bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452064; this version posted July 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BREAKTHROUGH REPORT

Image-based assessment of plant disease progression identifies new

genetic loci for resistance

Valérian Méline?, Denise L. Caldwell?, Bong-Suk Kim?, Sriram Baireddy®, Changye Yang®, Erin
E. Sparks®, Edward J. Delp®, and Anjali S. Iyer-Pascuzzi®f

2915 W. State Street, Department of Botany and Plant Pathology, Purdue University, West
Lafayette, Indiana, USA

® Video and Image Processing Laboratory (VIPER), School of Electrical and Computer
Engineering

¢ Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of

Delaware, Newark, DE

+Author for correspondence: asi2@purdue.edu

Keywords: Digital phenotyping, QTL, Ralstonia, bacterial wilt, tomato

Short title: Disease resistance QTL and image-based phenotyping

Material distribution: The author(s) responsible for distribution of materials integral to the
findings presented in this article in accordance with the policy described in the Instructions for
Authors (https://academic.oup.com/plcell/pages/General-Instructions) are: Anjali Iyer-Pascuzzi

(asi2@purdue.edu) and Edward J. Delp (ace@purdue.edu).



https://doi.org/10.1101/2021.07.13.452064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452064; this version posted July 22, 2021. The copyright holder for this preprint (which

O© 00 9 &N »n b~ W N =

[ S e e e e T = T =N T
o I N »nv B~ W N = O

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of
the best means of disease control is plant resistance, but the identification of genes that promote
resistance has been limited by the subjective quantification of disease, which is typically scored
by the human eye. We hypothesized that image-based, non-destructive quantification of disease
phenotypes would enable the rapid identification of new disease resistance loci. We tested this
using the interaction between tomato and Ralstonia solanacearum, a soilborne pathogen that
causes bacterial wilt disease. We acquired over 40,000 time-series images of disease progression
in a tomato recombinant inbred line population, and developed an image analysis pipeline
providing a suite of ten traits to quantify wilt disease based on plant shape and size. Quantitative
trait loci (QTL) analyses using image-based phenotyping identified QTL that were both unique
and shared compared with those identified by human assessment of wilting. When shared loci
were identified, image-based phenotyping could detect some QTL several days earlier than
human assessment. Thus, expanding the phenotypic space of disease with image-based, non-
destructive phenotyping allowed both earlier detection and identified new genetic components of

resistance.
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Introduction

Plant diseases are a significant global constraint to crop production. Developing disease resistant
crops requires identifying the plant genomic regions and genes that contribute to resistance to the
pathogenic microbes that cause disease. This in turn depends on phenotyping large populations
of plants for their responses to pathogens. Phenotyping plant diseases is challenging because
diseases cause complex, quantitative phenotypes that can occur at different scales — e.g. on parts
of leaves, entire leaves, or the whole plant. In addition, disease phenotypes vary over time and
depend on environmental conditions, plant age, and pathogen virulence. Disease symptoms such
as wilting or necrotic spots have traditionally been scored with the human eye, but these scores

are subjective, can vary by individual, and are difficulty to accurately quantify.

The challenging nature of visual disease assessment has led to the use of sensors including RGB,
hyperspectral, chlorophyll fluorescence and thermal cameras to assess disease symptoms
(Colwell, 1956; Jackson, 1986; Bock et al., 2010; Simko et al., 2017). Compared to assessment
by the human eye, image-based phenotyping is faster, more reproducible, and more sensitive to
small variations in disease symptoms that can be critical for detecting resistance loci (Bock et al.,
2008, 2010; Stewart and McDonald, 2014; Stewart et al., 2016; Simko et al., 2017; Shakoor et
al., 2017). Many studies have used or developed tools to assess plant symptoms using different
types of sensors (Mahlein, 2016; Mahlein et al., 2017, 2019; Lowe et al., 2017; Shakoor et al.,
2017; Mochida et al., 2019; Mir et al., 2019; Pérez-Bueno et al., 2019; Pineda et al., 2021; Simko
et al., 2017). However, few studies have used these technologies in QTL or Genome Wide
Association (GWA) analyses for responses to plant pathogens, and all have used destructive
methods (Yates et al., 2019; Fordyce et al., 2018; Corwin et al., 2016). It has remained
challenging to use image-based, non-destructive phenotyping for disease resistance across large
populations, both because of technical factors like the expense of phenotyping platforms and the
time associated with imaging, and also biological factors such as differences in plant morphology

and disease progression within a population.

The soil-borne betaproteobacterium Ralstonia solanacearum is the causal agent of bacterial wilt
disease and has been ranked as one of the top 10 most destructive plant bacterial pathogens of all

time (Mansfield et al., 2012). Ralstonia infection causes susceptible plants to wilt, and the


https://doi.org/10.1101/2021.07.13.452064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452064; this version posted July 22, 2021. The copyright holder for this preprint (which

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

amount of wilting correlates with a plant’s level of susceptibility (Genin, 2010; Genin and
Denny, 2011). The bacterium is a major production constraint in Solanaceous crops both
globally and in the United States, where disease loss in tomatoes can exceed 70%. In crops,
resistance to Ralstonia is quantitative, but the quantitative trait loci (QTL) underlying resistance
to US strains of Ralstonia are largely unknown. QTL for other strains have been mapped
(Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 1999; Wang et al., 2000;
Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 2020) but have not been cloned,

and the host determinants necessary for resistance remain mostly unspecified.

The limited identification of QTL for Ralstonia resistance can be attributed in part to the
difficulty in accurately scoring plant wilting. Wilting is traditionally measured on a 0 — 4 scale,
in which 0 indicates a plant with no wilting, 1 =1—-25%, 2 =26 —50%, 3 =51 —75% and a
score of 4 indicates a plant with 76 — 100% wilted leaves (Schandry, 2017). While it is
straightforward to assess the ends of the spectrum, rating plants with scores of 2 or 3 is
particularly difficult. This is due to the subjective nature of visually determining when a leaf has
lost sufficient turgor to qualify as wilted. Reliable disease phenotyping is critical for identifying

QTL for resistance to Ralstonia and the development of resistant varieties.

Here, we used image-based, rapid, non-destructive phenotyping to identify new tomato genetic
resistance loci to Ralstonia. We developed a rapid, semi-automated imaging and trait analysis
pipeline to quantify bacterial wilt disease in a recombinant inbred line (RIL) population derived
from Ralstonia-resistant and susceptible tomato genotypes. We found both unique and shared
QTL between our image-based traits and plant wilting scored by the human eye. At least one of
the QTL was detected by image-based phenotyping before the onset of visual symptoms,
demonstrating that image-based phenotyping captures the disease phenotype at early stages of
infection. These results demonstrate that imaged-based, non-destructive phenotyping can shed

light on new aspects of disease and improve our ability to identify genetic loci crop resistance.

Results

Development of an aboveground imaging and semi-automated analysis pipeline
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We first constructed a simple, low-cost imaging system that allowed us to semi-automate
aboveground disease phenotyping. Each plant was placed on a commercially available turntable,
and plants were imaged with a Canon DSLR (Supplemental Figure 1; details in methods). The
turntable and camera were connected with Photocapture 360 (Ortery technologies), which
allowed us to automatically capture images every 45 degrees (8 images per plant). Using this
system, we were able to non-destructively image each plant in less than 2 minutes, with minimal
manual labor. Each image included a fiducial marker for post-image color correction. Plants in
the F9 generation from a RIL population derived from a cross between resistant Hawaii 7996
(H7996) and susceptible West Virginia 700 (WV) were imaged the day before inoculation with
R. solanacearum strain K60, and at 3, 4, 5 and 6 days post inoculation (dpi). At 3 dpi, symptoms
were not present in susceptible parent WV, but by 6 dpi these plants were completely wilted. We
imaged five replicate plants of each RIL as well as the parental lines. Using this system, we
captured over 40,000 images for high-resolution disease phenotyping. The same set of plants was
also visually scored by the human eye at 8 dpi. Visual scoring was based on the percentage of
wilted leaves. Tomato phenotypes in the RIL population ranged from highly susceptible to
highly resistant, consistent with the quantitative nature of disease resistance (Supplemental

Figures 2 and 3).

We next developed a set of mathematical descriptors to phenotype wilting over time in our
images. Plant wilting is a composite phenotype, and we used 10 image-based traits
(Supplemental Table 1) to describe different aspects of wilting: convex area, convex width, plant
area, plant height, plant width, X mass, Y mass, center of mass (CM) height, CM width, and
color. Several of these, such as the area and width of the convex hull, are traditional methods of
describing aboveground plant shape. Because the center of mass of a plant leaf changes as a
plant wilts, we developed additional descriptors based on the distance of the leaf center of mass
from the stem (CM width and CM height, X mass and Y mass). We then developed a pipeline
which used the original image as input, performed color correction, and quantified each

descriptor (Figure 1 and Supplemental Figure 4, and methods).
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Figure 1: Diagram of the semi-automated analysis pipeline and 10 image descriptors

111

112

113 Image-based traits differentiate resistant and susceptible plants

114 To validate the efficiency of the image-based descriptors to estimate wilting phenotypes, we
115  tested whether image-based phenotyping descriptors could differentiate resistant from

116  susceptible plants. Supplemental Figure 5 shows the average normalized score for each of the
117  image-based descriptors for each parent and the RIL population from -1 (the day before

118  inoculation) to 6 dpi. Most descriptors, particularly those based on plant width or convex hull,
119  had clearly divergent values in resistant and susceptible plants at a given time point. RIL

120 descriptor values ranged from those of the resistant to susceptible parents and occasionally

121 showed transgressive segregation (Supplemental Figure 5). Because plant shape at 6 dpi depends
122 on shape of the same plant at -1 dpi, we used the evolution of each descriptor from day -1 to 6
123 dpi in our QTL analysis. This evolution was termed a ‘trait’. Trait values were clearly different
124 for resistant and susceptible parents for all traits except color (Figure 2), which was not used

125 further.
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Figure 2: Trait evolution during disease and correlation among descriptors. a. Boxplots
showing the evolution of the normalized values between -1 and 6 dpi for each of the five
biological replicates for the ten image-based traits for resistant Hawaii 7996, susceptible
West Virginia parents and the 166 RILs. Color was unable to differentiate resistant from
susceptible plants and was not used further. b. Heatmap showing the Pearson correlation
values between image-based traits used in our QTL analysis and the human eye based
wilting score in 2019. The correlations values were determined using the same plants
imaged and visually assessed in 2019.

Image-based phenotyping reveals drivers of the wilting phenotype

We next investigated whether any of our traits were major components of the wilting phenotype.
We visually scored plants and asked how well our image-based traits correlated with human
visual scoring. Wilting is categorized by loss of plant leaf turgor that results in drooping leaves,
and decreased plant width and height. Determining how much a plant has wilted is challenging,
in part because it can be difficult to quantify how much each a leaf has drooped and how much

drooping of one leaf correlates with whole plant wilting.

We aimed to quantify leaf drooping using center of mass traits. Among our image-based traits,
those which were functions of the leaf center of mass were highly inversely correlated with
visual wilting (i.e. as a plant wilts, the center of mass decreases), suggesting that these are major
drivers of the wilting phenotype. These traits included CM width, plant width and X mass (r > -
0.75) (Figure 2B).

Several of our traits describe similar aspects of plant shape, such as height or width, through
different methods. These traits tended to be highly correlated with each other. For example, plant
height vs Y mass use different methods to describe plant width (based on the plant mask or the
center of mass of the stem masks; see Methods), and were highly positively correlated with each

other (0.93; Figure 2B).
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151  We trained a random forest, consisting of 1000 decision trees, to use data from 6 dpi to predict
152 the expert visual score assigned at 8 dpi. We used 969 plants in a 60:40 training-testing data

153  split, and achieved a classification accuracy of 83%. To identify the traits that provided the most
154  efficient estimation of wilting symptoms, we randomly scrambled the nine image-based traits
155  one at a time. Plant width and plant area had the most impact on wilting score prediction

156  (Supplemental Figure 6).

157

158  QTL analysis identifies 20 wilting QTL in 10 clusters across the tomato genome at 6 dpi

159  Our overall goal was to identify tomato genomic regions that provide resistance or susceptibility
160  to Ralstonia. Prior to this analysis, we first generated a genetic map using Genotyping-by-

161  Sequencing (GBS). We identified 632 high-quality SNPs for linkage mapping using GBS. We
162  combined these with 112 SolCap markers, and subsequently generated a linkage map using ICI
163  mapping software (Meng et al., 2015). Our linkage map consisted of ~1300 cM (Supplemental
164  Figure 7) with an average per chromosome marker density that varies from 1.8 to 7.48 cM

165  (Supplemental Table 2).

166

167  For QTL analysis, we mapped the evolution of each our nine image-based descriptors from -1 to
168 6 dpi. In addition to the image-based phenotyping, we used two years (2016 and 2019) of

169  visually scored phenotyping data at 8 dpi. Visually assessed wilt scores from 2019 were

170  quantified from the same plants that were used for image-based phenotyping. In 2016, plants
171  were only visually scored for wilting, and no image-based measurements were taken. Using ICI
172 mapping software and composite interval mapping (CIM) for all traits, we identified 20 QTL
173 within the RIL population with a LOD score above 3 (Table 1). To be consistent with previous
174  studies of tomato-Ralstonia QTL mapping, we call these QTL, ‘Bacterial wilt resistance (Bwr)
175  QTL’. Each Bwr QTL explained approximately 6 to 11% of the variation in response to R.

176  solanacearum strain K60, and together the clusters explained more than 88% of the variation
177  (calculated using the sum of the QTL with the highest PVE in each cluster).

178

179  The parent that donated the favorable allele was determined according to the sign of the QTL
180  additive effect (Awata et al., 2020), where a positive sign referred to H7996 resistant parent and
181  anegative sign to WV susceptible parent. Typically, in QTL analysis, the favorable allele has the
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Chromosome  Cluster Position LeftMarker RightMarker TraitName LOD PVE Add LeftCl RightCl
2 Bwr2.1 45 solcap_snp_s|_18519 SL3.0ch02-49265134 plant width 34108 6.4576 -0.1669 425 47.5
2 Bwr2.2 72 SL3.0ch02-45885016  SL3.0ch02-44375028 X mass 34765 9.4924 -0.2178  69.5 735
2 Bwr2.2 72 SL3.0ch02-45885016  SL3.0ch02-44375028 CM width 3.2455 8455 -0.2189 69.5 73.5
3 Bwr3.1 22 solcap_snp_s|_14355 solcap_snp_sl_9689 convex width 5.3238 10.2506 0.2103 21.5 26.5
3 Bwr3.1 22 solcap_snp_sl_14355 solcap_snp_sl_9689 plant width 47309  9.1511 0.1976 21.5 25.5
3 Bwr3.1 22 solcap_snp_s|_14355 solcap_snp_s|_9689 X mass 3.4765 58012 0.1705 215 26.5
3 Bwr3.1 23 solcap_snp_s|_14355 solcap_snp_sl_9689 CM width 3.6627 6.2716 0.1887 21.5 27.5
3 Bwr3.1 25 solcap_snp_s|_14355 solcap_snp_s|_9689 plant height 45107 7.6902 0.1896  21.5 315
3 Bwr3.1 25 solcap_snp_s|_14355 solcap_snp_sl_9689 Y mass 3.3918 9.3283 0.1708 21.5 31.5
3 Bwr3.2 38 solcap_snp_s|_21215 solcap_snp_s|_9663 Wilting Score 2016 3.5258 7.3736 -0.1726  35.5 39.5
3 Bwr3.2 38 solcap_snp_s|_21215 solcap_snp_s|_9663 convex area 34328 9.0796 0.1953 345 395
3 Bwr3.2 38 solcap_snp_sl_21215 solcap_snp_sl_9663 plant area 3.3019 8.6697 0.1902 34.5 39.5
4 Bwr4.1 4 SL3.0ch04-60431371 solcap_snp_sl_11543 convex width 3.1855 6.0199 0.1627 1.5 10.5
5 Bwr5.1 100 solcap_snp_sl_22649 SL3.0ch05-65105663 plant height 3.6115  9.4852 0.2103 95.5 103.5
6 Bwré6.1 79 solcap_snp_s|_14458  SL3.0ch06-39435402  Wilting Score 2016 ~ 4.077  8.7626  -0.1871  76.5 81.5
6 Bwré6.1 81 solcap_snp_s|_14458  SL3.0ch06-39435402  Wilting Score 2019  3.2673 11.0473 -0.1621 785 81.5
10 Bwr10.1 53 solcap_snp_sl_33168 SL3.0ch10-63377492 plant width 3.8661 7.6897 -0.1811 50.5 54.5
10 Bwr10.1 53 solcap_snp_sl_33168  SL3.0ch10-63377492 convex width 34883 6.8155 -0.1714 505 54.5
12 Bwr12.1 37 solcap_snp_sl_1525 solcap_snp_sl_1572 CM height 41755 10.7222 0.1837 335 40.5
12 Bwr12.2 42 solcap_snp_s|_58807 solcap_snp_s|_9707 Y mass 3.3249 8.5939 0.1651 40.5 43.5

Table 1 Overview of the 20 wilting QTL identified in 10 clusters across the tomato genome at 6

dpi. LOD: maximum value of the Logarithm of the odd. PVE: Percentage of phenotypic

variance explained. Add: Additive effect. Left CI and Right CI are the confidence interval
calculated by a one-LOD decrease from the estimated QTL position.

higher trait value. Here, a higher trait value is favorable in all cases except the visual wilting

score, in which a higher trait value was associated with susceptibility (e.g. 90% wilting is more

susceptible than 20% wilting). For QTL detected using our visual wilting score, the susceptibility

allele was contributed by the susceptible parent WV (Table 1), consistent with other tomato-R.

solanacearum QTL studies based on visual assessment of wilting. For all QTL except those on

chromosome 2 and 10, the favorable allele was contributed by Hawaii 7996. QTL clusters on

chromosome 2 and 10, which contributed to plant height and width, were donated by the

susceptible parent WV. Favorable allelic contribution from both resistant and susceptible parents

is common in QTL studies for resistance (Maschietto et al., 2017; Awata et al., 2020).

Among the 20 individual Bwr QTL were 10 QTL clusters (Table 1). We use the term ‘QTL

cluster’ to describe QTL for different traits that co-localize at the same left and right genetic

10
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194  marker. There are between one and six Bwr QTL within a given cluster, and each QTL within
195  the cluster has different LOD scores and explains a different percentage of phenotypic variation.
196  Bwr QTL for traits that are highly correlated with each other (Figure 2B) tended to cluster

197  together. For example, a cluster of QTL on chromosome 3 (Bwr3.1; Table 1) contains six Bwr
198  QTL, including three for area-related traits (convex width, and X mass and CM width), which
199  are correlated with each other at r = 0.94 - 0.97 (Figure 2B). In another cluster (Bwr3.2) on this
200  same chromosome, Bwr QTL for traits that describe plant area were detected together. This co-
201  localization supports the robust nature of our analyses.

202

203  In other clusters, only one trait that described one aspect of the wilting phenotype was present.
204  For example, despite several metrics that describe width, only convex width was identified as a
205  QTL on chromosome 4 (Bwr4.1; LOD 3.18; PVE = 6%). This suggests that the image-based
206  phenotyping captured genetic variation that is specific to each trait.

207

208  Image-based non-destructive phenotyping identifies three types of QTL clusters

209  Among our Bwr QTL clusters, we identified three types: those found using both image-based
210  and visual phenotyping (1 cluster, Bwr3.2), those found only through visual phenotyping (1

211 cluster, Bwr6.1), and those that were identified only through image-based phenotyping (8

212 clusters; Table 1 and Figure 3).

213

214 For the cluster including both image-based and visual phenotyping, (Bwr3.2) on chromosome 3,
215  we detected QTL for convex area, plant area and visual plant wilting in 2016 (Table 1 and Figure
216  3a). Previous studies examining tomato responses to other strains of Ralstonia have not detected
217  Bwr QTL in this region, indicating that it may be a novel target for R. solanacearum strain K60.
218  The identification of both image-based and visual QTL within the same cluster suggests that our
219  phenotyping methods are robust at identifying features of plant wilting. Close to this cluster is
220  Bwr3.1, which detected QTL for traits based on plant width, including convex width and CM
221  width. The proximal arm of chromosome 3 may be an important but unexploited region for

222 defense against R. solanacearum strain K60.

11
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Figure 3: Significant QTL clusters on chromosomes 3 (a.), 6 (b.), 12 (c.) and 10 (d.). The
image-based and visually assessed traits are represented with different colors for each
chromosome. The vertical axis represents the genetic position (cM) and horizontal axis shows
the LOD score. For each chromosome, the left panel represents the entire chromosome and the
right panel represents the significant QTL cluster regions.

224

225  On chromosome 6 we detected Bwr (Bwr6. 1) using only visual assessment for both 2016 and
226 2019 (Table 1, Figure 3b). This region may be a ‘hot spot’ for QTL for resistance to multiple
227  strains of Ralstonia. Previous studies using this same tomato population for mapping Bwr to

228  other strains of Ralstonia detected QTL approximately 4 Mb from this position (Supplemental
229  Figure 7).

230

231  In all other clusters, QTL were identified using only image-based phenotyping. Two such

232 clusters, detected on chromosome 12, identified QTL for CM height (Bwri2.1) and Y mass

233 (Bwrli2.2), and were located near previous QTL detected against other strains of Ralstonia

234 (Supplemental Figure 7 and Figure 3c) . These previous studies (Wang et al., 2000; Jaw-Fen

235  Wang et al., 2013; Shin et al., 2020) detected QTL using visual wilt assessment of adult plants in
236  the field.

237

238  The remaining QTL detected through image-based phenotyping have not been previously

239  identified in studies using other strains of Ralstonia. These regions may be effective only against
240  specific strains of Ralstonia (‘strain-specific’ QTL), or may include those that are not easily

241  detected using visual assessment. In support of the latter, at one of the image-based-only clusters,
242 Bwrl0.1 (Figure 3d), we detected a QTL using visual assessment that did not meet our threshold
243 for significance after permutation (Supplemental Table 3). Thus, image-based phenotyping

244 improved our ability to detect QTL.

245

246  Image-based phenotyping identified Bwr QTL prior to visual symptom development

247  In our system, wilting symptoms begin to appear on highly susceptible plants at 4 dpi, and these
248  plants are nearly 100% wilted by 6 dpi. To test whether we could detect Bwr QTL prior to the
249  onset of visual symptoms, we performed QTL analysis at 3, 4 and 5 dpi. No QTL were identified
250  based on visual assessment at any of these time points, however several QTL were identified

251  based on image-based phenotyping. At 3 dpi, three clusters were detected on chromosome 3, two
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of which co-localized with those identified at 6 dpi (Supplemental Table 4). Bwr3.1, a cluster

detected only by image-based phenotyping, and Bwr3.2, a cluster detected by both visual and

image-based phenotyping, were first detected at 3 dpi. Bwr3.1 was also detected at 5 and 6 dpi,

while Bwr3.2 was detected 3, 4, 5 and 6 dpi (Supplemental Table 4). A small number of

additional QTL were detected at earlier time points (Supplemental Table 4), but in most cases

these were not stable, since they were not present at 6 dpi. These data suggest that image-based

phenotyping can identify Bwr QTL prior to the onset of wilting symptoms.

Plant architecture QTL do not overlap with Bwr QTL

The parents of the RIL population, H7996 and WV, have different aboveground phenotypes

(Supplemental Figure 4) and the shoot architecture of the RILs correspondingly varies. To ensure

that Bwr QTL were the result of tomato responses to Ralstonia, and not due to differences in

aboveground plant architecture, we used our traits in a QTL analysis at -1 dpi, the day before

plants had been inoculated. We call these ‘tomato plant architecture (7pa)’ QTL. We identified

16 Tpa, within 9 QTL clusters (Table 2). None of the 16 Tpa were detected within the same

interval as Bwr at 6 dpi. However, two Tpa QTL clusters were detected that were near Bwr QTL

present at 6 dpi. One of these was detected on chromosome 3 at position 30, between Bwr3.1

and 3.2.

Chromosome Cluster Position LeftMarker RightMarker TraitName LOD PVE Add LeftCl
2 Tpa2.1 117 solcap_snp_s|_8510 solcap_snp_sl_15574 plant width 3.3851 6.4842 0.129 114.5
2 Tpa2.1 117 solcap_snp_s|_8510 solcap_snp_sl_15574 X mass 4.1424 6.8279 0.139 114.5
3 Tpa3.1 30 solcap_snp_s|_9689 solcap_snp_sl_9681 plant area 3.6327 8.0934 0.1522 24.5
3 Tpa3.2 58 SL3.0ch03-61078160 solcap_snp_s|_10372 plant width 3.2538  9.4831 0.1555 56.5
3 Tpa3.2 58 SL3.0ch03-61078160 solcap_snp_s|_10372 X mass 3.8291 9.4218 0.1628 56.5
3 Tpa3.2 59 SL3.0ch03-61078160 solcap_snp_s|_10372 CM height 3.794 3.6957 0.1603 56.5
4 Tpa4.1 128 SL3.0ch04-1213025 solcap_snp_s|_63869 CM height 3.8063 12.0286  -0.2891 127.5
6 Tpab.1 10 SL3.0ch06-13533085 SL3.0ch06-3310762 convex area 4.741 11.2755 0.1621 8.5
6 Tpab.1 10 SL3.0ch06-13533085 SL3.0ch06-3310762 plant width 3.5865  6.9265 0.1336 8.5
6 Tpab.1 10 SL3.0ch06-13533085 SL3.0ch06-3310762 plant area 35117 73344 0.1457 8.5
6 Tpab.1 10 SL3.0ch06-13533085 SL3.0ch06-3310762 X mass 4.8686 8.016 0.151 8.5
6 Tpab.1 10 SL3.0ch06-13533085 SL3.0ch06-3310762 Y mass 4.902 9.3612 0.1757 8.5
8 Tpas.1 80 solcap_snp_s|_21461 SL3.0ch08-63373341 X mass 3.2439 53622 0.123 74.5
9 Tpa9.1 36 solcap_snp_s|_26683 SL3.0ch09-4516570 CM height 4.8307 6.146 0.2081 325
9 Tpa9.2 67 SL3.0ch09-39293163 SL3.0ch09-63338944 convexarea  3.1976 7.523 -0.1323 60.5
10 Tpa10.1 71 solcap_snp_s|_8835 Le013158s_161 Y mass 3.2077 5.9734 0.1404 68.5

Table 2 Overview of tomato plant architecture (Tpa) QTL identified at -1 dpi by image-based

phenotyping.
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While we cannot rule out the possibility that the same genes underlie these 7pa and Bwr QTL,
their different marker intervals, coupled with the visual wilting QTL that is within the Bwr3.2
cluster, suggests that different genes are responsible for these QTL. Together, these data suggest
that our image-based phenotyping detected genomic regions that function in responding to

Ralstonia and Bwr QTL are not the result of differential growth patterns within the RILs.

Discussion

Breeding for plant disease resistance is one of the best strategies to combat plant diseases and
prevent major crop loss, but is challenging in part due to the complicated nature of disease
phenotyping. Here we used rapid, non-destructive, image-based phenotyping with RGB images
to identify 20 QTL in 10 clusters for tomato responses to Ralstonia at 6 dpi, two of which were
detected as early as 3 dpi. Together, the 20 Bwr QTL at 6 dpi explained more than 88% of the
variation in response to Ralstonia. Image-based phenotyping for shape-based traits that were
correlated with wilting detected both novel loci and those that overlapped with QTL based on
human visual assessment. These results establish the importance and feasibility of quantitative,
non-destructive, imaged-based phenotyping to identify new genetic targets for crop disease

resistance during disease progression.

Benefits of image-based phenotyping

Imaged-based phenotyping has been used to detect QTL associated with plant root (Topp et al.,
2013) and shoot (Zhang et al., 2017; Knoch et al., 2020; Li et al., 2020) architecture, plant height
(Wang et al., 2019), salt stress (Awlia et al.), and yield (Tanger et al., 2017; Pauli et al., 2016)
among other traits. Although image-based phenotyping has become increasingly common to
quantify plant disease symptoms (Mahlein, 2016; Mahlein et al., 2017, 2019; Lowe et al., 2017;
Shakoor et al., 2017; Mochida et al., 2019; Mir et al., 2019; Pérez-Bueno et al., 2019; Pineda et
al., 2021; Simko et al., 2017), few studies have used this technology to identify new genetic loci
for plant disease resistance (Yates et al., 2019; Fordyce et al., 2018; Corwin et al., 2016). One
reason for this may be that many plant disease symptoms occur at the leaf scale (such as spots
and specks), making it difficult to use some sensors non-destructively and in high-throughput, or

at the proper resolution needed to assess disease. For example, automated digital phenotyping of
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301  Septoria Tritici Blotch on wheat leaves identified novel QTL for resistance, but the destructive
302  phenotyping required significant manual labor to harvest, mount and scan leaves (Yates et al.,
303  2019). While wilting does occur at the leaf scale, it is an easier phenotype to assess at the whole
304  plant scale. Another possibility is that imaging sensors are often expensive, making it more

305 challenging to phenotype the large number of plants needed in a QTL or GWA study. Our

306  method is low-cost and rapid ( < 2 min/plant), and requires no manual labor other than placing
307  the plant on the turntable and initiating imaging via a computer.

308

309  Our image-based phenotyping identified loci that function in tomato responses to Ralstonia, but
310  did not detect one of the two Bwr clusters (Bwr6. 1) we found using visual assessment of disease.
311  Visual assessment was performed at 8 dpi, while our image based phenotyping ended at 6 dpi. It
312 is possible Bwro6.1 is not apparent until very late stages of disease. Alternatively, these results
313 could mean that we missed components of wilting in our image-based traits. However, a more
314  likely explanation is that our image-based traits were averaged across eight two dimensional

315  images, but wilting is a three dimensional (3D) phenotype. Images in 3D may allow detection of
316  Bwr6.1. It would also be of interest to test whether using additional types of sensors, such as

317  hyperspectral, would identify Bwr 6.1. Multi and hyperspectral imaging has been used to detect
318  biochemical changes in disease (Mahlein et al., 2017; Lowe et al., 2017; Zhang et al., 2020).

319  Given the chemical changes that occur during water stress, this type of imaging would likely
320  identify additional genetic variation associated with resistance to bacterial wilt disease.

321

322 New QTL for responses to Ralstonia in tomato

323 As in tomato, resistance to Ralstonia in other Solanaceous crops is quantitative (Young and

324  Danesh, 1994; Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 1999; Wang et
325  al, 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013). Breeding for resistance QTL is
326  thus the primary way forward to developing Ralstonia-resistant crops in the Solanaceae. This has
327  not been easy, in part because of the diversity of Ralstonia. The Ralstonia solanacearum species
328  complex was recently subdivided into three species (R. solanacearum, R. pseudosolanacearum,
329  and R. syzygii), each prevalent in a different part of the world (Remenant et al., 2012; Safni et al.;
330  Prior et al., 2016). Each species has multiple strains, with an overlapping, but distinct set of

331  virulence proteins that promote disease (Landry et al., 2020). Varieties with effective resistance
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will likely have QTL that are effective against local strains (strain-specific QTL) as well as those

effective against multiple strains (broad-spectrum QTL).

Most previously identified QTL have focused on resistance to R. pseudosolanacearum, and none
of them used the strain of R. solanacearum as in this work (Danesh et al., 1994; Thoquet et al.,
1996a, 1996b; Wang et al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al.,
2020; Mangin et al., 1999). Using visual assessment of wilting and the same RIL population of
tomato (H7996 x WV700) used here, one broad-spectrum QTL for resistance to multiple strains
of R. pseudosolanacearum, and one strain of R. solanacearum (JT-516) had been previously
identified on chromosome 6 (Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al.,
1999; Wang et al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 2020).
We also identified a QTL on chromosome 6, using visual assessment in both 2016 and 2019. In
our study, Bwr6.1 confers 8 — 11% of the variation, compared to 11.5 — 33% for Bwr6a - Bwr6d
(Jaw-Fen Wang et al., 2013; Shin et al., 2020). The genes within the left and right intervals of
Bwr6.1 are particularly interesting because there are two groups of NBS-LRRs located between
the left and right markers for Bwr6.1 (solcap _snp sl 14458 and the GBS-identified SNP at
39435402). One of these groups includes the S. /ycopersicum homolog of Arabidopsis
RESISTANCE to PSEUDOMONAS SYRINGAE 4 (RPS4). Fine-mapping of Bwr6.1 is needed to
determine whether a specific NBS-LRR protein or receptor is responsible for the resistance

conferred by this region.

Previous studies also identified a major QTL on chromosome 12 that is effective for resistance to
R. pseudosolanacearum, and explained between 15.9 — 53.9% of the variation (Shin et al., 2020).
We found two clusters of QTL on chromosome 12, for image-based traits. Within the region
spanning Bwrl2.1 on chromosome 12 is one NBS-LRR disease resistance gene (Solycl2g10740)
and one receptor-like kinase (Solycl12g010660) while within Bwrl2.2 are genes related to disease
resistance pathways, including a gene encoding a Pathogenesis Response (PR) Protein
(Solyc12g014310), and two genes encoding Leucine Rich Repeat — Receptor Like Kinases
(Solyc12g014350 and Solyc12g150105). Our results suggest that this region of chromosome 12
may be important for resistance to multiple strains of Ralstonia. The QTL we identified on

chromosomes 2, 3, 4, 5, 8 and 10 were not previously identified, and thus may be specific to R.
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solanacearum strain K60. With the exception of Bwr3.2, these QTL were detected using only

our image-based traits.

Together, our results establish the value of image-based, non-destructive disease phenotyping for
uncovering novel genetic components and new targets for quantitative disease resistance in
crops. By identifying new genetic loci, this type of rapid phenotyping may enable the

identification of broad-spectrum and durable resistance.

Methods

Plant growth

Seeds of 188 Hawaii7996 (H7996) x West Virginia700 (WV) recombinant inbred lines (RILs) in
the F8 generation were obtained from the Asian Vegetable Research and Development Center
(AVRDC) in June 2014. Seeds were propagated to the Fo generation in field and greenhouse in
West Lafayette, IN in 2014 and 2015 and were used in QTL analysis in 2016 and 2019.

For all plants used in the imaging experiments and 2019 visual assessment of wilting, seeds were
sown into individually labeled 1801 traditional inserts that were placed into 1020 flats (Hummert
International, USA). Seeds in the 2016 experiment were sown into individually labeled 1203
inserts that were placed into 1020 flats. Seeds were sown into ProMix Propagation Mix supplied
by the Lilly Greenhouses and Growth Facility located at Purdue University, West Lafayette,
Indiana, USA. The individual pots were randomized and placed in a growth chamber at 28°C,
relative humidity of 65% for a lighting cycle of 16 hours light/8 hours dark. The plants began
germination on day 4 and plants were inoculated with R. solanacearum strain K60 at 17 days
after planting when three true leaves were present. Trays were rotated in the growth chamber
throughout each experiment. In 2016, four seeds of each RIL were grown in the growth chamber
with parental controls, and each plant was visually assessed for wilting at 8 days post inoculation
(dpi). In 2019, one seed per RIL, along with parental controls, was grown in the growth chamber
for each of five independent replicates. Each plant was imaged at -1, 3, 4, 5, and 6 dpi, and

visually assessed at 8 dpi.
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393  For plants used to genotyping with tomato SolCap markers, Fo generation RIL seeds and parental
394  controls were grown in the greenhouse in 2-gallon pots with Metro Mix 510 soil. Plants were
395  grown for 6 weeks.

396

397  Ralstonia solanacearum growth and plant inoculation

398  Ralstonia solanacearum strain K60 (containing a GFP reporter) was grown on casamino acid-
399  peptone-glucose (CPG) agar containing tetrazolium chloride (TZC) in the dark for 48 hours at
400  28°C as in (Caldwell et al., 2017). Briefly, bacteria were resuspended in sterile water to a

401  concentration of approximately 2 x 10® colony forming units (CFU)/mL for each experiment. For
402  each experiment, the concentration of inoculum was confirmed through dilution plating. Pots of
403  three-leaf plants were lightly compressed to induce wounding similar to transplant handling in
404  field conditions. 60 mL of inoculum was applied to the surrounding soil using a serological

405  pipet.

406

407  Visual assessment of bacterial wilt disease

408  Wilt scores were visually assessed 8 dpi. Wilt scores were calculated by counting the number of
409  wilted true leaves divided by the total number of true leaves on the plant. Plants were scored with
410  a 95% if the plant had all of its leaves wilted, excluding the topmost leaf. Plants were marked as
411  100% when the topmost portion of the stem was collapsed and wilted (Supplemental Figure 2).
412

413  Plant imaging

414  Plants were imaged the day before inoculation (-1 dpi) and then imaged on 3, 4, 5, and 6 dpi. A
415  Linco Linstor 2000-watt photo studio (Amazon, USA) was used as the backdrop, and Flora X
416  fluorescent lighting (Amazon, USA) was used to create a small photo studio. Individual plants
417  were placed on a Photocapture 360 turntable (Ortery Technologies) that was programmed to

418  capture eight images around the plant (every 45°). The images were captured using an EOS 6D
419  Canon camera with an EF 50mm /1.4 USM lens on a stationary tripod. An imaging carriage
420  was created with a square petri dish and a fiducial marker attached to each side. A total of five
421  independent replicates for each RIL and the parental controls were imaged.

422

423 Phenotyping Pipeline and Image Analysis
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From the plant images, ten traits were acquired for QTL analysis. A detailed description of the
acquisition process can be found in (Yang et al., 2021, 2020). All traits were extracted based on
plant color and shape. To eliminate any color discrepancy between images, images were
automatically color corrected using a fiducial marker consisting of a colored checkerboard with

known physical dimensions and colors.

After color correction, plant pixels were segmented from the rest of the image by thresholding
channels in the L*A*B* color space. The resulting segmentation mask was improved with image
morphological operations to fill holes and remove noise generated by the thresholding. The stem
of the plant was identified using two neural networks, Mask R-CNN and U-Net. By locating the
stem of the plant, metrics were defined that reflect the inner morphology of the plant. To train
the neural networks, stem segmentation ground truth data were generated using Adobe
Photoshop and LabelMe (a Python-based annotation tool) to mark the location of the image
pixels belonging to the stem of the plant. Further details about this procedure are described in

(Yang et al., 2020, 2021).

The plant and stem masks were used in the subsequent color and shape analysis, which acquired
ten traits: total area of the plant mask (plant area), height of the plant mask (plant height),
maximum width of the plant mask (plant width), area of the convex hull (convex area), width of
the convex hull (convex width), color-based weighted average (color average), horizontal
distance between the center of mass of the left and right sides of the plant stem (CM width),
height of the center of mass (CM height), x-axis distribution of the center of mass (X mass), Y-

axis distribution of the center of mass (Y mass).

The plant area, plant height and plant width were calculated from the plant mask. When
calculating plant height, the upper 5% of the plant material was not included, which helped
eliminate the impact of small leaves growing at the top. Using functions available in OpenCV
Python Library, a convex hull was fit around the plant mask and the convex area and convex
width were calculated. For color analysis, the weighted average of the pixel values in the A*

channel was calculated, as this channel captures the green-magenta spectrum.

20


https://doi.org/10.1101/2021.07.13.452064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452064; this version posted July 22, 2021. The copyright holder for this preprint (which

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To calculate traits involving the center of mass (CM), the plant mask was split into left and right
halves using the stem mask (Yang et al., 2020), and the CM located for each half. The x-axis
distance between CMs (CM width) and the average height of the CMs (CM height) were used as

traits.

The extension of just one leaf can have a major impact on measured plant width, generating a
disproportionately larger value. Capturing the plant material distribution inside the plant mask
can overcome this issue. Using the split plant mask, the horizontal and vertical distribution of
plant material was estimated. The distances at which 90% of the plant material was captured in
the horizontal and vertical directions were used as the traits ‘X mass distribution’ and Y mass
distribution’. The average of eight views around the plant were used for each trait value. Outputs

are in pixels.

In the random forest classification, visual wilting scores were thresholded to 0 or 1, where 0 =0
to 50% wilting, 1 =51 — 100% wilting. Average trait values from eight views from 6 dpi for 969
plants (RILs and parental controls) were used across all five replicates. Some plants did not have

a trait value for that day and were not used in the algorithm.

DNA extraction, Marker generation and Genotyping by Sequencing (GBS)

Tomato SolCap markers and single nucleotide polymorphisms (SNPs) identified through GBS
were used for map creation. Leaf disc samples were collected from each RIL plant using a
biopsy punch and were sent to LGC, Biosearch Technologies. Genomic DNA was extracted and
genotyped for 128 SNPs from the Tomato SolCAP panel using LGC’s KASP assay. One
hundred twelve SNPs were obtained for RILs using this method.

For GBS, genomic DNA (gDNA) was extracted from 188 F9 individuals of the RIL population
and from parental plants using Trizol. gDNA was RNase-treated and cleaned with phenol
chloroform extraction. Sequencing library preparation was as described by (Elshire et al., 2011).
Briefly, gDNA was digested with Pst/ and 150 bp paired end sequencing was performed on two

lanes of an Illumina Hi-seq 2500 at the Purdue Genomics Facility.

21


https://doi.org/10.1101/2021.07.13.452064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452064; this version posted July 22, 2021. The copyright holder for this preprint (which

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Reads were mapped to the Solanum lycopersicum 3.0 genome using the methods of (Manching
et al., 2017). In brief, reads were de-multiplexed, and adapter sequences were removed. Reads
were filtered based on the presence of a GBS barcode on the forward read (R1), which accounts
for 95.4% of the PE reads. For these R1, 97.3% had a paired R2 read, and 2.7% did not have a
pair. R1 read pairs and R1 singles reads were combined and assessed independent of pairing and

treated as single end reads for the remaining analyses (924,500,737 reads).

Reads were filtered to remove those with the presence of an internal restriction site, the lack of
restriction site hang sequence at the end, and for minimum length, which retained 93.0% of the
reads. There was a minimum of 17,561 reads, a maximum of 16,127,292 reads, and an average
of 4,480,149 reads per sample (Supplemental Figure 8). Reads were mapped using BWA-MEM
for paired end reads, and the GATK haplotype caller was used to generate a genomic Variant
Call Format (gVCF) file for downstream analysis.

There were 74,082 SNPs called between the population and Solanum lycopersicum 3.0 reference
genome. Many of these were SNPs between the reference genome and the population and do not
vary in the population used here. Filtering for the presence of two alleles within the RIL
population identified resulted in 2,738 SNPs. Of these, the parental alleles were identified in
both parents for 278 SNPs and in one parent for 698 SNPs. The remaining 1,762 SNPs could not
be assigned a parental origin and were not used for further analysis. The 976 SNPs with parental
origin identified were filtered for a minor allele frequency greater than 0.02 and less than 0.99,

which resulted in 632 high quality SNPs.

High quality SNPs identified from GBS were combined with previously defined SolCap markers
from LGC Biosearch Technologies for a total of 748 markers. SNP coverage of the 188 RIL taxa
was high. Of the 748 markers, the minimum coverage was 115 markers, the maximum coverage
was 555 markers, and the average was 366 markers (Supplemental Figure 9). There was some
residual heterozygosity in the taxa (Supplemental Figure 9b), and taxa with 10% or greater

heterozygosity were removed from further analysis (2 RILs).

Linkage Map Construction
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516  The software QTL IciMapping (Meng et al., 2015) (version 4.1) was used for the map

517  construction with all 748 markers. Redundant markers were filtered by taxa coverage using a
518  missing rate of 85% and a distortion threshold at 0.001 to obtain a total of 408 markers. The 408
519  markers without anchor information were assigned to 12 groups based on a LOD score threshold
520  value of 3. After grouping, the markers were ordered using the nearest neighbor algorithm

521  (nnTwoOpt) using the rippling criterion SARF (Sum of Adjacent Recombination Frequencies)
522  with a window size of five markers. After ordering, some markers at the end of the chromosomes
523  were deleted when they were adding an insignificant genetic distance to the chromosome. These
524  markers were identified after splitting the current chromosome in two sub-chromosomes between
525  the longest marker interval. If the shortest sub-chromosome contained more than 20% of the

526  markers before splitting, the two sub-chromosome were re-assembled. Otherwise, the shortest
527  sub-chromosome was deleted.

528

529  QTL detection

530  QTL were detected using Inclusive Composite Interval Mapping with additive effects (ICIM-
531 ADD) in IciMapping (Meng et al., 2015) (version 4.1) using a genetic mapping with a 1 cM

532 scanning step and a probability in stepwise regression of 0.001. The LOD significance threshold
533  todeclare a QTL significant was determined using a Type-I error of 0.0500 after one thousand
534  permutation. For the QTL analysis, we removed 19 of the 188 RIL (10%) showing the highest
535  variation according to the visual wilting score and 3 RIL due to missing data across the 5

536  biological repetitions for a total of 166 RIL into the QTL map (Supplemental Figure 3). The

537  evolution of the ten image-based traits and two visual wilting scores between -1 dpi and 3, 4, 5
538 and 6 dpi were determined for the 166 RIL. To assure a normal distribution of the phenotypic
539  data, the function “orderNorm” was used to perform an ordered quantile normalization (Peterson
540  and Cavanaugh, 2020) before QTL analysis using the package “bestNormalize” version 1.6.1
541  with R software version 3.6.1 (R Core Team).

542
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723  Supplemental Information

724  Supplemental Figures

725  Supplemental Figure 1: Design of our low cost phenotyping platform including automatic

726  turntable, backdrop, lightning and RGB camera.
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728  Supplemental Figure 2: Raw RGB pictures showing the evolution of wilting symptoms on RIL #
729 646 at -1, 3,4, 5 and 6 dpi. Visually assessed wilting score are expressed in percentage of wilted
730 leaves.
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755  Supplemental Figure 3: Wilting Score RIL: Boxplots showing the normalized wilting score at 6
756  dpi for the 166 RILs, resistant Hawaii 7996 (HA) and susceptible West Virginia (WV)
757  genotypes.

758
1.0 =
0.0 . . S
“ AR Dﬁﬂ =0 ﬁﬁﬁﬁé WL
PSS S N S . - _ o e
S L& IS "°e""5*\°’q'\é’e“°é§a'\"’\«@é° & ’\‘b'\’a '9&5’5’«‘3\ & &
Hé \ ¥ g § Jﬁ
H ﬁﬁ% i Hﬁﬂ i) ﬂ i §
F PSS S é‘}’ PSS LES 6‘9 & o\“’q' @S LR
e
o
g .
2.
E S PSS «‘3° & & '\“‘9 @Q '\'5"’ A S P I i
Z = = X
8
: I -, .-
2 - ‘ 0 Eé
@" S S & P ,\%"' FUSIP '13’ > L &SP PSS
Dﬁﬂﬁﬂﬁ% ]ﬁ Eé ﬁﬁ D Mﬁu W
*\'{\ *\'ﬁ '\“J *\"‘1' *\'“" & B @"' G’Q’ 6'5" «“ «‘b '\"P" *\"Q’ "" e‘f’b ® "q' 'ﬁ’ *\5\ & é" & & *\’\'\ & *\""\ é’ *\“"6 é’\
1.0 O e | g — - —
0-5“H* A ljj . .= D I
o0l [ wilting score 2019
- = [] wilting score 2016
759 FFST R LRI E SO S S S
760
761
762
763
764
765
766
767

31


https://doi.org/10.1101/2021.07.13.452064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452064; this version posted July 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

768  Supplemental Figure 4: RGB pictures showing the evolution of the traits at -1, 3, 4, 5 and 6 dpi
769  for A) Hawaii 7996 and B) West Virginia (pw: plant width, ph: plant height, CMh: Center of
770  Mass height, CMw: Center of Mass width, xm: Horizontal mass distribution, ym: Vertical mass

771  distribution). The Hawaii 7996 plant shown here is the same plant used for Figure 1.
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776  Supplemental Figure 5: Boxplots showing the normalized values for image-based traits at -1, 3,
777 4,5, 6 dpi for resistant Hawaii 7996, susceptible West Virginia 700, and 166 individuals of the
778  RIL population.
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786  Supplemental Figure 6: Histogram showing the image-based descriptors which contribute the

787  most to wilting
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808  Supplemental Figure 7: Genetic Linkage map constructed with SolCap and SNP markers.
809  Location of 10 QTL clusters are displayed using blue and green for left and right markers
810  respectively. Location of previously identified QTL on chromosome 6 and 12%7 are also
811  displayed.
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818  Supplemental Figure 8: GBS Read Distribution by Sample (includes parental references).
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839  Supplemental Figure 9: a) RIL and parental coverage and SNP density from GBS analysis; b)
840  Percent heterozygosity and SNP density
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861  Supplemental Tables

862  Supplemental Table 1 Descriptive statistics for 10 image-based traits and two years of visually
863  assessed wilting scores (2016 and 2019). Image-based traits were from the same plants as the
864  visually assessed wilting score in 2019. The RIL population was inoculated with Ralstonia and
865  visually scored for wilting in 2016, but images were not taken. Data is shown for resistant parent

866  Hawaii 7996, susceptible parent West Virginia 700, and the RIL population.

Hawaii 7996 West Virginia 700 RILs
year Variable Mean SD Minimum Maximum  Mean SD Minimum Maximum  Mean SD Minimum Maximum
2016  Wilting_Score 0 0 0 0 100 0 100 100 44.41 41.4 0 100
Wilting_Score 0 0 0 0 99.33 5.16 60 100 53.69 42.23 0 100

convex area 2.7e+06 1.4e+06 -4.1e+04 6.3e+06  -3.6e+05 3.6e+05 -1.1e+06 7.4e+05 1.2e+06 1.4e+06 -2.0e+06 7.9e+06

convex width ~ 8.7e+02 4.4e+02  -7.0e+01 1.7e+03  -7.4e+02 3.7e+02 -1.4e+03 5.4e+02 -4.6e-01  5.9e+02 -1.9e+03 2.9e+03

plant area 8.7e+05 5.6e+05 -1.0e+04 2.2e+06 -1.1e+05 1.1e+05 -3.4e+05 2.1e+05 5.0e+05 5.5e+05 -7.4e+05 2.6e+06

plant height ~ 5.6e+02 1.9e+02 -7.0e+01 8.7e+02  -1.3e+01 1.7e+02 -3.6e+02 3.7e+02 3.3e+02 2.5e+02 -6.5e+02 1.1e+03

2019 plantwidth ~ 4.0e+02 2.0e+02 -3.6e+01 8.2e+02  -3.5e+02 1.8e+02 -6.6e+02 2.5e+02 -2.1e+01 2.7e+02  -9.7e+02 8.4e+02
X mass 3.1e+02 1.6e+02 -3.7e+01 5.8e+02 -2.9e+02 1.5e+02 -5.6e+02 2.0e+02 -1.2e+01 2.3e+02 -7.4e+02 6.9e+02

Y mass 5.4e+02 2.1e+02 -8.4e+01 9.3e+02  -6.7e+01 1.6e+02 -4.1e+02 3.6e+02 2.1e+02 2.2e+02 -7.0e+02 9.6e+02

CM width 3.1e+02 1.6e+02 -1.0e+02 6.0e+02  -2.9e+02 1.5e+02 -5.2e+02 1.8e+02 2.7e+01  2.3e+02 -7.0e+02 9.8e+02

CM height 2.6e+02 1.8e+02 -2.1e+02 6.2e+02  -1.3e+02 1.5e+02 -3.9e+02 1.9e+02 -5.2e+01 1.9e+02 -8.8e+02 8.3e+02

color average 2.88 5.44 -5.96 229 7.37 2.84 1.03 14.83 4.06 4.48 -11.35 16.48
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882  Supplemental Table 2: Marker density per cM for each chromosome.

Chromosome Number of marker Chromosome Length (cM) Average interval length (cM) Standard deviation Standard error

1 36 153.42 4.38 4.15 0.70
2 19 117.42 6.52 3.92 0.92
3 28 87.77 3.25 3.56 0.68
4 44 133.43 3.10 4.25 0.65
5 18 116.49 6.85 5.33 1.29
6 61 116.92 1.80 1.99 0.26
7 21 95.63 4.78 3.94 0.88
8 14 97.27 7.48 4.44 1.23
9 27 143.5 5.52 5.77 1.13
10 18 80.01 4.7 4.80 1.16
1 25 61.22 2.55 3.88 0.79
12 43 120.42 2.87 3.01 0.46
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Supplemental Table 3: Overview of the 9 genomic regions identified with a LOD score greater

than 3 on chromosome 10 after inoculation with R. solanacearum at 6 dpi. According to the ICI

Mapping analysis using 1000 permutations, a threshold value of 3.48 represents the minimum

LOD to identify a significant QTL. Genomic regions with a lower LOD value did not reach our

threshold for significance after permutation.

Chromosome Position LeftMarker RightMarker TraitName LOD PVE Add
10 51 solcap_snp_sl_33168 SL3.0ch10-63377492 Wilting Score 2019 3.0067 13.3810 0.2077
10 52 solcap_snp_s|_33168 SL3.0ch10-63377492 Wilting Score 2019 3.0927 10.5192 0.1842
10 53 solcap_snp_s|_33168 SL3.0ch10-63377492 Wilting Score 2019 3.0832 8.0396 0.1611
10 52 solcap_snp_s|_33168 SL3.0ch10-63377492 convex width 3.1634 9.0040 -0.1835
10 53 solcap_snp_sl_33168 SL3.0ch10-63377492 convex width 3.4883 7.8538 -0.1714
10 51 solcap_snp_sl_33168 SL3.0ch10-63377492 plant width 3.0398 11.1872 -0.2039
10 52 solcap_snp_s|_33168 SL3.0ch10-63377492 plant width 3.5411 10.2424 -0.1951
10 53 solcap_snp_s|_33168 SL3.0ch10-63377492 plant width 3.8661 8.8147 -0.1811
10 53 solcap_snp_sl_33168 SL3.0ch10-63377492 X mass 3.0584 7.0293 -0.1629
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929  Supplemental Table 4: Overview of QTLs identified across the genome at all time points (-1, 3,
930 4,5, 6 dpi) with R. solanacearum. LOD: maximum value of the Logarithm of the odd. PVE:

931  Percentage of phenotypic variance explained. Add: Additive effect, the positive and negative
932 values indicated that the alleles are introgressed from the resistant parent (Hawaii 7996) and

933 susceptible parents (WestVirginia). LeftCI and RightCI are the confidence interval calculated by
934  aone-LOD decrease from the estimated QTL position. * = Bwr3.1; ** = Bwr3.2
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Timepoint Chromosome Position LeftMarker RightMarker TraitName LoD PVE Add LeftCl RightCl
-1 2 117 solcap_snp_sl_8510 solcap_snp_sl_15574 plant width 3.3851 6.4842 0.1290 114.5 117.0
-1 2 117 solcap_snp_sl_8510 solcap_snp_sl_15574 X mass 41424 6.8279 0.1390 1145 117.0
-1 3 58 SL3.0ch03-61078160  solcap_snp_sl_10372 plant width 3.2538 9.4831 0.1555 56.5 64.5
-1 3 58 SL3.0ch03-61078160  solcap_snp_sl_10372 X mass 3.8291 9.4218 0.1628 56.5 64.5
-1 3 59 SL3.0ch03-61078160  solcap_snp_sl_10372 CM height 3.7940 3.6957 0.1603 56.5 63.5
-1 3 30 solcap_snp_sl_9689 solcap_snp_sl_9681 plant area 3.6327 8.0934 0.1522 245 34.5
-1 4 128 SL3.0ch04-1213025 solcap_snp_sl_63869 CM height 3.8063 12.0286 -0.2891 127.5 130.5
-1 6 10 SL3.0ch06-13533085  SL3.0ch06-3310762 convex area 47410 11.2755 0.1621 85 1.5
-1 6 10 SL3.0ch06-13533085  SL3.0ch06-3310762 plant width 3.5865 6.9265 0.1336 85 1.5
-1 6 10 SL3.0ch06-13533085 SL3.0ch06-3310762 plant area 35117 7.3344 0.1457 8.5 1.5
-1 6 10 SL3.0ch06-13533085  SL3.0ch06-3310762 X'mass 48686 8.0160 0.1510 85 1.5
-1 6 10 SL3.0ch06-13533085 SL3.0ch06-3310762 Y mass 49020 9.3612 0.1757 85 11.5
-1 8 80 solcap_snp_sl_21461  SL3.0ch08-63373341 X mass 32439 53622 0.1230 745 835
-1 9 67 SL3.0ch09-39293163  SL3.0ch09-63338944 convex area 31976 7.5230 -0.1323 60.5 69.5
-1 9 36 solcap_snp_sl_26683 SL3.0ch09-4516570 CM height 4.8307 6.1460 0.2081 325 40.5
-1 10 7 solcap_snp_sl_8835 Le013158s_161 Y mass 3.2077 59734 0.1404 685 73.5
% 3 3 25 solcap_snp_sl_14355 solcap_snp_sl_9689 CM height 7.2477 18.2665 0.2584 215 30.5
3 3 27 solcap_snp_sI_14355  solcap_snp_s|_9689 CM width 3.5022 8.8528 0.1536 225 325
3 3 26 solcap_snp_sl_14355  solcap_snp_s|_9689 plant width 55180 13.9255 0.2191 215 27.5
*k 3 3 26 solcap_snp_sl_14355 solcap_snp_sl_9689 X mass 4.5407 11.7470 0.1991 225 325
3 3 39 solcap_snp_sl_21215  solcap_snp_s|_9663 convex width 5.6025 13.8198 0.2120 375 425
3 3 28 solcap_snp_sl_9689 solcap_snp_sl_9681 plant height 45094 10.3345 0.1974 255 31.5
3 3 28 solcap_snp_sl_9689 solcap_snp_s|_9681 Y mass 57227 15.0239 0.2325 235 315
k% 4 3 39 solcap_snp_sl_21215 solcap_snp_sl_9663 convex width 3.9750 10.2036 0.1829 37.5 435
4 3 39 solcap_snp_sl_21215 solcap_snp_sl_9663 CM width 45294 84260 0.1853 37.5 435
4 3 39 solcap_snp_sl_21215  solcap_snp_s|_9663 plant width 3.8768 9.9017 0.1838 375 435
4 3 39 solcap_snp_sl_21215 solcap_snp_sl_9663 X mass 3.8156 9.7282 0.1837 375 435
4 3 28 solcap_snp_sl_9689 solcap_snp_sl_9681 convex area 3.1310 7.7809 0.1508 225 325
4 3 30 solcap_snp_sl_9689 solcap_snp_sl_9681 plant area 3.8685 9.9594 0.1672 235 335
*x 5 3 22 solcap_snp_sl_14355 solcap_snp_sl_9689 CM height 36770 9.3886 0.1414 215 27.5
5 3 22 solcap_snp_slI_14355  solcap_snp_s|_9689 plant width 3.4953 93017 0.1806 215 27.5
5 3 25 solcap_snp_sl_14355  solcap_snp_sl_9689 plant height 3.6851 8.5381 0.1738 215 315
5 3 25 solcap_snp_sl_14355 solcap_snp_sl_9689 Y mass 34687 9.9830 0.1673 215 31.5
k% 5 3 39 solcap_snp_sl_21215  solcap_snp_s|_9663 convex width 3.7859 9.8306 0.1891 375 435
5 3 39 solcap_snp_sl_21215 solcap_snp_sl_9663 CM width 40630 7.4955 0.1924 355 39.5
5 5 107 SL3.0ch05-65105663  SL3.0ch05-66111590 plant height 3.4091 89327 0.1778 1045 1145
5 12 56 SL3.0ch12-62154155  solcap_snp_sl_19345 CM height 3.2828 82102 0.1360 545 59.5
6 2 72 SL3.0ch02-45885016  SL3.0ch02-44375028 X mass 3.4765 9.4924 -0.2178 69.5 73.5
6 2 72 SL3.0ch02-45885016  SL3.0ch02-44375028 CM width 3.2455 84550 -0.2189 695 73.5
6 2 45 solcap_snp_sI_18519  SL3.0ch02-49265134 plant width 3.4108 6.4576 -0.1669 425 47.5
* 6 3 22 solcap_snp_sl_14355 solcap_snp_sl_9689 convex width 53238 10.2506 0.2103 215 26.5
6 3 22 solcap_snp_sl_14355 solcap_snp_sl_9689 plant width 47309 9.1511 0.1976 215 25.5
6 3 25 solcap_snp_sl_14355 solcap_snp_sl_9689 plant height 45107 7.6902 0.1896 21.5 31.5
6 3 23 solcap_snp_sl_14355  solcap_snp_s|_9689 CM width 3.6627 6.2716 0.1887 215 27.5
6 3 22 solcap_snp_sl_14355 solcap_snp_sl_9689 X mass 34765 5.8012 0.1705 215 26.5
6 3 25 solcap_snp_sl_14355 solcap_snp_sl_9689 Y mass 3.3918 9.3283 0.1708 215 31.5
k% 6 3 38 solcap_snp_sl_21215  solcap_snp_sl_9663  Wilting Score 2016 3.5258 7.3736 -0.1726 35.5 39.5
6 3 38 solcap_snp_sl_21215 solcap_snp_sl_9663 convex area 34328 9.0796 0.1953 345 39.5
6 3 38 solcap_snp_sl_21215  solcap_snp_s|_9663 plant area 33019 86697 0.1902 345 39.5
6 4 4 SL3.0ch04-60431371  solcap_snp_sl_11543 convex width 3.1855 6.0199 0.1627 1.5 10.5
6 5 100 solcap_snp_sl_22649  SL3.0ch05-65105663 plant height 3.6115 9.4852 0.2103 955 103.5
6 6 79 solcap_snp_sl_14458  SL3.0ch06-39435402  Wilting Score 2016  4.0770 8.7626 -0.1871 76.5 81.5
6 6 81 solcap_snp_sl_14458  SL3.0ch06-39435402  Wilting Score 2019  3.2673 11.0473 -0.1621 78.5 81.5
6 10 53 solcap_snp_sl_33168  SL3.0ch10-63377492 plant width 3.8661 7.6897 -0.1811 50.5 54.5
6 10 53 solcap_snp_sl_33168  SL3.0ch10-63377492 convex width 3.4883 6.8155 -0.1714 505 54.5
6 12 37 solcap_snp_sl_1525 solcap_snp_sl_1572 CM height 41755 10.7222 0.1837 335 40.5
6 12 42 solcap_snp_sl_58807 solcap_snp_sl_9707 Y mass 3.3249 8.5939 0.1651 40.5 43.5
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