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Abstract  1 

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of 2 

the best means of disease control is plant resistance, but the identification of genes that promote 3 

resistance has been limited by the subjective quantification of disease, which is typically scored 4 

by the human eye. We hypothesized that image-based, non-destructive quantification of disease 5 

phenotypes would enable the rapid identification of new disease resistance loci. We tested this 6 

using the interaction between tomato and Ralstonia solanacearum,  a soilborne pathogen that 7 

causes bacterial wilt disease. We acquired over 40,000 time-series images of disease progression 8 

in a tomato recombinant inbred line population, and developed an image analysis pipeline 9 

providing a suite of ten traits to quantify wilt disease based on plant shape and size. Quantitative 10 

trait loci (QTL) analyses using image-based phenotyping identified QTL that were both unique 11 

and shared compared with those identified by human assessment of wilting. When shared loci 12 

were identified, image-based phenotyping could detect some QTL several days earlier than 13 

human assessment. Thus, expanding the phenotypic space of disease with image-based, non-14 

destructive phenotyping allowed both earlier detection and identified new genetic components of 15 

resistance. 16 

 17 

  18 
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Introduction 19 

Plant diseases are a significant global constraint to crop production. Developing disease resistant 20 

crops requires identifying the plant genomic regions and genes that contribute to resistance to the 21 

pathogenic microbes that cause disease. This in turn depends on phenotyping large populations 22 

of plants for their responses to pathogens. Phenotyping plant diseases is challenging because 23 

diseases cause complex, quantitative phenotypes that can occur at different scales – e.g. on parts 24 

of leaves, entire leaves, or the whole plant.  In addition, disease phenotypes vary over time and 25 

depend on environmental conditions, plant age, and pathogen virulence. Disease symptoms such 26 

as wilting or necrotic spots have traditionally been scored with the human eye, but these scores 27 

are subjective, can vary by individual, and are difficulty to accurately quantify.  28 

 29 

The challenging nature of visual disease assessment has led to the use of sensors including RGB, 30 

hyperspectral, chlorophyll fluorescence and thermal cameras to assess disease symptoms 31 

(Colwell, 1956; Jackson, 1986; Bock et al., 2010; Simko et al., 2017). Compared to assessment 32 

by the human eye, image-based phenotyping is faster, more reproducible, and more sensitive to 33 

small variations in disease symptoms that can be critical for detecting resistance loci (Bock et al., 34 

2008, 2010; Stewart and McDonald, 2014; Stewart et al., 2016; Simko et al., 2017; Shakoor et 35 

al., 2017). Many studies have used or developed tools to assess plant symptoms using different 36 

types of sensors (Mahlein, 2016; Mahlein et al., 2017, 2019; Lowe et al., 2017; Shakoor et al., 37 

2017; Mochida et al., 2019; Mir et al., 2019; Pérez-Bueno et al., 2019; Pineda et al., 2021; Simko 38 

et al., 2017). However, few studies have used these technologies in QTL or Genome Wide 39 

Association (GWA) analyses for responses to plant pathogens, and all have used destructive 40 

methods (Yates et al., 2019; Fordyce et al., 2018; Corwin et al., 2016). It has remained 41 

challenging to use image-based, non-destructive phenotyping for disease resistance across large 42 

populations, both because of technical factors like the expense of phenotyping platforms and the 43 

time associated with imaging, and also biological factors such as differences in plant morphology 44 

and disease progression within a population. 45 

 46 

The soil-borne betaproteobacterium Ralstonia solanacearum is the causal agent of bacterial wilt 47 

disease and has been ranked as one of the top 10 most destructive plant bacterial pathogens of all 48 

time (Mansfield et al., 2012). Ralstonia infection causes susceptible plants to wilt, and the 49 
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amount of wilting correlates with a plant’s level of susceptibility (Genin, 2010; Genin and 50 

Denny, 2011). The bacterium is a major production constraint in Solanaceous crops both 51 

globally and in the United States, where disease loss in tomatoes can exceed 70%. In crops, 52 

resistance to Ralstonia is quantitative, but the quantitative trait loci (QTL) underlying resistance 53 

to US strains of Ralstonia are largely unknown.  QTL for other strains have been mapped 54 

(Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 1999; Wang et al., 2000; 55 

Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 2020) but have not been cloned, 56 

and the host determinants necessary for resistance remain mostly unspecified.  57 

 58 

The limited identification of QTL for Ralstonia resistance can be attributed in part to the 59 

difficulty in accurately scoring plant wilting. Wilting is traditionally measured on a 0 – 4 scale, 60 

in which 0 indicates a plant with no wilting, 1 = 1 – 25%, 2 = 26 – 50%, 3 = 51 – 75% and a 61 

score of 4 indicates a plant with 76 – 100% wilted leaves (Schandry, 2017). While it is 62 

straightforward to assess the ends of the spectrum, rating plants with scores of 2 or 3 is 63 

particularly difficult. This is due to the subjective nature of visually determining when a leaf has 64 

lost sufficient turgor to qualify as wilted. Reliable disease phenotyping is critical for identifying 65 

QTL for resistance to Ralstonia and the development of resistant varieties.  66 

 67 

Here, we used image-based, rapid, non-destructive phenotyping to identify new tomato genetic 68 

resistance loci to Ralstonia. We developed a rapid, semi-automated imaging and trait analysis 69 

pipeline to quantify bacterial wilt disease in a recombinant inbred line (RIL) population derived 70 

from Ralstonia-resistant and susceptible tomato genotypes. We found both unique and shared 71 

QTL between our image-based traits and plant wilting scored by the human eye.  At least one of 72 

the QTL was detected by image-based phenotyping before the onset of visual symptoms, 73 

demonstrating that image-based phenotyping captures the disease phenotype at early stages of 74 

infection. These results demonstrate that imaged-based, non-destructive phenotyping can shed 75 

light on new aspects of disease and improve our ability to identify genetic loci crop resistance.  76 

 77 

Results 78 

Development of an aboveground imaging and semi-automated analysis pipeline  79 
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We first constructed a simple, low-cost imaging system that allowed us to semi-automate 80 

aboveground disease phenotyping. Each plant was placed on a commercially available turntable, 81 

and plants were imaged with a Canon DSLR (Supplemental Figure 1; details in methods). The 82 

turntable and camera were connected with Photocapture 360 (Ortery technologies), which 83 

allowed us to automatically capture images every 45 degrees (8 images per plant). Using this 84 

system, we were able to non-destructively image each plant in less than 2 minutes, with minimal 85 

manual labor. Each image included a fiducial marker for post-image color correction. Plants in 86 

the F9 generation from a RIL population derived from a cross between resistant Hawaii 7996 87 

(H7996) and susceptible West Virginia 700 (WV) were imaged the day before inoculation with 88 

R. solanacearum strain K60, and at 3, 4, 5 and 6 days post inoculation (dpi). At 3 dpi, symptoms 89 

were not present in susceptible parent WV, but by 6 dpi these plants were completely wilted. We 90 

imaged five replicate plants of each RIL as well as the parental lines. Using this system, we 91 

captured over 40,000 images for high-resolution disease phenotyping. The same set of plants was 92 

also visually scored by the human eye at 8 dpi. Visual scoring was based on the percentage of 93 

wilted leaves. Tomato phenotypes in the RIL population ranged from highly susceptible to 94 

highly resistant, consistent with the quantitative nature of disease resistance (Supplemental 95 

Figures 2 and 3). 96 

 97 

We next developed a set of mathematical descriptors to phenotype wilting over time in our 98 

images. Plant wilting is a composite phenotype, and we used 10 image-based traits 99 

(Supplemental Table 1) to describe different aspects of wilting: convex area, convex width, plant 100 

area, plant height, plant width, X mass, Y mass, center of mass (CM) height, CM width, and 101 

color. Several of these, such as the area and width of the convex hull, are traditional methods of 102 

describing aboveground plant shape. Because the center of mass of a plant leaf changes as a 103 

plant wilts, we developed additional descriptors based on the distance of the leaf center of mass 104 

from the stem (CM width and CM height, X mass and Y mass). We then developed a pipeline 105 

which used the original image as input, performed color correction, and quantified each 106 

descriptor (Figure 1 and Supplemental Figure 4, and methods). 107 

 108 

 109 

 110 
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 111 

 112 

Image-based traits differentiate resistant and susceptible plants 113 

To validate the efficiency of the image-based descriptors to estimate wilting phenotypes, we 114 

tested whether image-based phenotyping descriptors could differentiate resistant from 115 

susceptible plants. Supplemental Figure 5 shows the average normalized score for each of the  116 

image-based descriptors for each parent and the RIL population from -1 (the day before 117 

inoculation) to 6 dpi. Most descriptors, particularly those based on plant width or convex hull, 118 

had clearly divergent values in resistant and susceptible plants at a given time point. RIL  119 

descriptor values ranged from those of the resistant to susceptible parents and occasionally 120 

showed transgressive segregation (Supplemental Figure 5). Because plant shape at 6 dpi depends 121 

on shape of the same plant at -1 dpi, we used the evolution of each descriptor from day  -1 to 6 122 

dpi in our QTL analysis. This evolution was termed a ‘trait’. Trait values were clearly different 123 

for resistant and susceptible parents for all traits except color (Figure 2), which was not used 124 

further.  125 

Figure 1: Diagram of the semi-automated analysis pipeline and 10 image descriptors 
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a. 

b. 
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 127 

 128 

 129 

 130 

Image-based phenotyping reveals drivers of the wilting phenotype 131 

We next investigated whether any of our traits were major components of the wilting phenotype.  132 

We visually scored plants and asked how well our image-based traits correlated with human 133 

visual scoring. Wilting is categorized by loss of plant leaf turgor that results in drooping leaves, 134 

and decreased plant width and height. Determining how much a plant has wilted is challenging, 135 

in part because it can be difficult to quantify how much each a leaf has drooped and how much 136 

drooping of one leaf correlates with whole plant wilting.  137 

 138 

We aimed to quantify leaf drooping using center of mass traits. Among our image-based traits, 139 

those which were functions of the leaf center of mass were highly inversely correlated with 140 

visual wilting (i.e. as a plant wilts, the center of mass decreases), suggesting that these are major 141 

drivers of the wilting phenotype. These traits included CM width, plant width and X mass (r > -142 

0.75) (Figure 2B).  143 

 144 

Several of our traits describe similar aspects of plant shape, such as height or width, through 145 

different methods. These traits tended to be highly correlated with each other. For example, plant 146 

height vs Y mass use different methods to describe plant width (based on the plant mask or the 147 

center of mass of the stem masks; see Methods), and were highly positively correlated with each 148 

other (0.93; Figure 2B).  149 

 150 

Figure 2: Trait evolution during disease and correlation among descriptors. a. Boxplots 
showing the evolution of the normalized values between -1 and 6 dpi for each of the five 
biological replicates for the ten image-based traits for resistant Hawaii 7996, susceptible 
West Virginia parents and the 166 RILs. Color was unable to differentiate resistant from 
susceptible plants and was not used further. b. Heatmap showing the Pearson correlation 
values between  image-based traits used in our QTL analysis and the human eye based 
wilting score in 2019. The correlations values were determined using the same plants 
imaged and visually assessed in 2019. 
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We trained a random forest, consisting of 1000 decision trees, to use data from 6 dpi to predict 151 

the expert visual score assigned at 8 dpi. We used 969 plants in a 60:40 training-testing data 152 

split, and achieved a classification accuracy of 83%. To identify the traits that provided the most 153 

efficient estimation of wilting symptoms, we randomly scrambled the nine image-based traits 154 

one at a time. Plant width and plant area had the most impact on wilting score prediction 155 

(Supplemental Figure 6). 156 

 157 

QTL analysis identifies 20 wilting QTL in 10 clusters across the tomato genome at 6 dpi 158 

Our overall goal was to identify tomato genomic regions that provide resistance or susceptibility 159 

to Ralstonia. Prior to this analysis, we first generated a genetic map using Genotyping-by-160 

Sequencing (GBS). We identified 632 high-quality SNPs for linkage mapping using GBS. We 161 

combined these with 112 SolCap markers, and subsequently generated a linkage map using ICI 162 

mapping software (Meng et al., 2015). Our linkage map consisted of ~1300 cM (Supplemental 163 

Figure 7) with an average per chromosome marker density that varies from 1.8 to 7.48 cM 164 

(Supplemental Table 2).  165 

 166 

For QTL analysis, we mapped the evolution of each our nine image-based descriptors from -1 to 167 

6 dpi. In addition to the image-based phenotyping, we used two years (2016 and 2019) of 168 

visually scored phenotyping data at 8 dpi. Visually assessed wilt scores from 2019 were 169 

quantified from the same plants that were used for image-based phenotyping. In 2016, plants 170 

were only visually scored for wilting, and no image-based measurements were taken. Using ICI 171 

mapping software and composite interval mapping (CIM) for all traits, we identified 20 QTL 172 

within the RIL population with a LOD score above 3 (Table 1). To be consistent with previous 173 

studies of tomato-Ralstonia QTL mapping, we call these QTL, ‘Bacterial wilt resistance (Bwr) 174 

QTL’. Each Bwr QTL explained approximately 6 to 11% of the variation in response to R. 175 

solanacearum strain K60, and together the clusters explained more than 88% of the variation 176 

(calculated using the sum of the QTL with the highest PVE in each cluster). 177 

 178 

The parent that donated the favorable allele was determined according to the sign of the QTL 179 

additive effect (Awata et al., 2020), where a positive sign referred to H7996 resistant parent and 180 

a negative sign to WV susceptible parent. Typically, in QTL analysis, the favorable allele has the 181 
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higher trait value. Here, a higher trait value is favorable in all cases except the visual wilting 182 

score, in which a higher trait value  was associated with susceptibility (e.g. 90% wilting is more 183 

susceptible than 20% wilting). For QTL detected using our visual wilting score, the susceptibility 184 

allele was contributed by the susceptible parent WV (Table 1), consistent with other tomato-R. 185 

solanacearum QTL studies based on visual assessment of wilting.  For all QTL except those on 186 

chromosome 2 and 10, the favorable allele was contributed by Hawaii 7996. QTL clusters on 187 

chromosome 2 and 10, which contributed to plant height and width, were donated by the 188 

susceptible parent WV. Favorable allelic contribution from both resistant and susceptible parents 189 

is common in QTL studies for resistance (Maschietto et al., 2017; Awata et al., 2020). 190 

 191 

Among the 20 individual Bwr QTL were 10 QTL clusters (Table 1). We use the term ‘QTL 192 

cluster’ to describe QTL for different traits that co-localize at the same left and right genetic 193 

Table 1 Overview of the 20 wilting QTL identified in 10 clusters across the tomato genome at 6 
dpi. LOD: maximum value of the Logarithm of the odd. PVE: Percentage of phenotypic 
variance explained. Add: Additive effect. Left CI and Right CI are the confidence interval 
calculated by a one-LOD decrease from the estimated QTL position. 
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marker. There are between one and six Bwr QTL within a given cluster, and each QTL within 194 

the cluster has different LOD scores and explains a different percentage of phenotypic variation.  195 

Bwr QTL for traits that are highly correlated with each other (Figure 2B) tended to cluster 196 

together. For example, a cluster of QTL on chromosome 3 (Bwr3.1; Table 1) contains six Bwr 197 

QTL, including three for area-related traits (convex width, and X mass and CM width), which 198 

are correlated with each other at r = 0.94 - 0.97 (Figure 2B). In another cluster (Bwr3.2) on this 199 

same chromosome, Bwr QTL for traits that describe plant area were detected together. This co-200 

localization supports the robust nature of our analyses. 201 

 202 

In other clusters, only one trait that described one aspect of the wilting phenotype was present. 203 

For example, despite several metrics that describe width, only convex width was identified as a 204 

QTL on chromosome 4 (Bwr4.1; LOD 3.18; PVE = 6%). This suggests that the image-based 205 

phenotyping captured genetic variation that is specific to each trait.  206 

 207 

Image-based non-destructive phenotyping identifies three types of QTL clusters 208 

Among our Bwr QTL clusters, we identified three types: those found using both image-based 209 

and visual phenotyping (1 cluster, Bwr3.2), those found only through visual phenotyping (1 210 

cluster, Bwr6.1), and those that were identified only through image-based phenotyping (8 211 

clusters; Table 1 and Figure 3).  212 

 213 

For the cluster including both image-based and visual phenotyping, (Bwr3.2) on chromosome 3, 214 

we detected QTL for convex area, plant area and visual plant wilting in 2016 (Table 1 and Figure 215 

3a). Previous studies examining tomato responses to other strains of Ralstonia have not detected 216 

Bwr QTL in this region, indicating that it may be a novel target for R. solanacearum strain K60. 217 

The identification of both image-based and visual QTL within the same cluster suggests that our  218 

phenotyping methods are robust at identifying features of plant wilting. Close to this cluster is 219 

Bwr3.1, which detected QTL for traits based on plant width, including convex width and CM 220 

width. The proximal arm of chromosome 3 may be an important but unexploited region for 221 

defense against R. solanacearum strain K60. 222 
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 224 

On chromosome 6 we detected Bwr (Bwr6.1) using only visual assessment for both 2016 and 225 

2019 (Table 1, Figure 3b). This region may be a ‘hot spot’ for QTL for resistance to multiple 226 

strains of Ralstonia. Previous studies using this same tomato population for mapping Bwr to 227 

other strains of Ralstonia detected QTL approximately 4 Mb from this position (Supplemental 228 

Figure 7).  229 

 230 

In all other clusters, QTL were identified using only image-based phenotyping. Two such 231 

clusters, detected on chromosome 12, identified QTL for CM height (Bwr12.1) and Y mass 232 

(Bwr12.2), and were located near previous QTL detected against other strains of Ralstonia 233 

(Supplemental Figure 7 and Figure 3c) . These previous studies (Wang et al., 2000; Jaw-Fen 234 

Wang et al., 2013; Shin et al., 2020) detected QTL using visual wilt assessment of adult plants in 235 

the field.  236 

 237 

The remaining QTL detected through image-based phenotyping have not been previously 238 

identified in studies using other strains of Ralstonia. These regions may be effective only against 239 

specific strains of Ralstonia (‘strain-specific’ QTL), or may include those that are not easily 240 

detected using visual assessment. In support of the latter, at one of the image-based-only clusters, 241 

Bwr10.1 (Figure 3d), we detected a QTL using visual assessment that did not meet our threshold 242 

for significance after permutation (Supplemental Table 3). Thus, image-based phenotyping 243 

improved our ability to detect QTL. 244 

 245 

Image-based phenotyping identified Bwr QTL prior to visual symptom development 246 

In our system, wilting symptoms begin to appear on highly susceptible plants at 4 dpi, and these 247 

plants are nearly 100% wilted by 6 dpi. To test whether we could detect Bwr QTL prior to the 248 

onset of visual symptoms, we performed QTL analysis at 3, 4 and 5 dpi. No QTL were identified 249 

based on visual assessment at any of these time points, however several QTL were identified 250 

based on image-based phenotyping. At 3 dpi, three clusters were detected on chromosome 3, two 251 

Figure 3: Significant QTL clusters on chromosomes 3 (a.), 6 (b.), 12 (c.) and 10 (d.). The 
image-based and visually assessed traits are represented with different colors for each 
chromosome. The vertical axis represents the genetic position (cM) and horizontal axis shows 
the LOD score. For each chromosome, the left panel represents the entire chromosome and the 
right panel represents the significant QTL cluster regions. 
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of which co-localized with those identified at 6 dpi (Supplemental Table 4). Bwr3.1, a cluster 252 

detected only by image-based phenotyping, and Bwr3.2, a cluster detected by both visual and 253 

image-based phenotyping, were first detected at 3 dpi. Bwr3.1 was also detected at 5 and 6 dpi, 254 

while Bwr3.2 was detected 3, 4, 5 and 6 dpi (Supplemental Table 4). A small number of 255 

additional QTL were detected at earlier time points (Supplemental Table 4), but in most cases 256 

these were not stable, since they were not present at 6 dpi.  These data suggest that image-based 257 

phenotyping can identify Bwr QTL prior to the onset of wilting symptoms. 258 

 259 

Plant architecture QTL do not overlap with Bwr QTL 260 

The parents of the RIL population, H7996 and WV, have different aboveground phenotypes 261 

(Supplemental Figure 4) and the shoot architecture of the RILs correspondingly varies. To ensure 262 

that Bwr QTL were the result of tomato responses to Ralstonia, and not due to differences in 263 

aboveground plant architecture, we used our traits in a QTL analysis at -1 dpi, the day before 264 

plants had been inoculated. We call these ‘tomato plant architecture (Tpa)’ QTL. We identified 265 

16 Tpa, within 9 QTL clusters (Table 2).  None of the 16 Tpa were detected within the same 266 

interval as Bwr at 6 dpi. However, two Tpa QTL clusters were detected that were near Bwr QTL 267 

 present at 6 dpi. One of these was detected on chromosome 3 at position 30, between Bwr3.1 268 

and 3.2.  269 

Table 2 Overview of tomato plant architecture (Tpa) QTL identified at -1 dpi by image-based 
phenotyping. 
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While we cannot rule out the possibility that the same genes underlie these Tpa and Bwr QTL, 270 

their different marker intervals, coupled with the visual wilting QTL that is within the Bwr3.2 271 

cluster, suggests that different genes are responsible for these QTL. Together, these data suggest 272 

that our image-based phenotyping detected genomic regions that function in responding to 273 

Ralstonia and Bwr QTL are not the result of differential growth patterns within the RILs.  274 

 275 

 276 

Discussion 277 

Breeding for plant disease resistance is one of the best strategies to combat plant diseases and 278 

prevent major crop loss, but is challenging in part due to the complicated nature of disease 279 

phenotyping. Here we used rapid, non-destructive, image-based phenotyping with RGB images 280 

to identify 20 QTL in 10 clusters for tomato responses to Ralstonia at 6 dpi, two of which were 281 

detected as early as 3 dpi. Together, the 20 Bwr QTL at 6 dpi explained more than 88% of the 282 

variation in response to Ralstonia.  Image-based phenotyping for shape-based traits that were 283 

correlated with wilting detected both novel loci and those that overlapped with QTL based on 284 

human visual assessment.  These results establish the importance and feasibility of quantitative, 285 

non-destructive, imaged-based phenotyping to identify new genetic targets for crop disease 286 

resistance during disease progression. 287 

 288 

Benefits of image-based phenotyping 289 

Imaged-based phenotyping has been used to detect QTL associated with plant root (Topp et al., 290 

2013) and shoot (Zhang et al., 2017; Knoch et al., 2020; Li et al., 2020) architecture, plant height 291 

(Wang et al., 2019), salt stress (Awlia et al.), and yield (Tanger et al., 2017; Pauli et al., 2016) 292 

among other traits. Although image-based phenotyping has become increasingly common to 293 

quantify plant disease symptoms (Mahlein, 2016; Mahlein et al., 2017, 2019; Lowe et al., 2017; 294 

Shakoor et al., 2017; Mochida et al., 2019; Mir et al., 2019; Pérez-Bueno et al., 2019; Pineda et 295 

al., 2021; Simko et al., 2017), few studies have used this technology to identify new genetic loci 296 

for plant disease resistance (Yates et al., 2019; Fordyce et al., 2018; Corwin et al., 2016). One 297 

reason for this may be that many plant disease symptoms occur at the leaf scale (such as spots 298 

and specks), making it difficult to use some sensors non-destructively and in high-throughput, or 299 

at the proper resolution needed to assess disease. For example, automated digital phenotyping of 300 
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Septoria Tritici Blotch on wheat leaves identified novel QTL for resistance, but the destructive 301 

phenotyping required significant manual labor to harvest, mount and scan leaves (Yates et al., 302 

2019). While wilting does occur at the leaf scale, it is an easier phenotype to assess at the whole 303 

plant scale. Another possibility is that imaging sensors are often expensive, making it more 304 

challenging to phenotype the large number of plants needed in a QTL or GWA study. Our 305 

method is low-cost and rapid ( < 2 min/plant), and requires no manual labor other than placing 306 

the plant on the turntable and initiating imaging via a computer. 307 

 308 

Our image-based phenotyping identified loci that function in tomato responses to Ralstonia, but 309 

did not detect one of the two Bwr clusters (Bwr6.1) we found using visual assessment of disease. 310 

Visual assessment was performed at 8 dpi, while our image based phenotyping ended at 6 dpi. It 311 

is possible Bwr6.1 is not apparent until very late stages of disease. Alternatively, these results 312 

could mean that we missed components of wilting in our image-based traits. However, a more 313 

likely explanation is that our image-based traits were averaged across eight two dimensional 314 

images, but wilting is a three dimensional (3D) phenotype. Images in 3D may allow detection of  315 

Bwr6.1. It would also be of interest to test whether using additional types of sensors, such as  316 

hyperspectral, would identify Bwr 6.1.  Multi and hyperspectral imaging has been used to detect 317 

biochemical changes in disease (Mahlein et al., 2017; Lowe et al., 2017; Zhang et al., 2020). 318 

Given the chemical changes that occur during water stress, this type of imaging would likely 319 

identify additional genetic variation associated with resistance to bacterial wilt disease. 320 

 321 

New QTL for responses to Ralstonia in tomato 322 

As in tomato, resistance to Ralstonia in other Solanaceous crops is quantitative (Young and 323 

Danesh, 1994; Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 1999; Wang et 324 

al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013). Breeding for resistance QTL is 325 

thus the primary way forward to developing Ralstonia-resistant crops in the Solanaceae. This has 326 

not been easy, in part because of the diversity of Ralstonia. The Ralstonia solanacearum species 327 

complex was recently subdivided into three species (R. solanacearum, R. pseudosolanacearum, 328 

and R. syzygii), each prevalent in a different part of the world (Remenant et al., 2012; Safni et al.; 329 

Prior et al., 2016). Each species has multiple strains, with an overlapping, but distinct set of 330 

virulence proteins that promote disease (Landry et al., 2020). Varieties with effective resistance 331 
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will likely have QTL that are effective against local strains (strain-specific QTL) as well as those 332 

effective against multiple strains (broad-spectrum QTL). 333 

 334 

Most previously identified QTL have focused on resistance to R. pseudosolanacearum, and none 335 

of them used the strain of R. solanacearum as in this work (Danesh et al., 1994; Thoquet et al., 336 

1996a, 1996b; Wang et al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 337 

2020; Mangin et al., 1999). Using visual assessment of wilting and the same RIL population of 338 

tomato (H7996 x WV700) used here, one broad-spectrum QTL for resistance to multiple strains 339 

of R. pseudosolanacearum, and one strain of R. solanacearum (JT-516) had been previously 340 

identified on chromosome 6 (Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 341 

1999; Wang et al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 2020). 342 

We also identified a QTL on chromosome 6, using visual assessment in both 2016 and 2019. In 343 

our study, Bwr6.1 confers 8 – 11% of the variation, compared to 11.5 – 33% for Bwr6a - Bwr6d 344 

(Jaw-Fen Wang et al., 2013; Shin et al., 2020). The genes within the left and right intervals of 345 

Bwr6.1 are particularly interesting because there are two groups of NBS-LRRs located between 346 

the left and right markers for Bwr6.1 (solcap_snp_sl_14458 and the GBS-identified SNP at 347 

39435402). One of these groups includes the S. lycopersicum homolog of Arabidopsis 348 

RESISTANCE to PSEUDOMONAS SYRINGAE 4 (RPS4). Fine-mapping of Bwr6.1 is needed to 349 

determine whether a specific NBS-LRR protein or receptor is responsible for the resistance 350 

conferred by this region.  351 

 352 

Previous studies also identified a major QTL on chromosome 12 that is effective for resistance to 353 

R. pseudosolanacearum, and explained between 15.9 – 53.9% of the variation (Shin et al., 2020). 354 

We found two clusters of QTL on chromosome 12, for image-based traits.  Within the region 355 

spanning Bwr12.1 on chromosome 12 is one NBS-LRR disease resistance gene (Solyc12g10740) 356 

and one receptor-like kinase (Solyc12g010660) while within Bwr12.2 are genes related to disease 357 

resistance pathways, including a gene encoding a Pathogenesis Response (PR) Protein 358 

(Solyc12g014310), and two genes encoding Leucine Rich Repeat – Receptor Like Kinases 359 

(Solyc12g014350 and Solyc12g150105). Our results suggest that this region of chromosome 12 360 

may be important for resistance to multiple strains of Ralstonia. The QTL we identified on 361 

chromosomes 2, 3, 4, 5, 8 and 10 were not previously identified, and thus may be specific to R. 362 
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solanacearum strain K60. With the exception of Bwr3.2, these QTL were detected using only 363 

our image-based traits.  364 

 365 

Together, our results establish the value of image-based, non-destructive disease phenotyping for 366 

uncovering novel genetic components and new targets for quantitative disease resistance in 367 

crops. By identifying new genetic loci, this type of rapid phenotyping may enable the 368 

identification of broad-spectrum and durable resistance.  369 

 370 

Methods 371 

Plant growth 372 

Seeds of 188 Hawaii7996 (H7996) x West Virginia700 (WV) recombinant inbred lines (RILs) in 373 

the F8 generation were obtained from the Asian Vegetable Research and Development Center 374 

(AVRDC) in June 2014.  Seeds were propagated to the F9 generation in field and greenhouse in 375 

West Lafayette, IN in 2014 and 2015 and were used in QTL analysis in 2016 and 2019.  376 

 377 

For all plants used in the imaging experiments and 2019 visual assessment of wilting, seeds were 378 

sown into individually labeled 1801 traditional inserts that were placed into 1020 flats (Hummert 379 

International, USA).  Seeds in the 2016 experiment were sown into individually labeled 1203 380 

inserts that were placed into 1020 flats. Seeds were sown into ProMix Propagation Mix supplied 381 

by the Lilly Greenhouses and Growth Facility located at Purdue University, West Lafayette, 382 

Indiana, USA. The individual pots were randomized and placed in a growth chamber at 28ºC, 383 

relative humidity of 65% for a lighting cycle of 16 hours light/8 hours dark. The plants began 384 

germination on day 4 and plants were inoculated with R. solanacearum strain K60 at 17 days 385 

after planting when three true leaves were present. Trays were rotated in the growth chamber 386 

throughout each experiment. In 2016, four seeds of each RIL were grown in the growth chamber 387 

with parental controls, and each plant was visually assessed for wilting at 8 days post inoculation 388 

(dpi). In 2019, one seed per RIL, along with parental controls, was grown in the growth chamber 389 

for each of five independent replicates. Each plant was imaged at -1, 3, 4, 5, and 6 dpi, and 390 

visually assessed at 8 dpi.  391 

 392 
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For plants used to genotyping with tomato SolCap markers, F9 generation RIL seeds and parental 393 

controls were grown in the greenhouse in 2-gallon pots with Metro Mix 510 soil.  Plants were 394 

grown for 6 weeks.   395 

 396 

Ralstonia solanacearum growth and plant inoculation 397 

Ralstonia solanacearum strain K60 (containing a GFP reporter) was grown on casamino acid-398 

peptone-glucose (CPG) agar containing tetrazolium chloride (TZC) in the dark for 48 hours at 399 

28ºC as in (Caldwell et al., 2017). Briefly, bacteria were resuspended in sterile water to a 400 

concentration of approximately 2 x 108 colony forming units (CFU)/mL for each experiment. For 401 

each experiment, the concentration of inoculum was confirmed through dilution plating. Pots of 402 

three-leaf plants were lightly compressed to induce wounding similar to transplant handling in 403 

field conditions. 60 mL of inoculum was applied to the surrounding soil using a serological 404 

pipet.  405 

  406 

Visual assessment of bacterial wilt disease  407 

Wilt scores were visually assessed 8 dpi.  Wilt scores were calculated by counting the number of 408 

wilted true leaves divided by the total number of true leaves on the plant. Plants were scored with 409 

a 95% if the plant had all of its leaves wilted, excluding the topmost leaf.  Plants were marked as 410 

100% when the topmost portion of the stem was collapsed and wilted (Supplemental Figure 2).  411 

 412 

Plant imaging 413 

Plants were imaged the day before inoculation (-1 dpi) and then imaged on 3, 4, 5, and 6 dpi. A 414 

Linco Linstor 2000-watt photo studio (Amazon, USA) was used as the backdrop, and Flora X 415 

fluorescent lighting (Amazon, USA) was used to create a small photo studio. Individual plants 416 

were placed on a Photocapture 360 turntable (Ortery Technologies) that was programmed to 417 

capture eight images around the plant (every 45°).  The images were captured using an EOS 6D 418 

Canon camera with an EF 50mm f/1.4 USM lens on a stationary tripod.  An imaging carriage 419 

was created with a square petri dish and a fiducial marker attached to each side.  A total of five 420 

independent replicates for each RIL and the parental controls were imaged.  421 

 422 

Phenotyping Pipeline and Image Analysis 423 
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From the plant images, ten traits were acquired for QTL analysis. A detailed description of the 424 

acquisition process can be found in (Yang et al., 2021, 2020). All traits were extracted based on 425 

plant color and shape. To eliminate any color discrepancy between images, images were 426 

automatically color corrected using a fiducial marker consisting of a colored checkerboard with 427 

known physical dimensions and colors.  428 

 429 

After color correction, plant pixels were segmented from the rest of the image by thresholding 430 

channels in the L*A*B* color space. The resulting segmentation mask was improved with image 431 

morphological operations to fill holes and remove noise generated by the thresholding. The stem 432 

of the plant was identified using two neural networks, Mask R-CNN and U-Net. By locating the 433 

stem of the plant, metrics were defined that reflect the inner morphology of the plant. To train 434 

the neural networks, stem segmentation ground truth data were generated using Adobe 435 

Photoshop and LabelMe (a Python-based annotation tool) to mark the location of the image 436 

pixels belonging to the stem of the plant. Further details about this procedure are described in 437 

(Yang et al., 2020, 2021).  438 

 439 

The plant and stem masks were used in the subsequent color and shape analysis, which acquired 440 

ten traits: total area of the plant mask (plant area), height of the plant mask (plant height), 441 

maximum width of the plant mask (plant width), area of the convex hull (convex area), width of 442 

the convex hull (convex width), color-based weighted average (color average), horizontal 443 

distance between the center of mass of the left and right sides of the plant stem (CM width), 444 

height of the center of mass (CM height), x-axis distribution of the center of mass (X mass), Y-445 

axis distribution of the center of mass (Y mass).  446 

 447 

The plant area, plant height and plant width were calculated from the plant mask. When 448 

calculating plant height, the upper 5% of the plant material was not included, which helped 449 

eliminate the impact of small leaves growing at the top. Using functions available in OpenCV 450 

Python Library, a convex hull was fit around the plant mask and the convex area and convex 451 

width were calculated. For color analysis, the weighted average of the pixel values in the A* 452 

channel was calculated, as this channel captures the green-magenta spectrum.  453 

 454 
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To calculate traits involving the center of mass (CM), the plant mask was split into left and right 455 

halves using the stem mask (Yang et al., 2020), and the CM located for each half. The x-axis 456 

distance between CMs (CM width) and the average height of the CMs (CM height) were used as 457 

traits.  458 

 459 

The extension of just one leaf can have a major impact on measured plant width, generating a 460 

disproportionately larger value. Capturing the plant material distribution inside the plant mask 461 

can overcome this issue. Using the split plant mask, the horizontal and vertical distribution of 462 

plant material was estimated. The distances at which 90% of the plant material was captured in 463 

the horizontal and vertical directions were used as the traits ‘X mass distribution’ and ‘Y mass 464 

distribution’. The average of eight views around the plant were used for each trait value. Outputs 465 

are in pixels. 466 

 467 

In the random forest classification, visual wilting scores were thresholded to 0 or 1, where 0 = 0 468 

to 50% wilting, 1 = 51 – 100% wilting. Average trait values from eight views from 6 dpi for 969 469 

plants (RILs and parental controls) were used across all five replicates. Some plants did not have 470 

a trait value for that day and were not used in the algorithm.  471 

 472 

DNA extraction, Marker generation and Genotyping by Sequencing (GBS) 473 

Tomato SolCap markers and single nucleotide polymorphisms (SNPs) identified through GBS 474 

were used for map creation. Leaf disc samples were collected from each RIL plant using a 475 

biopsy punch and were sent to LGC, Biosearch Technologies. Genomic DNA was extracted and 476 

genotyped for 128 SNPs from the Tomato SolCAP panel using LGC’s KASP assay. One 477 

hundred twelve SNPs were obtained for RILs using this method.  478 

 479 

For GBS, genomic DNA (gDNA) was extracted from 188 F9 individuals of the RIL population 480 

and from parental plants using Trizol. gDNA was RNase-treated and cleaned with phenol 481 

chloroform extraction. Sequencing library preparation was as described by (Elshire et al., 2011). 482 

Briefly, gDNA was digested with PstI and 150 bp paired end sequencing was performed on two 483 

lanes of an Illumina Hi-seq 2500 at the Purdue Genomics Facility.  484 

 485 
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Reads were mapped to the Solanum lycopersicum 3.0 genome using the methods of (Manching 486 

et al., 2017). In brief, reads were de-multiplexed, and adapter sequences were removed. Reads 487 

were filtered based on the presence of a GBS barcode on the forward read (R1), which accounts 488 

for 95.4% of the PE reads. For these R1, 97.3% had a paired R2 read, and 2.7% did not have a 489 

pair.  R1 read pairs and R1 singles reads were combined and assessed independent of pairing and 490 

treated as single end reads for the remaining analyses (924,500,737 reads). 491 

 492 

Reads were filtered to remove those with the presence of an internal restriction site, the lack of 493 

restriction site hang sequence at the end, and for minimum length, which retained 93.0% of the 494 

reads.  There was a minimum of 17,561 reads, a maximum of 16,127,292 reads, and an average 495 

of 4,480,149 reads per sample (Supplemental Figure 8).  Reads were mapped using BWA-MEM 496 

for paired end reads, and the GATK haplotype caller was used to generate a genomic Variant 497 

Call Format (gVCF) file for downstream analysis. 498 

There were 74,082 SNPs called between the population and Solanum lycopersicum 3.0 reference 499 

genome.  Many of these were SNPs between the reference genome and the population and do not 500 

vary in the population used here.  Filtering for the presence of two alleles within the RIL 501 

population identified resulted in 2,738 SNPs.  Of these, the parental alleles were identified in 502 

both parents for 278 SNPs and in one parent for 698 SNPs. The remaining 1,762 SNPs could not 503 

be assigned a parental origin and were not used for further analysis. The 976 SNPs with parental 504 

origin identified were filtered for a minor allele frequency greater than 0.02 and less than 0.99, 505 

which resulted in 632 high quality SNPs.  506 

 507 

High quality SNPs identified from GBS were combined with previously defined SolCap markers 508 

from LGC Biosearch Technologies for a total of 748 markers. SNP coverage of the 188 RIL taxa 509 

was high.  Of the 748 markers, the minimum coverage was 115 markers, the maximum coverage 510 

was 555 markers, and the average was 366 markers (Supplemental Figure 9). There was some 511 

residual heterozygosity in the taxa (Supplemental Figure 9b), and taxa with 10% or greater 512 

heterozygosity were removed from further analysis (2 RILs). 513 

 514 

Linkage Map Construction 515 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.13.452064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452064
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

The software QTL IciMapping (Meng et al., 2015) (version 4.1) was used for the map 516 

construction with all 748 markers. Redundant markers were filtered by taxa coverage using a 517 

missing rate of 85% and a distortion threshold at 0.001 to obtain a total of 408 markers. The 408 518 

markers without anchor information were assigned to 12 groups based on a LOD score threshold 519 

value of 3. After grouping, the markers were ordered using the nearest neighbor algorithm 520 

(nnTwoOpt) using the rippling criterion SARF (Sum of Adjacent Recombination Frequencies) 521 

with a window size of five markers. After ordering, some markers at the end of the chromosomes 522 

were deleted when they were adding an insignificant genetic distance to the chromosome. These 523 

markers were identified after splitting the current chromosome in two sub-chromosomes between 524 

the longest marker interval. If the shortest sub-chromosome contained more than 20% of the 525 

markers before splitting, the two sub-chromosome were re-assembled. Otherwise, the shortest 526 

sub-chromosome was deleted.   527 

 528 

QTL detection 529 

QTL were detected using Inclusive Composite Interval Mapping with additive effects (ICIM-530 

ADD) in IciMapping (Meng et al., 2015) (version 4.1) using a genetic mapping with a 1 cM 531 

scanning step and a probability in stepwise regression of 0.001. The LOD significance threshold 532 

to declare a QTL significant was determined using a Type-I error of 0.0500 after one thousand 533 

permutation. For the QTL analysis, we removed 19 of the 188 RIL (10%) showing the highest 534 

variation according to the visual wilting score and 3 RIL due to missing data across the 5 535 

biological repetitions for a total of 166 RIL into the QTL map (Supplemental Figure 3). The 536 

evolution of the ten image-based traits and two visual wilting scores between -1 dpi and 3, 4, 5 537 

and 6 dpi were determined for the 166 RIL. To assure a normal distribution of the phenotypic 538 

data, the function “orderNorm” was used to perform an ordered quantile normalization (Peterson 539 

and Cavanaugh, 2020) before QTL analysis using the package “bestNormalize” version 1.6.1 540 

with R software version 3.6.1 (R Core Team). 541 

 542 
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Supplemental Information  723 

Supplemental Figures 724 

Supplemental Figure 1: Design of our low cost phenotyping platform including automatic 725 

turntable, backdrop, lightning and RGB camera.  726 

 727 
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Supplemental Figure 2: Raw RGB pictures showing the evolution of wilting symptoms on RIL # 728 

646 at -1, 3, 4, 5 and 6 dpi. Visually assessed wilting score are expressed in percentage of wilted 729 

leaves.   730 
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Supplemental Figure 3: Wilting Score RIL: Boxplots showing the normalized wilting score at 6 755 

dpi for the 166 RILs, resistant Hawaii 7996 (HA) and susceptible West Virginia (WV) 756 

genotypes. 757 
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Supplemental Figure 4: RGB pictures showing the evolution of the traits at -1, 3, 4, 5 and 6 dpi 768 

for A) Hawaii 7996 and B) West Virginia (pw: plant width, ph: plant height, CMh: Center of 769 

Mass height, CMw: Center of Mass width, xm: Horizontal mass distribution, ym: Vertical mass 770 

distribution). The Hawaii 7996 plant shown here is the same plant used for Figure 1. 771 
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Supplemental Figure 5: Boxplots showing the normalized values for image-based traits at -1, 3, 776 

4, 5, 6 dpi for resistant Hawaii 7996, susceptible West Virginia 700, and 166 individuals of the 777 

RIL population. 778 
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Supplemental Figure 6: Histogram showing the image-based descriptors which contribute the 786 

most to wilting 787 
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Supplemental Figure 7: Genetic Linkage map constructed with SolCap and SNP markers. 808 

Location of 10 QTL clusters are displayed using blue and green for left and right markers 809 

respectively. Location of previously identified QTL on chromosome 6 and 1227 are also 810 

displayed. 811 
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Supplemental Figure 8: GBS Read Distribution by Sample (includes parental references). 818 
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Supplemental Figure 9: a) RIL and parental coverage and SNP density from GBS analysis; b) 839 

Percent heterozygosity and SNP density 840 
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Supplemental Tables 861 

Supplemental Table 1 Descriptive statistics for 10 image-based traits and two years of visually 862 

assessed wilting scores (2016 and 2019). Image-based traits were from the same plants as the 863 

visually assessed wilting score in 2019.  The RIL population was inoculated with Ralstonia and 864 

visually scored for wilting in 2016, but images were not taken. Data is shown for resistant parent 865 

Hawaii 7996, susceptible parent West Virginia 700, and the RIL population. 866 
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Supplemental Table 2:  Marker density per cM for each chromosome. 882 
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Supplemental Table 3: Overview of the 9 genomic regions identified with a LOD score greater 905 

than 3 on chromosome 10 after inoculation with R. solanacearum at 6 dpi. According to the ICI 906 

Mapping analysis using 1000 permutations, a threshold value of 3.48 represents the minimum 907 

LOD to identify a significant QTL. Genomic regions with a lower LOD value did not reach our 908 

threshold for significance after permutation.  909 
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Supplemental Table 4: Overview of QTLs identified across the genome at all time points (-1, 3, 929 

4, 5, 6 dpi) with R. solanacearum. LOD: maximum value of the Logarithm of the odd. PVE: 930 

Percentage of phenotypic variance explained. Add: Additive effect, the positive and negative 931 

values indicated that the alleles are introgressed from the resistant parent (Hawaii 7996) and 932 

susceptible parents (WestVirginia). LeftCI and RightCI are the confidence interval calculated by 933 

a one-LOD decrease from the estimated QTL position. * = Bwr3.1; ** = Bwr3.2 934 
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