

Vega Estevez et al

TITLE

2
3
4 The genome of the CTG(Ser1) yeast *Scheffersomyces stipitis* is plastic
5
6 Samuel Vega Estevez¹, Andrew Armitage², Helen J. Bates³, Richard J. Harrison³ and
7 Alessia Buscaino^{1#}
8
9 ¹ University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent,
10 CT2 7NJ, UK.
11 ² Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent,
12 ME4 4TB, UK.
13 ³ NIAB Cambridge Crop Research, 93 Lawrence Weaver Road , Cambridge
14 CB3 0LE

15
16 # Address correspondence to Alessia Buscaino
17 Email: A.Buscaino@kent.ac.uk
18
19
20
21
22
23

Vega Estevez et al

24

ABSTRACT

25 Microorganisms need to adapt to environmental changes, and genome plasticity can
26 lead to rapid adaptation to hostile environments by increasing genetic diversity.
27 Here, we investigate genome plasticity in the CTG(Ser1) yeast *Scheffersomyces*
28 *stipitis*, an organism with an enormous potential for second-generation biofuel
29 production. We demonstrate that *S. stipitis* has an intrinsically plastic genome and
30 that different *S. stipitis* isolates have genomes with distinct chromosome
31 organisation. Real-time evolution experiments show that *S. stipitis* genome plasticity
32 is common and rapid as extensive genomic changes with fitness benefits are
33 detected following *in vitro* evolution experiments. Hybrid MinION Nanopore and
34 Illumina genome sequencing identifies retrotransposons as major drivers of genome
35 diversity. Indeed, the number and position of retrotransposons is different in different
36 *S. stipitis* isolates, and retrotransposon-rich regions of the genome are sites of
37 chromosome rearrangements. Our findings provide important insights into the
38 adaptation strategies of the CTG (Ser1) yeast clade and have critical implications in
39 the development of second-generation biofuels. These data highlight that genome
40 plasticity is an essential factor to be considered for the development of sustainable
41 *S. stipitis* platforms for second-generation biofuels production.

42

43

44

45

46

47

Vega Estevez et al

48

INTRODUCTION

49 Eukaryotic genomes are often described as stable structures with well-preserved
50 chromosome organisation, and genome instability is viewed as harmful. However, an
51 increasing body of evidence demonstrates that eukaryotic microorganisms have a
52 plastic genome and genome instability is instrumental for rapid and reversible
53 adaptation to hostile environments (1–4). This is because genomic instability can
54 increase genetic diversity, allowing the selection of genotype(s) better adapted to a
55 new environment (5, 6). Repetitive DNA elements are major contributors to genome
56 plasticity as repeats can undergo inter and intra-locus recombination, resulting in
57 gene conversion, gross chromosomal rearrangements and segmental aneuploidies
58 (7). Transposable Elements (TE), a specific class of repetitive elements, alter
59 genome organisation by recombination-dependent mechanisms and by jumping to
60 new sites in the genome (8). TEs belong to two major classes: DNA transposons
61 (Class II) and retrotransposons (Class I). DNA transposons utilise a “cut and paste”
62 mechanism in which the parental element excises from its original location before
63 integrating elsewhere (9). In contrast, retrotransposons replicate through reverse
64 transcription of their RNA and integrate the resulting cDNA into another locus.
65 Retrotransposons can be further classified into Long Terminal Repeats (LTR)
66 retrotransposon and non-LTR retrotransposons (10). LTR retrotransposons are
67 characterised by two LTR sequences flanking an internal coding region containing
68 the genes encoding for the structural protein GAG and enzyme POL required for
69 reverse transcription and integration (11). While POL enzymes are conserved across
70 organisms, GAG proteins are poorly conserved (12). LINE elements are one of the
71 most abundant non-LTR retrotransposons and they are typically composed of a 5'
72 non-coding region, two ORFs (ORF1 and ORF2) and a 3' non-coding region that is

Vega Estevez et al

73 marked by a poly(A) tail (13). ORF1 proteins have a diverse amino acid sequence,
74 but they often contain a DNA-binding motif (14). ORF2 encodes endonuclease and
75 reverse transcriptase activity that are critical for transposition (15).

76

77 The CTG (Ser1) clade of fungi ,in which the CTG codon is translated as serine rather
78 than leucine, is an important group of ascomycetous yeasts featuring yeasts that
79 hold great promises in biotechnology, such as *Scheffersomyces stipitis*, and
80 dangerous human fungal pathogens, such as *Candida albicans* (16).

81 The CTG(Ser1) clade comprises several species with different lifestyles and
82 genomic organisations, including haploid and diploid species that colonise diverse
83 environments by reproducing sexually or para-sexually (16–19). One common
84 feature of CTG(Ser1) species is their ability to adapt remarkably well to extreme
85 environments (20). For example, CTG(Ser1) yeasts can grow on various carbon
86 sources and are highly tolerant to environmental changes such as changes in
87 osmolarity (16, 19, 20). It is well established that genome plasticity is a critical
88 adaptive mechanism in the human fungal pathogens *Candida albicans*, the most
89 studied CTG (Ser1)-clade member (4). In *C. albicans*, stress increases genome
90 instability by affecting the rate and type of genomic rearrangements (21). Different
91 classes of DNA repeats drive this genetic variation, including TEs, long repeats and
92 Major Repeat Sequences (MRS) (22–24). It is still unknown whether genome
93 plasticity is a general feature of the CTG(Ser1) clade and whether DNA repeats are
94 drivers for genome diversity across this yeast group.

95 This study investigates genome plasticity in *S. stipitis*, a CTG (Ser1)-clade yeast with
96 great potential for the eco-friendly and ethical production of second-generation
97 biofuels (25–27). Second-generation biofuels are generated by fermentation of

Vega Estevez et al

98 lignocellulose biomass, produced in large amounts (>1.3 billion tons produced
99 annually) as waste following agricultural and forestry processing operation (27).
100 Lignocellulose is a heteropolymer composed of fermentable hexose sugars, such a
101 glucose, and pentose sugars, such as xylose (28). The yeast *Saccharomyces*
102 *cerevisiae*, usually the organism of choice for industrial production of ethanol, is not
103 suitable for the production of second-generation ethanol because it cannot ferment
104 pentose sugars as it lacks specific transporters and enzymatic network important for
105 their metabolism (28). *S. stipitis* holds excellent potential for biofuel derived from
106 green waste because it is one of the few yeast species that can ferment both hexose
107 and pentose sugars (25–27). *S. stipitis* is a non-pathogenic haploid yeast that is
108 found in the gut of wood-ingesting beetles, in hardwood forests or areas high in
109 agricultural waste (29). Contrary to *C. albicans*, *S. stipitis* has a canonical sexual
110 cycle whereby mating of haploid cells generate diploid cells that undergo meiosis
111 and produce haploid spores (30). Although several *S. stipitis* natural isolates are
112 used for the optimisation of second-generation biofuels production, the genome of
113 only one strain (Y-11545) has been sequenced and assembled to the chromosomal
114 level (31). The Y-11545 genome has a size of 15.4 Million base pair (Mbp) organised
115 in 8 chromosomes and containing ~6000 protein-coding genes (31–33). *S. stipitis*
116 chromosomes are marked by regional centromeres composed of full-lengths LTR
117 retrotransposons (Tps5a, Tps5b and Tps5c) and non-coding, non-autonomous LARD
118 (large retrotransposon derivative) elements (31, 33).
119 To investigate the plasticity of the *S. stipitis* genome, we have taken several
120 complementary approaches. Firstly, we systematically identified *S. stipitis* DNA
121 repeats and investigated the genotypic diversity of 27 different *S. stipitis* natural
122 isolates collected from different environments. Secondly, we combined MinION

Vega Estevez et al

123 Nanopore with Illumina genome sequencing to generate a high-quality chromosome-
124 level sequence assembly of a second *S. stipitis* natural isolate (Y-7124) and
125 compared its genome structure to the reference Y-11545 genome. Lastly, we
126 performed *in vitro* evolution experiments and analysed *S. stipitis* genome
127 organisation changes following laboratory passaging under stress or unstressed
128 growth conditions. Thanks to this combined approach, we discovered that the *S.*
129 *stipitis* genome is plastic. Genome plasticity is not regulated by stress, however large
130 chromosome rearrangements are linked to adaptation to hostile environments. We
131 demonstrate that different *S. stipitis* natural isolates have distinct chromosomal
132 organisations and that transposable elements drive this extensive intra-species
133 genetic variation. Our findings have important implications for second-generation
134 biofuel production as genome plasticity is a paramount factor to be considered for
135 the successful development of superior biofuel-producer *S. stipitis* strains.

136

137

138 MATERIAL AND METHODS

139 Yeast strains and Growth Conditions

140 Strains were obtained from the Agricultural Research Service (ARS) Collection, run
141 by the Northern Regional Research Laboratory (NRRL) (Peoria, Illinois, USA), or the
142 National Collection of Yeast Cultures (NCYC) (Norwich, United Kingdom) (**Table S1**)
143 and confirmed by sequencing (primers AB798 and AB799 of the 26S rDNA (D1/D2
144 domain) (34) (**Table S2**). Routine culturing was performed at 30 °C with 200 rpm
145 agitation on Yeast Extract-Peptone-D-Glucose (YPD) media. Phenotypic and *in vitro*
146 evolution analyses were conducted on Synthetic Complete (SC) media containing
147 glucose (SC-G), xylose (SC-X), or a mixture of 60% glucose and 40% xylose (SC-

Vega Estevez et al

148 G+X). SC-G was used as a reference media as glucose is the preferred carbon
149 source for both the model system *S. cerevisiae* and *S. stipitis*, SC-X was used
150 because of *S. stipitis* unique ability to utilise xylose as a carbon source and SC G+X
151 was used because this sugar combination resemble the ratio found in lignocellulose
152 (28). Uridine (0.08 g/L in YPD and SC) and adenine hemisulfate (0.05 g/L in YPD)
153 were added as growth supplements. Solid media were prepared by adding 2%
154 agar.

155 **Contour-clamped homogeneous electric field (CHEF) electrophoresis**

156 Intact yeast chromosomal DNA was prepared as previously described (35).
157 Briefly, cells were grown overnight and spheroplast were prepared in an agarose
158 plug by treating cells (~ OD₆₀₀=7) with 0.6 mg/ml Zymolyase 100T (Amsbio #120493-
159 1) in 1% Low Melt agarose (Biorad® # 1613112). Chromosomes were separated in a
160 1% Megabase agarose gel (Bio-Rad) in 0.5X TBE using a CHEF DRII apparatus.
161 Run conditions as follows: 60-120s switch at 6 V/cm for 12 hours followed by a 120-
162 300s switch at 4.5 V/cm for 12 hours, 14 °C. Chromosomes were visualised by
163 staining the gel 0.5x TBE with ethidium bromide (0.5 µg/ml) for 30 minute, followed
164 by destaining in water for 30 minutes. Images were capture using a Syngene GBox
165 Chemi XX6 gel imaging system.

166 **Southern Blotting**

167 DNA from CHEF gels were transferred overnight to a Zeta-Probe GT
168 Membrane (Biorad®, #162-0196) in 20x SSC and crosslinked using UV (150 mJ).
169 Probing and detection of the DNA were conducted as previously described (36).
170 Briefly, probes were generated by PCR incorporation of DIG-11-dUTP into target

Vega Estevez et al

171 sequences following manufacturer's instructions (Roche). Chromosome 5-
172 chromosome 7 translocation was detected using primers AB1028 and AB1029
173 amplifying a 180 bp region of chromosome 5 (Chr5 nt: 448,855-449,034) in Y-11545
174 and in chromosome 7 of Y-7124 (Chr7 nt: 494,698-494,877) (**Table S2**). The
175 membrane was hybridised overnight at 42 °C with DIG Easy Hyb (Roche®,
176 11603558001). The DNA was detected with anti-digoxigenin-Alkaline Phosphatase
177 antibody (Roche®, #11093274910) and CDP Star ready to use (Roche®,
178 #12041677001) according to manufacturer instructions.

179 **Phenotypic characterisation**

180 Growth analyses were performed using a plate reader (SpectrostarNano,
181 BMG labtech) in 96 well plate format at 30 °C for 48 hours in SC-G, SC-X or SC-
182 G+X. The growth rate (μ , hours⁻¹) was calculated using: $\mu = (\ln(X_2) - \ln(X_1)) / (t_2 - t_1)$,
183 where: (i) X_1 is the biomass concentration (OD₆₀₀) at time point one (t_1 , lag time) (ii)
184 X_2 is the biomass concentration (OD₆₀₀) at time point two (t_2 , end of exponential
185 growth phase). The maximum OD (OD units) was determined with the MAX() from
186 Excel (Microsoft®). The lag time (minutes) was determined visually as the time in
187 which the exponential growth starts. Experiments were performed in 3 technical and
188 3 biological replicates. Heatmaps showing the average of 3 biological replicates were
189 generated by R using the library *pheatmap*. ANOVA test was performed to study
190 differences on growth rate, maximum OD and lag time between the strains. The
191 equality of variances presumption was tested using Levene's test, whereas the
192 normality of the data was tested by Shapiro-Wilk. When both assumptions were
193 satisfied, a Tukey's honest significant test was used to determine significant
194 differences between the natural isolates and the reference Y-11545 strain. When

Vega Estevez et al

195 assumption of equal variance were violated, one-way test was used to indicate
196 significance. In the case of equal variances, but a non-normal distribution of data, the
197 Kruskal-Wallis rank sum test was used to indicate statistical differences and
198 significance was determined by pairwise testing. A p-value lower than 0.05 was
199 considered significant for all these statistical tests.

200 **Adaptive Laboratory Evolution**

201 A single colony of the *S. stipitis* strain NRRL Y-7124 was grown overnight in 5
202 ml of YPD at 30 °C, plated in YPD at a cell density of 100 and grown 48 hours at 30
203 °C. 36 single colonies were streaked in two SC-G+X plates and grown at 30 °C and
204 37 °C, respectively and streaked daily for a total of 56 passages (8 weeks). The
205 karyotype variability of the colonies was assessed by CHEF electrophoresis.
206 Phenotypic differences were assessed by spotting assays. Strains with
207 rearrangements were grown overnight in SC-G+X and were diluted to an OD₆₀₀=1.
208 From this, five 1/10 serial dilutions were prepared and the cells were plated in SC-
209 G+X using a replica plater (Sigma Aldrich, R2383-1EA) and grown for 48 hours at
210 both 30 °C and 37 °C. Strains with no karyotypic modifications after evolution were
211 also used as control.

212 **Identification of DNA repeats**

213 Long sequences (>100 nucleotides) present more than once in the Y-11545
214 and Y-7124 genomes were identified by aligning each genome to itself using
215 BLASTN. Repetitive elements (E < 1e-04) were manually verified using
216 IGV/SNAPGene, and clustered repeats were combined. This repeats dataset was
217 manually examined to further classify it as (a) related to transposable elements (b)

Vega Estevez et al

218 telomeric repeats, (c) centromeres (d) belonging to protein coding gene families and
219 (e) MRS repeats. Transposons were classified using established guidelines (10).
220 Briefly, LTR-transposons were identified by detecting two Long-terminal Repeat
221 sequences (size 260-430 nt) flanking an internal coding region. These potential LTR-
222 transposons were further annotated for the presence of the following marks: LTR
223 flanked by a TG and CA di-nucleotides, presence of a Primer Binding Site (PBS) with
224 homology to *S. stipitis* tRNAs (GtRNAdb (<http://gtrnadb.ucsc.edu/index.html>)),
225 presence of a coding region with homology to *pol* gene and containing an Integrase
226 (INT), Reverse Transcriptase (RT) and RNase H (RH) domain. Non-LTR LINE
227 transposons were identified by detection of coding regions homologous to LINE
228 retrotransposons ORF1 (containing a Zn-finger), ORF2 (containing an Endonuclease
229 and a Reverse Transcriptase domain) and terminal Poly-A sequence.
230 Retrotransposons were classified into different families based on sequence similarity
231 with a 90% cut-off. Terminal telomeric tandem repeats were identified using Tandem
232 Repeats Finder (37) with default parameters. Regional centromeres were identified
233 based on them being the only regions of the genome with a large retrotransposon
234 Tps5 cluster (~ 20-40 kb) as previously described (33). Gene families were identified
235 by extracting coding-regions from our repeats datasets and performing Clustal
236 Omega sequence alignment and PFAMs domain identification using
237 SMART(<http://smart.embl.de>) (38). The identified gene families were compared to
238 published information (39). The presence of MRS repeats was explored using
239 BLASTN and by searching for clusters of non-coding tandem repeats, a hallmark of
240 *C. albicans* MRS, with no-homology to retrotransposons and not-located at
241 chromosome ends. Sequence alignments were visualised with Jalview v2.11.1.0

Vega Estevez et al

242 (40). Phylogenetic trees were generated with phyloT : a phylogenetic tree generator
243 (biobyte.de) using default parameters and visualised with Itol (<https://itol.embl.de/>).

244 **Genome sequencing**

245 The genome of *S. stipitis* isolate Y-7124 was sequenced by Illumina short-
246 read and MinION long-read technologies. To this end, DNA was extracted from an
247 overnight culture using the QIAGEN genomic tip 100/G kit (Qiagen®, #10243)
248 according to manufacturing protocol. For long-read sequencing, MinION (Oxford
249 Nanopore, Oxford UK) was performed on a DNA library prepared from size selected
250 gDNA. DNA fragments greater than 30 Kb were selected using a Blue Pippin (Sage
251 Science) and concentrated using Ampure beads. From this, a DNA library was
252 prepared using a Ligation Sequencing Kit 1D (SQK-LSK108) and run on the Oxford
253 Nanopore MinION flowcell FLOMIN 106D. The same gDNA extract was also used
254 for the preparation of Illumina libraries. In this case, the DNA was sheared using the
255 Covaris M220 with microTUBE-50 (Covaris 520166) and size selected using the
256 Blue Pippin (Sage Science). The library was constructed using a PCR-free kit with
257 NEBNext End Repair (E6050S), NEBNext dA-tailing (E6053S) and Blunt T/A ligase
258 (M0367S) New England Biolabs modules. Sequencing was performed on a MiSeq
259 Benchtop Analyzer (Illumina) using a 2x300bp PE (MS-102-3003) flow cell.

260 **Genome assembly**

261 Base-calling and demultiplexing were conducted with Albacore v2.3.3 (available at
262 <https://community.nanoporetech.com>). Adapters and low-quality data were trimmed
263 using the eautils package fastq-mcf 1.04.636
264 (<https://expressionanalysis.github.io/ea-utils/>). On nanopore sequence data, adapter

Vega Estevez et al

265 trimming was performed with Porechop v.0.1.0 (<https://github.com/rrwick/Porechop>).
266 Genome assembly was completed using long reads, with read correction performed
267 with Canu v1.8 (41) followed by assembly in SMARTdenovo github commit id
268 61cf13d (42)). The draft assembly was corrected using the corrected nanopore reads
269 through five rounds of Racon github commit 24e30a9 (43), and then by raw fast5
270 files using 10 rounds of Nanopolish v0.9.0 (44). Illumina sequencing reads were then
271 used to polish the resulting assembly through 10 rounds of Pilon v1.17 (45).
272 Following genome assembly, BUSCO v3 was run to assess evolutionary conserved
273 gene content (46), using the Saccharomycetales_odb9 gene database. The
274 Saccharomycetales database contains 1711 genes, which are therefore expected to
275 be present in *S. stipitis*. Of these, 1683 (98.36%) were identified in the Y-7124
276 assembly demonstrating a good level of completeness (>95%) (Table S8). Assembly
277 size and contiguity statistics were assessed using QUAST v4.5 (47). This initial
278 assembly of the nuclear genome contained 10 contigs. A chromosome level
279 assembly was produced by identification of overlapping regions between the contigs:
280 a 244 Kbp overlapping region between contig 7 and 2 led to the final assembly of
281 Chromosome 1, a 83 Kpb overlapping region between contig 9 and 10 led to the final
282 assembly of Chromosome 8.

283 **Genome annotation**

284 Genome annotation was performed using FUNGAP v1.0.1 (48) with fastq
285 reads from NCBI SRA accession SRR8420582 used as RNA-Seq training data and
286 protein sequences taken from NCBI assembly accession GCA_000209165.1 for *S.*
287 *stipitis* NRRL Y-11545 (CBS6054) used for example proteins. Protein fasta files were
288 extracted from predicted gene models using the yeast mitochondrial code (code 3)

Vega Estevez et al

289 and the alternative yeast nuclear code (code 12). Functional annotation of gene
290 models was performed through BLASTp searches vs all proteins from the NCBI
291 reference fungal genomes (downloaded 11th April 2020), retrieving the top-scoring
292 blast hit with an E-value < 1x10⁻³⁰. These annotations were supplemented with
293 domain annotations from Interproscan v5.42-78.0 (49). The annotated genome was
294 submitted to NCBI, with submission files prepared using GAG v2.0.1
295 (<http://genomeannotation.github.io/GAG.>), Annie github commit 4bb3980
296 (<http://genomeannotation.github.io/annie>) and table2asn_GFF v1.23.377 (available
297 from https://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/).

298 **Comparative genomics**

299 Whole-genome alignment between Y-7124 and Y-11545 was performed using
300 the nucmer tool from the MUMmer package v4.0 (50) with results visualised using
301 Circos v0.6 (51). Orthology analysis was performed between predicted proteins from
302 these isolates using OrthoFinder v2.3.11 (52), with results visualised using the
303 package VennDiagram in R (53).

304 Sequence variants were identified in Y-7124 through comparison to the Y-
305 11545 assembly. Short read sequence data for Y-7124 were aligned to the reference
306 genome using BWA v 0.7.15-r1140 (54), before filtering using picardtools
307 v2.5.0 to remove optical duplicates (<http://broadinstitute.github.io/picard/>). SNP and
308 insertion/deletion (InDel) calling was performed using GATK4 (55). Low confidence
309 variants were then filtered using VCFtools v0.1.15 (56) using minimum mapping
310 quality of 40, phred quality of 30, read depth of 10 and genotype quality of 30. Effect
311 of variants on NRRL Y-11545 gene models was determined using SnpEff v4.2 (57).

Vega Estevez et al

312

RESULTS

313 Classification of *S. stipitis* DNA repeats

314 DNA repeats are drivers of genome variation. Understanding the repertoire of
315 repetitive elements associated with a genome is critical to gain insights into the
316 genome diversity of a specific organism. Comparative genomic analyses have
317 identified different repetitive elements in some CTG(Ser1) clade members, yet a
318 comprehensive survey of *S. stipitis* repetitive elements is lacking (18, 58). Therefore,
319 we sought to classify the major classes of repetitive elements associated with the Y-
320 11545 sequenced genome by aligning the genomic sequence of each strain to itself
321 and identifying long sequences (>100 nucleotides) present more than once in the
322 genome. The genomic position of these repeats was manually verified, and clustered
323 repeats were combined and categorised depending on their genomic position,
324 structure and sequence similarity. Our analyses identified known *S. stipitis* repeat-
325 rich loci such as centromeric transposon-clusters, the NUPAV sequence, an
326 integrated L-A ds-RNA virus, and several gene families (32, 33, 59). As observed in
327 other members of the CTG (Ser1)-clade, we did not detect any MRS repeats, a class
328 of repetitive elements found only in *C. albicans* and the closely related *C. dubliensis*
329 and *C. tropicalis* species (58, 60). Here we focus on intra-chromosomal or inter-
330 chromosomal repeats that have not been described to date: non-centromeric TEs,
331 subtelomeric regions and telomeric repeats (**Fig 1**).
332 We identified six novel retrotransposon families scattered along chromosome arms:
333 3 LTR retrotransposons (*Ava*, *Bea* and *Caia*) and 3 LINE retrotransposons (*Ace*, *Bri*
334 and *Can*) (**Fig 1A, Table S3**). *Ava*, *Bea* and *Caia* have a similar structure where two
335 identical LTR sequences flank an internal domain. The internal domain contains two
336 ORFs: one encoding for a putative POL and one encoding for an *S. stipitis*-specific

Vega Estevez et al

337 protein that we named LTR-Associated Protein (Lap1 in *Ava*, Lap2 in *Bea* and Lap3
338 in *Caia*). Homology search failed to identify any GAG gene associated with the *Ava*,
339 *Bea* and *Caia* retrotransposons. As Gag proteins are poorly conserved among
340 different organisms, we hypothesise that the Lap proteins are Gag proteins.
341 *Ace*, *Bri* and *Can* are LINE elements composed of the Non-Coding regions NC-1 and
342 NC-2 surrounding an internal coding region encoding for a Pol enzyme and an *S.*
343 *stipitis*-specific LINE Associated protein (Linea1 in *Ace*, Linea2 in *Bri* and Linea3 in
344 *Can*). Linea1 and Linea2, but not Linea 3, have a Zinc-Finger DNA binding motif
345 (**Table S3**). Comparison across the CTG (Ser1)-clade revealed that *S. stipitis* TE
346 repertoire is typical of this clade. Indeed, retrotransposons are common in this yeast
347 group: the genome of all species analysed contains LTR elements, whereas LINE
348 elements are present in 6/8 species (**Fig 1B, Table S4**). Similarly to other CTG-
349 (Ser1) clade yeast, we did not detect any DNA transposons integrated into the *S.*
350 *stipitis* genome (**Fig 1B, Table S4**).
351 Our repeat analysis demonstrates that the terminal sequences of *S. stipitis*
352 chromosomes are repeat-rich and composed of two elements with different degree
353 of repetitiveness: telomere proximal-repeats and subtelomeric regions. The
354 telomeric repeats are non-canonical and composed of 24-nucleotide units repeated
355 in tandem. Each unit contains a TG motif reminiscent of typical telomeric repeats
356 (**Fig 1C**). *S. stipitis* subtelomeric regions (the ~30KB region adjacent to telomeric
357 repeats) are enriched in retrotransposon-derived elements. Indeed, DNA sequences
358 with homology to *Bea* LTR-retrotransposons and *Ace* LINE-elements are found in
359 5/16 subtelomeric regions (**Fig 1D, Table S3**). No full length-retrotransposons are
360 detected at these genomic locations. Subtelomeric regions contain several gene
361 families members, including gene encoding for ATP-dependent DNA helicases

Vega Estevez et al

362 (found in 7/16 subtelomeres), fungal-specific transcription factors (8/16
363 subtelomeres), MFS transporters (8/16 subtelomeres) and Agglutinine-like proteins
364 (11/16 subtelomeres) (**Fig 1D, Table S5**) (39). In summary, our analysis
365 demonstrates that the *S. stipitis* genome contains several classes of repetitive
366 elements that could be major
367 contributors of genome plasticity.

368

369 ***S. stipitis* natural isolates have distinct genomic organisations**

370 Having identified *S. stipitis* DNA repeats, our next step was to examine *S. stipitis*
371 phenotypic and genotypic diversity across a geographically diverse set of strains
372 (n=27) that were collected in different habitats (**Table S1** source NRRL and NCYC
373 collection), and that includes the sequenced Y-11545 strain (31). rDNA fingerprinting
374 confirm that all isolates belong to the *S. stipitis* species (D1/D2 domain of the S26S
375 rDNA similarity >99 %) (**Table S6**). Phenotypic analyses established that the natural
376 isolates vary in their ability to utilise and grow on different carbon sources. Indeed,
377 when compared to the reference Y-11545 strain, different natural isolates cultured in
378 Synthetic Complete media containing the hexose sugar Glucose (SC-G), the
379 pentose sugar Xylose (SC-X) or a mixture of both sugars as found in lignocellulose
380 (SC-G+X) display distinct growth rate, maximum culture density and lag phase (**Fig**
381 **2A and Table S7**). To determine whether the natural isolates have distinct genomic
382 organisations, we analysed their karyotype by chromosomes Contour-clamped
383 Homogenous Electric Field (CHEF) gel electrophoresis, a technique allowing
384 chromosome separation according to size. The CHEF electrophoresis analysis
385 reveals clear differences in chromosome patterns demonstrating that *S. stipitis*
386 natural isolates have a genome organised in different-sized chromosomes (**Figure**

Vega Estevez et al

387 **2B).** We concluded that intra-species phenotypic and genotypic variation is a
388 common feature of *S. stipitis*.

389

390 **Hybrid genomic sequencing identifies transposable elements as drivers of *S.***
391 ***stipitis* genome plasticity**

392 To date, only one *S. stipitis* isolate (Y-11545) has been sequenced and assembled
393 at chromosome level (31). To gain insights into *S. stipitis* genetic diversity, we
394 generated a chromosome-level sequence assembly of a second *S. stipitis* natural
395 isolate (Y-7124) by combining MinION Nanopore with Illumina genome sequencing.
396 This isolate was chosen because (i) karyotypic analysis reveals that its genomic
397 organisation is distinct from the genomic organisation of the reference strain Y-
398 11545, and (ii) Y-7124 is widely used both for industrial applications and for basic
399 research (61).

400 The Y-7124 genome was sequenced to 186.88x coverage resulting in a 15.69 Mb
401 assembly arranged in 10 contigs (**Table S8**). High accuracy reads from Illumina-
402 sequencing enabled the correction of errors that are associated with the MinION
403 technology. A final chromosome-level assembly was produced by manually
404 identifying overlapping regions between contigs. Comparing the Y-7124 and Y-
405 11545 nucleotide sequences reveals that the two natural isolates overall share a
406 similar coding DNA sequence. The total number of SNPs between the two natural
407 isolates is 50,495 SNPs, equating to one variant every 306 bases. The majority of
408 these SNPs are synonymous changes (16,294 =74.25%), while ~25% (5,622) of
409 SNPs are missense and only (0.13% (28) are nonsense (**Table S9**). Despite this
410 high DNA sequence similarity, the Y-7124 genome is organised in eight
411 chromosomes with different sizes and organisations from that of Y-11545 (**Fig 3A**).

Vega Estevez et al

412 Comparison of the Y-7124 and Y-11545 genomes establishes that retrotransposons
413 are significant drivers of *S. stipitis* genome diversity as one of the most prominent
414 differences between the two genomes is the abundance and localisation of these
415 retrotransposons (**Fig 3B**). Indeed, the number of LTR and LINE non-centromeric
416 retrotransposons and transposons-derived repeats is greater in the Y-11545
417 reference genome compared to the Y-7124 genome: retrotransposons, solo LTR and
418 truncated LINE elements account for approximately 2% of the reference Y-11545
419 genome and only for ~1% of the Y-7124 genome (**Fig 3C**). We classified
420 retrotransposons loci present in both isolates (ancestral loci), those present in the
421 reference Y-11545 genome but absent in Y-7124 (deletion loci) and those not
422 present in the reference genome but present in a given strain (insertion loci). Out of
423 69 transposons loci, only ten ancestral loci (~15%) were detected in the two isolates.
424 These sites are likely to be inactive transposons or transposons that rarely
425 transpose. In addition, we detected 42 deletion loci (60 %) and 17 (24%) insertion
426 loci (**Fig 3D**). The presence of deletion and insertion loci suggests that *S. stipitis* LTR
427 transposons and LINE elements are active and competent of transposition. Although
428 active transposons can insert into genes to cause functional consequences (62), we
429 did not detect any TE-driven alteration in coding regions.

430

431 **Transposable Elements are sites of chromosome rearrangements**

432 Comparison of the Y-11545 and Y-7124 genome reveals that transposon-rich
433 regions are sites of complex chromosome rearrangements. Indeed, a transposon-
434 rich region is the breakpoint of a reciprocal translocation between chromosome 5
435 and chromosome 7. This translocation causes the size change of chromosome 5 ^{Y-}
436 ⁷¹²⁴ and chromosome 7 ^{Y-7124} detected by CHEF karyotyping (**Fig 4A**). Southern

Vega Estevez et al

437 analyses with a probe specific for chromosome 5 Y-11545 confirms this finding (**Fig**
438 **S1**). The evolutionary history of Y-11545 and Y-7124 is unknown, and therefore it is
439 difficult to predict the molecular events underlying these genomic changes. However,
440 sequence analysis of the rearrangement breakpoint reveals that this structural
441 variation occurs in a genomic region that (*i*) contains homologous sequences
442 between chromosome 5 and 7 and (*ii*) is transposon-rich and contains two inverted
443 repeats on chromosome 7 (**Fig 4B**). A second significant difference between the
444 genome organisation of Y-11545 and Y-7124 is found at subtelomeric regions: these
445 regions differ in the number and organisation of subtelomeric gene families and in
446 the number of transposon-associated repeats (**Fig 4C**). Lastly, we detected a distinct
447 centromeres organisation where the numbers of *Tps5* retrotransposons, LTRs and
448 LARD regions differ between the two isolates (**Fig 4D**). The presence of transposons
449 and transposon-derived repeats associated with all these genomic locations strongly
450 suggest that retrotransposons have mediated the chromosomal rearrangement by
451 recombination-mediated mechanisms. Therefore, changes in transposons
452 organisation are responsible for the bulk of genomic changes identified in two
453 different natural isolates.

454

455 ***S. stipitis* real-time evolution leads to extensive genomic changes**

456 Our results demonstrate that intraspecies genetic diversity is common in *S. stipitis*.
457 However, as the evolutionary history of the analysed natural isolates are unknown, it
458 is difficult to predict whether the observed genomic changes are due to the selection
459 of rare genomic rearrangements events. To determine the time scale of *S. stipitis*
460 genome evolution, we investigated the genome organisation of 72 single colonies
461 passaged daily for 8 weeks (56 passages, ~672 divisions) in SC-G+X, as its sugar

Vega Estevez et al

462 composition resembles what found in lignocellulose (29) (**Fig 5A**). Strains were
463 grown at 30 °C, a temperature that does not lead to any growth defect, and 37 °C, a
464 stressful temperature that strongly inhibits *S. stipitis* growth (**Fig 5B**). CHEF gel
465 electrophoresis was conducted to identify possible changes in the chromosome
466 organisation of the evolved strains. This analysis identifies genome rearrangements
467 in 19/36 strains evolved at 30 °C and 12/36 strains evolved at 37 °C (Blue and
468 Magenta- **Fig 5C**). Thus, changes in chromosome organisation were detected in the
469 presence (37 °C) or absence (30 °C) of stress. To test whether chromosome
470 rearrangements are associated with a fitness benefit, we tested the ability of the
471 parental and 37 °C-evolved strains to grow in SC-G+X media at permissive (30 °C)
472 and restrictive (37 °C) temperature (**Fig 5D**). This analysis demonstrates that 37 °C-
473 evolved strains with no chromosomal rearrangement grow poorly at 37 °C (**Fig 5D**).
474 In contrast, 5/12 37 °C-evolved strains with chromosome rearrangements grow
475 better than the parental strain at this restrictive temperature (**Fig 5D**). This result
476 suggests that changes in chromosome organisation have an adaptive value. Thus,
477 genome plasticity is a defining feature of the *S. stipitis* genome, and its genome can
478 rapidly change in mitotic cells propagated *in vitro*. Our results strongly suggest that
479 the extensive genomic changes can lead to adaptation to hostile environments.

480

481 **DISCUSSION**

482 Here we demonstrate that the yeast *S. stipitis* has a plastic genome and that
483 genome plasticity is linked to adaptation to hostile environments. We show that non-
484 centromeric retrotransposons are significant drivers of *S. stipitis* genome diversity.
485 These findings have important implications for developing economically viable
486 second-generation biofuels and better understanding the CTG (Ser1)-clade biology.

Vega Estevez et al

487 **Retrotransposon are drivers of *S. stipitis* genome diversity**

488 Our repetitive sequence analysis demonstrates that *S. stipitis* has a DNA repeats
489 content typical of the CTG (Ser1)-clade including TEs, non-canonical terminal
490 telomeric repeats and subtelomeric regions. As observed in other members of the
491 CTG (Ser1)-clade (60), we did not detect any DNA-transposons or MRS repeats.
492 One of our major findings is that non-centromeric retrotransposons are
493 significant drivers of *S. stipitis* genome diversity. Our data support the hypothesis
494 that *S. stipitis* TEs generate genome diversity via two distinct mechanisms:
495 transposition into new genomic locations and recombination-mediated chromosome
496 rearrangements. Indeed, we demonstrated that the number and genomic position of
497 non-centromeric retrotransposons vary between the Y-11545 and Y-7124 *S. stipitis*
498 isolates. Significantly, we did not detect transposon insertions into coding regions.
499 However, transposons might alter *S. stipitis* gene expression by inserting into gene
500 regulatory regions (62). We propose that *S. stipitis* transposons are active and
501 generate genome diversity by jumping into different genomic locations. Our data also
502 indicate that TEs can generate further genome diversity through either homologous
503 recombination of nearly identical TE copies or by faulty repair of double-strand
504 breaks generated during transposable elements excision (62). Indeed, we find that
505 the translocation breakpoint between chromosome 5 and chromosome 7 is enriched
506 in retrotransposons. Furthermore, TE-rich subtelomeric regions and centromeres
507 have a distinct organisation in the two analysed isolates suggesting that the
508 transposons drive this genetic diversity. We hypothesise that transposons elements
509 cause the genetic variability observed during laboratory passaging. In the future, it
510 will be important to apply the hybrid genome sequencing approaches presented in
511 this study to dissect the nature of these rearrangements.

Vega Estevez et al

512 **Genome plasticity and production of second-generation biofuels**

513 One of our key findings is that the *S. stipitis* genome is intrinsically plastic and that
514 chromosome rearrangements are frequent events under stress or unstressed
515 conditions. Second-generation biofuels, generated by fermentation of agriculture and
516 forestry waste, have an enormous potential to meet future energy demands and
517 significantly reduce petroleum consumption. To meet the requirements for industrial
518 applications, second-generation biofuels need to be generated by microorganisms
519 that can efficiently utilise and ferment all the sugars found in lignobiomass (63).
520 Consequently, *S. stipitis* is one of the most promising yeast for producing second-
521 generation bioethanol as it can efficiently ferment both hexose and pentose sugars
522 (25, 26, 29). However, robust economically viable *S. stipitis* platforms still require
523 significant development as this organism struggles to survive under the harsh
524 environments generated during second-generation biofuel production. For example,
525 *S. stipitis* growth and fermentation is inhibited by the chemical pre-treatment required
526 to extract glucose and xylose from lignobiomass (61). Growth is also inhibited at high
527 ethanol concentration, and *S. stipitis* ferments xylose less efficiently than glucose.
528 Evolutionary engineering approaches under selective conditions (i.e. presence of
529 inhibitory compounds, high concentration of xylose or ethanol) have been applied to
530 isolate better performing *S. stipitis* strains (61).
531 Our data predict that the genetic make-up and associated improved phenotypes of
532 superior biofuel-producer strains are unstable and that the genetic drivers of
533 improved phenotypes might be lost over time. This hypothesis could explain why
534 short-read Illumina genome sequencing has failed to identify point mutations or
535 indels that could explain the superior performance of *S. stipitis* strains (64). It is also
536 possible that *S. stipitis* superior strains carry stable complex chromosomal

Vega Estevez et al

537 rearrangements with a breakpoint at DNA repeats. Such rearrangements could not
538 have been identified by Illumina sequencing as short sequenced fragments will not
539 resolve changes associated with long repetitive elements. Thus, economically viable
540 use of *S. stipitis* for second-generation biofuels production will require an in-depth
541 analysis of the genomic structures of superior strains.

542

543 **Genome plasticity in the CTG (Ser1)-clade**

544 The CTG-Ser1 clade is an incredibly diverse yeast group that includes many
545 important human pathogens and non-pathogenic species (17). Our data support the
546 hypothesis that genome plasticity is a general feature of the CTG (Ser1) yeast clade
547 as it has been observed in *C. albicans* and *S. stipitis* ((21, 22, 65) and this study),
548 two organisms with a very different lifestyle. Indeed, while *C. albicans* is a diploid
549 opportunistic human fungal pathogen that lives almost exclusively in the human host,
550 *S. stipitis* is a haploid non-pathogenic yeast found in the gut of wood-ingesting
551 beetles hardwood forests or areas high in agricultural waste (29, 66). Furthermore,
552 while *C. albicans* lacks a canonical sexual cycle and its associated meiosis, *S.*
553 *stipitis* has a canonical sexual cycle whereby mating of haploid cells generate diploid
554 cells that undergo meiosis and produce haploid spores (30).

555 Our results highlight that stress regulates genome plasticity differently in *C. albicans*
556 and *S. stipitis*. It has been demonstrated that stress exacerbates *C. albicans* genome
557 instability (21, 67). In contrast, we found that *S. stipitis* genome instability is not
558 regulated by stress as we detected a similar rate of chromosomal rearrangements
559 when cells are continuously passaged in unstress (30 °C) or stress (37 °C)
560 conditions. Importantly, we also demonstrated that the large genomic changes are

Vega Estevez et al

561 associated with fitness benefits suggesting that genome plasticity is instrumental for
562 adaptation to hostile environments.

563 In summary, our study demonstrates for the first time that *S. stipitis* genome is
564 plastic. Understanding the cause and effect of this extensive genome plasticity is of
565 paramount importance to understand the biology of the CTG(Ser1)-clade of fungi.

566

567 **DATA AVAILABILITY**

568 This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank
569 under the accession JADGGA000000000. The version described in this paper is
570 version JADGGA010000000. Illumina and nanopore sequence data associated with
571 this work have been deposited on the Sequence Read Archive (SRA) under
572 BioProject PRJNA609885.

573

574 **FUNDING**

575 This work was supported by the University of Kent Vice-Chancellor's Research
576 Scholarship (to SV), BBSRC grants (Grant number BB/L008041/1 to AB,
577 BB/P020364/1 to RJH) and an MRC grant (MR/M019713/1 to AB)

578

579 **CONFLICT OF INTERESTS DISCLOSURE**

580 None declared.

581

582 **ACKNOWLEDGEMENTS**

583 We thank Dr Patricia Slininger, members of the Buscaino Lab, the Kent Fungal
584 Group and Dr Jan Soetaert, for discussion and critical reading of the manuscript.

585

Vega Estevez et al

586 **REFERENCES**

587 1. Burns KH. 2017. Transposable elements in cancer. *Nat Rev Cancer* 17:415–
588 424.

589 2. Colnaghi R, Carpenter G, Volker M, O'Driscoll M. 2011. The consequences of
590 structural genomic alterations in humans: Genomic Disorders, genomic
591 instability and cancer. *Semin Cell Dev Biol* 22:875–885.

592 3. Galhardo RS, Hastings PJ, Rosenberg SM. 2007. Mutation as a Stress
593 Response and the Regulation of Evolvability. *Crit Rev Biochem Mol Biol*
594 42:399–435.

595 4. Buscaino. 2019. Chromatin-Mediated Regulation of Genome Plasticity in
596 Human Fungal Pathogens. *Genes (Basel)* 10:855.

597 5. Hirakawa MP, Martinez D a, Sakthikumar S, Anderson MZ, Berlin A, Gujja S,
598 Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo C
599 a, Aviv R. 2015. Genetic and phenotypic intra-species variation in *Candida*
600 *albicans* 1–13.

601 6. Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A,
602 Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury J-M, Istace B,
603 Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G,
604 Schacherer J. 2018. Genome evolution across 1,011 *Saccharomyces*
605 *cerevisiae* isolates Species-wide genetic and phenotypic diversity. *Nature*.

606 7. Aguilera A, García-Muse T. 2013. Causes of Genome Instability. *Annu Rev*
607 *Genet* 47:1–32.

608 8. Fedoroff N. 2000. Transposons and genome evolution in plants. *Proc Natl*
609 *Acad Sci U S A*. National Academy of Sciences.

610 9. Feschotte C, Pritham EJ. 2007. DNA Transposons and the Evolution of

Vega Estevez et al

611 Eukaryotic Genomes. *Annu Rev Genet* 41:331–368.

612 10. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A,
613 Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. 2007.
614 A unified classification system for eukaryotic transposable elements. *Nat Rev
615 Genet.* Nature Publishing Group.

616 11. Havecker ER, Gao X, Voytas DF. 2004. The diversity of LTR retrotransposons.
617 *Genome Biol* 5.

618 12. Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. 2009. Network
619 dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. *Biol
620 Direct* 4:1–31.

621 13. Finnegan DJ. 1997. Transposable elements: How non-LTR retrotransposons
622 do it. *Curr Biol* 7:245–248.

623 14. Januszyk K, Li PWL, Villareal V, Branciforte D, Wu H, Xie Y, Feigon J, Loo JA,
624 Martin SL, Clubb RT. 2007. Identification and solution structure of a highly
625 conserved C-terminal domain within ORF1p required for retrotransposition of
626 long interspersed nuclear element-1. *J Biol Chem* 282:24893–24904.

627 15. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse
628 transcription of R2Bm RNA is primed by a nick at the chromosomal target site:
629 A mechanism for non-LTR retrotransposition. *Cell* 72:595–605.

630 16. Papon N, Courdavault V, Clastre M. 2014. Biotechnological potential of the
631 fungal CTG clade species in the synthetic biology era. *Trends Biotechnol*
632 32:167–168.

633 17. Gabaldón T, Naranjo-Ortíz MA, Marcet-Houben M. 2016. Evolutionary
634 genomics of yeast pathogens in the Saccharomycotina. *FEMS Yeast Res* 16.

635 18. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA,

Vega Estevez et al

636 Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S,
637 Brown AJP, Brunke S, Costanzo MC, Fitzpatrick DA, De Groot PWJ, Harris D,
638 Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R,
639 Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF,
640 Sherlock G, Shah P, Silverstein KAT, Skrzypek MS, Soll D, Staggs R,
641 Stansfield I, Stumpf MPH, Sudbery PE, Srikantha T, Zeng Q, Berman J,
642 Berriman M, Heitman J, Gow NAR, Lorenz MC, Birren BW, Kellis M, Cuomo
643 CA. 2009. Evolution of pathogenicity and sexual reproduction in eight *Candida*
644 genomes. *Nature* 459:657–662.

645 19. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, LaButti KM, Sun H,
646 Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C,
647 Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev I V., Gasch AP.
648 2011. Comparative genomics of xylose-fermenting fungi for enhanced biofuel
649 production. *Proc Natl Acad Sci* 108:13212–13217.

650 20. Krassowski T, Coughlan AY, Shen X-X, Zhou X, Kominek J, Opulente DA,
651 Riley R, Grigoriev I V., Maheshwari N, Shields DC, Kurtzman CP, Hittinger CT,
652 Rokas A, Wolfe KH. 2018. Evolutionary instability of CUG-Leu in the genetic
653 code of budding yeasts. *Nat Commun* 9:1887.

654 21. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen
655 K, Berman J. 2011. Stress alters rates and types of loss of heterozygosity in
656 *Candida albicans*. *MBio* 2.

657 22. Todd RT, Selmecki A. 2020. Expandable and reversible copy number
658 amplification drives rapid adaptation to antifungal drugs. *Elife* 9:1–33.

659 23. Todd RT, Wikoff TD, Forche A, Selmecki A. 2019. Genome plasticity in
660 *Candida albicans* is driven by long repeat sequences. *Elife* 8.

Vega Estevez et al

661 24. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S,
662 Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo
663 CA. 2015. Genetic and phenotypic intra-species variation in *Candida albicans*.
664 *Genome Res* 25:413–25.

665 25. du Preez JC, van Driessel B, Prior BA. 1989. D-xylose fermentation by
666 *Candida shehatae* and *pichia stipitis* at low dissolved oxygen levels in fed-
667 batch cultures. *Biotechnol Lett* 11:131–136.

668 26. du Preez JC, van Driessel B, Prior BA. 1989. Ethanol tolerance of *Pichia*
669 *stipitis* and *Candida shehatae* strains in fed-batch cultures at controlled low
670 dissolved oxygen levels. *Appl Microbiol Biotechnol* 30:53–58.

671 27. Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second
672 generation biofuel technologies. *Bioresour Technol* 101:1570–1580.

673 28. Robak K, Balceruk M. 2018. Review of second generation bioethanol
674 production from residual biomass. *Food Technol Biotechnol* 56:174–187.

675 29. Suh SO, Marshall CJ, McHugh J V., Blackwell M. 2003. Wood ingestion by
676 passalid beetles in the presence of xylose-fermenting gut yeasts. *Mol Ecol*
677 12:3137–3145.

678 30. Melake T, Passoth V, Klinner U. 1996. Characterization of the genetic system
679 of the xylose-fermenting yeast *Pichia stipitis*. *Curr Microbiol* 33:237–242.

680 31. Jeffries TW, Grigoriev I V., Grimwood J, Laplaza JM, Aerts A, Salamov A,
681 Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson
682 PM. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-
683 fermenting yeast *Pichia stipitis*. *Nat Biotechnol* 25:319–326.

684 32. Lynch DB, Logue ME, Butler G, Wolfe KH. 2010. Chromosomal G + C content
685 evolution in yeasts: Systematic interspecies differences, and GC-poor troughs

Vega Estevez et al

686 at centromeres. *Genome Biol Evol* 2:572–583.

687 33. Coughlan AY, Wolfe KH. 2019. The reported point centromeres of

688 *Scheffersomyces stipitis* are retrotransposon long terminal repeats. *Yeast*

689 36:275–283.

690 34. Villa-Carvajal M, Querol A, Belloch C. 2006. Identification of species in the

691 genus *Pichia* by restriction of the internal transcribed spacers (ITS1 and ITS2)

692 and the 5.8S ribosomal DNA gene. *Antonie van Leeuwenhoek, Int J Gen Mol*

693 *Microbiol* 90:171–181.

694 35. Schwartz DC, Cantor CR. 1984. Separation of yeast chromosome-sized DNAs

695 by pulsed field gradient gel electrophoresis. *Cell* 37:67–75.

696 36. Ketel C, Wang HSW, McClellan M, Bouchonville K, Selmecki A, Lahav T,

697 Gerami-Nejad M, Berman J. 2009. Neocentromeres form efficiently at multiple

698 possible loci in *Candida albicans*. *PLoS Genet* 5:e1000400.

699 37. Benson G. 1999. Tandem repeats finder: A program to analyze DNA

700 sequences. *Nucleic Acids Res* 27:573–580.

701 38. Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation

702 resource. *Nucleic Acids Res* 46:D493–D496.

703 39. Jeffries TW, Grigoriev I V, Grimwood J, Laplaza JM, Aerts A, Salamov A,

704 Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin Y-S, Passoth V, Richardson

705 PM. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-

706 fermenting yeast *Pichia stipitis*. *Nat Biotechnol* 25:319–326.

707 40. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview

708 Version 2--a multiple sequence alignment editor and analysis workbench.

709 *Bioinformatics* 25:1189–91.

710 41. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017.

Vega Estevez et al

711 Canu: Scalable and accurate long-read assembly via adaptive κ -mer weighting
712 and repeat separation. *Genome Res* 27:722–736.

713 42. GitHub - ruanjue/smartdenovo: Ultra-fast de novo assembler using long noisy
714 reads.

715 43. Vaser R, Sović I, Nagarajan N, Šikić M. 2017. Fast and accurate de novo
716 genome assembly from long uncorrected reads. *Genome Res* 27:737–746.

717 44. Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome
718 assembled de novo using only nanopore sequencing data. *Nat Methods*
719 12:733–735.

720 45. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo
721 CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: An Integrated Tool
722 for Comprehensive Microbial Variant Detection and Genome Assembly
723 Improvement. *PLoS One* 9:e112963.

724 46. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. 2015.
725 BUSCO: Assessing genome assembly and annotation completeness with
726 single-copy orthologs. *Bioinformatics* 31:3210–3212.

727 47. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: Quality
728 assessment tool for genome assemblies. *Bioinformatics* 29:1072–1075.

729 48. Min B, Grigoriev I V, Choi I-G. 2017. FunGAP: Fungal Genome Annotation
730 Pipeline using evidence-based gene model evaluation. *Bioinformatics*
731 33:2936–2937.

732 49. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H,
733 Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A,
734 Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5:
735 Genome-scale protein function classification. *Bioinformatics* 30:1236–1240.

Vega Estevez et al

736 50. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. 2018.
737 MUMmer4: A fast and versatile genome alignment system. *PLOS Comput Biol*
738 14:e1005944.

739 51. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones
740 SJ, Marra MA. 2009. Circos: An information aesthetic for comparative
741 genomics. *Genome Res* 19:1639–1645.

742 52. Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole
743 genome comparisons dramatically improves orthogroup inference accuracy.
744 *Genome Biol* 16:157.

745 53. Chen H, Boutros PC. 2011. VennDiagram: A package for the generation of
746 highly-customizable Venn and Euler diagrams in R. *BMC Bioinformatics* 12:35.

747 54. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
748 Wheeler transform. *Bioinformatics* 25:1754–1760.

749 55. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
750 Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The genome
751 analysis toolkit: A MapReduce framework for analyzing next-generation DNA
752 sequencing data. *Genome Res* 20:1297–1303.

753 56. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
754 Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R. 2011.
755 The variant call format and VCFtools. *Bioinformatics* 27:2156–2158.

756 57. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
757 Ruden DM. 2012. A program for annotating and predicting the effects of single
758 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila*
759 *melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* 6:80–92.

760 58. Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett

Vega Estevez et al

761 M, Barrell JF, Butler G, Citiulo F, Coleman DC, de Groot PWJ, Goodwin TJ,
762 Quail MA, McQuillan J, Munro CA, Pain A, Poulter RT, Rajandream M-A,
763 Renauld H, Spiering MJ, Tivey A, Gow NAR, Barrell B, Sullivan DJ, Berriman
764 M. 2009. Comparative genomics of the fungal pathogens *Candida dubliniensis*
765 and *Candida albicans*. *Genome Res* 19:2231–44.

766 59. Frank AC, Wolfe KH. 2009. Evolutionary capture of viral and plasmid DNA by
767 yeast nuclear Chromosomes. *Eukaryot Cell* 8:1521–1531.

768 60. Butler G, Rasmussen MD, Lin MF, Santos M a S, Sakthikumar S, Munro C a,
769 Rheinbay E, Grabherr M, Forche A, Reedy JL, Agraftioti I, Arnaud MB, Bates S,
770 Brown AJP, Brunke S, Costanzo MC, Fitzpatrick D a, de Groot PWJ, Harris D,
771 Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R,
772 Neiman AM, Nikolaou E, Quail M a, Quinn J, Santos MC, Schmitzberger FF,
773 Sherlock G, Shah P, Silverstein K a T, Skrzypek MS, Soll D, Staggs R,
774 Stansfield I, Stumpf MPH, Sudbery PE, Srikantha T, Zeng Q, Berman J,
775 Berriman M, Heitman J, Gow N a R, Lorenz MC, Birren BW, Kellis M, Cuomo
776 C a. 2009. Evolution of pathogenicity and sexual reproduction in eight *Candida*
777 genomes. *Nature* 459:657–62.

778 61. Slininger PJ, Shea-Andersh M a, Thompson SR, Dien BS, Kurtzman CP,
779 Balan V, da Costa Sousa L, Uppugundla N, Dale BE, Cotta M a. 2015.
780 Evolved strains of *Scheffersomyces stipitis* achieving high ethanol productivity
781 on acid- and base-pretreated biomass hydrolyzate at high solids loading.
782 *Biotechnol Biofuels* 8:1–27.

783 62. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M,
784 Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. 2018.
785 Ten things you should know about transposable elements 06 Biological

Vega Estevez et al

786 Sciences 0604 Genetics. Genome Biol 19:1–12.

787 63. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal

788 PP, van Maris AJA, Klaassen P, Pronk JT. 2017. *Saccharomyces cerevisiae*

789 strains for second-generation ethanol production: from academic exploration to

790 industrial implementation. *FEMS Yeast Res.* Oxford Academic.

791 64. Smith D, Quinlan A. 2008. Rapid whole-genome mutational profiling using

792 next-generation sequencing technologies. *Genome Res* 1638–1642.

793 65. Selmecki A, Forche A, Berman J. 2010. Genomic plasticity of the human

794 fungal pathogen *Candida albicans*. *Eukaryot Cell* 9:991–1008.

795 66. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. 2018. Worldwide emergence of

796 resistance to antifungal drugs challenges human health and food security.

797 *Science* (80-) 360:739–742.

798 67. Freire-Benéitez V, Gourlay S, Berman J, Buscaino A. 2016. Sir2 regulates

799 stability of repetitive domains differentially in the human fungal pathogen

800 *Candida albicans*. *Nucleic Acids Res* <https://doi.org/10.1093/nar/gkw594>.

801 68. Jackson AP, Gamble J a, Yeomans T, Moran GP, Saunders D, Harris D, Aslett

802 M, Barrell JF, Butler G, Citiulo F, Coleman DC, de Groot PWJ, Goodwin TJ,

803 Quail M a, McQuillan J, Munro C a, Pain A, Poulter RT, Rajandream M-A,

804 Renauld H, Spiering MJ, Tivey A, Gow N a R, Barrell B, Sullivan DJ, Berriman

805 M. 2009. Comparative genomics of the fungal pathogens *Candida dubliniensis*

806 and *Candida albicans*. *Genome Res* 19:2231–44.

807

808 **FIGURE LEGENDS**

809 **Figure 1.** Classification of non-centromeric *S. stipitis* repeats

810 **A)** Schematics of non-centromeric retrotransposons identified in this study.

Vega Estevez et al

811 For each transposon, subclass, superfamily and family is indicated. The organisation
812 of coding and non-coding sequences of each transposon is displayed. **B)** Cladogram
813 showing CTG (Ser1)-clade species with known transposable elements (this study
814 and (60, 68). The presence (V) or absence (X) of a TE is indicated. **C)** Sequence
815 alignment of telomeric terminal repeats in members of the CTG (Ser1)-clade (C.
816 *lusitaniae*, *S. stipitis*, *L. elongisporus*, *C. albicans* and *C. tropicalis*) (this study and
817 (60, 68). Consensus sequence to the *S. cerevisiae* telomeric repeats is indicated
818 (Magenta box). **D)** Schematics of gene family members associated with *S. stipitis*
819 subtelomeres (30 Kb from chromosome end).

820

821 **Figure 2.** Phenotypic and Genotypic Diversity in *S. stipitis*

822 **A)** Heatmaps comparing growth rate (Left), maximum OD (Middle) and lag time
823 (Right) for each *S. stipitis* natural isolate in comparison to the reference Y-11545
824 strain (blue). Analyses were performed in Glucose (G), Xylose (X) and
825 Glucose/Xylose (G+X) media. The heatmap data are the average of 3 biological
826 replicates. **B)** Karyotyping of *S. stipitis* natural isolates by CHEF electrophoresis. Y-
827 11545 strain is highlighted in blue and the size of its eight chromosome is indicated.

828

829 **Figure 3.** Differences in TE distribution and organisation

830 **A)** The genomic organisation of Y-11545 and Y-7124 is distinct .*Left*: Schematics of
831 Y-11545 chromosome organisation. Chromosome (Chr) number and size (Mbp) is
832 indicated. *Middle*: Karyotyping of *S. stipitis* Y-11545 and Y-7124 strains by CHEF
833 electrophoresis. *Right*: Schematics of Y-7124 chromosome organisation.
834 Chromosome (Chr) number and size (Mbp) is indicated **B)** Schematics of non-
835 centromeric transposon family distribution in Y-11545 (*left*) and Y-7124 (*right*) **C)**

Vega Estevez et al

836 Copy Number of full-length transposons (Left) and transposon-associated repeats
837 associated with the Y-11545 (dark grey) and Y-7124 (light grey) genome. **D**)
838 Percentage (%) of Ancestral, Deletion and Insertion sites associated with the Y-
839 11545 and Y-7124 genomes

840 **Figure 4.** Chromosome rearrangements between *S. stipitis* natural isolates

841 **A)** Circos plot displaying macrosynteny between Y-11545 (Left) and Y-7124 (Right).
842 Chromosome (Chr) number and size is indicated. Reciprocal translocation between
843 the two genomes is highlighted in purple and pink. **B)** Schematics of repetitive
844 sequences associated with the translocation junction in the Y-11545 (Left) and Y-
845 7124 (Right) genomes. **C)** Subtelomeric gene families and TEs distribution in the Y-
846 11545 and Y-7124 genomes **D)** Schematics of centromere organisation in the Y-
847 11545 (Left) and Y-7124 (Right)

848 **Figure 5** The *S. stipitis* genome is plastic following real-time evolution

849 **A)** Schematics of laboratory evolution strategy **B)** *S. stipitis* growth curve in SC G+X
850 liquid media at permissive (30 °C) and restrictive (37 °C) temperature **C)** Karyotype
851 organisation of *S. stipitis* colonies following 8 weeks of laboratory evolution at 30 °C
852 and 37 °C. Variation in the structure following laboratory evolution at 30 °C (blue)
853 and 37 °C (magenta) is indicated **D)** Serial dilution assay showing growth of parental
854 (P) and 37 °C-evolved strains without (NO Rearrangements) and with
855 (Rearrangements) at 30 °C and 37 °C. The CHEF analysis strain number is indicated
856 (Magenta). * indicates colonies with a fitness advantage compared to the parental
857 strain.

858 **Figure S1.** Southern Blot analysis confirm the Chr5 / Chr7 translocation

859 Left: Schematics of chromosome 5 (Chr 5) and chromosome 7 (Chr 7) in Y-11545
860 (Left) and Y-7124 (Right). Reciprocal translocation is highlighted in purple and pink.

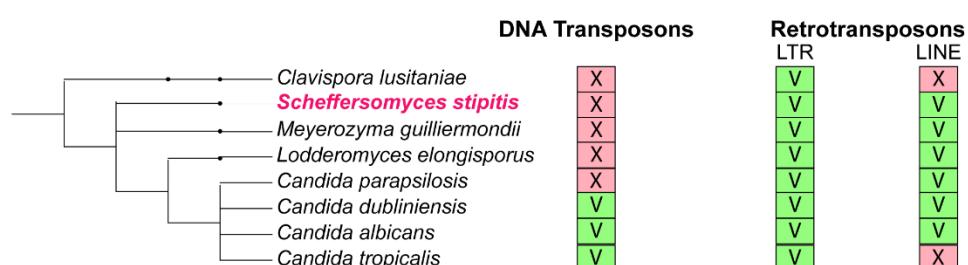
Vega Estevez et al

861 Southern Probe is indicated. Right: Southern Blot of Y-11545 and Y-7124
862 chromosomes separated by CHEF gel electrophoresis. Full chromosome profiling
863 (EtBr) and Southern Blot results (Southern) are indicated
864

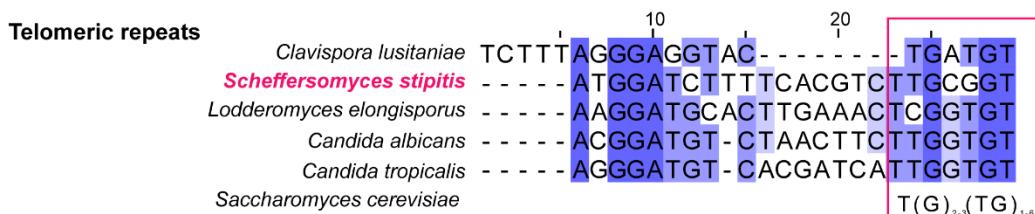
Vega Estevez et al

Fig 1

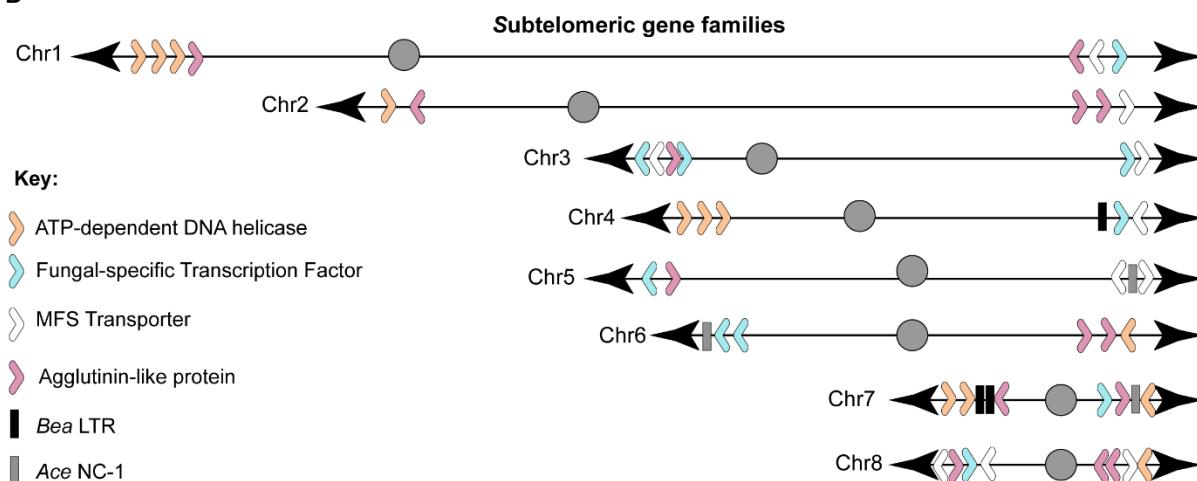
A


Subclass	Superfamily	Family	Class I Retrotransposon		Size
			Structure	POL	
LTR	Copia	Ava	LTR <i>LAP1</i>	Integrase (blue), Reverse Transcriptase (pink), RNase H (green)	~ 6.0 Kb
		Bea	LTR <i>LAP2</i>	Integrase (blue), Reverse Transcriptase (pink), RNase H (green)	~ 6.0 Kb
		Caia	LTR <i>LAP3</i>	Integrase (blue), Reverse Transcriptase (pink), RNase H (green)	~ 6.5 Kb
LINE	LINE	Ace	NC-1 <i>LINEA1</i>	Integrase (blue), Reverse Transcriptase (pink), RNase H (green), Endonucleases (grey)	~ 6.8 Kb
		Bri	NC-1 <i>LINEA2</i>	Integrase (blue), Reverse Transcriptase (pink), RNase H (green), Endonucleases (grey)	~ 6.0 Kb
		Can	NC-1 <i>LINEA3</i>	Integrase (blue), Reverse Transcriptase (pink), RNase H (green), Endonucleases (grey)	~ 6.8 Kb

Key:

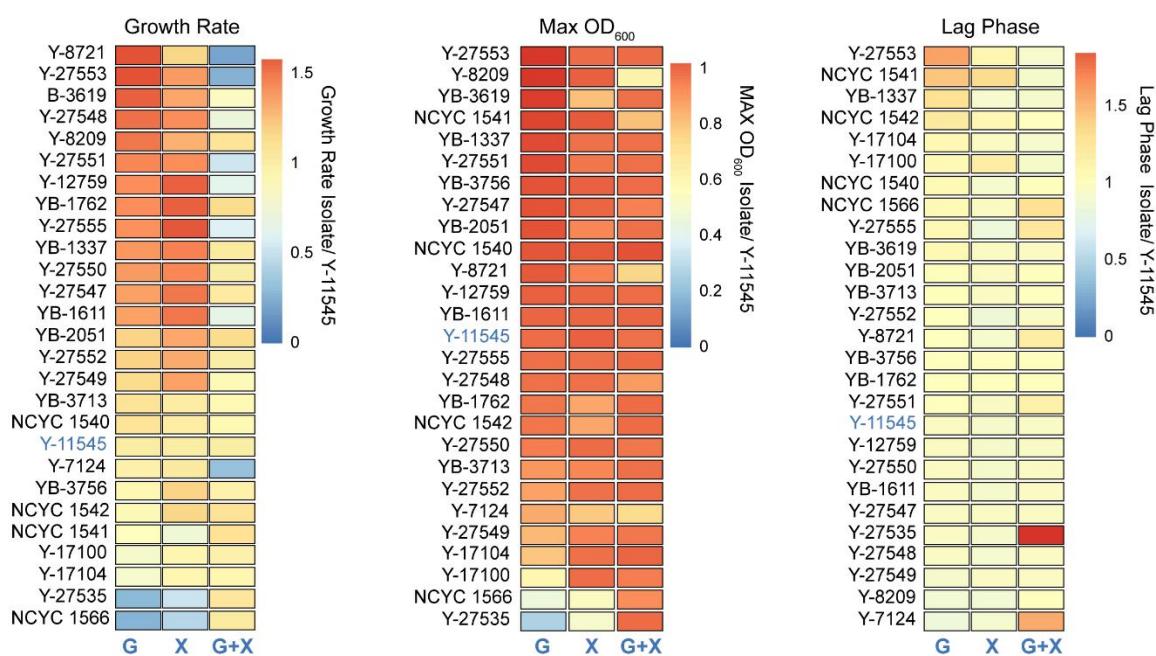

■ Integrase ■ Reverse Transcriptase ■ RNase H ■ Endonucleases

Vega-Estevez et al

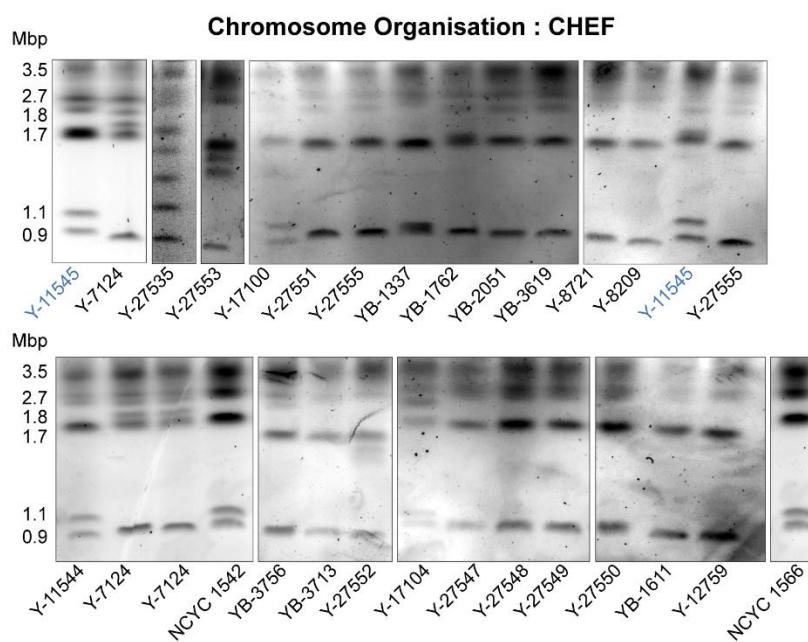

B

C

D

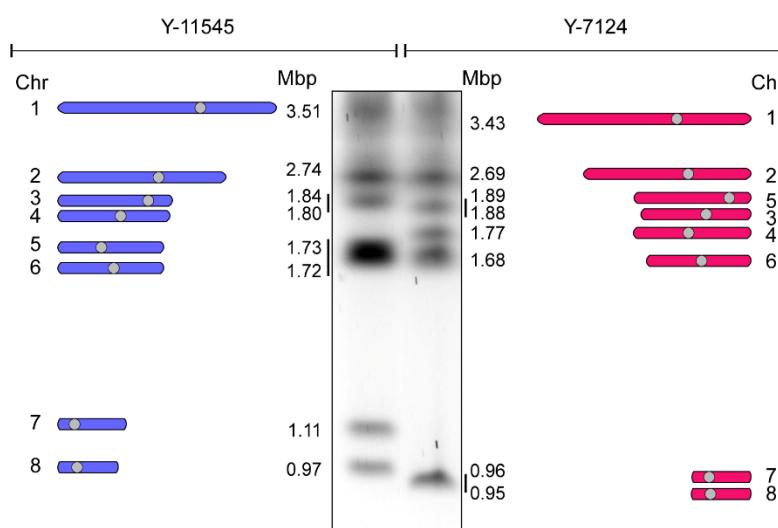


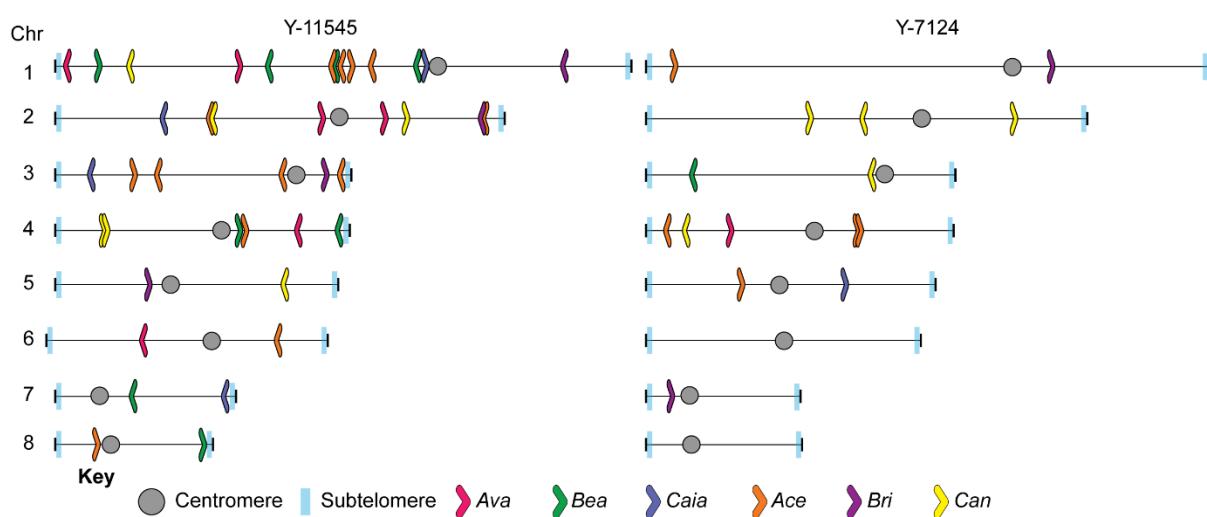
Vega Estevez et al


Fig 2

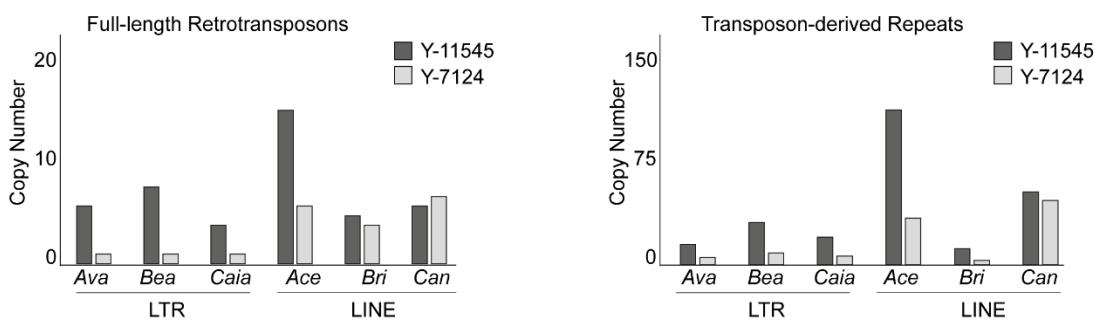
Vega-Estevez et al

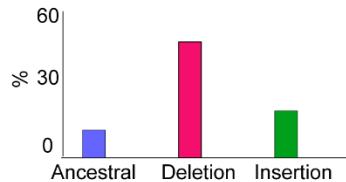
A

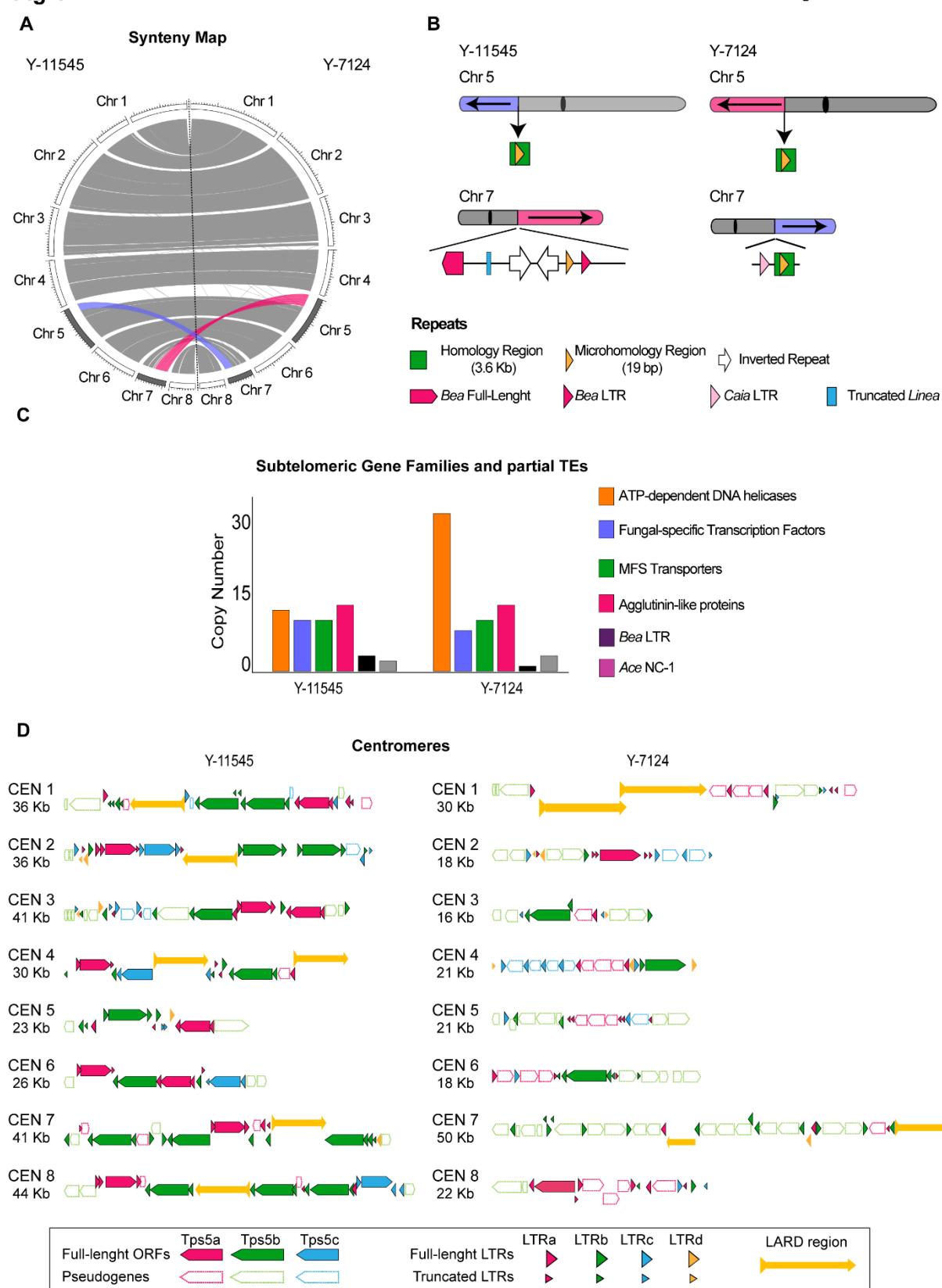

B


Fig 3

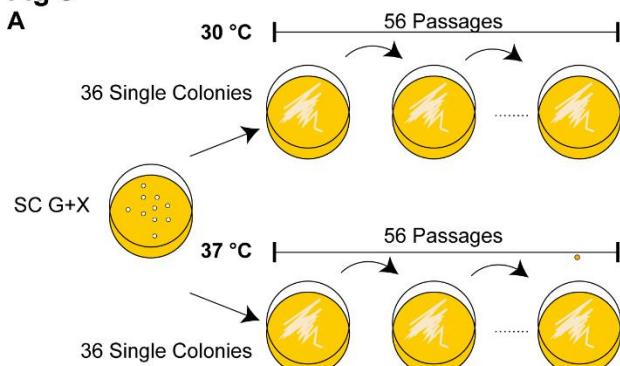
Vega-Estevez et al


A

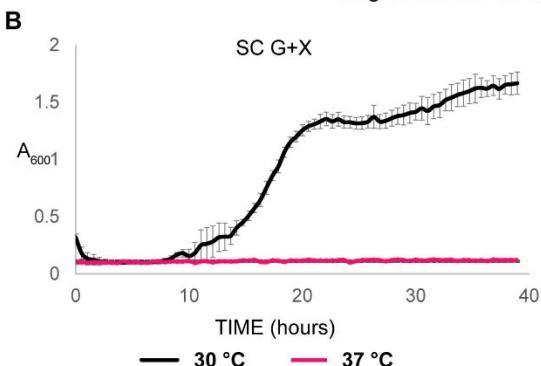

B


C

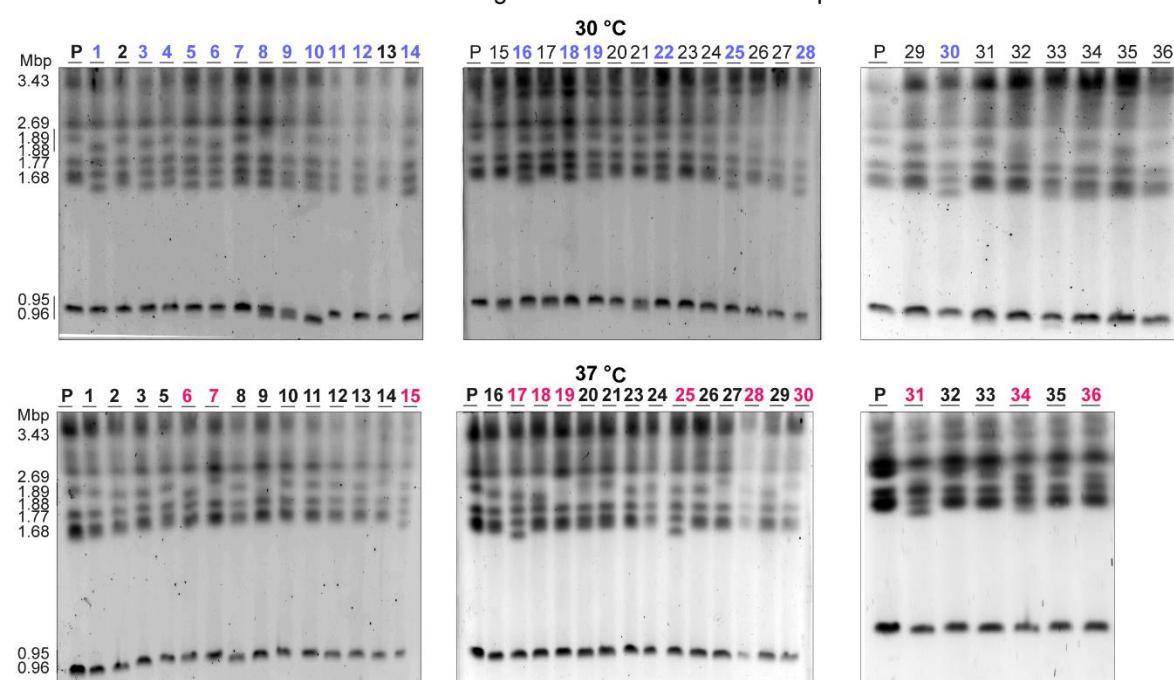
D


Fig 4

Vega Estevez et al

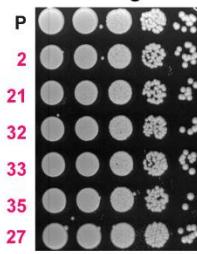

Fig 5

A

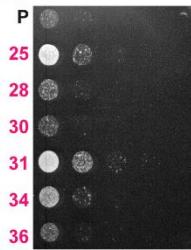
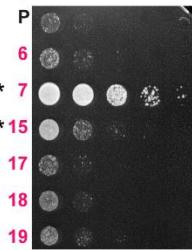
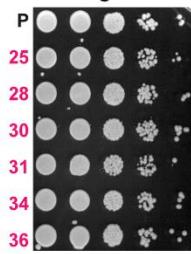
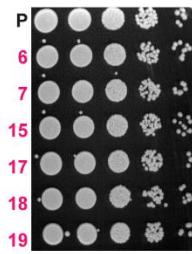
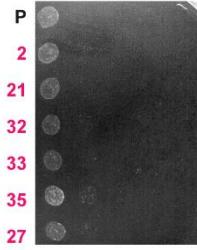

Vega-Estevez et al

B

C


Chromosome Organisation: CHEF Gel Electrophoresis

D






NO Rearrangements

30 °C

Chromosome Rearrangements

37 °C

