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Abstract

Leaves are primarily responsible for the plant's photosynthetic activity. Thus, changes in the
phyllosphere microbiota, which includes deleterious and beneficial microbes, can have far
reaching effects on plant fitness and productivity. In this context, identifying the processes
and microorganisms that drive the changes in the leaf microbiota over a plant’s lifetime is
crucial. In this study we analyzed the temporal dynamics in the leaf microbiota of Arabidopsis
thaliana, integrating both compositional changes and changes in microbe-microbe
interactions via the study of microbial networks. Field-grown Arabidopsis were used to follow
leaf bacterial, fungal and oomycete communities, throughout the plant’s growing season
(extending from November to March), over three consecutive years. Our results revealed the
existence of conserved time patterns, with microbial communities and networks going
through a stabilization phase (decreasing diversity and variability) at the beginning of the
plant’s growing season. Despite a high turnover in these communities, we identified 19 'core'
taxa persisting in Arabidopsis leaves across time and plant generations. With the hypothesis
these microbes could be playing key roles in the structuring of leaf microbial communities,
we conducted a time-informed microbial network analysis which showed core taxa are not
necessarily highly connected network 'hubs' and 'hubs' alternate with time. Our study shows
that leaf microbial communities exhibit reproducible dynamics and patterns, suggesting it
could be possible to predict and drive these microbial communities to desired states.
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Introduction

Leaves are primarily responsible for the plant's photosynthetic activity and gaseous exchange.
Consequently, leaf health and performance have a direct effect on plant growth and fitness
[1]. Leaves are colonized by a wide range of microbes, including bacteria, archaea, and
microeukaryotes like fungi and oomycetes. While natural openings on leaves such as stomata,
hydathodes or wounds represent entry points for major plant-pathogens, they also house
commensal and even beneficial microbes, leading to plant-protecting effects [2, 3]. There is
increasing interest particularly by plant breeders in microbiota-engineering approaches to
promote the growth and health of crops through beneficial microbes [4]. In this context, the
understanding of the processes that shape the composition of leaf microbiota is an essential
step.

There is a level of specificity between plants and their leaf microbiota as studies have
repeatedly shown that different plant lineages tend to harbor quantitatively different
microbial consortia in their leaves [5], with differences even observed between ecotypes of
the same plant species [6]. Although it is unclear how plants can selectively recruit certain
microbial groups, the soil in which plants grow appears to be an important driver [6, 7]. The
study of plant microbiota over different developmental stages suggests that as the plant
grows, the microbiota becomes more tissue-specific with major differences observed
between root and shoot microbiota [8]. There is increasing awareness of the fact that plant-
associated microbiota are not static but dynamic communities changing through time and
shaped convergently by environmental and host cues. Recent studies have followed the
dynamics of microbiota formation in leaves [9—12] and roots [13] but few of them have
conducted a cross kingdom survey, integrating both bacterial and micro-eukaryotic
communities.

Microbe-microbe interactions such as mutualism, antagonism or predation, shape the
composition of microbial communities. Correlation network analyses on the abundance of
microbial taxa, can be used to infer microbial interactions in a community. The study of
microbial networks over time can inform us about the dynamics of these interactions and
how they relate to changes in the diversity and structure of microbial communities [14]. Yet,
such approaches have rarely been applied to investigate how plant-associated microbiota
change through the plant’s life.

Given the complexity of leaf microbial communities, assigning ecological roles and
ecological importance to individual taxa is extremely challenging. Concepts based on the
persistence of a microbe (core taxa) and/or its importance on microbial networks (hubs taxa)
have been applied to identify microorganisms playing key roles in leaf communities [15, 16].
Although the large majority of leaf microbes show scattered distributions with highly-
fluctuating occurrences in plant leaves across environments and time, some microorganisms
achieve a stable presence in plant populations [17]. It is unclear how these “core” microbes
are able to systematically colonize the host-plant, but it could involve re-colonization
processes [18] or vertical inheritance via seeds [19]. The stability of the associations between
“core” microbes and the host-plant suggests a high level of adaptation to the leaf niche on
the microbe side. This can involve traits associated to plant-colonization and infection as
suggested for leaf pathogenic Pseudomonas viridiflava [17], but it can also involve the
capacity of the microorganism to re-shape the leaf microbiota, as part of a ‘niche
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construction’ strategy. Notably, Agler et al. (2016) [16] showed that the inoculation of the
leaf-pathogenic oomycete Albugo on Arabidopsis plants translates into decreased microbial
diversity on leaves and altered microbiota profiles. The analysis of microbial interaction
networks in the leaf microbiota showed Albugo acts as a network ‘hub’, showing the highest
level of connections (interactions) with other microbes, which would allow it to influence the
structure of the leaf microbiota. Because of its hub characteristics and experimentally proven
impact on leaf microbial communities it has been proposed as a ‘keystone’ taxon of the leaf
microbiota in Arabidopsis. However, it is still unclear whether re-shaping the leaf microbiome
contributes to persistence of core taxa.

The aim of this study was to analyze the temporal dynamics in the leaf microbiota of
Arabidopsis, integrating both compositional changes and changes in microbe-microbe
interactions via the study of microbial networks. Amplicon sequencing was used to follow leaf
bacterial, fungal and oomycete communities in a field experiment throughout the plant’s
growing season (extending from November to March). The experiment was carried out over
three consecutive years in order to capture long-term dynamics. Our results reveal
seasonal/monthly patterns associated with reproducible changes in particular groups across
kingdoms like Sphingomonadales and Actinomycetales bacteria, Microbotryales and
Sporidiobolales fungi and Peronosporales oomycetes. Despite a high level of stochasticity in
microbial colonization of the leaf, we identified 19 taxa that were consistently present (core
taxa), including putative pathogenic and beneficial taxa. Between November and February,
the diversity and variability of leaf microbial communities decreased, as microbial networks
stabilized (changed less) and exhibited decreasing complexity (number of nodes and
connections). With the hypothesis that certain microbes play a predominant role in the
structuring and stability of these communities, we focused on the identification of microbes
having both a persistent presence in Arabidopsis leaves (core microbes) and a high
connectivity in leaf microbiota networks (hub microbes).

Material and Methods

Common garden experiment. To study the temporal dynamics of A. thaliana’s leaf
microbiota, we conducted a common garden experiment where A. thaliana plants were
sampled every month from November to March, covering the plant’s natural growing season,
including the vegetative and early reproductive growth phases (Fig. 1). The experiment was
conducted as described in Agler et al., 2016 [16]. Briefly, surface-sterilized seeds were
germinated on Jiffy pellets for 10 days under greenhouse conditions, before transferring to
the field. To take into account host genetic variability, four global Arabidopsis thaliana
ecotypes were used (Ws-0, Col-0, Ksk-1 and Sf-2). The field was divided into nine experimental
plots which were planted with 10 plants per ecotype, in a randomized set-up. At each
sampling point, whole leaf samples were taken from 2-4 randomly selected plants per
ecotype. The whole experiment was repeated three times in 2014-2015, 2015-2016 and 2016-
2017. The field is located at the Max-Planck Institute for Plant Breeding Research (Cologne,
Germany) (Supplementary Table 1).
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DNA extraction and amplicon sequencing. Samples were processed exactly as described in
Agler et al.,, 2016 [16]. Briefly, whole leaf samples were crushed and used for phenol-
chloroform-based DNA extraction. The obtained DNA was used for two-step PCR
amplification of the V5-V7 region of the bacterial 16S rRNA (primers B799F/B1194R), the
fungal ITS1 region (primers ITS1F/ITS2) and the oomycetes ITS1 region (primers ITS10/5.8s-
O-R). Blocking oligos were used to reduce plant DNA amplification [20]. Purified PCR products
were pooled in equimolar amounts before sequencing on three Illumina MiSeq runs (2 x 300
bp reads) with 10% PhiX control. Primers targeting the oomycete ITS1 region also produced
“non-oomycete” reads but at a very marginal level (3%).

Amplicon sequencing data analysis. Amplicon sequencing data was processed in Mothur [21]
as described in Karasov et al., 2018 [17]. Single-end reads were paired (make.contigs
command) and paired reads with more than 5 bases overlap between the forward and
reverse reads were kept. Only 100-600 bases long reads were retained (screen.segs).
Chimeras were checked using Uchime in Mothur with more abundant sequences as reference
(chimera.uchime, abskew = 1.9). Sequences were clustered into OTUs at the 97% similarity
threshold using the VSEARCH program in Mothur (cluster, dgc method). Individual sequences
were taxonomically classified using the rdp classifier method (classify.seqs, consensus
confidence threshold set to 80) and the greengenes database (13_8 release) for 16S rRNA
data, the UNITE_public database (version 12 2017) for fungal ITS1 and the Pr2 (version
4.10.0) for oomycete ITS1. The PhiX genome was included in each of the databases to improve
the detection of remaining PhiX reads. Each OTU was then taxonomically classified
(classify.otu, consensus confidence threshold set to 66), OTUs with unknown taxonomy at the
Kingdom level were removed, as were low abundance OTUs (< 50 reads, split.abund).

Sample alpha-diversity analysis was conducted on OTU abundance tables, using Shannon’s H
diversity index (estimate_richness function in phyloseq package). Data normality was checked
(Shapiro-Wilk’s test) and means were compared by ANOVA followed by Tukey’s HSD (P <
0.05). Beta-diversity analyses were conducted on transformed (logio (x + 1)) OTU relative
abundance tables. Bray-Curtis dissimilarities between samples were computed and used for
non-metric multidimensional scaling ordination (NMDS, function ‘ordinate’, Phyloseq
package). A PerMANOVA analysis on Bray-Curtis dissimilarities was conducted to identify the
main factors influencing the structure of the leaf microbiota (‘Adonis’, Vegan package, 10 000
permutations, P < 0.05, explanatory categorical variables: Experiment x Month x Ecotype). A
beta-dispersion analysis on Bray-Curtis dissimilarities was conducted to compare sample-to-
sample variation within each month of sampling (multivariate homogeneity of group
dispersions analysis, ‘betadisper’, Vegan package). Differences between conditions were
tested using a non-parametric multivariate test (Dunn’s test, P < 0.05). All analyses were
conducted in R 3.6.1.

Identification of a core leaf microbiota in A. thaliana. Core taxa were identified as OTUs
showing high-occurrence over time (> 95% for fungi and oomycete, > 98% for bacteria) in
each of the three experiments analyzed. A higher cut-off was used for bacteria (98%
occurrence) as they exhibited a higher average occurrence compared to fungi and oomycetes.
The taxonomical classification of core OTUs was used to compute pairwise dissimilarities
(distances) between OTUs (‘daisy’ function, Cluster package in R, Gower's distance) which
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were used for hierarchical clustering (‘hclust’ function, Cluster package in R). The obtained
dendrogram was modified in the browser version of iTOL (version 5.5.1) [22].

Network analysis. Bacteria, fungi and oomycete OTU tables were merged and used for
correlations calculation using either the Spearman correlation coefficient in Co-Net [23] or
the SparCC algorithm [24] which relies on Aitchison's log-ratio analysis and is designed to deal
with compositional data with high sparsity like this data set (sparsity = 74%) [25]. OTU tables
were filtered to OTUs present in at least 5 samples with >10 reads per OTU (sparsity = 53%).
For the Co-Net based analysis, OTUs relative abundances were calculated and the obtained
OTU tables were transformed (logio (x +1)) before calculating Spearman correlation scores
using Co-Net in Cytospace [26]. Parameters included the selection of top 5% correlations
(edge selection, quantile=0.05, top and bottom) and the computing of P-values by Fisher's Z-
score with multiple-test correction (Bonferroni, P-value = 0.001). For the SparCC based
analysis, the filtered OTU tables (OTU raw abundances) were used to calculate SparCC
correlation scores (with default parameters). Pseudo P-values were inferred from 1000
bootstraps. Only correlations with P < 0.001 were kept for further analyses. Cytoscape
(version 3.7.1) was used for network visualization and determination of betweenness
centrality (i.e. the fraction of shortest paths passing through a given node) and closeness
centrality values (i.e. the average shortest distance from given node to each other node).
Node-rewiring score (Dn-score) was calculated via the DyNet package in Cytoscape [27]. For
each node, its connected neighbors are compared between two networks and the changes
(rewiring) are quantified. Microbial hubs were identified as top 5% OTUs showing maximum
betweenness centrality and closeness centrality scores.

Sequencing data is available under NCBI Bioproject PRINA438596. OTU tables and scripts
are available here https://github.com/IshtarMM/Dynamic_LeafMicrobiome

Results

The leaf microbiota is highly dynamic. To study temporal dynamics in the leaf microbiota, we
grew four A. thaliana ecotypes in a common garden and surveyed the changes in their leaf
microbiota via amplicon-sequencing (bacteria, fungi and oomycetes). Leaf samples were
taken monthly between November and March (5 months), thus covering most of the plant’s
growing season over autumn and winter (Fig. 1). To identify the main factors shaping leaf
microbial communities we conducted multivariate analyses including non-metric
multidimensional scaling (NMDS; Fig. S1A) and Permutational multivariate ANOVA (Bray-
Curtis dissimilarities, P < 0.05; Fig. S1B) on the relative abundance of bacterial, fungal and
oomyceyte taxa (OTUs defined at 97% similarity). These analyses showed a marginal effect of
the plant ecotype (2-4% explained variance) but an important effect of the time of sampling
(32-40% explained variance; factors ‘Month’, ‘Experiment’, and their interaction ; Fig. S1B),
confirming leaf microbial communities are highly variable in time (i.e. dynamic). Although
variability between experiments was significant (4-13% explained variance), the ‘Month’ of
sampling was an important factor (11-15% explained variance; Fig. S1 B, Fig. S1A), suggesting
the existence of seasonal/monthly patterns in these microbial communities. Such patterns
were easily observable when considering changes in the relative abundance of high-
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abundance microbial orders (Fig. 1). For example, the abundance of Sphingomonadales and
Actinomyceteales increased throughout the plant’s growing season, while the abundance of
Rhizobiales tended to decrease. As for fungi, the abundance of Microbotryales increased
while that of Sporidiobolales decreased. Interestingly, the abundance of Peronosporales
oomycetes, which include A. thaliana’s pathogen Hyaloperonospora spp., increased with
time, reaching maximum values at the end of the plant’s growing season (Tukey HSD test, P
< 0.05) (Fig. 1; Fig. S2).

Figure 1. Following leaf microbiota
changes throughout A. thaliana’s a Arabidopsis thaliana ecotypes
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Persistent (core) taxa in the leaf microbiota. We aimed to identify microbial groups showing
a persistent presence throughout the plant’s life, hypothesizing they might play important
roles in plant-microbe and microbe-microbe interactions within the microbiota. Highly
persistent microbes (= 95% sample occurrence for fungi and oomycete, > 98% for bacteria)
varied considerably between experiments with only 19 out of 67 OTUs (28%) showing robust
patterns across experiments (Fig. S3). Notably, these persistent core taxa (1 oomycete, 6 fungi
and 12 bacteria OTUs) included known Arabidopsis pathogens like the obligate biotrophic
oomycete Hyaloperonospora sp. (Otu00001) as well as bacterial taxa known to colonize
Arabidopsis leaves, including Sphingomonas sp. (OTUs), Methylobacterium sp (Otu000002),
and Variovorax (Otu000010). Persistent fungal taxa included two ascomycetes (Cladosporium
sp. Otu00004 and Otu00012) and four basidiomycete yeast (Dioszegia sp. Otu00013,
Itersonilia sp. Otu00005, Sporidiobolus sp. 0tu00002, and Udeniomyces sp. Otu00001 ) (Fig.
2A). The relative abundance of these core taxa changed throughout the plant’s growing
season reaching a maximum in February where it represented as much as 49, 52 and 71% of
the bacterial, fungal and oomycete communities, respectively (Fig. 2B). These results indicate
that despite the highly dynamic and stochastic nature of the leaf microbiota, a limited number
of microbes -- only 19 out of 3058 OTUs (0.62%) -- consistently co-colonize plant leaves. This
suggests a high degree of adaptation to this niche but also frequent interactions with one
another.
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Changes in the relative
abundance of core taxa over time (month averages; n > 38 samples per month).

Diversity and variability of the leaf microbiota decrease throughout the plant’s growing
season as communities stabilize. With the hypothesis that leaf-associated microbial
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communities become increasingly stable throughout the plant’s growing season, we analyzed
their dynamics in terms of alpha-diversity (number of taxa in the community), within-month
variability (plant-to-plant differences in community composition) and variability between
consecutive months (month-to-month differences in community composition). While
bacterial alpha-diversity (Shannon’s H index) remained unchanged, fungal and oomycete
alpha-diversity decreased with significant differences observed between November and the
last two months, February and March (ANOVA followed by Tukey’s HSD, P < 0.05) (Fig. 3). A
similar trend was observed for within-month variability (sample distance to the group
centroid), as variability of bacterial and fungal communities decreased progressively from
November to February (Dunn test , P < 0.05) (Fig. 3). Similarly, a progressive decrease in
between-month variability (sample-to-sample distances between consecutive months) was
observed for bacterial and fungal communities (Dunn test , P < 0.05) (Fig. 3). Oomycete
communities exhibited similar trends but the dynamics were less pronounced due to higher
data variability. Together these results suggest that throughout the plant’s growing season,
leaf microbial communities become progressively less diverse, more similar between plant
individuals, and less variable in time. This suggests leaf communities go through a
consolidation and stabilization phase from November to February.

Community Community variability Community variability
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Figure 3. Changes in alpha-diversity and variability in leaf microbial communities, over time.
Alpha diversity (Shannon's H index), within-month variability (distance to the group centroid;
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beta-dispersion) and between-month variability (Bray-Curtis distances between samples
from consecutive months) in bacterial, fungal and oomycete communities. Each box-plot
shows combined data from the 3 experiments with n>38 samples per month. Dots represent
individual samples, whiskers depict the dispersion of the data (1.5 x interquartile range) and
different letters indicate significant differences between groups (Shannon index: ANOVA
followed by Tukey’s HSD, P < 0.05; distances: Dunn test, P < 0.05). Single BC distances
between samples are not shown because of the high number of comparisons (>700).

Interaction networks within the leaf microbiota stabilize over time. Microbial networks
computed from correlation of species abundances, are used to infer potential interactions
between microbes within a community. To determine if/how leaf microbial networks
changed over time, we used taxa abundance data from each time point (month) to generate
five ‘month’ networks (Fig. 4A). Because the data was highly sparse (53% sparsity), the SparCC
algorithm (optimized for sparse data) was used for network calculation [25]. The five
networks differed in terms of general characteristics like the number of nodes (number of
taxa) and edges (correlations between taxa; syn. connections) with no clear pattern, except
for the month of ‘February’ which had both the lowest number of nodes and the lowest
number of edges (Fig. 4B). Similarly, the nodes of this network had the lowest number of
interactions (node degree), going from 70 on average in January to only 10 on average in
February (Fig. 4BC; Dunn test, P < 0.05). This confirmed that microbial networks indeed
change throughout the plant’s growing season and suggested major restructuring events
around the month of February, when the network exhibited minimal complexity.

With the hypothesis that these changes were associated to an increased stability of the
network's structure, we compared networks from consecutive months, recording similarities
(inherited nodes/edges) and differences (node rewiring events) between them. Inherited
nodes/edges were defined as those shared between consecutive months. The percentage of
inherited nodes per network increased from 51% in December to 89% in January and 82%
February, meaning the large majority (82 %) of the nodes in the February network were
already present in the January network (Fig. 4D). A similar trend was observed for the number
of inherited edges, doubling from December (6%) to January (16%) and February (34%). To
guantify changes between networks, taking into account the nodes and their connections, we
calculated a node-rewiring score for each node in the network. This score reflects the changes
in a node’s connections between the compared networks (Dn-score in DyNet) [27]. This
analysis revealed that differences between networks tended to decrease through time, with
minimum rewiring events between the months of February and March (Dunn test, P < 0.05)
(Fig. 4E). These results suggest that throughout the beginning of the season (November to
February), leaf microbial networks go through a stabilization phase, during which month-to-
month changes tend to diminish (increasing numbers of shared nodes and edges, and
decreasing node rewiring) as networks exhibit lowering complexity (lower numbers of nodes,
edges and connections), reaching minimum levels in February.
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Figure 4. Changes in phyllosphere microbial interaction networks throughout A. thaliana's
growing season. (A) Data from the three experiments was aggregated to reconstruct co-
abundance networks for each time point (month) using the SparCC algorithm. Nodes (dots)
represent OTUs, edges (colored lines) depict potential positive and negative interactions
between OTUs (connections). Nodes from core microbes are indicated. Grey lines connecting
networks show nodes conserved from one month network to the next (inherited nodes). (B)
Number of nodes and edges in each month network (C) Percentage of nodes and edges in a
given month network which are inherited from (shared with) the previous month network.
(D) Percentage of edges inherited for a given inherited node. (E) Node degree i.e. number of
edges per node in each month network. (F) Node-rewiring score (Dn-score) calculated in
DyNet. For each node, its connected neighbors are compared between two networks
(consecutive months) and the changes (rewiring) are quantified. Points represent rewiring
scores from single nodes, high values indicate important changes in the node’s connections
between the compared networks. Different letters indicate significant differences between
conditions (Dunn test, P < 0.05).

Identifying hubs among core microbes in Arabidopsis leaf microbiota.

Time-based microbial networks were analyzed to determine whether potential ‘keystone’
microbes (i.e. hubs - taxa with high betweenness and high closeness centrality) in the leaf
microbiota were also highly persistent core microbes. Connectivity analysis on individual
month networks revealed few taxa exhibiting hub characteristics (4-10 OTUs, 1-3% of network
OTU nodes) and a high turn-over between months, with no taxon systematically identified as
hub in every month network (Fig. 5A; Supplementary Table 1). Among the 19 ‘core’ taxa
identified previously (Fig. 2) only three bacterial OTUs i.e. Bacillus OTU00012,
Oxalobacteraceae OTU00004 and OTU000013 Marmoricola could be identified as hubs,
exhibiting high network connectivity in the months of December and February (Fig. 5B;
Supplementary Table 1). Blast alignments of 16S rRNA sequences from Oxalobacteraceae
OTU00004 further classified this taxon as Massillia sp.
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As hub identification is highly dependent on network calculation approaches, we repeated
these analyses on Spearman-based correlation networks calculated in Co-Net (Fig. S4) with
partially similar results. Approximately a third of the OTUs identified as hubs in the SparCC
networks were also identified as hubs in the Spearman-based networks (Supplementary Table
1). Notably, this also included Bacillus OTU00012 and Oxalobacteraceae OTU00004, classified
as Massillia sp. Taken together these results indicate that, with the exception of one Massillia
and one Bacillus lineage, 'core' taxa in the Arabidopsis leaf microbiota are not major network
hubs and that network hub microbes change over time.
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Figure 5. Identification of microbial hubs within A. thaliand’s core leaf microbiota. The
correlation networks calculated with SparCC (Fig. 3), were used to identify microbial hubs as
nodes with high betweenness centrality (i.e. the fraction of shortest paths passing through
the given node) and high closeness-centrality (i.e. the average shortest distance from the
given node to other nodes). (A) Values for single taxa, dotted lines indicate the top 5% values.
Circles are colored based on microbial phyla. Circle sizes depict de node’s degree. Closed
circles indicate taxa identified as part of the core leaf microbiota. Two core OTUs (12 and 4)
are annotated. (B) Changes in the connectivity of core taxa. The product of "Betweenness
centrality x Closeness-centrality" was used to depict monthly changes in the connectivity of
core OTUs. Hub taxa are indicated.

Discussion
The phyllosphere is a complex microbial habitat due to its direct exposure to a range of abiotic
factors --light, humidity and temperature-- that can alter the leaf environment within

minutes, hours or days. Furthermore, leaf microbial communities are directly exposed to the
arrival of new microbes disseminated by soil particles, water and wind [28]. In this context,
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key ecological questions are still unanswered: what is the relative importance of
environmental filtering versus biotic interactions in shaping community structures and what
is the impact of stochasticity [29]? Our limited understanding of the processes behind the
assembly and persistence of microbes on leaves under field conditions and their colonization
of leaf surfaces constitutes a major drawback for the agricultural usage of plant-beneficial
microbes [30]. To address these fundamental questions, we have conducted a long-term
experiment to follow month-to-month changes in the composition of Arabidopsis’ leaf
microbiota during the early growing season (November to March).

As expected for dynamic ecological systems [31], bacteria, fungi and oomycete leaf-
associated communities were highly stochastic, with factors like the sampling time and the
plant ecotype explaining only half the variability observed (Fig. S1). Despite high between-
experiment variability, robust differences between months were observable for some
microbial groups known to be relevant for plant-growth like Peronosporales oomycetes (Fig.
S2). Hyaloperonospora, the causal agent of downy mildew was by far the most abundant
Peronosporales in Arabidopsis leaves, as it has been described for various geographic
locations elsewhere [18]. Although our sampled plants exhibited no downy mildew disease
symptoms at any time throughout the field experiments, the relative abundance of
Peronosporales increased throughout the growing season reaching maximum values in
March. This is in agreement with disease dynamics of downy mildew in Brassicaceae known
to be favored by cold wet weather, and could indicate that the pathogenic pressure on the
plant increases over the early growing season.

The analysis of community dynamics indicates that from November to February leaf microbial
communities go through a stabilization phase becoming less diverse, less variable and as
microbial networks become less complex (Fig. 3; Fig. 4). This is likely a result of the fact that
core microbes become increasingly dominant throughout the season (Fig. 3B). Seasonal
dynamics have been described in microbiota associated with plants [11, 12, 32] and animals
[33-36], and are thought to be driven partly by environmental cues and perturbations. The
fact that in our study microbiota dynamics mirror temperature and rainfall decreases
associated with winter (Fig. 1), lead us to hypothesize that climatic conditions might be driving
the observed leaf microbiota dynamics, maybe via the selection of cold-resistant
microorganisms. Indeed a strong “winter effect” on microbial communities has been
observed in a diversity of environments including the bee’s gut [36], lake water [37] and air
[38]. We hypothesize that winter conditions might apply a strong selective filter causing leaf
microbial communities to reduce in complexity. Longer experiments are needed to determine
if different dynamics would be observed in later stages e.g. during spring.

Microbes with a stable presence in Arabidopsis leaves (core taxa; Fig. 2) accounted for only
0.62 % of all detected leaf-taxa, indicating a high turnover in leaf microbial communities. Core
taxa include putative plant pathogens like Hyaloperonospora and Cladosporium [39, 40] but
at the same time taxa encompassing plant beneficial microorganisms like Sphingomonas and
Variovorax, which could explain the asymptomatic state of the sampled plants. Leaf-
inhabiting Sphingomonas bacteria have been shown to protect Arabidopsis from bacterial
pathogens [2] and are hypothesized to participate in plant disease resistance against root
fungal pathogens. Variovorax strains have been shown to modulate plant hormonal balance
by degrading auxins thus promoting plant growth under stress conditions [41]. But not only
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bacteria have been reported to interfere with plant hormone levels, there have been reports
of yeasts on A. thaliana capable of producing auxin-like indolic compounds [42]. We have
identified four basidiomycete yeast taxa (Udeniomyces, Sporidiobolus, Itersonilia and
Dioszegia) as systematic colonizers of Arabidopsis leaves. Although little is known about the
associations between these yeasts and Arabidopsis, a recent study on a leaf basidiomycete
yeast (Moesziomyces bullatus) suggests they can play important roles in plant protection from
pathogenic oomycetes through protein effectors [43]. While previous studies have reported
on the prevalence of some of the identified core taxa on Arabidopsis’ leaves [16, 44, 45], here
we show these associations are time-stable persisting throughout the plant’s life and
between plant generations, suggesting some level of adaptation to the leaf niche on the
microbial side or even possible co-evolution between these microbes, as well as with the host
plant.

Microbe-microbe interactions participate in the structuring of microbial communities with
certain microbes --hub and keystone microbes-- playing central roles [46]. We hypothesized
that high connectivity within leaf microbial networks might explain the persistence of the
identified core taxa. However, in contrast to our hypothesis, the connectivity level (hubness)
of individual core taxa was highly variable from month to month, with no taxon maintaining
high connectivity levels throughout the entirety of the growing season (Fig. 5). This indicates
that high connectivity is not a prerequisite for high prevalence in the leaf microbiota as core
taxa are not necessarily network hubs [13]. Nevertheless two microbes among the leaf core
taxa, within the Bacillus and Massillia lineages, deviate from this rule and have been identified
as hubs. Interestingly, in the month of February when leaf microbial communities displayed
the lowest levels of complexity, both Bacillus and Massillia, reached maximum connectivity
levels within leaf microbial networks (Fig. 5), while their relative abundances on leaves
remained stable (Fig. 2). It is tempting to speculate that there might be a functional link
between these hubs and community stability. Indeed, it has been shown that highly
connected microbes can be good predictors of the stability of microbial communities [47]. In
the future, experimental evidence will be needed to improve predictions and to determine if
(and how) hub-removal affects the stability of microbial communities, over time.

Taken together our results show that despite a high level of stochasticity leaf microbial
communities exhibit detectable time patterns, with stable and unstable components.
Although this study is purely descriptive it opens a new field of research on time-informed
community dynamics in natural host-associated microbiomes. In the long term, these types
of studies could make it possible to model, predict and drive microbial communities to desired
states.
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Supplementary figure 1. Multivariate analysis on factors structuring leaf microbial
communities. (A) Non-metric multidimensional scaling ordination (NMDS) on Bray-Curtis
dissimilarities between samples grouped by 'month’, 'experiment' or 'ecotype'. (B) Circles
depict the percentage of variance explained by factors 'month’, 'experiment' and 'ecotype’,
connecting lines depict the percentage of variance explained by interactions between factors.
A PerMANOVA analysis on Bray-Curtis distances was conducted using the Adonis function in
Vegan. Only significant effects are shown (permutations 10000, P < 0.05, explanatory
categorical variables: Experiment x Month x Ecotype).
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Supplementary figure 2. Temporal changes in high abundance microbial taxa colonizing A.
thaliand’s leaves. Boxplots show the relative abundance of the bacterial (green), fungal
(orange) and oomycete orders in single samples aggregated by ‘month’. Whiskers depict the
dispersion of the data (1.5 x interquartile range) and different letters indicate significant
differences between months (ANOVA followed by Tukey’s HSD, P < 0.05).
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Supplementary figure 3. Identification of persistent core microbial taxa. Persistent core taxa
were identified as OTUs showing high-occurrence (= 95% for fungi and oomycete, > 98% for
bacteria) in each of the three experiments analyzed. Purple inner rings depict OTU occurrence
within each year while the outer black ring denotes OTUs identified as “core” (names
highlighted in bold) (See Fig. 3).
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Supplementary figure 4. Identification of microbial hubs within the leaf microbiota of A.
thaliana (Co-Net-based networks). (A) Co-Net-based Month networks were used to identify
microbial hubs as nodes with high betweenness centrality (i.e. the fraction of shortest paths
passing through the given node) and high closeness-centrality (i.e. the average shortest
distance from the given node to other nodes). In each graph, dotted lines indicate the top 5%
values. Circles are colored based on microbial phyla. Circle sizes depict de node’s degree.
Closed circles indicate taxa identified as part of the core leaf microbiota. Two core otus (12
and 4) are highlighted. (B) Changes in the connectivity of core taxa. The product of
"Betweenness centrality x Closeness-centrality” was used to depict monthly changes in the
connectivity of core OTUs. Identified hub taxa (panel A) are indicated.
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