-networks that share
an underlying convolutional layer. We train the two
sub-networks in parallel on different tasks. One subnet-
work is trained with standard backpropagation to opti-
mize classification of TF bound and unbound sequences
in one species (the source domain). The other subnet-
work attempts to predict species labels from sequences
drawn randomly from two species (the source and tar-
get domain), but training is subject to a gradient rever-
sal layer (GRL) (Ganin et al. 2016). While backpropa-
gation typically has the effect of giving higher weights
to discriminative features, a GRL reverses this effect,
and discriminative features are down-weighted. Thus,
our network encourages features in the shared convo-
lutional layer that discriminate between bound and un-
bound sites, while simultaneously discouraging features
that are species-specific. Importantly, we neither need
nor use TF binding labels from the target species at any
stage in training. We show that domain adaptation tech-
niques have the potential to improve cross-species TF
binding prediction, particularly by preventing mispre-
diction on species-specific repeats.

Results
Conventionally trained neural network models of TF
binding show reduced predictive performance across
species

First, we set out to evaluate the ability of neural net-
works to predict TF binding in a previously unseen
species. We chose neural networks due to their abil-
ity to learn arbitrarily complex predictive sequence pat-
terns (Avsec et al. 2021a; Avsec et al. 2021b; Fuden-

Figure 1: Conventional network architecture. Convolu-
tional filters scan the 500-bp input DNA sequence for TF
binding features. The convolutional layer is followed by
a recurrent layer (LSTM) and two fully connected layers.
A final sigmoid-activated neuron predicts if a ChIP-seq
peak falls within the input window.

berg et al. 2020; Kelley 2018; Koo et al. 2021). In par-
ticular, hybrid convolutional and recurrent network ar-
chitectures have successfully been applied to accurately
predict TF binding in diverse applications (Quang and
Xie 2016; Quang and Xie 2019; Srivastava et al. 2020).
The motivation behind these architectures is that convo-
lutional filters can encode binding site motifs and other
contiguous sequence features, while the recurrent layers
can model flexible, higher-order spatial organization of
these features. Our baseline neural network is designed
in line with these state-of-the-art hybrid architectures
(Figure 1).

Using this architecture, named the “conventional
model,” we trained the network to predict whether a
given input sequence contained a ChIP-seq peak or not,
using training data from a single source species, and
then assessed the model’s predictive performance on en-
tire held-out chromosomes in both the source species
and a target (previously unseen) species. We chose
mouse and human as our species of interest due to the
availability of high-quality TF ChIP-seq datasets in liver
from both species and the high conservation of key regu-
lator TFs present in both species. For four different TFs,
we trained two sets of models: one with mouse as the
source species, and the other with human as the source
species. To monitor reproducibility, model training was
repeated 5 times for each TF and source species.

As models trained for 15 epochs, we monitored
source-species and target-species performance on held-
out validation sets (Figure 2). Performance was mea-
sured using the area under the precision-recall curve
(auPRC) which is sensitive to the extreme class imbal-
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Figure 2: Model performance over the course of training,
evaluated on held-out validation data from mouse (left)
and human (right) Chromosome 1. Five models were
independently trained for each TF and source species
(mouse-trained models in blue, human-trained models
in orange). Values at epoch 0 are evaluations of mod-
els after weight initialization but before training (akin
to a random baseline). Note that auPRCs are not di-
rectly comparable between different validation sets be-
cause ground truth labels are derived from a different
experiment for each dataset; the auPRC will depend on
the fraction of sites labeled bound as well as model pre-
diction correctness.

ance of labels in our TF binding prediction task. We ob-
served that over the course of model training, improve-
ments in source-species auPRC did not always trans-

CTCF CEBPA HNF4A RXRA

CTCF CEBPA HNF4A RXRA

Figure 3: Model performance evaluated on held-out test
data: Chromosome 2 from human (top) and mouse (bot-
tom). Five models were independently trained for each
TF and source species.

late to improved auPRC in the target species. Overall,
cross-species auPRC showed greater variability across
epochs and model replicates compared to source-species
auPRC. For two TFs, CEBPA and HNF4A, the mouse-
trained models’ performance on the human valida-
tion set appeared to split part way through training –
based on cross-species auPRC, some model-replicates
appeared to become trapped in a suboptimal state rel-
ative to other models (see divergence in orange lines in
left column of Figure 2); meanwhile, the training-species
auPRC did not show a similar trend. Evidently, valida-
tion set performance in the source species is not a reli-
able surrogate for validation set performance in the tar-
get species.

Nevertheless, the epochs where models had highest
source-species auPRCs were often epochs where mod-
els had near-best cross-species auPRC. Thus, we selected
models saved at the point in training when source-
species auPRC was maximized for downstream analysis.
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We next evaluated performance on held-out test datasets
(distinct from the validation datasets) from each species
(Figure 3).

We observe across all TFs that for a given target
species, the models trained in that species always out-
performed or matched the performance of the models
trained in the other species. We refer to this within-
species vs. cross-species auPRC difference as a cross-
species performance gap, while noting that models
trained in either species were still relatively effective at
cross-species prediction. Intriguingly, the cross-species
gap was wider for mouse-trained models predicting in
human than for human-trained models predicting in
mouse. For this reason, subsequent analysis focuses on
addressing the mouse-to-human gap.

To get a sense of how specific to our model design
or training strategy this cross-species gap might be, we
sought to apply a sufficiently different machine learn-
ing approach to the same problem and datasets and as-
sess whether the cross-species gap persists. We trained
gapped k-mer support vector machines, or gkSVMs, to
classify a balanced sample of bound vs. unbound win-
dows for each TF and species (Ghandi et al. 2014; Lee
2016). We then evaluated those models on the set of non-
overlapping windows in each test dataset (Figure S1).
The gkmSVM auPRC values are drastically lower than
those of the neural networks across the board, demon-
strating that our deep learning approach can indeed out-
perform related methods on this task. We also observe
that the cross-species gap persists, although it shrinks in
absolute magnitude, presumably due to the much lower
auPRC values overall.

The mouse-to-human cross-species gap originates
from misprediction of both bound and unbound sites

Since the target-species model consistently outperforms
the source-species model (on target-species validation),
there must be some set of differentially predicted sites
that the target-species model predicts correctly, but the
source-species model does not. By comparing the dis-
tribution of source-model and target-model predictions
over all target-species genomic windows, we can po-
tentially identify trends of systematic errors unique to
the source-species model. Whether these differentially
predicted sites are primarily false positives (unbound
sites incorrectly predicted to be bound), false negatives
(bound sites incorrectly predicted as unbound), or a
combination of both can provide useful insight into the
performance gap between the source and target models.

For each TF, we generated predictions over the ge-
nomic windows in the human test dataset from both
our mouse-trained and human-trained models. Then,

Figure 4: Both bound and unbound sites from human
Chromosome 2 show evidence of differential binding
predictions by human-trained (y-axis) vs. mouse-trained
(x-axis) models. For visual clarity, only 25% of bound
sites and 5% of unbound sites are shown (sampled sys-
tematically).

we plotted all of the human-genome test sites using the
average mouse model prediction (over 5 independent
training runs) and the average human model prediction
as the x- and y-axis, respectively (Figure 4). Bound and
unbound sites are segregated into separate plots for clar-
ity.

For all TFs, the unbound site plots show a large set
of windows given low scores by the human model but
mid-range to high scores by the mouse model – these are
false positives unique to cross-species prediction (Fig-
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ure 4 right column, bottom/bottom-right region of each
plot). These sites are distinct from false positives mis-
takenly predicted highly by both models, as those com-
mon false positives would not contribute significantly to
the auPRC gap. Additionally, in the bound site plots
of all TFs except CEBPA, we see some bound sites that
are scored high by the human model but are given mid-
range to low scores by the mouse model – these are cross-
species-unique false negatives (Figure 4 left column, top
left region of each plot). Hence, our cross-species models
are committing prediction errors in both directions on
separate sets of sites. The errors for the unbound sites
appear more prevalent than the errors for the bound
sites.

Motif-like sequence features discriminate between
true-positive and false-negative mouse model predic-
tions

Since the only input to our models is DNA sequence, se-
quence features must be responsible for differential pre-
diction of certain sites across source and target models.
Other potential culprits, such as chromatin accessibil-
ity changes or co-factor binding, may contribute to TF
binding divergence across species without changes to se-
quence; but without an association between those factors
and sequence, the human-trained model would not be
able to gain an advantage over the mouse-trained model
by training on sequence input alone. Thus, we focused
on genomic sequence to understand differential site pre-
diction.

To begin, we searched for sequence features associ-
ated with differential prediction of bound sites from the
human genome – specifically, we compared bound se-
quences that both the human-trained and mouse-trained
models correctly predicted (true positives) to bound se-
quences the human-trained model correctly predicted
but the mouse-trained model did not (mouse-specific
false negatives). We used SeqUnwinder, a tool for decon-
volving discriminative sequence features between sets
of genomic sequences, to extract motifs that can dis-
criminate between the two groups of sequences and
quantitatively assess how distinguishable the sequence
groups are (Kakumanu et al. 2017). SeqUnwinder was
able to distinguish mouse-specific false negatives from
true positives and randomly selected background ge-
nomic sequences with area under the ROC curve (au-
ROC) of 0.84, 0.74, 0.83, and 0.88 for CTCF, CEBPA,
HNF4A, and RXRA, respectively. Figure S2 shows the
breakdown of sequence features that are able to distin-
guish between mouse-specific false negatives and true
positives for each TF. Thus, we were able to identify
TF-specific motifs that were enriched (or depleted) at
mouse-specific false negatives. However, we did not ob-

Figure 5: Most unbound sites from the human genome
mispredicted by mouse-trained models (x-axis), but not
by human-trained (y-axis) models, contain Alu repeats.
For visual clarity, only 5% of windows are shown.

serve systemic sequence features that unanimously con-
tributed to the performance gap across all TFs studied,
beyond a poly-A/poly-T motif.

Primate-unique SINEs are a dominant source of the
mouse-to-human cross-species gap

One potential source of sequences that could confuse
a cross-species model are repeat elements found in the
genome of the target species but not the source species.
Alu elements, a type of SINE, cover a large portion
(10%) of the human genome and are found only in pri-
mates (Batzer and Deininger 2002). Several other fac-
tors make Alus even more likely candidates for con-
founding mouse-to-human TF binding predictions: they
are enriched in gene-rich, GC-rich areas of the genome
and contain 33% of the genome’s CpG dinucleotides (a
marker for promoter regions); they may play a role in
gene regulation; and in silico studies have previously
found putative TF binding sites within Alu sequences
(Batzer and Deininger 2002; Schmid 1998; Ferrari et al.
2019; Polak and Domany 2006).

Figure 5 shows only the unbound human-genome
windows that overlap annotated Alu elements. Table
1 provides corresponding quantification of Alu enrich-
ment. Note that while Alu elements are typically poorly
mappable, and it is thus often difficult to assign them
as bound or unbound in ChIP-seq experiments, we fo-
cus analyses here only on highly mappable Alu instances
(see Methods). Across all four TFs, we see that Alus
are substantially enriched in the unbound windows pre-
dicted incorrectly only by the mouse model. On average,
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TF Bound FN (Both Models) FN (Mouse Only) Unbound FP (Both Models) FP (Mouse Only)

CTCF 12.0% 10.7% 9.6% 21.2% 8.5% 65.2%
CEBPA 18.3% 11.5% 0.0% 21.2% 23.2% 82.2%
HNF4A 13.6% 9.1% 6.9% 21.3% 16.0% 87.3%
RXRA 13.3% 9.7% 4.7% 21.3% 19.2% 96.9%

Table 1: Percent of windows overlapping an Alu element, for various categories of genomic windows from the held-
out test set. Alu elements dominate the false positives unique to the mouse models. FPs: false positives. FNs: false
negatives. See Methods for more details on site categorization.

83% of these false positives unique to the mouse model
overlap with an Alu element, compared to the average
overlap rate of 21% for unbound sites overall, or 17%
for unbound sites incorrectly predicted by both models.
In contrast, Alus on average only overlap 7% of false neg-
atives unique to the mouse model, which is less than the
overlap fraction for bound sites overall (14%) and for
false negatives common to both models (10%). We re-
peated this analysis using other repeat classes, including
LINEs and LTRs, and confirmed that no other major re-
peat family shows an enrichment of comparable strength
with either the false positives or false negatives unique
to the mouse model (Table S1). Investigating the en-
richment of individual Alu subfamilies in mouse-model-
unique false positives showed that this phenomenon is
not restricted to a single subtype of Alu, but that sub-
families are enriched at different levels in a manner that
is TF-specific and varies particularly between the AluJ,
AluS, and AluY subfamily groupings (Figure S3).

Thus, the vast majority of the false positives from
the human genome mispredicted only by mouse models
can be directly attributed to one type of primate-unique
repeat element. We did not observe any similar direct
associations between primate-unique elements and the
false negatives unique to the mouse model, besides the
expected depletion of Alu elements.

Model interpretation reveals sequence features driv-
ing divergent mouse and human model predictions

To understand why mouse and human models make di-
vergent predictions at some sites, we compared base-
pair resolution importance scores from both models at
selected example sites. Specifically, we implemented a
strategy similar to in silico mutagenesis (ISM) where a
base’s score was determined by the differential model
output between the original sequence and the sequence
with 5bp centered on that base replaced with bases
from a dinucleotide-shuffled reference (Alipanahi et al.
2015). We observed that this strategy outperformed
backpropagation-based scoring methods, potentially by
avoiding gradient instability.

First, we compared importance scores between the
mouse and human models at example bound sites that
both models predicted correctly (Figure S4). If the two
models learned to use similar logic to make binding pre-
dictions, we would expect to see similar sequence fea-
tures highlighted in the importance scores. Throughout
the tested examples across all four TFs, we observe that
the scores generated by the mouse and human models
are remarkably concordant. In particular, instances of
the primary cognate motifs for the appropriate TF are
highlighted by both models.

Next, we repeated the analysis on example un-
bound windows classified as mouse-model-unique false
positives (Figure S5). At these sites, the mouse model’s
predictions overshoot those of the human model by at
least 0.5. Importance scores in this set of sites show
much greater disagreement between the two models.
Commonly across all four TFs, we observed two trends:
first, the mouse models often assigned high importance
to motif-sized contiguous stretches of bases which were
not similarly recognized by the human models. These
pseudo-motifs can superficially resemble approximate
matches to the TF’s cognate motif. Second, the human
models commonly showed apparent sensitivity to spe-
cific, sparse features which received negative scores of
moderate to high magnitude. These observations im-
ply that the human model has learned to ignore certain
sequence features that the mouse model’s scores sug-
gest are favorable for binding. Furthermore, the human
model may be adopting that strategy based on whether
or not there are nearby sequence contexts that indicate
that the sequence is not a binding site.

Human models trained without SINE examples be-
have like hybrid mouse-human models

To further characterize how Alu elements are influenc-
ing cross-species model performance, we trained addi-
tional models on the human dataset after removing all
windows from the training dataset that overlap with any
SINEs (Figure 6). We filtered out all SINEs, including
the primate-specific FLAM and FRAM repeats as well
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CTCF CEBPA HNF4A RXRA

Figure 6: Performance of models that are mouse-trained
(blue), human-trained with SINE examples (red), and
human-trained without SINE examples (yellow), evalu-
ated on the held-out human Chromosome 2. Five mod-
els were independently trained for each TF and training
species.

as Alus, to avoid keeping examples that shared any se-
quence homology with Alus. The no-SINE models were
evaluated on the same held-out chromosome test data
used previously (which includes SINEs). For all TFs ex-
cept CTCF, the no-SINE models perform substantially
worse than models trained using the complete human
training sets.

Site-distribution plots show that, for unbound sites,
no-SINE human-trained models make mispredictions in
a pattern similar to mouse-trained models; there is a
similarly-sized subset of unbound sites mispredicted by
the no-SINE human-trained models but not by the stan-
dard human-trained models (Figure 7). Plotting only
the sites that overlap with Alus confirms that the false
positives unique to the no-SINEs model are predomi-
nantly Alu elements (Figure S6). For bound sites, on the
other hand, no-SINE human-trained models make pre-
dictions that generally agree with predictions from stan-
dard human-trained models.

This suggests that the Alu false positives unique to
the mouse-trained model may simply be due to the fact
that mouse models are not exposed to Alus during train-
ing (i.e., Alu elements are “out of distribution”). In addi-
tion, the reduction in model-unique false negatives ob-
served when the no-SINE human-trained model is com-
pared to the normal human-trained model suggests that
those mispredictions are unrelated to Alus.

Figure 7: Differential human Chromosome 2 site pre-
dictions between models trained on human data with
or without any examples of SINE windows. Human-
NS: models trained on human data with no SINE exam-
ples. Similar to mouse-trained models, no-SINE human-
trained models systematically mispredict some unbound
sites.

Domain-adaptive mouse models can improve cross-
species performance

Having observed an apparent “domain shift” across
species, partially attributable to species-unique repeats,
our next step is to ask how we might bridge this gap
and reduce the difference in cross-species model perfor-
mance. Our problem is analogous to one encountered
in some image classification tasks, where the test data is
differently distributed from the training data to the ex-
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Figure 8: Domain-adaptive network architecture. The
top network output predicts TF binding, as before, while
the bottom network output predicts the species of ori-
gin of the input sequence window. The gradient reversal
layer has the effect of discouraging the convolutional fil-
ters before it from learning sequence features relevant to
the species prediction task.

tent that the model performs well on training data but
much worse on test data (for example, the training im-
ages were taken during the day but the test images were
taken at sunset). In these situations, various techniques
for explicitly forcing the model to adapt across different
image “domains” have been shown to improve perfor-
mance at test time (e.g., Long et al. 2015; Bousmalis et
al. 2016; Sun et al. 2016).

One unsupervised domain adaptation method uti-
lizes a gradient reversal layer to encourage the “feature
generator” portion of a neural network to be domain-
generic (Ganin et al. 2016). The gradient reversal layer’s
effect is to backpropagate a loss to the feature generator
that prevents any domain-unique features from being
learned. We chose to test the effectiveness of this version
of domain adaptation for our cross-species TF binding
prediction problem because we have observed evidence
that domain-unique features (species-unique repeat ele-
ments) were a major component of the cross-species do-
main shift.

We modified our existing model architecture to
perform training-integrated domain adaptation across
species (Figure 8). A gradient reversal layer (GRL)
was added in parallel with the LSTM, taking in the re-
sult of the max-pooling step (after the convolutional
layer) as input. During standard feed-forward predic-
tion, the GRL merely computes the identity of its in-
put, but as the loss gradient backpropagates through

the GRL, it is reversed. The output of the GRL then
passes through two fully connected layers before reach-
ing a new, secondary output neuron. This secondary
output, a “species discriminator,” is tasked with predict-
ing whether the model’s input genomic window is from
the source or target species. The model training process
is modified so that the model is exposed to sequences
from both species, but only the binding labels of the
source species (see Methods). Without the GRL, adding
the species discrimination task to the model would en-
courage the convolutional filters to learn sequence fea-
tures that best differentiate between the two species –
features like species-unique repeats – but with the GRL
included, the convolutional filters are instead discour-
aged from learning these features. We hypothesize that
this domain-adaptive model will outperform our ba-
sic model architecture by reducing mispredictions on
species-unique repeats.

We trained domain-adaptive models using the same
binding training datasets as before and evaluated per-
formance with the same held-out datasets. We ob-
serve that the auPRC for our domain-adaptive models
on cross-species test data is moderately higher than the
auPRC for the basic mouse models, for all TFs except
CTCF, where auPRCs are merely equal (Figure 9, top,
blue vs. green boxplots). The domain-adaptive models’
auPRCs on mouse test data, meanwhile, is comparable
to the auPRCs of basic models (Figure 9, bottom, blue
vs. green). While the auPRC improvement is promising,
it is also modest in comparison to the full cross-species
gap; the domain-adaptive models still do not achieve a
level of performance comparable to same-species mod-
els (Figure 9, top, green vs. red).

Domain-adaptive mouse models reduce over-
prediction on Alu elements

Next, we repeated our site-distribution analysis to de-
termine what constituted the domain-adaptive models’
improved performance. The unbound site plots in Fig-
ure 10 compare human genome predictions between
domain-adaptive mouse models and the original human
models. Alu elements are highlighted in Figure 11, with
quantification in Table S2.

Compared to Figure 4, the mouse-model-specific
false positives have diminished for all TFs. This suggests
that the domain-adaptive models are able to correct the
problem of false positive predictions from Alus by scor-
ing unbound sites overlapping Alus lower than the basic
model did. This effect is even present for CTCF, even
though there was no noticeable auPRC difference for
CTCF between domain-adaptive and basic mouse mod-
els – likely because the initial Alu enrichment in CTCF
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CTCF CEBPA HNF4A RXRA

CTCF CEBPA HNF4A RXRA

Figure 9: Performance of mouse-trained generic (blue),
mouse-trained domain-adaptive (green), and human-
trained (red) models, evaluated on human (top) and
mouse (bottom) Chromosome 2. Five models were inde-
pendently trained and evaluated for each TF and train-
ing species.

mouse-model false positives was lower than for other
TFs.

In contrast, the site-distribution plots for bound
sites demonstrate no noticeable difference from the orig-
inal plots for the basic model architecture. We applied
the same SeqUnwinder analysis to look for sequence fea-
tures that discriminate between mouse-model false neg-
atives and true positives and discovered similar, but not
identical, motif-like short sequence patterns as we did
previously (Figure S7). Thus, our domain adaptation ap-
proach does not appear to have any major influence on
bound site predictions.

Alus commonly drive mouse-model false positives
across diverse cell types

Finally, we asked whether the observed over-prediction
of species-specific repeats is a general issue of concern

Figure 10: Differential predictions of human genome
sites between human-trained and domain-adaptive
mouse-trained models. Domain-adaptive mouse mod-
els, unlike the original mouse models, do not show
species-specific systematic misprediction of unbound
sites.

in cross-species TF binding prediction, or whether it is
particular to the examined liver TFs. We thus widened
our analyses to 53 additional pairs of ChIP-seq datasets
targeting orthologous TFs across 8 additional equivalent
human and mouse cell types (see Methods). One caveat
is that the expanded set of paired datasets typically fo-
cus on cell lines and cell types that are more difficult to
closely match across species than liver samples. Thus,
the additional experiments examined here may not be as
comparable across species as the previously examined
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Figure 11: Differential predictions of unbound sites con-
taining Alu elements between domain-adaptive mouse-
trained models and human-trained models. Unlike the
original mouse models, domain-adaptive mouse models
do not show systematic overprediction of Alu repeats.

liver datasets.

Our expanded analyses confirm that the cross-
species performance gap is present in most tested TFs
and cell types (Table S3). A large portion of mouse-to-
human false positive predictions is attributable to Alu
elements. In 43 of the 53 additional examined datasets,
Alu elements overlap a third or more of the mouse-
model-unique false positive predictions (Table S4). Our
domain adaptation procedure is successful in reduc-
ing Alu-related false positive predictions in 46 of the
53 additional examined datasets (Figure 12; Table S4).
However, in megakaryocyte and hematopoietic progen-
itor datasets, we generally see a smaller percentage of
mouse-model-unique false positives being attributable
to Alus. The false positive predictions that do overlap
Alus are also generally less likely to be corrected by our
domain adaptation approach in these cell types (Figure
12). Therefore, our observations may not apply uni-
formly to all cell types.

Discussion

Enabling effective cross-species TF binding imputation
strategies would be transformative for studying mam-
malian regulatory systems. For instance, TF binding in-
formation could be transferred from model organisms in
cell types and developmental stages that are difficult or
unethical to assay in humans. Similarly, one could anno-
tate regulatory sites in non-model species of agricultural

Figure 12: The fraction of mouse-model-unique false
positives that overlap Alus when either the basic mouse
model (x-axis) or the domain-adaptive mouse model (y-
axis) are compared against the human model, across
our additional paired datasets. The black diagonal line
shows y = x; points below the line represent TFs where
the fraction of Alus in mouse-model-unique false posi-
tives decreased with our domain adaptation strategy.

or evolutionary interest by leveraging the substantial in-
vestment that has been made to profile TF binding sites
in human, mouse, and other model organisms (ENCODE
Project Consortium 2012; Yue et al. 2014; Roadmap
Epigenomics Consortium et al. 2015).

Our results suggest that cross-species TF binding
imputation is feasible, but we also find a pervasive per-
formance gap between within-species and cross-species
prediction tasks. One set of culprits for this cross-
species performance gap are species-specific transpos-
able elements. For example, models trained using mouse
TF binding data have never seen an Alu SINE element
during training, and often falsely predict that these ele-
ments are bound by the relevant TF. Since Alu elements
appear at high frequency in the human genome, their
misprediction constitutes a large proportion of the cross-
species false positive predictions, and thereby substan-
tially affect the genome-wide performance metrics of the
model. It should be noted that Alus and other trans-
posable elements can serve as true regulatory elements
(Bourque et al. 2008; Sundaram et al. 2014), and thus we
don’t assume that all transposable elements should be
labeled as TF “unbound”. Indeed, we minimized the po-
tential mislabeling of truly bound transposable elements
as “unbound” by focusing all our analyses on regions
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of the genome that have a high degree of mappability
(and are thereby less likely to be subject to mappability-
related false negative labeling issues in the TF ChIP-seq
data).

We demonstrated that a simple domain adaptation
approach is sufficient to correct the systematic mispre-
dictions of Alu elements as TF bound. Training a parallel
task (discriminating between species) but with gradient
reversal employed during backpropagation has the effect
of discouraging species-specific features being learned
by the shared convolutional layers of the network. This
approach is straightforward to implement and has the
advantage that TF binding labels need only be known in
the training species. Our approach accounts for domain
shifts in the underlying genome sequence composition,
assuming that the general features of TF binding sites
are conserved within the same cell types across species.

We note that the underlying assumption of cross-
species TF binding prediction - i.e., that the overall
features of cell-specific TF binding sites are conserved
- may not hold true in all cases. Concordant impor-
tance scores between mouse and human models across
true-positive bound sites suggests that both models
learned similar representations of the TF’s cognate mo-
tif. However, we also observe that there are sequence
features in bound sites that discriminate between cor-
rect and incorrect predictions specific to cross-species
models. These discriminative sequence features suggest
that cross-species false negative prediction errors could
be the result of differential TF activity across the two
species. Such differential activities could result from
gain or loss of TF expression patterns, non-conserved co-
operative binding capabilities, or evolved sequence pref-
erences of the TF itself. We observe that these discrim-
inative features are often preserved after we apply se-
quence composition domain adaptation, suggesting that
our approach does not address the situation where TF
binding logic is not fully conserved across species.

Other recent work has also demonstrated the fea-
sibility of cross-species regulatory imputation. For ex-
ample, Chen, et al. assessed the abilities of support
vector machines (SVMs) and CNNs to predict potential
enhancers (defined by combinations of histone marks)
when trained and tested across species of varying evolu-
tionary distances (Chen et al. 2018). Interestingly, they
observed that while CNNs outperform SVMs in within-
species enhancer prediction tasks, they are worse at gen-
eralizing across species. Our work suggests a possible
reason for, and a solution to, this generalization gap.
Two other recent manuscripts have applied more com-
plex neural network architectures to impute TF binding
and other regulatory signals across species (Kelley 2020;
Schreiber et al. 2020). Those studies focus on models

that are trained jointly across thousands of mouse and
human regulatory genomic datasets. They thus assume
that substantial amounts of regulatory information has
already been characterized in the target species, which
may not be true in some desired cross-species imputa-
tion settings. In general, however, joint modeling ap-
proaches are also likely to benefit from domain adap-
tation strategies that account for species-specific differ-
ences in sequence composition, and our results are thus
complementary to these recent reports.

In summary, our work suggests that cross-species
TF binding prediction approaches should beware of sys-
tematic differences between the compositions of train-
ing and test species genomes, including species-specific
repetitive elements. Our contribution also suggests that
domain adaptation is a promising strategy for address-
ing such differences and thereby making cross-species
predictions more robust. Further work is needed to
characterize additional sources of the cross-species per-
formance gap and to generalize domain adaptation ap-
proaches to scenarios where training data is available
from multiple species.

Methods
Data processing

Datasets were constructed by splitting the mouse
(mm10) and human (hg38) genomes into 500 bp win-
dows, offset by 50 bp. Any windows overlapping EN-
CODE blacklist regions were removed (Amemiya et al.
2019). We then calculated the fraction of each window
that was uniquely mappable by 36 bp sequencing reads
and retained only the windows that were at least 80%
uniquely mappable (Karimzadeh et al. 2018). Mappa-
bility filtering was performed to remove potential peak-
calling false negatives; otherwise, any genomic window
too unmappable for confident peak-calling would be a
potential false negative.

ChIP-seq experiments and corresponding controls
(where available) were collected from ENCODE, GEO,
and ArrayExpress. Database accession IDs for all data
used in this study are listed in Tables S5, S6, and S7.
We chose to focus our initial analyses on liver, as several
previous studies have provided matched ChIP-seq ex-
periments characterizing orthologous TF binding across
mammalian liver samples (Schmidt et al. 2010; Odom
et al. 2007). Our expanded analyses use erythroid, lym-
phoblast, and ES cell line experiments that were previ-
ously compared across species by Denas, et al. (Denas et
al. 2015). We also analyzed matched adipocyte datasets
that were performed on adipocyte cell lines within the
same labs (Schmidt et al. 2011; Mikkelsen et al. 2010).
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Additional datasets were sourced by searching the lit-
erature for ChIP-seq data targeting orthologous TFs in
erythroid progenitor, megakaryocyte, macrophage, and
hematopoietic progenitor cell types (Tijssen et al. 2011;
Hu et al. 2011; Pham et al. 2012; Pencovich et al. 2013;
Kaikkonen et al. 2013; Beck et al. 2013; Yue et al. 2014;
Huang et al. 2016; Goode et al. 2016).

For cell types where all data was sourced from the
mouse and human ENCODE projects (i.e., erythroid,
lymphoblast, and ES cell lines), we downloaded ChIP-
seq narrow peak calls from the ENCODE portal. For
liver and all other cell types, we first aligned the fastq
files to the mm10 and hg38 reference genomes using
bowtie (version 1.3.0) (Langmead and Salzberg 2012).
We then called ChIP-seq peaks using MultiGPS v0.74
with default parameters, excluding ENCODE blacklist
regions (Mahony et al. 2014; Amemiya et al. 2019).
Corresponding control experiments were utilized dur-
ing peak calling when available. Peak calls were con-
verted to binary labels for each window in a genome:
“bound” (1) if any peak center fell within the window,
“unbound” (0) otherwise. Table S5 shows the numbers
of peaks called for liver datasets, as well as the number
of bound windows retained after filtering and the frac-
tion of all retained windows that are bound; Tables S6
and S7 show the same information for all other datasets.
Candidate datasets were discarded from the analysis if
the numbers of called peaks was less than 1000 in mouse
or human.

Dataset splits for training and testing

Chromosomes 1 and 2 of both species were held out from
all training datasets. For computational efficiency, one
million randomly selected windows from Chromosome
1 were used as the validation set for each species (for hy-
perparameter tuning). All windows from Chromosome
2 were used as the test sets.

TF binding task training data was constructed iden-
tically for all model architectures. Since binary classifier
neural networks often perform best when the classes are
balanced in the training data, the binding task training
dataset consisted of all bound examples and an equal
number of randomly sampled (without replacement)
unbound examples, excluding examples from Chromo-
somes 1 and 2. To increase the diversity of examples seen
by the network across training, in each epoch a distinct
random set of unbound examples was used, with no re-
peated unbound examples across epochs.

Domain-adaptive models also require an additional
“species-background” training set from both species for
the species discrimination task. Species-background
data consisted of randomly selected (without replace-

ment) examples from all chromosomes except 1 and 2.
Binding labels were not used in the construction of these
training sets. In each batch, the species-background
examples were balanced, with 50% human and 50%
mouse examples, and labeled according to their species
of origin (not by binding). The total number of species-
background examples in each batch was double the
number of binding examples.

Basic model architecture

The network takes in a one-hot encoded 500 bp window
of DNA sequence and passes it through a convolutional
layer with 240 20-bp filters, followed by a ReLU activa-
tion and max-pooling (pool window and stride of 15 bp).
After the convolutional layer is an LSTM with 32 inter-
nal nodes, followed by a 1024-neuron fully-connected
layer with ReLU activation, followed by a 50% Dropout
layer, followed by a 512-neuron fully-connected layer
with sigmoid activation. The final layer is a single
sigmoid-activated neuron.

Domain-adaptive model architecture

The domain-adaptive network builds upon the basic
model described above by adding a new “species dis-
criminator” task. The network splits into two output
halves following max-pooling after the convolutional
layer. The max-pooling output feeds into a gradient re-
versal layer (GRL) – the GRL merely outputs the identity
of its input during the feed-forward step of model train-
ing, but during backpropagation, it multiplies the gra-
dient of the loss by −1. The GRL is followed by a Flat-
ten layer, a ReLU-activated fully connected layer with
1024 neurons, a sigmoid-activated fully connected layer
of 512 neurons, and finally a single-neuron layer with
sigmoid activation.

Model training

All models were trained with Keras v2.3.1 using the
Adam optimizer with default parameters (Chollet 2015;
Kingma and Ba 2014). Training ran for 15 epochs, with
models saved after each epoch. After training, we se-
lected models for downstream analysis by choosing the
saved model with highest auPRC on the training-species
validation set.

The basic models were trained by standard proce-
dure with a batch size of 400 (see Section 2.1.2 for train-
ing dataset construction). The domain-adaptive mod-
els, on the other hand, required a more complex batch-
ing setup. Because domain-adaptive models predict
two tasks – binding and the species of origin of the in-
put sequence – they require two stages of dataset input
per batch. The first stage is identical to a basic model
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training batch, but with b400/3c = 133 binding exam-
ples from the source species. The second stage uses
d400 ∗ 2/3e = 267 examples each from the source species’
and target species’ “species-background” datasets.

Crucially, the stages differ in how task labels are
masked. For each stage, only one of the two output
halves of the network trains (the loss backpropagates
from one output only). In the first stage, we mask
the species discriminator task, so that only the binding
task half of the model trains on binding examples from
the training species. In the second stage, we mask the
binding task, so only the species discriminator task half
trains. Thus, the binding task only trains on examples
from the source species, while the species discriminator
task doesn’t see binding labels from either species.

Meanwhile, the weights of the shared convolu-
tional layer are influenced by both tasks. Because these
stages occur within a single batch and not in alternating
batches, they concurrently influence the weights of the
convolutional filters; there is no oscillating “back-and-
forth” between the two tasks from batch to batch.

Differentially-predicted site categorization

To quantify site enrichment within discrete categories
such as “false positives” and “false negatives”, it was
necessary to define the boundaries for these labels. In
particular, when comparing prediction distributions be-
tween models, we needed to define what constitutes, for
instance, a “false positive unique to model A.” We con-
structed the following rules for site categorization: 1)
unbound sites must have predictions above 0.5 to be la-
beled false positives, and bound sites must have predic-
tions below 0.5 to be labeled false negatives; 2) a site
is considered to be differentially predicted between two
source species A and B if |PA − PB| > 0.5, where PA and
PB are the predictions from models trained on data from
species A and species B, respectively; 3) only sites meet-
ing this differential prediction threshold are labeled as
a false positive or negative unique to one model. Thus,
if we are comparing models from species A and B, and
a site is labeled a false positive unique to model A, then
PA > 0.5 and PB < 0.5. To reduce noise in these catego-
rizations, rather than letting PA and PB equal the pre-
dictions from single models, we trained 5 independent
replicate models for each TF and source species, and
then let PA be the average prediction across the 5 repli-
cate models trained on data from species A for a given
TF.

Bound site discriminative motif discovery

SeqUnwinder (v. 0.1.3) (Kakumanu et al. 2017) was
used to find motifs that discriminate between true pos-

itive predictions and mouse-model-specific false nega-
tive predictions using the following command-line set-
tings: “--threads 10 --makerandregs --makerandregs -
-win 500 --mink 4 --maxk 5 --r 10 --x 3 --a 400 --
hillsthresh 0.1 --memesearchwin 16”, and using MEME
v. 5.1.0 (Machanick and Bailey 2011) internally.

Repeat analysis

All repeat analysis used the RepeatMasker track from
the UCSC Genome Browser (Smit et al. 1996). Genome
windows were labeled as containing an Alu element if
there was any overlap (1 or more bp) with any Alu an-
notation. For Table S1, repeat classes were excluded if
fewer than 500 examples of that class were annotated in
the test chromosome (before mappability filtering).

Gapped k-mer SVMs

The gkmtrain and gkmpredict utilities from the lsgkm
package were used for gkmSVMs gkm training and pre-
diction generation, respectively (Lee 2016). For training,
50000 examples each were selected randomly from the
set of all bound windows and unbound windows in the
original deep learning model training sets. Every 10th
example from the original test set (in other words, sam-
pling windows such that all selected windows were non-
overlapping) was considered in evaluation for compu-
tational efficiency. All default parameters were used in
running lsgkm (center-weighted + truncated l-mer ker-
nel, word length 11, maximum 3 mismatches).

Importance scoring

For a given 500bp window and model, importance
scores were generated using a method similar to in sil-
ico mutagenesis, which measures the change in model
prediction when a given base and the region imme-
diately around it are ablated. First, ten independent
dinucleotide-shuffled versions of the original sequence
were generated to serve as reference sequences unlikely
to contain motifs. Next, the 5bp region centered at a par-
ticular base was replaced with the corresponding 5bp
region from one of the ten shuffled sequences, and the
post-sigmoid difference in model output for this ablated
sequence was recorded. This was repeated for all ten
shuffled sequences, with the average model prediction
differential reported as the score for the base that the
ablated region centered on. This process was repeated
for all bases in the sequence being scored.
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Software availability

Open source code (MIT license) is available from:
https://github.com/seqcode/

cross-species-domain-adaptation
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CTCF CEBPA HNF4A RXRA CTCF CEBPA HNF4A RXRA

Figure S1: Results of evaluating the performance of mouse-trained (blue) and human-trained (red) gapped k-mer
SVM models on non-overlapping windows from the human (left) and mouse (right) test datasets (Chromosome
2). For each TF and species, an SVM was trained using a balanced set of bound and unbound windows from the
original training set.

Model-specific 
discriminative score

CTCF CEBPA HNF4A RXRA

Figure S2: Motif-like sequence features can discriminate between human-genome bound sites correctly predicted
by mouse-trained and human-trained models (true positives or TP) and bound sites correctly predicted only by
human-trained models (mouse-specific false negatives or FN) for each TF. See Methods for site categorization de-
tails.
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Figure S3: Enrichment of specific Alu subfamilies within the set of false positives unique to the mouse-trained
model, relative to false positives common to both mouse-trained and human-trained models. For a given TF and
Alu subfamily, the fraction of windows overlapping any RepeatMasker-annotated instance of that repeat type were
calculated for both classes of false positives. The values in the figure show the ratio between Alu fractions in mouse-
model-unique false positives and both-model false positives. Only Alu subamilies with at least 100 annotated
examples in the test dataset (Chromosome 2) and covering a non-zero fraction (at least 0.01%) of both false positive
categories are included.
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Figure S4: Importance scores for example both-model true positive sites for the 4 TFs. Bases were scored using a
modified ISM algorithm (see Methods). The 500bp example sites have been enlarged and cropped around motif-like
instances for readability. 19
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Figure S5: Importance scores for example false positive sites mispredicted only by the mouse model. Bases were
scored using a modified ISM algorithm (see Methods).
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Figure S6: Comparison between the predictions of human-trained models that were trained without examples
overlapping SINEs (x-axis) to the predictions of standard human-trained models (y-axis). Unbound Alu repeats
make up a large part of the false positives unique to the no-SINEs model. For visual clarity, only 5% of windows
are shown.
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Figure S7: False negative predictions unique to mouse-trained models trained with domain adaptation, compared
to human-trained models, can be distinguished from true positive predictions through motif-like sequence features.
See Methods for site categorization details.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.02.13.431115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431115
http://creativecommons.org/licenses/by-nc-nd/4.0/


TF Bound FN (Both Models) FN (Mouse Only) Unbound FP (Both Models) FP (Mouse Only)

DNA

CTCF 10.1% 11.6% 12.0% 11.4% 7.2% 7.9%
CEBPA 12.3% 11.0% 0.0% 11.4% 13.0% 9.5%
HNF4A 10.8% 11.4% 11.6% 11.4% 9.8% 9.0%
RXRA 10.1% 11.1% 11.0% 11.4% 10.2% 9.4%

LINE

CTCF 18.0% 22.2% 24.9% 37.6% 14.6% 24.8%
CEBPA 25.5% 25.7% 0.0% 37.6% 29.0% 32.3%
HNF4A 21.0% 25.4% 30.7% 37.6% 21.8% 29.7%
RXRA 20.8% 28.3% 21.4% 37.8% 21.8% 33.1%

Low-Complexity

CTCF 2.8% 2.2% 3.0% 1.9% 4.5% 1.5%
CEBPA 1.5% 1.6% 0.0% 1.9% 1.6% 1.4%
HNF4A 2.0% 1.4% 1.5% 1.9% 2.4% 1.5%
RXRA 2.0% 1.4% 1.7% 1.9% 2.2% 1.5%

LTR

CTCF 8.7% 12.6% 7.1% 17.6% 13.5% 13.6%
CEBPA 12.8% 11.1% 0.0% 17.6% 19.0% 14.6%
HNF4A 13.3% 14.9% 11.4% 17.6% 19.5% 13.9%
RXRA 11.8% 13.9% 10.9% 17.6% 18.0% 11.7%

Simple Repeat

CTCF 13.9% 11.2% 8.1% 11.5% 17.1% 10.6%
CEBPA 9.4% 9.6% 40.0% 11.6% 9.9% 11.7%
HNF4A 12.4% 12.0% 11.2% 11.5% 11.5% 12.1%
RXRA 11.5% 9.7% 14.4% 11.5% 11.1% 13.4%

SINE

CTCF 23.5% 25.1% 20.4% 31.2% 16.8% 68.9%
CEBPA 30.8% 22.5% 0.0% 31.1% 35.5% 84.8%
HNF4A 27.1% 21.8% 20.5% 31.2% 28.6% 88.7%
RXRA 26.9% 24.2% 17.5% 31.2% 31.4% 97.1%

Unknown

CTCF 0.2% 0.0% 0.2% 0.2% 0.1% 0.0%
CEBPA 0.3% 0.5% 0.0% 0.2% 0.2% 0.1%
HNF4A 0.2% 0.1% 0.2% 0.2% 0.2% 0.0%
RXRA 0.2% 0.2% 0.1% 0.1% 0.2% 0.0%

Table S1: Percent of windows overlapping various RepeatMasker-defined repeat elements, for different categories
of genomic windows from the held-out test set. Only RepeatMasker repeat classes with at least 500 distinct annota-
tions within the test set are shown. FPs: false positives. FNs: false negatives. Mouse Only: specific to mouse-trained
models. See Methods for more details on site categorization.
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TF Bound FNs (Both Models) FNs (Mouse Only) Unbound FPs (Both Models) FPs (Mouse Only)

CTCF 12.1% 11.8% 12.7% 21.2% 8.2% 21.0%
CEBPA 18.3% 15.8% 20.0% 21.2% 23.2% 43.2%
HNF4A 13.6% 14.9% 14.5% 21.2% 14.2% 29.4%
RXRA 13.3% 15.8% 10.0% 21.3% 15.2% 51.7%

Table S2: Percent of windows overlapping an Alu element when domain-adaptive mouse models are compared to
human models (compare to Table 1). The fraction of mouse-model-unique false positives overlapping Alu elements
(right-most column) have decreased drastically for all TFs. FPs: false positives. FNs: false negatives.
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auPRC, Mouse Test Set auPRC, Human Test Set

TF Mouse(Basic) Mouse(+DA) Human Mouse(Basic) Mouse(+DA) Human

Adipocytes

CEBPA 0.18 0.18 0.17 0.18 0.21 0.35
CTCF 0.67 0.66 0.55 0.56 0.56 0.62

PPARG 0.08 0.07 0.08 0.07 0.06 0.22

Erythroid Cells

BHLHE40 0.09 0.09 0.07 0.13 0.13 0.19
CTCF 0.71 0.68 0.62 0.60 0.58 0.67
E2F4 0.10 0.07 0.09 0.17 0.17 0.23
ELF1 0.28 0.28 0.27 0.26 0.26 0.34
ETS1 0.16 0.16 0.05 0.11 0.10 0.21

GATA1 0.20 0.19 0.11 0.09 0.09 0.10
JUND 0.05 0.03 0.02 0.10 0.09 0.26
MAFK 0.14 0.12 0.14 0.17 0.16 0.39
MAX 0.18 0.18 0.14 0.19 0.20 0.26
MAZ 0.15 0.15 0.14 0.21 0.22 0.32

MEF2A 0.03 0.01 0.02 0.02 0.01 0.04
MXI1 0.20 0.21 0.16 0.09 0.10 0.10
MYC 0.14 0.14 0.09 0.17 0.18 0.23
NRF1 0.33 0.32 0.22 0.33 0.35 0.36
TAL1 0.14 0.14 0.11 0.14 0.14 0.19
UBTF 0.15 0.15 0.15 0.19 0.19 0.23
USF1 0.21 0.18 0.16 0.17 0.16 0.25
USF2 0.12 0.11 0.09 0.14 0.16 0.13

Erythroid Progenitors

CTCF 0.69 0.67 0.57 0.60 0.59 0.67
GATA1 0.09 0.09 0.08 0.10 0.08 0.16
TAL1 0.06 0.04 0.07 0.08 0.07 0.21

ESCs

CTCF 0.78 0.76 0.71 0.53 0.54 0.66
MAFK 0.43 0.40 0.40 0.31 0.28 0.34

NANOG 0.14 0.12 0.05 0.05 0.05 0.08
POU5F1 0.11 0.10 0.09 0.07 0.06 0.09

Hematopoietic Progenitors

FLI1 0.21 0.16 0.09 0.06 0.06 0.17
LMO2 0.06 0.04 0.00 0.00 0.00 0.01

RUNX1 0.06 0.04 0.05 0.05 0.05 0.20
SPI1 0.32 0.28 0.32 0.38 0.38 0.62

Continued on next page.
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auPRC, Mouse Test Set auPRC, Human Test Set

TF Mouse(Basic) Mouse(+DA) Human Mouse(Basic) Mouse(+DA) Human

Lymphoblasts

BHLHE40 0.23 0.21 0.15 0.13 0.14 0.17
CTCF 0.70 0.69 0.58 0.63 0.61 0.65
E2F4 0.12 0.09 0.12 0.12 0.11 0.13
ELF1 0.32 0.30 0.27 0.34 0.34 0.34
ETS1 0.16 0.15 0.05 0.05 0.05 0.19
IRF4 0.23 0.22 0.14 0.11 0.10 0.14

JUND 0.09 0.07 0.05 0.04 0.04 0.07
MAX 0.17 0.17 0.13 0.17 0.18 0.19
MAZ 0.13 0.12 0.12 0.20 0.20 0.24

MEF2A 0.16 0.14 0.09 0.06 0.06 0.11
MXI1 0.19 0.20 0.18 0.14 0.15 0.16
MYC 0.14 0.14 0.07 0.08 0.10 0.11
NRF1 0.32 0.30 0.25 0.38 0.34 0.45
TBP 0.16 0.15 0.14 0.09 0.09 0.11

TCF12 0.24 0.23 0.17 0.12 0.11 0.14
USF1 0.22 0.20 0.17 0.20 0.20 0.19
USF2 0.16 0.15 0.12 0.10 0.10 0.09

Macrophages

SPI1 0.41 0.41 0.33 0.29 0.30 0.46

Megakaryocytes

FLI1 0.26 0.15 0.22 0.15 0.07 0.16
GATA1 0.09 0.08 0.02 0.03 0.02 0.04
RUNX1 0.08 0.06 0.04 0.13 0.12 0.28

Table S3: Average auPRC values from evaluating the basic mouse models, domain-adaptive mouse models, and
basic human models on the mouse (left columns) and human (right columns) test sets, across all additional datasets
beyond the primary liver TFs. The auPRCs shown are the average across three replicate model trainings for basic
mouse-trained and human-trained models and across two replicate model trainings for domain-adaptive mouse
models. Note that because the auPRC metric depends on the sparsity of the positive class (bound sites), these
values are not comparable across test sets, across TFs, or across cell types.
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Basic Mouse Models Domain-adaptive Mouse Models

TF Unbound FPs (Both) FPs (Mouse Only) Unbound FPs (Both) FPs (Mouse Only)

Adipocytes

CEBPA 21.3% 20.5% 76.5% 21.3% 19.5% 59.9%
CTCF 21.3% 11.4% 86.7% 21.3% 9.8% 31.3%

PPARG 21.4% 15.9% 68.1% 21.4% 14.8% 50.7%

Erythroid Progenitors

CTCF 21.3% 9.7% 42.0% 21.3% 9.8% 24.6%
GATA1 21.3% 15.1% 62.1% 21.3% 14.5% 64.4%
TAL1 21.3% 17.1% 86.3% 21.3% 14.0% 76.8%

Erythroid Cells

BHLHE40 21.3% 17.2% 63.5% 21.3% 16.0% 49.6%
CTCF 21.3% 13.6% 61.4% 21.3% 11.6% 34.0%
E2F4 21.3% 8.8% 71.1% 21.3% 8.2% 44.1%
ELF1 21.3% 13.7% 58.9% 21.3% 12.8% 40.5%
ETS1 21.3% 9.7% 35.0% 21.3% 8.9% 26.5%

GATA1 21.3% 14.1% 41.8% 21.3% 13.7% 28.7%
JUND 21.3% 20.6% 65.0% 21.3% 17.6% 54.6%
MAFK 21.3% 15.7% 56.4% 21.3% 14.2% 35.2%
MAX 21.3% 14.0% 72.2% 21.3% 13.0% 56.9%
MAZ 21.3% 12.3% 87.6% 21.3% 11.2% 60.9%

MEF2A 21.3% 12.5% 41.2% 21.3% 13.0% 36.3%
MXI1 21.3% 13.2% 81.7% 21.3% 11.9% 55.9%
MYC 21.3% 15.3% 68.5% 21.3% 14.0% 43.6%
NRF1 21.3% 8.9% 65.4% 21.3% 8.8% 47.2%
TAL1 21.3% 16.1% 38.8% 21.3% 15.4% 48.7%
UBTF 21.3% 10.6% 97.6% 21.3% 9.4% 84.5%
USF1 21.3% 14.8% 66.4% 21.3% 14.2% 55.3%
USF2 21.3% 11.9% 73.8% 21.3% 11.5% 62.8%

ESCs

CTCF 21.4% 14.9% 82.5% 21.4% 12.2% 31.5%
MAFK 21.3% 13.5% 80.7% 21.3% 13.4% 76.8%

NANOG 21.3% 10.3% 38.8% 21.3% 9.4% 26.7%
POU5F1 21.3% 11.0% 40.9% 21.3% 9.8% 22.7%

Hematopoietic Progenitors

FLI1 21.3% 6.9% 49.4% 21.3% 6.6% 34.5%
LMO2 21.3% 6.0% 20.0% 21.3% 6.4% 29.6%

RUNX1 21.3% 8.4% 25.5% 21.3% 7.9% 30.0%
SPI1 21.5% 13.6% 9.0% 21.5% 13.0% 17.4%

Continued on next page.
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Basic Mouse Models Domain-adaptive Mouse Models

TF Unbound FPs (Both) FPs (Mouse Only) Unbound FPs (Both) FPs (Mouse Only)

Lymphoblasts

BHLHE40 21.3% 15.3% 67.5% 21.3% 14.0% 29.3%
CTCF 21.3% 11.4% 70.8% 21.3% 10.8% 33.8%
E2F4 21.3% 6.8% 51.2% 21.3% 6.6% 25.8%
ELF1 21.3% 11.8% 41.5% 21.3% 10.4% 18.2%
ETS1 21.3% 10.4% 32.8% 21.3% 9.7% 20.7%
IRF4 21.3% 13.3% 52.9% 21.3% 12.2% 21.0%

JUND 21.3% 12.6% 28.5% 21.3% 12.1% 25.8%
MAX 21.3% 8.6% 61.3% 21.3% 8.2% 30.1%
MAZ 21.3% 8.5% 50.4% 21.3% 8.2% 26.6%

MEF2A 21.3% 17.3% 64.5% 21.3% 13.8% 14.7%
MXI1 21.3% 11.6% 77.8% 21.3% 10.6% 43.6%
MYC 21.3% 6.3% 47.6% 21.3% 5.8% 31.7%
NRF1 21.3% 5.6% 26.6% 21.3% 5.6% 17.8%
TBP 21.3% 14.3% 89.2% 21.3% 12.4% 56.4%

TCF12 21.3% 11.6% 51.5% 21.3% 10.4% 17.5%
USF1 21.3% 11.0% 64.6% 21.3% 10.5% 63.1%
USF2 21.3% 11.4% 71.1% 21.3% 11.0% 71.2%

Macrophages

SPI1 21.4% 15.5% 27.2% 21.4% 14.2% 13.8%

Megakaryocytes

FLI1 21.3% 8.4% 23.0% 21.3% 7.6% 18.1%
GATA1 21.3% 7.6% 11.3% 21.3% 8.2% 19.4%
RUNX1 21.3% 7.8% 15.7% 21.3% 8.2% 15.4%

Table S4: The percent of sites overlapping an Alu element without (left column set) or with domain adaptation (right
column set), for each of the additional datsets included in Figure 12. FPs: false positives; either the set of unbound
sites mispredicted as bound by both the mouse model and the human model, or false positives mispredicted by the
mouse model only. See Methods for site categorization details.

TF Species Raw Peaks Filtered Peaks Bound Windows Frac. Bound Accession ID

CTCF Mouse 34362 29677 317396 0.72% ENCSR000CBU
Human 34921 31812 330941 0.64% GSE105829

CEBPA Mouse 62636 49338 576787 1.30% E-TABM-722
Human 32243 29244 306321 0.59% E-TABM-722

HNF4A Mouse 44800 36805 421268 0.95% E-TABM-722
Human 42766 35352 396294 0.77% E-TABM-722

RXRA Mouse 50959 35221 446830 1.01% GSM1299600
Human 93895 69999 863861 1.68% ENCSR098XMN

Table S5: For the primary experimental data used in this study, the following quantities are listed: the number of
peaks called across the entire genome; the number of called peaks within the filtered window set, merged if within
500 bp of each other; the number of windows in the filtered window set labeled bound due to peak overlap; the
fraction of the filtered window set labeled bound; and the database accession ID (ENCODE, GEO, or ArrayExpress).
The size of the filtered window sets for the mouse and human genomes were 44288170 and 51548966, respectively.
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TF Cell Type Peaks Bound Windows Frac. Bound Accession ID

CEBPA Adipocyte 15458 117291 0.26% GSE27450
CTCF Adipocyte 53354 431411 0.97% GSE20752

PPARG Adipocyte 11465 93351 0.21% GSE20752
BHLHE40 Erythroid 16967 142473 0.32% ENCSR000ESH

CTCF Erythroid 47297 397943 0.90% ENCSR000ETQ
E2F4 Erythroid 4925 39272 0.09% ENCSR000ETY
ELF1 Erythroid 19518 162146 0.37% ENCSR033OWC
ETS1 Erythroid 40913 337420 0.76% ENCSR000ETB

GATA1 Erythroid 46171 384871 0.87% ENCSR000EUG
JUND Erythroid 7277 60316 0.14% ENCSR000ETZ
MAFK Erythroid 9846 81190 0.18% ENCSR000ETK
MAX Erythroid 28616 228588 0.52% ENCSR000ETX
MAZ Erythroid 20486 162023 0.37% ENCSR000ESL

MEF2A Erythroid 4827 40776 0.09% ENCSR867SDZ
MXI1 Erythroid 39255 298761 0.67% ENCSR000ETN
MYC Erythroid 29362 230225 0.52% ENCSR000EUA
NRF1 Erythroid 11191 93732 0.21% ENCSR135SWH
TAL1 Erythroid 18775 156858 0.35% ENCSR000DIA
UBTF Erythroid 6549 51131 0.12% ENCSR000ESJ
USF1 Erythroid 19958 167188 0.38% ENCSR705HGT
USF2 Erythroid 4186 35607 0.08% ENCSR000ETF
CTCF Erythroid progenitor 30998 256447 0.58% GSE36029

GATA1 Erythroid progenitor 11162 93403 0.21% GSE36029
TAL1 Erythroid progenitor 4356 34771 0.08% GSE36029
CTCF ESC 44581 371955 0.84% ENCSR362VNF
MAFK ESC 17123 142736 0.32% ENCSR604XDL

NANOG ESC 16037 130587 0.29% ENCSR779CZG
POU5F1 ESC 4198 34197 0.08% ENCSR392DGA

FLI1 Hematopoietic progenitor 9838 83763 0.19% GSE69099
LMO2 Hematopoietic progenitor 4618 39374 0.09% GSE69099

RUNX1 Hematopoietic progenitor 2888 24860 0.06% GSE69099
SPI1 Hematopoietic progenitor 17273 145004 0.33% GSE69099

BHLHE40 Lymphoblast 46376 382831 0.86% ENCSR000ERC
CTCF Lymphoblast 63983 535673 1.21% ENCSR000ERM
E2F4 Lymphoblast 6263 50365 0.11% ENCSR000ERU
ELF1 Lymphoblast 28901 237091 0.54% ENCSR293WTN
ETS1 Lymphoblast 30839 252203 0.57% ENCSR000ERA
IRF4 Lymphoblast 43458 357105 0.81% ENCSR743ZJL

JUND Lymphoblast 15998 131797 0.30% ENCSR000ERR
MAX Lymphoblast 31198 250415 0.57% ENCSR000ERL
MAZ Lymphoblast 21334 169037 0.38% ENCSR000EQT

MEF2A Lymphoblast 30789 250229 0.57% ENCSR806JZK
MXI1 Lymphoblast 32224 244761 0.55% ENCSR000ERE
MYC Lymphoblast 30247 241587 0.55% ENCSR000ERN
NRF1 Lymphoblast 17314 142918 0.32% ENCSR980YXJ
TBP Lymphoblast 23408 183549 0.41% ENCSR000ERP

TCF12 Lymphoblast 36815 294533 0.67% ENCSR906QEK
USF1 Lymphoblast 8158 69811 0.16% ENCSR973SOG
USF2 Lymphoblast 5322 45624 0.10% ENCSR000ERJ
SPI1 Macrophage 65942 525645 1.19% GSE48759
FLI1 Megakaryocyte 3224 27394 0.06% GSE36029

GATA1 Megakaryocyte 4154 35204 0.08% GSE36029
RUNX1 Megakaryocyte 10700 90597 0.20% GSE45372

Table S6: Summary statistics for all additional mouse datasets. The mouse genome filtered window set consisted of
44288170 windows in total.
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TF Cell Type Peaks Bound Windows Frac. Bound Accession ID

CEBPA Adipocyte 53157 396024 0.77% GSE27450
CTCF Adipocyte 48914 376510 0.73% GSE20752

PPARG Adipocyte 58757 462122 0.90% GSE20752
BHLHE40 Erythroid 27808 217471 0.42% ENCSR000EGV

CTCF Erythroid 59803 476076 0.92% ENCSR000DMA
E2F4 Erythroid 9109 68965 0.13% ENCSR000EWL
ELF1 Erythroid 32683 258940 0.50% ENCSR000BMD
ETS1 Erythroid 13775 101997 0.20% ENCSR000BKQ

GATA1 Erythroid 14676 113735 0.22% ENCSR000EFT
JUND Erythroid 47180 367973 0.71% ENCSR000EGN
MAFK Erythroid 27213 213251 0.41% ENCSR000EGX
MAX Erythroid 37342 286474 0.56% ENCSR000EFV
MAZ Erythroid 40398 308748 0.60% ENCSR000EFX

MEF2A Erythroid 6407 49536 0.10% ENCSR000BNV
MXI1 Erythroid 9081 70132 0.14% ENCSR000EGZ
MYC Erythroid 31378 233216 0.45% ENCSR000EGJ
NRF1 Erythroid 4436 36511 0.07% ENCSR000EHH
TAL1 Erythroid 29476 229424 0.45% ENCSR000EHB
UBTF Erythroid 19228 139064 0.27% ENCSR000EFZ
USF1 Erythroid 22382 177524 0.34% ENCSR000BKT
USF2 Erythroid 3621 29702 0.06% ENCSR000EHG
CTCF Erythroid progenitor 36729 292844 0.57% GSE26501

GATA1 Erythroid progenitor 25710 198358 0.38% GSE26501
TAL1 Erythroid progenitor 38152 285562 0.55% GSE26501
CTCF ESC 57384 466110 0.90% ENCSR000BNH
MAFK ESC 13422 109310 0.21% ENCSR000EBS

NANOG ESC 8905 72332 0.14% ENCSR000BMT
POU5F1 ESC 5029 41330 0.08% ENCSR000BMU

FLI1 Hematopoietic progenitor 38760 310707 0.60% GSE45144
LMO2 Hematopoietic progenitor 2037 16312 0.03% GSE45144

RUNX1 Hematopoietic progenitor 29950 241749 0.47% GSE45144
SPI1 Hematopoietic progenitor 167273 1283083 2.49% GSE70660

BHLHE40 Lymphoblast 28651 227674 0.44% ENCSR000DZJ
CTCF Lymphoblast 41765 339466 0.66% ENCSR000DZN
E2F4 Lymphoblast 4375 35071 0.07% ENCSR000DYY
ELF1 Lymphoblast 27369 212273 0.41% ENCSR000BMB
ETS1 Lymphoblast 12912 103978 0.20% ENCSR000BKA
IRF4 Lymphoblast 23043 182227 0.35% ENCSR000BGY

JUND Lymphoblast 7602 61307 0.12% ENCSR000DYS
MAX Lymphoblast 13605 104721 0.20% ENCSR000DZF
MAZ Lymphoblast 23166 175906 0.34% ENCSR000DZA

MEF2A Lymphoblast 22588 180702 0.35% ENCSR000BKB
MXI1 Lymphoblast 21737 164076 0.32% ENCSR000DZI
MYC Lymphoblast 4950 37375 0.07% ENCSR000DKU
NRF1 Lymphoblast 3363 27933 0.05% ENCSR000DZO
TBP Lymphoblast 19535 147978 0.29% ENCSR000DZZ

TCF12 Lymphoblast 25023 201436 0.39% ENCSR000BGZ
USF1 Lymphoblast 8461 69700 0.14% ENCSR000BGI
USF2 Lymphoblast 4450 36621 0.07% ENCSR000DZU
SPI1 Macrophage 88793 693731 1.35% GSE31621
FLI1 Megakaryocyte 4649 38182 0.07% GSE24674

GATA1 Megakaryocyte 4147 33052 0.06% GSE24674
RUNX1 Megakaryocyte 58757 209261 0.41% GSE24674

Table S7: Summary statistics for all additional human datasets. The human genome filtered window set consisted
of 51548966 windows in total.
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