

1 **Title:** Alpha variant versus D614G strain in the Syrian hamster model.

2 **Author list:** Maxime Cochin^{*1}, Léa Luciani^{*1}, Franck Touret¹, Jean-Sélim Driouich¹, Paul-
3 Rémi Petit¹, Grégory Moureau¹, Cécile Baronti¹, Caroline Laprie², Laurence Thirion¹, Piet
4 Maes², Robbert Boudewijns⁴, Johan Neyts⁴, Xavier de Lamballerie¹, Antoine Nougairède¹

5 **Affiliations:**

6 ¹ Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille,
7 France

8 ² Laboratoire Vet-Histo, Marseille, France

9 ³ KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of
10 Clinical and Epidemiological Virology, Rega Institute, Leuven, Belgium

11 ⁴ KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of
12 Virology and Chemotherapy, Rega Institute, Leuven, Belgium

13 * These authors contributed equally to this article.

14 **Corresponding author:** Antoine Nougairède (antoine.nougairede@univ-amu.fr)

15 **Key words:** SARS-CoV-2; B.1.1.7; B.1.351; B.1.167.2; Alpha variant; Beta variant; Delta
16 variant; Preclinical; hamster model; transmission; replicative fitness; host response

17 **Words count:** 4689

18 **Abstract**

19 Late 2020, SARS-CoV-2 Alpha variant from lineage B.1.1.7 emerged in United Kingdom and
20 gradually replaced the G614 strains initially involved in the global spread of the pandemic. In
21 this study, we used a Syrian hamster model to compare a clinical strain of Alpha variant with
22 an ancestral G614 strain. The Alpha variant succeeded to infect animals and to induce a
23 pathology that mimics COVID-19. However, both strains replicated to almost the same level
24 and induced a comparable disease and immune response. A slight fitness advantage was noted
25 for the G614 strain during competition and transmission experiments. These data do not
26 corroborate the epidemiological situation observed during the first half of 2021 in humans nor
27 reports that showed a more rapid replication of Alpha variant in human reconstituted bronchial
28 epithelium.

29 **Introduction**

30 The genetic evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
31 virus is a constant concern for medical and scientific communities. From January 2020, viruses
32 carrying the spike D614G mutation emerged in several countries[1–3]. In June, D614G SARS-
33 CoV-2 lineage B.1 became the dominant form of circulating virus worldwide and replaced the
34 initial SARS-CoV-2 strains related to the outbreak in Wuhan, China. Experimental data from
35 human lung epithelium and animal models revealed that the D614G substitution increased virus
36 infectivity and transmissibility as compared to an original D614 strain[4]. However, it seems
37 that this G614 variant does not cause more severe clinical disease. In late 2020, three SARS-
38 CoV-2 variants sharing the N501Y spike mutation located in the receptor binding motif (RBM)
39 emerged almost simultaneously in the United Kingdom (Alpha variant from lineage B.1.1.7 ;
40 initially named VOC 202012/01)[5], in South Africa (Beta variant from lineage B.1.351)[6]
41 and in Brazil (P.1 variant from lineage B.1.1.28.1)[7]. As previously observed with the G614
42 strain, the Alpha variant spread rapidly and became dominant in United Kingdom in December
43 2020, and in many other European and non-European countries from February 2021
44 onwards[8]. The Alpha variant harbors 8 additional spike mutations, including substitutions
45 and deletions, compared to G614 circulating strains. From May 2021, a new variant that
46 appeared in India, the Delta variant (lineage B.1.167.2), spread suddenly throughout the world,
47 totally surpassing Alpha variant. This Delta variant possesses 8 spike mutations in comparison
48 with G614 strains. The last variant of concern recognised by the WHO is the Omicron (lineage
49 B.1.1.529) variant which appeared in November 2021 in Africa and which bears 32 spike
50 mutations in comparison with G614 strain. The Omicron variant is currently spreading in many
51 countries and is strongly suspected to become the new dominant variant. The regular emergence
52 of variants that become world dominant in a few months, overtaking previous variants, seems
53 to be associated with an improved affinity of the viral spike protein for the human angiotensin-

54 converting enzyme 2 (ACE2) receptor[9,10]. In addition, the public health strategy to control
55 the COVID-19 pandemic is currently based on the massive distribution of vaccines throughout
56 the world. These efforts have been successful in reducing the number of infections and the
57 burden of COVID-19 waves. However, all currently available approved vaccines were
58 developed from the genetic sequence of the spike protein of the original virus that emerged in
59 Wuhan in 2019. The issue now is whether the regular emergence of new variants with multiple
60 mutations in the spike protein will compromise the effectiveness of the vaccine strategy.

61 We recently described the fitness advantage of Alpha variant using a model of reconstituted
62 bronchial human epithelium[11]. In the present work, we compared the phenotype of the Alpha
63 variant (hCoV-103 19/Belgium/rega-12211513/2020 strain) with that of a G614 strain
64 (Germany/BavPat1/2020 strain) in the Syrian hamster (*Mesocricetus auratus*) model. The study
65 includes comparison of viral replication kinetics, transmissibility, lung pathology, clinical
66 course of the disease and immunological response.

67 **Materials and methods**

68 **Cells and viruses**

69 VeroE6 cells (ATCC CRL-1586) were grown at 37°C with 5% CO₂ in minimal essential
70 medium (MEM) supplemented with 1% non-essential amino acids, 1% Penicillin/Streptomycin
71 and 7% of heat-inactivated fetal bovine serum (FBS) (all from ThermoFisher Scientific).
72 VeroE6/TMPRSS2 cells (NIBSC 100978) were grown in the same medium supplemented with
73 2% of G-418 (ThermoFisher Scientific).

74 All experiments with infectious virus were conducted in biosafety level (BSL) 3 laboratory.
75 The SARS-CoV-2 strain BavPat1/2020 (G614 strain), supplied through European Virus
76 Archive GLOBAL (European Virus Archive Global # 026 V-03883), was kindly provided by

77 Christian Drosten (Berlin, Germany). The SARS-CoV-2 Alpha variant (lineage B.1.1.7)
78 hCoV104 19/Belgium/rega-12211513/2020 strain (EPI_ISL_791333), used for *in vivo*
79 experiments, was isolated from a naso-pharyngeal swab from a traveler returning to Belgium
80 in December 2020. The SARS-CoV-2 BetaCoV/France/IDF0372/2020 strain (D614 strain) was
81 supplied through European Virus Archive Global (European Virus Archive Global # 014V-
82 03890). Virus stocks of these strains were produced using VeroE6 cells (passage history: 2 for
83 G614 strain and Alpha variant, 3 for D614 strain). The SARS-CoV-2 Alpha variant (lineage
84 B.1.1.7), hCoV-19/France/PAC-7b-exUK/2021 strain (EPI_ISL_918165), used for
85 seroneutralization assays, was isolated from a 18 years-old patient. This strain is available
86 through European Virus Archive Global (European Virus Archive Global # 001V-04044). The
87 SARS-CoV-2 Beta variant (lineage B.1.351), hCoV-19/France/PAC-1299/2021 strain
88 (EPI_ISL_1834082), was isolated from a naso-pharyngeal swab in France in 2021. This strain
89 is available through European Virus Archive Global (European Virus Archive Global # 001V-
90 04067). The SARS-CoV-2 Delta variant (B.1.617.2), hCoV-19/France/PAC-0610/2021 strain
91 (EPI_ISL_2838050), was isolated from a 87 years-old patient in France in 2021. This strain is
92 available through European Virus Archive Global (European Virus Archive Global # 001V-
93 04282). Virus stocks of these variant were produced using VeroE6 TMPRSS2 cells (passage
94 history: 2 for Alpha variant, 1 for Beta and Delta variants).

95 All virus stocks were characterized by full-genome sequencing (Ion Torrent) in order to verify
96 the absence of additional mutations, especially in the spike-coding region when compared to
97 sequences of seeded viruses.

98 ***In vivo* experiments**

99 Following approval by the local ethical committee (C2EA—14) and the French ‘Ministère de
100 l’Enseignement Supérieur, de la Recherche et de l’Innovation’ (APAFIS#23975), *in vivo*

101 experiments were performed in accordance with the French national guidelines and the
102 European legislation covering the use of animals for scientific purposes.

103 For each experiment, groups of three-week-old female Syrian hamsters (Janvier Labs) were
104 intranasally infected under general anesthesia (isofluorane) with 50 μ L containing 2×10^3 , 10^4 or
105 20 TCID₅₀ of virus diluted in 0.9% sodium chloride solution. Mock-infected animals were
106 intranasally inoculated with 50 μ l of 0.9% sodium chloride solution. Comparative and
107 competition experiments were performed twice (two independent experiments with groups of
108 6 animals). Pooled data from both experiments (12 animals) were presented. Groups of 4
109 animals were used for the histology experiment. Groups of 6 to 12 animals were used for
110 transmission experiments. Animals were maintained in ISOcage P - Bioexclusion System
111 (Techniplast) with unlimited access to water/food and 14h/10h light/dark cycle. Animals were
112 monitored and weighed daily throughout the duration of the study to detect the appearance of
113 any clinical signs of illness/suffering. Nasal washes were performed under general anesthesia
114 (isoflurane). Blood and organs were collected after euthanasia (cervical dislocation; realized
115 under general anesthesia (isofluorane)).

116 **Organ collection**

117 Nasal washes were performed with 150 μ l 0.9% sodium chloride solution which was transferred
118 into 1.5mL tubes containing 0.5mL of 0.9% sodium chloride solution, then centrifuged at
119 16,200g for 10 minutes and stored at -80°C. Lung, gut and blood samples were collected
120 immediately after the time of sacrifice. Left pulmonary lobes were washed in 10mL of 0.9%
121 sodium chloride solution, blotted with filter paper, weighed and then transferred into 2mL tubes
122 containing 1mL of 0.9% sodium chloride solution and 3mm glass beads. Guts (part of small
123 and large bowels) were empty of their alimentary bolus, weighed and then transferred into 2mL
124 tubes containing 1mL of 0.9% sodium chloride solution and 3mm glass beads. Left pulmonary

125 lobes and guts were crushed using a Tissue Lyser machine (Retsch MM400) for 20min at 30
126 cycles/s and then centrifuged 10min at 16,200g. Supernatant media were transferred into 1.5mL
127 tubes, centrifuged 10 min at 16,200g and stored at -80°C. One milliliter of blood was harvested
128 in a 2mL tube containing 100µL of 0.5M EDTA (ThermoFischer Scientific) and then
129 centrifuged 10 min at 16,200g to obtain plasma. Serum samples were collected from blood
130 harvested in a 2mL tube incubate 15 min at room temperature and then centrifuged 10 min at
131 16,200g. Blood-derived samples were stored at -80°C. To assess the expression level of seven
132 cytokines in lungs, right apical lobes were collected into 2mL tubes containing 0.75mL of
133 Qiazol lysis reagent (Qiagen) and 3mm glass beads. They were then crushed using a Tissue
134 Lyser machine (Retsch MM400) for 10min at 30 cycles/s and stored at -80°C.

135 **TCID₅₀ assay**

136 Virus titration was performed using 96-well culture plates containing confluent cells (VeroE6
137 cells, except for competition experiments between G614 and D614 strains where VeroE6
138 TMPRSS2 cells were used) inoculated with 150µL per well of four-fold dilutions of samples
139 (dilution with medium supplemented with 2.5% FBS). After 6 days of incubation (37°C, 5%
140 CO₂) the absence or presence of cytopathic effect in each well was read and infectious titers
141 were estimated using the Reed & Muench method[12].

142 **Molecular biology**

143 For viral quantification, nucleic acids from each sample were extracted using QIAamp 96 DNA
144 kit and Qiacube HT robot (both from Qiagen). Viral RNA yields were measured using a RT-
145 qPCR assay targeting the *rdrp* gene as previously described[13].

146 To analyze samples from competition and transmission experiments (ie. with animal infected
147 with a mix of both viruses), we used two specific RT-qPCR assays targeting the NSP6 coding
148 region (each specifically detecting one of the competing viruses) to determine the proportion

149 of each viral genome. Prior to PCR amplification, RNA extraction was performed as described
150 above. RT-qPCR were performed with SuperScript III Platinum One-Step qRT-PCR kit
151 (SuperScript™ III Platinum™ One-Step qRT-PCR kit, universal Invitrogen) using 2.5µL of
152 nucleic acid extract and 7.5µL of RT-qPCR reagent mix. Using standard fast cycling
153 parameters, i.e., 50°C for 15min, 95°C for 5min, and 40 amplification cycles (15 sec at 95°C
154 followed by 45 sec at 55°C). RT-qPCR reactions were performed on QuantStudio 12K Flex
155 Real-Time PCR System (Applied Biosystems) and analyzed on QuantStudio 12K Flex Applied
156 Biosystems software v1.2.3. Viral RNA quantities were calculated using serial dilutions of T7-
157 generated synthetic RNA standards. Primers and probes sequences were: Fwd: 5'-
158 CATGGTTGGATATGGTTG-3'; Rev: 5'-GATGCATACATAAACACAG-3'; Probe that
159 specifically detect the G614 virus: 5'-FAM-GTCTGGTTTAA-BHQ1-3'; Probe that
160 specifically detect the 201/501YV.1 variant: 5'-VIC-TAGTTGAAGCT-BHQ1-3'.

161 To quantify D614:G614 ratios using a previously described method[4], 498bp fragment that
162 contained the spike mutation D614G was amplified from extracted RNA (QIAamp 96 DNA kit
163 and Qiacube HT robot). RT-qPCR were performed with SuperScript III Platinum One-Step
164 qRT-PCR kit (SuperScript™ III Platinum™ One-Step qRT-PCR kit, universal Invitrogen)
165 using 5µL of nucleic acid extract and 20µL of RT-qPCR reagent mix using cycling parameters,
166 i.e., 45°C for 30min, 94°C for 2min, and 40 amplification cycles (30sec at 94°C followed by
167 45 sec at 56°C and 2min at 72°C) followed by a last step at 72°C for 10min. RT-qPCR reactions
168 were performed on 2720 Thermal cycler (Applied Biosystems). Primer sequences used for this
169 first amplification were: Fwd: 5'-TGCACCACTGTTGTGGACCT-3' and Rev: 5'-
170 ACGTGCCCGCCGAGGAGAA-3'. The amplicons were then purified using NucleoFast 96
171 PCR Plate (Macherey-Nagel) coupled to a vacuum pump. Sequencing reactions using purified
172 RT-PCR products were performed with BigDye Terminator v1.1 cycle sequencing kit (Applied
173 Biosystems) using standard cycling parameters, i.e., 96°C for 1min and 25 cycles (10sec at

174 96°C, 5sec at 50°C and 3min at 60°C) and a 2720 Thermal cycler (Applied Biosystems). For
175 each RT-PCR product, two sequencing reactions were performed using the following primers:
176 Fwd: 5'-GGTTAACAGGCACAGGTGTTCTACTGAG-3' and Rev: 5'-
177 CTAGCGCATATACCTGCACCAATGGG-3'. The sequencing reactions were purified using
178 Sephadex G-50 Medium (Cytivia) and analyzed on a 3500XL Genetic Analyser (Applied
179 Biosystems). The proportion of electropherogram peak height representing mutation site of
180 each competition was analysed using QSVanalyser program[14]. To calculate the amounts of
181 each virus present in our samples, we calculated the average proportion of peak heights obtained
182 for each nucleotide with the two primers. We then multiplied the RNA copy number given by
183 the RDRP-based real-time quantitative PCR by this average proportion. Consistency and
184 accuracy of this competition assay were validated using RNA extracts from D614 and G614
185 viruses mixed at ratios of 10:0, 9:1, 7:3, 5:5, 3:7, 1:9 and 0:10 (Supplemental Table 1).

186 To assess the expression level of seven cytokines in lungs, 150µL of chloroform was added to
187 crush lung samples. After, centrifugation (15min at 4°C and 12000g), 300µL of the aqueous
188 phase was used for RNA extraction using EZ1 RNA tissue mini kit and EZ1 advanced XL robot
189 (both from Qiagen). Quantitative RT-qPCR were performed using primers previously
190 described by Dias de Melo *et al* [15] using QuantiNova SYBR® Green RT-PCR Kit (Qiagen)
191 according to the manufacturer instructions. RT-qPCR reactions were performed on
192 QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems) and analyzed on
193 QuantStudio 12K Flex Applied Biosystems software v1.2.3. All cytokine mRNA
194 quantifications were performed using serial dilutions of synthetic standards. Data were
195 normalized to γ -actin reference gene relative expression[15].

196 **Seroneutralization assay**

197 One day prior to infection, 5×10^4 VeroE6/TMPRSS2 cells per well were seeded in 100 μ L assay
198 medium (containing 2.5% FBS) in 96 well culture plates. The next day, 25 μ L of a virus mix
199 diluted in medium was added to the wells. The amount of virus working stock used was
200 calibrated prior to the assay, based on a replication kinetics, so that the viral replication was
201 still in the exponential growth phase for the readout as previously described[16,17]. This
202 corresponds here to a MOI of 0.002. Then six 2-fold serial dilutions of hamster sera starting at
203 1/10 were added to the cells (25 μ L/well, in assay medium) in duplicate. In addition, three 2-
204 fold dilutions of a negative serum (from uninfected animals) starting at 1/10 were added to the
205 plate to assess virus replication in presence of hamster serum (called ‘negative serum’ below).
206 Four ‘virus control’ wells were supplemented with 25 μ L of assay medium to verify viral
207 replication without serum. Plates were first incubated 15min at room temperature and then 2
208 days at 37°C prior to quantification of the viral genome by real-time RT-qPCR as previously
209 described[18]. Briefly, nucleic acid from 100 μ L of cell supernatant were extracted using
210 QIAamp 96 DNA kit and Qiacube HT robot (both from Qiagen). Viral RNA was quantified by
211 real-time RT-qPCR (GoTaq 1 step RT-qPCR kit, Promega). Quantification was provided by
212 serial dilutions of an appropriate T7-generated synthetic RNA standard. RT-qPCR reactions
213 were performed on QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems) and
214 analyzed using QuantStudio 12K Flex Applied Biosystems software v1.2.3. Primers and probe
215 sequences, which target SARS-CoV-2 N gene, were: Fw: 5'-GGCCGCAAATTGCACAAT-
216 3'; Rev: 5'-CCAATGCGCGACATTCC-3'; Probe: 5'-FAM-
217 CCCCCAGCGCTTCAGCGTTCT-BHQ1-3'. Percentage of viral inhibition was calculated as
218 follows: $100 \times (\text{mean quantity for negative serum} - \text{sample quantity}) / \text{mean quantity for negative serum}$. The 90% and 99% inhibition dilution factor were determined using logarithmic
219 interpolation as previously described[16,18].

221 **Histology**

222 Animal handling and hamster infections were performed as described above in the "in vivo
223 experiments" section. Left pulmonary lobes were harvested after intratracheal instillation of a
224 4% (w/v) formaldehyde solution and fixed 72h at room temperature with a 4% (w/v)
225 formaldehyde solution and then embedded in paraffin. Histological analysis was performed as
226 previously described[13]. Briefly, 3.5- μ m tissue sections were stained with hematoxylin-eosin
227 (H&E) and analyzed blindly by a certified veterinary pathologist. Different lung compartments
228 were examined: (1) bronchial and alveolar walls: a score of 0 to 4 was assigned based on the
229 severity of inflammation; (2) alveoli: a score of 0 to 2 was assigned based on the presence and
230 severity of hemorrhagic necrosis; and (3) vessel changes (leukocyte accumulation in the
231 subendothelial space and tunica media): the absence or presence was scored 0 or 1, respectively.
232 A cumulative score was then calculated and assigned to a severity grade (see Supplemental
233 Table 2).

234 **Graphical representations and statistical analysis**

235 Timelines (Figure 1.a and 2.a,b) were created on *biorender.com*. Graphical representations and
236 statistical analysis were performed using GraphPad Prism 7 software (GrapPad software). For
237 each group of data we applied the Shapiro-Wilk normality test. Then a two-by-two comparison
238 of groups was performed using either an unpaired t test with or without a Welch's correction if
239 the variance did not assume an equal distribution (according to a Fisher test) or a Mann-Whitney
240 test if the distribution was non-Gaussian. All statistical tests performed were two-sided when
241 relevant.

242 **Results**

243 First, to detect modifications of the clinical course of the disease following infection with the
244 Alpha variant, groups of 12 three-week-old female Syrian hamsters were intranasally infected
245 with 50 μ l containing 2x10³ TCID₅₀ of Alpha variant or G614 strain (Figure 1.a). Follow-up of

246 these animals until 7 days post-infection (dpi) showed with both strains a lack of weight gain
247 compared to mock-infected group. Normalized weights (i.e. % of initial weights) of animals
248 infected with Alpha variant were significantly higher than those of G614 group at 3, 4 and 5
249 dpi (*p-values* between 0.0403 and 0.0007) (Figure 1.b). However, this difference seems to be
250 the result of a delayed onset of disease for Alpha variant since significant difference of
251 normalized weights compared to mock-infected group began at 2 dpi for animals infected with
252 G614 strain and at 3 dpi for those infected with the Alpha variant.

253 Second, the lung pathological impairments induced by both strains was assessed in groups of
254 four hamsters infected with 10^4 TCID₅₀ of virus (Supplemental Figure 1). Lungs collected at 5
255 dpi showed that both strains induced marked to severe pulmonary pathological changes without
256 significant difference regarding cumulative scores (Supplemental Figure 1.a).

257 To further investigate viral replication, groups of 12 three-week-old female Syrian hamsters
258 were intranasally infected with 50 μ l containing 2×10^3 TCID₅₀ of Alpha variant or G614 strain
259 and several tissues were collected at different time points (Figure 1.a). Viral RNA quantification
260 was performed using a RT-qPCR assay (i) in lung and nasal wash samples collected at 2, 4 and
261 7 dpi, and (ii) in blood and gut samples collected at 2 and 4 dpi. Infectious titers were
262 determined using a TCID₅₀ assay in lungs and nasal washes at 2 and 4 dpi. Overall, the results
263 indicated that the Alpha variant properly replicate in the hamster gut and respiratory tract.
264 However, higher viral RNA yields were found in all samples from animals infected with G614
265 strain (difference ranged from 0.085 to 0.801 log₁₀). This difference was significant in lung and
266 gut at any time point (*p values* ranging between 0.0332 and 0.0084) (Figure 1.c.d.e). Results of
267 plasma did not show any significant difference (Supplemental Figure 2.a). A similar pattern
268 was observed when assessing infectious viral loads using a TCID₅₀ assay (differences ranged
269 from 0.0343 to 0.389 log₁₀) but no significant difference was found (Figure 1.f.g).

270 To detect more subtle differences of viral replication *in vivo*, we performed competitions
271 experiments as previously described[9,19]. Groups of 12 animals were simultaneously infected
272 intranasally with 50µl containing 50% (10^3 TCID₅₀) of each viral strain. Lungs, nasal washes
273 and plasma were collected at 2 and 4 dpi (Figure 1.a). Using two specific RT-qPCR systems,
274 we estimated in all samples the proportion of each viral genome in the viral population
275 (expressed as G614 strain /Alpha variant ratios in Figure 1.h.i). Once again, results revealed
276 that G614 strain seems to replicate a somewhat more efficiently and supplants progressively
277 the Alpha variant. Indeed, G614 strain/Alpha variant estimated ratios at 4dpi were significantly
278 higher than those at 2 dpi in nasal washes ($p=0.0001$). Moreover, ratios at 4 dpi in nasal washes
279 were also significantly higher than those in the infecting inoculum ($p=0.022$) (Figure 1.i). By
280 contrast, no significant difference was found in lungs (Figure 1.h) and plasma (Supplemental
281 Figure 2.b).

282 To obtain a clearer picture, we compared the transmissibility of both strains in two different *in*
283 *vivo* experiments.

284 During the first experiment, groups of 12 animals were simultaneously infected intranasally
285 with 50µl containing a low dose of each viral strain (total: 20 TCID₅₀). These animals, called
286 ‘donors’, firstly housed individually, were co-housed at 2 dpi with an uninfected animal, called
287 ‘contact’, during a period of 6 hours in a new cage. Then, donors returned in their initial cages
288 and were sacrificed at 3 dpi. Contact animals were sacrificed at 3 days post-contact (dpc)(Figure
289 2.a). Using the two specific RT-qPCR systems used for competition experiments, we estimated
290 in all samples (nasal washes and lungs) the proportion of each viral genome in the viral
291 population (Figure 2.c). Data from lungs of donors showed for two animals, an equivalent
292 proportion of both viruses (from 40% to 60% of each strain); for five animals, a majority
293 (>60%) of G614 virus; and for the five remaining animals, a majority (>60%) of Alpha variant
294 virus. However, we did not find the same distribution in nasal washes in which we observed:

295 for eight animals, an equivalent proportion of both viruses; for four animals, a majority of G614
296 virus; and for no animal, a majority of Alpha variant virus. Consistently with this observation,
297 we found a large majority (>75%) of G614 virus in lungs and nasal washes of eight contacts,
298 and only two and one animals exhibited a large majority (>75%) of Alpha variant virus in lungs
299 and nasal washes respectively (Figure 2.b). When analyzing the data from each pair of animals,
300 we observed an increase of the proportion of G614 virus between the nasal wash of the donor
301 and lungs of the contact in almost all cases (10/12). To confirm the suitability of this low-dose
302 competition procedure, we applied it to compare the transmissibility of G614 and D614 strains
303 (Supplemental Figure 3) since several studies already demonstrated that G614 strains were
304 more transmittable than D614 strains[4,20]. We used for these experiments groups of 6 animals
305 and a previously described protocol to estimate the proportion of each viral genome in the viral
306 population[4]. As expected, we found a large majority of G614 strain in almost all lungs and
307 nasal washes of contact animals at 3 dpc confirming the effectiveness of this method to compare
308 the transmission of SARS-CoV-2 strains.

309 To offset the impact of the superior G614 replication on transmissibility assessment, we
310 repeated a similar experiment in which we modified two parameters to co-house contact
311 animals with donors carrying an equivalent proportion of both viruses in nasal washes as well
312 as possible: donors were infected intranasally using a G614 strain:Alpha variant ratio of 6:14
313 (ie 30% and 70% of G614 strain and Alpha variant respectively) of and were co-housed with
314 contact animals at 1 dpi. Moreover, we used group of ten animals and contact animals were
315 sacrificed at 2 dpc in order to determine the dominant strain at early stage of infection. Nasal
316 washes collected from donors right after the co-housing at 1 dpi showed for half of the animals
317 a proportion of G614 strain ranging from 20 to 80%, for four animals a proportion of G614
318 strain ranging from 0 to 20% and for one animal a proportion of G614 strain upper than 80%.
319 Of note, one contact (pair #10) was not infected during co-housing. Among the 8 contact

320 animals co-housed with donors that carried a majority (>50%) of Alpha variant in nasal washes,
321 5 carried a large majority (>75%) of G614 strain in almost all samples (nasal washes at 1 and 2
322 dpc, and lungs at 2 dpc) while only 3 carried a large majority of Alpha variant. For the remaining
323 contact animal co-housed with a donor that carried a majority of G614 strain (pair #1), both
324 strains were found in nasal washes at equivalent level while only G614 strain was in majority
325 in lungs.

326 Altogether, our results suggest that the replication of both G614 strain and Alpha variant were
327 highly comparable in hamsters. Nonetheless, using a more sensitive method, we observed that
328 the Alpha variant is outcompeted by the G614 strain; it results in an advantage for the G614
329 strain during transmission experiments. Notably, such results are not in line with experimental
330 data *ex vivo* (human epithelial cultures grown at the air liquid interface) and with
331 epidemiological observations.

332 We then compared transcriptional early immune signatures in lungs from animals sacrificed at
333 4 dpi following intranasal infection with 50 μ l containing 2x10³ TCID₅₀ of Alpha variant or
334 G614 strain. The expression level of seven cytokines (Interferon- γ , TNF- α , IL-6, IL-10, IL-1 β ,
335 Cxcl-10, Ccl5) was quantified using RT-qPCR assays (Supplemental Figure 4; expressed as
336 mRNA copies/ γ -actin copies). Infection by both viral strains induced an important increase of
337 CXCL10, CCL5, IFN γ , Il-6 and Il-10 expression levels ($p<0.0001$) and a moderate increase of
338 Il-1 β ($p=0.0014$ for G614 strain and $p=0.0281$ for Alpha variant) and TNF α ($p=0.0389$ for
339 G614 strain and $p=0.0350$ for Alpha variant) expressions levels to mock-infected animals
340 (Supplemental Figure 2). Comparison between animals infected with Alpha variant and G614
341 strain did not show any significant differences of cytokines expression levels. This suggests
342 that the early immune response induced by both viral strains is similar, in line with a recent
343 study that did not present major differences except an upregulation of Il-6, Il-10 and IFN γ with
344 animals infected by Alpha variant[21].

345 Finally, we used sera collected at 7 dpi following intranasal infection with 50 μ l containing
346 2x10³ TCID₅₀ of Alpha variant (n=4) or G614 strain (n=4)(Figure 1.a) to assess the level of
347 protection against four circulating strains of SARS-CoV-2: the G614 strain, the Alpha variant,
348 a ‘South-African’ Beta variant (lineage B 1.351) and an ‘Indian’ Delta variant (lineage 1.617.2).
349 Sera were tested for the presence of antibodies using a 90-99% viral RNA Yield Reduction
350 Neutralization Test (YRNT90/YRNT99) (Figure 1.j.k). Overall, results showed that animals
351 infected with Alpha variant or G614 strains produced similar levels of neutralization antibodies
352 against these strains with a slight advantage for animals infected with Alpha variant for
353 YRNT99 titers against Alpha variant ($p =0.0299$) and Delta variant ($p =0.0369$). However, all
354 infected animals produced lower neutralization titers against the Beta variant. This difference
355 is significant with all animals when considering YRNT90 titers (p values between 0.0019 and
356 0.0450), and significant only with animals infected with Alpha variant when considering
357 YRNT99 titers ($p<0.0474$) (Supplemental Table 4). This suggests an effective cross-immunity
358 between Alpha variant, G614 strain and Delta variant but a reduced cross-protection against the
359 Beta variant. These data indicate that only an active circulation of Beta variant might increase
360 the risk of reinfection or failure of vaccination campaigns. This is in accordance with recently
361 reported epidemiological observation[22–25].

362 **Discussion**

363 Our results show that the Alpha variant induces a pathology that mimics human SARS-CoV-2
364 infection in the hamster model and can be used for preclinical analysis of vaccines and
365 therapeutic agents. These data corroborate those of a recent study in which the same strains, a
366 similar hamster model but higher virus inocula (10⁵ TCID₅₀) were used[21]. Since its
367 emergence in late 2020 in Europe, the Alpha variant spread across several continents and
368 became the major circulating strain in many countries. Moreover, data from reconstituted
369 human airway epithelia also showed a strong replicative fitness advantage for Alpha

370 variant[11]. Notably, our findings in the hamster model are not in line with these observations.
371 Of note *ex-vivo* models such as reconstituted human airway epithelia are less complex than *in*
372 *vivo* model, especially in term of immune response and viral replication dynamic. Moreover,
373 comparing fitness of strains that evolve in humans using a different species may be a significant
374 bias factor. Indeed, recent studies suggest that the affinity of the SARS-CoV-2 spike protein for
375 the ACE2 receptor is a species-dependent parameter[26,27]. Other unknown species-dependent
376 mutations located in other genomic regions could also explain the observed discrepancy.

377 Some recent studies regarding transmissibility of Alpha variant or Alpha-like viruses showed a
378 fitness advantage of these viruses on strains carrying D614G spike mutation in the hamster
379 model. Using low-dose inocula in the hamster model, one study showed a superiority of Alpha
380 variant when inoculated competitively and a more efficient transmission when inoculated
381 alone[28]. This study reported that Alpha variant is slightly more excreted than G614 strain at
382 the early stage of infection in hamsters, affecting viral transmission to contact animals. In
383 another study that used engineered rescued viruses derived from the USA_WA1/2020 strain,
384 the hamster model appeared useful to detect weak fitness advantages and increases in
385 transmissibility of viruses that carry the N501Y and A570D spike mutations[9]. However, the
386 role of other mutations located in other parts of the genome of Alpha variant [more than twenty
387 when compared to strains isolated in January-February 2020], was not taken into account using
388 this reverse genetics-based approach. Indeed, some studies reported that mutations located
389 outside in the gene coding for the spike protein can also modulate fitness, transmission and
390 virulence of SARS-CoV-2 strains[29,30].

391 Altogether, this suggests that the hamster model may possibly not be the best model to detect
392 weak fitness or transmissibility differences between clinical strains of SARS-CoV-2. Other
393 animal models such as the ferret (*Mustela putorius furo*) model that is already employed to
394 study the pathogenicity and transmissibility of other human respiratory viruses, could be

395 valuable tools in that case. Indeed, a recent work highlighted the importance of using multiple
396 animal models to compare the fitness and transmission of SARS-CoV-2 strains[31]. This study
397 failed to conclude on a clear advantage of Alpha variant over G614 strain in the hamster model,
398 but showed a clear fitness advantage of Alpha variant over a G614 strain in ferrets and two
399 mouse models.

400 **Acknowledgments**

401 This work was supported by the European Union's Horizon 2020 Research and Innovation
402 Programme under grant agreements no. 653316 (European Virus Archive goes global project:
403 <http://www.european-virus-archive.com/>) and also funded by REACTING/ANRS MIE. We thank
404 Noémie Courtin for her technical support and Géraldine Piorkowski for her help on the NGS
405 platform.

406 **Declaration of conflicting interests**

407 Authors declare that there is no conflict of interest

408 **References**

409 [1] Volz E, Hill V, McCrone JT, et al. Evaluating the Effects of SARS-CoV-2 Spike
410 Mutation D614G on Transmissibility and Pathogenicity. *Cell*. 2021;184:64-75.e11.

411 [2] Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and Functional Analysis of the
412 D614G SARS-CoV-2 Spike Protein Variant. *Cell*. 2020;183:739-751.e8.

413 [3] Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike:
414 Evidence that D614G Increases Infectivity of the COVID-19 Virus. *Cell*.
415 2020;182:812-827.e19.

416 [4] Plante JA, Liu Y, Liu J, et al. Spike mutation D614G alters SARS-CoV-2 fitness.
417 *Nature*. 2020;1-6.

418 [5] du Plessis L, McCrone JT, Zarebski AE, et al. Establishment and lineage dynamics of
419 the SARS-CoV-2 epidemic in the UK. *Science*. 2021;371:708–712.

420 [6] National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral
421 Diseases., editor. Emerging SARS-CoV-2 variants. 2021; Available from:
422 <https://stacks.cdc.gov/view/cdc/100655>.

423 [7] Sabino EC, Buss LF, Carvalho MPS, et al. Resurgence of COVID-19 in Manaus,
424 Brazil, despite high seroprevalence. *Lancet Lond Engl*. 2021;397:452–455.

425 [8] CoVariants [Internet]. [cited 2021 Apr 15]. Available from: <https://covariants.org/> per-
426 country.

427 [9] Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2
428 infection and transmission. *Nature*. 2021;1-9.

429 [10] Zahradník J, Marciano S, Shemesh M, et al. SARS-CoV-2 variant prediction and
430 antiviral drug design are enabled by RBD in vitro evolution. *Nat Microbiol.*
431 2021;6:1188–1198.

432 [11] Touret F, Luciani L, Baronti C, et al. Replicative Fitness of a SARS-CoV-2
433 20I/501Y.V1 Variant from Lineage B.1.1.7 in Human Reconstituted Bronchial
434 Epithelium. *mBio* [Internet]. 2021 [cited 2021 Dec 22]; Available from:
435 <https://journals.asm.org/doi/abs/10.1128/mBio.00850-21>.

436 [12] REED LJ, MUENCH H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT
437 ENDPOINTS12. *Am J Epidemiol.* 1938;27:493–497.

438 [13] Driouich J-S, Cochin M, Lingas G, et al. Favipiravir antiviral efficacy against SARS-
439 CoV-2 in a hamster model. *Nat Commun.* 2021;12:1735.

440 [14] Carr IM, Robinson JI, Dimitriou R, et al. Inferring relative proportions of DNA variants
441 from sequencing electropherograms. *Bioinformatics.* 2009;25:3244–3250.

442 [15] Melo GD, Lazarini F, Larrous F, et al. Attenuation of clinical and immunological
443 outcomes during SARS-CoV-2 infection by ivermectin. *EMBO Mol Med* [Internet].
444 2021 [cited 2021 Dec 22];13. Available from:
445 <https://onlinelibrary.wiley.com/doi/10.15252/emmm.202114122>.

446 [16] Touret F, Baronti C, Goethals O, et al. Phylogenetically based establishment of a
447 dengue virus panel, representing all available genotypes, as a tool in dengue drug
448 discovery. *Antiviral Res.* 2019;168:109–113.

449 [17] Delang L, Li C, Tas A, et al. The viral capping enzyme nsP1: a novel target for the
450 inhibition of chikungunya virus infection. *Sci Rep.* 2016;6:31819.

451 [18] Touret F, Gilles M, Barral K, et al. In vitro screening of a FDA approved chemical
452 library reveals potential inhibitors of SARS-CoV-2 replication. *Sci Rep.*
453 2020;10:13093.

454 [19] Fabritius L de, Nougairède A, Aubry F, et al. Attenuation of Tick-Borne Encephalitis
455 Virus Using Large-Scale Random Codon Re-encoding. *PLOS Pathog.*
456 2015;11:e1004738.

457 [20] Zhou B, Thao TTN, Hoffmann D, et al. SARS-CoV-2 spike D614G change enhances
458 replication and transmission. *Nature.* 2021;592:122–127.

459 [21] Abdelnabi R, Boudewijns R, Foo CS, et al. Comparing infectivity and virulence of
460 emerging SARS-CoV-2 variants in Syrian hamsters. *EBioMedicine.* 2021;68:103403.

461 [22] Zucman N, Uhel F, Descamps D, et al. Severe reinfection with South African SARS-
462 CoV-2 variant 501Y.V2: A case report. *Clin Infect Dis Off Publ Infect Dis Soc Am*
463 [Internet]. 2021 [cited 2021 Mar 31]; Available from:
464 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929064/>.

465 [23] Nonaka CKV, Franco MM, Gräf T, et al. Genomic Evidence of SARS-CoV-2
466 Reinfection Involving E484K Spike Mutation, Brazil. *Emerg Infect Dis* [Internet]. 2021

467 [cited 2021 Mar 31];27. Available from: https://wwwnc.cdc.gov/eid/article/27/5/21-0191_article.htm.

468

469 [24] Jangra S, Ye C, Rathnasinghe R, et al. SARS-CoV-2 spike E484K mutation reduces
470 antibody neutralisation. *Lancet Microbe*. 2021;2:e283–e284.

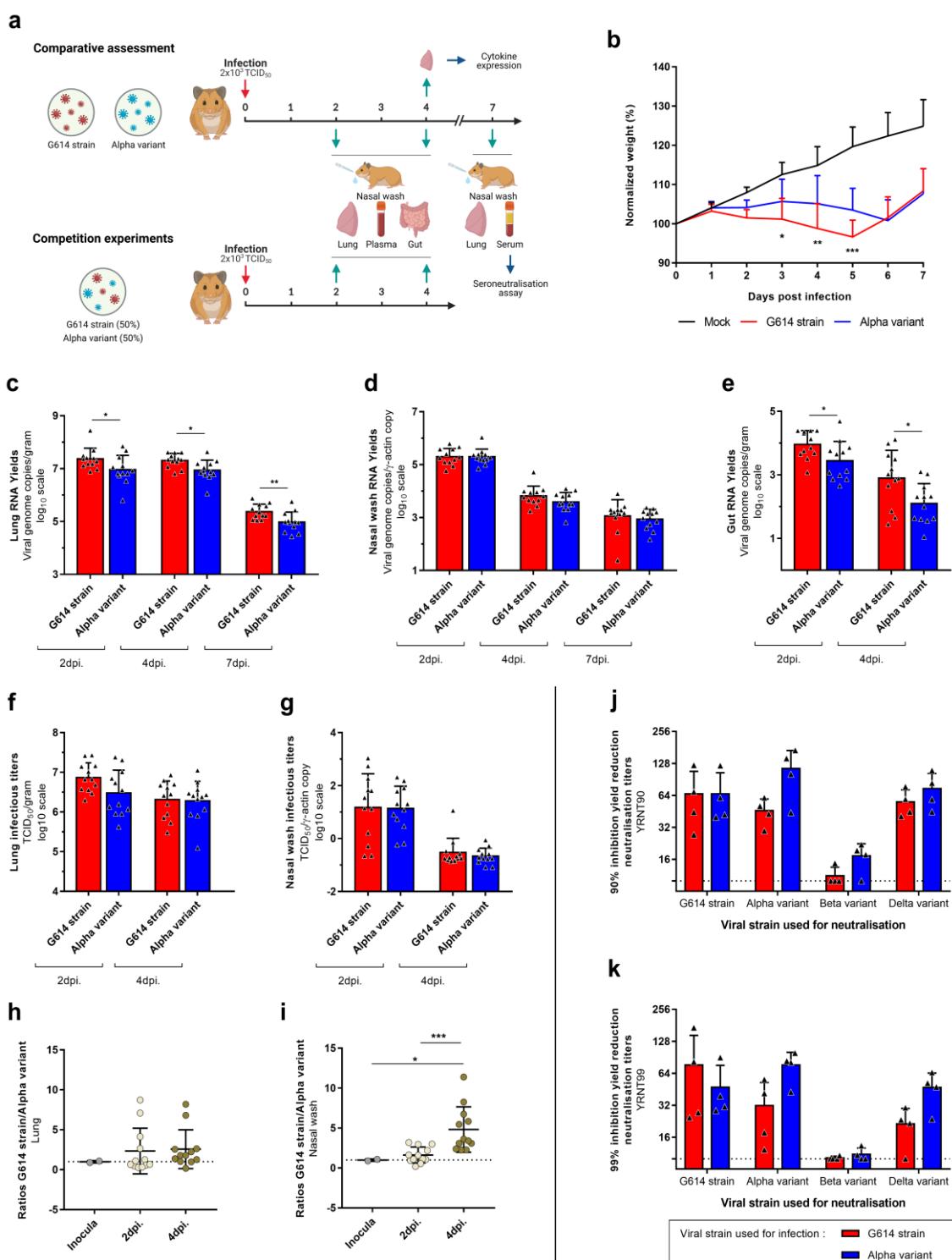
471 [25] Graham MS, Sudre CH, May A, et al. Changes in symptomatology, reinfection, and
472 transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study.
473 *Lancet Public Health*. 2021;6:e335–e345.

474 [26] Thakur N, Gallo G, Newman J, et al. SARS-CoV-2 variants of concern Alpha, Beta,
475 Gamma and Delta have extended ACE2 receptor host-ranges [Internet]. 2021 [cited
476 2021 Dec 22]. p. 2021.11.23.469663. Available from:
477 <https://www.biorxiv.org/content/10.1101/2021.11.23.469663v1>.

478 [27] Calcagnile M, Verri T, Tredici MS, et al. Codon usage, phylogeny and binding energy
479 estimation predict the evolution of SARS-CoV-2. *One Health*. 2021;13:100352.

480 [28] Mok BW-Y, Liu H, Deng S, et al. Low dose inocula of SARS-CoV-2 Alpha variant
481 transmits more efficiently than earlier variants in hamsters. *Commun Biol*. 2021;4:1–8.

482 [29] Saha I, Ghosh N, Sharma N, et al. Hotspot Mutations in SARS-CoV-2. *Front Genet*.
483 2021;12:753440.


484 [30] Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the
485 infectivity, fitness, and virulence of SARS-CoV-2. *Cell Host Microbe*. 2021;29:1788–
486 1801.e6.

487 [31] Ulrich L, Halwe NJ, Taddeo A, et al. Enhanced fitness of SARS-CoV-2 variant of
488 concern Alpha but not Beta. *Nature*. 2021;1–10.

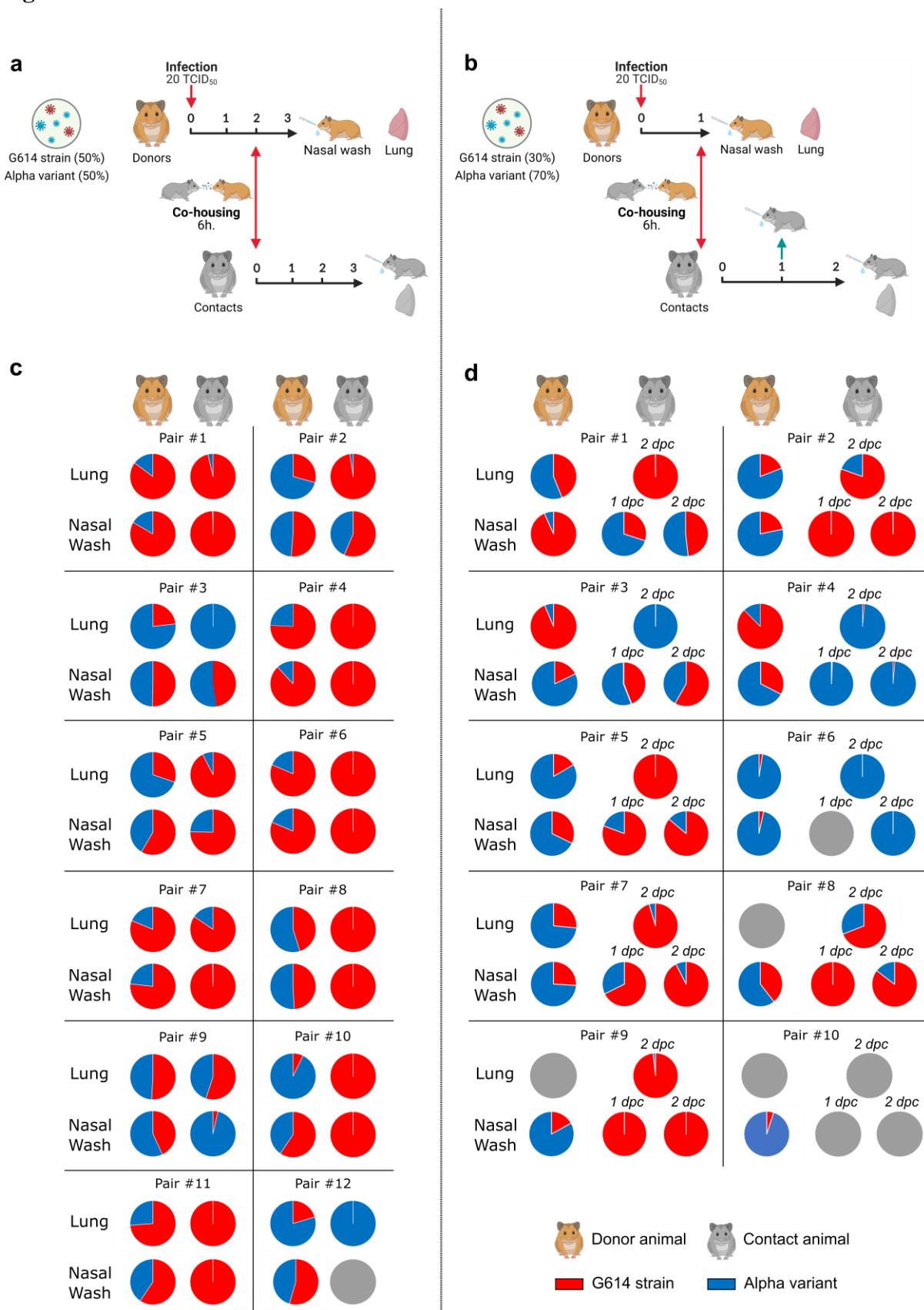
489

490 **Figures and Legends**

491 **Figure 1**

492

493 **Figure 1: Clinical follow-up, viral replication in Syrian hamsters and seroneutralization tests.** (a)


494 Experimental timeline. Groups of 12 hamsters were intranasally infected with 2×10^3 TCID₅₀ of Alpha

495 variant or G614 strain for comparative assessment, or with a mix (1:1) of both viral strains for

496 competition experiment (10^3 TCID₅₀ of each). (b) Comparative clinical follow-up. Weights are
497 expressed as normalized weights (i.e. % of initial weight). ***, ** and * symbols indicate that
498 normalized weights for the Alpha variant group are significantly higher than those of the G614 group
499 with a p-value ranging between 0.0001-0.001, 0.001-0.01, and 0.01-0.05, respectively (Two-way
500 ANOVA test with Tukey's post-hoc analysis). (c-e) Comparative assessment of viral RNA yields in
501 lungs (c), nasal washes (d) and guts (e), measured using a RT-qPCR assay. ** and * symbols indicate
502 that viral RNA yields for the Alpha variant group are significantly lower than those of the G614 group
503 with a p-value ranging between 0.001-0.01, and 0.01-0.05, respectively (Mann-Whitney and Unpaired
504 t tests). (f-g) Comparative assessment of infectious titers in lungs (f) and nasal washes (g), measured
505 using a TCID₅₀ assay. (h-i) Competition experiments. Two specific RT-qPCR assays were used to
506 measure the quantity of each virus in lungs (h) and nasal washes (i). Results are expressed as [G614/
507 Alpha variant] ratios. *** and * symbols indicate that ratios at 4 dpi are higher than those at 2 dpi or in
508 inocula with a p-value ranging between 0.0001-0.001 and 0.01-0.05, respectively (Mann-Whitney
509 tests). (j-k) Seroneutralization tests performed with sera from animals sacrificed at 7 dpi. 90% (j) and
510 99% (k) Yield Reduction Neutralization Titers (90-99YRNT) were determined against four strains of
511 SAR-CoV-2: G614 strain, Alpha variant, Beta variant and Delta variant. Results from statistical analysis
512 are presented in Supplemental Table 4. (b-k) Data represent mean \pm SD.

513

514 **Figure 2**

515

516 **Figure 2: Transmissibility assessment.**

517 (a-b) Experimental timelines. (a) A group of 12 hamsters, named ‘donors’, was intranasally infected
518 with an equal proportion of each viral strain for competition experiment (total: 20 TCID₅₀). At 2 dpi,
519 each donor was co-housed with a contact animal during a period of 6 hours. Donors and contacts were
520 sacrificed at 3 dpi and at 3 dpc respectively. (b) A group of 10 hamsters, named donors, was intranasally
521 infected with a mix (6:14) of G614 strain and Alpha variant for competition experiment (total: 20
522 TCID₅₀). At 1 dpi, each donor was co-housed with a contact animal during a period of 6 hours. Donors
523 and contacts were sacrificed at 1 dpi and at 2 dpc respectively. (c-d) Graphical representation of the
524 proportion of each virus found in lungs and nasal washes for each pair of animals in transmission
525 experimentations with 1:1 (c) and 6:14 ratios (d). Two specific RT-qPCR assays were used to measure
526 the quantity of each virus. Grey circles mean that no viral RNA was detected in these nasal washes and
527 lungs.