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Abstract 
While many useful microstructural indices, as well as orientation distribution functions, can be 
obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of 
microstructural features that can be extracted from the full ensemble average propagator 
(EAP). The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost 
of a very lengthy acquisition. Compressed sensing (CS) has been used to make DSI more 
practical by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the 
EAP from significantly undersampled q-space data. We present a post mortem validation study 
where we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also 
multi-shell acquisitions with high fidelity. Human brain samples are imaged with high-resolution 
DSI at 9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter 
provides direct measurements of axonal orientations at microscopic resolutions, allowing us to 
evaluate the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their 
angular error and the presence of spurious peaks. We test two fast, dictionary-based, L2-
regularized algorithms for CS-DSI reconstruction. We find that, for a CS acceleration factor of 
R=3, i.e., an acquisition with 171 gradient directions, one of these methods is able to achieve 
both low angular error and low number of spurious peaks. With a scan length similar to that of 
high angular resolution multi-shell acquisition schemes, this CS-DSI approach is able to 
approximate both fully sampled DSI and multi-shell data with high accuracy. Thus it is suitable 
for orientation reconstruction and microstructural modeling techniques that require either 
grid- or shell-based acquisitions. We find that the signal-to-noise ratio (SNR) of the training data 
used to construct the dictionary can have an impact on the accuracy of CS-DSI, but that there is 
substantial robustness to loss of SNR in the test data. Finally, we show that, as the CS 
acceleration factor increases beyond R=3, the accuracy of these reconstruction methods 
degrade, either in terms of the angular error, or in terms of the number of spurious peaks. Our 
results provide useful benchmarks for the future development of even more efficient q-space 
acceleration techniques. 
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Abbreviations:  
dMRI – diffusion magnetic resonance imaging;  
DWI – diffusion weighted image;  
DSI – diffusion spectrum imaging;  
DTI – diffusion tensor imaging;  
PDF – probability density function;  
EAP – ensemble average propagator;  
PSOCT – polarization sensitive optical coherence tomography;  
SNR – signal-to-noise ratio;  
CS – compressed sensing;  
FS – fully sampled; 
PGSE – pulsed gradient spin echo;  
EPI – echo planar imaging; 
FT – Fourier transform;  
HARDI – high angular resolution diffusion imaging;  
ODF – orientation distribution function;  
WM – white matter;  
GM – gray matter;  
ROI – region of interest;  
GQI – generalized q-sampling imaging;  
QBI – q-ball imaging;  
PCA – principal component analysis;  
PINV – pseudoinverse;  
NUFFT – nonuniform fast Fourier transform;  
RMSE – root mean square error;  
FA – fractional anisotropy;  
FOCUSS – FOCal Underdetermined System Solver; 
SD – spherical deconvolution; 
Gmax – maximum gradient amplitude; 
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1. Introduction 
Diffusion magnetic resonance imaging (dMRI) has played an integral role in the study of 

human brain circuitry in vivo by enabling non-invasive investigation of tissue architecture (Le 
Bihan et al. 1986). The molecular displacements resulting from water diffusion can be 
estimated from dMRI measurements acquired with a pulsed gradient spin-echo (PGSE) 
sequence (Stejskal and Tanner 1965). Diffusion tensor imaging (DTI), the seminal approach for 
quantitative reconstruction of 3D water molecule displacement (Basser, Mattiello, and LeBihan 
1994b,  1994a), assumes a 3D Gaussian displacement distribution and thus can only model a 
single fiber population in each voxel. One of the techniques that were introduced to resolve 
multiple intravoxel fiber populations is diffusion spectrum imaging (DSI), which relies on an 
acquisition that samples the entire q-space on a Cartesian grid (Wedeen et al. 2005). The 
diffusion ensemble average propagator (EAP), or the 3D probability density function (PDF) of 
spin displacements in a voxel, can be recovered directly from a Fourier transform (FT) of the 
Cartesian q-space signals, and yields a plethora of information describing the angular and radial 
features of diffusion (Wedeen et al. 2008; Hagmann et al. 2008).  

We have previously used a DSI acquisition to collect data for our post mortem validation 
studies (Jones et al. 2020, Grisot et al. 2021). The benefit of this acquisition is that it yields a 
dataset that is densely sampled in q-space and can thus be used to generate data with other 
sampling schemes (such as single- or multi-shell) with q-space resampling. We have shown that 
this resampling approach can approximate q-shell data from data collected on a grid in q-space 
with high accuracy (Jones et al. 2020). Thus, from a single scan, we can generate data with 
multiple q-space sampling schemes and perform systematic, side-by-side comparisons, as we 
did most recently in the IronTract Challenge (Maffei et al. 2020, Maffei et al. 2021). Given that 
long acquisition times are one of the main challenges in the post mortem validation of dMRI 
(Yendiki et al. 2021), any opportunity to further reduce the scan time would be beneficial, as it 
would allow us to scan more samples or to scan the same samples at higher spatial resolution in 
the same amount of time.  

Much recent work has been devoted to accelerating MR acquisitions. Some approaches 
modify imaging sequences to allow multiple image slices to be acquired simultaneously. Multi-
slice parallel imaging techniques, such as simultaneous multi-slice (SMS) (Kawin Setsompop et 
al. 2018; Kawin Setsompop, Cohen-Adad, et al. 2012; Kawin Setsompop, Gagoski, et al. 2012), 
simultaneous image refocusing (SIR) (Reese et al. 2009), and multiplexed (SMS+SIR) echo planar 
imaging (EPI), have played a crucial role in reducing dMRI scan times down to reasonable 
lengths. However, they do not address the large number of q-space samples required by DSI. 
Compressed sensing (CS) has been applied to DSI (CS-DSI) to achieve q-space acceleration. CS 
theory exploits transform sparsity to recover signals from sub-Nyquist acquisitions (Donoho 
2006; Lustig et al. 2008; Lustig, Donoho, and Pauly 2007). CS-DSI undersamples in q-space and 
reconstructs the missing samples with CS, allowing for a reduction in acquisition time directly 
proportional to the CS acceleration factor. Combining CS-DSI with SMS or multiplexed EPI can 
provide even higher accelerations (K. Setsompop et al. 2013), and render CS-DSI a practical 
diffusion protocol for large-scale in vivo population studies (Tobisch et al. 2018).  

Several methods for CS-DSI reconstruction have been proposed. Menzel et al. (2011) 
used wavelet and total variation (TV) penalties on PDFs combined with random Gaussian 
undersampling patterns, and concluded that angular and radial diffusion properties were 
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preserved at R=4 acceleration. Paquette et al. (2015) performed a joint comparison of different 
wavelet-based sparsifying transforms and q-space sampling strategies, and found the best 
results when using a “uniform-angular, random-radial” undersampling mask combined with 
discrete wavelet transform (DWT). Both Menzel et al. and Paquette et al. used fixed transforms 
to generate sparse signal representations. Conversely, Bilgic et al. (2012) proposed CS-DSI using 
adaptive PDF dictionaries, combining the K-SVD algorithm (Aharon, Elad, and Bruckstein 2006) 
for dictionary training with the FOcal Underdetermined System Solver (FOCUSS) algorithm 
(Gorodnitsky and Rao 1997) to solve the CS problem. While this approach yielded reduced 
reconstruction errors compared to fixed transforms, the iterative FOCUSS reconstruction 
resulted in full brain computation times on the order of days. This bottleneck was addressed in 
subsequent work (Bilgic et al. 2013), where two dictionary-based, L2-regularized methods were 
introduced that reduce computation times down to seconds per slice. They provide fast, simple 
formulations while preserving reconstruction quality compared to Dictionary-FOCUSS. One of 
the key findings from (Bilgic et al. 2013) was that forcing the PDFs to remain in the range of a 
dictionary was more important than the sparsity constraints imposed on the transform 
coefficients. In other words, the key to good reconstructions lies in the prior information 
encoded in a dictionary, and not the regularization norm that is applied on the dictionary 
transform coefficients. We note that the theoretical foundation of CS concerns signal recovery 
using the L1-norm, and that the aforementioned CS-DSI methods use the L2-norm. With this in 
mind, we will use CS-DSI to refer to the umbrella of algorithms that reconstruct DSI from 
undersampled q-space.  
  Dictionary-based CS-DSI is a promising approach, but nonetheless has aspects that 
require further investigation. One of these areas is the effect of dMRI signal-to-noise ratio (SNR) 
on the CS algorithms and dictionary learning, which is yet to be well characterized (Bilgic et al. 
2012). Determining how the SNR of the training data influences reconstructions and the 
minimum SNR level required for high-quality CS reconstruction would provide critical insights 
for the development of CS-DSI protocols. Previously, CS-DSI reconstruction fidelity was assessed 
in vivo. In that case, the only available ground truth is a the fully sampled DSI dataset from the 
same brain (Bilgic et al. 2013; Bilgic et al. 2012; Menzel et al. 2011). A drawback of this 
approach is that the fully sampled DSI data are inherently corrupted with noise, particularly at 
high b-values. Bilgic et al. (2013) ameliorated this issue by sampling a few q-space locations 10 
times, and using these low-noise references to evaluate reconstructions. Interestingly, they 
found that CS reconstructions exhibited lower errors than the fully sampled (1-average) data 
when compared to the 10-average data. These results exemplify potential denoising benefits of 
CS-DSI with respect to fully sampled data collected at the same SNR, but also highlight 
inadequacies of taking the fully sampled data as ground-truth. Ultimately, our goal is to use the 
data to characterize the underlying white-matter fiber geometries. Thus, it is important to know 
how great an error with respect to the fully sampled data we can tolerate in our CS 
reconstructions, without compromising accuracy with respect to the true fiber orientations. For 
this purpose, we need independent measurements of fiber orientations from a modality that 
does not rely on water diffusion.  

Here, we address these questions with a validation study of CS-DSI reconstructions in ex 
vivo human brain. Our goal is two-fold. First, we perform the first validation study that assesses 
the accuracy of CS-DSI with respect to ground-truth measurements of axonal orientations from 
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optical imaging. This is of relevance to the use of CS-DSI in large-scale population imaging to 
study white-matter organization across the human lifespan (Tobisch et al. 2018). Second, we 
investigate the ability of CS-DSI reconstruction to approximate multiple q-space sampling 
schemes, including grid- and shell-based. This is of relevance to both in vivo population studies 
and ex vivo validation studies, where the flexibility to use orientation reconstruction methods 
and microstructural models that require either type of sampling scheme is an asset. 

Specifically, we image human white-matter samples with high-resolution DSI at 9.4T and 
with polarization-sensitive optical coherence tomography (PSOCT) (De Boer et al. 1997). The 
latter is a technique in the family of label-free 3D optical imaging methods, which provide direct 
measurements of fiber orientations at microscopic resolution (Wang et al. 2018; Wang et al. 
2011) and have emerged in recent years as a powerful tool for the validation of the 
mesoscopic-resolution diffusion orientations obtained from dMRI (see Yendiki et al., (2021) for 
a review). We have recently demonstrated the ability of PSOCT to resolve complex fiber 
configurations, including interdigitated crossing fibers, distinct (non-interdigitated) crossing 
fibers, and branching fibers, in human brain tissue (Jones et al. 2020). Numerous other studies 
have employed PSOCT to resolve crossing fibers in biological tissues (Villiger et al. 2018; Ruiz-
Lopera et al. 2021; Yao and Duan 2020; Guo et al. 2004; Fan and Yao 2013), including the 
mouse brain (Lefebvre et al. 2021) and human brain (Boas et al. 2017; Wang et al. 2018).  

We undersample the DSI data and use the dictionary-based techniques from Bilgic et al. 
(2013) to perform CS reconstructions, with dictionaries trained on DSI data from three different 
ex vivo human brain blocks to determine generalizability. We investigate if fiber orientations 
estimated from CS reconstructed data can achieve the same accuracy as those estimated from 
the fully sampled data, by comparing both to the ground-truth fiber orientations measured by 
PSOCT. We examine the influence of the SNR of the training or test data on the accuracy of the 
diffusion orientation estimates. We show that, for an acceleration factor of R=3, which 
corresponds to 171 diffusion-encoding gradient directions, the accuracy of CS-DSI is very similar 
to that of fully sampled DSI. Our findings indicate that, with an acquisition time similar or 
shorter than typical high angular resolution multi-shell scans, CS-DSI data can be used to 
approximate both fully sampled DSI and multi-shell data with high accuracy. This provides the 
flexibility to take advantage of the high angular accuracy of DSI (Daducci et al. 2013; Jones et al. 
2020; Maffei et al. 2020,  2021) while also allowing microstructural analyses either on q-shells 
or on the full EAP.  For in vivo population studies, this gives access to a wider range of potential 
biomarkers. For ex vivo validation studies, it facilitates the comparison of multiple acquisition 
schemes from a single scan. Finally, we find that, when the acceleration factor of CS-DSI is 
increased beyond R=3, performance deteriorates, increasing either the angular error or the 
number of spurious peaks. These results provide a benchmark for the future development of 
more efficient q-space acceleration techniques. 
 
2. Methods 
2.1. Sample identification 

The samples used in this study were extracted from two human brain hemispheres that 
were obtained from the Massachusetts General Hospital Autopsy Suite and fixed in 10% 
formalin for at least two months. Demographic information about the hemispheres is given in 
Table 1. Three samples were extracted from different anatomical locations of the hemispheres. 
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Sample 1A (Figure 1A) was cut from brain 1 and was approximately 3x2x2 cm. It contained an 
area of deep white matter (WM) that included the corpus callosum (CC), the internal and 
external capsules (IC and EC, respectively), the caudate nucleus and the putamen. Sample 1B 
(Figure 1B) was taken from a different region of brain 1. The block was approximately 3x2x2 cm 
and contained an area of deep WM including the posterior internal capsule, putamen, and 
thalamus. Sample 2 (Figure 1C) was cut from brain 2 and was sized approximately 2x2x3 cm. 
The superior part of the block contained the anterior part of the superior frontal gyrus, the 
medial side included the cingulate sulcus, and the lateral side contained parts of the 
corticospinal tract and dorsal superior longitudinal fasciculus (SLF-I).  
 
Brain Age Gender Laterality Cause of death Diagnosis PMI 

1 (samples 
A and B) 43 F Right Cardiac arrest Cognitive control <24 h 

2 70 M Left 

Coronary 
artery disease 
and multiorgan 
failure 

Severe coronary 
artery disease, 
myocardial 
infarction, 
hypertension, 
hyperlipidemia, 
mild 
hypoxic/ischemic 
changes  

24 h 

Table 1. Demographic information on post mortem human hemispheres. 
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Figure 1. Overview of sample identification and data acquisition. Ex vivo human brain samples were extracted from coronal 
slabs (dashed rectangles) and dMRI data were acquired at 9.4T. Single slices from b=0 scans are shown for each sample. 
Samples 1A and 1B were cut from different anatomical locations of the same brain, and sample 2 was extracted from a 
different brain. Following dMRI, a piece of sample 1A was cut and imaged with PSOCT (A, right). Sample 1A, which contained 
the corpus callosum (CC), internal capsule (IC), external capsule (EC), caudate and putamen, was used as the test dataset. Each 
of samples 1A, 1B, and 2 were used as training datasets. 
 
2.2. Diffusion MRI  
2.2.1. Data acquisition  

All three ex vivo samples were scanned in a small-bore 9.4T Bruker Biospec system with 
gradients capable of Gmax=480 mT/m. Prior to scanning, each block was placed in a plastic 
syringe filled with Fomblin (perfluoropolyether) and all air was removed. The dMRI data were 
acquired using a spin echo 3D single-shot EPI sequence with Gmax=393 mT/m, TR=750 ms, TE=43 
ms, GRAPPA factor 2, matrix size 136x136x176, and 250 μm isotropic resolution. We used a DSI 
sampling scheme consisting of one b=0 image and 514 gradient directions arranged on a 
Cartesian lattice in q-space and zero padded to an 11x11x11 grid (Wedeen et al. 2005). 
Diffusion encoding was applied with bmax=40000 s/mm2, ẟ=15 ms, and Δ=21 ms, corresponding 
to qmax=250 mm—1. The total acquisition time was approximately 48 hours. We will refer to the 
datasets containing all 515 diffusion volumes as the “fully sampled” or “FS” data.  
 A 4-channel phased array surface receive (Rx) coil was used in dMRI acquisitions 
(diagramed in Figure 2A, bottom), leading to a decrease in coil sensitivity and SNR as the 
distance between the sample and Rx coil increased. The coronal planes of the dMRI data were 
approximately parallel to the surface coil, so coronal slices closer to the coil had higher signal 
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than the slices farther away. Figure 2A (top) shows three example coronal slices from the b=0 
volume of sample 1A, each with varying distances from the surface Rx coil. To quantify the 
dMRI SNR, we used the b=0 signal intensities from a region of interest (ROI) in the deep WM. 
The SNR of each coronal slice was calculated as the mean signal (Figure 2B, solid black line) 
divided by the standard deviation of the signal intensities from the ROI (Figure 2B, solid gray 
line). To relate the SNR across slices to the sensitivity profile of the coil, we fit a linear model to 
the calculated SNR values to obtain an expression for SNR as a function of slice (Figure 2B, 
dotted green line). For the dMRI slice numbering of each sample, we will refer to slice 1 as the 
slice closest to the surface coil, with increasing slice numbers indicating increased distance from 
the coil. 
 

 
Figure 2. dMRI acquisition and SNR. (A) Bottom: A surface receive coil was used in dMRI acquisitions. Top: This led 
to a decrease in sensitivity with increasing distance from the coil, as shown in coronal slices from the sample 1A 
b=0 volume. The same intensity scaling was used for all three slices. (B) The b=0 SNR in each coronal slice of 
sample 1A (solid green line) was calculated from the mean (black line) and standard deviation (gray line) of signal 
intensities from a deep WM ROI. A linear regression was performed to find the slope of SNR as a function of slice 
(dotted green line). The left y-axis shows the signal and noise intensities, and the right y-axis shows SNR values. 
The x-axis in indexed by slice number. 
 
 
2.2.2. Compressed sensing reconstruction 

CS reconstructions were performed using two dictionary-based CS-DSI methods 
previously introduced by Bilgic et al. (2013). One is PCA-based reconstruction (PCA), and the 
other is Tikhonov-regularized pseudoinverse reconstruction using the training set of PDFs as the 
dictionary (PINV). CS undersampling masks were generated for acceleration factors R=3, 5, and 
9 using a variable-density power-law function (Lustig, Donoho, and Pauly 2007; Bilgic et al. 
2013). Nine CS masks with different sampling patterns were created for each acceleration 
factor. Retrospective undersampling was applied to fully sampled q-space data, followed by CS 
reconstruction using either PCA or PINV. Each reconstruction method had one free parameter: 
the number of principal components T and the Tikhonov regularization parameter λ, for PCA 
and PINV respectively. The optimal parameter for each dictionary was determined using the 
parameter sweeping approach from Bilgic et al. (2013), in which the training data were 
undersampled and reconstructed using a range of parameters, and the one yielding the lowest 
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root-mean-square error (RMSE) in PDFs (described in section 2.4.2.) when compared to the fully 
sampled data was selected. This procedure was performed separately for each combination of 
dictionary and acceleration factor.  

Reconstructions and analyses were performed in MATLAB (R2019a, 9.6) based on 
publicly available code (https://www.martinos.org/~berkin/software.html). Both PCA and PINV 
methods used a single matrix multiplication to reconstruct an entire slice, with computation 
times of ~10-15 seconds per slice (~6000 voxels per slice) on a workstation with a 3.4GHz Intel 
i7 processor, 8 cores, 32GB RAM. For full volume reconstructions (~50 slices), we compiled the 
MATLAB function into a standalone application and processed individual slices in parallel on a 
high-performance compute cluster. Simultaneously running each slice as a separate process 
with 8GB of allocated memory resulted in full volume reconstruction times between 2-10 
minutes (depending on the number of available CPUs on the cluster).  
 
2.2.3. Fiber orientation reconstruction 
 At each dMRI voxel, we computed the orientation distribution function (ODF), i.e., the 
marginal PDF of the diffusion orientation angle. Diffusion tractography algorithms use the 
ODFs, rather than the full PDFs, to reconstruct WM bundles. In DSI, ODFs are typically obtained 
by interpolating the PDFs onto uniform radial vertices and summing them along each radial 
projection. The truncation of q-space causes ringing in the PDFs, which introduces artifacts into 
the ODFs. One approach to mitigating these artifacts is to apply a windowing function on the q-
space data, like a Hanning filter (Wedeen et al. 2005). This smooths the signal decay at the 
edges of q-space but diminishes the contributions of high-frequency diffusion terms, potentially 
oversmoothing the PDFs and ODFs and reducing angular resolution. An alternative approach is 
to use unfiltered q-space data and carefully define the starting and ending displacement 
distances for integration of the PDF (Tian et al. 2016; Paquette, Gilbert, and Descoteaux 2016; 
Lacerda et al. 2016). This way, one can restrict the integration range so that PDF ringing is 
omitted from ODF computations without having to taper the high frequency q-space data. We 
used the latter approach for ODF reconstructions. 
 DSI ODF reconstructions were performed in Python with the Dipy (version 1.3.0.) library 
(Garyfallidis et al. 2014). For each voxel, the q-space data were zero-padded to a 75x75x75 grid 
and the 3D FFT was applied to obtain the PDF, with negative PDF values clipped to zero. For 
ODF reconstruction, we used a PDF integration lower bound of 𝑟!"#$" = 10 and upper bound of 
𝑟%&' = 16 (which were roughly 0.27x and 0.43xFOV), a radial step size of 𝑟!"%( = 0.05, and a 
radial weighting factor of 2. ODF peaks were extracted using a maximum of 3 peaks per voxel, 
minimum peak separation angle of 25° and minimum peak magnitude of 0.05. The same 
parameters were used for all DSI ODF reconstructions.  
 We also fit the DTI model to the fully sampled data using the FSL command dtifit and 
extracted the orientations of the primary eigenvectors of the tensors. These served as a 
baseline for “worst-case” dMRI orientation accuracy, i.e., where only a single fiber population 
can be resolved in each voxel. We will refer to the fully sampled DTI and DSI orientations as FS-
DTI and FS-DSI, respectively. 
 
2.2.4. Resampling onto q-shells 
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 Next, we investigated how well we could approximate q-shell data from CS-DSI 
acquisitions by comparing data that were acquired with CS-DSI scheme and resampled onto q-
shells to data from the same sample that were acquired on q-shells. Following CS 
reconstruction, the CS-DSI q-space data were resampled onto shells in q-space using the 
approach described in (Jones et al. 2020). Briefly, the q-space samples arranged on shells were 
approximated by using a nonuniform fast Fourier transform (NUFFT) with min-max 
interpolation (Fessler and Sutton 2003) to interpolate the DSI q-space samples arranged on a 
dense grid. Multi-shell data from sample 1B that were generated by resampling FS-DSI 
[NUFFT(FS)] and CS-DSI [NUFFT(CS)] q-space data were compared to multi-shell q-space data of 
sample 1B that were acquired during a separate scan.  

The multi-shell acquisition of sample 1B used identical imaging parameters as the FS-DSI 
acquisition (described in section 2.2.1.), except that it consisted of one b=0 image and 256 
directions arranged on 3 q-shells, with 64, 64, 128 directions and b=4,000, 12,000, 20,000 
s/mm2, respectively. FS-DSI and CS-DSI q-space data from sample 1B were resampled onto the 
same 3 shells and compared to the acquired multi-shell data. The CS-DSI reconstruction tested 
here used the PCA method at acceleration R=3 and training data from sample 2.  

As previously (Jones et al. 2020), resampling fidelity was assessed using the relative 
normalized root mean square error (rNRMSE) between the acquired and resampled q-space 
data. This accounts for the fact that the acquired and resampled data come from different scan 
sessions, and thus some differences between them are expected as they contain different noise 
realizations. This is done by normalizing the NRMSE of the q-space images by the NRMSE of the 
b=0 images from each acquisition. Thus the rNRMSE quantifies the extent to which resampling 
introduces additional error, with respect to what the error would have been due to noise alone. 
For each diffusion-weighted volume, we compared the average rNRMSE across all WM voxels 
for the resampled FS-DSI data [NUFFT(FS-DSI)] and resampled CS-DSI data [NUFFT(CS-DSI)].  
 We also investigated the effect of q-space resampling on indices extracted from 
microstructural dMRI models. For each of the three multi-shell datasets, i.e., acquired, 
resampled NUFFT(FS), and resampled NUFFT(CS), the diffusion kurtosis imaging (DKI) model 
was fit to the first two shells (b=4,000 and 12,000 s/mm2) using an ordinary least-squares 
approach implemented in Dipy (version 1.3.0). Microstructural indices were extracted from the 
fitted tensors, namely the fractional anisotropy (FA) of the diffusion tensor, the orientation of 
the primary eigenvector of the diffusion tensor, the mean kurtosis (MK), the radial kurtosis (RK) 
and the axial kurtosis (AK).  
 
2.3. PSOCT 
2.3.1. Data acquisition 

Following dMRI acquisition of sample 1A, a piece of the tissue block was extracted for 
imaging with PSOCT (Figure 1A, right). For a thorough review of PSOCT and its applications, see 
de Boer et al. (2017). Briefly, PSOCT uses polarized light to probe tissue birefringence and 
obtain undistorted, direct measurements of in-plane fiber orientations at microscopic 
resolutions. Thus PSOCT has been used as a reference modality for the validation of dMRI-
derived fiber orientation estimates (Wang et al. 2014; Jones et al. 2020). As these studies have 
shown, PSOCT can resolve complex fiber patterns at a scale that is not accessible with dMRI. 
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That is because the spatial resolution of PSOCT is 2-3 orders of magnitude higher than that of 
dMRI, and thus much closer to the caliber of axons (<1-10 μm; (Liewald et al. 2014)).  

Details on our setup, acquisition, and analysis for PSOCT were previously described 
(Jones et al. 2020). Briefly, the sample was imaged with a polarization maintaining fiber (PMF) 
based, spectral domain PSOCT system developed in-house (Wang et al. 2016). The light source 
consisted of two broadband super-luminescent diodes (Thorlabs Inc., LSC2000C), with a center 
wavelength of 1300 nm and a bandwidth of 170 nm. The axial resolution was 2.9 μm in tissue 
and the lateral resolution was estimated at 3.5 μm. PSOCT produces measurements of optic 
axis orientation, which represent the in-plane (2D) orientation of the fiber axis. We 
downsampled the PSOCT data to an in-plane resolution of 10 μm to facilitate data processing. 
To cover the entire tissue surface, 1120 tiles (FOV = 1 mm2) were acquired using a snaked 
configuration scheme with 50% overlap between adjacent tiles. The tiles were stitched using 
the Fiji software (Schindelin et al. 2012; Preibisch, Saalfeld, and Tomancak 2009). A vibratome 
cut off a 75 μm slice after the superficial region of the tissue block was imaged, which 
consequently allowed deeper regions to be exposed by PSOCT. There were 63 total slices 
acquired for the sample block. One critical advantage of the technique is that PSOCT images the 
blockface of the tissue before slicing (Wang et al. 2018). This avoids the nonlinear slice 
distortions that are present in traditional histological techniques, where slices are imaged after 
they are cut. As a result, we can simply stack the slices into a volume.  
 
2.3.2. Cross-modal registration 

The registration of PSOCT and dMRI images was performed as described in Jones et al. 
(2020). There, we examined whether our dMRI scans had nonlinear distortions that might 
affect image registration. We registered the dMRI b=0 volume to a structural MRI scan from the 
same sample, using either affine or nonlinear registration. We found that b=0 voxel intensities 
after affine vs. nonlinear registration were highly correlated (𝝆 = 0.96, p < 0.001), indicating 
that nonlinear distortions were negligible and therefore affine alignment was sufficient. 

Affine registration was used to align the dMRI fractional anisotropy (FA) and PSOCT 
retardance volumes. Retardance represents the phase delay between orthogonal polarization 
channels that is induced by birefringence, a property of anisotropic structures. The myelinated 
axons that compose WM bundles possess birefringent properties and are highlighted in the 
retardance, providing a tissue contrast similar to FA. We used a robust, inverse consistent 
registration method that detects and down-weighs outlier regions in the images (Reuter, Rosas, 
and Fischl 2010). Previously, Wang et al. (2014) reported a Dice coefficient of 0.96 between co-
registered FA and retardance volumes with this approach, signifying the exceptional alignment 
that can be attained between the two contrasts.  

We transformed the dMRI volumes to PSOCT space using nearest-neighbor 
interpolation, and also rotated the dMRI orientation vectors (see section 2.2.3 above) 
accordingly using the rotational component of the affine transformation. Finally, we projected 
the 3D dMRI vectors onto the 2D PSOCT imaging plane for the purposes of comparison to 
PSOCT optic axis measurements, which represent in-plane (2D) fiber orientations. 
 
2.4. Error metrics 
2.4.1. Angular error with respect to PSOCT 
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We performed a voxel-wise comparison of dMRI and PSOCT orientations using absolute 
angular error as the accuracy metric, as in (Jones et al. 2020). In each voxel, we selected the 
peak of the diffusion ODF with the (2D) in-plane orientation that matched the corresponding 
PSOCT orientation most closely and computed the angular error between that peak and the 
PSOCT measurement. Thus, for a voxel with N dMRI ODF peaks, the absolute in-plane angular 
error 𝐴𝐸 was calculated as:	 
 
 𝐴𝐸 = min

&
{arccos	(|𝒆&)𝒗|)} , (1) 

 
where 𝒆& is the unit vector along the 𝑛"* dMRI peak orientation, and 𝒗 is the unit vector along 
the measured PSOCT orientation. Since the analysis was performed in 2D, the angular error 
could take values between 0° and 90°. 

A WM mask was created to exclude all voxels where the retardance intensity was below 
50% of the maximum retardance, and only voxels in this WM mask were considered when 
computing angular error metrics. PSOCT optic axis measurements rely on the birefringence of 
anisotropic processes, such as axon bundles in WM, but are not necessarily accurate in gray 
matter (GM) or voxels where fibers primarily project through the imaging plane, where the lack 
of apparent birefringence results in low retardance.  

The PSOCT imaging plane was nearly parallel to the dMRI coronal plane, which itself was 
nearly parallel to the surface Rx coil. We exploited this arrangement, and the decreasing SNR of 
dMRI slices at increasing distance from the coil, to assess the accuracy of CS-DSI as a function of 
SNR. 
 
2.4.2. RMSE in PDFs with respect to FS-DSI 

As a more conventional CS-DSI error metric, we also computed the normalized RMSE of 
the PDFs obtained from CS reconstruction with respect to those obtained from the fully 
sampled DSI data: 

 
 𝑅𝑀𝑆𝐸 = ‖𝒙-𝒙.‖!

‖𝒙‖!
	, (2) 

 
where 𝒙 is the PDF from the fully sampled data, 𝒙@ is the PDF from the CS reconstructed data, 
and ‖∙‖/ is the L2-norm.   
 
2.4.3. Number of fiber populations per voxel 
 To gauge the specificity of dMRI fiber orientation estimates, we investigated the 
number of fiber orientations per voxel extracted from dMRI ODFs and from PSOCT 
measurements. For each dMRI reconstruction, we calculated the average number of detected 
ODF peaks (max of 3 in each voxel) across all WM voxels. To estimate the number of PSOCT 
fibers per voxel, we used an approach similar to the one described in Jones et al. (2020). First, 
PSOCT fiber orientation distributions (FODs) were constructed by generating histograms of the 
orientation measurements from all 0.01 mm PSOCT voxels within each 0.25 mm dMRI voxel, 
using a bin width of 5°. Then, the local maxima of the PSOCT FODs that had a height of at least 
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5% of the maximum bin and were separated by at least 10° were extracted using the findpeaks 
function in MATLAB. For consistency with dMRI, we also imposed a maximum of 3 PSOCT FOD 
peaks per voxel. The average number of PSOCT fibers per voxel was then calculated by 
averaging the number of PSOCT FOD peaks across all WM voxels in the volume.  
 
2.5. CS-DSI validation experiments 

A total of six PDF dictionaries were constructed, each trained on a single slice of fully 
sampled DSI data from sample 1A, sample 1B, or sample 2. For each sample we created two 
dictionaries, one from a high-SNR slice (slice 3) and one from a low-SNR slice (slice 13). We 
applied CS reconstruction to DSI data from sample 1A, undersampled by a factor of R=3, 5, or 9, 
using one of these dictionaries. We then computed DSI ODFs and extracted the orientations of 
the ODF peaks. We transformed the diffusion orientation vectors to PSOCT space, projected 
them onto the PSOCT plane, and calculated the absolute angular error with respect to PSOCT at 
each WM voxel.  

Angular non-uniformities in the CS undersampling patterns may introduce directional 
biases into the ODFs, and thus affect our angular error computations. We accounted for this 
potential source of variability in our error metrics by repeating the CS reconstructions with 9 
different CS undersampling masks, for each combination of dictionary and acceleration factor. 
Visualizations of the 3D angular distributions for all CS undersampling masks used in this study 
are provided in the supplementary information (Figures S1-S3).  
 
2.5.1. Effect of CS acceleration factor and training sample on angular error 

We assessed the efficacy of the CS algorithms at different acceleration factors, by 
comparing CS reconstructions of data from sample 1A that had been undersampled by a factor 
of R=3, 5, and 9. In this comparison, we used the PCA and PINV methods with dictionaries 
trained on a high-SNR slice from each sample. The accuracy of dMRI orientations was quantified 
by the mean angular error across each PSOCT slice, as well as across all WM voxels in the PSOCT 
volume. This error was averaged over the reconstructions that were obtained with the 9 
different CS undersampling masks. The mean angular error of FS-DSI was used as a reference 
for evaluating the quality of CS reconstructions.  
 
2.5.2. Effect of SNR on reconstruction error metrics 

One goal of this study was to determine the influence of SNR on metrics of CS 
reconstruction quality. To this end, we calculated the b=0 SNR (as described in section 2.2.1.) 
for each dMRI slice and computed the average RMSE in PDFs (with respect to the fully sampled 
data) and the average angular error (with respect to PSOCT) across all WM voxels in each slice. 
Then, for each CS reconstruction, we performed a linear regression of RMSE or angular error 
against SNR. This was done for FS-DTI, FS-DSI, and CS-DSI. For CS-DSI, error metrics from each 
combination of acceleration, training sample, and method were calculated, each time averaging 
the mean errors over CS reconstructions from the 9 different undersampling masks. 
 
2.5.3. Effect of SNR on dictionary training  

To evaluate the effect that the SNR of the training data has on CS reconstructions, 
voxels in sample 1A were reconstructed at acceleration R=3 with dictionaries trained on low-
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SNR data (slice 13) from each sample using PCA and PINV methods. These results were then 
compared to the corresponding results from the experiment described in section 2.5.1. that 
used high-SNR training data. The accuracy of dMRI orientations was quantified by the mean 
angular error across all WM voxels in the PSOCT volume. The CS reconstructions included here 
were performed with one randomly selected CS undersampling mask.  
 
3. Results 
3.1. Visual inspection 

Figure 3 provides visualizations of dMRI and PSOCT orientations from a representative 
slice of sample 1A. Figure 3A shows fiber orientation maps as color-coded RGB images, where 
the color wheel shows the correspondence between pixel color and in-plane orientation. For 
FS-DSI and for CS-DSI at acceleration factors R=3, 5, and 9, the color maps show the 
orientations of the ODF peaks that most closely matched the PSOCT orientations in the same 
voxel. All CS-DSI results are shown for the same CS undersampling mask. For fully sampled DTI, 
the color maps show the orientations of the primary eigenvector of the diffusion tensor. Figure 
3B shows heat maps of the absolute angular error between dMRI and PSOCT orientations in 
each voxel. 

Despite the large disparity in voxel size, there was good overall agreement between 
dMRI and PSOCT fiber orientation maps (Figure 3A). The dMRI maps showed the closest 
resemblance to PSOCT in the medial half of the slice, with greater differences in the lateral half 
of the slice. Examination of the angular error maps (Figure 3B) confirms that the greatest 
angular errors occurred in the middle and lateral regions of the slice. This distribution of errors 
was most obvious in the FS-DTI error map (Figure 3B, top right). The fully sampled (Figure 3B, 
top middle) and CS-DSI maps (Figure 3B, bottom) show similarly good agreement with PSOCT.  
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Figure 3.  Fiber orientations estimated from dMRI vs. PSOCT.  (A) Color-coded maps of PSOCT (top left) and dMRI 
orientations from fully sampled data (top right) and CS-DSI data (bottom). (B) Absolute angular error of dMRI 
orientations with respect to PSOCT. A WM mask was created by thresholding the PSOCT retardance (top left). The 
heat maps were masked to include only voxels classified as WM. CS-DSI reconstructions are shown for high-SNR 
training data and one of the CS undersampling masks.   
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3.2. Effect of CS acceleration factor and training sample on angular error  
Figure 4 shows bar plots of the mean angular errors of dMRI with respect to PSOCT, 

averaged over all WM voxels analyzed, from CS reconstructions of sample 1A with high-SNR 
training data from different samples and at different acceleration factors. Error bars show the 
standard error over different CS undersampling masks. The corresponding statistics are given in 
Table 2. The mean angular error of FS-DSI (green bar and dotted line) is shown as the 
benchmark for assessing CS-DSI results. The mean angular error of FS-DTI (red bar and dotted 
line) is shown as a worst-case scenario. 

At an acceleration factor of R=3, CS-DSI achieved very similar angular error to FS-DSI 
(within +/-1.27 o), for both PCA and PINV reconstruction methods, and regardless of whether 
the training data came from the same or a different sample than the test data. For PCA 
reconstruction, the angular error increased with the acceleration factor. This increase was most 
dramatic in the (more realistic) scenario where the training data came from a different brain 
than the test data. Conversely, higher acceleration factors imparted only minor changes on the 
accuracy of PINV reconstructions. 
 

 
Figure 4. Mean angular error of dMRI with respect to PSOCT. The plots show average error over all WM voxels in 
sample 1A. For CS-DSI, the error was also averaged over 9 CS undersampling masks, with error bars representing 
standard error of the mean across these 9 masks. Results are grouped by training sample (sample 1A, blue; sample 
1B, purple; sample 2, yellow) and CS method. Bar shades correspond to acceleration factor (3, 5, 9). All CS-DSI 
reconstructions used high-SNR training data from each sample. Mean angular errors from FS-DTI (red) and FS-DSI 
(green) are shown on the far right for comparison. 
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 Angular error (degrees) 
FS-DTI 26.10  
FS-DSI 18.25  
 PCA PINV 
Training sample 1A   
R=3 18.64 ± 0.11 17.71 ± 0.30 
R=5 19.25 ± 0.16 17.95 ± 0.14 
R=9 20.16 ± 0.40 18.36 ± 0.26 
Training sample 1B   
R=3 18.43 ± 0.25 17.37 ± 0.32 
R=5 19.69 ± 0.30 17.31 ± 0.16 
R=9 21.10 ± 0.33 17.30 ± 0.17 
Training sample 2   
R=3 18.81 ± 0.29 16.97 ± 0.33 
R=5 22.37 ± 0.92 16.25 ± 0.18 
R=9 26.48 ± 1.73 16.89 ± 0.52 

Table 2. Angular error of dMRI orientations. Mean angular errors of dMRI with respect to PSOCT across all 
analyzed WM voxels. CS-DSI reconstructions used high-SNR training data from each sample. For CS-DSI, standard 
errors of the mean are also shown, computed over the 9 CS undersampling masks. 
 
 We delved deeper into this difference between the performance of PCA and PINV by 
comparing the average number of ODF peaks per voxel from the data reconstructed by each 
method. The bar plot in Figure 5A (left) shows the average number of reconstructed ODF peaks 
per WM voxel from each reconstruction (for a maximum of 3 peaks per voxel), with error bars 
showing the standard error of the mean. CS-DSI results were averaged over the 9 
undersampling masks used for CS reconstructions. The number of peaks per voxel from FS-DSI 
ODFs (green bar) and from PSOCT FODs (dashed red line) are shown for reference.  

FS-DSI produced an average of approximately 2 peaks per voxel, which was slightly 
greater than PSOCT (1.88 peaks per voxel). For an acceleration factor of R=3, PCA 
reconstructions produced a similar number of peaks compared to both PSOCT (less than 7.9% 
difference) and FS-DSI (less than 3.2% difference). As the acceleration factor increased, PCA 
tended to return slightly fewer peaks. On the other hand, all PINV reconstructions returned a 
notably greater number of peaks than both PSOCT (greater than 12.54% difference) and FS-DSI 
(greater than 7.6% difference). This number increased as the acceleration factor increased, and 
when the training data came from a different sample than the test data (e.g., PINV with sample 
2 training had greater than 30% difference vs. PSOCT for all acceleration factors).  
 Figure 5B plots the average number of peaks per voxel against the mean angular error. 
The PCA and PINV reconstructions are denoted by triangle and circle markers, respectively, and 
colored as in Figure 5A. Vertical and horizontal error bars indicate the standard error for each 
metric. FS-DSI (green diamond) served as the benchmark in terms of angular error. The red 
dotted line denotes the number of peaks per voxel for PSOCT. As indicated by the black dashed 
line (Figure 5B), there was a clear separation between PINV (above the line) and PCA (below the 
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line). FS-DSI was situated at the knee of the curve, and PCA reconstructions with an 
acceleration factor of R=3 were closest to FS-DSI, regardless of the sample that was used as the 
training data set. PINV reconstructions displayed reduced angular errors, but also had 
significantly more peaks per voxel than PSOCT. Thus, we conclude that CS-DSI with a 
combination of R=3 acceleration and PCA reconstruction preserved the accuracy of FS-DSI with 
respect to the reference PSOCT orientations, but without introducing spurious peaks. 
 

 
Figure 5. Number of reconstructed ODF peaks. (A) Average number of ODF peaks per WM voxel from fully 
sampled (green bar) and CS reconstructed (blue, purple, and brown bars) DSI data, and the average number of 
PSOCT FOD peaks per voxel (red dashed line). CS results show the average from the 9 volumes reconstructed with 
different CS undersampling masks. Error bars display the standard error. (B) Number of ODF peaks per voxel as a 
function of the mean angular error for fully sampled (green diamond) and CS reconstructed q-space data. The red 
dashed line indicates the average number of PSOCT FOD peaks per voxel. Circle markers correspond to PINV, and 
triangle markers correspond to PCA. Marker colors are the same as the bar plots in (A). Error bars indicate the 
standard error. PINV reconstructions (above black dashed line) produced more peaks and lower angular errors 
than PCA (below black dashed line). Most dMRI reconstructions produced more peaks per voxel than was observed 
in PSOCT. The CS-DSI reconstructions that were closest to FS-DSI on both axes were PCA with acceleration R=3.  
 
3.3. Effect of SNR on reconstruction error metrics 

Figure 6A shows the slice-wise mean angular errors with respect to PSOCT, plotted 
against the SNR of the corresponding slice. Error bars indicate the standard error. The CS 
reconstructions included here used acceleration R=3 and dictionaries trained on high-SNR data 
from each sample. The curves for CS-DSI reconstructions closely resembled those of FS-DSI 
(green line) throughout the entire volume, with less than 2.52o variation in mean angular errors 
between all DSI reconstructions in each slice. FS-DTI (red line) had significantly greater errors 
than both FS-DSI and CS-DSI and showed a sharp increase in error as SNR decreased. The DSI 
angular errors were relatively robust to decreased SNR.  

Table 3 shows statistics from the linear regressions of the mean angular error against 
SNR. The slopes were noticeably flatter for FS-DSI (-0.24o per unit SNR, p=0.051) and CS-DSI 
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reconstructions (-0.28o to -0.46o per unit SNR, p<0.003) than FS-DTI (-1.20o per unit SNR, 
p=0.00011). 

For comparison, Figure 6B shows the slice-wise mean RMSE in PDFs between each CS-
DSI reconstruction and the fully sampled DSI data, as a function of SNR. The mean RMSE was 
calculated from the real part of the diffusion PDFs and averaged across all WM voxels in each 
slice. Error bars depict the standard error. Statistics from the linear regressions of the RMSE 
versus SNR are also given in Table 3. All reconstructions exhibited a strong negative correlation 
between RMSE and SNR (r=0.99, p<0.001) and showed a nearly linear increase in RMSE as SNR 
decreased (Figure 6B), with consistent linear regression slopes (-0.66 to -0.96 % RMSE per unit 
SNR). It should be noted that the linear fit of SNR likely smoothed the observed relationship, 
but that notwithstanding, the correlation between SNR and CS RMSE remained markedly 
apparent across all reconstructions.  
 

 
Figure 6. Reconstruction error as a function of SNR. (A) Average angular error of FS-DSI, FS-DTI, and CS-DSI with 
respect to reference axonal orientations from PSOCT. (B) Average RMSE in PDFs between CS-DSI and FS-DSI. Each 
error metric is averaged across all WM voxels in each slice and plotted against the SNR of the corresponding b=0 
dMRI slice. Line colors and styles correspond to different dMRI reconstructions. For CS reconstructions, each error 
metric was averaged across 9 CS undersampling masks, with error bars showing the standard error of the mean 
across the 9 masks. For CS-DSI, line colors denote different training samples and line styles denote different CS 
reconstruction methods. All CS reconstructions used an acceleration factor of R=3 and high-SNR training data.  
 

  Angular error  RMSE in PDFs  
  r Slope (o 

per unit 
SNR) 

p-value r Slope (% 
per unit 
SNR) 

p-value 

FS-DSI  -0.45 -0.25 0.051 - - - 
FS-DTI  -0.77 -1.21 0.00011 - - - 
        
CS training CS method       
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Sample 1A PCA -0.67 -0.36 0.0017 -0.99 -0.96 4.4x10-17 
 PINV -0.84 -0.43 7.0x10-6 -0.99 -0.79 9.7x10-17 
Sample 1B PCA -0.65 -0.30 0.0028 -0.99 -0.81 3.2x10-16 
 PINV -0.73 -0.28 0.00038 -0.99 -0.70 1.8x10-16 
Sample 2 PCA -0.81 -0.46 2.6x10-5 -0.99 -0.80 1.1x10-17 
 PINV -0.81 -0.35 2.4x10-5 -0.99 -0.66 6.9x10-17 

 
Table 3. Linear regressions of reconstruction error metrics vs. SNR. Linear correlation coefficient (r), slope, and p-
value from the linear regressions of the angular error with respect to PSOCT and the RMSE in PDFs with respect to 
fully sampled data as a function of SNR. CS reconstructions used an acceleration factor of R=3 and high-SNR 
training data. 
 
 
3.4. Effect of SNR on dictionary training 
 After observing that CS reconstructions at acceleration R=3 using high-SNR training data 
performed nearly as well as FS-DSI in terms of angular error, we tested whether this was also 
true with low-SNR training data. The bar plot in Figure 7 compares the effect of training data 
SNR on the mean angular error of CS reconstructions at acceleration R=3 across all WM voxels 
analyzed. The CS reconstructions included here used one of the R=3 undersampling masks (out 
of the 9 undersampling masks used for Figures 4-6). All CS reconstructions exhibited greater 
mean angular error when using low-SNR than high-SNR training data, although the extent of 
differences varied depending on the training sample and reconstruction method. Specifically, 
PCA was more sensitive to the SNR level of the training data than PINV.  
 

 
Figure 7. Effect of the SNR of the training data on angular error. Mean angular error across all analyzed WM 
voxels for CS reconstructions at acceleration R=3. Dictionaries were trained using either high-SNR (“H”, light shade) 
or low-SNR (“L”, dark shade) slices from sample 1A (blue), sample 1B (purple), or sample 2 (yellow). Results from 
FS-DTI (red) and FS-DSI (green) are shown on the far left.  Error bars show standard error across voxels.    
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3.5. Accuracy of resampled q-shell data 
 Results from q-shell approximation are shown in Figure 8. The average relative NRMSE 
of each resampled diffusion-weighted volume with respect to the acquired shell data (Figure 8, 
top left) are plotted for NUFFT(FS) and NUFFT(CS) reconstructions (solid and dashed lines, 
respectively). The corresponding statistics are given in Table 4. NUFFT(FS) and NUFFT(CS) had 
nearly identical mean relative NRMSE for all shells (Table 4). The errors increased slightly as the 
b-value of the target shell increased, but were below 1 on average, for all shells. These results 
indicated that the resampling introduced negligible errors when compared to the variance 
between the two repeated acquisitions resulting from imaging noise. Additionally, resampling 
the undersampled q-space data without CS-DSI reconstruction yielded relative NRMSE values 2-
3 fold larger than NUFFT(CS) (Supplemental Information; Figure S4, Table S1), indicating that 
dense grid q-space sampling, whether acquired with FS-DSI or recovered with CS-DSI, is 
essential for accurate q-shell approximation.  

Figure 8B shows images of one slice from the b=0 volumes (left column) and one 
randomly selected DWI from each shell (three right-most columns). Both the NUFFT(FS) and 
NUFFT(CS) slices (middle and bottom rows, respectively) closely resembled the acquired multi-
shell slices, illustrating that accurate resampling was possible using both FS-DSI and CS-DSI q-
space data. Note that the b=0 images for the NUFFT(FS) and NUFFT(CS) data were the same.  
 Figure 9 displays microstructural maps obtained from DKI fitting of multi-shell data from 
sample 1B. The maps fitted using the NUFFT(FS) (middle row) and NUFFT(CS) (bottom row) data 
showed good agreement with the maps fitted using the acquired multi-shell data (top row). 
Kurtosis maps (MK, AK, RK; 3 right-most columns) were nearly identical between the acquired 
and NUFFT data. Minor increases in FA were observed in the lower half of the NUFFT(CS) map 
(second column from the left). All maps displayed similar features in regions of WM, as well as 
in subcortical (thalamus, right side of slice; putamen, bottom middle of slice) and cortical (left 
side of slice) GM regions.  
 
 
Shell b-value (s/mm2) Relative NRMSE (mean +/- standard deviation) 

NUFFT(FS) NUFFT(CS) 
4,000 0.78 +/- 0.073 0.78 +/- 0.064 
12,000 0.83 +/- 0.11 0.83 +/- 0.11 
20,000 0.97 +/- 0.27 0.95 +/- 0.29 

 
Table 4. Error of NUFFT q-space resampling. Relative NRMSE over white matter voxels from all directions of each 
q-shell. 
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Figure 8. Results from NUFFT q-space resampling. (A) Relative normalized root-mean-square (NRMSE) from q-
space resampling of FS-DSI (light shade) and CS-DSI (dark shade) grid q-space data for DWIs from the b=4,000 
(green), 12,000 (red), and 20,000 s/mm2 (blue) shells. (B) Example slices of representative DWIs from acquired (top 
row), resampled FS-DSI (middle row) and resampled CS-DSI (bottom row) multi-shell data. The same grayscale 
display window was used for each column.  
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Figure 9. Microstructural maps extracted from multi-shell dMRI data. Representative slice showing color-encoded 
FA, FA, MK, RK and AK maps (from left to right, respectively) from DKI fitting of shells 1 and 2, for acquired multi-
shell data (top row), FS-DSI data resampled onto shells (middle row), and CS-DSI data resampled onto shells 
(bottom row) data.  Overall, the maps from resampled data exhibited good agreement with the maps fitted on the 
acquired data. 
 
 
 
4. Discussion 

In this study we performed post mortem validation of CS-DSI and its ability to 
approximate both grid- and shell-based diffusion sampling schemes. In one set of experiments, 
we evaluated the accuracy of diffusion orientation estimates obtained from CS-DSI by 
comparing them to microscopic-resolution reference measurements of fiber orientations from 
optical imaging. This is in contrast to previous in vivo validations that used simulated or fully 
sampled DSI data as the ground truth (Bilgic et al. 2013; Menzel et al. 2011; Paquette et al. 
2015). Our results suggest that error metrics based on the difference between CS and fully 
sampled DSI in q-space may underestimate the accuracy of CS-DSI in capturing the underlying 
fiber geometry of the tissue. Specifically, although the difference in the PDFs obtained from CS 
and fully sampled DSI increases noticeably as the SNR decreases (Figure 6B), this translates to 
only a minor increase of the angular error of the peak orientations with respect to ground-truth 
measurements from optical imaging (Figure 6A). Note that these trends were observed both for 
reconstructions that tended to add spurious diffusion peaks (PINV) and for those that did not 
(PCA), hence the robustness of the angular error as a function of SNR did not appear to be 
explained by the number of peaks. The increasing error between PDFs obtained from CS and 
fully sampled DSI as SNR decreases is likely exacerbated by the fact that the fully sampled data 
are also corrupted by increasing levels of noise. This illustrated the importance of having 
objective measurements of the ground-truth anatomy from an independent modality, such as 
the optical imaging used here. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.02.11.430672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430672
http://creativecommons.org/licenses/by-nc-nd/4.0/


We employed two dictionary-based algorithms for CS reconstruction and investigated 
the effects of training data and undersampling rate on the accuracy of estimated fiber 
orientations. We found that PCA reconstruction at an acceleration factor of R=3 retained the 
fiber orientation accuracy of the fully sampled DSI data (Figure 4), without introducing spurious 
peaks (Figure 5). Its performance was as good when the training data for the dictionary came 
from a different sample than the test data as it was when the training and test data came from 
the same sample. However, we also found that it was important to use high-SNR training data 
to achieve this performance (Figure 7).  

The PINV method achieved low angular errors at all acceleration factors and for all 
training samples (Figure 4). However, it did so at the cost of significant increases in the number 
of reconstructed peaks (Figure 5B), particularly at higher acceleration factors. Increases in the 
angular error and in the number of peaks can be thought of as losses of sensitivity and 
specificity, respectively. Therefore, both types of error are undesirable. Based on our findings, 
we recommend a CS acceleration factor of R=3 and PCA reconstruction, as this combination 
achieved both low angular error and low number of spurious peaks.  

At an acceleration factor of R=3, the CS-DSI scheme comprises 171 diffusion-encoding 
gradient directions. This brings its acquisition time in line with those of state-of-the-art, multi-
shell, high angular resolution diffusion imaging (HARDI) acquisitions. Our findings suggest that 
CS-DSI allows us to approximate both a fully sampled, 514-direction DSI scheme (via CS 
reconstruction) and multi-shell schemes (via q-space resampling). Traditionally, HARDI vs. DSI 
has been framed as a choice between two mutually exclusive approaches, but this does not 
have to be the case. We have previously shown that fully sampled DSI data can be resampled 
onto q-shells (Jones et al. 2020). Here we show that an accelerated CS-DSI scheme also allows 
resampling onto arbitrary q-shells (of course, to within the limits placed by the bmax of the DSI 
acquisition). We find that both the q-space approximation error (Table 4, Figure 8) and the 
microstructural measures obtained after resampling the data onto q-shells (Figure 9) are 
comparable between CS and fully sampled DSI data.  

The findings of recent validation studies suggest that DSI may provide more accurate 
fiber reconstructions than single- or multi-shell acquisition schemes. DSI produced more 
accurate fiber orientation estimates in simulations (Daducci et al. 2013) and comparisons to 
optical imaging measurements (Jones et al. 2020), as well as more accurate tractography when 
compared to ground-truth anatomic tracing in non-human primates (Maffei et al. 2021,  2020). 
The present study shows that a sparsely sampled CS-DSI protocol preserves the high angular 
accuracy of fully sampled DSI. It also preserves the flexibility of resampling the data onto q-
shells at arbitrary b-values, to facilitate analyses that require shelled data, such as DKI (Jensen 
et al. 2005), neurite orientation dispersion and density imaging (Zhang et al. 2012), etc. At the 
same time, it allows direct reconstruction of the full EAP. This allows a wider range of analyses 
to be performed. For example, diffusion PDFs have been previously used to characterize age-
related WM demyelination (Fatima et al. 2013), delineate pathological tissue lesions in patients 
with multiple sclerosis (Assaf et al. 2002), and map in vivo axon caliber in the human brain (Hori 
et al. 2016). Furthermore, we have recently shown that diffusion EAPs may be used to improve 
the decision making of tractography algorithms (A. Yendiki et al. 2020) or reconstruct 
generalized anisotropy profiles that provide contrast between different gray- and white-matter 
structures (Jones et al. 2021). 
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In regard to the dictionary-based CS algorithms that we investigated, our findings 
indicate that dictionary generalizability differs between the PINV and PCA methods, and that 
the extent of these differences depends on both the CS acceleration factor (Figure 4) and the 
training data SNR (Figure 7). One potential factor contributing to these differences may be the 
ways in which PDFs are represented within the algorithms. PCA performs reconstructions in a 
reduced-dimensionality space consisting of only the T principle components that describe the 
greatest variance in the training PDFs, and the optimal number of components T decreases at 
higher acceleration factors in order to improve the conditioning of the pseudoinverse in the 
least-squares reconstruction (Bilgic et al. 2013). In our experiments, T was around 20 at 
acceleration R=3 and less than that at higher accelerations, which are moderately lower than 
the optimal in vivo parameters. Intuitively, reducing the number of principal components 
subsequently limits the ability to describe finer scale details in PDFs, and, together with the 
extremely undersampled q-space data used at high accelerations, likely hinders the level of 
detail in such reconstructions. In contrast, PINV operates directly on the training PDFs 
themselves, exploiting the prior information encoded in the dictionary atoms to bypass sparsity 
constraints. Together, these differences may contribute to the different behavior of PINV and 
PCA as the acceleration factor increases.  

The PINV method investigated here uses a dictionary containing PDFs from a slice of 
fully sampled training data, without any further training. An alternative approach is to use a 
dictionary trained with the K-SVD algorithm (Aharon, Elad, and Bruckstein 2006), which 
enhances the sparsity level of PDF representations and is a fraction of the size of the PINV 
dictionary, allowing up to a 50% reduction in computation time. Regardless of the dictionary, 
reconstructions are performed using the Tikhonov-regularized pseudoinverse. Previous 
comparisons between PINV using a 3191-column dictionary and PINV(K-SVD) using a 258-
column dictionary reported nearly identical reconstruction quality in terms of RMSE, as well as 
equivalent representational power between the two dictionaries (Bilgic et al. 2013). Although 
we did not include results from PINV(K-SVD) here, we did perform CS reconstructions and 
angular error analysis for PINV(K-SVD). We observed very similar results to PINV, both in terms 
of RMSE with respect to fully sampled data and in terms of angular error with respect to PSOCT. 
It is possible that the behavior of the PINV reconstruction that we observed in these 
experiments was related to the optimization of the Tikhonov regularization parameter λ. The 
optimal λ was selected to minimize the RMSE in PDFs with respect to FS-DSI, which may have 
been sub-optimal in terms of spurious peaks. 
 
Relation to previous studies 

We have previously used the present PSOCT analysis framework (and sample 1A from 
this work) in an extensive validation study (Jones et al. 2020).  In that work, we assessed the 
accuracy of fiber orientations estimated from various dMRI orientation reconstruction methods 
and sampling schemes, including DSI, single-, and multi-shell. The DSI results are somewhat 
different between the two studies because the DSI ODF reconstruction is different. In (Jones et 
al. 2020), DSI reconstructions were performed with the DSI Studio toolbox (http://dsi-
studio.labsolver.org), and used filtered q-space signals (Hanning window, width=16) with 
default parameters (e.g., zero-padded 16x16x16 q-space grid, ODF integration lower/upper 
bounds of 0.25x and 0.75x FOV), and a ODF peak threshold of 0.01 (1%). Here, we used a 
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different approach for ODF reconstruction, imposed a (slightly) more stringent peak threshold 
(5%) and included a peak separation threshold. These factors likely contributed to the ~1-2o 
increases in mean angular error reported here compared to previous results. Nonetheless, the 
angular errors in this work were similar to the best performing reconstructions in (Jones et al. 
2020), namely DSI and generalized q-sampling imaging (GQI) (Yeh, Wedeen, and Tseng 2010) 
with the fully sampled DSI data and q-ball imaging (QBI) (Tuch 2004; Aganj et al. 2010) with 
single- and multi-shell data, which were between ~17o and ~19o.  

This work analyzed the dictionary-based CS-DSI methods introduced by Bilgic et. al. 
(2013), however there were several technical differences between these works that should be 
noted. First, in terms of data acquisition, we used DSI data from ex vivo human brain samples 
acquired at 9.4T with a 4-channel surface Rx coil, whereas Bilgic et. al. used in vivo DSI from the 
3T Connectom system with a custom 64-channel head coil (Keil et al. 2013). These differences 
did not have an apparent effect on the dictionary-based CS-DSI methods. First, the CS 
algorithms yielded similar results when using ex vivo training and test data as when using in vivo 
training and test data. Whether the same would also be true when using ex vivo training data 
and in vivo test data (or vice versa) has yet to be investigated. Such an approach may be of 
interest as long, ex vivo acquisitions can be a way to collect very high-SNR training data. Second, 
while both studies generated dictionaries with PDFs from a single slice of fully sampled data, a 
single slice of our ex vivo samples covers only a small anatomical region, whereas a slice of in 
vivo data covers an entire cross-section of the brain. Given that our training samples were cut 
from different anatomical locations, one might expect that local microstructural differences 
between training and test samples might pose challenges for dictionary generalizability. 
However, our findings showed that high-quality reconstructions could be obtained using 
training and test data from different samples (Figure 7), indicating that our ex vivo dictionaries 
possess the representational power to generalize across samples. Indeed, the “residual” (Bilgic 
et al. 2013) between ex vivo PDF dictionaries, i.e., the energy of the part of one dictionary that 
cannot be represented by another, was negligibly small (~10-12), confirming that dictionaries 
from different samples possess equivalent representational power. 

 
Limitations 

The present study did not evaluate all possible methods for CS-DSI reconstruction. 
However, it included one method that achieved good performance on all metrics (PCA on R=3), 
and highlighted the two different ways in which performance can degrade as the acceleration 
factor increases (Figure 5B). The PCA method exhibited diminishing performance in terms of 
angular error, a measure of sensitivity, while the PINV method exhibited significant increases in 
peaks per voxel, a decrease in specificity (Figure 5B). These results could be used as a 
benchmark for future CS-DSI methods, as well as for similar deep learning-based approaches for 
reconstructing sparse q-space samplings (Golkov et al. 2016; Gibbons et al. 2019). These 
approaches may allow even more efficient acceleration and preserve accuracy at acceleration 
factors greater than R=3. 

The two dictionary-based CS-DSI reconstruction methods that we evaluated here use 
discrete EAP representations and L2-regularized algorithms. We studied these methods 
because they are fast, reconstructing an entire slice in a matter of seconds, and easy to 
implement, using dictionaries of fully sampled PDFs without any additional training, and having 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.02.11.430672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430672
http://creativecommons.org/licenses/by-nc-nd/4.0/


only one free parameter to determine. However, there are various other CS-DSI methodologies 
that utilize other basis functions (e.g., discrete cosine transform, discrete wavelet transform) or 
approaches to solving the underdetermined CS problem (e.g., L1-regularized methods such as 
equality constrained or regularized Dictionary-FOCUSS). While the L2-regularized dictionary-
based CS-DSI methods investigated here were shown to provide comparable reconstruction 
quality to both fixed transforms and iterative L1-regularized methods (Bilgic et al. 2013), those 
evaluations were mostly based on RMSE with respect to fully sampled DSI data. Analyzing the 
fidelity of other CS-DSI algorithms in the framework presented here could be valuable, but the 
lengthy computation times accompanying iterative algorithms would ultimately limit their 
utility. We opted to focus our investigation on the two dictionary-based CS methods, PCA and 
PINV, which were computationally tractable and thus enabled us to thoroughly study the 
effects of experimental factors on their performance. 

In this work, we used PSOCT to obtain ground-truth measurements of fiber orientations. 
There are several other techniques that have been used to assess the accuracy of dMRI 
orientation estimates. For a comprehensive discussion of their relative merits and weaknesses, 
we refer the reader to a recent review (Anastasia Yendiki et al. 2021). One approach is to 
extract orientations from myelin-stained sections (Leergaard et al. 2010; Choe et al. 2012; K. 
Schilling et al. 2017; Seehaus et al. 2015) or from confocal microscopy of slices stained with DiI, 
a fluorescent dye (Budde and Frank 2012). Quantification of 3D orientations has been reported 
with Dil stained slices (K.G. Schilling et al. 2018; K. Schilling et al. 2016; Khan et al. 2015). When 
using histological stains, the fiber orientation angles have to be obtained either by manual 
tracing or by an image processing step such as structure-tensor analysis. This step may 
introduce a source of error.  

Optical imaging based on light polarization is a label-free approach that provides direct 
measurements of fiber orientations by exploiting the intrinsic optical property of tissue 
birefringence. In addition to PSOCT, polarized light imaging (PLI) also uses birefringence to 
measure axonal orientations (Mollink et al. 2017; Henssen et al. 2019; Axer et al. 2011). 
However, unlike PSOCT, PLI requires tissue to be sectioned and mounted before imaging. This 
can lead to severe tissue distortions that demand a complex registration framework to correct 
(Majka and Wójcik 2016; Ali et al. 2017; Ali et al. 2018). PSOCT images the blockface of tissue 
before slicing, greatly reducing tissue distortions and allowing accurate volumetric 
reconstructions.   

 The PSOCT technique has its own limitations. Notably, the optic axis orientation 
measurements do not describe the 3D orientation, but rather its projection onto the imaging 
plane. Fibers oriented orthogonal to the imaging plane have small in-plane components and 
may introduce uncertainty into the PSOCT optic axis measurements. Such fibers would also 
exhibit low retardance. To avoid biases from through-plane fibers, we only analyzed WM voxels 
with high retardance. In a previous study using an identical procedure, we showed that the in-
plane angular errors between dMRI and PSOCT were consistently between 10° and 20°, 
regardless of the through-plane component of the dMRI orientations (Jones et al. 2020). This 
suggests that our in-plane angular errors are not biased by the presence of through-plane 
diffusion. Finally, the 2D angular errors in our PSOCT studies agree with both the 2D and 3D 
angular errors reported in studies that used histological staining, further supporting the validity 
of in-plane angular errors as a measure of accuracy (Anastasia Yendiki et al. 2021). 
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There are ways to bypass the 2D nature of the PSOCT optic axis measurements to 
interrogate 3D orientations. One possibility is to apply structure tensor analysis to PSOCT 
volumetric intensity data (Wang, Lenglet, and Akkin 2015; Wang et al. 2011). Alternatively, 3D 
fiber orientations can be obtained by collecting PSOCT optic axis measurements with multiple 
light incidence angles on the tissue surface and using these measurements to infer the through-
plane orientation. This approach has been previously demonstrated in biological tissue (Nadya 
Ugryumova et al. 2009; Nadezhda Ugryumova, Gangnus, and Matcher 2006; Liu et al. 2016).  
 
 
5. Conclusion 

We have demonstrated that, when utilized in an appropriate manner, dictionary-based 
CS-DSI reconstructions can reduce acquisition times by a factor of 3 while preserving the 
accuracy of DSI fiber orientation estimates with respect to PSOCT. In particular, given an 
adequate SNR level of the training data, the PCA method produced high-fidelity reconstructions 
that reliably maintained the angular accuracy of fully sampled DSI data, without introducing 
spurious peaks. We also demonstrated that we could tolerate a sizeable increase in the RMSE 
between PDFs obtained from CS-DSI and fully sampled DSI data, without incurring a large 
decrease in the accuracy of the peak orientations with respect to the axonal orientations 
measured with optical imaging. This underscores the importance of having access to ground-
truth measurements of fiber architecture from a modality that is independent of water 
diffusion and MRI measurement noise. Finally, we showed that a sparsely sampled CS-DSI 
acquisition, combined with q-space resampling, could be used to approximate not only fully 
sampled DSI but also multi-shell data with high accuracy, while keeping the acquisition time 
short. Our findings confirm the viability of CS-DSI as a technique for accelerating DSI 
acquisitions, while permitting a wide range of analyses that require either grid- or shell-based 
dMRI data. They also provide useful benchmarks for future development of undersampled q-
space acquisition and reconstruction techniques.  
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Supplemental data 

 
Figure S1. CS-DSI angular sampling patterns for acceleration R=3. Scatter plots of the nine different q-space 
undersampling masks, projected onto the unit sphere. Samples included in the mask are displayed as colored dots, 
with the color corresponding to b-value (see colorbar on far right). Samples not included in the mask (i.e., that 
were reconstructed) are plotted as white dots. 
 

 
Figure S2. CS-DSI angular sampling patterns for acceleration R=5. Scatter plots of the nine different q-space 
undersampling masks, projected onto the unit sphere. Samples included in the mask are displayed as colored dots, 
with the color corresponding to b-value (see colorbar on far right). Samples not included in the mask (i.e., that 
were reconstructed) are plotted as white dots. 
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Figure S3. CS-DSI angular sampling patterns for acceleration R=9. Scatter plots of the nine different q-space 
undersampling masks, projected onto the unit sphere. Samples included in the mask are displayed as colored dots, 
with the color corresponding to b-value (see colorbar on far right). Samples not included in the mask (i.e., that 
were reconstructed) are plotted as white dots. 
 

 
Figure S4. Results from NUFFT q-space resampling of undersampled vs CS-DSI q-space. Relative normalized root-
mean-square (NRMSE) from q-space resampling of undersampled DSI q-space (US-DSI; solid line, dark shade) and 
CS-DSI (dashed line, light shade) grid q-space data at acceleration R=3 for DWIs from the b=4,000 (green), 12,000 
(red), and 20,000 s/mm2 (blue) shells. The US-DSI data consisted of only the 171 q-space samples included in the 
undersampling mask, whereas the CS-DSI data also contained the additional grid samples reconstructed by CS.  
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Shell b-value (s/mm2) Relative NRMSE (mean +/- standard deviation) 
NUFFT(US) 

4,000 2.81 +/- 1.64 
12,000 3.20 +/- 1.58 
20,000 3.57 +/- 1.55 

 
Table S1. Error of q-space resampling from undersampled CS data. Relative NRMSE of data that were resampled 
on q-shells by applying the NUFFT directly to R=3 (171-direction) undersampled data.  Mean and standard 
deviation are over WM voxels from all directions of each q-shell. 
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