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Abstract 

Recent work in cognitive and systems neuroscience has suggested that the 

hippocampus might support planning, imagination, and navigation by forming “cognitive 

maps” that capture the structure of physical spaces, tasks, and situations. Critically, 

navigation involves planning within a context and disambiguating similar contexts to 

reach a goal. We examined hippocampal activity patterns in humans during a goal-

directed navigation task to examine how contextual and goal information are 

incorporated in the construction and execution of navigational plans. Results 

demonstrate that, during planning, the hippocampus carries a context-specific 

representation of a future goal. Importantly, this effect could not be explained by 

stimulus or spatial information alone. During navigation, we observed reinstatement of 

activity patterns in the hippocampus ahead of participants’ required actions, which was 

strongest for behaviorally relevant points in the sequence. These results suggest that, 

rather than simply representing overlapping associations, hippocampal activity patterns 

are powerfully shaped by context and goals.  

 

Introduction 

Every day, people need to plan and execute actions in order to get what they 

want. Spatial navigation, for instance, requires one to pull up a mental representation of 

the relationships between different places—i.e., a “cognitive map” (Tolman 1948)—and 

generate a plan for how to reach a goal. Critically, we can use a cognitive map flexibly, 

so that, in theory, the same underlying representation can be used to reach different 
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goals. For example, if we wanted to navigate to the Tiger exhibit at the San Diego Zoo 

we might use the same map-like representation to find the Zebra exhibit. 

Several lines of evidence suggest that the hippocampus plays a key role in 

navigation, though its role in navigation is fundamentally unclear. For example, 

evidence shows that, during random foraging, “place cells” in the hippocampus encode 

specific locations within a spatial context (O’Keefe and Dotrovsky, 1971; O’Keefe and 

Nadel, 1978). However, more recent evidence suggests that the hippocampus is not 

only important for mapping physical space. Numerous studies have shown that 

hippocampal activity tracks variables beyond spatial information (Tavares et al., 2015; 

Park et al., 2019; Aronov et al., 2017). These findings have led to a reimagination of a 

purely spatial “cognitive map”, whereby the hippocampus can map all manner of spaces 

(Eichenbaum & Cohen, 2014) and that the hippocampus uses spatial codes in order to 

encode behaviorally relevant variables (Behrens et al 2018, Stachenfeld et al., 2017, 

Kaplan, Schuck, & Doeller 2017).  

 Building on this idea, some have proposed that the hippocampus not only 

indicates one’s current location relative to a map of a physical or an abstract space, but 

that it also represents possible states or locations that could be encountered in the 

future (e.g. Mehta et al., 2001, Stachenfeld et al., 2017). According to some versions of 

the “predictive map” model, through a reinforcement learning process, the hippocampus 

represents each state in terms of its possible transitions to future states. As a result, the 

hippocampus enables animals to learn long-term state relationships that would be 

useful for temporally extended behavior like navigation. 
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Although there is a substantial body of work on the representation of abstract 

spaces in the human hippocampus, this work has not completely paralleled work on 

hippocampal maps in rodents. One key issue identified in single-unit recording studies 

is that spatial selectivity of place cells is context-specific—that is, the spatial selectivity 

of a given cell in one environment varies when an animal is moved to a different, but 

topographically similar environment (O’Keefe and Dotrovsky, 1971, Skaggs and 

McNaughton, 1998; Leutgeb et al., 2004, Alme et al., 2014, McKenzie et al., 2014). Just 

as one might pull up different cognitive maps for different physical contexts, it is 

reasonable to think that we might utilize context-specific maps of abstract state spaces. 

Theoretical learning models have been proposed to explain how the hippocampus might 

recognize contexts (Honi et al., 2020, Whittington et al., 2020, George et al., 2021), but 

there is little empirical evidence showing how context is utilized in abstract spaces. 

In addition to context, there is limited information about how goals affect 

representations of either locations or abstract task states. Most studies of hippocampal 

place cells in rodents examine activity during random movements through an 

environment (e.g. Alme et al., 2014), and studies of abstract spaces in humans typically 

investigate incidental learning of stimulus dimensions or arbitrary state dynamics 

(Garvert et al., 2017, Schapiro et al 2016, Schuck & Niv, 2016). Research in rodents 

suggests that representations of space during goal-directed navigation may differ from 

random or incidental behavior. For example, hippocampal place cells have differential 

firing fields during planning depending on the future goal of the animal (Ainge et al., 

2007; Wood et al., 2000; Ferbinteanu and Shapiro, 2003, Ito et al., 2015), and goal 

locations tend to be overrepresented by a clustering of spatial codes around them 
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(Dupret et al., 2010, Gauthier et al., 2018). In humans, hippocampal activity patterns 

during route planning carry information about prospective goal locations in a virtual 

space (Brown et al., 2016), anticipated stimuli (Garvert et al., 2017), and the magnitude 

of activity in the hippocampus is modulated by a participant’s distance from a goal 

location (Patai et al., 2019, Howard et al., 2014). These findings suggest that goals may 

exert a powerful influence on hippocampal representations.  

In the present study, we used functional magnetic resonance imaging (fMRI) to 

investigate how contexts and goals shape hippocampal representations during planning 

and navigation. We devised a novel task to investigate the contribution of the human 

hippocampus to the flexible representation of context dependent goals and plans in an 

abstract space (Fig. 1). This design allows us to examine the impact of context and 

goals on hippocampal activity patterns across perceptually similar planned sequences. 

Critically, we compared evoked patterns elicited for planned sequences that shared a 

goal to those that had different goals to disentangle the unique contribution of goal 

information on hippocampal activity patterns. Finally, we analyzed the time course of 

hippocampal patterns while participants actively navigated during the task to examine if 

current and future states were reactivated in a way that is consistent with computational 

models of hippocampal function.  

 

Results 

Navigating an abstract spatiotemporal map 

Prior to scanning, participants were trained to criterion (85% accuracy) to 

navigate to four goal animals in two distinct contexts that consisted of animals that were 
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systematically linked in a deterministic sequence structure (see Methods). Each zoo 

context consisted of the same nine animals arranged in a “plus maze” topology, but the 

relationships between animals across the two zoos were mirror-reversed and then 

rotated counterclockwise by 90 degrees (Fig. 1a). At each animal, subjects were able to 

make one of four button presses that allowed them to transition between animals. In the 

scanner, participants were asked to use their knowledge of the zoo contexts to actively 

navigate from a "start animal” to a “goal animal” (Fig. 1b), where start and goal animals 

were always at the ends of the maze arms. Each trial consisted of a planning phase and 

a navigation phase. During the planning phase, a cue indicated the start and goal 

animals. Next, during the navigation phase, participants saw the start animal alone 

before moving through a sequence of animals to reach the goal animal. For each 

animal, participants had to decide which direction in the plus maze to move to ultimately 

reach the goal animal. On any given trial, participants were only allowed four moves to 

navigate to the goal animal and the interstimulus interval was fixed to ensure that an 

equal amount of time was spent at each state. In each zoo context, participants planned 

Fig. 1. Task Design and Behavioral Results. A) Overhead view of virtual environments. Each context had the same 
visual information but the specific spatial orientation was mirror reversed and then rotated counter clockwise 90 degrees. 
This manipulation meant that the action sequence to reach a goal was different across contexts but participants viewed 
the save visual stimuli.  B) Example navigation trial in the scanner. Participants were first cued with a start and goal 
location and moved navigated through the maze one animal at a time. Inter-stimulus interval (ISI) was 3s. Arrows in red 
and blue indicate that participants had to make different actions to the same stimuli across contexts to reach their goal 
during navigation. C) Group level behavioral results from scanner showing elevated reaction times at decision points 
(Position 1 and Position 3). Error bars represent +- SEM.  
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and navigated 12 distinct sequences (each repeated 4 times across 6 runs of scanning).  

Participants were highly accurate at navigating to the goal animal in each context 

(Context 1: Mean = 93.7%, SD = 12.9%, Context 2: Mean = 94.7%, SD = 12.2%), with 

no significant differences in accuracy between contexts (t22 = 1.16, p = 0.26). This 

suggests that participants had successfully formed distinct representations of each zoo 

context. We next tested whether participants’ reaction times would be modulated by 

differences in the decision-making demands at different locations in the virtual maze. 

Specifically, our task was structured such that participants were required to initiate their 

navigation plan at the onset of the start animal (i.e., position one), and at position three 

– the center of the plus maze, they needed to choose the correct move in order to reach 

the goal. Accordingly, we expected reaction times (RTs) to be higher at these positions 

in the navigational sequence than at other positions. Consistent with this prediction, 

analyses with a linear mixed effects model revealed a significant effect of position (χ2(3) 

= 220.99, p < 0.0001), such that RTs were elevated at position one and position three, 

relative to other positions (p1 > p2: z = 13.97, p < 0.0001; p1 > p3: z = 9.13, p < 0.0001; 

p1 > p4, z = 11.67 p < 0.0001; p3 > p2, z = 4.84, p < 0.0001; p3 > p4, z = 2.536, p = 

0.0112) (Fig. 1). This shows that decision-making demands at key locations, such as 

choice points, influenced participants’ response time. 

 

Hippocampus is sensitive to context-specific sequences in abstract spaces  

During the planning phase (i.e., when participants were viewing the cues), we 

expected that participants should retrieve information about the sequence of state-

action pairs that led from the start animal to the goal animal. Our first analyses targeted 
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the extent to which hippocampal activity patterns carried information about the context 

and the planned sequence. To address this question, we extracted hippocampal multi-

voxel activity patterns on each cue trial and calculated pattern similarity (Pearson’s r) 

between trial pairs that came from repetitions of the same sequence cue in the same 

context, and compared those to both trial pairs for sequence cues with different start or 

end points, and trial pairs for sequence cues that came from the same or different 

context (Fig. 2a). Importantly, visual information was shared across contexts as the cue 

only indicated the start and goal animal, not the context, and the same cue was 

associated with different moves between contexts. 

To test whether hippocampal activity patterns carried information about the 

context and the planned sequence, we used a linear mixed effects model (Dimsdale-

Zucker & Ranganath 2018) with fixed effects of context (same/different) and sequence 

(same/different), and a random intercept for subject (see Methods for model details and 

EQ2) to predict pattern similarity in the hippocampus. We reasoned that during 

planning, participants were retrieving information about the sequence of states and 

actions to reach their goal. Therefore, we predicted that pattern similarity should be 

higher for sequences that shared the same state-action pairs. Moreover, we predicted 

that this effect should be context-specific, as the same sequence across contexts have 

different state-action pairs. Consistent with this prediction, we found a significant 

sequence by context interaction (Fig. 2b: χ2(1, N = 23) = 4.26, p = 0.04). Follow up tests 

showed that patterns evoked by the same sequence cue in the same context were 

significantly different than all other trial pairs (same seq. + same cx. > diff. seq. + same 

cx.: z = 2.77, p = 0.006; same seq. + same cx. > same seq. + diff. cx.: z = 2.73, p = 
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0.006; same seq. + same cx. > diff. seq. + diff. cx.: z = 2.61, p = 0.009; see Fig. 2b). 

These results show that hippocampal activity patterns carried information about planned 

state-action sequences within specific contexts. 

 

Hippocampal activity patterns reflect future goals during planning 

The above analysis demonstrates that hippocampal activity patterns carry 

context-specific information about planned sequences, consistent with prior work 

showing that the hippocampus represents information about specific sequences of 

Fig. 2. Differential representation of future states in the hippocampus. A) Examples of trial pairs used in pattern 
similarity analyses during the planning phase. Dashed and solid lines of the same color represent two separate repetitions 
of the same trial type.  B) Results from bilateral hippocampus. Pattern similarity was calculated using estimated 
marginal means obtained from linear mixed effects models. Pairs of trials sharing sequence and context have 
significantly higher pattern similarity than all other conditions. C) Pattern similarity results comparing converging and 
diverging sequences within context. Fully overlapping and converging sequences show higher similarity than diverging 
sequences.  D) Between context overlap effect. Converging and fully overlapping sequences show higher pattern 
similarity in the same context. Diverging sequences show higher pattern similarity in different contexts. Error bars are 
95% confidence intervals of the calculated estimated marginal means. * p < 0.05, ~p< 0.10.  
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objects (Hsieh et al., 2014; Schapiro et al. 2016; Kalm, Davis, & Norris, 2013; Agster, 

Fortin & Eichenbaum 2002), as well as work suggesting that the hippocampus forms 

distinct representations of overlapping spatial routes (Chanales et al., 2017, Wood et al. 

2000). However, there are reasons to think that hippocampal sequence representations 

might become more similar under certain circumstances. For instance, if the 

hippocampus uses predictive maps that carry information about possible future states 

(Stachenfeld et al., 2017), one might expect similar representations of sequences that 

share the same starting point but lead to different goals by more heavily weighting the 

immediate state-action pairs that follow planning (“diverging sequences”; see Methods 

for successor representation simulation details and Fig. S1). On the other hand, it is 

possible that goals are more heavily weighted during planning (Mattar and Daw 2018), 

and thus we might expect similar representations of sequences that lead to the same 

goal but start at different states (converging). We sought to test these ideas by 

comparing pattern similarity during cues associated with repetitions of the same 

sequence, cues associated with different sequences that converged on the same goal 

(converging), cues associated with sequences that shared the same starting state but 

with different goals (diverging), and cues associated with non-overlapping sequences 

(no overlap)(Fig. 2a).  

A linear mixed effects model with fixed effects for overlap (same 

sequence/converging/diverging/no overlap) and context (same/different) and a random 

intercept for subject (see Methods for model details and EQ3) showed a significant 

context by overlap interaction (χ2(3, N = 23) = 14.75, p = 0.002). (Fig. 2c and 2d). 

Follow up tests revealed that, within a context, cues with converging goals had 
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significantly higher pattern similarity than cues with diverging goals (z = 2.19, p =  0.03), 

and same sequence cues had higher pattern similarity than cues with diverging goals (z 

= 3.49, p = 0.0005) and sequence cues with no overlap (z = 2.77, p = 0.0056). 

However, converging sequences were not significantly different from the same 

sequence (z = 1.30, p = 0.194). In sum, these results show that during planning, 

representations in the hippocampus are differentiated based on future context-specific 

goals, suggesting that goals fundamentally shape representations in hippocampus via 

shared patterns between sequences that lead to the same goal. 

 

Differences in pattern information during the cue period cannot be explained by 

shared motor plans or sensory details 

The present results are consistent with the idea that the hippocampus supports 

planning of state-action sequences toward a goal. Importantly, our cues were carefully 

controlled, such that subjects were viewing visually identical stimuli across contexts and 

did not make responses during the planning phase. However, some factors could have 

covaried with our manipulations. One possible explanation is that, both within and 

across contexts, sequences can involve the same motor responses. While subjects are 

not actively making movements during planning, the pattern of results in hippocampus 

could be driven by overlap in motor planning in converging vs. diverging sequences. To 

ensure context effects observed in hippocampus were not due to shared motor 

information during planning, we examined trial pairs that had the exact same moves, 

trial pairs that had two moves in common, and pairs that had no moves in common to 

ensure that movement information alone was not modulated by context in the 
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hippocampus. Results showed no effect of planned moves or context on pattern 

similarity (main effect of context: χ2(1, N = 23) = 0.46, p = 0.5; main effect of move: χ2(2, 

N = 23) = 1.56, p = 0.46; interaction: χ2(2, N = 23) = 2.68, p = 0.26) Fig S2. 

As a positive control analysis, we also examined an anatomically defined motor 

cortex ROI (BA4a/4p) to investigate whether we could detect sensorimotor 

representations and if they were modulated by context information during planning. 

Results revealed a significant main effect of planned move (χ2(2, N = 23) = 40.40, p < 

0.0001), and importantly showed that planned movement was not modulated by context 

(main effect: χ2(1, N = 23), = 0.01 p = 0.94; Interaction: χ2(2, N = 23), = 1.26, p = 0.53  

Fig S2)(See Methods and EQ4 for model details).Taken together, these results show 

that our cue period results in the hippocampus cannot be solely explained by shared 

motor information of a plan and highlights the role of the hippocampus in retrieving the 

specific state-action sequence required to execute a given plan. 

To mitigate against a potential confound that low-level visual features could 

explain the observed effects of context in our hippocampal results (Huffman and Stark, 

2017), we ran a control analysis on an anatomically defined visual cortex ROI (V1/V2). 

To do this, we compared pattern similarity between trials where the cue image had the 

same images, one image in common, or no images in common. This analysis is 

identical to the overlap analysis run on hippocampus above (see Methods and EQ3 for 

model details). We found that this visual cortex ROI was only sensitive to visual 

information (Main effect of overlap – χ2(3, N = 23) = 90.24, p < 0.0001 and not context 

(χ2(1 N = 23 ) = 0.05, Interaction: p = 0.82; χ2(3, N = 23 ) = 0.76, p = 0.86 Fig. S2). 

These results suggest that our main HC findings represent something beyond a shared 
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sensory representation. Altogether, these analyses provide an important control and 

bolster our interpretation of the findings from our analyses of the hippocampus, by 

showing that primary sensory areas are activating behaviorally-relevant representations 

during planning, but that the effects of context and goal are only present in 

hippocampus.  

 

Representation of behaviorally relevant sequence positions during navigation 

Having established that the hippocampus represents information about context-

specific goals during planning, our next analyses turned to how state-action information 

is dynamically represented during navigation. To examine if hippocampal activity 

patterns carried information about current or future states during navigation, we 

extracted the time-series for each navigation sequence using a variant of single trial 

modeling that utilizes finite impulse response (FIR) functions (Turner et al., 2012), 

allowing us to examine activity patterns for each time point (TR) as participants 

navigated through the sequence of items. As depicted in Figure 3, we quantified pattern 

similarity between pairs of navigation sequences (e.g. zebra to tiger sequence 

compared to camel to tiger sequence) at different timepoints (e.g., TR 1 to TR 10), 

which yielded a timepoint-by-timepoint similarity matrix for each condition (converging or 

diverging sequences). The diagonal elements for this matrix reflect similarity between 

pairs of animal items from the same timepoint in the sequence. Off-diagonal elements 

reflect the similarity between an animal at one timepoint in the sequence and animal 

items at other timepoints in the sequence. This technique is conceptually similar to 
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cross-temporal generalization techniques used in pattern classification analyses (King & 

Dehaene, 2014). 

Pattern similarity analyses during navigation specifically focused on converging 

and diverging sequence trials. Converging and diverging sequences were chosen 

because these sequences have an equal number of overlapping states, but the timing 

of the overlap is systematically different. By computing pattern similarity differences 

between converging and diverging trials, we were able to assess the representation of 

current and future states in the hippocampus. 
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Fig 3. Schematic depiction of procedure to obtain time point by time point similarity matrices. 
A) (Left) Dashed and solid lines on the maze indicate an example pair of trials correlated. TR by TR spatio-temporal 
patterns were obtained for a pair of sequences (converging in this example). Pattern similarity was computed between 
every possible pair of spatial patterns (voxels) over all timepoints (TRs) from a region of interest. (Middle) This procedure 
yielded a TR by TR similarity matrix for a given sequence pair. Note that because the sequences are from different 
repetitions across fMRI scanning runs the diagonal is not perfectly correlated. (Right) This was repeated for every possible 
converging sequence pair in the data set. The resultant TR by TR matrices were than averaged to create a subject level 
converging TR by TR matrix. Subject-specific averaged TR by TR matrices were than statistically compared to diverging 
sequences using cluster-based permutation tests (see Methods). B) Same as A but using an example diverging sequence 
pair.  
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One possibility is that hippocampal patterns during navigation should only be 

sensitive to what you are seeing or doing at a given moment, similar to position or place 

codes. In this case, we would expect pattern similarity differences between converging 

and diverging sequences close to the diagonal of the timepoint-by-timepoint matrices —

that is, we would expect higher pattern similarity for diverging pairs during timepoints 

early in the sequence and higher pattern similarity for converging pairs during 

timepoints late in the sequence. 

Alternatively, other studies have shown that the hippocampus represents not only 

the current location but also temporally or statistically related states (Stachenfeld et al., 

Fig. 4. Results from TR by TR pattern similarity analysis during active navigation in bilateral hippocampus.  
A) Group level pattern similarity results from converging sequences during active navigation.  B) Same as A but 
showing diverging sequences.  C) TR by TR pattern similarity results depicting a statistical map of converging – 
diverging.  Z values were calculated using a bootstrap shuffling procedure with 10,000 permutations. Opaque black lines 
indicate region where data were averaged for visualization purposes. D) Group level time course obtained by averaging 
over time points outlined in black in C. Horizontal black bar illustrates the approximate time points of the significant 
cluster in E.  E) Thresholded statistical map at p < 0.025. Cluster based permutation tests with 10,000 permutations 
(Maris and Oostenveld, 2007) were performed with a cluster defining threshold of p < 0.025 and a cluster alpha of 0.05 
Outlined in red is a significant cluster of timepoints that survives multiple comparisons correction (cluster mass = 29.44, 
p = 0.038). Note that this cluster corresponds to approximately position 1 activating position 3 which was shared by both 
converging and diverging sequences.  
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2017, Garvert et al., 2017, Schapiro et al., 2016). In this case, at early positions, we 

would expect higher pattern similarity for diverging sequences, both on- and off –

diagonal, and at late positions, we would expect higher pattern similarity for converging 

sequences both on- and off –diagonal.  

A third possibility is that the hippocampus might preferentially represent goal-

relevant information during navigation (Mattar et al., 2018). Consistent with this idea, 

work in rodents has shown the hippocampus reactivates neural ensembles associated 

with both future and past events at critical decision points (Diba, Buzaki 2007, Johnson 

and Redish, 2007, Carr et al., 2011, Pfeiffer and Foster, 2013). In our study, the most 

behaviorally important points in a navigated sequence were the starting point (position 

1), when a goal-directed plan must be initiated, the center of the maze (position 3), a 

critical sub-goal where one’s decision will determine the ultimate trial outcome. This was 

confirmed by our behavioral analyses that revealed that participants were slower to 

respond at positions 1 and 3 (Fig. 1). We therefore reasoned that participants might be 

likely to prospectively retrieve hippocampal representations of these states during 

navigation. In this case, we would expect to see higher off-diagonal pattern similarity in 

converging sequences, such that across converging sequences, activity patterns 

associated with goal states would be correlated with activity patterns during earlier 

positions in the sequences. This effect should be higher for converging sequences than 

for diverging sequences because activations of state-action pairs should become more 

similar later in the sequence. Conversely, diverging sequence state-action pairs should 

be more similar earlier in the sequence but then decrease as the sequence progresses.  
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We calculated timepoint-by-timepoint correlation matrices (Pearson’s r) in 

hippocampus for converging and diverging sequences then statistically compared them 

using cluster-based permutation tests (10,000 permutations). We found several clusters 

showing higher similarity for converging compared to diverging sequences (Fig. 4). 

Interestingly, there was a significant off-diagonal cluster (outlined in red: p = 0.038, 

corrected) that roughly corresponded to the first item in the sequence (position 1) 

activating the central position (position 3) (approx. TRs 10-15). Other clusters tended to 

overlap with key locations in the experiment, which roughly correspond to position one 

activating position five (TRs 18 to 21) and position three activating position five (TRs 18 

to 20) (Fig. 4e), although these clusters did not survive multiple comparison correction. 

These data suggest that hippocampus plays a phasic role in the activation of patterns 

that contain information about future states and prioritizes both goal and sub-goal 

information during active navigation. These findings, along with the planning period 

results, suggest that during goal-directed behavior, the representation of certain states 

is modulated in the hippocampus depending on its importance for the current plan. 

 

Discussion 

The goal of the present study was to identify how the hippocampus represents 

task information during planning and navigation towards a behavioral goal. During 

planning, we show that hippocampal representations carried context-specific 

information about individual sequences to a goal. Surprisingly, not all sequences were 

equally differentiated, such that sequences that converged on a common goal showed 

higher pattern similarity compared to diverging sequences, despite an equal amount of 
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overlap between the conditions. These results suggest that the hippocampus forms 

integrated representations of sequences that lead to the same goal states, and that it 

differentiates between sequences that start from the same state but lead to different 

goals. Similarly, during navigation, we found that the hippocampus prospectively 

activated information about upcoming states and that this effect was strongest in 

relation to key decision points and goals. Our results are consistent with the idea that, 

rather than simply representing overlapping associations, hippocampal representations 

are powerfully shaped by context and goals.  

 

The hippocampus represents context-specific goal information during planning  

A key finding from the present study is that, during planning, hippocampal activity 

patterns are organized such that they either generalize or differentiate between 

sequences depending on the goal, and do so in a context-specific manner. These 

findings are relevant to theories which propose that prospective thought 

(prediction/planning) relies on the same circuitry used for episodic memory (Hassabis et 

al., 2007; Schacter et al., 2007, Addis et al., 2012). In support of this idea, sequential 

place cells activate along the path an animal will take in a phenomenon described as 

“forward replay” (Johnson and Redish, 2007, Pfieffer and Foster 2013). Building on this 

work, Brown et al., (2016) used high-resolution fMRI in humans to examine 

hippocampal activity during goal-directed navigation in a virtual reality (VR) paradigm. 

Brown et al. demonstrated that, during planning, hippocampal activity patterns could be 

used to accurately decode future navigation goals, even across different start positions 

and routes. Thus, their findings demonstrated that fMRI activity patterns in the 
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hippocampus carried information about future navigational goals. Brown et al. (2016) 

interpreted their findings as evidence that the hippocampus supports imagination or 

mental simulation of a route towards a goal. 

Our findings suggest an important constraint on the role of the hippocampus in 

imagination and simulation. In our study, if participants simulated the sequence of 

sensory events that led to the goal (i.e., imagining the sequence of animals), we would 

expect hippocampal representations to generalize across repetitions of the same 

sequence of animals across the two different zoo contexts. Instead, we found that 

hippocampal representations during planning were context specific, such that pairs of 

trials involving the same sequence of animals across different contexts were 

indistinguishable from entirely different sequences. Moreover, similarity across different 

sequences that led to the same goal in the same zoo context was indistinguishable from 

similarity across trial pairs involving the same sequence in the same context. Thus, in 

our study, hippocampal activity most likely did not reflect imagination of a sequence of 

stimuli per se, or even a specific sequence of states, but rather a more abstract 

representation of the context and goal state. 

Together with prior research, our results are relevant to an emerging body of 

work suggesting that goals and other salient locations exert a powerful force on spatial 

and non-spatial maps in the brain (McKenzie et al., 2013, 2014; Boccara et al., 2019; 

Butler & Hardcastle et al., 2019; Brunec et al., 2018). For example, McKenzie et al., 

(2014) found that rewarded events had higher pattern similarity within a context 

compared to unrewarded events. Moreover, there is evidence that, after learning in a 

reward-based foraging task, place cells tend to be clustered around goal locations 
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(Dupret et al., 2010, Gauthier et al., 2018). This could go some way towards explaining 

our results of increased pattern similarity for sequences that converge on the same 

goal, while context-specific remapping of place cells is also in line with our results of 

context-specificity. Considering the current work and past findings, we propose that 

hippocampal representations are flexibly modulated depending on current behavioral 

demands, incorporating trial-specific information that allows organisms to realize a 

specific goal (Ekstrom and Ranganath, 2017). 

  

Reinstatement of remote timepoints in the hippocampus during navigation   

If the hippocampus supports prospective planning for goal-directed navigation, 

then it is important to understand how it functions when such actions are taken when 

navigating abstract spaces. For example, if the hippocampus is involved in retrieving the 

specific state-action plan, what is its function once this plan is executed? To address 

this question, we contrasted pattern similarity during the navigation phase across pairs 

of converging sequences against pairs of diverging sequences. By comparing 

navigation activity patterns from each time point against later time points, we were able 

to detect pattern similarity between current and remote timepoints that is consistent with 

a reinstatement like phenomenon (Günseli et al., 2020). 

As noted above, the animals in the first three positions overlapped across 

diverging sequences, whereas the animals in the last three positions overlapped across 

converging sequences. Thus, if the hippocampus only represented the current state 

during navigation, we would have expected pattern similarity on the diagonal in Figure 

4 to be higher for diverging trials for early time points, and then higher for converging 
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trials in the later time points (see also Figure S4). Instead, we found that the significant 

differences between converging and diverging trial pairs were primarily off of the 

diagonal, suggesting that, during the navigation phase, hippocampal patterns carried 

information about behaviorally relevant remote timepoints along the route1. This effect 

was seen across sequences that converged on the same goal, which all require the 

same decision at position three, although these sequences differed at positions one and 

two. As such, the relationship between patterns at position one and remote time points 

is likely driven by the prospective activation of future states likely corresponding to the 

next key decision point at the center of the plus maze (position three) and the final goal 

(position five).  

Consistent with our study, research in rodents shows that hippocampal ensemble 

activity differs between routes that share a common path but lead to a different goal 

(Frank et al., 2000; Wood et al., 2000, Ferbinteanu and Schapiro, 2003; Ito et al., 2015; 

Markus et al., 1995). In addition, there are several reports of goal locations and future 

states being represented in human hippocampus (Watrous et al., 2018; Ekstrom et al., 

2003; Brown et al., 2016). Research in rodents shows that in navigation and decision–

making tasks place cell activity is activated in forward sweeps allowing an animal to 

simulate the future (Johnson and Redish, 2007; Pfeiffer and Foster et al., 2013). In 

humans, there are several reports of predictive hippocampal representations that are 

related to future behavior in both spatial and non-spatial tasks (Momennejad et al., 

2018, Garvert et al., 2017, Schapiro et al., 2016, Brown et al., 2016). Our data add to 

	
1	Note	that	if	people	retrospectively	retrieved	past	states	at	later	positions	or	prospectively	anticipated	future	
states	when	they	were	at	earlier	positions.	However,	if	participants	retrieved	past	states	we	would	expect	off-	
diagonal	activity	to	be	higher	for	diverging	sequences	(because	the	first	position	was	common	for	the	
diverging	sequences).	
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theories of predictive representations in the hippocampus by suggesting that the 

hippocampus may emphasize strategically important states for reinstatement during 

ongoing behavior. Thus, we propose that during goal-directed behavior, the human 

hippocampus does not solely reflect the current state during navigation, or only the 

immediate future, but predicts states for key decision points along the route – here the 

center of the maze and the goal. These results align with recent findings in rodents and 

computational models showing place cells associated with behaviorally relevant 

locations in an environment are preferentially reactivated (e.g. Mattar and Daw, 2018).  

A specific computational implementation of a predictive map model, the 

successor representation, states that the hippocampus is involved in learning 

relationships between states and actions, and that its representations reflect 

expectations about future locations (Stachenfeld et al., 2017; Mommenejad, 2020). We 

used this computational model to generate simulated pattern similarity results, and 

surprisingly, these simulated matrices were qualitatively different from what we 

observed in the hippocampus.  

In our simulations, the successor representation reflected the transition 

probabilities between states, such that adjacent states were more similar than non-

adjacent states. This is because, participants transitioned between all start and end 

positions equally in both directions. Thus, the model could not reproduce the difference 

between converging and diverging sequences either during the planning or navigation 

phases. More generally, it is possible that state space representations in the 

hippocampus will not always reflect one algorithm such as the SR. Instead, 

hippocampal representations of physical space (Ekstrom and Ranganath, 2017) and 
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abstract state spaces (Boorman, Sweigert, & Park, 2021) are likely to be more flexible, 

reflecting the computational demands of the planning problem, the subject's experience 

with the problem, and the situation. In the present study, the task might have 

encouraged a model-based planning strategy, in which future goals and key states are 

strategically retrieved and represented in hippocampus. In other tasks, where the 

structure is well learned and people do not need to re-plan, hippocampal state spaces 

might resemble successor-based maps.  

 

Conclusion 

Human behavior is characterized by the ability to plan and flexibly navigate decision 

spaces in order to realize future goals. The present study demonstrates that the human 

hippocampus generates context-specific, goal-centered representations that can be 

flexibly called upon in the service of goal-directed planning and navigation. These 

findings can contribute to the development of unified models accounting for 

hippocampal contributions to memory, navigation, and goal-directed sequential 

decision-making (Eichenbaum, 2017; Wikenheiser & Schoenbaum 2016; Bellmund et 

al., 2018). Additionally, this work highlights the importance of studying goal-directed 

behavior, attentional modulation of memory representations, and their consequences on 

planning. 
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Methods 

Participants: Thirty healthy English-speaking individuals participated in the fMRI study. 

All participants had normal or corrected-to-normal vision. Written informed consent was 

obtained from each subject before the experiment, and the Institutional Review Board at 

the University of California, Davis approved the study. Data from one participant was 

excluded due to technical complications with the fMRI scanner, one participant was 

excluded due to a stimulus computer malfunction, two participants were excluded due to 

poor behavioral performance in the scanner (defined as falling below trained criterion, 

85% correct, in the scanner), and one participant was removed from the scanner before 

the experiment concluded because they did not wish to continue in the study. Prior to 

data analysis, to ensure data quality, we conducted a univariate analysis to look at 

motor and visual activation during the task compared to an implicit baseline (unmodeled 

timepoints when the participant was viewing a fixation cross). Two subjects showed little 

to no activation in these regions and were excluded from further analysis. The 

remaining 23 participants (11 male, 12 female, all right handed) are reported here. 

Stimuli and Procedure: Task stimuli consisted of nine common animals, shown in 

color on a grey background. Subjects were tasked with learning two “zoo contexts”, 

consisting of animals organized in a specific spatial orientation (Figure 1a). Importantly, 

animals in both contexts were visually identical, but each context had a distinct spatial 

organization. Training consisted of three stages per context: 1) map study, 2) 
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exploration, 3) sequence navigation. This was followed by an additional sequence 

navigation phase that alternated between contexts. 

During map study, participants were initially shown an overhead view of one of 

the zoo contexts (counterbalanced across participants). After studying this picture, 

participants were asked to reconstruct the location of all the animals by arranging icons 

on the screen. If participants were not able to perfectly recreate the maze they were 

shown the picture once more and asked to try again. Next, during the zoo exploration, 

subjects used arrow keys to move between items in the zoo, starting from the central 

animal. At the bottom of the screen participants were shown arrows indicating all 

possible moves from their current location (e.g. Left, Up, Down, Right at the center 

position of a maze). If participants made an incorrect move (moving outside of the 

animal maze) they were informed they made a wrong move. Participants were required 

to visit each of the animals four times before moving on to the next phase. During the 

sequence navigation phase, participants were shown a cue with a start and goal animal, 

and had four moves to reach the goal on a given trial. Start and goal animals were 

always the endpoints of an arm. Participants were trained to 85% criterion before 

learning the other context. The same training procedure outlined above was repeated 

for the second zoo context. After learning each of the zoos to criterion, participants 

completed an additional sequence navigation phase with the same timing as the MRI 

scanning session.  

In the MRI scanner, subjects completed six runs of the sequence navigation task 

(Figure 1b). In each run, participants completed 16 sequence navigation trials. Trials 
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from a given context were presented in blocked fashion so that there were 8 

consecutive trials from each context. Across runs, context blocks were alternated and 

their order was counterbalanced across subjects. Each navigation trial began with a cue 

signaling a start and a goal animal displayed for 3s, followed by a 3s ITI. Subjects then 

saw the start animal and navigated by pressing buttons to move through the space one 

animal at a time. Animal items were displayed on the screen for 2s with a 3s ITI, 

regardless of participant button press. For items where participants made a navigational 

error, text was displayed for 2s informing them they made a wrong move or incorrectly 

navigated to a goal animal. In each zoo context, participants planned and navigated 12 

distinct sequences (each repeated 4 times across 6 runs of scanning) 

MRI Data acquisition: MRI data were acquired on a 3T Siemens Skyra MRI using a 

32-channel head coil. Anatomical images were collected using a T1-weighted 

magnetization prepared rapid acquisition gradient echo (MP-RAGE) pulse sequence 

image (FOV = 256 mm; TR = 1800 ms; TE = 2.96 ms; image matrix = 256 x 256; 208 

axial slices; voxel size = 1mm isotropic). Functional images were collected with a multi-

band gradient echo planar imaging sequence (TR = 1222 ms; TE = 24 ms; flip angle = 

67 degrees; matrix=64x64, FOV=192mm; multi-band factor = 2; 3 mm3 isotropic spatial 

resolution). 

MRI data processing: Data were preprocessed using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/) and ART Repair (Mazaika et al., 2009). Slice timing 

correction was performed as implemented in SPM12. We used the iterative SPM12 

functional-image realignment to estimate movement parameters (3 for translation and 3 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.08.18.456881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456881
http://creativecommons.org/licenses/by-nd/4.0/


27	
	

for rotation). Motion correction was conducted by aligning the first image of each run to 

the first run of the first session. Then all images within a session were aligned to the first 

image in a run. No participant exceeded 3mm frame wise displacement. A spike 

detection algorithm was implemented to identify volumes with fast motion using ART 

repair (0.5mm threshold) (Power et al., 2012). These spike events were later used as 

nuisance variables within generalized linear models (GLMs). Subjects native structural 

images were coregistered to the EPIs after motion correction. The structural images 

were bias corrected and segmented into gray matter, white matter, and CSF as 

implemented in SPM12. Native brainmasks were created by combining gray, white 

matter masks. Data were smoothed with a 4 mm3 FWHM 3D gaussian kernel.  

Regions of Interest: ROI definitions were generated using a combination of Freesurfer, 

and a multistudy group template of the medial temporal lobe. The multistudy group 

template was used to generate probabilistic maps of hippocampal head, body, and tail 

as defined by Yushkevich et al. (2015), and warped to MNI space using Diffeomorphic 

Anatomical Registration Using Exponentiated Lie Algebra (DARTEL) in SPM8. Maps 

were created by taking the average of 55 manually-segmented ROIs and therefore 

reflect the likelihood that a given voxel was labeled in a participant. Masks were created 

by thresholding the maps at 0.5, (i.e., that voxel was labeled in 50% of participants). 

These maps were then reverse normalized to native subject space using Advanced 

Normalization Tools (ANTS). Subject specific cortical ROIs were generated using 

Freesurfer version 6.0. from the Destrieux and Desikan atlas (Desikan et al., 2006, 

Fischl et al., 2004, Desitrieux et al., 2010). Individual cortical ROIs were binarized and 

aligned to subjects’ native space by applying the affine transformation parameters 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.08.18.456881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456881
http://creativecommons.org/licenses/by-nd/4.0/


28	
	

obtained during coregistration. These masks were combined into merged masks that 

encompassed the entire hippocampus bilaterally (see cue period pattern similarity for 

more information). Anatomical ROIs for V1/V2 and BA4a/p were obtained by running all 

subjects structural scans through the freesurfer recon-all pipeline. Our V1/V2 ROI was 

obtained by merging the anatomical masks for BA17 and BA18 (Fig. S2). 

Cue period pattern similarity analysis: Our primary interest was to investigate how 

prospective sequence representations were modulated based on context membership. 

To achieve this, we used representational similarity analysis to analyze multi-voxel 

activity patterns (Kriegeskorte et al., 2008) within regions of interest. Generalized Linear 

Models (GLMs) were used to obtain single trial parameter estimates of the cue period 

using a modified least-squares all (LSA) model (Mumford et al., 2012, Brown et al., 

2016). Data were high-pass filtered using a 128s cutoff and pre-whitened using AR(1) in 

SPM. All events were convolved with a canonical HRF to be consistent with prior work 

(Mumford et al., 2012). Cue periods were modeled using separate single trial regressors 

for each cue (2s boxcar). The remaining portions of the task were modelled as follows: 

Navigation periods were modelled with separate 25s boxcar functions for each trial, 

separate single trial regressors for catch sequences modelled as a 15s boxcar, 

separate single trial catch blank trials (stick function), outcome correct at condition level 

(stick), outcome incorrect at condition level (stick), and the four button presses at the 

condition level (stick). Nuisance regressors for motion spikes, 12 motion regressors (6 

for realignment and 6 for the derivatives of each of the realignment parameters) and a 

drift term were included in the GLM. Pattern similarity between the resulting beta 

images were calculated using Pearson’s correlation coefficient between all pairs of trials 
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in the experiment. Only between run trial pairs were included in the analysis to avoid 

spurious correlations driven by auto-correlated noise (Mumford et al., 2014).  

Based on evidence of functional differentiation along the long-axis of the 

hippocampus (Poppenk et al., 2013, Bouffard et al., 2021), we tested for any 

longitudinal or hemispheric differences in hippocampal patterns. Analyses revealed no 

significant differences in the pattern of results between left and right or between anterior 

or posterior segments of the hippocampus. As a result, subsequent analyses were 

performed with pattern similarity data from a bilateral hippocampus mask.  

Linear mixed models: Behavioral responses and pattern similarity were analyzed 

using linear mixed effects models to account for the nested structure of the dataset, 

allowing us to statistically model errors in our model clustered around individuals and 

trial types that violate the assumptions of standard multiple regression models. 

Statistical comparisons were conducted in R (3.6.0) (https://www.r-project.org/) using 

lme4 (Bates et al., 2015) and AFEX (Singman et al., 2016). Reaction times were 

analyzed using the following formula:  

EQ1 (Figure 1): RT ~ Position + (1|subject) 

Where (1|x) indicates the random intercept for subject and RT is the reaction time for 

each position during the navigation phase, excluding position 5 (as no response is 

required). Furthermore, outlier RTs were excluded that exceeded 2.5 standard 

deviations from a participants average reaction time. 
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For the pattern similarity analyses, pairwise PS values were input for each subject into 

three separate models with the following formulas: 

EQ2 (Figure 2b): PS ~ same_sequence*same_context + (1|subject)  

EQ3 (Figure 2c/d): PS ~ overlap*same_context + (1|subject)  

EQ4 (Figure S2): PS ~ move*same_context + (1|subject)  

Where (1|x) indicates the random intercept for subject and PS is the Pearson correlation 

coefficient for a given trial pair. Fixed effects for EQ1: (1) same sequence - a categorical 

variable with two levels indicating if the trial pair was from the same or different 

sequence. (2) Same context - categorical variable with two levels: same or different. 

Fixed effects for EQ3: overlap - a categorical variable with four levels: full, converging, 

diverging, and no overlap. Same context - same as EQ2. Fixed effects for EQ4: Move - 

a categorical variable with three levels: same moves, shared moves, no moves. Same 

context - same as EQ2. Statistical significance for fixed effects was calculated by using 

likelihood ratio tests, a non-parametric statistical test where a full model is compared to 

a null model with the effect of interest removed. For example, to test the significance of 

an interaction term two models would be fit. One with two main effect and no interaction 

and the other with the interaction term. Follow up tests and estimated marginal means 

(Searle et al., 1980) from LMMs were calculated using the R package emmeans 

(https://cran.rproject.org/web/packages/emmeans/index.html). 

In all the above models, a model with a maximal random effects structure, as 

recommended by Barr et al., 2014, was first fit. In all cases the maximal model failed to 
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converge or was singular indicating over-fitting of the data. When examining the random 

effects structure for these models, random slopes for our fixed effects accounted for 

very little variance when compared to our random intercept for subject. To improve our 

sensitivity and avoid over-fitting these terms were removed as suggested by Matuschek 

et al., 2017. Lastly, it is important to note that our results are not dependent on using 

linear mixed models. Using a standard repeated measures ANOVA produces 

qualitatively and quantitatively similar results in all ROIs. 

Successor Representation Simulation: To better understand specific predictions of 

the successor representation in our task (Stachenfeld et al., 2017) we performed a 

simple simulation with respect to our task. First, we created a topological structure 

(connected graph) that was similar to our task. As seen in Figure S1, this structure 

closely resembled the plus maze participants navigated in. We simulated the successor 

representation based on a random walk policy using the equation. 

 𝑀 = (𝐼 − 𝛾𝑇)!"  

Where 𝛾 is a free parameter that controls the decay of the SR and T is the full transition 

matrix of the task depicted in Fig. S1A/B. For the current simulations, gamma of 0.3 

was used, but results are qualitatively similar for different values. Random walk or policy 

independence can be assumed in this case because maps were well learned before the 

scanner and each sequence was traversed in both directions an equal number of times 

(Momennejad, 2020).  
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We then tested the hypothesis that, during planning, the hippocampus encodes the SR 

of the first position in the sequence (columns of SR). We extracted columns of the SR 

for three planned sequences ((state 1 -> state 5) (state 6 -> state 5) (state 1 -> 9)) and 

calculated the similarity (Pearsons) between pairs of trials. The same sequence was 

calculated by correlating the same sequence with itself. The converging condition was 

obtained by correlating trials that started at different states but converged on the same 

end state. The diverging condition was obtained by correlating trials that started at the 

same state but diverged to different end state. Lastly, the no overlap condition was 

calculated by correlating trial pairs that started and ended at different states. As shown 

in Figure S1, the SR heavily weights the immediate locations around the starting 

location and thus would predict that diverging sequences should have higher similarity 

than converging sequences.  

Timepoint-by-timepoint representational similarity analysis:  

To examine whether participants activated remote timepoints as they navigated through 

our virtual environments (e.g., activating decision points early in the navigation trial), we 

used a variant of single trial modeling using finite impulse response (FIR) functions 

(Turner et al., 2012). This method allowed us to isolate the unique spatiotemporal 

pattern of activity for a given navigation trial while simultaneously controlling for 

surrounding time points during the run. We modeled 47 seconds of neural activity with a 

set of 38 FIR basis functions. Specifically, we obtained a spatial pattern of activity for 

each of these 38 TRs in our model, which allowed us to compare the similarity of the 

spatial patterns of activity between timepoints in the navigation phase. Additional 
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regressors were included for motion, however spike regressors were not included in this 

analysis because they perfectly colinear with an FIR basis sets for each TR. A separate 

GLM was used for every trial resulting in 72 voxel time series. To examine within trial 

type similarity (same trial type across repetitions) timepoint-by-timepoint similarity 

matrices were generated by correlating activity patterns from repetitions of specific 

sequence pairs (e.g. zebra-tiger repetition 1 with camel-tiger repetition 1), at every TR. 

The resultant matrices were symmetrized by averaging across the diagonal of the 

matrix using the following equation: (XT + X)/2. The resultant timepoint-by-timepoint 

similarity matrix was averaged within a specific trial type to get a single average 

timepoint by timepoint similarity matrix for each subject and condition (Fig. 3). This was 

done separately for converging and diverging sequences. Only between run trial pairs 

were included in the analysis to avoid spurious correlations driven by auto-correlated 

noise (Mumford et al., 2014). This method allowed us to isolate individual sequence 

patterns while controlling for temporally adjacent navigation trials. To identify which 

points in time corresponded to relevant parts of the task, we manually lagged trial labels 

by 4 TRs to account for the slow speed of the HRF.  

Time point by timepoint similarity matrices were constructed only for converging 

and diverging sequences. This subset of trials was chosen for several methodological 

reasons listed below. One is that, to maximally control for differences in trial numbers 

between conditions and temporally auto-correlated evoked patterns, while still 

maintaining enough power to examine future state reactivation; we restricted our 

analyses to converging and diverging sequences within the same context. Importantly, 

this selection of trials allows us to simultaneously control for several factors while testing 
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specific predictions. Another is that, converging and diverging sequences are matched 

in terms of the number of shared items and therefore overall visual similarity. 

Specifically, the same animal items are seen during the first half of diverging 

sequences, while the same animal items are seen in the second half of converging 

sequences (all sequences share the center item).  

To assess statistical significance, and to correct for multiple comparisons, we 

used cluster-based permutation tests (Marris and Oostenveld, 2007) with 10,000 

permutations, with a cluster defining threshold of 0.05 (two-tailed) and a cluster mass 

threshold of 0.05. Each pixel of a statistical comparison (T-value) was converted into a 

Z value by normalizing it to the mean and standard error generated from our 

permutation distributions. 
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