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Abstract 
 
Leaves are primarily responsible for the plant's photosynthetic activity. Thus, changes in the 
phyllosphere microbiota, which includes deleterious and beneficial microbes, can have far 
reaching effects on plant fitness and productivity. In this context, identifying the processes 
and microorganisms that drive the changes in the leaf microbiota over a plant’s lifetime is 
crucial. In this study we analyzed the temporal dynamics in the leaf microbiota of Arabidopsis 
thaliana, integrating both compositional changes and changes in microbe-microbe 
interactions via the study of microbial networks. Field-grown Arabidopsis were used to follow 
leaf bacterial, fungal and oomycete communities, throughout the plant’s growing season 
(extending from November to March), over three consecutive years. Our results revealed the 
existence of conserved time patterns, with microbial communities and networks going 
through a stabilization phase (decreasing diversity and variability) at the beginning of the 
plant’s growing season. Despite a high turnover in these communities, we identified 19 'core' 
taxa persisting in Arabidopsis leaves across time and plant generations. With the hypothesis 
these microbes could be playing key roles in the structuring of leaf microbial communities, 
we conducted a time-informed microbial network analysis which showed core taxa are not 
necessarily highly connected network 'hubs' and 'hubs' alternate with time. Our study shows 
that leaf microbial communities exhibit reproducible dynamics and patterns, suggesting it 
could be possible to predict and drive these microbial communities to desired states. 
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Introduction 
 
Leaves are primarily responsible for the plant's photosynthetic activity and gaseous exchange. 
Consequently, leaf health and performance have a direct effect on plant growth and fitness 
[1]. Leaves are colonized by a wide range of microbes, including bacteria, archaea, and 
microeukaryotes like fungi and oomycetes. While natural openings on leaves such as stomata, 
hydathodes or wounds represent entry points for major plant-pathogens, they also house 
commensal and even beneficial microbes, leading to plant-protecting effects [2, 3]. There is 
increasing interest particularly by plant breeders in microbiota-engineering approaches to 
promote the growth and health of crops through beneficial microbes [4]. In this context, the 
understanding of the processes that shape the composition of leaf microbiota is an essential 
step.  

There is a level of specificity between plants and their leaf microbiota as studies have 
repeatedly shown that different plant lineages tend to harbor quantitatively different 
microbial consortia in their leaves [5], with differences even observed between ecotypes of 
the same plant species [6]. Although it is unclear how plants can selectively recruit certain 
microbial groups, the soil in which plants grow appears to be an important driver [6, 7]. The 
study of plant microbiota over different developmental stages suggests that as the plant 
grows, the microbiota becomes more tissue-specific with major differences observed 
between root and shoot microbiota [8]. There is increasing awareness of the fact that plant-
associated microbiota are not static but dynamic communities changing through time and 
shaped convergently by environmental and host cues. Recent studies have followed the 
dynamics of microbiota formation in leaves [9–12] and roots [13] but few of them have 
conducted a cross kingdom survey, integrating both bacterial and micro-eukaryotic 
communities. 

Microbe-microbe interactions such as mutualism, antagonism or predation, shape the 
composition of microbial communities. Correlation network analyses on the abundance of 
microbial taxa, can be used to infer microbial interactions in a community. The study of 
microbial networks over time can inform us about the dynamics of these interactions and 
how they relate to changes in the diversity and structure of microbial communities [14]. Yet, 
such approaches have rarely been applied to investigate how plant-associated microbiota 
change through the plant’s life.  

Given the complexity of leaf microbial communities, assigning ecological roles and 
ecological importance to individual taxa is extremely challenging. Concepts based on the 
persistence of a microbe (core taxa) and/or its importance on microbial networks (hubs taxa) 
have been applied to identify microorganisms playing key roles in leaf communities [15, 16]. 
Although the large majority of leaf microbes show scattered distributions with highly-
fluctuating occurrences in plant leaves across environments and time, some microorganisms 
achieve a stable presence in plant populations [17]. It is unclear how these “core” microbes 
are able to systematically colonize the host-plant, but it could involve re-colonization 
processes [18] or vertical inheritance via seeds [19]. The stability of the associations between 
“core” microbes and the host-plant suggests a high level of adaptation to the leaf niche on 
the microbe side. This can involve traits associated to plant-colonization and infection as 
suggested for leaf pathogenic Pseudomonas viridiflava [17], but it can also involve the 
capacity of the microorganism to re-shape the leaf microbiota, as part of a ‘niche 
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construction’ strategy. Notably, Agler et al. (2016) [16] showed that the inoculation of the 
leaf-pathogenic oomycete Albugo on Arabidopsis plants translates into decreased microbial 
diversity on leaves and altered microbiota profiles. The analysis of microbial interaction 
networks in the leaf microbiota showed Albugo acts as a network ‘hub’, showing the highest 
level of connections (interactions) with other microbes, which would allow it to influence the 
structure of the leaf microbiota. Because of its hub characteristics and experimentally proven 
impact on leaf microbial communities it has been proposed as a ‘keystone’ taxon of the leaf 
microbiota in Arabidopsis. However, it is still unclear whether re-shaping the leaf microbiome 
contributes to persistence of core taxa.  

The aim of this study was to analyze the temporal dynamics in the leaf microbiota of 
Arabidopsis, integrating both compositional changes and changes in microbe-microbe 
interactions via the study of microbial networks. Amplicon sequencing was used to follow leaf 
bacterial, fungal and oomycete communities in a field experiment throughout the plant’s 
growing season (extending from November to March). The experiment was carried out over 
three consecutive years in order to capture long-term dynamics. Our results reveal 
seasonal/monthly patterns associated with reproducible changes in particular groups across 
kingdoms like Sphingomonadales and Actinomycetales bacteria, Microbotryales and 
Sporidiobolales fungi and Peronosporales oomycetes. Despite a high level of stochasticity in 
microbial colonization of the leaf, we identified 19 taxa that were consistently present (core 
taxa), including putative pathogenic and beneficial taxa. Between November and February, 
the diversity and variability of leaf microbial communities decreased, as microbial networks 
stabilized (changed less) and exhibited decreasing complexity (number of nodes and 
connections). With the hypothesis that certain microbes play a predominant role in the 
structuring and stability of these communities, we focused on the identification of microbes 
having both a persistent presence in Arabidopsis leaves (core microbes) and a high 
connectivity in leaf microbiota networks (hub microbes).  

 

Material and Methods 
 
Common garden experiment. To study the temporal dynamics of A. thaliana’s leaf 
microbiota, we conducted a common garden experiment where A. thaliana plants were 
sampled every month from November to March, covering the plant’s natural growing season, 
including the vegetative and early reproductive growth phases (Fig. 1). The experiment was 
conducted as described in Agler et al., 2016 [16]. Briefly, surface-sterilized seeds were 
germinated on Jiffy pellets for 10 days under greenhouse conditions, before transferring to 
the field. To take into account host genetic variability, four global Arabidopsis thaliana 
ecotypes were used (Ws-0, Col-0, Ksk-1 and Sf-2). The field was divided into nine experimental 
plots which were planted with 10 plants per ecotype, in a randomized set-up. At each 
sampling point, whole leaf samples were taken from 2-4 randomly selected plants per 
ecotype. The whole experiment was repeated three times in 2014-2015, 2015-2016 and 2016-
2017. The field is located at the Max-Planck Institute for Plant Breeding Research (Cologne, 
Germany) (Supplementary Table 1). 
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DNA extraction and amplicon sequencing. Samples were processed exactly as described in 
Agler et al., 2016 [16]. Briefly, whole leaf samples were crushed and used for phenol-
chloroform-based DNA extraction. The obtained DNA was used for two-step PCR 
amplification of the V5-V7 region of the bacterial 16S rRNA (primers B799F/B1194R), the 
fungal ITS1 region (primers ITS1F/ITS2) and the oomycetes ITS1 region (primers ITS1O/5.8s-
O-R). Blocking oligos were used to reduce plant DNA amplification [20]. Purified PCR products 
were pooled in equimolar amounts before sequencing on three Illumina MiSeq runs (2 x 300 
bp reads) with 10% PhiX control. Primers targeting the oomycete ITS1 region also produced 
“non-oomycete” reads but at a very marginal level (3%). 
 
Amplicon sequencing data analysis. Amplicon sequencing data was processed in Mothur [21] 
as described in Karasov et al., 2018 [17]. Single-end reads were paired (make.contigs 
command) and paired reads with more than 5 bases overlap between the forward and 
reverse reads were kept. Only 100-600 bases long reads were retained (screen.seqs). 
Chimeras were checked using Uchime in Mothur with more abundant sequences as reference 
(chimera.uchime, abskew = 1.9). Sequences were clustered into OTUs at the 97% similarity 
threshold using the VSEARCH program in Mothur (cluster, dgc method). Individual sequences 
were taxonomically classified using the rdp classifier method (classify.seqs, consensus 
confidence threshold set to 80) and the greengenes database (13_8 release) for 16S rRNA 
data, the UNITE_public database (version 12_2017) for fungal ITS1 and the Pr2 (version 
4.10.0) for oomycete ITS1. The PhiX genome was included in each of the databases to improve 
the detection of remaining PhiX reads. Each OTU was then taxonomically classified 
(classify.otu, consensus confidence threshold set to 66), OTUs with unknown taxonomy at the 
Kingdom level were removed, as were low abundance OTUs (< 50 reads, split.abund).  
 
Sample alpha-diversity analysis was conducted on OTU abundance tables, using Shannon’s H 
diversity index (estimate_richness function in phyloseq package). Data normality was checked 
(Shapiro-Wilk’s test) and means were compared by ANOVA followed by Tukey’s HSD (P < 
0.05). Beta-diversity analyses were conducted on transformed (log10 (x + 1)) OTU relative 
abundance tables. Bray-Curtis dissimilarities between samples were computed and used for 
non-metric multidimensional scaling ordination (NMDS, function ‘ordinate’, Phyloseq 
package). A PerMANOVA analysis on Bray-Curtis dissimilarities was conducted to identify the 
main factors influencing the structure of the leaf microbiota (‘Adonis’, Vegan package, 10 000 
permutations, P < 0.05, explanatory categorical variables: Experiment x Month x Ecotype).  A 
beta-dispersion analysis on Bray-Curtis dissimilarities was conducted to compare sample-to-
sample variation within each month of sampling (multivariate homogeneity of group 
dispersions analysis,  ‘betadisper’, Vegan package). Differences between conditions were 
tested using a non-parametric multivariate test (Dunn’s test, P < 0.05). All analyses were 
conducted in R 3.6.1. 
 
Identification of a core leaf microbiota in A. thaliana. Core taxa were identified as OTUs 
showing high-occurrence over time (≥ 95% for fungi and oomycete, ≥ 98% for bacteria) in 
each of the three experiments analyzed. A higher cut-off was used for bacteria (98% 
occurrence) as they exhibited a higher average occurrence compared to fungi and oomycetes. 
The taxonomical classification of core OTUs was used to compute pairwise dissimilarities 
(distances) between OTUs (‘daisy’ function, Cluster package in R, Gower's distance) which 
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were used for hierarchical clustering (‘hclust’ function, Cluster package in R). The obtained 
dendrogram was modified in the browser version of iTOL (version 5.5.1) [22]. 
 
Network analysis. Bacteria, fungi and oomycete OTU tables were merged and used for 
correlations calculation using either the Spearman correlation coefficient in Co-Net [23] or 
the SparCC algorithm [24] which relies on Aitchison's log-ratio analysis and is designed to deal 
with compositional data with high sparsity like this data set (sparsity = 74%) [25]. OTU tables 
were filtered to OTUs present in at least 5 samples with >10 reads per OTU (sparsity = 53%). 
For the Co-Net based analysis, OTUs relative abundances were calculated and the obtained 
OTU tables were transformed (log10 (x +1)) before calculating Spearman correlation scores 
using Co-Net in Cytospace [26]. Parameters included the selection of top 5% correlations 
(edge selection, quantile=0.05, top and bottom) and the computing of P-values by Fisher's Z-
score with multiple-test correction (Bonferroni, P-value = 0.001). For the SparCC based 
analysis, the filtered OTU tables (OTU raw abundances) were used to calculate SparCC 
correlation scores (with default parameters). Pseudo P-values were inferred from 1000 
bootstraps. Only correlations with P < 0.001 were kept for further analyses. Cytoscape 
(version 3.7.1) was used for network visualization and determination of betweenness 
centrality (i.e. the fraction of shortest paths passing through a given node) and closeness 
centrality values (i.e.  the average shortest distance from given node to each other node). 
Node-rewiring score (Dn-score) was calculated via the DyNet package in Cytoscape [27]. For 
each node, its connected neighbors are compared between two networks and the changes 
(rewiring) are quantified. Microbial hubs were identified as top 5% OTUs showing maximum 
betweenness centrality and closeness centrality scores. 
 
Sequencing data is available under NCBI Bioproject PRJNA438596. OTU tables and scripts 
are available here https://github.com/IshtarMM/Dynamic_LeafMicrobiome 
 
 
Results 
 
The leaf microbiota is highly dynamic. To study temporal dynamics in the leaf microbiota, we 
grew four A. thaliana ecotypes in a common garden and surveyed the changes in their leaf 
microbiota via amplicon-sequencing (bacteria, fungi and oomycetes). Leaf samples were 
taken monthly between November and March (5 months), thus covering most of the plant’s 
growing season over autumn and winter (Fig. 1). To identify the main factors shaping leaf 
microbial communities we conducted multivariate analyses including non-metric 
multidimensional scaling (NMDS; Fig. S1A) and Permutational multivariate ANOVA (Bray-
Curtis dissimilarities, P < 0.05; Fig. S1B) on the relative abundance of bacterial, fungal and 
oomyceyte taxa (OTUs defined at 97% similarity). These analyses showed a marginal effect of 
the plant ecotype (2-4% explained variance) but an important effect of the time of sampling 
(32-40% explained variance; factors ‘Month’, ‘Experiment’, and their interaction ; Fig. S1B), 
confirming leaf microbial communities are highly variable in time (i.e. dynamic). Although 
variability between experiments was significant (4-13% explained variance), the ‘Month’ of 
sampling was an important factor (11-15% explained variance; Fig. S1 B, Fig. S1A), suggesting 
the existence of seasonal/monthly patterns in these microbial communities. Such patterns 
were easily observable when considering changes in the relative abundance of high-
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abundance microbial orders (Fig. 1). For example, the abundance of Sphingomonadales and 
Actinomyceteales increased throughout the plant’s growing season, while the abundance of 
Rhizobiales tended to decrease. As for fungi, the abundance of Microbotryales increased 
while that of Sporidiobolales decreased. Interestingly, the abundance of Peronosporales 
oomycetes, which include A. thaliana’s pathogen Hyaloperonospora spp., increased with 
time, reaching maximum values at the end of the plant’s growing season (Tukey HSD test, P 
< 0.05) (Fig. 1; Fig. S2). 
 
Figure 1. Following leaf microbiota 
changes throughout A. thaliana’s 
growing season. (A) Experimental 
set-up. Four global Arabidopsis 
accessions were planted in a 
common garden (Max Planck 
institute, Cologne, Germany). Every 
month from November to March, 3 
plant individuals per ecotype were 
collected and leaf samples were 
taken for microbiota analysis. The 
experiment was repeated three 
times over years 2014-2015 
(experiment 1), 2015-2016 (2) and 
2016-2017 (3), with a total number 
of 206 plant leaf samples analyzed 
(see Supplementary Table 1). (B) 
Composition of the leaf microbiota. 
Microbiota analysis was conducted 
via Illumina-based amplicon 
sequencing (Miseq 2 x 300 bases). 
Taxonomic markers included the 
bacterial 16S rRNA v5-v7 region, 
fungal ITS1 and the oomycete ITS1 
region. Histograms show the relative 
abundance of the main microbial 
groups (order level) in single samples 
aggregated by ‘month’. Grey boxes 
below histograms indicate the 
‘experiment’. Arrowheads indicate 
taxa exhibiting marked seasonal 
patterns (see Fig. S2). 
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Persistent (core) taxa in the leaf microbiota. We aimed to identify microbial groups showing 
a persistent presence throughout the plant’s life, hypothesizing they might play important 
roles in plant-microbe and microbe-microbe interactions within the microbiota. Highly 
persistent microbes (≥ 95% sample occurrence for fungi and oomycete, ≥ 98% for bacteria) 
varied considerably between experiments with only 19 out of 67 OTUs (28%) showing robust 
patterns across experiments (Fig. S3). Notably, these persistent core taxa (1 oomycete, 6 fungi 
and 12 bacteria OTUs) included known Arabidopsis pathogens like the obligate biotrophic 
oomycete Hyaloperonospora sp. (Otu00001) as well as bacterial taxa known to colonize 
Arabidopsis leaves, including Sphingomonas sp. (OTUs), Methylobacterium sp (Otu000002), 
and Variovorax (Otu000010). Persistent fungal taxa included two ascomycetes (Cladosporium 
sp. Otu00004 and Otu00012) and four basidiomycete yeast (Dioszegia sp. Otu00013, 
Itersonilia sp. Otu00005, Sporidiobolus sp. Otu00002, and Udeniomyces sp. Otu00001 ) (Fig. 
2A). The relative abundance of these core taxa changed throughout the plant’s growing 
season reaching a maximum in February where it represented as much as 49, 52 and 71% of 
the bacterial, fungal and oomycete communities, respectively (Fig. 2B). These results indicate 
that despite the highly dynamic and stochastic nature of the leaf microbiota, a limited number 
of microbes -- only 19 out of 3058 OTUs (0.62%) -- consistently co-colonize plant leaves. This 
suggests a high degree of adaptation to this niche but also frequent interactions with one 
another. 
 

 
Figure 2. Persistent core 
members of the 
Arabidopsis leaf 
microbiota. (A) Core taxa 
were identified as OTUs 
showing high-occurrence 
(≥ 95% for fungi and 
oomycete, ≥ 98% for 
bacteria) in each of the 
three experiments. 
Bubbles depict the 
average relative 
abundance of each core 
OTU, per sample. The 
dendrogram depicts 
taxonomical distances 
between OTUs 
(hierarchical-clustering on 
Gower distances from 
OTU taxonomy). (B) 
Changes in the relative 

abundance of core taxa over time (month averages; n > 38 samples per month). 
 
 
Diversity and variability of the leaf microbiota decrease throughout the plant’s growing 
season as communities stabilize. With the hypothesis that leaf-associated microbial 
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communities become increasingly stable throughout the plant’s growing season, we analyzed 
their dynamics in terms of alpha-diversity (number of taxa in the community), within-month 
variability (plant-to-plant differences in community composition) and variability between 
consecutive months (month-to-month differences in community composition). While 
bacterial alpha-diversity (Shannon’s H index) remained unchanged, fungal and oomycete 
alpha-diversity decreased with significant differences observed between November and the 
last two months, February and March  (ANOVA followed by Tukey’s HSD, P < 0.05) (Fig. 3). A 
similar trend was observed for within-month variability (sample distance to the group 
centroid), as variability of bacterial and fungal communities decreased progressively from 
November to February (Dunn test , P < 0.05) (Fig. 3). Similarly, a progressive decrease in 
between-month variability (sample-to-sample distances between consecutive months) was 
observed for bacterial and fungal communities (Dunn test , P < 0.05) (Fig. 3). Oomycete 
communities exhibited similar trends but the dynamics were less pronounced due to higher 
data variability. Together these results suggest that throughout the plant’s growing season, 
leaf microbial communities become progressively less diverse, more similar between plant 
individuals, and less variable in time. This suggests leaf communities go through a 
consolidation and stabilization phase from November to February.  
 

 
Figure 3. Changes in alpha-diversity and variability in leaf microbial communities, over time. 
Alpha diversity (Shannon's H index), within-month variability (distance to the group centroid; 
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beta-dispersion) and between-month variability (Bray-Curtis distances between samples 
from consecutive months) in bacterial, fungal and oomycete communities. Each box-plot 
shows combined data from the 3 experiments with n>38 samples per month. Dots represent 
individual samples, whiskers depict the dispersion of the data (1.5 x interquartile range) and 
different letters indicate significant differences between groups (Shannon index: ANOVA 
followed by Tukey’s HSD, P < 0.05; distances: Dunn test, P < 0.05). Single BC distances 
between samples are not shown because of the high number of comparisons (>700). 
 
 
Interaction networks within the leaf microbiota stabilize over time. Microbial networks 
computed from correlation of species abundances, are used to infer potential interactions 
between microbes within a community. To determine if/how leaf microbial networks 
changed over time, we used taxa abundance data from each time point (month) to generate 
five ‘month’ networks (Fig. 4A). Because the data was highly sparse (53% sparsity), the SparCC 
algorithm (optimized for sparse data) was used for network calculation [25]. The five 
networks differed in terms of general characteristics like the number of nodes (number of 
taxa) and edges (correlations between taxa; syn. connections) with no clear pattern, except 
for the month of ‘February’ which had both the lowest number of nodes and the lowest 
number of edges (Fig. 4B). Similarly, the nodes of this network had the lowest number of 
interactions (node degree), going from 70 on average in January to only 10 on average in 
February (Fig. 4BC; Dunn test, P < 0.05). This confirmed that microbial networks indeed 
change throughout the plant’s growing season and suggested major restructuring events 
around the month of February, when the network exhibited minimal complexity.  
 
With the hypothesis that these changes were associated to an increased stability of the 
network's structure, we compared networks from consecutive months, recording similarities 
(inherited nodes/edges) and differences (node rewiring events) between them. Inherited 
nodes/edges were defined as those shared between consecutive months. The percentage of 
inherited nodes per network increased from 51% in December to 89% in January and 82% 
February, meaning the large majority (82 %) of the nodes in the February network were 
already present in the January network (Fig. 4D). A similar trend was observed for the number 
of inherited edges, doubling from December (6%) to January (16%) and February (34%). To 
quantify changes between networks, taking into account the nodes and their connections, we 
calculated a node-rewiring score for each node in the network. This score reflects the changes 
in a node’s connections between the compared networks (Dn-score in DyNet) [27]. This 
analysis revealed that differences between networks tended to decrease through time, with 
minimum rewiring events between the months of February and March (Dunn test , P < 0.05) 
(Fig. 4E). These results suggest that throughout the beginning of the season (November to 
February), leaf microbial networks go through a stabilization phase, during which month-to-
month changes tend to diminish (increasing numbers of shared nodes and edges, and 
decreasing node rewiring) as networks exhibit lowering complexity (lower numbers of nodes, 
edges and connections), reaching minimum levels in February. 
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Figure 4. Changes in phyllosphere microbial interaction networks throughout A. thaliana's 
growing season. (A) Data from the three experiments was aggregated to reconstruct co-
abundance networks for each time point (month) using the SparCC algorithm. Nodes (dots) 
represent OTUs, edges (colored lines) depict potential positive and negative interactions 
between OTUs (connections). Nodes from core microbes are indicated. Grey lines connecting 
networks show nodes conserved from one month network to the next (inherited nodes). (B) 
Number of nodes and edges in each month network (C) Percentage of nodes and edges in a 
given month network which are inherited from (shared with) the previous month network. 
(D) Percentage of edges inherited for a given inherited node. (E) Node degree i.e. number of 
edges per node in each month network. (F) Node-rewiring score (Dn-score) calculated in 
DyNet. For each node, its connected neighbors are compared between two networks 
(consecutive months) and the changes (rewiring) are quantified. Points represent rewiring 
scores from single nodes, high values indicate important changes in the node’s connections 
between the compared networks. Different letters indicate significant differences between 
conditions (Dunn test, P < 0.05).  
 
 
Identifying hubs among core microbes in Arabidopsis leaf microbiota. 
Time-based microbial networks were analyzed to determine whether potential ‘keystone’ 
microbes (i.e. hubs - taxa with high betweenness and high closeness centrality) in the leaf 
microbiota were also highly persistent core microbes. Connectivity analysis on individual 
month networks revealed few taxa exhibiting hub characteristics (4-10 OTUs, 1-3% of network 
OTU nodes) and a high turn-over between months, with no taxon systematically identified as 
hub in every month network (Fig. 5A; Supplementary Table 1). Among the 19 ‘core’ taxa 
identified previously (Fig. 2) only three bacterial OTUs i.e. Bacillus OTU00012, 
Oxalobacteraceae OTU00004 and OTU000013 Marmoricola could be identified as hubs, 
exhibiting high network connectivity in the months of December and February (Fig. 5B; 
Supplementary Table 1).  Blast alignments of 16S rRNA sequences from Oxalobacteraceae 
OTU00004 further classified this taxon as Massillia sp. 
 

Bacteria 16S rRNA
Fungi ITS1
Oomycete ITS1
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As hub identification is highly dependent on network calculation approaches, we repeated 
these analyses on Spearman-based correlation networks calculated in Co-Net (Fig. S4) with 
partially similar results. Approximately a third of the OTUs identified as hubs in the SparCC 
networks were also identified as hubs in the Spearman-based networks (Supplementary Table 
1). Notably, this also included Bacillus OTU00012 and Oxalobacteraceae OTU00004, classified 
as Massillia sp. Taken together these results indicate that, with the exception of one Massillia 
and one Bacillus lineage, 'core' taxa in the Arabidopsis leaf microbiota are not major network 
hubs and that network hub microbes change over time. 
 

 
 
Figure 5. Identification of microbial hubs within A. thaliana’s core leaf microbiota. The 
correlation networks calculated with SparCC (Fig. 3), were used to identify microbial hubs as 
nodes with high betweenness centrality (i.e. the fraction of shortest paths passing through 
the given node) and high closeness-centrality (i.e. the average shortest distance from the 
given node to other nodes). (A) Values for single taxa, dotted lines indicate the top 5% values. 
Circles are colored based on microbial phyla. Circle sizes depict de node’s degree. Closed 
circles indicate taxa identified as part of the core leaf microbiota. Two core OTUs (12 and 4) 
are annotated. (B) Changes in the connectivity of core taxa. The product of "Betweenness 
centrality × Closeness-centrality" was used to depict monthly changes in the connectivity of 
core OTUs. Hub taxa are indicated.  
 
 
Discussion 
 
The phyllosphere is a complex microbial habitat due to its direct exposure to a range of abiotic 
factors --light, humidity and temperature-- that can alter the leaf environment within 
minutes, hours or days. Furthermore, leaf microbial communities are directly exposed to the 
arrival of new microbes disseminated by soil particles, water and wind [28]. In this context, 
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key ecological questions are still unanswered: what is the relative importance of 
environmental filtering versus biotic interactions in shaping community structures and what 
is the impact of stochasticity [29]? Our limited understanding of the processes behind the 
assembly and persistence of microbes on leaves under field conditions and their colonization 
of leaf surfaces constitutes a major drawback for the agricultural usage of plant-beneficial 
microbes [30]. To address these fundamental questions, we have conducted a long-term 
experiment to follow month-to-month changes in the composition of Arabidopsis’ leaf 
microbiota during the early growing season (November to March).  
 
As expected for dynamic ecological systems [31], bacteria, fungi and oomycete leaf-
associated communities were highly stochastic, with factors like the sampling time and the 
plant ecotype explaining only half the variability observed (Fig. S1). Despite high between-
experiment variability, robust differences between months were observable for some 
microbial groups known to be relevant for plant-growth like Peronosporales oomycetes (Fig. 
S2). Hyaloperonospora, the causal agent of downy mildew was by far the most abundant 
Peronosporales in Arabidopsis leaves, as it has been described for various geographic 
locations elsewhere [18]. Although our sampled plants exhibited no downy mildew disease 
symptoms at any time throughout the field experiments, the relative abundance of 
Peronosporales increased throughout the growing season reaching maximum values in 
March. This is in agreement with disease dynamics of downy mildew in Brassicaceae known 
to be favored by cold wet weather, and could indicate that the pathogenic pressure on the 
plant increases over the early growing season. 
 
The analysis of community dynamics indicates that from November to February leaf microbial 
communities go through a stabilization phase becoming less diverse, less variable and as 
microbial networks become less complex (Fig. 3; Fig. 4). This is likely a result of the fact that 
core microbes become increasingly dominant throughout the season (Fig. 3B). Seasonal 
dynamics have been described in microbiota associated with plants [11, 12, 32] and animals 
[33–36], and are thought to be driven partly by environmental cues and perturbations. The 
fact that in our study microbiota dynamics mirror temperature and rainfall decreases 
associated with winter (Fig. 1), lead us to hypothesize that climatic conditions might be driving 
the observed leaf microbiota dynamics, maybe via the selection of cold-resistant 
microorganisms. Indeed a strong “winter effect” on microbial communities has been 
observed in a diversity of environments including the bee’s gut [36], lake water [37] and air 
[38]. We hypothesize that winter conditions might apply a strong selective filter causing leaf 
microbial communities to reduce in complexity. Longer experiments are needed to determine 
if different dynamics would be observed in later stages e.g. during spring.  
 
Microbes with a stable presence in Arabidopsis leaves (core taxa; Fig. 2) accounted for only 
0.62 % of all detected leaf-taxa, indicating a high turnover in leaf microbial communities. Core 
taxa include putative plant pathogens like Hyaloperonospora and Cladosporium [39, 40] but 
at the same time taxa encompassing plant beneficial microorganisms like Sphingomonas and 
Variovorax, which could explain the asymptomatic state of the sampled plants. Leaf-
inhabiting Sphingomonas bacteria have been shown to protect Arabidopsis from bacterial 
pathogens [2] and are hypothesized to participate in plant disease resistance against root 
fungal pathogens. Variovorax strains have been shown to modulate plant hormonal balance 
by degrading auxins thus promoting plant growth under stress conditions [41]. But not only 
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bacteria have been reported to interfere with plant hormone levels, there have been reports 
of yeasts on A. thaliana capable of producing auxin-like indolic compounds [42]. We have 
identified four basidiomycete yeast taxa (Udeniomyces, Sporidiobolus, Itersonilia and 
Dioszegia) as systematic colonizers of Arabidopsis leaves. Although little is known about the 
associations between these yeasts and Arabidopsis, a recent study on a leaf basidiomycete 
yeast (Moesziomyces bullatus) suggests they can play important roles in plant protection from 
pathogenic oomycetes through protein effectors [43]. While previous studies have reported 
on the prevalence of some of the identified core taxa on Arabidopsis’ leaves [16, 44, 45], here 
we show these associations are time-stable persisting throughout the plant’s life and 
between plant generations, suggesting some level of adaptation to the leaf niche on the 
microbial side or even possible co-evolution between these microbes, as well as with the host 
plant. 
 
Microbe-microbe interactions participate in the structuring of microbial communities with 
certain microbes --hub and keystone microbes-- playing central roles [46]. We hypothesized 
that high connectivity within leaf microbial networks might explain the persistence of the 
identified core taxa. However, in contrast to our hypothesis, the connectivity level (hubness) 
of individual core taxa was highly variable from month to month, with no taxon maintaining 
high connectivity levels throughout the entirety of the growing season (Fig. 5). This indicates 
that high connectivity is not a prerequisite for high prevalence in the leaf microbiota as core 
taxa are not necessarily network hubs [13]. Nevertheless two microbes among the leaf core 
taxa, within the Bacillus and Massillia lineages, deviate from this rule and have been identified 
as hubs. Interestingly, in the month of February when leaf microbial communities displayed 
the lowest levels of complexity, both Bacillus and Massillia, reached maximum connectivity 
levels within leaf microbial networks (Fig. 5), while their relative abundances on leaves 
remained stable (Fig. 2). It is tempting to speculate that there might be a functional link 
between these hubs and community stability. Indeed, it has been shown that highly 
connected microbes can be good predictors of the stability of microbial communities [47]. In 
the future, experimental evidence will be needed to improve predictions and to determine if 
(and how) hub-removal affects the stability of microbial communities, over time.  
 
Taken together our results show that despite a high level of stochasticity leaf microbial 
communities exhibit detectable time patterns, with stable and unstable components. 
Although this study is purely descriptive it opens a new field of research on time-informed 
community dynamics in natural host-associated microbiomes. In the long term, these types 
of studies could make it possible to model, predict and drive microbial communities to desired 
states. 
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Supplementary figures 
 
 

 
 
Supplementary figure 1. Multivariate analysis on factors structuring leaf microbial 
communities. (A) Non-metric multidimensional scaling ordination (NMDS) on Bray-Curtis 
dissimilarities between samples grouped by 'month', 'experiment' or 'ecotype'. (B) Circles 
depict the percentage of variance explained by factors 'month', 'experiment' and 'ecotype', 
connecting lines depict the percentage of variance explained by interactions between factors. 
A PerMANOVA analysis on Bray-Curtis distances was conducted using the Adonis function in 
Vegan. Only significant effects are shown (permutations 10000, P < 0.05, explanatory 
categorical variables: Experiment x Month x Ecotype). 
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Supplementary figure 2. Temporal changes in high abundance microbial taxa colonizing A. 
thaliana’s leaves. Boxplots show the relative abundance of the bacterial (green), fungal 
(orange) and oomycete orders in single samples aggregated by ‘month’. Whiskers depict the 
dispersion of the data (1.5 x interquartile range) and different letters indicate significant 
differences between months (ANOVA followed by Tukey’s HSD, P < 0.05). 
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Supplementary figure 3. Identification of persistent core microbial taxa. Persistent core taxa 
were identified as OTUs showing high-occurrence (≥ 95% for fungi and oomycete, ≥ 98% for 
bacteria) in each of the three experiments analyzed. Purple inner rings depict OTU occurrence 
within each year while the outer black ring denotes OTUs identified as “core” (names 
highlighted in bold) (See Fig. 3). 
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Supplementary figure 4. Identification of microbial hubs within the leaf microbiota of A. 
thaliana (Co-Net-based networks). (A) Co-Net-based Month networks were used to identify 
microbial hubs as nodes with high betweenness centrality (i.e. the fraction of shortest paths 
passing through the given node) and high closeness-centrality (i.e. the average shortest 
distance from the given node to other nodes). In each graph, dotted lines indicate the top 5% 
values. Circles are colored based on microbial phyla. Circle sizes depict de node’s degree. 
Closed circles indicate taxa identified as part of the core leaf microbiota. Two core otus (12 
and 4) are highlighted. (B) Changes in the connectivity of core taxa. The product of 
"Betweenness centrality × Closeness-centrality" was used to depict monthly changes in the 
connectivity of core OTUs. Identified hub taxa (panel A) are indicated. 
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