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Abstract

During a wine fermentation, Saccharomyces cerevisiae transforms grape must
through metabolic activities that generate ethanol and other compounds. Thousands of
genes change expression over the course of a wine fermentation to allow S. cerevisiae to
adapt to and dominate the fermentation environment. Investigations into these gene
expression patterns have previously revealed genes that underlie cellular adaptation to the
grape must and wine environment involving metabolic specialization and ethanol
tolerance. However, the vast majority of studies detailing gene expression patterns have
occurred in controlled environments that do not recapitulate the biological and chemical
complexity of fermentations performed at production scale. Here, we present an analysis of
the S. cerevisiae RC212 gene expression program across 40 pilot-scale fermentations (150
liters) using Pinot noir grapes from 10 California vineyards across two vintages. We
observe a core gene expression program across all fermentations irrespective of vintage
similar to that of laboratory fermentations, in addition to novel gene expression patterns
likely related to the presence of non-Saccharomyces microorganisms and oxygen
availability during fermentation. These gene expression patterns, both common and
diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation

outcomes at industry-relevant scales.
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Importance

This study characterized Saccharomyces cerevisiae RC212 gene expression during
Pinot noir fermentation at pilot scale (150 liters) using production-relevant conditions. The
reported gene expression patterns of RC212 is generally similar to that observed in
laboratory fermentation conditions, but also contains gene expression signatures related to
yeast-environment interactions found in a production setting (e.g., presence of non-
Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain
under-characterized, raising the need for further research to understand the roles of these

genes and their impact on industrial wine fermentation outcomes.
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Introduction

Saccharomyces cerevisiae is most often the dominant fermentative organism during
vinification. As a domesticated species, it has evolved specialized metabolic strategies to
assimilate sugars in grape must and transform them into ethanol, thereby outcompeting
other microorganisms during fermentation (1). During this process, S. cerevisiae
encounters a dynamic stress landscape. In early fermentation, sources of stress include
high sugar concentration (osmotic stress), low pH (acid stress), decreasing oxygen
(hypoxia), the presence of other organisms that compete for nutrients or produce
inhibitory compounds, and sulfur dioxide additions that are used to inhibit spoilage
organisms. As fermentation progresses, nutrients become limiting (starvation),
temperature may rise or be kept low (heat/cold stress), and ethanol concentrations rise
(ethanol stress). Yet, through a coordinated gene expression response, S. cerevisiae adapts
to these stresses and most often continues fermentation until the must is dry.

High throughput gene expression profiling (e.g., microarray and RNA sequencing)
has offered a window into the metabolic strategies used by S. cerevisiae during
fermentation to adapt and dominate fermentation environments. Previous research has
reported expression changes in >2000 genes during fermentation (2-4). In early
fermentation, this is marked by expression of gene products that support biosynthetic
processes and acquisition of abundant nutrient resources (2, 3). As fermentation
progresses, nitrogen limitation, phosphate limitation, and/or ethanol accumulation can
trigger a transition to a non-proliferative state (i.e., stationary phase), which involves
remodeling the gene expression program to support cellular adaptation to the changing

environmental with continued metabolism (2, 3). Towards the end of fermentation, relief of
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nitrogen catabolite repression (2) and increased expression of nitrogen recycling genes (2,
5) is observed, which can be accompanied by further remodeling of the translational
machinery and increased oxidative metabolism (5, 6). As ethanol concentrations rise
through the end of fermentation, a gradual transcriptome response to ethanol stress is also
observed (3). This response overlaps with, but appears distinct from, the environmental
stress response seen in laboratory yeast (2, 3, 7), which may be related to the multitude of
simultaneous stresses experienced by the yeast at the end of a wine fermentation (Bisson
2019). Indeed, the majority of genes with stress response elements in their promoter are
expressed at the end of fermentation (8).

Through the associated metabolic processes that consume and produce a multitude
of compounds, S. cerevisiae gene expression in response to environmental factors is related
to overall fermentation kinetics and wine sensory outcomes. For example, fermentations
can become sluggish or stuck when S. cerevisiae inadequately adapts to stresses
encountered in the wine fermentation environment (9). In addition, altered gene
expression likely underlies differential wine sensory characteristics in fermentations
conducted with different industrial yeast strains (10, 11). To impact wine quality, genetic
strategies have been applied in an attempt to alter the expression of flavor-associated
genes (12), which have achieved variable levels of success. Consequently, further study of
the S. cerevisiae gene expression program across fermentation is required to understand
the yeast-environment relationship and how these interactions may be controlled to alter
fermentation outcomes.

Given the importance of the yeast-environment interaction in determining gene

expression, a major consideration with respect to collecting such data is the fermentation
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86  conditions used. To date, the majority of gene expression surveys have profiled
87 fermentations that deviate in one or more ways from the industrial conditions in which
88  most fermentations take place. For example, hundreds to thousands of liters of grape must
89  are fermented to wine at industrial scales, while milliliter to liter volumes are commonly
90 usedinlaboratory studies of gene expression (2-5, 13-16). Industry scale fermentations
91 also have different kinetics than lab scale fermentations (4, 15, 17), and are less aromatic
92  due to differences in hydrodynamics (15, 18). Similarly, dissolved oxygen differs at lab
93  scale from industrial scale (4), which can impact fermentation outcomes (19). Possibly
94  reflecting these different environments, at the end of fermentation the expression of key
95 genes involved in amino acid transport and other core metabolic processes have been
96  shown to differ between lab and industrial fermentations (4). Consequently, we propose
97  that the physical and chemical differences in lab versus industrial scale wine fermentations
98 are important factors to consider when analyzing gene expression patterns across
99  fermentation.
100 Another major consideration when conducting gene expression studies, is that most
101  studies investigate the fermentative capability of S. cerevisiae in monoculture using sterile
102  synthetic media or filter sterilized grape must (2-5, 12). These controlled studies are
103  important and allow connections between the media, gene expression, and wine outcomes
104  to be made (12), but do not recapitulate the complexity of a natural grape must that varies
105 in parameters like nitrogen composition, pH, and phenolic and elemental profiles (20-23).
106  In addition, these experiments lack the diverse grape must microbiome that is a
107  contributing component of wine fermentations (24-38). These are all parameters that will

108  shape the fermentation environment and the metabolic response of S. cerevisiae.
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109 Inter-species interactions are a critical component of the fermentation environment
110  thatinforms the biology and behavior of S. cerevisiae during fermentation. It has been

111  shown that non-Saccharomyces yeast impact the metabolism of S. cerevisiae through direct
112  and indirect interactions (39-41), leading to faster resource acquisition by S. cerevisiae in
113  early fermentation and altered metabolism of vitamins and minerals (40-43). While

114  research is still needed to describe the impact of a diverse microbial consortia on S.

115  cerevisiae during fermentation (44, 45), it remains that industrial fermentations are not
116  sterile and involve diverse microorganisms (28, 34, 35, 37, 38). Even in fermentations

117  treated with sulfur dioxide (SO2) to control microbial spoilage organisms, native fungi and
118  bacteria are metabolically active during fermentation (38, 46, 47). This makes profiling S.
119  cerevisiae gene expression amongst diverse microbial consortia important, as it will lead to
120  abetter understanding of the principles that govern S. cerevisiae gene expression and

121  metabolism during fermentation.

122 Here, to begin to address the impact of an industrial wine fermentation environment
123  on S. cerevisiae gene expression, we incorporate the inherent variability found in industrial
124  fermentations and determine the S. cerevisiae RC212 gene expression program across

125  chemically and biologically diverse Pinot noir grape musts. Specifically, time series RNA-
126  sequencing was used to capture the gene expression profiles of RC212 during 40

127  inoculated primary fermentations at pilot scale (150 liters) using California Pinot noir

128 grapes from 10 vineyards across two vintages. Using this data, a core metabolic program
129  was defined during fermentation, which is well reflected by lab-scale fermentations, in

130 addition to gene expression patterns that deviate from expectation. In particular, we

131 observe altered gene expression that may be explained by the presence non-Saccharomyces
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132  organisms and regulation of metabolic processes related to stress, oxygen, and redox

133  balance throughout fermentation. These observations suggest that the core genetic

134  programs uncovered by lab-based studies are detected in industry-relevant fermentations,
135  but production-based environmental factors induce other gene expression programs that
136 arelayered on top of the core gene expression program. We expect that understanding
137  such variations in gene expression within a wine production-like environment will be key

138  to defining approaches that can be used to manage commercial fermentation outcomes.
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Results & Discussion
Conditions and rates of fermentation

Pinot noir grapes were harvested from the same 10 vineyards in California during
the 2017 and 2019 vintages for wine production at the UC Davis Teaching & Research
Winery (Figure 1A). To standardize fermentations, grapes from the same Pinot noir clone
and rootstock were harvested at the same ripeness (~24 Brix, total soluble solids as a
proxy for sugar concentration). We sampled duplicate fermentations that used the grape
material from each vineyard for a total of 40 fermentations (20 from each vintage) at
industry-relevant scales using the same wine making protocol. Each fermentation was
inoculated with the commercial wine strain S. cerevisiae RC212 and sampled to collect cells
for gene expression analysis at 16 (exponential phase / early fermentation), 64 (stationary
phase / mid fermentation), and 112 (decline phase / end of fermentation) hours post-
inoculation (Figure 1B). While sampling times were standardized across fermentations,
the rate of fermentation varied, resulting in samples being collected across a range of Brix
values (Figure 1C). Differences in fermentation rates likely reflect diversity in the starting
material and differential fermentation outcomes, which has also been demonstrated in
sensory studies performed on wines produced from these vineyard sites in previous

vintages (48).

A consistent whole-transcriptome remodeling occurs during fermentation
independent of vintage
Using 3" Tag RNA sequencing (3" Tag-seq), we profiled S. cerevisiae RC212 gene

expression at 16, 64, and 112 hours after inoculation from both the 2017 and 2019
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162  vintages. Since these samples provided gene expression measurements across a multitude
163  of Brix values (Figure 1C), data from all 10 sites was combined and used to perform

164  differential expression along the continuous variable Brix. The resulting data defines a core
165 vineyard-independent gene expression program of RC212 during California Pinot noir
166 fermentations. Under this model, log> fold change values represent the change in gene
167  expression for each unit increase of Brix. Given that Brix decreases during fermentation, a
168  positive log fold change corresponds to a gene that decreased in expression as

169 fermentation progressed, while a negative log fold value corresponds to a gene that

170 increased in expression as fermentation progressed (see examples in Figure 2A). After
171  performing differential expression, we further intersected the differentially expressed
172  genes across vintages to determine consistent changes that were vintage-independent.
173  From this analysis, 991 genes decreased expression as Brix decreased, while 951 genes
174  increased expression as fermentation progressed (Figure 2AB, Table S1). Each vintage
175 also showed unique differential gene expression patterns, which may occur due to vintage-
176  specific differences in fermentation. However, we generated these data at different times
177  and applied newly developed methods (UMI barcoding, see methods) for sequencing the
178 2019 samples, and as such we suspect that the higher number of differentially expressed
179  genes in the 2017 vintage may reflect differences in sequencing data quality. Nonetheless,
180  the large fraction of shared differentially expressed genes suggests that a core gene

181  expression program is followed independent of vintage.

182 Of the genes differentially expressed in fermentation and shared across vintage,
183  many are known to function in wine fermentation and are central to yeast growth,

184  metabolism, and cell survival (Figure 2B and C, Table 1). A strong signature of growth

10
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early in fermentation is observed that included cellular investment in ribosome biogenesis,
metabolism of lipids, purines, and amino acids, as well as cell division machinery (Figures
2C and S1-S2). These processes, coupled with enrichment of associated pathways involved
in RNA transcription and transport, reflect energy use for cell growth and proliferation
associated with log phase growth occurring in early fermentation. Further in fermentation,
changes in ribosomal machinery gene expression occurred, as reported in previous studies
(49) (Figure 2C), reflecting a transition to a non-proliferative metabolic state. Late in
fermentation this was accompanied by changes in gene expression linked to nutrient
limitation, altered metabolism, and entry into meiosis (Figures 2C and S3-S4), which
included gene expression patterns consistent with hallmark isoform switches in hexose
transporters and glycolytic enzymes that occur as concentrations of glucose or fructose
change (50) (Figures 2B and 2C). For example, HXT1 encodes a low affinity glucose
transporter that was more strongly expressed at the beginning of fermentation when
glucose is abundant. HXT4 has a high affinity for glucose and is expressed when glucose
concentrations are low (51), which is also observed in our data as HXT4 expression
increased in late fermentation. Importantly, the pathways we have identified as enriched in
early and late fermentation align with expectations based on previous research and the
known biology of S. cerevisiae during fermentation (2-5, 13-16). This highlights the core
processes that previous research efforts have defined and provides confidence that the
analysis methods employed in these pilot-scale fermentations capture these biologically
important transitions.

Beyond these previously defined core gene expression patterns, gene expression

signatures indicative of less understood processes within these fermentations are also

11
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208  observed, which may be linked to the industry-like environment these studies were

209 performed in. These patterns of gene expression included signatures of nutrient limitation
210  in early fermentation and polyol metabolism in late fermentation that were both consistent
211  with interactions with non-Saccharomyces organisms. We also find signatures of

212 concurrent hypoxic and anoxic metabolism that suggests differential availability of oxygen
213  for some yeast populations throughout fermentation. In association, we observe mounting
214  gene expression that is likely involved in mitigating oxidative and other stresses. Finally,
215 few vintage-specific differences can be found, but those we do identify highlight gene

216  expression patterns that could be linked to altered fermentation outcomes. We discuss
217  these observations below.

218

219  Nutrient limitation in early fermentation

220 While gene expression data supports logarithmic growth at 16 hours post-

221  inoculation (Table 1, Figures S1-S2), at this early timepoint there is also evidence for the
222  expression of genes that are typically up regulated in response to nutrient limitation. PHO5
223  and PHO89 are phosphate transporters that are induced during phosphate starvation (52),
224 both of which are expressed in early fermentation, along with PHO90. Phosphate limitation
225  can cause stuck fermentations, as phosphate is critical for cellular function as a component
226  of ATP, nucleotides, sugars, lipids, and macromolecules such as proteins (49, 53). Given
227  thatall these Pinot noir fermentations went to completion, and that the majority of glucose
228  was converted to ethanol after the 16hrs time point, induction of genes encoding

229  phosphate transporters early in fermentation is not likely associated with phosphate

230  starvation. Instead, it may be a response to the presence of non-Saccharomyces yeast, as

12
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231  co-cultivation of S. cerevisiae with Torulaspora delbrueckii led to the induction of a gene
232 encoding a high-affinity phosphate transporter (PHO84) after only three hours of

233  fermentation (40). Enological co-culture of S. cerevisiae with organisms such as

234 Hanseniaspora guilliermondii and Brettanomyces has also been linked to induction of genes
235  involved in vitamin biosynthesis in fermentation (54, 55), which could be indicative of

236  increased nutrient competition and depletion of some nutrients early in fermentation. We
237  similarly observe induction of genes that encode enzymes involved in biosynthesis of B

238  vitamins in early fermentation, including BIO2 (biotin biosynthesis), RIB3 and RIB4

239  (riboflavin biosynthesis), PAN6 (pantothenate synthesis), SPE3 and SPE4 (pantothenic acid
240  synthesis), and MIS1 and FOL1 (folate biosynthesis). In addition, THI21 was induced, which
241  isinvolved in thiamine biosynthesis. As with phosphate, this may be related to the presence
242  of metabolically active non-Saccharomyces microorganisms that have been detected in all
243  of these fermentations (56). We expect that continued work using industry-like

244  fermentations across grape varieties and yeast strains, as well as controlled fermentations
245  using reconstituted microbial consortiums, will be critical for understanding the relevance
246  of these gene expression signatures to wine fermentation outcomes. If understood, such
247  interactions could potentially be addressed through timely nutrient additions to a

248 fermentation to achieve desired outcomes.

249

250 Evidence of varied gene expression patterns linked to oxygen exposure during

251 fermentation

252 A wine fermentation is generally regarded as an anaerobic process given that the

253  carbon dioxide (CO2) produced as a byproduct of ethanol fermentation protects must from

13
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254  dissolved oxygen (57). Yet, within anaerobia, there is an important distinction between
255  hypoxic (low oxygen) and anoxic (no oxygen) conditions. In a fermentation, it is expected
256  that molecular oxygen (02) is introduced into the grape must by handling processes,

257  including pump overs, that may introduce small amounts of dissolved oxygen into

258  industrial-scale tanks (58). Stratification within a fermentation may also expose local cell
259  populations to different oxygen environments leading to yeast cell populations undergoing
260 different anaerobic processes. Within our data, we found gene expression patterns

261  consistent with different populations of cells experiencing varied levels of oxygen exposure
262  during fermentation. For example, the yeast cell wall undergoes remodeling in response to
263  oxygen availability, which is accomplished in part by regulated expression of cell wall

264  mannoproteins encoded by CWP1/CWPZ2, DAN1, and TIR1-TIR4 (59). Specifically,

265  expression of DAN1 and TIR1-TIR4 occurs reciprocally to expression of CWP1 and CWP2,
266  with the CWP genes being expressed in aerobic conditions and DAN1/TIR1-TIR4 in

267  anaerobic conditions (59). DAN1 expression is known to be repressed in aerobic conditions
268 by four independent regulatory mechanisms (60). Interestingly, expression of both CWP1
269 and DAN1/TIR1-TIR4 was observed in early fermentation samples. Similarly, in early

270  fermentations both HYPZ and ANB1 were expressed. These paralogous genes encode

271  translation elongation factor elF5A and are part of a family of paired genes for which

272  oxygen induces the aerobic isoform and represses the hypoxic isoform (61). HYPZ is

273  expressed under aerobic growth, while ANB1 is expressed under hypoxic growth and is
274  tightly regulated by the presence of oxygen (62). Together, these gene expression patterns
275 indicate varied gene expression programs within yeasts that may be explained by differing

276  levels of oxygen exposure.

14
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Among late expressed genes, oxygen-regulated paired isoforms were also
expressed, including COX5A and COX5B that encode a subunit of cytochrome c oxidase.
Modulated expression of these two isoforms allows S. cerevisiae to produce holoenzymes
with different catalytic properties in response to oxygen (63). COX5A expression declines
between 5-1 umol/L Oz, and is undetectable below 0.25 pmol/L Oz while COX5B is
undetectable until 0.25 pmol/L Oz (61). Simultaneous induction of both transcripts at the
end of fermentation is again consistent with cells experiencing varied levels of dissolved
oxygen in fermentation (58). In contrast, of the oxygen-regulated isoform pair CYC1 and
CYC7 (61), only expression of the hypoxic isoform CYC7 was detected at the end of
fermentation. The break point between expression of isoforms occurs at a higher
concentration of 0.5 pmol/L Oz for CYC1/CYC7 than COX5A/COX5B (61), which may
indicate that dissolved oxygen levels did not exceed 0.5 umol/L and therefore was not
permissive to expression of CYC1.

In late fermentation, induction of pathways like glycerol degradation and proline
metabolism that require oxygen were also observed. Glycerol is a compatible solute
involved in combating osmotic stress and redox balance and is primarily produced in early
fermentation (64). We found induction of GCY1 which encodes a glycerol catabolic enzyme
used in micro aerobic conditions (65), as well as RSFZ, a transcriptional regulator of genes
that encode proteins required for glycerol-based growth. Proline metabolism genes PUT1,
PUT2, and PUT#4 were also expressed at the end of fermentation. Although proline is an
abundant amino acid in grape must, it is a non-preferred nitrogen source of yeast and
requires oxygen to be metabolized (66). It was further observed that PUT1 and PUTZ were

induced in a sealed laboratory wine fermentation, but that proline was not metabolized

15
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300 given the absence of oxygen (2). Expression of PUT1, PUTZ, and PUT4 is regulated by

301 nitrogen catabolite repression (67) and the presence of proline in the absence of other
302 nitrogen sources (68), but is not regulated by the presence of oxygen. Intracellular proline
303 accumulation also protects S. cerevisiae from reactive oxygen species associated with

304  ethanol-rich environments (69). While it possible that glycerol and proline were

305 metabolized in late fermentation with oxygen ingress, other processes like nutrient

306 limitation and oxidative stress may also explain the induction of these genes.

307 Taken together, our gene expression data raises various questions about a

308 distributed gradient of oxygen (hypoxia and anoxia) in the fermentation environment that
309 may induce varied gene expression across the cell population. This could lead to yeast sub-
310 populations undergoing varied metabolic outputs or having different levels of ethanol

311 tolerance due to the role of oxygen in these processes (70, 71). In the future, single cell
312  sequencing technologies combined with continuously monitored dissolved oxygen assays
313  may help resolve these questions. From a production perspective, in industrial

314 fermentations, even those that employ pump over systems and therefore maintain mixing
315 and better homogeneity, there is a gradient of dissolved oxygen in the fermentation tank
316  wherein oxygen concentration is higher toward the top of the vessel (58). This suggests
317 that heterogeneous gene expression profiles in response to oxygen would likely exist in
318 these environments too. This is also an important fact to consider, as oxygen additions
319  during fermentation are known to influence both fermentation and sensory outcomes. For
320 example, in late fermentation, a single oxygen pulse increases the rate of fermentation
321 mediated by ergosterol biosynthesis (70). Similarly, oxygen additions at different stages of

322  fermentation differentially impact wine aroma compound formation like volatile thiols and
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323  esters; however, this appears to occur in a strain-dependent manner (71). This knowledge,
324  combined with the impact of oxygen addition on fermentation outcomes, raises the idea
325 that timely addition of oxygen may be a way to control fermentations rates and formation
326  of wine aromas, which would be a tool easily accessible to winemakers.

327

328 Mitochondria and fermentation

329 In late fermentation, our gene expression analyses find a striking enrichment of
330 pathways involved in mitochondrial biogenesis and function, as well as oxidative

331 phosphorylation (Figure 2C, Figure $3-S4). Substantial metabolic investment in

332  mitochondrial systems suggests a critical role for mitochondria late in fermentation.

333 However, what that role is remains unclear, as limited research has been conducted on the
334 mitochondria during enological fermentation, likely because of both low oxygen conditions
335 and the Crabtree effect in fermentative metabolism (72, 73). While some studies that

336  profile the transcriptome of primary fermentation either find no evidence for, or make no
337 comment on enrichment for oxidative metabolism at the end of fermentation, many studies
338 have found induction of mitochondrial genes, particularly those encoding oxidative

339  phosphorylation. This includes fermentations conducted under nitrogen limitation (6),
340 lipid limitation (74), and standard laboratory conditions (3). Interestingly, under lipid

341 limitation, oxidative phosphorylation was induced in the exponential phase of growth as
342  opposed to the end of fermentation (74). Given the role of membrane lipid composition in
343  combating ethanol-induced membrane permeability (75), and the accumulation of reactive
344  oxygen species during ethanol exposure (76), induction of the respiratory chain may

345  mitigate reactive oxygen species that are abundant at the end of fermentation. Nonetheless,
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346  therecurrence of these gene expression patterns in our studies and previous laboratory
347  experiments suggest that cells are investing in mitochondrial systems during fermentation.
348 One potential reason for late induction of mitochondrial systems is that glucose-
349 limitation relieves the Crabtree effect. This may lead to induction of oxidative

350 phosphorylation genes that change metabolism in a nutrient-limited environment to one
351 that generates the largest amount of ATP per unit of glucose (77). In this way, an

352  investment in mitochondrial infrastructure during late fermentation may be a starvation
353 adaptation in which S. cerevisiae uses oxidative phosphorylation to harness the largest

354 fraction of energy possible from remaining carbohydrate sources. However, this strategy is
355 predicated on availability of molecular oxygen, which is required for the induction and

356 function of the respiratory apparatus (78, 79). A second reason for mitochondrial gene

357  expression may be related to the fact that meiosis and sporulation related genes were

358 enriched at the end of fermentation (Figure 2C, Figure S3-S4). Induction of meiosis likely
359  occurs to produce spores resistant to the challenges of nutrient limitation and stress (80).
360 Interestingly, mitochondrial biomass is a predictor for meiosis (81), and components of the
361 respiratory chain are required for initiation of sporulation (82), providing another

362  potential process that may underlie mitochondrial investment in late fermentation. Related
363  to this fact, a propensity for yeast to undergo meiosis at this stage of vinification underlies
364 fast adaptive genomic evolution of S. cerevisiae (83), suggesting this may be an important
365 acquired trait that allows yeast to successfully survive the wine environment.

366 Mitochondria also fulfill other critical roles in fermentation unrelated to respiration.
367 For example, mitochondria play a role in sterol uptake and transport under strictly

368 anaerobic conditions (84), and mitochondria quench reactive oxygen species especially
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369  during ethanol stress (85). While we did not observe induction of specific genes related to
370  sterol biology and found induction of different genes related to reactive oxygen species
371 than those previously identified (see next section), these processes may also be linked to
372  increased mitochondrial gene expression. Regardless of the role played by mitochondria in
373 late fermentation, the striking and consistent induction of these genes in fermentations
374  signals that more research is needed to understand the role of mitochondria in

375 fermentation.

376

377 Thioredoxins and glutathione system activity throughout fermentation

378 The reducing environment of the cytosol in S. cerevisiae is key to various cellular
379 functions, including deoxyribonucleoside triphosphate synthesis and the elimination of
380 toxic compounds, including oxidants generated through cellular metabolism (86, 87). Key
381 to maintaining redox balance are the thioredoxin (TRX) and glutathione (GSH) thiol-

382  reductase systems. For example, proper redox homeostasis is required to maintain the
383 redox status of cysteine residues, which are essential for the function of numerous

384 enzymes, protein receptors, and transcription factors. Similarly, redox homeostasis within
385 cells aids to balance pools of reduced and oxidized pyridine nucleotide cofactors (NAD+/H,
386 NADP+/H) that are essential to numerous metabolic reactions. Reactive oxygen species
387  (ROS) can alter this redox balance causing oxidative stress and direct or indirect ROS-

388 mediated damage of nucleic acids, proteins, and lipids. While typically associated with

389 respiratory metabolism, ROS can be generated throughout fermentation, in particular by
390 superoxide anions and peroxides (76, 88, 89). ROS may also be created by acetaldehyde, an

391 intermediate in ethanol production (90).
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392 In early fermentation, we see induction of genes involved in the thioredoxin system,
393  suchas TRXI and TRR1. Expressed targets of TRX1 included RNR1-RNR4 (91), genes

394  encoding ribonucleotide-diphosphate reductase required for DNA synthesis and cell cycle
395  progression, as well as MET16, which encodes an enzyme required for sulfate assimilation
396  (92). We further observed genes encoding Trx1 target peroxidases (TSA1) and

397  peroxiredoxins (AHP1) constitutively expressed throughout fermentation along with

398 superoxide dismutases (SOD1, SOD2). An additional source of ROS are peroxisomes, which
399 may generate hydrogen peroxide in early fermentation via beta-oxidation of fatty acids.
400 CTA1, which encodes a peroxisomal catalase, and ANT1, which encodes a peroxisomal

401 transporter involved in beta-oxidation of fatty acids, were expressed in early fermentation.
402 A major factor used to maintain redox balance is NADPH, which provides reducing

403  potential for the thioredoxin system. It has been shown that metabolic intermediates in
404  glycolysis can be re-routed to the pentose phosphate pathway to generate NADPH in

405 response to oxidative stress (93-95). We found that the pentose phosphate pathway was
406 enriched among genes expressed in early fermentation (Figure 2C, Figure S1-S2), which
407  includes GND1, an enzyme that catalyzes NADPH regeneration and is required for the

408 oxidative stress response. Other expressed genes that encode enzymes acting downstream
409 of GNDI in the pentose phosphate pathway included RPE1, TLK1, TLKZ, and TAL1.

410 Central to the glutathione (GSH) thiol-reductase system is glutathione, an abundant
411 tripeptide conserved throughout eukaryotic and prokaryotic cells with a critical role in
412  redox control, but its physiological role is both diverse and debated (95). We observed that
413  genes encoding enzymes involved in the degradation (DUG1 and DUGZ2), import (OPT1), and

414  biosynthesis (GSH1 and GSHZ in the 2017 vintage) of glutathione were expressed in early
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415 fermentation. Additional generation of NADPH in early fermentation may be supported by
416  the transformation of isocitrate to alpha ketoglutarate via IDP1 in the mitochondria, and
417  exportvia YMHZ, as both genes were also expressed. Genes encoding aldehyde

418 dehydrogenases ALD5 and ALD6 are similarly expressed in early fermentation, both of

419  which may regenerate NADPH through the transformation of acetaldehyde to acetate. ALD6
420  is the dominant isoenzyme responsible for acetate production in wine (96).

421 We further observed induction of genes involved in glutathione-mediated ROS

422  mitigation in late fermentation. For example, a gene encoding cytosolic glutaredoxin

423  (GRX1) was expressed in late fermentation. Unlike glutaredoxins in other species

424  (e.g, mammals), yeast glutaredoxins do not function as deglutathionylase enzymes (97).
425 Instead, induction of GRX1 increases resistance to hydroperoxides by catalytically reducing
426  hydroperoxides through glutathione conjugation and using the reducing power of NADPH
427  (98).In addition, the cytosolic peroxidase GPX1 was expressed. GPX1 uses both glutathione
428  and thioredoxin, in combination with NADPH, for reducing power (99). GPX1 is known to
429  be expressed by glucose and nitrogen starvation (100), which coincides with peak peroxide
430 formation in yeast during wine fermentation (88). While our gene expression data support
431 arole for cytoplasmic glutathione during late fermentation, genes encoding mitochondrial
432  peroxidin (PRX1) and thioredoxin (TRX3) were also expressed. Prx1 buffers the

433  mitochondria from oxidative stress and is reductively protected by glutathione, thioredoxin
434  reductase (Trr2), and Trx3 (101). Taken together, these results suggest that cytoplasmic
435 and mitochondrial systems may be integral to combating increased oxidative stress at the

436 end of fermentation.
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437 Glutathione is also important for maintenance of cellular function via other systems.
438 For example, methylglyoxal is a byproduct of glycolysis, a reduced derivative of pyruvic
439 acid, that may account for up to 0.3% of glycolytic carbon flux in S. cerevisiae (102). We
440  found that GLOZ, an enzyme that catalyzes methylglyoxal degradation in a glutathione

441 dependent manner, was expressed in late fermentation, as were glutathione-independent
442  systems involved in the degradation of methylglyoxal (GREZ/GRE3). Genes that encode
443  proteins involved in glutathione homeostasis were also expressed at the end of

444  fermentation, including GEX1 that encodes a proton:glutathione antiporter (103, 104).

445  GEXI1 is known to be induced during oxidative stress (103) and modulates formation of the
446  aromatic thiol 3-mercaptohexan-1-ol from its glutathionylated precursor in wines such as
447  Sauvignon Blanc (104). Conversely, an induction of a gene that encodes an enzyme that
448 cleaves glutathione (GCG1) was observed and may be involved in apoptotic signaling via
449  ROS accumulation (105).

450 Together, these gene expression patterns highlight how intertwined redox

451 homeostasis is with almost all core metabolic processes in S. cerevisiae, as most pathways
452  require oxidation or reduction by a pyridine nucleotide cofactor during at least one

453  reaction. For example, NAD+/H and NADP+/H participate in 740 and 887 biochemical

454  reactions through interactions with 433 and 462 enzymes, respectively (106). It is also well
455  documented that experimental perturbation of both NAD+/H and NADP+/H leads to

456  changes in aroma compounds in wine and other fermented beverages (107-110). The

457  observations presented herein conserved across many Pinot noir fermentations involving
458  genes engaged in redox balance and mitigation of oxidative stress via thiol-reductase

459  systems offers further evidence for the importance of these systems. These findings
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460 provide motivation for future studies of these systems in the context of wine production,
461  which would include control measures to aid cellular control of redox and mitigate

462  oxidative cellular stress.

463

464  Stress-associated gene expression during fermentation

465 During fermentation, S. cerevisiae has to adapt to a continually changing stress

466 landscape. Macro- and micronutrients become limiting as ethanol concentrations increase
467 and, as discussed above, production of acetaldehyde and other metabolic processes

468  generate oxidative stress. To accommodate this dynamic environment, S. cerevisiae wine
469  strains express genes that overlap with, but are distinct from, the stress response of

470  laboratory strains. (7, 111). In accordance with previous studies (2, 3), we found partial
471  overlap between genes expressed in fermentation and those involved in the environmental
472  stressresponse (ESR) in laboratory strains. Specifically, 16 ESR genes were expressed at
473  the beginning of fermentation and 78 ESR genes at the end of fermentation. This matches
474  observations in synthetic must where stress genes were induced upon entry into stationary
475  phase (2). Stress-related genes expressed at the beginning of fermentation were enriched
476  for Gene Ontology pathways involving carbohydrate transmembrane transport (mannose,
477  fructose, glucose, hexose) and NADP regeneration (Figure 3A), while stress-related genes
478  expressed at the end of fermentation were enriched for oxidation-reduction process,

479  generation of precursor metabolites and energy, energy reserve metabolic process, and
480 glycogen metabolic process (Figure 3B).

481 A recent study investigated fermentation of Riesling grape must at laboratory scale

482  without addition of oxygen (3). Using microarray analysis at five time points in
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483 fermentation, the authors defined a fermentation stress response (FSR) as those genes that
484  are induced at any point in fermentation and do not return to baseline (3). The FSR is

485  differentiated from the ESR and common stress response because adaptation is not

486  observed over time through gene expression returning to pre-stress transcription levels (3,
487  7,111).0f the 223 genes induced in the FSR, 84 were observed to be expressed in mid- or
488 late- fermentation. Of these 84 genes, 43 overlap with genes expressed in other stress

489 responses as defined in (3), including 16 with the ESR and 14 with the common stress

490 response. Of the 41 genes that overlap with the FSR, many were related to the challenging
491  nutrient environment in wine, including glucose limitation (NRG1, SKS1, HXT6, VID24),

492  nitrogen limitation (MEP2, GAP1, PTR2, AVT4, VBAZ2), vitamin limitation (MCH5, VHR1), and
493  stress caused by heat, salt, protein mis-folding, and cell wall defects (GAC1, RPI1, JID1,

494  PSR2). This suggests that multiple stress pathways are simultaneously activated by the

495 challenging environment that S. cerevisiae encounters in wine fermentation, which likely
496  defines the described fermentation stress response. Many genes identified in the FSR, and
497  expressed in this study during fermentation, remain uncharacterized (YPR152C, YBR0O85C-
498 A, YDL024C, YDR042C, YMR244W, YLL056C), offering gene targets of future investigation
499  related to adaptation to the fermentation and wine environment.

500

501 Polyol metabolism in late fermentation

502 Polyols, also called sugar alcohols, have recently been shown to be produced by non-
503  Saccharomyces yeasts and by fructophilic lactic acid bacteria such as Lactobacillus kunkeei
504  during fermentation (112, 113). Combined with other spoilage organism associated

505 metabolites, these compounds can have a significant impact on wine quality (114).
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506  Mannitol is one such polyol and a non-preferred sugar that can be metabolized by S.

507  cerevisiae (115-117). In S. cerevisiae, transporters encoded by HXT13 and HXT15-17 were
508 found to facilitate mannitol and sorbitol transport (116). In our data, we observed

509 induction of the mannitol transporter HXT13 in both vintages, along with the mannitol
510 dehydrogenase MANZ, which together indicate that mannitol may be present and

511 metabolized by S. cerevisiae at the end of fermentation (Figure 4). In line with this,

512  although eukaryotic transcriptional profiling via 3" Tag-seq was performed (see methods),
513 L. kunkeei transcripts were detected in some fermentations, which is one potential source
514  of mannitol production. These data raises the possibility of mannitol consumption by S.
515 cerevisiae, demonstrating metabolic flexibility for carbon sources late in fermentation.
516 Notably, L. kunkeei can influence S. cerevisiae metabolism beyond expression of
517 genes for non-preferred carbon sources. Via production of acetic acid, and possibly other
518 compounds, L. kunkeei has been shown to induce the [GAR+] prion phenotype in S.

519 cerevisiae thereby shifting carbon metabolism away from hexoses (118, 119). Given that
520 the presence of L. kunkeei RNA was detected in the 2017 vintage, we tested for the

521 presence of the [GAR+] phenotype in the 2019 vintage via cell culture (119). We did not
522  detect the presence of the [GAR+] prion in any fermentation tested in the 2019 vintage.
523  While the absence of the [GAR+] phenotype in the 2019 vintage does not preclude its

524  presence in the 2017 vintage, consistent gene expression for mannitol transport and

525 degradation in both vintages suggests that S. cerevisiae may be metabolizing mannitol in
526  these Pinot noir fermentations due to the presence of non-Saccharomyces organisms,

527 including L. kunkeei.
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528

529 Vintage-specific differences

530 From our data analyses, there are 717 genes and 375 genes differentially expressed
531 inthe 2017 and 2019 vintages, respectively. The majority of these genes were members of
532  pathways enriched among all fermentations (Figure 2C, Figure S1-Figure S4). Using Gene
533  Ontology enrichment analysis, no molecular function, cellular compartment, or biological
534  process was enriched in either vintage that was not also enriched in both vintages. This
535 suggests these differences may be largely due to sequencing depth or variations in the gene
536  expression within these pathways and not differences in the overall biology of S. cerevisiae.
537  Still, signatures indicative of vintage-specific effects were observed, some of which may
538 impact the sensory attributes of wine. For example, glycerol is an important fermentation
539  byproduct that can contribute to the mouth feel of wine (120). S. cerevisiae uses glycerol
540 biosynthesis to generate NAD+, a required cofactor for glycolysis, when NAD+ levels are
541 not sufficiently replenished through fermentation (121). During glycerol biosynthesis,

542  enzymes encoded by GPD1 and GPDZ2 convert dihydroxyacetone phosphate into glycerol-3-
543  phosphate (122). Both GPD1 and GPD2 were expressed in early fermentation in the 2017
544  vintage, but not in the 2019 vintage. A second example involves genes encoding the

545  fluoride transporters Fex1 and Fex2, which were expressed in late fermentation across all
546  fermentations in the 2019 vintage. Fluoride is a toxic anion that S. cerevisiae exports via
547  two plasma membrane transporters to avoid cell damage (123), which in excess can cause
548 slow or stuck fermentation (124). Although fluoride is ubiquitous in terrestrial and aquatic

549  environments (123), application of the insecticide Cryolite, which contains fluoride, has
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550 caused problematic fermentations in California vineyards (124). Currently, the reasons for
551 these gene vintage-specific expression patterns are not known.

552 Finally, it was observed that genes of currently unknown function were

553 differentially expressed in the two vintages assayed. Using a log> fold change cut off of two,
554 14 genes in the 2017 vintage and seven genes in the 2019 vintage were of unknown

555 function. Across both vintages, more genes of unknown function were expressed in late
556 fermentation than in early fermentation (10 in 2017, 5 in 2019). Knowledge of the specific
557  pathways expressed in late fermentation due to the stressful, nutrient-limited conditions,

558 offers clues to the potential functions of these genes that could be explored in future work.
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559 Conclusion

560 In this study, we present a gene expression analysis across 40 pilot-scale

561 fermentations of California Pinot noir wine using grapes from 10 vineyard sites and two
562  vintages. The fermentations were diverse with different kinetics, initial chemical

563  conditions, and microbial communities (56). Yet among this diversity, we detected a core
564  gene expression program by S. cerevisiae that is largely consistent with that observed at
565 laboratory scale (2-4). Given that there are many genes consistently expressed across

566  these Pinot noir fermentations from diverse vineyards, members of this core fermentation
567  gene program represent strong candidates for future study to impact wine outcomes,

568 e.g.through manipulating redox balance (107-110). Excitingly, this includes a large

569 number of genes with unknown function that through investigation may provide new

570 insights into the biology of S. cerevisiae.

571 The largest deviations from benchtop fermentations are likely attributed to

572  activities of non-Saccharomyces organisms, but more research is needed to understand
573  these complex ecological interactions and their impact on fermentation. The gene

574  expression signatures around oxygen presence and metabolic availability also warrants
575  further research, in particular into the role of the mitochondria in late fermentation (3, 6,
576  74). While we detected few vintage-specific differences between fermentations, we expect
577  there are vineyard-site specific deviations from the consistent patterns of gene expression
578 described herein. Given the variability in fermentation kinetics with respect to time of
579  sampling, new methods will likely be needed to resynchronize stages of fermentation to
580 enable cross-vineyard comparisons (4). Future work is also needed to extend these

581 observations to other grape varieties and S. cerevisiae wine strains, which will define both
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582  the shared and unique facets of the core gene expression program in S. cerevisiae linked to
583  these variables. With such information, we can address the impact of an industrial wine
584 fermentation environment on S. cerevisiae gene expression and define approaches that can

585  be used to manage commercial fermentation outcomes.
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586 Methods

587  Grape preparation and fermentation

588 The wine making protocol used in this study was described previously (23, 48). The
589  grapes used in this study originated from 10 vineyards in six American Viticulture Areas in
590 California. All grapes were Pinot noir clone 667 rootstock 101-14. We harvested grapes at
591 approximately 24 Brix and transported the fruit to University of California, Davis Pilot

592  Winery for fermentation. We performed separate fermentations for grapes from each site,
593  with two fermentations per site, totaling of 20 fermentations per vintage (40 fermentations
594  total). After harvest, we separated the fruit into half-ton macrobins on harvest day and
595 added Inodose SOz to 40 ppm. We stored the bins in a 14°C cold room until destemming
596 and dividing of the fruit into temperature jacket-controlled tanks. We performed N>

597  sparging of the tank headspace prior to fermentation and sealed tanks with a rubber

598 gasket. We cold soaked the must at 7°C for three days and adjusted TSO; to 40 ppm on the
599  second day. After three days, we increased the must temperature to 21°C and set a

600 programmed pump over timetable to hold the tank at a constant temperature. We

601 reconstituted S. cerevisiae RC212 with Superstart Rouge at 20 g/hL and inoculated the

602  must with 25 g/hL of yeast. At approximately 24 hours after inoculation, we adjusted

603 nitrogen content in the fermentations using DAP (target YAN - 35 mg/L - initial YAN)/2,
604 and Nutristart using 25 g/hL. We only adjusted nitrogen if target YAN was below 250

605 mg/L. Approximately 48 hours after fermentation, we permitted fermentation

606 temperatures to increase to 27°C and added DAP as previously described. Fermentations
607  ran to completion when Brix < 0. We took fermentation samples for Brix measurements

608 and RNA isolation at 16, 64, and 112 hours relative to inoculation. To ensure uniform
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609 sampling, we performed a pumpover ten minutes prior to sampling each tank. For RNA
610 samples, we obtained 12mL of juice was obtained and centrifuged at 4000 RPM for 5

611 minutes. We discarded the supernatant and froze the pellet in liquid nitrogen. We stored
612  samples at -80°C until RNA extraction.

613

614 RNA extraction and sequencing

615 We thawed frozen yeast pellets on ice, resuspended in 5ml Nanopure water,

616 centrifuged at 2000g for 5min, and aspirated the supernatant. We extracted RNA using the
617  Quick RNA Fungal/Bacterial Miniprep kit including DNAsel column treatment (cat#R2014,
618  Zymo Research). We eluted samples in 30uL of molecular grade water and assessed for
619  concentration and quality via Nanodrop and RNA gel electrophoresis. We adjusted sample
620 concentrations to 200ng/pl and 20 pl sent for sequencing. We used 3" Tag-seq single-end
621 sequencing (Lexogen QuantSeq) in both the 2017 and 2019 vintage, with the addition of
622 UMl barcodes in 2019. The University of California, Davis DNA Technologies Core

623  performed all library preparation and sequencing.

624

625 Differential expression analysis

626 We preprocessed samples according to manufacturer recommendations. First, we
627  hard-trimmed the first 12 base pairs from each read and removed Illumina TruSeq

628 adapters and poly A tails. Next, we used STAR to align our reads against S. cerevisiae S288C
629 genome (R64, GCF_000146045.2) with parameters --outFilterType BySJout --

630  outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --

631  outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.6 --alignIintronMin 20 --
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632  alignintronMax 1000000 --alignMatesGapMax 1000000 --outSAMattributes NH HI NM MD
633  --outSAMtype BAM SortedByCoordinate (125). For the 2019 vintage, we used UMI tools to
634  deduplicate alignments (126). We then quantified reads mapping to each open reading
635 frame using htseq count (127). We imported counts into R and filtered to mRNA

636  transcripts. To prepare for differential expression, we used the edgeR function

637  calcNormFactors with default parameters (128). We used limma for differential expression,
638  building a model using Brix values, preparing the data for linear modelling with the voom
639 function, and building a linear model for each gene with ImFit (129). We considered any
640 gene with an adjusted p value < 0.05 as significant. To combat batch effects from different
641 library preparation techniques used in the 2017 and 2019 vintages, we performed

642  differential expression separately on counts from each vintage. We took the union of

643  expressed and repressed genes between vintages, respectively, to generate the final set of
644  differentially expressed genes. We visualized expressed and repressed genes using

645  proteomaps (130), and visualized the intersection of differentially expressed genes

646  between vintages using the R package ComplexUpset

647  (https://github.com/krassowski/complex-upset).

648 We performed gene set enrichment analysis for genes that were expressed and repressed
649  in both vintages against the Gene Ontology (ont = "ALL") and Kyoto Encyclopedia of Genes
650 and Genomes (organism = "sce") databases using the R package clusterProfiler (131).

651

652  Detection of Lactobacillus kunkeii in RNA sequencing reads

653 3" Tag-seq sequences the tail-end of transcripts that contain poly(A) tails. The

654  majority of transcripts with poly(A) tails are eukaryotic in origin, but given that bacteria
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655 perform polyadenylation as a degradation signal (132), a very small subset of transcripts
656  may also originate from bacteria. We identified Lactobacillus kunkeei in RNA-seq reads
657  using sourmash gather (133, 134). Using all L. kunkeei genomes available in GenBank

658 (08/06/2019), we generated sourmash signatures for each using a k-mer size of 31 and a
659  scaled value of 100. We then used sourmash index to generate a database of L. kunkeei
660 genomes, and queried this database using signatures of each RNA-seq sample. To validate
661 findings from sourmash gather, we used BWA mem with default parameters to map a

662  subset of samples against the best matching L. kunkeei genome (135).

663

664  Culturing Saccharomyces cerevisiae for [GAR+] prion detection

665 To ascertain whether the [GAR+] prion state was detectable in wine fermentations,
666  we cultured yeast for the prion as performed in (119). We used yeast peptone-based

667 medium containing the designated carbon source, such as YPD (1% yeast extract, 2%

668  peptone, 2% agar, 2% glucose); YPG (1% yeast extract, 2% peptone, 2% agar, 2% glycerol)
669  or GGM (1% yeast extract, 2% peptone, 2% agar, 2% glycerol, 0.05% D-[+] glucosamine
670  hydrochloride). We inoculated yeast from fermentations into each well of a 96 well plate
671  containing 200pl liquid YPD + 34g/ml chloramphenicol, and then grew yeast at 30°C for 48
672  hours. We then pinned yeast to YPG or GGM plates and grew at 30°C for four days.

673

674 American Viticultural Area (AVA) map construction

675 We constructed the AVA map featured in Figure 1 from the UC Davis Library AVA
676  project https://github.com/UCDavisLibrary/ava.

677
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Data Availability
RNA sequencing data is available in the Sequence Read Archive under accession
number PRINA680606. All analysis code is available at

github.com/montpetitlab/Reiter_et_al_2020_GEacrossBrix.
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1124 Table 1: Genes differentially expressed throughout fermentation shared across vintages

1125  Genes constitutively expressed in fermentation.

Wine process | Gene Expressed Gene product function
most highly

Glycolysisand | HXT3 late Hexose transporter induced by both high and low glucose concentrations.
fermentation

PFK1, PFK2: early | Phosphofructokinases that catalyze the first irreversible reaction specific to
PFK2 glycolysis, producing fructose-1,6-bisphosphate from fructose-6-
phosphate.

ADH1- | ADH2-ADH4: | Alcohol dehydrogenase isoenzymes. Dominant fermentative alcohol is
ADH5 | early ADH1 (136). Responsible for reoxidation of NADH to NAD+ which is a
ADHS5: late required cofactor in the metabolism of glyceraldehyde-3-phosphate in
glycolysis. ADHZ is a non-dominant isoenzyme of alcohol dehydrogenase.
Typically repressed by glucose and converts ethanol to acetaldehyde (136).
Overexpressed in some wine strains (137).

1126

1127  Genes expressed higher in early fermentation in both the 2017 and 2019 vintages.

Wine process | Gene Gene product function
Glycolysisand | HXT1 Low affinity hexose transporter.
fermentation
HXK2 Hexokinase that phosphorylates glucose in the first irreversible step leading to glycolysis.
PFK1, Phosphofructokinases that catalyze the first irreversible reaction specific to glycolysis,
PFK2 producing fructose-1,6-bisphosphate from fructose-6-phosphate
Acetate ALD4-6 | Aldehyde dehydrogenase isoenzymes that produce acetate as a byproduct when
metabolism acetaldehyde is metabolized. ALD6 encodes the main isoenzyme responsible for acetate
production in wine (96). Aldehyde dehydrogenase isoenzymes ALD4 and ALD5 are
expressed when ethanol is the carbon source and are not typically associated with wine
fermentation. Acetate contributes the majority of volatile acidity associated with negative
organoleptic properties in wine (138).
PDR12 | Plasma membrane ABC transporter. Required for development of resistance to weak
organic acids, including acetate (139).
Cell cycle BAT1 Expressed in logarithmic phase (140).
CWP1 Expressed in the S/G2 phase of cell cycle (140).
Nitrogen GNP1 High-affinity glutamine permease that also transports leucine, serine, threonine, cysteine,
metabolism methionine and asparagine.
MUP1 High-affinity methionine permease that is also involved in cysteine transport.

59


https://doi.org/10.1101/2021.01.11.426308
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426308; this version posted February 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

CAR1, Involved in arginine catabolism. Arginine is the most abundant amino acid in grape must
CAR2 after proline (66) and is used in protein synthesis during fermentation (141).

YPQ1 Vacuolar transporter for arginine and lysine. Unused arginine is stored in the vacuole for
later use (141).

Ehrlich BAT1, Catalyzes transamination of amino acids, the product of which cannot be redirected to
pathway ARO8 central carbon metabolism and so is excreted as fusel acid or fusel alcohol (142).
Overexpression of BAT1 increases the concentration of isoamyl alcohol, its acetate ester,
and isobutanol in wine (142).

PDC1 Catalyzes alpha keto decarboxylation.

Glycerol GPP1 Cleaves phosphate from glycerol-3-phosphate.
biosynthesis

1128

1129  Genes expressed higher in late fermentation in both the 2017 and 2019 vintages.

Wine process Gene Gene product function
Nitrogen GAT1, DAL80 Transcriptional activator (GAT1) and repressor (DAL80) of genes under
limitation nitrogen catabolite repression. Expression is inversely correlated, and the

detection of both genes as induced in late fermentation likely indicates tight
transcriptional regulation of nitrogen metabolism.

DAL2-DALS, Catalyze allantoin degradation and expression is under nitrogen catabolite
DAL80, DAL82 repression.

MEP2 Ammonia permease and expression is under nitrogen catabolite repression.

GAP1 Amino acid permease.

PTR2 Peptide permease.

AVT3, AVT4 Vacuolar amino acid exporters that mobilize internal nitrogen stores for cell
maintenance during stationary phase. Expression is under nitrogen catabolite
repression.

ubiquitin- RPN4 Transcription factor that induces expression of proteasome genes.
mediated

selective protein

degradation TMC1 Effector of proteotoxic stress induced by nitrogen limitation, weak acid, and

misfolded proteins. Target of RPN4.

UBCS8, VID24 Negative regulators of fructose-1,6-bisphosphate through ubiquitination
(UBC(C8) and vacuolar targeting (VID24).

UBC1, UBCS, Ubiquitin conjugating enzymes.

UBC7, UBC13

UBI4, CUZ1 Involved in the ubiquitin-proteasome pathway.
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Autophagy ATG2, ATG4, Proteins involved in autophagy. Autophagy is a key response to nutritional
ATG7-ATG12, limitation that allows cells to maintain homeostasis (143). Nitrogen
ATG14, ATG32, starvation leads to the largest autophagic response in yeast.
ATG40
Erlich pathway GRE2 Final step of pathway where fusel aldehydes are oxidized or reduced into
fusel acids or alcohols (142).
Carbon limitation | SNF3 Plasma membrane low glucose sensor involved in regulating glucose
transport
SKS1 Serine/threonine kinase involved in the adaptation to low glucose via SNF3-
independent signaling
PGM2 Phosphoglucomutase. Catalyzes a key step in hexose metabolism. Induced in
response to glucose limitation and ethanol stress (144).
HXK1 Hexokinase that phosphorylates glucose or fructose in the first irreversible
step leading to glycolysis. Under glucose-induced repression.
HXT4, HXT6 Hexose transporters required at the end of alcoholic fermentation.
Trehalose and TSL1, NTH1, Involved in trehalose synthesis (TSL1) and degradation (NTH1, ATH1).
glycogen ATH1 Trehalose acts a a storage carbohydrate for cell maintenance in non-growth
conditions (145, 146), bolsters membrane integrity by displacing ethanol
(146), and protects proteins from denaturation (147). Trehalose recycling is
an important component of stress response (148).
GLG1, GSY1, Involved in glycogen accumulation (GLG1, GSY1, GSY2, IGD1), degradation
GSY2, IGD1, (GPH1, SGA1), and metabolism (GAC1, GIP1, YPI1, PIGZ2, GLC8). Glycogen
GPH1, SGA1, accumulates during nutrient abundance and is metabolized during stationary
GAC1, GIP1, YPI1, | phase and nutrient deprivation (145). Glycogen recycling is an important
PIG2, GLC8 component of stress response (148).
Cell wall integrity | PIR3, SED1, SLT2 | Target genes of the cell wall response to ethanol. PIR3 is required for cell wall

stability and induced in part by SLT2. SED1 is a stress-induced cell wall
structural protein (SED1) (149).

PKHZ2, YPS1,
PST1, KRE1

General cell wall integrity response.
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Figure 1: California vineyard locations and fermentation patterns. A). Map displaying
the six American Viticulture Areas (AVAs) in which the 10 study vineyards are located. B.)
Fermentation curves reflecting the change in Brix over fermentation. Brix is a measure of
total soluble solids that is used as a proxy for sugar concentration in grapes, grape must, and
wine. C). Brix at time of sampling for each RNA-seq sample relative to inoculation. While
samples were taken at the same absolute time, fermentations proceeded at different rates
leading to different Brix values in each fermentation.
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Figure 2: Transcriptome remodeling in fermentation is consistent across
fermentations and vintages. A.) Genes expressed in early (HXT1), late (HXT4), and
constitutively (ADH1) in fermentation. B.) Upset plot showing the intersection of genes that
are significantly expressed at the beginning and end of fermentation in each vintage using a
log: fold change cut off of 1. The majority of genes are consistently expressed across
fermentations and vintages. C.) Proteomaps depicting Gene Ontologies (left) and genes (right)
that are expressed in early (top) and late (bottom) fermentation. The size of individual genes
reflects the associated log: fold change value. Note that for presentation purposes not all
genes that are significantly expressed are depicted. See Table S1 for a complete list of genes.
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1150 Figure 3. Pathways enriched among genes differentially expressed across fermentation
1151  that are shared with the environmental stress response (ESR). A.) Of 16 genes that

1152  overlap with the ESR and were expressed in early fermentation, pathways related to

1153  carbohydrate metabolism were enriched. B.) Of 78 genes that overlap with the ESR and were
1154  expressed in later fermentation, pathways related to oxidation-reduction and carbohydrate
1155  metabolism were enriched.
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Figure 4. Normalized log gene expression counts for genes involved in mannitol
transport and degradation. HXT13 and MANZ expression is graphed in the 2017 (A, B) and
2019 (C, D) vintages. MANZ2 and HXT13 were the top most expressed genes at the end of
fermentation in 2019, and only fell behind HXT4 in the 2017 vintage. Grey lines indicate a
linear model fit to normalized counts.
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1163  Figure S1. Significantly enriched Gene Ontology (GO) pathways in early fermentation.
1164  Pathways from GO categories molecular function, cellular component, and biological process
1165  are represented. Significant pathways are defined as p < 0.05 after Bonferroni p value

1166  correction.
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1168  Figure S2. Significantly enriched KEGG pathways in early fermentation. Significant
1169  pathways are defined as p < 0.05 after Bonferroni p value correction.
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Figure S3. Significantly enriched Gene Ontology (GO) pathways in late fermentation.
Pathways from GO categories molecular function, cellular component, and biological process
are represented. Significant pathways are defined as p < 0.05 after Bonferroni p value
correction.
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1176  Figure S4. Significantly enriched KEGG pathways in late fermentation. Significant

1177  pathways are defined as p < 0.05 after Bonferroni p value correction.
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