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Abstract

While many useful microstructural indices, as well as orientation distribution functions, can be
obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of
microstructural features that can be extracted from the full ensemble average propagator
(EAP). The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost
of a very lengthy acquisition. Compressed sensing (CS) has been used to make DSl more
practical by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the
EAP from significantly undersampled g-space data. We present a post mortem validation study
where we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also
multi-shell acquisitions with high fidelity. Human brain samples are imaged with high-resolution
DSl at 9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter
provides direct measurements of axonal orientations at microscopic resolutions, allowing us to
evaluate the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their
angular error and the presence of spurious peaks. We test two fast, dictionary-based, L2-
regularized algorithms for CS-DSI reconstruction. We find that, for a CS acceleration factor of
R=3, i.e., an acquisition with 171 gradient directions, one of these methods is able to achieve
both low angular error and low number of spurious peaks. With a scan length similar to that of
high angular resolution multi-shell acquisition schemes, this CS-DSI approach is able to
approximate both fully sampled DSI and multi-shell data with high accuracy. Thus it is suitable
for orientation reconstruction and microstructural modeling techniques that require either
grid- or shell-based acquisitions. We find that the signal-to-noise ratio (SNR) of the training data
used to construct the dictionary can have an impact on the accuracy of CS-DSI, but that there is
substantial robustness to loss of SNR in the test data. Finally, we show that, as the CS
acceleration factor increases beyond R=3, the accuracy of these reconstruction methods
degrade, either in terms of the angular error, or in terms of the number of spurious peaks. Our
results provide useful benchmarks for the future development of even more efficient g-space
acceleration techniques.


https://doi.org/10.1101/2021.02.11.430672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430672; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abbreviations:

dMRI — diffusion magnetic resonance imaging;
DWI — diffusion weighted image;

DSI — diffusion spectrum imaging;

DTI — diffusion tensor imaging;

PDF — probability density function;

EAP — ensemble average propagator;

PSOCT - polarization sensitive optical coherence tomography;
SNR — signal-to-noise ratio;

CS — compressed sensing;

FS — fully sampled;

PGSE — pulsed gradient spin echo;

EPI — echo planar imaging;

FT — Fourier transform;

HARDI — high angular resolution diffusion imaging;
ODF — orientation distribution function;

WM — white matter;

GM — gray matter;

ROI — region of interest;

GQl — generalized g-sampling imaging;

QBI — g-ball imaging;

PCA — principal component analysis;

PINV — pseudoinverse;

NUFFT — nonuniform fast Fourier transform;
RMSE — root mean square error;

FA — fractional anisotropy;

FOCUSS — FOCal Underdetermined System Solver;
SD — spherical deconvolution;

Gmax — maximum gradient amplitude;
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) has played an integral role in the study of
human brain circuitry in vivo by enabling non-invasive investigation of tissue architecture (Le
Bihan et al. 1986). The molecular displacements resulting from water diffusion can be
estimated from dMRI measurements acquired with a pulsed gradient spin-echo (PGSE)
sequence (Stejskal and Tanner 1965). Diffusion tensor imaging (DTI), the seminal approach for
guantitative reconstruction of 3D water molecule displacement (Basser, Mattiello, and LeBihan
1994b, 1994a), assumes a 3D Gaussian displacement distribution and thus can only model a
single fiber population in each voxel. One of the techniques that were introduced to resolve
multiple intravoxel fiber populations is diffusion spectrum imaging (DSI), which relies on an
acquisition that samples the entire g-space on a Cartesian grid (Wedeen et al. 2005). The
diffusion ensemble average propagator (EAP), or the 3D probability density function (PDF) of
spin displacements in a voxel, can be recovered directly from a Fourier transform (FT) of the
Cartesian g-space signals, and yields a plethora of information describing the angular and radial
features of diffusion (Wedeen et al. 2008; Hagmann et al. 2008).

We have previously used a DSl acquisition to collect data for our post mortem validation
studies (Jones et al. 2020, Grisot et al. 2021). The benefit of this acquisition is that it yields a
dataset that is densely sampled in g-space and can thus be used to generate data with other
sampling schemes (such as single- or multi-shell) with g-space resampling. We have shown that
this resampling approach can approximate g-shell data from data collected on a grid in g-space
with high accuracy (Jones et al. 2020). Thus, from a single scan, we can generate data with
multiple g-space sampling schemes and perform systematic, side-by-side comparisons, as we
did most recently in the IronTract Challenge (Maffei et al. 2020, Maffei et al. 2021). Given that
long acquisition times are one of the main challenges in the post mortem validation of dMRI
(Yendiki et al. 2021), any opportunity to further reduce the scan time would be beneficial, as it
would allow us to scan more samples or to scan the same samples at higher spatial resolution in
the same amount of time.

Much recent work has been devoted to accelerating MR acquisitions. Some approaches
modify imaging sequences to allow multiple image slices to be acquired simultaneously. Multi-
slice parallel imaging techniques, such as simultaneous multi-slice (SMS) (Kawin Setsompop et
al. 2018; Kawin Setsompop, Cohen-Adad, et al. 2012; Kawin Setsompop, Gagoski, et al. 2012),
simultaneous image refocusing (SIR) (Reese et al. 2009), and multiplexed (SMS+SIR) echo planar
imaging (EPI), have played a crucial role in reducing dMRI scan times down to reasonable
lengths. However, they do not address the large number of g-space samples required by DSI.
Compressed sensing (CS) has been applied to DSI (CS-DSI) to achieve g-space acceleration. CS
theory exploits transform sparsity to recover signals from sub-Nyquist acquisitions (Donoho
2006; Lustig et al. 2008; Lustig, Donoho, and Pauly 2007). CS-DSI undersamples in g-space and
reconstructs the missing samples with CS, allowing for a reduction in acquisition time directly
proportional to the CS acceleration factor. Combining CS-DSI with SMS or multiplexed EPI can
provide even higher accelerations (K. Setsompop et al. 2013), and render CS-DSI a practical
diffusion protocol for large-scale in vivo population studies (Tobisch et al. 2018).

Several methods for CS-DSI reconstruction have been proposed. Menzel et al. (2011)
used wavelet and total variation (TV) penalties on PDFs combined with random Gaussian
undersampling patterns, and concluded that angular and radial diffusion properties were
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preserved at R=4 acceleration. Paquette et al. (2015) performed a joint comparison of different
wavelet-based sparsifying transforms and g-space sampling strategies, and found the best
results when using a “uniform-angular, random-radial” undersampling mask combined with
discrete wavelet transform (DWT). Both Menzel et al. and Paquette et al. used fixed transforms
to generate sparse signal representations. Conversely, Bilgic et al. (2012) proposed CS-DSI using
adaptive PDF dictionaries, combining the K-SVD algorithm (Aharon, Elad, and Bruckstein 2006)
for dictionary training with the FOcal Underdetermined System Solver (FOCUSS) algorithm
(Gorodnitsky and Rao 1997) to solve the CS problem. While this approach yielded reduced
reconstruction errors compared to fixed transforms, the iterative FOCUSS reconstruction
resulted in full brain computation times on the order of days. This bottleneck was addressed in
subsequent work (Bilgic et al. 2013), where two dictionary-based, L2-regularized methods were
introduced that reduce computation times down to seconds per slice. They provide fast, simple
formulations while preserving reconstruction quality compared to Dictionary-FOCUSS. One of
the key findings from (Bilgic et al. 2013) was that forcing the PDFs to remain in the range of a
dictionary was more important than the sparsity constraints imposed on the transform
coefficients. In other words, the key to good reconstructions lies in the prior information
encoded in a dictionary, and not the regularization norm that is applied on the dictionary
transform coefficients. We note that the theoretical foundation of CS concerns signal recovery
using the L1-norm, and that the aforementioned CS-DSI methods use the L2-norm. With this in
mind, we will use CS-DSI to refer to the umbrella of algorithms that reconstruct DSI from
undersampled g-space.

Dictionary-based CS-DSl is a promising approach, but nonetheless has aspects that
require further investigation. One of these areas is the effect of dMRI signal-to-noise ratio (SNR)
on the CS algorithms and dictionary learning, which is yet to be well characterized (Bilgic et al.
2012). Determining how the SNR of the training data influences reconstructions and the
minimum SNR level required for high-quality CS reconstruction would provide critical insights
for the development of CS-DSI protocols. Previously, CS-DSI reconstruction fidelity was assessed
in vivo. In that case, the only available ground truth is a the fully sampled DSI dataset from the
same brain (Bilgic et al. 2013; Bilgic et al. 2012; Menzel et al. 2011). A drawback of this
approach is that the fully sampled DSI data are inherently corrupted with noise, particularly at
high b-values. Bilgic et al. (2013) ameliorated this issue by sampling a few g-space locations 10
times, and using these low-noise references to evaluate reconstructions. Interestingly, they
found that CS reconstructions exhibited lower errors than the fully sampled (1-average) data
when compared to the 10-average data. These results exemplify potential denoising benefits of
CS-DSI with respect to fully sampled data collected at the same SNR, but also highlight
inadequacies of taking the fully sampled data as ground-truth. Ultimately, our goal is to use the
data to characterize the underlying white-matter fiber geometries. Thus, it is important to know
how great an error with respect to the fully sampled data we can tolerate in our CS
reconstructions, without compromising accuracy with respect to the true fiber orientations. For
this purpose, we need independent measurements of fiber orientations from a modality that
does not rely on water diffusion.

Here, we address these questions with a validation study of CS-DSI reconstructions in ex
vivo human brain. Our goal is two-fold. First, we perform the first validation study that assesses
the accuracy of CS-DSI with respect to ground-truth measurements of axonal orientations from
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optical imaging. This is of relevance to the use of CS-DSl in large-scale population imaging to
study white-matter organization across the human lifespan (Tobisch et al. 2018). Second, we
investigate the ability of CS-DSI reconstruction to approximate multiple g-space sampling
schemes, including grid- and shell-based. This is of relevance to both in vivo population studies
and ex vivo validation studies, where the flexibility to use orientation reconstruction methods
and microstructural models that require either type of sampling scheme is an asset.

Specifically, we image human white-matter samples with high-resolution DSI at 9.4T and
with polarization-sensitive optical coherence tomography (PSOCT) (De Boer et al. 1997). The
latter is a technique in the family of label-free 3D optical imaging methods, which provide direct
measurements of fiber orientations at microscopic resolution (Wang et al. 2018; Wang et al.
2011) and have emerged in recent years as a powerful tool for the validation of the
mesoscopic-resolution diffusion orientations obtained from dMRI (see Yendiki et al., (2021) for
a review). We have recently demonstrated the ability of PSOCT to resolve complex fiber
configurations, including interdigitated crossing fibers, distinct (non-interdigitated) crossing
fibers, and branching fibers, in human brain tissue (Jones et al. 2020). Numerous other studies
have employed PSOCT to resolve crossing fibers in biological tissues (Villiger et al. 2018; Ruiz-
Lopera et al. 2021; Yao and Duan 2020; Guo et al. 2004; Fan and Yao 2013), including the
mouse brain (Lefebvre et al. 2021) and human brain (Boas et al. 2017; Wang et al. 2018).

We undersample the DSI data and use the dictionary-based techniques from Bilgic et al.
(2013) to perform CS reconstructions, with dictionaries trained on DSI data from three different
ex vivo human brain blocks to determine generalizability. We investigate if fiber orientations
estimated from CS reconstructed data can achieve the same accuracy as those estimated from
the fully sampled data, by comparing both to the ground-truth fiber orientations measured by
PSOCT. We examine the influence of the SNR of the training or test data on the accuracy of the
diffusion orientation estimates. We show that, for an acceleration factor of R=3, which
corresponds to 171 diffusion-encoding gradient directions, the accuracy of CS-DSl is very similar
to that of fully sampled DSI. Our findings indicate that, with an acquisition time similar or
shorter than typical high angular resolution multi-shell scans, CS-DSI data can be used to
approximate both fully sampled DSI and multi-shell data with high accuracy. This provides the
flexibility to take advantage of the high angular accuracy of DSI (Daducci et al. 2013; Jones et al.
2020; Maffei et al. 2020, 2021) while also allowing microstructural analyses either on g-shells
or on the full EAP. For in vivo population studies, this gives access to a wider range of potential
biomarkers. For ex vivo validation studies, it facilitates the comparison of multiple acquisition
schemes from a single scan. Finally, we find that, when the acceleration factor of CS-DSl is
increased beyond R=3, performance deteriorates, increasing either the angular error or the
number of spurious peaks. These results provide a benchmark for the future development of
more efficient g-space acceleration techniques.

2. Methods
2.1. Sample identification

The samples used in this study were extracted from two human brain hemispheres that
were obtained from the Massachusetts General Hospital Autopsy Suite and fixed in 10%
formalin for at least two months. Demographic information about the hemispheres is given in
Table 1. Three samples were extracted from different anatomical locations of the hemispheres.
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Sample 1A (Figure 1A) was cut from brain 1 and was approximately 3x2x2 cm. It contained an
area of deep white matter (WM) that included the corpus callosum (CC), the internal and
external capsules (IC and EC, respectively), the caudate nucleus and the putamen. Sample 1B
(Figure 1B) was taken from a different region of brain 1. The block was approximately 3x2x2 cm
and contained an area of deep WM including the posterior internal capsule, putamen, and
thalamus. Sample 2 (Figure 1C) was cut from brain 2 and was sized approximately 2x2x3 cm.
The superior part of the block contained the anterior part of the superior frontal gyrus, the
medial side included the cingulate sulcus, and the lateral side contained parts of the
corticospinal tract and dorsal superior longitudinal fasciculus (SLF-I).

Brain Age  Gender Laterality Cause of death Diagnosis PMI
1 (samples _ . B

<
A and B) 43 F Right Cardiac arrest  Cognitive control <24 h

Severe coronary

artery disease,
myocardial

infarction,
hypertension, 24 h
hyperlipidemia,

mild

hypoxic/ischemic
changes

Coronary
artery disease
and multiorgan
failure

2 70 M Left

Table 1. Demographic information on post mortem human hemispheres.
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A Sample 1A

EC

Putamen

B Sample 1B (same brain) C Sample 2 (different brain)

Figure 1. Overview of sample identification and data acquisition. Ex vivo human brain samples were extracted from coronal
slabs (dashed rectangles) and dMRI data were acquired at 9.4T. Single slices from b=0 scans are shown for each sample.
Samples 1A and 1B were cut from different anatomical locations of the same brain, and sample 2 was extracted from a
different brain. Following dMRI, a piece of sample 1A was cut and imaged with PSOCT (A, right). Sample 1A, which contained
the corpus callosum (CC), internal capsule (IC), external capsule (EC), caudate and putamen, was used as the test dataset. Each
of samples 1A, 1B, and 2 were used as training datasets.

2.2. Diffusion MRI
2.2.1. Data acquisition

All three ex vivo samples were scanned in a small-bore 9.4T Bruker Biospec system with
gradients capable of Gmax=480 mT/m. Prior to scanning, each block was placed in a plastic
syringe filled with Fomblin (perfluoropolyether) and all air was removed. The dMRI data were
acquired using a spin echo 3D single-shot EPI sequence with Gmax=393 mT/m, TR=750 ms, TE=43
ms, GRAPPA factor 2, matrix size 136x136x176, and 250 um isotropic resolution. We used a DSI
sampling scheme consisting of one b=0 image and 514 gradient directions arranged on a
Cartesian lattice in g-space and zero padded to an 11x11x11 grid (Wedeen et al. 2005).
Diffusion encoding was applied with bmax=40000 s/mm?, §=15 ms, and A=21 ms, corresponding
to gmax=250 mm™—1. The total acquisition time was approximately 48 hours. We will refer to the
datasets containing all 515 diffusion volumes as the “fully sampled” or “FS” data.

A 4-channel phased array surface receive (Rx) coil was used in dMRI acquisitions
(diagramed in Figure 2A, bottom), leading to a decrease in coil sensitivity and SNR as the
distance between the sample and Rx coil increased. The coronal planes of the dMRI data were
approximately parallel to the surface coil, so coronal slices closer to the coil had higher signal
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than the slices farther away. Figure 2A (top) shows three example coronal slices from the b=0
volume of sample 1A, each with varying distances from the surface Rx coil. To quantify the
dMRI SNR, we used the b=0 signal intensities from a region of interest (ROI) in the deep WM.
The SNR of each coronal slice was calculated as the mean signal (Figure 2B, solid black line)
divided by the standard deviation of the signal intensities from the ROI (Figure 2B, solid gray
line). To relate the SNR across slices to the sensitivity profile of the coil, we fit a linear model to
the calculated SNR values to obtain an expression for SNR as a function of slice (Figure 2B,
dotted green line). For the dMRI slice numbering of each sample, we will refer to slice 1 as the
slice closest to the surface coil, with increasing slice numbers indicating increased distance from
the coil.

B 2500 18

SNR = -0.224%slice + 14.40

—Sll
o
—SNR
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1500 -

Signal intensity
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E

)
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. L L .
Closest to coil . Farthest from coil
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Figure 2. dMRI acquisition and SNR. (A) Bottom: A surface receive coil was used in dMRI acquisitions. Top: This led
to a decrease in sensitivity with increasing distance from the coil, as shown in coronal slices from the sample 1A
b=0 volume. The same intensity scaling was used for all three slices. (B) The b=0 SNR in each coronal slice of
sample 1A (solid green line) was calculated from the mean (black line) and standard deviation (gray line) of signal
intensities from a deep WM ROI. A linear regression was performed to find the slope of SNR as a function of slice
(dotted green line). The left y-axis shows the signal and noise intensities, and the right y-axis shows SNR values.
The x-axis in indexed by slice number.

2.2.2. Compressed sensing reconstruction

CS reconstructions were performed using two dictionary-based CS-DSI methods
previously introduced by Bilgic et al. (2013). One is PCA-based reconstruction (PCA), and the
other is Tikhonov-regularized pseudoinverse reconstruction using the training set of PDFs as the
dictionary (PINV). CS undersampling masks were generated for acceleration factors R=3, 5, and
9 using a variable-density power-law function (Lustig, Donoho, and Pauly 2007; Bilgic et al.
2013). Nine CS masks with different sampling patterns were created for each acceleration
factor. Retrospective undersampling was applied to fully sampled g-space data, followed by CS
reconstruction using either PCA or PINV. Each reconstruction method had one free parameter:
the number of principal components T and the Tikhonov regularization parameter A, for PCA
and PINV respectively. The optimal parameter for each dictionary was determined using the
parameter sweeping approach from Bilgic et al. (2013), in which the training data were
undersampled and reconstructed using a range of parameters, and the one yielding the lowest
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root-mean-square error (RMSE) in PDFs (described in section 2.4.2.) when compared to the fully
sampled data was selected. This procedure was performed separately for each combination of
dictionary and acceleration factor.

Reconstructions and analyses were performed in MATLAB (R2019a, 9.6) based on
publicly available code (https://www.martinos.org/~berkin/software.html). Both PCA and PINV
methods used a single matrix multiplication to reconstruct an entire slice, with computation
times of ~10-15 seconds per slice (~6000 voxels per slice) on a workstation with a 3.4GHz Intel
i7 processor, 8 cores, 32GB RAM. For full volume reconstructions (~50 slices), we compiled the
MATLAB function into a standalone application and processed individual slices in parallel on a
high-performance compute cluster. Simultaneously running each slice as a separate process
with 8GB of allocated memory resulted in full volume reconstruction times between 2-10
minutes (depending on the number of available CPUs on the cluster).

2.2.3. Fiber orientation reconstruction

At each dMRI voxel, we computed the orientation distribution function (ODF), i.e., the
marginal PDF of the diffusion orientation angle. Diffusion tractography algorithms use the
ODFs, rather than the full PDFs, to reconstruct WM bundles. In DSI, ODFs are typically obtained
by interpolating the PDFs onto uniform radial vertices and summing them along each radial
projection. The truncation of g-space causes ringing in the PDFs, which introduces artifacts into
the ODFs. One approach to mitigating these artifacts is to apply a windowing function on the g-
space data, like a Hanning filter (Wedeen et al. 2005). This smooths the signal decay at the
edges of g-space but diminishes the contributions of high-frequency diffusion terms, potentially
oversmoothing the PDFs and ODFs and reducing angular resolution. An alternative approach is
to use unfiltered g-space data and carefully define the starting and ending displacement
distances for integration of the PDF (Tian et al. 2016; Paquette, Gilbert, and Descoteaux 2016;
Lacerda et al. 2016). This way, one can restrict the integration range so that PDF ringing is
omitted from ODF computations without having to taper the high frequency g-space data. We
used the latter approach for ODF reconstructions.

DSI ODF reconstructions were performed in Python with the Dipy (version 1.3.0.) library
(Garyfallidis et al. 2014). For each voxel, the g-space data were zero-padded to a 75x75x75 grid
and the 3D FFT was applied to obtain the PDF, with negative PDF values clipped to zero. For
ODF reconstruction, we used a PDF integration lower bound of r¢¢,,+ = 10 and upper bound of
Tena = 16 (which were roughly 0.27x and 0.43xFOV), a radial step size of 1., = 0.05,and a
radial weighting factor of 2. ODF peaks were extracted using a maximum of 3 peaks per voxel,
minimum peak separation angle of 25° and minimum peak magnitude of 0.05. The same
parameters were used for all DSI ODF reconstructions.

We also fit the DTI model to the fully sampled data using the FSL command dtifit and
extracted the orientations of the primary eigenvectors of the tensors. These served as a
baseline for “worst-case” dMRI orientation accuracy, i.e., where only a single fiber population
can be resolved in each voxel. We will refer to the fully sampled DTl and DSl orientations as FS-
DTI and FS-DSI, respectively.

2.2.4. Resampling onto g-shells
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Next, we investigated how well we could approximate g-shell data from CS-DSI
acquisitions by comparing data that were acquired with CS-DSI scheme and resampled onto g-
shells to data from the same sample that were acquired on g-shells. Following CS
reconstruction, the CS-DSI g-space data were resampled onto shells in g-space using the
approach described in (Jones et al. 2020). Briefly, the g-space samples arranged on shells were
approximated by using a nonuniform fast Fourier transform (NUFFT) with min-max
interpolation (Fessler and Sutton 2003) to interpolate the DSI g-space samples arranged on a
dense grid. Multi-shell data from sample 1B that were generated by resampling FS-DSI
[NUFFT(FS)] and CS-DSI [NUFFT(CS)] g-space data were compared to multi-shell g-space data of
sample 1B that were acquired during a separate scan.

The multi-shell acquisition of sample 1B used identical imaging parameters as the FS-DSI
acquisition (described in section 2.2.1.), except that it consisted of one b=0 image and 256
directions arranged on 3 g-shells, with 64, 64, 128 directions and b=4,000, 12,000, 20,000
s/mm?, respectively. FS-DSI and CS-DSI g-space data from sample 1B were resampled onto the
same 3 shells and compared to the acquired multi-shell data. The CS-DSI reconstruction tested
here used the PCA method at acceleration R=3 and training data from sample 2.

As previously (Jones et al. 2020), resampling fidelity was assessed using the relative
normalized root mean square error (rNRMSE) between the acquired and resampled g-space
data. This accounts for the fact that the acquired and resampled data come from different scan
sessions, and thus some differences between them are expected as they contain different noise
realizations. This is done by normalizing the NRMSE of the g-space images by the NRMSE of the
b=0 images from each acquisition. Thus the rNRMSE quantifies the extent to which resampling
introduces additional error, with respect to what the error would have been due to noise alone.
For each diffusion-weighted volume, we compared the average rNRMSE across all WM voxels
for the resampled FS-DSI data [NUFFT(FS-DSI)] and resampled CS-DSI data [NUFFT(CS-DSI)].

We also investigated the effect of g-space resampling on indices extracted from
microstructural dMRI models. For each of the three multi-shell datasets, i.e., acquired,
resampled NUFFT(FS), and resampled NUFFT(CS), the diffusion kurtosis imaging (DKI) model
was fit to the first two shells (b=4,000 and 12,000 s/mm?) using an ordinary least-squares
approach implemented in Dipy (version 1.3.0). Microstructural indices were extracted from the
fitted tensors, namely the fractional anisotropy (FA) of the diffusion tensor, the orientation of
the primary eigenvector of the diffusion tensor, the mean kurtosis (MK), the radial kurtosis (RK)
and the axial kurtosis (AK).

2.3. PSOCT
2.3.1. Data acquisition

Following dMRI acquisition of sample 1A, a piece of the tissue block was extracted for
imaging with PSOCT (Figure 1A, right). For a thorough review of PSOCT and its applications, see
de Boer et al. (2017). Briefly, PSOCT uses polarized light to probe tissue birefringence and
obtain undistorted, direct measurements of in-plane fiber orientations at microscopic
resolutions. Thus PSOCT has been used as a reference modality for the validation of dMRI-
derived fiber orientation estimates (Wang et al. 2014; Jones et al. 2020). As these studies have
shown, PSOCT can resolve complex fiber patterns at a scale that is not accessible with dMRI.
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That is because the spatial resolution of PSOCT is 2-3 orders of magnitude higher than that of
dMRI, and thus much closer to the caliber of axons (<1-10 um; (Liewald et al. 2014)).

Details on our setup, acquisition, and analysis for PSOCT were previously described
(Jones et al. 2020). Briefly, the sample was imaged with a polarization maintaining fiber (PMF)
based, spectral domain PSOCT system developed in-house (Wang et al. 2016). The light source
consisted of two broadband super-luminescent diodes (Thorlabs Inc., LSC2000C), with a center
wavelength of 1300 nm and a bandwidth of 170 nm. The axial resolution was 2.9 um in tissue
and the lateral resolution was estimated at 3.5 um. PSOCT produces measurements of optic
axis orientation, which represent the in-plane (2D) orientation of the fiber axis. We
downsampled the PSOCT data to an in-plane resolution of 10 um to facilitate data processing.
To cover the entire tissue surface, 1120 tiles (FOV = 1 mm?) were acquired using a snaked
configuration scheme with 50% overlap between adjacent tiles. The tiles were stitched using
the Fiji software (Schindelin et al. 2012; Preibisch, Saalfeld, and Tomancak 2009). A vibratome
cut off a 75 um slice after the superficial region of the tissue block was imaged, which
consequently allowed deeper regions to be exposed by PSOCT. There were 63 total slices
acquired for the sample block. One critical advantage of the technique is that PSOCT images the
blockface of the tissue before slicing (Wang et al. 2018). This avoids the nonlinear slice
distortions that are present in traditional histological techniques, where slices are imaged after
they are cut. As a result, we can simply stack the slices into a volume.

2.3.2. Cross-modal registration

The registration of PSOCT and dMRI images was performed as described in Jones et al.
(2020). There, we examined whether our dMRI scans had nonlinear distortions that might
affect image registration. We registered the dMRI b=0 volume to a structural MRI scan from the
same sample, using either affine or nonlinear registration. We found that b=0 voxel intensities
after affine vs. nonlinear registration were highly correlated (p = 0.96, p < 0.001), indicating
that nonlinear distortions were negligible and therefore affine alignment was sufficient.

Affine registration was used to align the dMRI fractional anisotropy (FA) and PSOCT
retardance volumes. Retardance represents the phase delay between orthogonal polarization
channels that is induced by birefringence, a property of anisotropic structures. The myelinated
axons that compose WM bundles possess birefringent properties and are highlighted in the
retardance, providing a tissue contrast similar to FA. We used a robust, inverse consistent
registration method that detects and down-weighs outlier regions in the images (Reuter, Rosas,
and Fischl 2010). Previously, Wang et al. (2014) reported a Dice coefficient of 0.96 between co-
registered FA and retardance volumes with this approach, signifying the exceptional alignment
that can be attained between the two contrasts.

We transformed the dMRI volumes to PSOCT space using nearest-neighbor
interpolation, and also rotated the dMRI orientation vectors (see section 2.2.3 above)
accordingly using the rotational component of the affine transformation. Finally, we projected
the 3D dMRI vectors onto the 2D PSOCT imaging plane for the purposes of comparison to
PSOCT optic axis measurements, which represent in-plane (2D) fiber orientations.

2.4. Error metrics
2.4.1. Angular error with respect to PSOCT
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We performed a voxel-wise comparison of dMRI and PSOCT orientations using absolute
angular error as the accuracy metric, as in (Jones et al. 2020). In each voxel, we selected the
peak of the diffusion ODF with the (2D) in-plane orientation that matched the corresponding
PSOCT orientation most closely and computed the angular error between that peak and the
PSOCT measurement. Thus, for a voxel with N dMRI ODF peaks, the absolute in-plane angular
error AE was calculated as:

AE = min{arccos (|elv|)}, (1)
n

where e,, is the unit vector along the nt" dMRI peak orientation, and v is the unit vector along
the measured PSOCT orientation. Since the analysis was performed in 2D, the angular error
could take values between 0° and 90°.

A WM mask was created to exclude all voxels where the retardance intensity was below
50% of the maximum retardance, and only voxels in this WM mask were considered when
computing angular error metrics. PSOCT optic axis measurements rely on the birefringence of
anisotropic processes, such as axon bundles in WM, but are not necessarily accurate in gray
matter (GM) or voxels where fibers primarily project through the imaging plane, where the lack
of apparent birefringence results in low retardance.

The PSOCT imaging plane was nearly parallel to the dMRI coronal plane, which itself was
nearly parallel to the surface Rx coil. We exploited this arrangement, and the decreasing SNR of
dMRl slices at increasing distance from the coil, to assess the accuracy of CS-DSI as a function of
SNR.

2.4.2. RMSE in PDFs with respect to FS-DSI

As a more conventional CS-DSI error metric, we also computed the normalized RMSE of
the PDFs obtained from CS reconstruction with respect to those obtained from the fully
sampled DSl data:

RMSE =122z (2)

llxl2

where x is the PDF from the fully sampled data, X is the PDF from the CS reconstructed data,
and [|*]|, is the L2-norm.

2.4.3. Number of fiber populations per voxel

To gauge the specificity of dMRI fiber orientation estimates, we investigated the
number of fiber orientations per voxel extracted from dMRI ODFs and from PSOCT
measurements. For each dMRI reconstruction, we calculated the average number of detected
ODF peaks (max of 3 in each voxel) across all WM voxels. To estimate the number of PSOCT
fibers per voxel, we used an approach similar to the one described in Jones et al. (2020). First,
PSOCT fiber orientation distributions (FODs) were constructed by generating histograms of the
orientation measurements from all 0.01 mm PSOCT voxels within each 0.25 mm dMRI voxel,
using a bin width of 5°. Then, the local maxima of the PSOCT FODs that had a height of at least
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5% of the maximum bin and were separated by at least 10° were extracted using the findpeaks
function in MATLAB. For consistency with dMRI, we also imposed a maximum of 3 PSOCT FOD
peaks per voxel. The average number of PSOCT fibers per voxel was then calculated by
averaging the number of PSOCT FOD peaks across all WM voxels in the volume.

2.5. CS-DSl validation experiments

A total of six PDF dictionaries were constructed, each trained on a single slice of fully
sampled DSI data from sample 1A, sample 1B, or sample 2. For each sample we created two
dictionaries, one from a high-SNR slice (slice 3) and one from a low-SNR slice (slice 13). We
applied CS reconstruction to DSI data from sample 1A, undersampled by a factor of R=3, 5, or 9,
using one of these dictionaries. We then computed DSI ODFs and extracted the orientations of
the ODF peaks. We transformed the diffusion orientation vectors to PSOCT space, projected
them onto the PSOCT plane, and calculated the absolute angular error with respect to PSOCT at
each WM voxel.

Angular non-uniformities in the CS undersampling patterns may introduce directional
biases into the ODFs, and thus affect our angular error computations. We accounted for this
potential source of variability in our error metrics by repeating the CS reconstructions with 9
different CS undersampling masks, for each combination of dictionary and acceleration factor.
Visualizations of the 3D angular distributions for all CS undersampling masks used in this study
are provided in the supplementary information (Figures S1-S3).

2.5.1. Effect of CS acceleration factor and training sample on angular error

We assessed the efficacy of the CS algorithms at different acceleration factors, by
comparing CS reconstructions of data from sample 1A that had been undersampled by a factor
of R=3, 5, and 9. In this comparison, we used the PCA and PINV methods with dictionaries
trained on a high-SNR slice from each sample. The accuracy of dMRI orientations was quantified
by the mean angular error across each PSOCT slice, as well as across all WM voxels in the PSOCT
volume. This error was averaged over the reconstructions that were obtained with the 9
different CS undersampling masks. The mean angular error of FS-DSI was used as a reference
for evaluating the quality of CS reconstructions.

2.5.2. Effect of SNR on reconstruction error metrics

One goal of this study was to determine the influence of SNR on metrics of CS
reconstruction quality. To this end, we calculated the b=0 SNR (as described in section 2.2.1.)
for each dMRI slice and computed the average RMSE in PDFs (with respect to the fully sampled
data) and the average angular error (with respect to PSOCT) across all WM voxels in each slice.
Then, for each CS reconstruction, we performed a linear regression of RMSE or angular error
against SNR. This was done for FS-DTI, FS-DSI, and CS-DSI. For CS-DSI, error metrics from each
combination of acceleration, training sample, and method were calculated, each time averaging
the mean errors over CS reconstructions from the 9 different undersampling masks.

2.5.3. Effect of SNR on dictionary training
To evaluate the effect that the SNR of the training data has on CS reconstructions,
voxels in sample 1A were reconstructed at acceleration R=3 with dictionaries trained on low-
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SNR data (slice 13) from each sample using PCA and PINV methods. These results were then
compared to the corresponding results from the experiment described in section 2.5.1. that
used high-SNR training data. The accuracy of dMRI orientations was quantified by the mean
angular error across all WM voxels in the PSOCT volume. The CS reconstructions included here
were performed with one randomly selected CS undersampling mask.

3. Results
3.1. Visual inspection

Figure 3 provides visualizations of dMRI and PSOCT orientations from a representative
slice of sample 1A. Figure 3A shows fiber orientation maps as color-coded RGB images, where
the color wheel shows the correspondence between pixel color and in-plane orientation. For
FS-DSI and for CS-DSI at acceleration factors R=3, 5, and 9, the color maps show the
orientations of the ODF peaks that most closely matched the PSOCT orientations in the same
voxel. All CS-DSlI results are shown for the same CS undersampling mask. For fully sampled DTI,
the color maps show the orientations of the primary eigenvector of the diffusion tensor. Figure
3B shows heat maps of the absolute angular error between dMRI and PSOCT orientations in
each voxel.

Despite the large disparity in voxel size, there was good overall agreement between
dMRI and PSOCT fiber orientation maps (Figure 3A). The dMRI maps showed the closest
resemblance to PSOCT in the medial half of the slice, with greater differences in the lateral half
of the slice. Examination of the angular error maps (Figure 3B) confirms that the greatest
angular errors occurred in the middle and lateral regions of the slice. This distribution of errors
was most obvious in the FS-DTI error map (Figure 3B, top right). The fully sampled (Figure 3B,
top middle) and CS-DSI maps (Figure 3B, bottom) show similarly good agreement with PSOCT.
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Figure 3. Fiber orientations estimated from dMRI vs. PSOCT. (A) Color-coded maps of PSOCT (top left) and dMRI
orientations from fully sampled data (top right) and CS-DSI data (bottom). (B) Absolute angular error of dMRI
orientations with respect to PSOCT. A WM mask was created by thresholding the PSOCT retardance (top left). The
heat maps were masked to include only voxels classified as WM. CS-DSI reconstructions are shown for high-SNR
training data and one of the CS undersampling masks.
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3.2. Effect of CS acceleration factor and training sample on angular error

Figure 4 shows bar plots of the mean angular errors of dMRI with respect to PSOCT,
averaged over all WM voxels analyzed, from CS reconstructions of sample 1A with high-SNR
training data from different samples and at different acceleration factors. Error bars show the
standard error over different CS undersampling masks. The corresponding statistics are given in
Table 2. The mean angular error of FS-DSI (green bar and dotted line) is shown as the
benchmark for assessing CS-DSI results. The mean angular error of FS-DTI (red bar and dotted
line) is shown as a worst-case scenario.

At an acceleration factor of R=3, CS-DSI achieved very similar angular error to FS-DSI
(within +/-1.27°), for both PCA and PINV reconstruction methods, and regardless of whether
the training data came from the same or a different sample than the test data. For PCA
reconstruction, the angular error increased with the acceleration factor. This increase was most
dramatic in the (more realistic) scenario where the training data came from a different brain
than the test data. Conversely, higher acceleration factors imparted only minor changes on the
accuracy of PINV reconstructions.

30

Mean anglular error [deg]
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Figure 4. Mean angular error of dMRI with respect to PSOCT. The plots show average error over all WM voxels in
sample 1A. For CS-DSI, the error was also averaged over 9 CS undersampling masks, with error bars representing
standard error of the mean across these 9 masks. Results are grouped by training sample (sample 1A, blue; sample
1B, purple; sample 2, yellow) and CS method. Bar shades correspond to acceleration factor (3, 5, 9). All CS-DSI
reconstructions used high-SNR training data from each sample. Mean angular errors from FS-DTI (red) and FS-DSI
(green) are shown on the far right for comparison.
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Angular error (degrees)

FS-DTI 26.10
FS-DSI 18.25

PCA PINV
Training sample 1A
R=3 18.64 £ 0.11 17.71+£0.30
R=5 19.25+0.16 17.95+0.14
R=9 20.16 £ 0.40 18.36+0.26
Training sample 1B
R=3 18.43 £ 0.25 17.37£0.32
R=5 19.69+£0.30 17.31+0.16
R=9 21.10+0.33 17.30+0.17
Training sample 2
R=3 18.81+0.29 16.97 £ 0.33
R=5 22.37+£0.92 16.25+0.18
R=9 26.48 +1.73 16.89 +0.52

Table 2. Angular error of dMRI orientations. Mean angular errors of dMRI with respect to PSOCT across all
analyzed WM voxels. CS-DSI reconstructions used high-SNR training data from each sample. For CS-DSlI, standard
errors of the mean are also shown, computed over the 9 CS undersampling masks.

We delved deeper into this difference between the performance of PCA and PINV by
comparing the average number of ODF peaks per voxel from the data reconstructed by each
method. The bar plot in Figure 5A (left) shows the average number of reconstructed ODF peaks
per WM voxel from each reconstruction (for a maximum of 3 peaks per voxel), with error bars
showing the standard error of the mean. CS-DSI results were averaged over the 9
undersampling masks used for CS reconstructions. The number of peaks per voxel from FS-DSI
ODFs (green bar) and from PSOCT FODs (dashed red line) are shown for reference.

FS-DSI produced an average of approximately 2 peaks per voxel, which was slightly
greater than PSOCT (1.88 peaks per voxel). For an acceleration factor of R=3, PCA
reconstructions produced a similar number of peaks compared to both PSOCT (less than 7.9%
difference) and FS-DSI (less than 3.2% difference). As the acceleration factor increased, PCA
tended to return slightly fewer peaks. On the other hand, all PINV reconstructions returned a
notably greater number of peaks than both PSOCT (greater than 12.54% difference) and FS-DSI
(greater than 7.6% difference). This number increased as the acceleration factor increased, and
when the training data came from a different sample than the test data (e.g., PINV with sample
2 training had greater than 30% difference vs. PSOCT for all acceleration factors).

Figure 5B plots the average number of peaks per voxel against the mean angular error.
The PCA and PINV reconstructions are denoted by triangle and circle markers, respectively, and
colored as in Figure 5A. Vertical and horizontal error bars indicate the standard error for each
metric. FS-DSI (green diamond) served as the benchmark in terms of angular error. The red
dotted line denotes the number of peaks per voxel for PSOCT. As indicated by the black dashed
line (Figure 5B), there was a clear separation between PINV (above the line) and PCA (below the
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line). FS-DSI was situated at the knee of the curve, and PCA reconstructions with an
acceleration factor of R=3 were closest to FS-DSI, regardless of the sample that was used as the
training data set. PINV reconstructions displayed reduced angular errors, but also had
significantly more peaks per voxel than PSOCT. Thus, we conclude that CS-DSI with a
combination of R=3 acceleration and PCA reconstruction preserved the accuracy of FS-DSI with
respect to the reference PSOCT orientations, but without introducing spurious peaks.
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Figure 5. Number of reconstructed ODF peaks. (A) Average number of ODF peaks per WM voxel from fully
sampled (green bar) and CS reconstructed (blue, purple, and brown bars) DSI data, and the average number of
PSOCT FOD peaks per voxel (red dashed line). CS results show the average from the 9 volumes reconstructed with
different CS undersampling masks. Error bars display the standard error. (B) Number of ODF peaks per voxel as a
function of the mean angular error for fully sampled (green diamond) and CS reconstructed g-space data. The red
dashed line indicates the average number of PSOCT FOD peaks per voxel. Circle markers correspond to PINV, and
triangle markers correspond to PCA. Marker colors are the same as the bar plots in (A). Error bars indicate the
standard error. PINV reconstructions (above black dashed line) produced more peaks and lower angular errors
than PCA (below black dashed line). Most dMRI reconstructions produced more peaks per voxel than was observed
in PSOCT. The CS-DSI reconstructions that were closest to FS-DSI on both axes were PCA with acceleration R=3.

3.3. Effect of SNR on reconstruction error metrics

Figure 6A shows the slice-wise mean angular errors with respect to PSOCT, plotted
against the SNR of the corresponding slice. Error bars indicate the standard error. The CS
reconstructions included here used acceleration R=3 and dictionaries trained on high-SNR data
from each sample. The curves for CS-DSI reconstructions closely resembled those of FS-DSI
(green line) throughout the entire volume, with less than 2.52° variation in mean angular errors
between all DSI reconstructions in each slice. FS-DTI (red line) had significantly greater errors
than both FS-DSI and CS-DSI and showed a sharp increase in error as SNR decreased. The DSI
angular errors were relatively robust to decreased SNR.

Table 3 shows statistics from the linear regressions of the mean angular error against
SNR. The slopes were noticeably flatter for FS-DSI (-0.24° per unit SNR, p=0.051) and CS-DSI
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reconstructions (-0.28° to -0.46° per unit SNR, p<0.003) than FS-DTI (-1.20° per unit SNR,

p=0.00011).

For comparison, Figure 6B shows the slice-wise mean RMSE in PDFs between each CS-
DSl reconstruction and the fully sampled DSI data, as a function of SNR. The mean RMSE was
calculated from the real part of the diffusion PDFs and averaged across all WM voxels in each
slice. Error bars depict the standard error. Statistics from the linear regressions of the RMSE
versus SNR are also given in Table 3. All reconstructions exhibited a strong negative correlation
between RMSE and SNR (r=0.99, p<0.001) and showed a nearly linear increase in RMSE as SNR
decreased (Figure 6B), with consistent linear regression slopes (-0.66 to -0.96 % RMSE per unit
SNR). It should be noted that the linear fit of SNR likely smoothed the observed relationship,
but that notwithstanding, the correlation between SNR and CS RMSE remained markedly
apparent across all reconstructions.
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Figure 6. Reconstruction error as a function of SNR. (A) Average angular error of FS-DSI, FS-DTI, and CS-DSI with
respect to reference axonal orientations from PSOCT. (B) Average RMSE in PDFs between CS-DSI and FS-DSI. Each
error metric is averaged across all WM voxels in each slice and plotted against the SNR of the corresponding b=0
dMRI slice. Line colors and styles correspond to different dMRI reconstructions. For CS reconstructions, each error
metric was averaged across 9 CS undersampling masks, with error bars showing the standard error of the mean
across the 9 masks. For CS-DSI, line colors denote different training samples and line styles denote different CS
reconstruction methods. All CS reconstructions used an acceleration factor of R=3 and high-SNR training data.

Angular error RMSE in PDFs
r Slope (°  p-value r Slope (% p-value
per unit per unit
SNR) SNR)
FS-DSI -0.45 -0.25 0.051 - - -
FS-DTI -0.77 -1.21 0.00011 - - -

CS training

CS method
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Sample 1A PCA -0.67 -0.36 0.0017 -0.99 -0.96 4.4x10Y
PINV -0.84 -0.43 7.0x10°® -0.99 -0.79 9.7x10Y
Sample 1B PCA -0.65 -0.30 0.0028 -0.99 -0.81 3.2x10%®
PINV -0.73 -0.28 0.00038 -0.99 -0.70 1.8x1016
Sample 2 PCA -0.81 -0.46 2.6x10° -0.99 -0.80 1.1x10"
PINV -0.81 -0.35 2.4x10° -0.99 -0.66 6.9x10Y

Table 3. Linear regressions of reconstruction error metrics vs. SNR. Linear correlation coefficient (r), slope, and p-
value from the linear regressions of the angular error with respect to PSOCT and the RMSE in PDFs with respect to
fully sampled data as a function of SNR. CS reconstructions used an acceleration factor of R=3 and high-SNR
training data.

3.4. Effect of SNR on dictionary training

After observing that CS reconstructions at acceleration R=3 using high-SNR training data
performed nearly as well as FS-DSI in terms of angular error, we tested whether this was also
true with low-SNR training data. The bar plot in Figure 7 compares the effect of training data
SNR on the mean angular error of CS reconstructions at acceleration R=3 across all WM voxels
analyzed. The CS reconstructions included here used one of the R=3 undersampling masks (out
of the 9 undersampling masks used for Figures 4-6). All CS reconstructions exhibited greater
mean angular error when using low-SNR than high-SNR training data, although the extent of
differences varied depending on the training sample and reconstruction method. Specifically,
PCA was more sensitive to the SNR level of the training data than PINV.

30

CS acceleration:
R=3

Mean angular error [deg]

E g H L H L H L H L H L H L = training SNRlevel
o ® PCA  PINV PCA  PINV PCA  PINV H = High-SNR
;L P s L =Low-SNR
Sample 1A Sample 1B Sample 2

Figure 7. Effect of the SNR of the training data on angular error. Mean angular error across all analyzed WM
voxels for CS reconstructions at acceleration R=3. Dictionaries were trained using either high-SNR (“H”, light shade)
or low-SNR (“L”, dark shade) slices from sample 1A (blue), sample 1B (purple), or sample 2 (yellow). Results from
FS-DTI (red) and FS-DSI (green) are shown on the far left. Error bars show standard error across voxels.
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3.5. Accuracy of resampled g-shell data

Results from g-shell approximation are shown in Figure 8. The average relative NRMSE
of each resampled diffusion-weighted volume with respect to the acquired shell data (Figure 8,
top left) are plotted for NUFFT(FS) and NUFFT(CS) reconstructions (solid and dashed lines,
respectively). The corresponding statistics are given in Table 4. NUFFT(FS) and NUFFT(CS) had
nearly identical mean relative NRMSE for all shells (Table 4). The errors increased slightly as the
b-value of the target shell increased, but were below 1 on average, for all shells. These results
indicated that the resampling introduced negligible errors when compared to the variance
between the two repeated acquisitions resulting from imaging noise. Additionally, resampling
the undersampled g-space data without CS-DSI reconstruction yielded relative NRMSE values 2-
3 fold larger than NUFFT(CS) (Supplemental Information; Figure S4, Table S1), indicating that
dense grid g-space sampling, whether acquired with FS-DSI or recovered with CS-DSI, is
essential for accurate g-shell approximation.

Figure 8B shows images of one slice from the b=0 volumes (left column) and one
randomly selected DWI from each shell (three right-most columns). Both the NUFFT(FS) and
NUFFT(CS) slices (middle and bottom rows, respectively) closely resembled the acquired multi-
shell slices, illustrating that accurate resampling was possible using both FS-DSI and CS-DSI g-
space data. Note that the b=0 images for the NUFFT(FS) and NUFFT(CS) data were the same.

Figure 9 displays microstructural maps obtained from DKI fitting of multi-shell data from
sample 1B. The maps fitted using the NUFFT(FS) (middle row) and NUFFT(CS) (bottom row) data
showed good agreement with the maps fitted using the acquired multi-shell data (top row).
Kurtosis maps (MK, AK, RK; 3 right-most columns) were nearly identical between the acquired
and NUFFT data. Minor increases in FA were observed in the lower half of the NUFFT(CS) map
(second column from the left). All maps displayed similar features in regions of WM, as well as
in subcortical (thalamus, right side of slice; putamen, bottom middle of slice) and cortical (left
side of slice) GM regions.

Shell b-value (s/mm?) Relative NRMSE (mean +/- standard deviation)

NUFFT(FS) NUFFT(CS)
4,000 0.78 +/- 0.073 0.78 +/- 0.064
12,000 0.83 +/-0.11 0.83 +/-0.11
20,000 0.97 +/- 0.27 0.95 +/- 0.29

Table 4. Error of NUFFT g-space resampling. Relative NRMSE over white matter voxels from all directions of each
g-shell.
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Figure 8. Results from NUFFT g-space resampling. (A) Relative normalized root-mean-square (NRMSE) from g-
space resampling of FS-DSI (light shade) and CS-DSI (dark shade) grid g-space data for DWIs from the b=4,000
(green), 12,000 (red), and 20,000 s/mm? (blue) shells. (B) Example slices of representative DWIs from acquired (top
row), resampled FS-DSI (middle row) and resampled CS-DSI (bottom row) multi-shell data. The same grayscale
display window was used for each column.


https://doi.org/10.1101/2021.02.11.430672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430672; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2 shells
(b=4k, 12k) Color FA FA MK RK AK

Acquired

FS
NUFFT

CsS
NUFFT

0.5

Figure 9. Microstructural maps extracted from multi-shell dMRI data. Representative slice showing color-encoded
FA, FA, MK, RK and AK maps (from left to right, respectively) from DKI fitting of shells 1 and 2, for acquired multi-
shell data (top row), FS-DSI data resampled onto shells (middle row), and CS-DSI data resampled onto shells
(bottom row) data. Overall, the maps from resampled data exhibited good agreement with the maps fitted on the
acquired data.

4. Discussion

In this study we performed post mortem validation of CS-DSI and its ability to
approximate both grid- and shell-based diffusion sampling schemes. In one set of experiments,
we evaluated the accuracy of diffusion orientation estimates obtained from CS-DSI by
comparing them to microscopic-resolution reference measurements of fiber orientations from
optical imaging. This is in contrast to previous in vivo validations that used simulated or fully
sampled DSI data as the ground truth (Bilgic et al. 2013; Menzel et al. 2011; Paquette et al.
2015). Our results suggest that error metrics based on the difference between CS and fully
sampled DSl in g-space may underestimate the accuracy of CS-DSI in capturing the underlying
fiber geometry of the tissue. Specifically, although the difference in the PDFs obtained from CS
and fully sampled DSl increases noticeably as the SNR decreases (Figure 6B), this translates to
only a minor increase of the angular error of the peak orientations with respect to ground-truth
measurements from optical imaging (Figure 6A). Note that these trends were observed both for
reconstructions that tended to add spurious diffusion peaks (PINV) and for those that did not
(PCA), hence the robustness of the angular error as a function of SNR did not appear to be
explained by the number of peaks. The increasing error between PDFs obtained from CS and
fully sampled DSI as SNR decreases is likely exacerbated by the fact that the fully sampled data
are also corrupted by increasing levels of noise. This illustrated the importance of having
objective measurements of the ground-truth anatomy from an independent modality, such as
the optical imaging used here.
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We employed two dictionary-based algorithms for CS reconstruction and investigated
the effects of training data and undersampling rate on the accuracy of estimated fiber
orientations. We found that PCA reconstruction at an acceleration factor of R=3 retained the
fiber orientation accuracy of the fully sampled DSI data (Figure 4), without introducing spurious
peaks (Figure 5). Its performance was as good when the training data for the dictionary came
from a different sample than the test data as it was when the training and test data came from
the same sample. However, we also found that it was important to use high-SNR training data
to achieve this performance (Figure 7).

The PINV method achieved low angular errors at all acceleration factors and for all
training samples (Figure 4). However, it did so at the cost of significant increases in the number
of reconstructed peaks (Figure 5B), particularly at higher acceleration factors. Increases in the
angular error and in the number of peaks can be thought of as losses of sensitivity and
specificity, respectively. Therefore, both types of error are undesirable. Based on our findings,
we recommend a CS acceleration factor of R=3 and PCA reconstruction, as this combination
achieved both low angular error and low number of spurious peaks.

At an acceleration factor of R=3, the CS-DSI scheme comprises 171 diffusion-encoding
gradient directions. This brings its acquisition time in line with those of state-of-the-art, multi-
shell, high angular resolution diffusion imaging (HARDI) acquisitions. Our findings suggest that
CS-DSl allows us to approximate both a fully sampled, 514-direction DSI scheme (via CS
reconstruction) and multi-shell schemes (via g-space resampling). Traditionally, HARDI vs. DSI
has been framed as a choice between two mutually exclusive approaches, but this does not
have to be the case. We have previously shown that fully sampled DSI data can be resampled
onto g-shells (Jones et al. 2020). Here we show that an accelerated CS-DSI scheme also allows
resampling onto arbitrary g-shells (of course, to within the limits placed by the bmax of the DSI
acquisition). We find that both the g-space approximation error (Table 4, Figure 8) and the
microstructural measures obtained after resampling the data onto g-shells (Figure 9) are
comparable between CS and fully sampled DSI data.

The findings of recent validation studies suggest that DSI may provide more accurate
fiber reconstructions than single- or multi-shell acquisition schemes. DSI produced more
accurate fiber orientation estimates in simulations (Daducci et al. 2013) and comparisons to
optical imaging measurements (Jones et al. 2020), as well as more accurate tractography when
compared to ground-truth anatomic tracing in non-human primates (Maffei et al. 2021, 2020).
The present study shows that a sparsely sampled CS-DSI protocol preserves the high angular
accuracy of fully sampled DSI. It also preserves the flexibility of resampling the data onto g-
shells at arbitrary b-values, to facilitate analyses that require shelled data, such as DKI (Jensen
et al. 2005), neurite orientation dispersion and density imaging (Zhang et al. 2012), etc. At the
same time, it allows direct reconstruction of the full EAP. This allows a wider range of analyses
to be performed. For example, diffusion PDFs have been previously used to characterize age-
related WM demyelination (Fatima et al. 2013), delineate pathological tissue lesions in patients
with multiple sclerosis (Assaf et al. 2002), and map in vivo axon caliber in the human brain (Hori
et al. 2016). Furthermore, we have recently shown that diffusion EAPs may be used to improve
the decision making of tractography algorithms (A. Yendiki et al. 2020) or reconstruct
generalized anisotropy profiles that provide contrast between different gray- and white-matter
structures (Jones et al. 2021).
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In regard to the dictionary-based CS algorithms that we investigated, our findings
indicate that dictionary generalizability differs between the PINV and PCA methods, and that
the extent of these differences depends on both the CS acceleration factor (Figure 4) and the
training data SNR (Figure 7). One potential factor contributing to these differences may be the
ways in which PDFs are represented within the algorithms. PCA performs reconstructions in a
reduced-dimensionality space consisting of only the T principle components that describe the
greatest variance in the training PDFs, and the optimal number of components T decreases at
higher acceleration factors in order to improve the conditioning of the pseudoinverse in the
least-squares reconstruction (Bilgic et al. 2013). In our experiments, T was around 20 at
acceleration R=3 and less than that at higher accelerations, which are moderately lower than
the optimal in vivo parameters. Intuitively, reducing the number of principal components
subsequently limits the ability to describe finer scale details in PDFs, and, together with the
extremely undersampled g-space data used at high accelerations, likely hinders the level of
detail in such reconstructions. In contrast, PINV operates directly on the training PDFs
themselves, exploiting the prior information encoded in the dictionary atoms to bypass sparsity
constraints. Together, these differences may contribute to the different behavior of PINV and
PCA as the acceleration factor increases.

The PINV method investigated here uses a dictionary containing PDFs from a slice of
fully sampled training data, without any further training. An alternative approach is to use a
dictionary trained with the K-SVD algorithm (Aharon, Elad, and Bruckstein 2006), which
enhances the sparsity level of PDF representations and is a fraction of the size of the PINV
dictionary, allowing up to a 50% reduction in computation time. Regardless of the dictionary,
reconstructions are performed using the Tikhonov-regularized pseudoinverse. Previous
comparisons between PINV using a 3191-column dictionary and PINV(K-SVD) using a 258-
column dictionary reported nearly identical reconstruction quality in terms of RMSE, as well as
equivalent representational power between the two dictionaries (Bilgic et al. 2013). Although
we did not include results from PINV(K-SVD) here, we did perform CS reconstructions and
angular error analysis for PINV(K-SVD). We observed very similar results to PINV, both in terms
of RMSE with respect to fully sampled data and in terms of angular error with respect to PSOCT.
It is possible that the behavior of the PINV reconstruction that we observed in these
experiments was related to the optimization of the Tikhonov regularization parameter A. The
optimal A was selected to minimize the RMSE in PDFs with respect to FS-DSI, which may have
been sub-optimal in terms of spurious peaks.

Relation to previous studies

We have previously used the present PSOCT analysis framework (and sample 1A from
this work) in an extensive validation study (Jones et al. 2020). In that work, we assessed the
accuracy of fiber orientations estimated from various dMRI orientation reconstruction methods
and sampling schemes, including DSI, single-, and multi-shell. The DSI results are somewhat
different between the two studies because the DSI ODF reconstruction is different. In (Jones et
al. 2020), DSI reconstructions were performed with the DSI Studio toolbox (http://dsi-
studio.labsolver.org), and used filtered g-space signals (Hanning window, width=16) with
default parameters (e.g., zero-padded 16x16x16 g-space grid, ODF integration lower/upper
bounds of 0.25x and 0.75x FOV), and a ODF peak threshold of 0.01 (1%). Here, we used a
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different approach for ODF reconstruction, imposed a (slightly) more stringent peak threshold
(5%) and included a peak separation threshold. These factors likely contributed to the ~1-2°
increases in mean angular error reported here compared to previous results. Nonetheless, the
angular errors in this work were similar to the best performing reconstructions in (Jones et al.
2020), namely DSI and generalized g-sampling imaging (GQl) (Yeh, Wedeen, and Tseng 2010)
with the fully sampled DSI data and g-ball imaging (QBI) (Tuch 2004; Aganj et al. 2010) with
single- and multi-shell data, which were between ~17° and ~19°.

This work analyzed the dictionary-based CS-DSI methods introduced by Bilgic et. al.
(2013), however there were several technical differences between these works that should be
noted. First, in terms of data acquisition, we used DSI data from ex vivo human brain samples
acquired at 9.4T with a 4-channel surface Rx coil, whereas Bilgic et. al. used in vivo DSI from the
3T Connectom system with a custom 64-channel head coil (Keil et al. 2013). These differences
did not have an apparent effect on the dictionary-based CS-DSI methods. First, the CS
algorithms yielded similar results when using ex vivo training and test data as when using in vivo
training and test data. Whether the same would also be true when using ex vivo training data
and in vivo test data (or vice versa) has yet to be investigated. Such an approach may be of
interest as long, ex vivo acquisitions can be a way to collect very high-SNR training data. Second,
while both studies generated dictionaries with PDFs from a single slice of fully sampled data, a
single slice of our ex vivo samples covers only a small anatomical region, whereas a slice of in
vivo data covers an entire cross-section of the brain. Given that our training samples were cut
from different anatomical locations, one might expect that local microstructural differences
between training and test samples might pose challenges for dictionary generalizability.
However, our findings showed that high-quality reconstructions could be obtained using
training and test data from different samples (Figure 7), indicating that our ex vivo dictionaries
possess the representational power to generalize across samples. Indeed, the “residual” (Bilgic
et al. 2013) between ex vivo PDF dictionaries, i.e., the energy of the part of one dictionary that
cannot be represented by another, was negligibly small (~10712), confirming that dictionaries
from different samples possess equivalent representational power.

Limitations

The present study did not evaluate all possible methods for CS-DSI reconstruction.
However, it included one method that achieved good performance on all metrics (PCA on R=3),
and highlighted the two different ways in which performance can degrade as the acceleration
factor increases (Figure 5B). The PCA method exhibited diminishing performance in terms of
angular error, a measure of sensitivity, while the PINV method exhibited significant increases in
peaks per voxel, a decrease in specificity (Figure 5B). These results could be used as a
benchmark for future CS-DSI methods, as well as for similar deep learning-based approaches for
reconstructing sparse g-space samplings (Golkov et al. 2016; Gibbons et al. 2019). These
approaches may allow even more efficient acceleration and preserve accuracy at acceleration
factors greater than R=3.

The two dictionary-based CS-DSI reconstruction methods that we evaluated here use
discrete EAP representations and L2-regularized algorithms. We studied these methods
because they are fast, reconstructing an entire slice in a matter of seconds, and easy to
implement, using dictionaries of fully sampled PDFs without any additional training, and having
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only one free parameter to determine. However, there are various other CS-DSI methodologies
that utilize other basis functions (e.g., discrete cosine transform, discrete wavelet transform) or
approaches to solving the underdetermined CS problem (e.g., L1-regularized methods such as
equality constrained or regularized Dictionary-FOCUSS). While the L2-regularized dictionary-
based CS-DSI methods investigated here were shown to provide comparable reconstruction
quality to both fixed transforms and iterative L1-regularized methods (Bilgic et al. 2013), those
evaluations were mostly based on RMSE with respect to fully sampled DSI data. Analyzing the
fidelity of other CS-DSI algorithms in the framework presented here could be valuable, but the
lengthy computation times accompanying iterative algorithms would ultimately limit their
utility. We opted to focus our investigation on the two dictionary-based CS methods, PCA and
PINV, which were computationally tractable and thus enabled us to thoroughly study the
effects of experimental factors on their performance.

In this work, we used PSOCT to obtain ground-truth measurements of fiber orientations.
There are several other techniques that have been used to assess the accuracy of dMRI
orientation estimates. For a comprehensive discussion of their relative merits and weaknesses,
we refer the reader to a recent review (Anastasia Yendiki et al. 2021). One approach is to
extract orientations from myelin-stained sections (Leergaard et al. 2010; Choe et al. 2012; K.
Schilling et al. 2017; Seehaus et al. 2015) or from confocal microscopy of slices stained with Dil,
a fluorescent dye (Budde and Frank 2012). Quantification of 3D orientations has been reported
with Dil stained slices (K.G. Schilling et al. 2018; K. Schilling et al. 2016; Khan et al. 2015). When
using histological stains, the fiber orientation angles have to be obtained either by manual
tracing or by an image processing step such as structure-tensor analysis. This step may
introduce a source of error.

Optical imaging based on light polarization is a label-free approach that provides direct
measurements of fiber orientations by exploiting the intrinsic optical property of tissue
birefringence. In addition to PSOCT, polarized light imaging (PLI) also uses birefringence to
measure axonal orientations (Mollink et al. 2017; Henssen et al. 2019; Axer et al. 2011).
However, unlike PSOCT, PLI requires tissue to be sectioned and mounted before imaging. This
can lead to severe tissue distortions that demand a complex registration framework to correct
(Majka and Wéjcik 2016; Ali et al. 2017; Ali et al. 2018). PSOCT images the blockface of tissue
before slicing, greatly reducing tissue distortions and allowing accurate volumetric
reconstructions.

The PSOCT technique has its own limitations. Notably, the optic axis orientation
measurements do not describe the 3D orientation, but rather its projection onto the imaging
plane. Fibers oriented orthogonal to the imaging plane have small in-plane components and
may introduce uncertainty into the PSOCT optic axis measurements. Such fibers would also
exhibit low retardance. To avoid biases from through-plane fibers, we only analyzed WM voxels
with high retardance. In a previous study using an identical procedure, we showed that the in-
plane angular errors between dMRI and PSOCT were consistently between 10° and 20°,
regardless of the through-plane component of the dMRI orientations (Jones et al. 2020). This
suggests that our in-plane angular errors are not biased by the presence of through-plane
diffusion. Finally, the 2D angular errors in our PSOCT studies agree with both the 2D and 3D
angular errors reported in studies that used histological staining, further supporting the validity
of in-plane angular errors as a measure of accuracy (Anastasia Yendiki et al. 2021).
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There are ways to bypass the 2D nature of the PSOCT optic axis measurements to
interrogate 3D orientations. One possibility is to apply structure tensor analysis to PSOCT
volumetric intensity data (Wang, Lenglet, and Akkin 2015; Wang et al. 2011). Alternatively, 3D
fiber orientations can be obtained by collecting PSOCT optic axis measurements with multiple
light incidence angles on the tissue surface and using these measurements to infer the through-
plane orientation. This approach has been previously demonstrated in biological tissue (Nadya
Ugryumova et al. 2009; Nadezhda Ugryumova, Gangnus, and Matcher 2006; Liu et al. 2016).

5. Conclusion

We have demonstrated that, when utilized in an appropriate manner, dictionary-based
CS-DSlI reconstructions can reduce acquisition times by a factor of 3 while preserving the
accuracy of DSI fiber orientation estimates with respect to PSOCT. In particular, given an
adequate SNR level of the training data, the PCA method produced high-fidelity reconstructions
that reliably maintained the angular accuracy of fully sampled DSI data, without introducing
spurious peaks. We also demonstrated that we could tolerate a sizeable increase in the RMSE
between PDFs obtained from CS-DSI and fully sampled DSI data, without incurring a large
decrease in the accuracy of the peak orientations with respect to the axonal orientations
measured with optical imaging. This underscores the importance of having access to ground-
truth measurements of fiber architecture from a modality that is independent of water
diffusion and MRI measurement noise. Finally, we showed that a sparsely sampled CS-DSI
acquisition, combined with g-space resampling, could be used to approximate not only fully
sampled DSI but also multi-shell data with high accuracy, while keeping the acquisition time
short. Our findings confirm the viability of CS-DSI as a technique for accelerating DSI
acquisitions, while permitting a wide range of analyses that require either grid- or shell-based
dMRI data. They also provide useful benchmarks for future development of undersampled g-
space acquisition and reconstruction techniques.
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Figure S1. CS-DSI angular sampling patterns for acceleration R=3. Scatter plots of the nine different g-space
undersampling masks, projected onto the unit sphere. Samples included in the mask are displayed as colored dots,
with the color corresponding to b-value (see colorbar on far right). Samples not included in the mask (i.e., that
were reconstructed) are plotted as white dots.
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Figure S2. CS-DSI angular sampling patterns for acceleration R=5. Scatter plots of the nine different g-space
undersampling masks, projected onto the unit sphere. Samples included in the mask are displayed as colored dots,
with the color corresponding to b-value (see colorbar on far right). Samples not included in the mask (i.e., that
were reconstructed) are plotted as white dots.


https://doi.org/10.1101/2021.02.11.430672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430672; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

R=9 40,000
qZ |
o ¥
1,600
b-value
(s/mm?)

Figure S3. CS-DSI angular sampling patterns for acceleration R=9. Scatter plots of the nine different g-space
undersampling masks, projected onto the unit sphere. Samples included in the mask are displayed as colored dots,
with the color corresponding to b-value (see colorbar on far right). Samples not included in the mask (i.e., that
were reconstructed) are plotted as white dots.
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Figure S4. Results from NUFFT g-space resampling of undersampled vs CS-DSI g-space. Relative normalized root-
mean-square (NRMSE) from g-space resampling of undersampled DSI g-space (US-DSI; solid line, dark shade) and
CS-DSI (dashed line, light shade) grid g-space data at acceleration R=3 for DWIs from the b=4,000 (green), 12,000
(red), and 20,000 s/mm? (blue) shells. The US-DSI data consisted of only the 171 g-space samples included in the
undersampling mask, whereas the CS-DSI data also contained the additional grid samples reconstructed by CS.
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Shell b-value (s/mm?) Relative NRMSE (mean +/- standard deviation)

NUFFT(US)
4,000 2.81+/-1.64
12,000 3.20 +/- 1.58
20,000 3.57 +/- 1.55

Table S1. Error of g-space resampling from undersampled CS data. Relative NRMSE of data that were resampled
on g-shells by applying the NUFFT directly to R=3 (171-direction) undersampled data. Mean and standard
deviation are over WM voxels from all directions of each g-shell.
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