

BREAKTHROUGH REPORT

Image-based assessment of plant disease progression identifies new genetic loci for resistance

Valérian Méline^a, Denise L. Caldwell^a, Bong-Suk Kim^a, Sriram Baireddy^b, Changye Yang^b, Erin E. Sparks^c, Edward J. Delp^b, and Anjali S. Iyer-Pascuzzi^{a†}

^a 915 W. State Street, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA

^b Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering

^c Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE

†Author for correspondence: asi2@purdue.edu

Keywords: Digital phenotyping, QTL, *Ralstonia*, bacterial wilt, tomato

Short title: Disease resistance QTL and image-based phenotyping

Material distribution: The author(s) responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (<https://academic.oup.com/plcell/pages/General-Instructions>) are: Anjali Iyer-Pascuzzi (asi2@purdue.edu) and Edward J. Delp (ace@purdue.edu).

1 **Abstract**

2 A major challenge in global crop production is mitigating yield loss due to plant diseases. One of
3 the best means of disease control is plant resistance, but the identification of genes that promote
4 resistance has been limited by the subjective quantification of disease, which is typically scored
5 by the human eye. We hypothesized that image-based, non-destructive quantification of disease
6 phenotypes would enable the rapid identification of new disease resistance loci. We tested this
7 using the interaction between tomato and *Ralstonia solanacearum*, a soilborne pathogen that
8 causes bacterial wilt disease. We acquired over 40,000 time-series images of disease progression
9 in a tomato recombinant inbred line population, and developed an image analysis pipeline
10 providing a suite of ten traits to quantify wilt disease based on plant shape and size. Quantitative
11 trait loci (QTL) analyses using image-based phenotyping identified QTL that were both unique
12 and shared compared with those identified by human assessment of wilting. When shared loci
13 were identified, image-based phenotyping could detect some QTL several days earlier than
14 human assessment. Thus, expanding the phenotypic space of disease with image-based, non-
15 destructive phenotyping allowed both earlier detection and identified new genetic components of
16 resistance.

17

18

19 **Introduction**

20 Plant diseases are a significant global constraint to crop production. Developing disease resistant
21 crops requires identifying the plant genomic regions and genes that contribute to resistance to the
22 pathogenic microbes that cause disease. This in turn depends on phenotyping large populations
23 of plants for their responses to pathogens. Phenotyping plant diseases is challenging because
24 diseases cause complex, quantitative phenotypes that can occur at different scales – e.g. on parts
25 of leaves, entire leaves, or the whole plant. In addition, disease phenotypes vary over time and
26 depend on environmental conditions, plant age, and pathogen virulence. Disease symptoms such
27 as wilting or necrotic spots have traditionally been scored with the human eye, but these scores
28 are subjective, can vary by individual, and are difficult to accurately quantify.

29

30 The challenging nature of visual disease assessment has led to the use of sensors including RGB,
31 hyperspectral, chlorophyll fluorescence and thermal cameras to assess disease symptoms
32 (Colwell, 1956; Jackson, 1986; Bock et al., 2010; Simko et al., 2017). Compared to assessment
33 by the human eye, image-based phenotyping is faster, more reproducible, and more sensitive to
34 small variations in disease symptoms that can be critical for detecting resistance loci (Bock et al.,
35 2008, 2010; Stewart and McDonald, 2014; Stewart et al., 2016; Simko et al., 2017; Shakoor et
36 al., 2017). Many studies have used or developed tools to assess plant symptoms using different
37 types of sensors (Mahlein, 2016; Mahlein et al., 2017, 2019; Lowe et al., 2017; Shakoor et al.,
38 2017; Mochida et al., 2019; Mir et al., 2019; Pérez-Bueno et al., 2019; Pineda et al., 2021; Simko
39 et al., 2017). However, few studies have used these technologies in QTL or Genome Wide
40 Association (GWA) analyses for responses to plant pathogens, and all have used destructive
41 methods (Yates et al., 2019; Fordyce et al., 2018; Corwin et al., 2016). It has remained
42 challenging to use image-based, non-destructive phenotyping for disease resistance across large
43 populations, both because of technical factors like the expense of phenotyping platforms and the
44 time associated with imaging, and also biological factors such as differences in plant morphology
45 and disease progression within a population.

46

47 The soil-borne betaproteobacterium *Ralstonia solanacearum* is the causal agent of bacterial wilt
48 disease and has been ranked as one of the top 10 most destructive plant bacterial pathogens of all
49 time (Mansfield et al., 2012). *Ralstonia* infection causes susceptible plants to wilt, and the

50 amount of wilting correlates with a plant's level of susceptibility (Genin, 2010; Genin and
51 Denny, 2011). The bacterium is a major production constraint in Solanaceous crops both
52 globally and in the United States, where disease loss in tomatoes can exceed 70%. In crops,
53 resistance to *Ralstonia* is quantitative, but the quantitative trait loci (QTL) underlying resistance
54 to US strains of *Ralstonia* are largely unknown. QTL for other strains have been mapped
55 (Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 1999; Wang et al., 2000;
56 Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 2020) but have not been cloned,
57 and the host determinants necessary for resistance remain mostly unspecified.

58

59 The limited identification of QTL for *Ralstonia* resistance can be attributed in part to the
60 difficulty in accurately scoring plant wilting. Wilting is traditionally measured on a 0 – 4 scale,
61 in which 0 indicates a plant with no wilting, 1 = 1 – 25%, 2 = 26 – 50%, 3 = 51 – 75% and a
62 score of 4 indicates a plant with 76 – 100% wilted leaves (Schandry, 2017). While it is
63 straightforward to assess the ends of the spectrum, rating plants with scores of 2 or 3 is
64 particularly difficult. This is due to the subjective nature of visually determining when a leaf has
65 lost sufficient turgor to qualify as wilted. Reliable disease phenotyping is critical for identifying
66 QTL for resistance to *Ralstonia* and the development of resistant varieties.

67

68 Here, we used image-based, rapid, non-destructive phenotyping to identify new tomato genetic
69 resistance loci to *Ralstonia*. We developed a rapid, semi-automated imaging and trait analysis
70 pipeline to quantify bacterial wilt disease in a recombinant inbred line (RIL) population derived
71 from *Ralstonia*-resistant and susceptible tomato genotypes. We found both unique and shared
72 QTL between our image-based traits and plant wilting scored by the human eye. At least one of
73 the QTL was detected by image-based phenotyping before the onset of visual symptoms,
74 demonstrating that image-based phenotyping captures the disease phenotype at early stages of
75 infection. These results demonstrate that imaged-based, non-destructive phenotyping can shed
76 light on new aspects of disease and improve our ability to identify genetic loci crop resistance.

77

78 **Results**

79 *Development of an aboveground imaging and semi-automated analysis pipeline*

80 We first constructed a simple, low-cost imaging system that allowed us to semi-automate
81 aboveground disease phenotyping. Each plant was placed on a commercially available turntable,
82 and plants were imaged with a Canon DSLR (Supplemental Figure 1; details in methods). The
83 turntable and camera were connected with Photocapture 360 (Ortery technologies), which
84 allowed us to automatically capture images every 45 degrees (8 images per plant). Using this
85 system, we were able to non-destructively image each plant in less than 2 minutes, with minimal
86 manual labor. Each image included a fiducial marker for post-image color correction. Plants in
87 the F₉ generation from a RIL population derived from a cross between resistant Hawaii 7996
88 (H7996) and susceptible West Virginia 700 (WV) were imaged the day before inoculation with
89 *R. solanacearum* strain K60, and at 3, 4, 5 and 6 days post inoculation (dpi). At 3 dpi, symptoms
90 were not present in susceptible parent WV, but by 6 dpi these plants were completely wilted. We
91 imaged five replicate plants of each RIL as well as the parental lines. Using this system, we
92 captured over 40,000 images for high-resolution disease phenotyping. The same set of plants was
93 also visually scored by the human eye at 8 dpi. Visual scoring was based on the percentage of
94 wilted leaves. Tomato phenotypes in the RIL population ranged from highly susceptible to
95 highly resistant, consistent with the quantitative nature of disease resistance (Supplemental
96 Figures 2 and 3).

97
98 We next developed a set of mathematical descriptors to phenotype wilting over time in our
99 images. Plant wilting is a composite phenotype, and we used 10 image-based traits
100 (Supplemental Table 1) to describe different aspects of wilting: convex area, convex width, plant
101 area, plant height, plant width, X mass, Y mass, center of mass (CM) height, CM width, and
102 color. Several of these, such as the area and width of the convex hull, are traditional methods of
103 describing aboveground plant shape. Because the center of mass of a plant leaf changes as a
104 plant wilts, we developed additional descriptors based on the distance of the leaf center of mass
105 from the stem (CM width and CM height, X mass and Y mass). We then developed a pipeline
106 which used the original image as input, performed color correction, and quantified each
107 descriptor (Figure 1 and Supplemental Figure 4, and methods).

108
109
110

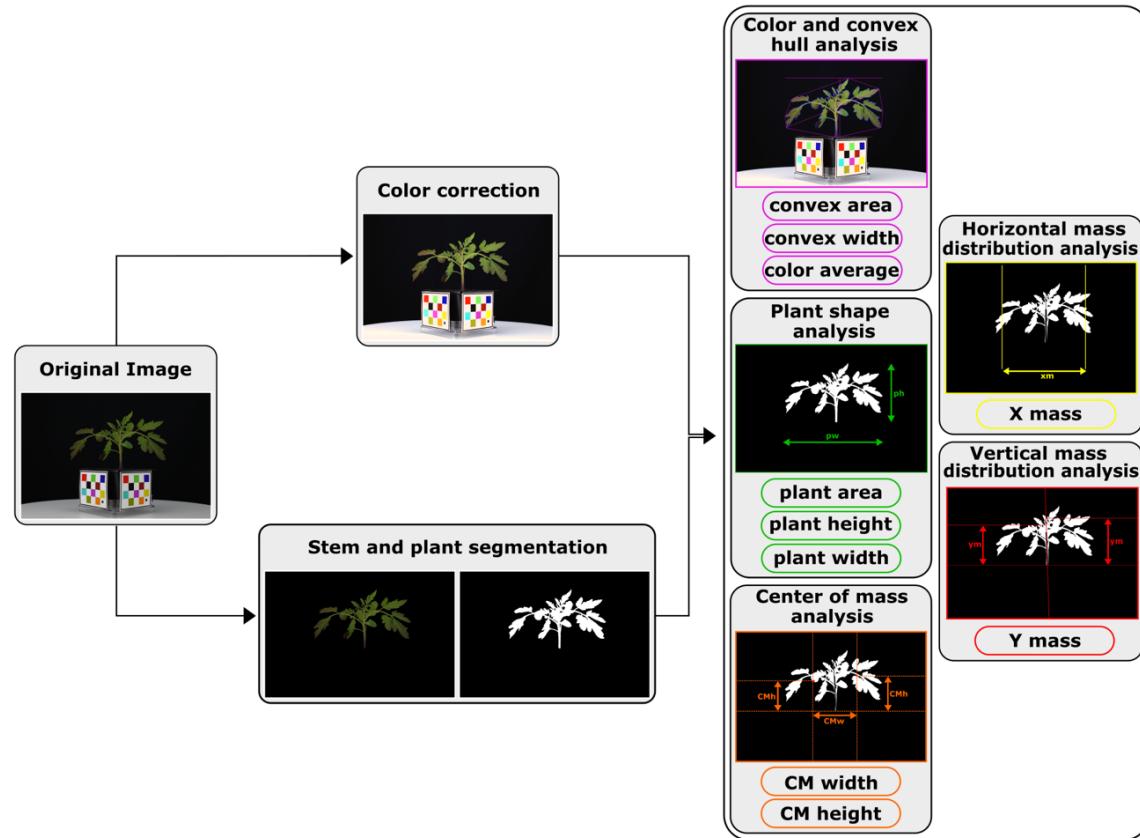


Figure 1: Diagram of the semi-automated analysis pipeline and 10 image descriptors

111

112

113 *Image-based traits differentiate resistant and susceptible plants*

114 To validate the efficiency of the image-based descriptors to estimate wilting phenotypes, we
115 tested whether image-based phenotyping descriptors could differentiate resistant from
116 susceptible plants. Supplemental Figure 5 shows the average normalized score for each of the
117 image-based descriptors for each parent and the RIL population from -1 (the day before
118 inoculation) to 6 dpi. Most descriptors, particularly those based on plant width or convex hull,
119 had clearly divergent values in resistant and susceptible plants at a given time point. RIL
120 descriptor values ranged from those of the resistant to susceptible parents and occasionally
121 showed transgressive segregation (Supplemental Figure 5). Because plant shape at 6 dpi depends
122 on shape of the same plant at -1 dpi, we used the evolution of each descriptor from day -1 to 6
123 dpi in our QTL analysis. This evolution was termed a 'trait'. Trait values were clearly different
124 for resistant and susceptible parents for all traits except color (Figure 2), which was not used
125 further.

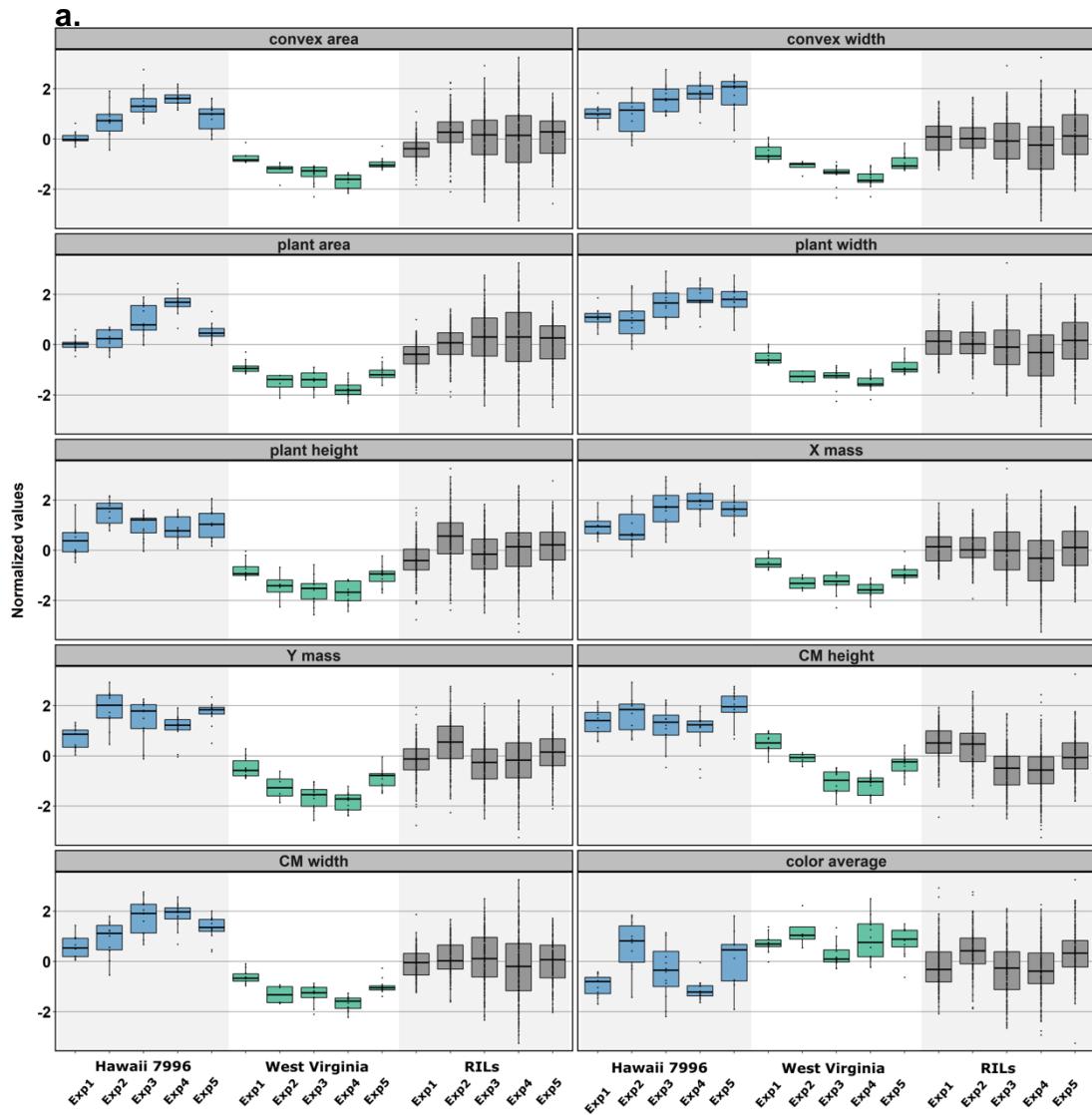
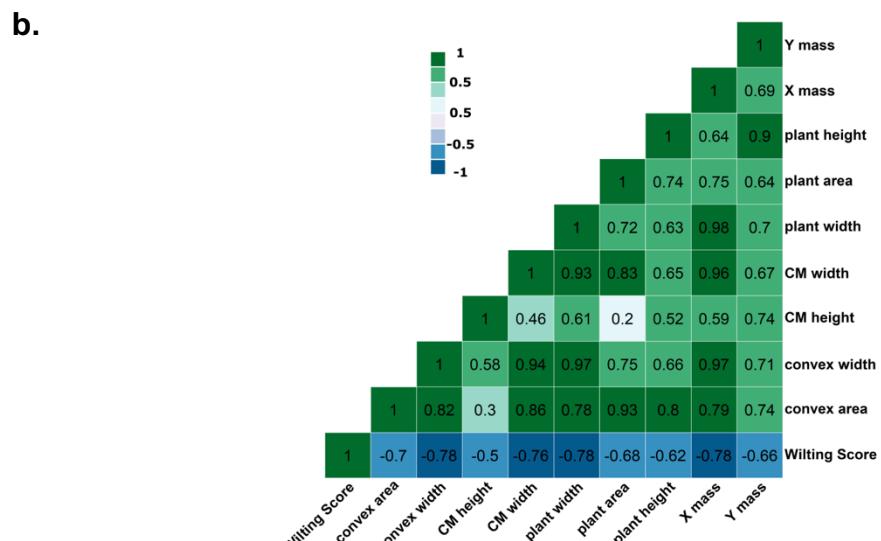


Figure 2: Trait evolution during disease and correlation among descriptors. a. Boxplots showing the evolution of the normalized values between -1 and 6 dpi for each of the five biological replicates for the ten image-based traits for resistant Hawaii 7996, susceptible West Virginia parents and the 166 RILs. Color was unable to differentiate resistant from susceptible plants and was not used further. b. Heatmap showing the Pearson correlation values between image-based traits used in our QTL analysis and the human eye based wilting score in 2019. The correlations values were determined using the same plants imaged and visually assessed in 2019.

127

128

129

130

131 *Image-based phenotyping reveals drivers of the wilting phenotype*

132 We next investigated whether any of our traits were major components of the wilting phenotype.
133 We visually scored plants and asked how well our image-based traits correlated with human
134 visual scoring. Wilting is categorized by loss of plant leaf turgor that results in drooping leaves,
135 and decreased plant width and height. Determining how much a plant has wilted is challenging,
136 in part because it can be difficult to quantify how much each a leaf has drooped and how much
137 drooping of one leaf correlates with whole plant wilting.

138

139 We aimed to quantify leaf drooping using center of mass traits. Among our image-based traits,
140 those which were functions of the leaf center of mass were highly inversely correlated with
141 visual wilting (i.e. as a plant wilts, the center of mass decreases), suggesting that these are major
142 drivers of the wilting phenotype. These traits included CM width, plant width and X mass ($r > -$
143 0.75) (Figure 2B).

144

145 Several of our traits describe similar aspects of plant shape, such as height or width, through
146 different methods. These traits tended to be highly correlated with each other. For example, plant
147 height vs Y mass use different methods to describe plant width (based on the plant mask or the
148 center of mass of the stem masks; see Methods), and were highly positively correlated with each
149 other (0.93; Figure 2B).

150

151 We trained a random forest, consisting of 1000 decision trees, to use data from 6 dpi to predict
152 the expert visual score assigned at 8 dpi. We used 969 plants in a 60:40 training-testing data
153 split, and achieved a classification accuracy of 83%. To identify the traits that provided the most
154 efficient estimation of wilting symptoms, we randomly scrambled the nine image-based traits
155 one at a time. Plant width and plant area had the most impact on wilting score prediction
156 (Supplemental Figure 6).

157

158 *QTL analysis identifies 20 wilting QTL in 10 clusters across the tomato genome at 6 dpi*
159 Our overall goal was to identify tomato genomic regions that provide resistance or susceptibility
160 to *Ralstonia*. Prior to this analysis, we first generated a genetic map using Genotyping-by-
161 Sequencing (GBS). We identified 632 high-quality SNPs for linkage mapping using GBS. We
162 combined these with 112 SolCap markers, and subsequently generated a linkage map using ICI
163 mapping software (Meng et al., 2015). Our linkage map consisted of ~1300 cM (Supplemental
164 Figure 7) with an average per chromosome marker density that varies from 1.8 to 7.48 cM
165 (Supplemental Table 2).

166

167 For QTL analysis, we mapped the evolution of each our nine image-based descriptors from -1 to
168 6 dpi. In addition to the image-based phenotyping, we used two years (2016 and 2019) of
169 visually scored phenotyping data at 8 dpi. Visually assessed wilt scores from 2019 were
170 quantified from the same plants that were used for image-based phenotyping. In 2016, plants
171 were only visually scored for wilting, and no image-based measurements were taken. Using ICI
172 mapping software and composite interval mapping (CIM) for all traits, we identified 20 QTL
173 within the RIL population with a LOD score above 3 (Table 1). To be consistent with previous
174 studies of tomato-*Ralstonia* QTL mapping, we call these QTL, ‘Bacterial wilt resistance (*Bwr*)
175 QTL’. Each *Bwr* QTL explained approximately 6 to 11% of the variation in response to *R.*
176 *solanacearum* strain K60, and together the clusters explained more than 88% of the variation
177 (calculated using the sum of the QTL with the highest PVE in each cluster).

178

179 The parent that donated the favorable allele was determined according to the sign of the QTL
180 additive effect (Awata et al., 2020), where a positive sign referred to H7996 resistant parent and
181 a negative sign to WV susceptible parent. Typically, in QTL analysis, the favorable allele has the

Chromosome	Cluster	Position	LeftMarker	RightMarker	TraitName	LOD	PVE	Add	LeftCI	RightCI
2	Bwr2.1	45	solcap_snp_sl_18519	SL3.0ch02-49265134	plant width	3.4108	6.4576	-0.1669	42.5	47.5
2	Bwr2.2	72	SL3.0ch02-45885016	SL3.0ch02-44375028	X mass	3.4765	9.4924	-0.2178	69.5	73.5
2	Bwr2.2	72	SL3.0ch02-45885016	SL3.0ch02-44375028	CM width	3.2455	8.455	-0.2189	69.5	73.5
3	Bwr3.1	22	solcap_snp_sl_14355	solcap_snp_sl_9689	convex width	5.3238	10.2506	0.2103	21.5	26.5
3	Bwr3.1	22	solcap_snp_sl_14355	solcap_snp_sl_9689	plant width	4.7309	9.1511	0.1976	21.5	25.5
3	Bwr3.1	22	solcap_snp_sl_14355	solcap_snp_sl_9689	X mass	3.4765	5.8012	0.1705	21.5	26.5
3	Bwr3.1	23	solcap_snp_sl_14355	solcap_snp_sl_9689	CM width	3.6627	6.2716	0.1887	21.5	27.5
3	Bwr3.1	25	solcap_snp_sl_14355	solcap_snp_sl_9689	plant height	4.5107	7.6902	0.1896	21.5	31.5
3	Bwr3.1	25	solcap_snp_sl_14355	solcap_snp_sl_9689	Y mass	3.3918	9.3283	0.1708	21.5	31.5
3	Bwr3.2	38	solcap_snp_sl_21215	solcap_snp_sl_9663	Wilting Score 2016	3.5258	7.3736	-0.1726	35.5	39.5
3	Bwr3.2	38	solcap_snp_sl_21215	solcap_snp_sl_9663	convex area	3.4328	9.0796	0.1953	34.5	39.5
3	Bwr3.2	38	solcap_snp_sl_21215	solcap_snp_sl_9663	plant area	3.3019	8.6697	0.1902	34.5	39.5
4	Bwr4.1	4	SL3.0ch04-60431371	solcap_snp_sl_11543	convex width	3.1855	6.0199	0.1627	1.5	10.5
5	Bwr5.1	100	solcap_snp_sl_22649	SL3.0ch05-65105663	plant height	3.6115	9.4852	0.2103	95.5	103.5
6	Bwr6.1	79	solcap_snp_sl_14458	SL3.0ch06-39435402	Wilting Score 2016	4.077	8.7626	-0.1871	76.5	81.5
6	Bwr6.1	81	solcap_snp_sl_14458	SL3.0ch06-39435402	Wilting Score 2019	3.2673	11.0473	-0.1621	78.5	81.5
10	Bwr10.1	53	solcap_snp_sl_33168	SL3.0ch10-63377492	plant width	3.8661	7.6897	-0.1811	50.5	54.5
10	Bwr10.1	53	solcap_snp_sl_33168	SL3.0ch10-63377492	convex width	3.4883	6.8155	-0.1714	50.5	54.5
12	Bwr12.1	37	solcap_snp_sl_1525	solcap_snp_sl_1572	CM height	4.1755	10.7222	0.1837	33.5	40.5
12	Bwr12.2	42	solcap_snp_sl_58807	solcap_snp_sl_9707	Y mass	3.3249	8.5939	0.1651	40.5	43.5

Table 1 Overview of the 20 wilting QTL identified in 10 clusters across the tomato genome at 6 dpi. **LOD:** maximum value of the Logarithm of the odd. **PVE:** Percentage of phenotypic variance explained. **Add:** Additive effect. **Left CI and Right CI** are the confidence interval calculated by a one-LOD decrease from the estimated QTL position.

182 higher trait value. Here, a higher trait value is favorable in all cases except the visual wilting
 183 score, in which a higher trait value was associated with susceptibility (e.g. 90% wilting is more
 184 susceptible than 20% wilting). For QTL detected using our visual wilting score, the susceptibility
 185 allele was contributed by the susceptible parent WV (Table 1), consistent with other tomato-*R*.
 186 *solanacearum* QTL studies based on visual assessment of wilting. For all QTL except those on
 187 chromosome 2 and 10, the favorable allele was contributed by Hawaii 7996. QTL clusters on
 188 chromosome 2 and 10, which contributed to plant height and width, were donated by the
 189 susceptible parent WV. Favorable allelic contribution from both resistant and susceptible parents
 190 is common in QTL studies for resistance (Maschietto et al., 2017; Awata et al., 2020).
 191
 192 Among the 20 individual *Bwr* QTL were 10 QTL clusters (Table 1). We use the term ‘QTL
 193 cluster’ to describe QTL for different traits that co-localize at the same left and right genetic

194 marker. There are between one and six *Bwr* QTL within a given cluster, and each QTL within
195 the cluster has different LOD scores and explains a different percentage of phenotypic variation.
196 *Bwr* QTL for traits that are highly correlated with each other (Figure 2B) tended to cluster
197 together. For example, a cluster of QTL on chromosome 3 (*Bwr3.1*; Table 1) contains six *Bwr*
198 QTL, including three for area-related traits (convex width, and X mass and CM width), which
199 are correlated with each other at $r = 0.94 - 0.97$ (Figure 2B). In another cluster (*Bwr3.2*) on this
200 same chromosome, *Bwr* QTL for traits that describe plant area were detected together. This co-
201 localization supports the robust nature of our analyses.

202

203 In other clusters, only one trait that described one aspect of the wilting phenotype was present.
204 For example, despite several metrics that describe width, only convex width was identified as a
205 QTL on chromosome 4 (*Bwr4.1*; LOD 3.18; PVE = 6%). This suggests that the image-based
206 phenotyping captured genetic variation that is specific to each trait.

207

208 *Image-based non-destructive phenotyping identifies three types of QTL clusters*

209 Among our *Bwr* QTL clusters, we identified three types: those found using both image-based
210 and visual phenotyping (1 cluster, *Bwr3.2*), those found only through visual phenotyping (1
211 cluster, *Bwr6.1*), and those that were identified only through image-based phenotyping (8
212 clusters; Table 1 and Figure 3).

213

214 For the cluster including both image-based and visual phenotyping, (*Bwr3.2*) on chromosome 3,
215 we detected QTL for convex area, plant area and visual plant wilting in 2016 (Table 1 and Figure
216 3a). Previous studies examining tomato responses to other strains of *Ralstonia* have not detected
217 *Bwr* QTL in this region, indicating that it may be a novel target for *R. solanacearum* strain K60.
218 The identification of both image-based and visual QTL within the same cluster suggests that our
219 phenotyping methods are robust at identifying features of plant wilting. Close to this cluster is
220 *Bwr3.1*, which detected QTL for traits based on plant width, including convex width and CM
221 width. The proximal arm of chromosome 3 may be an important but unexploited region for
222 defense against *R. solanacearum* strain K60.

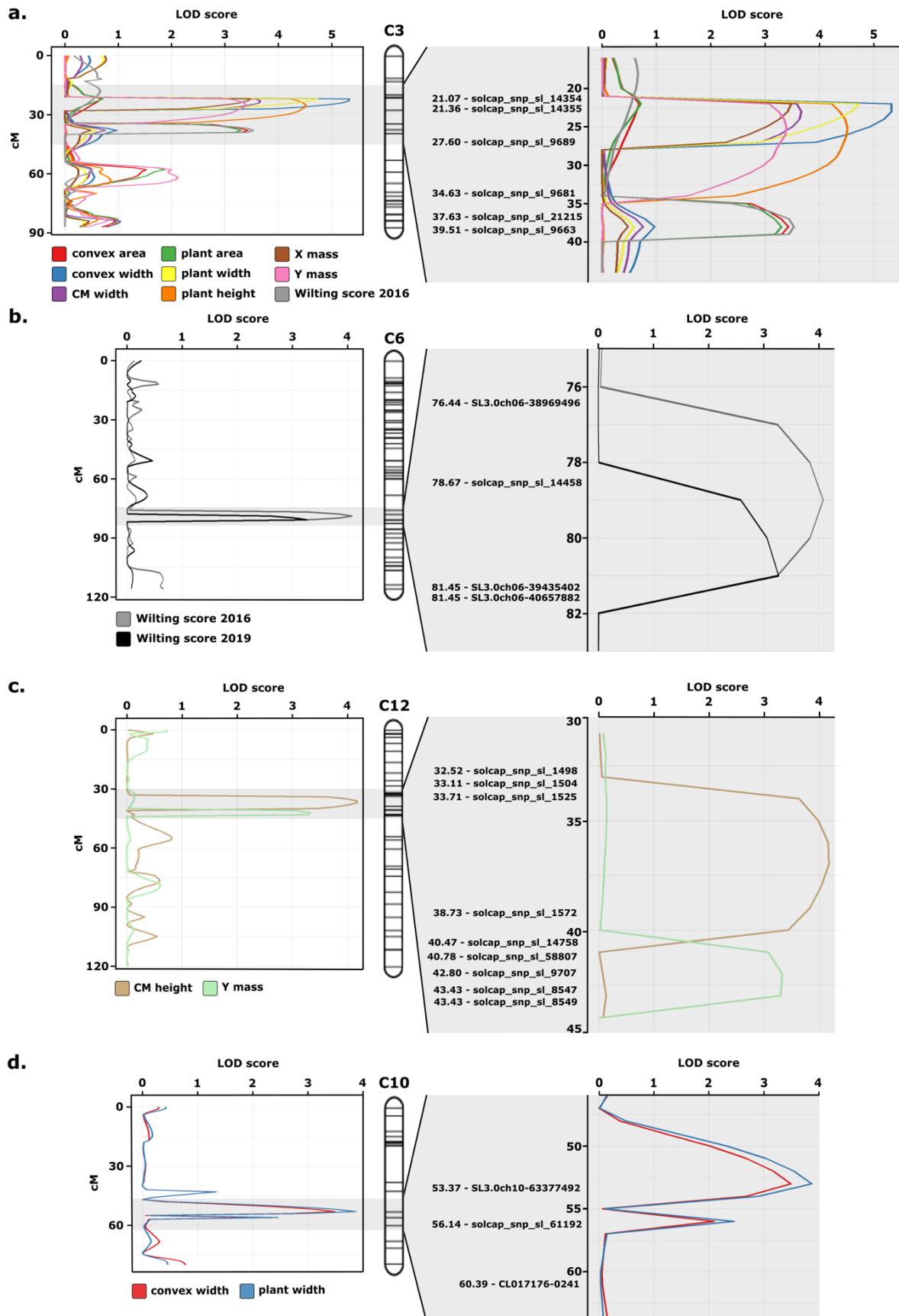


Figure 3: Significant QTL clusters on chromosomes 3 (a.), 6 (b.), 12 (c.) and 10 (d.). The image-based and visually assessed traits are represented with different colors for each chromosome. The vertical axis represents the genetic position (cM) and horizontal axis shows the LOD score. For each chromosome, the left panel represents the entire chromosome and the right panel represents the significant QTL cluster regions.

224

225 On chromosome 6 we detected *Bwr* (*Bwr6.1*) using only visual assessment for both 2016 and
226 2019 (Table 1, Figure 3b). This region may be a ‘hot spot’ for QTL for resistance to multiple
227 strains of *Ralstonia*. Previous studies using this same tomato population for mapping *Bwr* to
228 other strains of *Ralstonia* detected QTL approximately 4 Mb from this position (Supplemental
229 Figure 7).

230

231 In all other clusters, QTL were identified using only image-based phenotyping. Two such
232 clusters, detected on chromosome 12, identified QTL for CM height (*Bwr12.1*) and Y mass
233 (*Bwr12.2*), and were located near previous QTL detected against other strains of *Ralstonia*
234 (Supplemental Figure 7 and Figure 3c) . These previous studies (Wang et al., 2000; Jaw-Fen
235 Wang et al., 2013; Shin et al., 2020) detected QTL using visual wilt assessment of adult plants in
236 the field.

237

238 The remaining QTL detected through image-based phenotyping have not been previously
239 identified in studies using other strains of *Ralstonia*. These regions may be effective only against
240 specific strains of *Ralstonia* (‘strain-specific’ QTL), or may include those that are not easily
241 detected using visual assessment. In support of the latter, at one of the image-based-only clusters,
242 *Bwr10.1* (Figure 3d), we detected a QTL using visual assessment that did not meet our threshold
243 for significance after permutation (Supplemental Table 3). Thus, image-based phenotyping
244 improved our ability to detect QTL.

245

246 *Image-based phenotyping identified Bwr QTL prior to visual symptom development*

247 In our system, wilting symptoms begin to appear on highly susceptible plants at 4 dpi, and these
248 plants are nearly 100% wilted by 6 dpi. To test whether we could detect *Bwr* QTL prior to the
249 onset of visual symptoms, we performed QTL analysis at 3, 4 and 5 dpi. No QTL were identified
250 based on visual assessment at any of these time points, however several QTL were identified
251 based on image-based phenotyping. At 3 dpi, three clusters were detected on chromosome 3, two

252 of which co-localized with those identified at 6 dpi (Supplemental Table 4). *Bwr3.1*, a cluster
253 detected only by image-based phenotyping, and *Bwr3.2*, a cluster detected by both visual and
254 image-based phenotyping, were first detected at 3 dpi. *Bwr3.1* was also detected at 5 and 6 dpi,
255 while *Bwr3.2* was detected 3, 4, 5 and 6 dpi (Supplemental Table 4). A small number of
256 additional QTL were detected at earlier time points (Supplemental Table 4), but in most cases
257 these were not stable, since they were not present at 6 dpi. These data suggest that image-based
258 phenotyping can identify *Bwr* QTL prior to the onset of wilting symptoms.

259

260 *Plant architecture QTL do not overlap with Bwr QTL*

261 The parents of the RIL population, H7996 and WV, have different aboveground phenotypes
262 (Supplemental Figure 4) and the shoot architecture of the RILs correspondingly varies. To ensure
263 that *Bwr* QTL were the result of tomato responses to *Ralstonia*, and not due to differences in
264 aboveground plant architecture, we used our traits in a QTL analysis at -1 dpi, the day before
265 plants had been inoculated. We call these ‘tomato plant architecture (*Tpa*)’ QTL. We identified
266 16 *Tpa*, within 9 QTL clusters (Table 2). None of the 16 *Tpa* were detected within the same
267 interval as *Bwr* at 6 dpi. However, two *Tpa* QTL clusters were detected that were near *Bwr* QTL
268 present at 6 dpi. One of these was detected on chromosome 3 at position 30, between *Bwr3.1*
269 and 3.2.

Chromosome	Cluster	Position	LeftMarker	RightMarker	TraitName	LOD	PVE	Add	LeftCI
2	Tpa2.1	117	solcap.snp.sl_8510	solcap.snp.sl_15574	plant width	3.3851	6.4842	0.129	114.5
2	Tpa2.1	117	solcap.snp.sl_8510	solcap.snp.sl_15574	X mass	4.1424	6.8279	0.139	114.5
3	Tpa3.1	30	solcap.snp.sl_9689	solcap.snp.sl_9681	plant area	3.6327	8.0934	0.1522	24.5
3	Tpa3.2	58	SL3.0ch03-61078160	solcap.snp.sl_10372	plant width	3.2538	9.4831	0.1555	56.5
3	Tpa3.2	58	SL3.0ch03-61078160	solcap.snp.sl_10372	X mass	3.8291	9.4218	0.1628	56.5
3	Tpa3.2	59	SL3.0ch03-61078160	solcap.snp.sl_10372	CM height	3.794	3.6957	0.1603	56.5
4	Tpa4.1	128	SL3.0ch04-1213025	solcap.snp.sl_63869	CM height	3.8063	12.0286	-0.2891	127.5
6	Tpa6.1	10	SL3.0ch06-13533085	SL3.0ch06-3310762	convex area	4.741	11.2755	0.1621	8.5
6	Tpa6.1	10	SL3.0ch06-13533085	SL3.0ch06-3310762	plant width	3.5865	6.9265	0.1336	8.5
6	Tpa6.1	10	SL3.0ch06-13533085	SL3.0ch06-3310762	plant area	3.5117	7.3344	0.1457	8.5
6	Tpa6.1	10	SL3.0ch06-13533085	SL3.0ch06-3310762	X mass	4.8686	8.016	0.151	8.5
6	Tpa6.1	10	SL3.0ch06-13533085	SL3.0ch06-3310762	Y mass	4.902	9.3612	0.1757	8.5
8	Tpa8.1	80	solcap.snp.sl_21461	SL3.0ch08-63373341	X mass	3.2439	5.3622	0.123	74.5
9	Tpa9.1	36	solcap.snp.sl_26683	SL3.0ch09-4516570	CM height	4.8307	6.146	0.2081	32.5
9	Tpa9.2	67	SL3.0ch09-39293163	SL3.0ch09-63338944	convex area	3.1976	7.523	-0.1323	60.5
10	Tpa10.1	71	solcap.snp.sl_8835	Le013158s_161	Y mass	3.2077	5.9734	0.1404	68.5

Table 2 Overview of tomato plant architecture (*Tpa*) QTL identified at -1 dpi by image-based phenotyping.

270 While we cannot rule out the possibility that the same genes underlie these *Tpa* and *Bwr* QTL,
271 their different marker intervals, coupled with the visual wilting QTL that is within the *Bwr3.2*
272 cluster, suggests that different genes are responsible for these QTL. Together, these data suggest
273 that our image-based phenotyping detected genomic regions that function in responding to
274 *Ralstonia* and *Bwr* QTL are not the result of differential growth patterns within the RILs.

275

276

277 **Discussion**

278 Breeding for plant disease resistance is one of the best strategies to combat plant diseases and
279 prevent major crop loss, but is challenging in part due to the complicated nature of disease
280 phenotyping. Here we used rapid, non-destructive, image-based phenotyping with RGB images
281 to identify 20 QTL in 10 clusters for tomato responses to *Ralstonia* at 6 dpi, two of which were
282 detected as early as 3 dpi. Together, the 20 *Bwr* QTL at 6 dpi explained more than 88% of the
283 variation in response to *Ralstonia*. Image-based phenotyping for shape-based traits that were
284 correlated with wilting detected both novel loci and those that overlapped with QTL based on
285 human visual assessment. These results establish the importance and feasibility of quantitative,
286 non-destructive, imaged-based phenotyping to identify new genetic targets for crop disease
287 resistance during disease progression.

288

289 *Benefits of image-based phenotyping*

290 Imaged-based phenotyping has been used to detect QTL associated with plant root (Topp et al.,
291 2013) and shoot (Zhang et al., 2017; Knoch et al., 2020; Li et al., 2020) architecture, plant height
292 (Wang et al., 2019), salt stress (Awlia et al.), and yield (Tanger et al., 2017; Pauli et al., 2016)
293 among other traits. Although image-based phenotyping has become increasingly common to
294 quantify plant disease symptoms (Mahlein, 2016; Mahlein et al., 2017, 2019; Lowe et al., 2017;
295 Shakoor et al., 2017; Mochida et al., 2019; Mir et al., 2019; Pérez-Bueno et al., 2019; Pineda et
296 al., 2021; Simko et al., 2017), few studies have used this technology to identify new genetic loci
297 for plant disease resistance (Yates et al., 2019; Fordyce et al., 2018; Corwin et al., 2016). One
298 reason for this may be that many plant disease symptoms occur at the leaf scale (such as spots
299 and specks), making it difficult to use some sensors non-destructively and in high-throughput, or
300 at the proper resolution needed to assess disease. For example, automated digital phenotyping of

301 Septoria Tritici Blotch on wheat leaves identified novel QTL for resistance, but the destructive
302 phenotyping required significant manual labor to harvest, mount and scan leaves (Yates et al.,
303 2019). While wilting does occur at the leaf scale, it is an easier phenotype to assess at the whole
304 plant scale. Another possibility is that imaging sensors are often expensive, making it more
305 challenging to phenotype the large number of plants needed in a QTL or GWA study. Our
306 method is low-cost and rapid (< 2 min/plant), and requires no manual labor other than placing
307 the plant on the turntable and initiating imaging via a computer.

308

309 Our image-based phenotyping identified loci that function in tomato responses to *Ralstonia*, but
310 did not detect one of the two *Bwr* clusters (*Bwr6.1*) we found using visual assessment of disease.
311 Visual assessment was performed at 8 dpi, while our image based phenotyping ended at 6 dpi. It
312 is possible *Bwr6.1* is not apparent until very late stages of disease. Alternatively, these results
313 could mean that we missed components of wilting in our image-based traits. However, a more
314 likely explanation is that our image-based traits were averaged across eight two dimensional
315 images, but wilting is a three dimensional (3D) phenotype. Images in 3D may allow detection of
316 *Bwr6.1*. It would also be of interest to test whether using additional types of sensors, such as
317 hyperspectral, would identify *Bwr 6.1*. Multi and hyperspectral imaging has been used to detect
318 biochemical changes in disease (Mahlein et al., 2017; Lowe et al., 2017; Zhang et al., 2020).
319 Given the chemical changes that occur during water stress, this type of imaging would likely
320 identify additional genetic variation associated with resistance to bacterial wilt disease.

321

322 *New QTL for responses to Ralstonia in tomato*

323 As in tomato, resistance to *Ralstonia* in other Solanaceous crops is quantitative (Young and
324 Danesh, 1994; Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al., 1999; Wang et
325 al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013). Breeding for resistance QTL is
326 thus the primary way forward to developing *Ralstonia*-resistant crops in the Solanaceae. This has
327 not been easy, in part because of the diversity of *Ralstonia*. The *Ralstonia solanacearum* species
328 complex was recently subdivided into three species (*R. solanacearum*, *R. pseudosolanacearum*,
329 and *R. syzygii*), each prevalent in a different part of the world (Remenant et al., 2012; Safni et al.;
330 Prior et al., 2016). Each species has multiple strains, with an overlapping, but distinct set of
331 virulence proteins that promote disease (Landry et al., 2020). Varieties with effective resistance

332 will likely have QTL that are effective against local strains (strain-specific QTL) as well as those
333 effective against multiple strains (broad-spectrum QTL).

334

335 Most previously identified QTL have focused on resistance to *R. pseudosolanacearum*, and none
336 of them used the strain of *R. solanacearum* as in this work (Danesh et al., 1994; Thoquet et al.,
337 1996a, 1996b; Wang et al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al.,
338 2020; Mangin et al., 1999). Using visual assessment of wilting and the same RIL population of
339 tomato (H7996 x WV700) used here, one broad-spectrum QTL for resistance to multiple strains
340 of *R. pseudosolanacearum*, and one strain of *R. solanacearum* (JT-516) had been previously
341 identified on chromosome 6 (Danesh et al., 1994; Thoquet et al., 1996a, 1996b; Mangin et al.,
342 1999; Wang et al., 2000; Carmeille et al., 2006; Jaw-Fen Wang et al., 2013; Shin et al., 2020).
343 We also identified a QTL on chromosome 6, using visual assessment in both 2016 and 2019. In
344 our study, *Bwr6.1* confers 8 – 11% of the variation, compared to 11.5 – 33% for *Bwr6a* - *Bwr6d*
345 (Jaw-Fen Wang et al., 2013; Shin et al., 2020). The genes within the left and right intervals of
346 *Bwr6.1* are particularly interesting because there are two groups of NBS-LRRs located between
347 the left and right markers for *Bwr6.1* (solcap_snp_sl_14458 and the GBS-identified SNP at
348 39435402). One of these groups includes the *S. lycopersicum* homolog of Arabidopsis
349 *RESISTANCE to PSEUDOMONAS SYRINGAE 4 (RPS4)*. Fine-mapping of *Bwr6.1* is needed to
350 determine whether a specific NBS-LRR protein or receptor is responsible for the resistance
351 conferred by this region.

352

353 Previous studies also identified a major QTL on chromosome 12 that is effective for resistance to
354 *R. pseudosolanacearum*, and explained between 15.9 – 53.9% of the variation (Shin et al., 2020).
355 We found two clusters of QTL on chromosome 12, for image-based traits. Within the region
356 spanning *Bwr12.1* on chromosome 12 is one NBS-LRR disease resistance gene (*Solyc12g10740*)
357 and one receptor-like kinase (*Solyc12g010660*) while within *Bwr12.2* are genes related to disease
358 resistance pathways, including a gene encoding a Pathogenesis Response (PR) Protein
359 (*Solyc12g014310*), and two genes encoding Leucine Rich Repeat – Receptor Like Kinases
360 (*Solyc12g014350* and *Solyc12g150105*). Our results suggest that this region of chromosome 12
361 may be important for resistance to multiple strains of *Ralstonia*. The QTL we identified on
362 chromosomes 2, 3, 4, 5, 8 and 10 were not previously identified, and thus may be specific to *R.*

363 *solanacearum* strain K60. With the exception of *Bwr3.2*, these QTL were detected using only
364 our image-based traits.

365

366 Together, our results establish the value of image-based, non-destructive disease phenotyping for
367 uncovering novel genetic components and new targets for quantitative disease resistance in
368 crops. By identifying new genetic loci, this type of rapid phenotyping may enable the
369 identification of broad-spectrum and durable resistance.

370

371 **Methods**

372 ***Plant growth***

373 Seeds of 188 Hawaii7996 (H7996) x West Virginia700 (WV) recombinant inbred lines (RILs) in
374 the F8 generation were obtained from the Asian Vegetable Research and Development Center
375 (AVRDC) in June 2014. Seeds were propagated to the F₉ generation in field and greenhouse in
376 West Lafayette, IN in 2014 and 2015 and were used in QTL analysis in 2016 and 2019.

377

378 For all plants used in the imaging experiments and 2019 visual assessment of wilting, seeds were
379 sown into individually labeled 1801 traditional inserts that were placed into 1020 flats (Hummert
380 International, USA). Seeds in the 2016 experiment were sown into individually labeled 1203
381 inserts that were placed into 1020 flats. Seeds were sown into ProMix Propagation Mix supplied
382 by the Lilly Greenhouses and Growth Facility located at Purdue University, West Lafayette,
383 Indiana, USA. The individual pots were randomized and placed in a growth chamber at 28°C,
384 relative humidity of 65% for a lighting cycle of 16 hours light/8 hours dark. The plants began
385 germination on day 4 and plants were inoculated with *R. solanacearum* strain K60 at 17 days
386 after planting when three true leaves were present. Trays were rotated in the growth chamber
387 throughout each experiment. In 2016, four seeds of each RIL were grown in the growth chamber
388 with parental controls, and each plant was visually assessed for wilting at 8 days post inoculation
389 (dpi). In 2019, one seed per RIL, along with parental controls, was grown in the growth chamber
390 for each of five independent replicates. Each plant was imaged at -1, 3, 4, 5, and 6 dpi, and
391 visually assessed at 8 dpi.

392

393 For plants used to genotyping with tomato SolCap markers, F₉ generation RIL seeds and parental
394 controls were grown in the greenhouse in 2-gallon pots with Metro Mix 510 soil. Plants were
395 grown for 6 weeks.

396

397 ***Ralstonia solanacearum* growth and plant inoculation**

398 *Ralstonia solanacearum* strain K60 (containing a GFP reporter) was grown on casamino acid-
399 peptone-glucose (CPG) agar containing tetrazolium chloride (TZC) in the dark for 48 hours at
400 28°C as in (Caldwell et al., 2017). Briefly, bacteria were resuspended in sterile water to a
401 concentration of approximately 2 x 10⁸ colony forming units (CFU)/mL for each experiment. For
402 each experiment, the concentration of inoculum was confirmed through dilution plating. Pots of
403 three-leaf plants were lightly compressed to induce wounding similar to transplant handling in
404 field conditions. 60 mL of inoculum was applied to the surrounding soil using a serological
405 pipet.

406

407 ***Visual assessment of bacterial wilt disease***

408 Wilt scores were visually assessed 8 dpi. Wilt scores were calculated by counting the number of
409 wilted true leaves divided by the total number of true leaves on the plant. Plants were scored with
410 a 95% if the plant had all of its leaves wilted, excluding the topmost leaf. Plants were marked as
411 100% when the topmost portion of the stem was collapsed and wilted (Supplemental Figure 2).

412

413 ***Plant imaging***

414 Plants were imaged the day before inoculation (-1 dpi) and then imaged on 3, 4, 5, and 6 dpi. A
415 Linco Linstor 2000-watt photo studio (Amazon, USA) was used as the backdrop, and Flora X
416 fluorescent lighting (Amazon, USA) was used to create a small photo studio. Individual plants
417 were placed on a Photocapture 360 turntable (Ortery Technologies) that was programmed to
418 capture eight images around the plant (every 45°). The images were captured using an EOS 6D
419 Canon camera with an EF 50mm f/1.4 USM lens on a stationary tripod. An imaging carriage
420 was created with a square petri dish and a fiducial marker attached to each side. A total of five
421 independent replicates for each RIL and the parental controls were imaged.

422

423 ***Phenotyping Pipeline and Image Analysis***

424 From the plant images, ten traits were acquired for QTL analysis. A detailed description of the
425 acquisition process can be found in (Yang et al., 2021, 2020). All traits were extracted based on
426 plant color and shape. To eliminate any color discrepancy between images, images were
427 automatically color corrected using a fiducial marker consisting of a colored checkerboard with
428 known physical dimensions and colors.

429

430 After color correction, plant pixels were segmented from the rest of the image by thresholding
431 channels in the L*A*B* color space. The resulting segmentation mask was improved with image
432 morphological operations to fill holes and remove noise generated by the thresholding. The stem
433 of the plant was identified using two neural networks, Mask R-CNN and U-Net. By locating the
434 stem of the plant, metrics were defined that reflect the inner morphology of the plant. To train
435 the neural networks, stem segmentation ground truth data were generated using Adobe
436 Photoshop and LabelMe (a Python-based annotation tool) to mark the location of the image
437 pixels belonging to the stem of the plant. Further details about this procedure are described in
438 (Yang et al., 2020, 2021).

439

440 The plant and stem masks were used in the subsequent color and shape analysis, which acquired
441 ten traits: total area of the plant mask (plant area), height of the plant mask (plant height),
442 maximum width of the plant mask (plant width), area of the convex hull (convex area), width of
443 the convex hull (convex width), color-based weighted average (color average), horizontal
444 distance between the center of mass of the left and right sides of the plant stem (CM width),
445 height of the center of mass (CM height), x-axis distribution of the center of mass (X mass), Y-
446 axis distribution of the center of mass (Y mass).

447

448 The plant area, plant height and plant width were calculated from the plant mask. When
449 calculating plant height, the upper 5% of the plant material was not included, which helped
450 eliminate the impact of small leaves growing at the top. Using functions available in *OpenCV*
451 Python Library, a convex hull was fit around the plant mask and the convex area and convex
452 width were calculated. For color analysis, the weighted average of the pixel values in the A*
453 channel was calculated, as this channel captures the green-magenta spectrum.

454

455 To calculate traits involving the center of mass (CM), the plant mask was split into left and right
456 halves using the stem mask (Yang et al., 2020), and the CM located for each half. The x-axis
457 distance between CMs (CM width) and the average height of the CMs (CM height) were used as
458 traits.

459

460 The extension of just one leaf can have a major impact on measured plant width, generating a
461 disproportionately larger value. Capturing the plant material distribution inside the plant mask
462 can overcome this issue. Using the split plant mask, the horizontal and vertical distribution of
463 plant material was estimated. The distances at which 90% of the plant material was captured in
464 the horizontal and vertical directions were used as the traits ‘X mass distribution’ and ‘Y mass
465 distribution’. The average of eight views around the plant were used for each trait value. Outputs
466 are in pixels.

467

468 In the random forest classification, visual wilting scores were thresholded to 0 or 1, where 0 = 0
469 to 50% wilting, 1 = 51 – 100% wilting. Average trait values from eight views from 6 dpi for 969
470 plants (RILs and parental controls) were used across all five replicates. Some plants did not have
471 a trait value for that day and were not used in the algorithm.

472

473 ***DNA extraction, Marker generation and Genotyping by Sequencing (GBS)***

474 Tomato SolCap markers and single nucleotide polymorphisms (SNPs) identified through GBS
475 were used for map creation. Leaf disc samples were collected from each RIL plant using a
476 biopsy punch and were sent to LGC, Biosearch Technologies. Genomic DNA was extracted and
477 genotyped for 128 SNPs from the Tomato SolCAP panel using LGC’s KASP assay. One
478 hundred twelve SNPs were obtained for RILs using this method.

479

480 For GBS, genomic DNA (gDNA) was extracted from 188 F₉ individuals of the RIL population
481 and from parental plants using Trizol. gDNA was RNase-treated and cleaned with phenol
482 chloroform extraction. Sequencing library preparation was as described by (Elshire et al., 2011).
483 Briefly, gDNA was digested with *PstI* and 150 bp paired end sequencing was performed on two
484 lanes of an Illumina Hi-seq 2500 at the Purdue Genomics Facility.

485

486 Reads were mapped to the *Solanum lycopersicum* 3.0 genome using the methods of (Manching
487 et al., 2017). In brief, reads were de-multiplexed, and adapter sequences were removed. Reads
488 were filtered based on the presence of a GBS barcode on the forward read (R1), which accounts
489 for 95.4% of the PE reads. For these R1, 97.3% had a paired R2 read, and 2.7% did not have a
490 pair. R1 read pairs and R1 singles reads were combined and assessed independent of pairing and
491 treated as single end reads for the remaining analyses (924,500,737 reads).

492

493 Reads were filtered to remove those with the presence of an internal restriction site, the lack of
494 restriction site hang sequence at the end, and for minimum length, which retained 93.0% of the
495 reads. There was a minimum of 17,561 reads, a maximum of 16,127,292 reads, and an average
496 of 4,480,149 reads per sample (Supplemental Figure 8). Reads were mapped using BWA-MEM
497 for paired end reads, and the GATK haplotype caller was used to generate a genomic Variant
498 Call Format (gVCF) file for downstream analysis.

499 There were 74,082 SNPs called between the population and *Solanum lycopersicum* 3.0 reference
500 genome. Many of these were SNPs between the reference genome and the population and do not
501 vary in the population used here. Filtering for the presence of two alleles within the RIL
502 population identified resulted in 2,738 SNPs. Of these, the parental alleles were identified in
503 both parents for 278 SNPs and in one parent for 698 SNPs. The remaining 1,762 SNPs could not
504 be assigned a parental origin and were not used for further analysis. The 976 SNPs with parental
505 origin identified were filtered for a minor allele frequency greater than 0.02 and less than 0.99,
506 which resulted in 632 high quality SNPs.

507

508 High quality SNPs identified from GBS were combined with previously defined SolCap markers
509 from LGC Biosearch Technologies for a total of 748 markers. SNP coverage of the 188 RIL taxa
510 was high. Of the 748 markers, the minimum coverage was 115 markers, the maximum coverage
511 was 555 markers, and the average was 366 markers (Supplemental Figure 9). There was some
512 residual heterozygosity in the taxa (Supplemental Figure 9b), and taxa with 10% or greater
513 heterozygosity were removed from further analysis (2 RILs).

514

515 ***Linkage Map Construction***

516 The software QTL IciMapping (Meng et al., 2015) (version 4.1) was used for the map
517 construction with all 748 markers. Redundant markers were filtered by taxa coverage using a
518 missing rate of 85% and a distortion threshold at 0.001 to obtain a total of 408 markers. The 408
519 markers without anchor information were assigned to 12 groups based on a LOD score threshold
520 value of 3. After grouping, the markers were ordered using the nearest neighbor algorithm
521 (nnTwoOpt) using the rippling criterion SARF (Sum of Adjacent Recombination Frequencies)
522 with a window size of five markers. After ordering, some markers at the end of the chromosomes
523 were deleted when they were adding an insignificant genetic distance to the chromosome. These
524 markers were identified after splitting the current chromosome in two sub-chromosomes between
525 the longest marker interval. If the shortest sub-chromosome contained more than 20% of the
526 markers before splitting, the two sub-chromosome were re-assembled. Otherwise, the shortest
527 sub-chromosome was deleted.

528

529 ***QTL detection***

530 QTL were detected using Inclusive Composite Interval Mapping with additive effects (ICIM-
531 ADD) in IciMapping (Meng et al., 2015) (version 4.1) using a genetic mapping with a 1 cM
532 scanning step and a probability in stepwise regression of 0.001. The LOD significance threshold
533 to declare a QTL significant was determined using a Type-I error of 0.0500 after one thousand
534 permutation. For the QTL analysis, we removed 19 of the 188 RIL (10%) showing the highest
535 variation according to the visual wilting score and 3 RIL due to missing data across the 5
536 biological repetitions for a total of 166 RIL into the QTL map (Supplemental Figure 3). The
537 evolution of the ten image-based traits and two visual wilting scores between -1 dpi and 3, 4, 5
538 and 6 dpi were determined for the 166 RIL. To assure a normal distribution of the phenotypic
539 data, the function “orderNorm” was used to perform an ordered quantile normalization (Peterson
540 and Cavanaugh, 2020) before QTL analysis using the package “bestNormalize” version 1.6.1
541 with R software version 3.6.1 (R Core Team).

542

543 **Acknowledgements**

544 We thank Chloe Caldwell for help with imaging, and Kristina Gans for help with GBS.

545 This work was funded by a Purdue Seed Grant to AIP and ED, a Foundation for Food and
546 Agriculture Research New Innovator Award to AIP, and the endowment of the Charles William
547 Harrison Distinguished Professorship at Purdue University to ED.

548

549 **Author Contributions**

550 A.I.P. and E.D. designed the research; V.M., D.C., and B.K. performed research; V.M., E.E.,
551 S.B., C.Y., A.I.P., and E.J.D. analyzed data; S.B., C.Y., and E.D. contributed new computational
552 tools; A.I.P. and V.M. wrote the manuscript; all authors edited and approved the manuscript.

553

554 **References**

555

556 Awata, L.A.O., Beyene Y., Gowda M., Suresh L.M., Jumbo M.B. Tongoona P., Danquah E., Ifie
557 B.E., Marchelo-Dragga P.W., Olsen M., Ogugu V. et al. (2020). Genetic Analysis of
558 QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations. *Genes*
559 11: 32.

560 Awlia, M., Alshareef, N., Saber, N., Korte, A., Oakey, H., Panzarová, K., Trtílek, M., Negrão,
561 S., Tester, M., and Julkowska, M.M. (2021). Genetic mapping of the early responses to
562 salt stress in *Arabidopsis thaliana*. *Plant J.* doi:10.1111/tpj.15310.

563 Bock, C., Parker, P., Cook, A.Z., and Gottwald, T. (2008). Visual Rating and the Use of Image
564 Analysis for Assessing Different Symptoms of Citrus Canker on Grapefruit Leaves. *Plant*
565 *Dis* 92:530-541.

566 Bock, C., Poole, G., Parker, P., and Gottwald, T.R. (2010). Plant Disease Severity Estimated
567 Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging.
568 *Crit Rev Plant Sci* 29: 59-107.

569 Caldwell, D., Kim, B.-S., and Iyer-Pascuzzi, A.S. (2017). *Ralstonia solanacearum* Differentially
570 Colonizes Roots of Resistant and Susceptible Tomato Plants. *Phytopathology* 107: 528–
571 536.

572 Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J., and Besse, P. (2006).
573 Identification of QTLs for *Ralstonia solanacearum* race 3-phylotype II resistance in
574 tomato. *Theor Appl Genet* 113: 110–21.

575 Colwell, R.N. (1956). Determining the prevalence of certain cereal crop diseases by means of
576 aerial photography. *Hilgardia* 26: 223–286.

577 Corwin, J.A., Copeland, D., Feusier, J., Subedy, A., Eshbaugh, R., Palmer, C., Maloof, J., and
578 Kliebenstein, D.J. (2016). The Quantitative Basis of the *Arabidopsis* Innate Immune

579 System to Endemic Pathogens Depends on Pathogen Genetics. PLoS Genet 12:
580 e1005789.

581 Danesh, D., Aarons, S., McGill, G.E., and Young, N.D. (1994). Genetic Dissection of
582 Oligogenic Resistance to Bacterial Wilt in Tomato. Mol Plant Microbe Interact 7: 464–
583 471.

584 Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., and Mitchell,
585 S.E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High
586 Diversity Species. PLOS ONE 6: e19379.

587 Fordyce, R.F., Soltis, N.E., Caseys, C., Gwinner, R., Corwin, J.A., Atwell, S., Copeland, D.,
588 Feusier, J., Subedy, A., Eshbaugh, R., and Kliebenstein, D.J. (2018). Digital Imaging
589 Combined with Genome-Wide Association Mapping Links Loci to Plant-Pathogen
590 Interaction Traits. Plant Physiol 178: 1406–1422.

591 Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in *Ralstonia*
592 *solanacearum*. New Phytol 187: 920–928.

593 Genin, S. and Denny, T.P. (2011). Pathogenomics of the *Ralstonia solanacearum* Species
594 Complex. Annu Rev Phytopathol 50: 67–89.

595 Jackson, R.D. (1986). Remote Sensing of Biotic and Abiotic Plant Stress. Annu Rev Phytopathol
596 24: 265–287.

597 Jaw-Fen Wang, Fang-I Ho, Hai Thi Hong Truong, Shu-Mei Hugan, Conrado H. Balatero, Vanla
598 Dittapongpitch, and Nurul Hidayati (2013). Identification of major QTLs associated with
599 stable resistance of tomato cultivar “Hawaii 7996” to *Ralstonia solanacearum*. Euphytica
600 190: 241–252.

601 Knoch, D., Abbadi, A., Grandke, F., Meyer, R.C., Samans, B., Werner, C.R., Snowdon, R.J., and
602 Altmann, T. (2020). Strong temporal dynamics of QTL action on plant growth
603 progression revealed through high-throughput phenotyping in canola. Plant Biotechnol J
604 18: 68–82.

605 Landry, D., González-Fuente, M., Deslandes, L., and Peeters, N. (2020). The large, diverse, and
606 robust arsenal of *Ralstonia solanacearum* type III effectors and their in planta functions.
607 Mol. Plant Pathol. doi:10.1111/mpp.12977

608 Li, H., Feng, H., Guo, C., Yang, S., Huang, W., Xiong, X., Liu, J., Chen, G., Liu, Q., Xiong, L.,
609 Liu, K., and Yang, W. (2020). High-throughput phenotyping accelerates the dissection of
610 the dynamic genetic architecture of plant growth and yield improvement in rapeseed.
611 Plant Biotechnol J 18: 2345–2353.

612 Lowe, A., Harrison, N., and French, A.P. (2017). Hyperspectral image analysis techniques for
613 the detection and classification of the early onset of plant disease and stress. Plant
614 Methods 13: 80.

615 Mahlein, A.-K. (2016). Plant Disease Detection by Imaging Sensors - Parallels and Specific
616 Demands for Precision Agriculture and Plant Phenotyping. *Plant Dis.* 100: 241-251.

617 Mahlein, A.-K., Alisaac, E., Al Masri, A., Behmann, J., Dehne, H.-W., and Oerke, E.-C. (2019).
618 Comparison and Combination of Thermal, Fluorescence, and Hyperspectral Imaging for
619 Monitoring Fusarium Head Blight of Wheat on Spikelet Scale. *Sensors* 19: 2281.

620 Mahlein, A.-K., Kuska, M., Thomas, S., Bohnenkamp, D., Alisaac, E., Behmann, J., Wahabzada,
621 M., and Kersting, K. (2017). Plant disease detection by hyperspectral imaging: from the
622 lab to the field. *Adv Anim Biosci* 8: 238-243.

623 Manching, H., Sengupta, S., Hopper, K.R., Polson, S.W., Ji, Y., and Wisser, R.J. (2017). Phased
624 Genotyping-by-Sequencing Enhances Analysis of Genetic Diversity and Reveals
625 Divergent Copy Number Variants in Maize. *G3 Genes Genom Genet* 7: 2161–2170.

626 Mangin, B., Thoquet, P., Olivier, J., and Grimsley, N.H. (1999). Temporal and multiple
627 quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the
628 resolution of linked loci. *Genetics* 151: 1165–1172.

629 Mansfield, J. et al. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. *Mol
630 Plant Pathol* 13: 614–629.

631 Maschietto, V., Colombi, C., Pirona, R., Pea, G., Strozzi, F., Marocco, A., Rossini, L., and
632 Lanubile, A. (2017). QTL mapping and candidate genes for resistance to Fusarium ear rot
633 and fumonisin contamination in maize. *BMC Plant Biology* 17: 20.

634 Meng, L., Li, H., Zhang, L., and Wang, J. (2015). QTL IciMapping: Integrated software for
635 genetic linkage map construction and quantitative trait locus mapping in biparental
636 populations. *Crop J* 3: 269–283.

637 Mir, R.R., Reynolds, M., Pinto, F., Khan, M.A., and Bhat, M.A. (2019). High-throughput
638 phenotyping for crop improvement in the genomics era. *Plant Sci* 282: 60–72.

639 Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S., Nishii, R., and Melgani, F. (2019).
640 Computer vision-based phenotyping for improvement of plant productivity: a machine
641 learning perspective. *GigaScience* 8.

642 Pauli, D., Andrade-Sanchez, P., Carmo-Silva, A.E., Gazave, E., French, A.N., Heun, J.,
643 Hunsaker, D.J., Lipka A.E., Setter, T.L., Strand, R.J. et al. (2016). Field-Based High-
644 Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci
645 Associated with Stress-Responsive Traits in Cotton. *G3 Genes Genom Genet* 6: 865–879.

646 Pérez-Bueno, M.L., Pineda, M., and Barón, M. (2019). Phenotyping Plant Responses to Biotic
647 Stress by Chlorophyll Fluorescence Imaging. *Front. Plant Sci.* 10.

648 Peterson, R.A. and Cavanaugh, J.E. (2020). Ordered quantile normalization: a semiparametric
649 transformation built for the cross-validation era. *J Applied Stat* 47: 2312–2327.

650 Pineda, M., Barón, M., and Pérez-Bueno, M.-L. (2021). Thermal Imaging for Plant Stress
651 Detection and Phenotyping. *Remote Sens* 13: 68.

652 Prior, P., Ailloud, F., Dalsing, B.L., Remenant, B., Sanchez, B., and Allen, C. (2016). Genomic
653 and proteomic evidence supporting the division of the plant pathogen *Ralstonia*
654 *solanacearum* into three species. *BMC Genomics* 17: 90.

655 R Core Team R: A language and environment for statistical computing. R Foundation for
656 Statistical Computing Vienna: URL <https://www.R-project.org/>.

657 Remenant, B., Babujee, L., Lajus, A., Médigue, C., Prior, P., and Allen, C. (2012). Sequencing
658 of K60, Type Strain of the Major Plant Pathogen *Ralstonia solanacearum*. *J Bacteriol*
659 194: 2742–2743.

660 Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., and Kappler, U. 2014 Polyphasic
661 taxonomic revision of the *Ralstonia solanacearum* species complex: proposal to emend
662 the descriptions of *Ralstonia solanacearum* and *Ralstonia syzygii* and reclassify current
663 *R. syzygii* strains as *Ralstonia syzygii* subsp. *syzygii* subsp. nov., *R. solanacearum*
664 phylotype IV strains as *Ralstonia syzygii* subsp. *indonesiensis* subsp. nov., banana blood
665 disease bacterium strains as *Ralstonia syzygii* subsp. *celebesensis* subsp. nov. and *R.*
666 *solanacearum* phylotype I and III strains as *Ralstonia pseudosolanacearum* sp. nov. *Int J*
667 *Syst Evol Microbiol* 64: 3087–3103.

668 Schandry, N. (2017). A Practical Guide to Visualization and Statistical Analysis of R.
669 *solanacearum* Infection Data Using R. *Front. Plant Sci.* 8.

670 Shakoor, N., Lee, S., and Mockler, T.C. (2017). High throughput phenotyping to accelerate crop
671 breeding and monitoring of diseases in the field. *Curr Opin Plant Biol* 38: 184–192.

672 Shin, I.S., Hsu, J.-C., Huang, S.-M., Chen, J.-R., Wang, J.-F., Hanson, P., and Schafleitner, R.
673 (2020). Construction of a single nucleotide polymorphism marker based QTL map and
674 validation of resistance loci to bacterial wilt caused by *Ralstonia solanacearum* species
675 complex in tomato. *Euphytica* 216: 54.

676 Simko, I., Jimenez-Berni, J.A., and Sirault, X.R.R. (2017). Phenomic Approaches and Tools for
677 Phytopathologists. *Phytopathology* 107: 6–17.

678 Stewart, E. and McDonald, B. (2014). Measuring quantitative virulence in the wheat pathogen
679 *Zymoseptoria tritici* using high-throughput automated image analysis. *Phytopathology*
680 104: 985-992.

681 Stewart, E.L., Hagerty, C.H., Mikaberidze, A., Mundt, C.C., Zhong, Z., and McDonald, B.A.
682 (2016). An Improved Method for Measuring Quantitative Resistance to the Wheat
683 Pathogen *Zymoseptoria tritici* Using High-Throughput Automated Image Analysis.
684 *Phytopathology* 106: 782–788.

685 Tanger, P., Klassen S., Mojica J.P., Lovell, J.T., Moyers, B.T., Baraoidan, M., Naredo, M.E.B.,
686 McNally, K.L., Poland, J., Bush, D.R. et al. (2017). Field-based high throughput

687 phenotyping rapidly identifies genomic regions controlling yield components in rice. *Sci*
688 *Rep* 7: 42839.

689 Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Laterrot, H., and Grimsley, N. (1996a).
690 Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar
691 Hawaii7996. *Mol Plant Microbe Interact* 9: 826–836.

692 Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Prior, P., Anais, G., Mangin, B., Bazin, B.,
693 Nazer, R., and Grimsley, N. (1996b). Polygenic resistance of tomato plants to bacterial
694 wilt in the French West Indies. *Mol Plant-Microbe Interact* 9: 837–842.

695 Topp, C.N., Iyer-Pascuzzi, A.S., Anderson, J.T., Lee, C-R., Zurek, P.R., Symonova, O., Zheng
696 Y., Bucksch, A., Mileyko, Y., Galkovskyi, T., et al(2013). 3D phenotyping and
697 quantitative trait locus mapping identify core regions of the rice genome controlling root
698 architecture. *Proc. Natl. Acad. Sci. U.S.A.* 110: E1695-1704.

699 Wang, J.F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L., and Grimsley, N.H. (2000).
700 Resistance of tomato line Hawaii7996 to *Ralstonia solanacearum* Pss4 in Taiwan is
701 controlled mainly by a major strain-specific locus. *Mol Plant-Microbe Interact* 13: 6–13.

702 Wang, X. et al. (2019). Dynamic plant height QTL revealed in maize through remote sensing
703 phenotyping using a high-throughput unmanned aerial vehicle (UAV). *Sci Rep* 9: 3458.

704 Yang, C., Baireddy, S., Cai, E., Meline, V., Caldwell, D., Iyer-Pascuzzi, A.S., and Delp, E.J.
705 (2021). Image-Based Plant Wilting Estimation. *arXiv:2105.12926 [cs]*.

706 Yang, C., Baireddy, S., Chen, Y., Cai, E., Caldwell, D., Meline, V., Iyer-Pascuzzi, A.S., and
707 Delp, E.J. (2020). Plant Stem Segmentation Using Fast Ground Truth Generation. In
708 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 62–
709 65.

710 Yates, S., Mikaberidze, A., Krattinger, S.G., Abrouk, M., Hund, A., Yu, K., Studer, B., Fouche,
711 S., Meile, L., Pereira, D., Karisto, P., and McDonald, B.A. (2019). Precision Phenotyping
712 Reveals Novel Loci for Quantitative Resistance to *Septoria Tritici* Blotch. *Plant*
713 *Phenomics* 2019: 1–11.

714 Young, N.D. and Danesh, D. (1994). Understanding Bacterial Wilt Resistance in Tomato
715 through the Use of DNA Genetic-Markers. *Bacterial Wilt*: 145–155.

716 Zhang, N., Yang, G., Pan, Y., Yang, X., Chen, L., and Zhao, C. (2020). A Review of Advanced
717 Technologies and Development for Hyperspectral-Based Plant Disease Detection in the
718 Past Three Decades. *Remote Sensing* 12: 3188.

719 Zhang, X. et al. (2017). High-Throughput Phenotyping and QTL Mapping Reveals the Genetic
720 Architecture of Maize Plant Growth. *Plant Physiol* 173: 1554–1564.

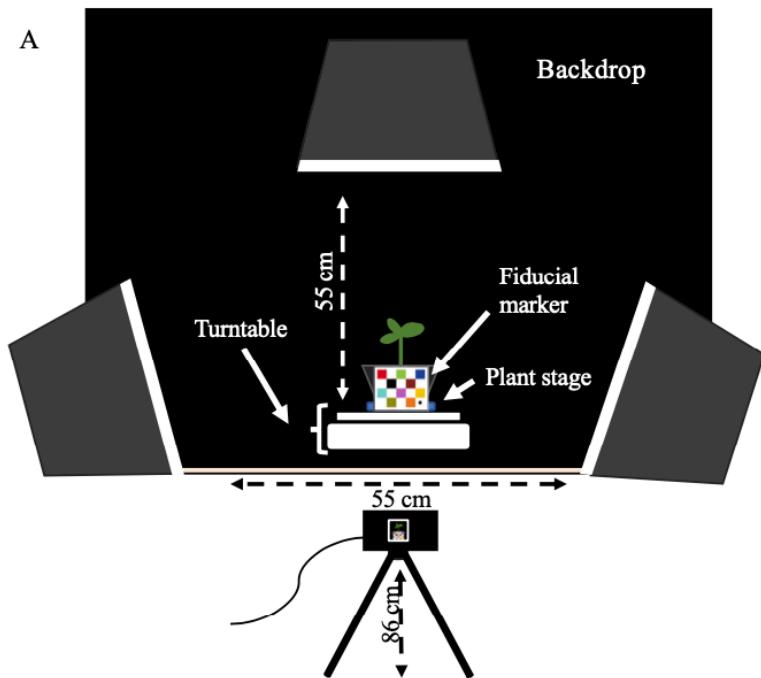
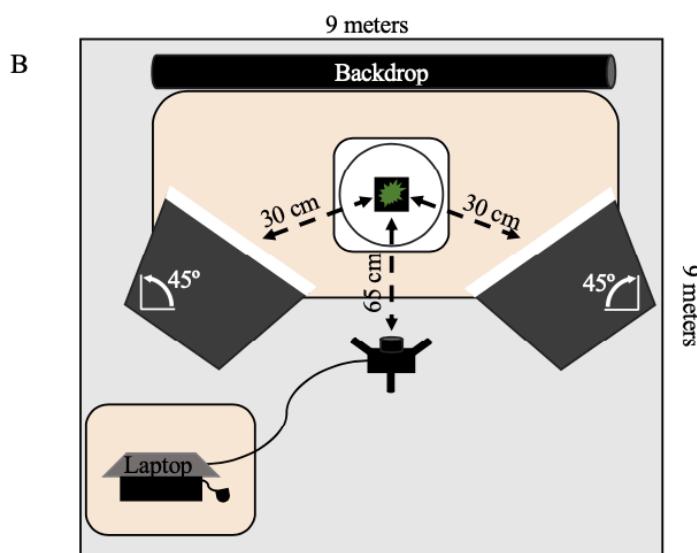
721

722

723 **Supplemental Information**

724 **Supplemental Figures**

725 Supplemental Figure 1: Design of our low cost phenotyping platform including automatic
726 turntable, backdrop, lightning and RGB camera.



728 Supplemental Figure 2: Raw RGB pictures showing the evolution of wilting symptoms on RIL #
729 646 at -1, 3, 4, 5 and 6 dpi. Visually assessed wilting score are expressed in percentage of wilted
730 leaves.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

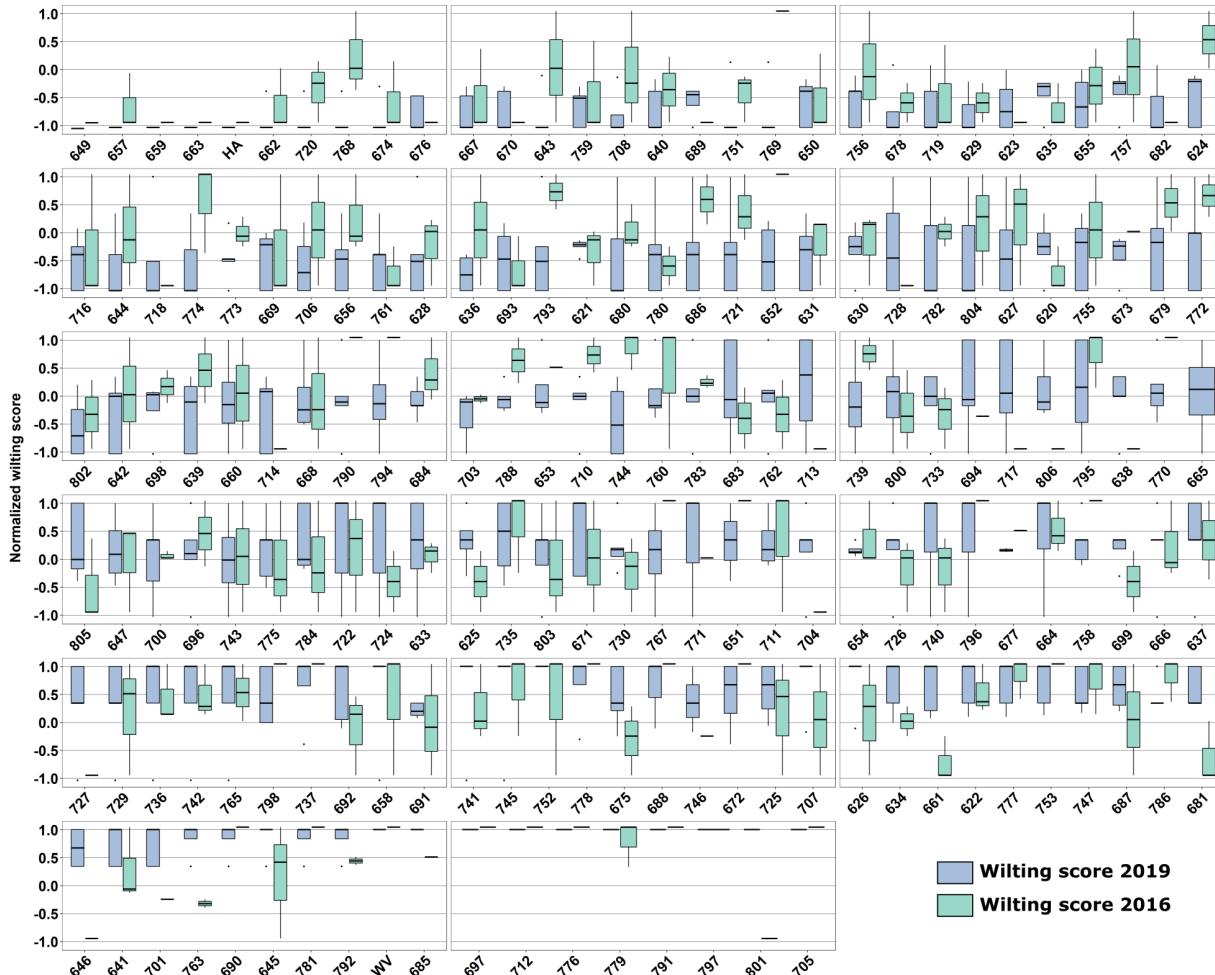
752

753

754

755 Supplemental Figure 3: Wilting Score RIL: Boxplots showing the normalized wilting score at 6
756 dpi for the 166 RILs, resistant Hawaii 7996 (HA) and susceptible West Virginia (WV)
757 genotypes.

758



759

760

761

762

762

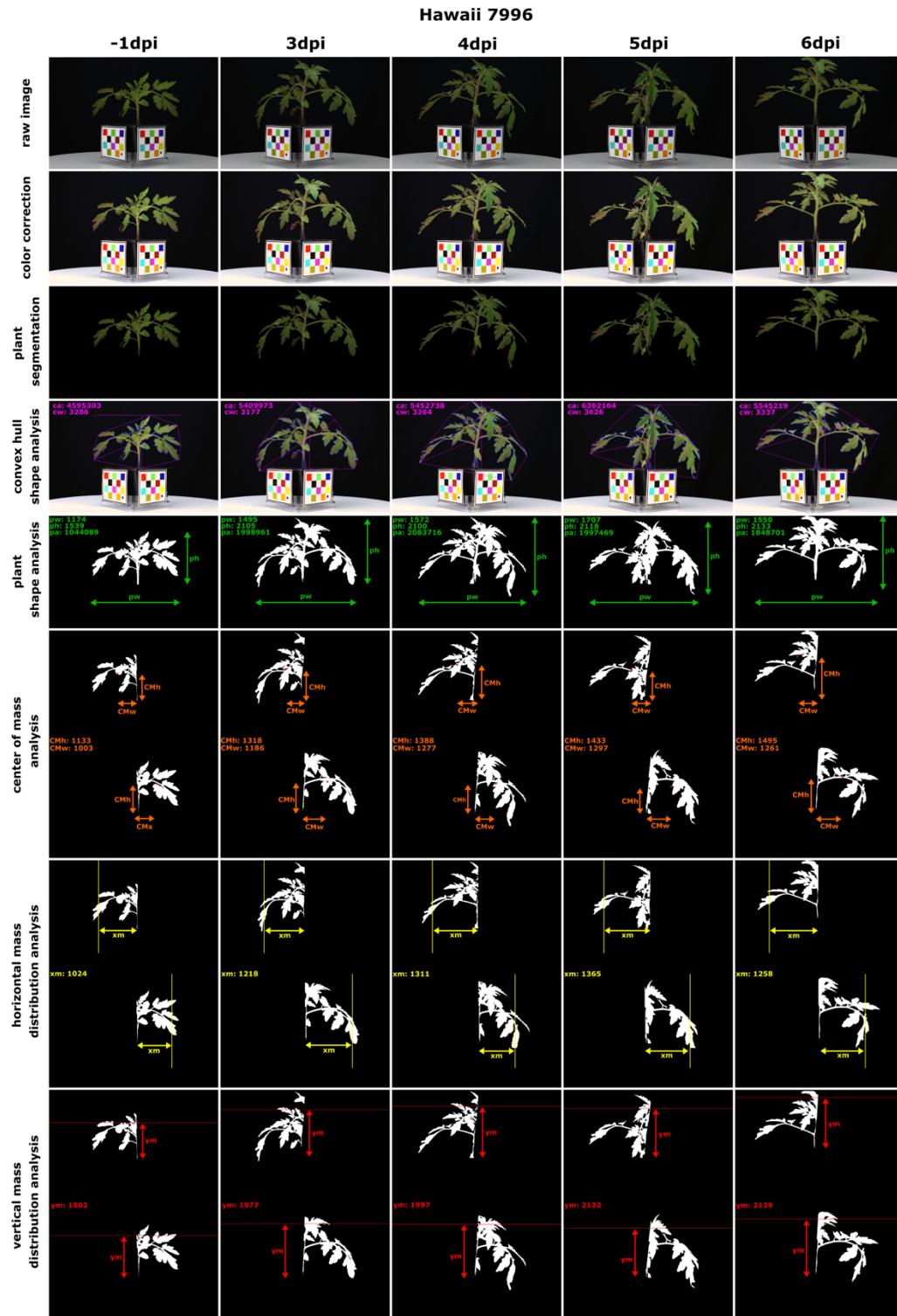
704

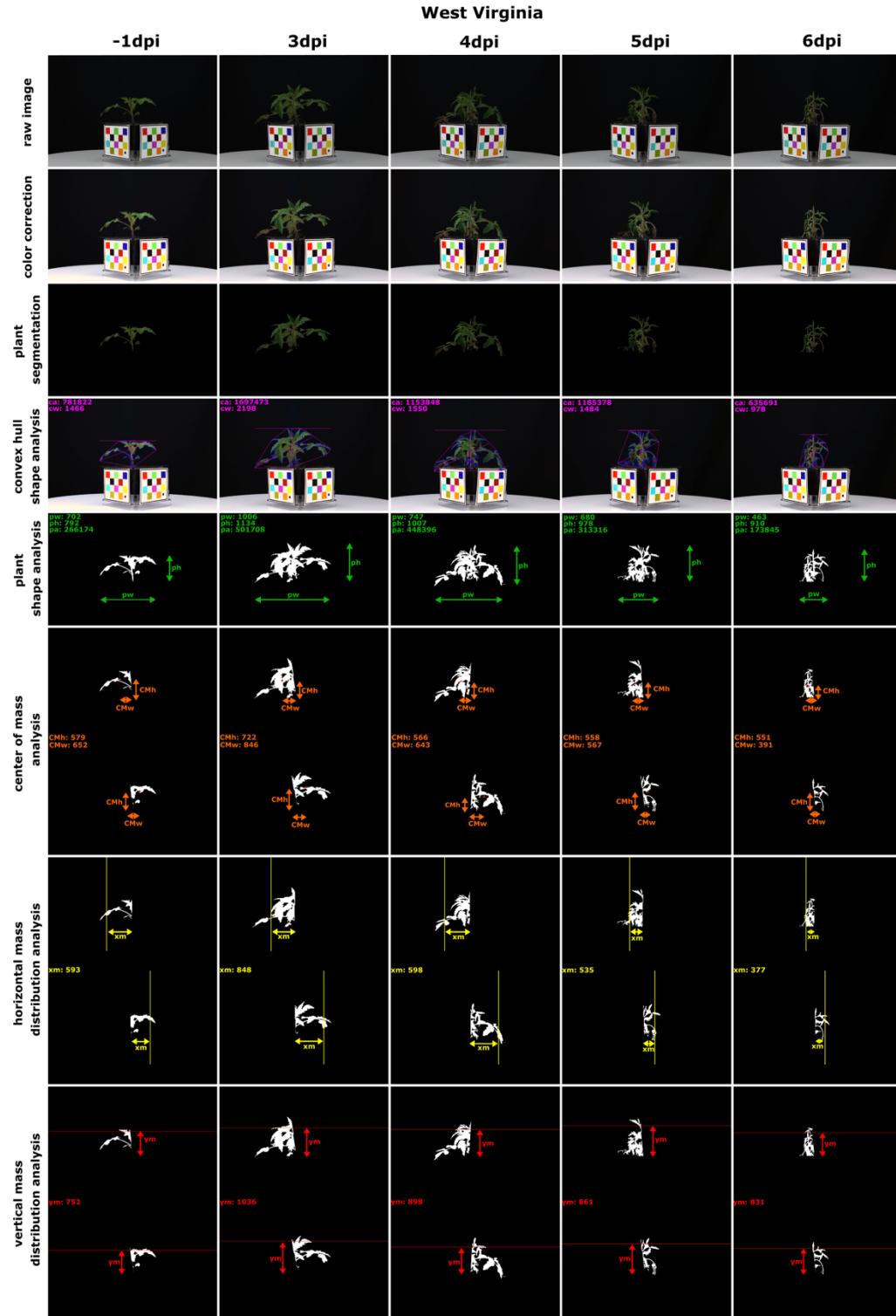
165

766

767

768 Supplemental Figure 4: RGB pictures showing the evolution of the traits at -1, 3, 4, 5 and 6 dpi
769 for A) Hawaii 7996 and B) West Virginia (pw: plant width, ph: plant height, CMh: Center of
770 Mass height, CMw: Center of Mass width, xm: Horizontal mass distribution, ym: Vertical mass
771 distribution). The Hawaii 7996 plant shown here is the same plant used for Figure 1.





773

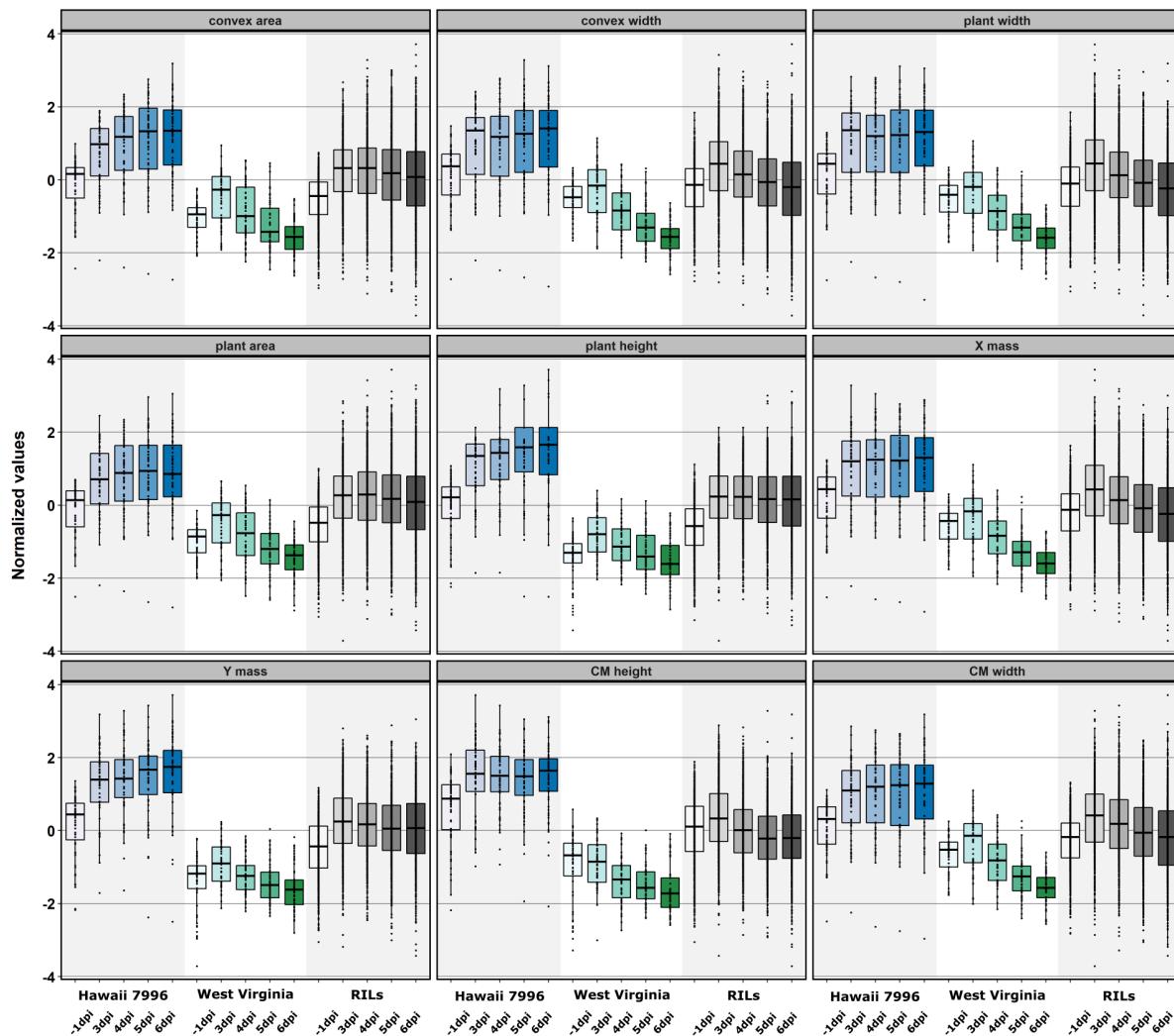
774

775

776 Supplemental Figure 5: Boxplots showing the normalized values for image-based traits at -1, 3,
777 4, 5, 6 dpi for resistant Hawaii 7996, susceptible West Virginia 700, and 166 individuals of the
778 RIL population.

779

780



781

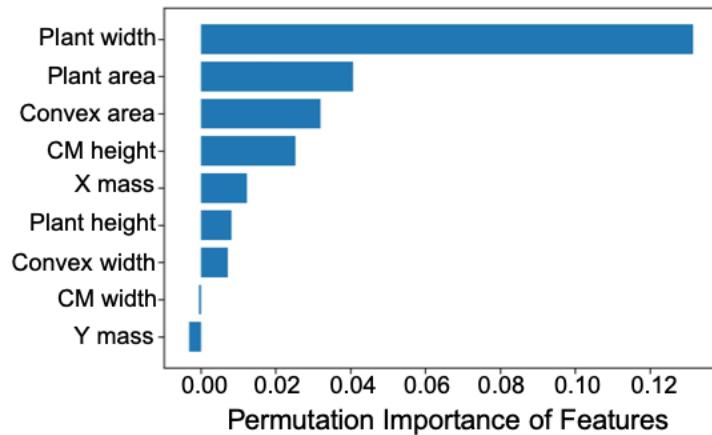
782

783

784

785

786 Supplemental Figure 6: Histogram showing the image-based descriptors which contribute the
787 most to wilting



788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

808 Supplemental Figure 7: Genetic Linkage map constructed with SolCap and SNP markers.
809 Location of 10 QTL clusters are displayed using blue and green for left and right markers
810 respectively. Location of previously identified QTL on chromosome 6 and 12²⁷ are also
811 displayed.

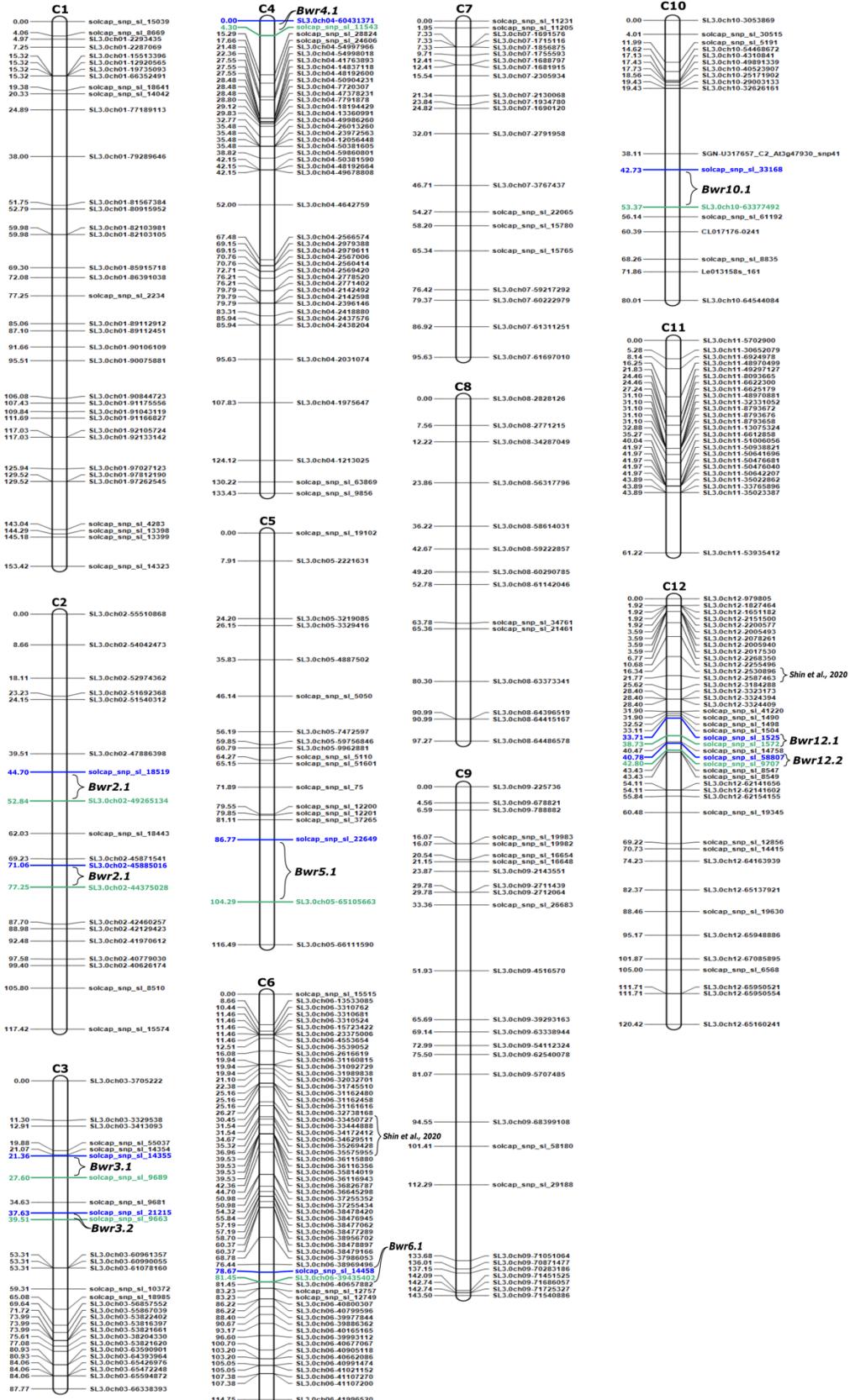
812

813

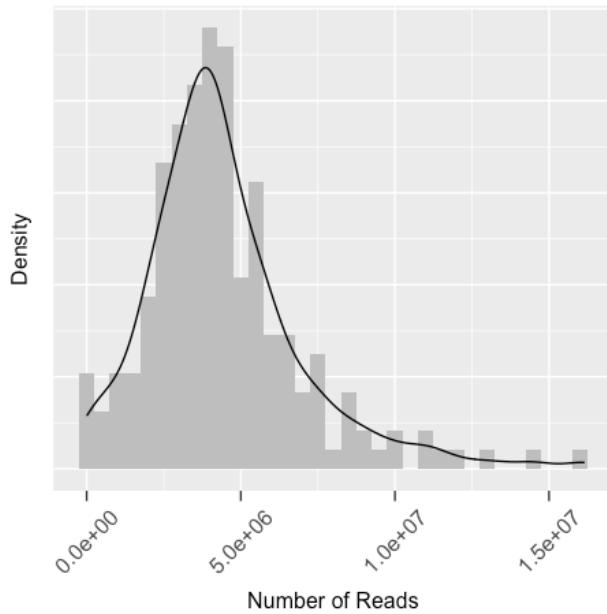
814

815

816



818 Supplemental Figure 8: GBS Read Distribution by Sample (includes parental references).



819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

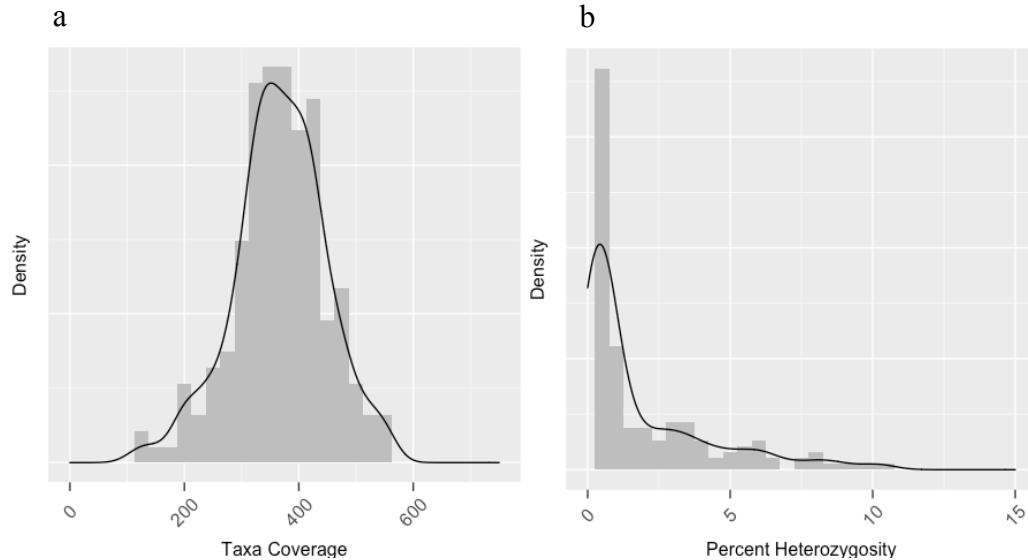
837

838

839 Supplemental Figure 9: a) RIL and parental coverage and SNP density from GBS analysis; b)
840 Percent heterozygosity and SNP density

841

842



843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861 **Supplemental Tables**

862 Supplemental Table 1 Descriptive statistics for 10 image-based traits and two years of visually
863 assessed wilting scores (2016 and 2019). Image-based traits were from the same plants as the
864 visually assessed wilting score in 2019. The RIL population was inoculated with Ralstonia and
865 visually scored for wilting in 2016, but images were not taken. Data is shown for resistant parent
866 Hawaii 7996, susceptible parent West Virginia 700, and the RIL population.

year	Variable	Hawaii 7996				West Virginia 700				RILs			
		Mean	SD	Minimum	Maximum	Mean	SD	Minimum	Maximum	Mean	SD	Minimum	Maximum
2016	Wilting_Score	0	0	0	0	100	0	100	100	44.41	41.4	0	100
	Wilting_Score	0	0	0	0	99.33	5.16	60	100	53.69	42.23	0	100
	convex area	2.7e+06	1.4e+06	-4.1e+04	6.3e+06	-3.6e+05	3.6e+05	-1.1e+06	7.4e+05	1.2e+06	1.4e+06	-2.0e+06	7.9e+06
	convex width	8.7e+02	4.4e+02	-7.0e+01	1.7e+03	-7.4e+02	3.7e+02	-1.4e+03	5.4e+02	-4.6e-01	5.9e+02	-1.9e+03	2.9e+03
	plant area	8.7e+05	5.6e+05	-1.0e+04	2.2e+06	-1.1e+05	1.1e+05	-3.4e+05	2.1e+05	5.0e+05	5.5e+05	-7.4e+05	2.6e+06
	plant height	5.6e+02	1.9e+02	-7.0e+01	8.7e+02	-1.3e+01	1.7e+02	-3.6e+02	3.7e+02	3.3e+02	2.5e+02	-6.5e+02	1.1e+03
	plant width	4.0e+02	2.0e+02	-3.6e+01	8.2e+02	-3.5e+02	1.8e+02	-6.6e+02	2.5e+02	-2.1e+01	2.7e+02	-9.7e+02	8.4e+02
	X mass	3.1e+02	1.6e+02	-3.7e+01	5.8e+02	-2.9e+02	1.5e+02	-5.6e+02	2.0e+02	-1.2e+01	2.3e+02	-7.4e+02	6.9e+02
	Y mass	5.4e+02	2.1e+02	-8.4e+01	9.3e+02	-6.7e+01	1.6e+02	-4.1e+02	3.6e+02	2.1e+02	2.2e+02	-7.0e+02	9.6e+02
	CM width	3.1e+02	1.6e+02	-1.0e+02	6.0e+02	-2.9e+02	1.5e+02	-5.2e+02	1.8e+02	2.7e+01	2.3e+02	-7.0e+02	9.8e+02
	CM height	2.6e+02	1.8e+02	-2.1e+02	6.2e+02	-1.3e+02	1.5e+02	-3.9e+02	1.9e+02	-5.2e+01	1.9e+02	-8.8e+02	8.3e+02
	color average	2.88	5.44	-5.96	22.9	7.37	2.84	1.03	14.83	4.06	4.48	-11.35	16.48

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882 Supplemental Table 2: Marker density per cM for each chromosome.

Chromosome	Number of marker	Chromosome Length (cM)	Average interval length (cM)	Standard deviation	Standard error
1	36	153.42	4.38	4.15	0.70
2	19	117.42	6.52	3.92	0.92
3	28	87.77	3.25	3.56	0.68
4	44	133.43	3.10	4.25	0.65
5	18	116.49	6.85	5.33	1.29
6	61	116.92	1.80	1.99	0.26
7	21	95.63	4.78	3.94	0.88
8	14	97.27	7.48	4.44	1.23
9	27	143.5	5.52	5.77	1.13
10	18	80.01	4.71	4.80	1.16
11	25	61.22	2.55	3.88	0.79
12	43	120.42	2.87	3.01	0.46

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905 Supplemental Table 3: Overview of the 9 genomic regions identified with a LOD score greater
906 than 3 on chromosome 10 after inoculation with *R. solanacearum* at 6 dpi. According to the ICI
907 Mapping analysis using 1000 permutations, a threshold value of 3.48 represents the minimum
908 LOD to identify a significant QTL. Genomic regions with a lower LOD value did not reach our
909 threshold for significance after permutation.

Chromosome	Position	LeftMarker	RightMarker	TraitName	LOD	PVE	Add
10	51	solcap.snp_sl_33168	SL3.0ch10-63377492	Wilting Score 2019	3.0067	13.3810	0.2077
10	52	solcap.snp_sl_33168	SL3.0ch10-63377492	Wilting Score 2019	3.0927	10.5192	0.1842
10	53	solcap.snp_sl_33168	SL3.0ch10-63377492	Wilting Score 2019	3.0832	8.0396	0.1611
10	52	solcap.snp_sl_33168	SL3.0ch10-63377492	convex width	3.1634	9.0040	-0.1835
10	53	solcap.snp_sl_33168	SL3.0ch10-63377492	convex width	3.4883	7.8538	-0.1714
10	51	solcap.snp_sl_33168	SL3.0ch10-63377492	plant width	3.0398	11.1872	-0.2039
10	52	solcap.snp_sl_33168	SL3.0ch10-63377492	plant width	3.5411	10.2424	-0.1951
10	53	solcap.snp_sl_33168	SL3.0ch10-63377492	plant width	3.8661	8.8147	-0.1811
910	53	solcap.snp_sl_33168	SL3.0ch10-63377492	X mass	3.0584	7.0293	-0.1629

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929 Supplemental Table 4: Overview of QTLs identified across the genome at all time points (-1, 3,
930 4, 5, 6 dpi) with *R. solanacearum*. LOD: maximum value of the Logarithm of the odd. PVE:
931 Percentage of phenotypic variance explained. Add: Additive effect, the positive and negative
932 values indicated that the alleles are introgressed from the resistant parent (Hawaii 7996) and
933 susceptible parents (WestVirginia). LeftCI and RightCI are the confidence interval calculated by
934 a one-LOD decrease from the estimated QTL position. * = Bwr3.1; ** = Bwr3.2
935

Timepoint	Chromosome	Position	LeftMarker	RightMarker	TraitName	LOD	PVE	Add	LeftCI	RightCI
-1	2	117	solcap_snp_sl_8510	solcap_snp_sl_15574	plant width	3.3851	6.4842	0.1290	114.5	117.0
-1	2	117	solcap_snp_sl_8510	solcap_snp_sl_15574	X mass	4.1424	6.8279	0.1390	114.5	117.0
-1	3	58	SL3.0ch03-61078160	solcap_snp_sl_10372	plant width	3.2538	9.4831	0.1555	56.5	64.5
-1	3	58	SL3.0ch03-61078160	solcap_snp_sl_10372	X mass	3.8291	9.4218	0.1628	56.5	64.5
-1	3	59	SL3.0ch03-61078160	solcap_snp_sl_10372	CM height	3.7940	3.6957	0.1603	56.5	63.5
-1	3	30	solcap_snp_sl_9689	solcap_snp_sl_9681	plant area	3.6327	8.0934	0.1522	24.5	34.5
-1	4	128	SL3.0ch04-1213025	solcap_snp_sl_63869	CM height	3.8063	12.0286	-0.2891	127.5	130.5
-1	6	10	SL3.0ch06-13533085	SL3.0ch06-3310762	convex area	4.7410	11.2755	0.1621	8.5	11.5
-1	6	10	SL3.0ch06-13533085	SL3.0ch06-3310762	plant width	3.5865	6.9265	0.1336	8.5	11.5
-1	6	10	SL3.0ch06-13533085	SL3.0ch06-3310762	plant area	3.5117	7.3344	0.1457	8.5	11.5
-1	6	10	SL3.0ch06-13533085	SL3.0ch06-3310762	X mass	4.8686	8.0160	0.1510	8.5	11.5
-1	6	10	SL3.0ch06-13533085	SL3.0ch06-3310762	Y mass	4.9020	9.3612	0.1757	8.5	11.5
-1	8	80	solcap_snp_sl_21461	SL3.0ch08-63373341	X mass	3.2439	5.3622	0.1230	74.5	83.5
-1	9	67	SL3.0ch09-39293163	SL3.0ch09-63338944	convex area	3.1976	7.5230	-0.1323	60.5	69.5
-1	9	36	solcap_snp_sl_26683	SL3.0ch09-4516570	CM height	4.8307	6.1460	0.2081	32.5	40.5
-1	10	71	solcap_snp_sl_8835	Le013158s_161	Y mass	3.2077	5.9734	0.1404	68.5	73.5
* 3	3	25	solcap_snp_sl_14355	solcap_snp_sl_9689	CM height	7.2477	18.2665	0.2584	21.5	30.5
3	3	27	solcap_snp_sl_14355	solcap_snp_sl_9689	CM width	3.5022	8.8528	0.1536	22.5	32.5
3	3	26	solcap_snp_sl_14355	solcap_snp_sl_9689	plant width	5.5180	13.9255	0.2191	21.5	27.5
** 3	3	26	solcap_snp_sl_14355	solcap_snp_sl_9689	X mass	4.5407	11.7470	0.1991	22.5	32.5
3	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	convex width	5.6025	13.8198	0.2120	37.5	42.5
3	3	28	solcap_snp_sl_9689	solcap_snp_sl_9681	plant height	4.5094	10.3345	0.1974	25.5	31.5
3	3	28	solcap_snp_sl_9689	solcap_snp_sl_9681	Y mass	5.7227	15.0239	0.2325	23.5	31.5
** 4	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	convex width	3.9750	10.2036	0.1829	37.5	43.5
4	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	CM width	4.5294	8.4260	0.1853	37.5	43.5
4	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	plant width	3.8768	9.9017	0.1838	37.5	43.5
4	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	X mass	3.8156	9.7282	0.1837	37.5	43.5
4	3	28	solcap_snp_sl_9689	solcap_snp_sl_9681	convex area	3.1310	7.7809	0.1508	22.5	32.5
4	3	30	solcap_snp_sl_9689	solcap_snp_sl_9681	plant area	3.8685	9.9594	0.1672	23.5	33.5
* 5	3	22	solcap_snp_sl_14355	solcap_snp_sl_9689	CM height	3.6770	9.3886	0.1414	21.5	27.5
5	3	22	solcap_snp_sl_14355	solcap_snp_sl_9689	plant width	3.4953	9.3017	0.1806	21.5	27.5
5	3	25	solcap_snp_sl_14355	solcap_snp_sl_9689	plant height	3.6851	8.5381	0.1738	21.5	31.5
5	3	25	solcap_snp_sl_14355	solcap_snp_sl_9689	Y mass	3.4687	9.9830	0.1673	21.5	31.5
** 5	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	convex width	3.7859	9.8306	0.1891	37.5	43.5
5	3	39	solcap_snp_sl_21215	solcap_snp_sl_9663	CM width	4.0630	7.4955	0.1924	35.5	39.5
5	5	107	SL3.0ch05-65105663	SL3.0ch05-66111590	plant height	3.4091	8.9327	0.1778	104.5	114.5
5	12	56	SL3.0ch12-62154155	solcap_snp_sl_19345	CM height	3.2828	8.2102	0.1360	54.5	59.5
6	2	72	SL3.0ch02-45885016	SL3.0ch02-44375028	X mass	3.4765	9.4924	-0.2178	69.5	73.5
6	2	72	SL3.0ch02-45885016	SL3.0ch02-44375028	CM width	3.2455	8.4550	-0.2189	69.5	73.5
6	2	45	solcap_snp_sl_18519	SL3.0ch02-49265134	plant width	3.4108	6.4576	-0.1669	42.5	47.5
* 6	3	22	solcap_snp_sl_14355	solcap_snp_sl_9689	convex width	5.3238	10.2506	0.2103	21.5	26.5
6	3	22	solcap_snp_sl_14355	solcap_snp_sl_9689	plant width	4.7309	9.1511	0.1976	21.5	25.5
6	3	25	solcap_snp_sl_14355	solcap_snp_sl_9689	plant height	4.5107	7.6902	0.1896	21.5	31.5
6	3	23	solcap_snp_sl_14355	solcap_snp_sl_9689	CM width	3.6627	6.2716	0.1887	21.5	27.5
6	3	22	solcap_snp_sl_14355	solcap_snp_sl_9689	X mass	3.4765	5.8012	0.1705	21.5	26.5
6	3	25	solcap_snp_sl_14355	solcap_snp_sl_9689	Y mass	3.3918	9.3283	0.1708	21.5	31.5
** 6	3	38	solcap_snp_sl_21215	solcap_snp_sl_9663	Wilting Score 2016	3.5258	7.3736	-0.1726	35.5	39.5
6	3	38	solcap_snp_sl_21215	solcap_snp_sl_9663	convex area	3.4328	9.0796	0.1953	34.5	39.5
6	3	38	solcap_snp_sl_21215	solcap_snp_sl_9663	plant area	3.3019	8.6697	0.1902	34.5	39.5
6	4	4	SL3.0ch04-60431371	solcap_snp_sl_11543	convex width	3.1855	6.0199	0.1627	1.5	10.5
6	5	100	solcap_snp_sl_22649	SL3.0ch05-65105663	plant height	3.6115	9.4852	0.2103	95.5	103.5
6	6	79	solcap_snp_sl_14458	SL3.0ch06-39435402	Wilting Score 2016	4.0770	8.7626	-0.1871	76.5	81.5
6	6	81	solcap_snp_sl_14458	SL3.0ch06-39435402	Wilting Score 2019	3.2673	11.0473	-0.1621	78.5	81.5
6	10	53	solcap_snp_sl_33168	SL3.0ch10-63377492	plant width	3.8661	7.6897	-0.1811	50.5	54.5
6	10	53	solcap_snp_sl_33168	SL3.0ch10-63377492	convex width	3.4883	6.8155	-0.1714	50.5	54.5
6	12	37	solcap_snp_sl_1525	solcap_snp_sl_1572	CM height	4.1755	10.7222	0.1837	33.5	40.5
6	12	42	solcap_snp_sl_58807	solcap_snp_sl_9707	Y mass	3.3249	8.5939	0.1651	40.5	43.5

937