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ABSTRACT

Application of machine and deep learning methods in drug discovery and cancer research has gained
a considerable amount of attention in the past years. As the field grows, it becomes crucial to
systematically evaluate the performance of novel computational solutions in relation to established
techniques. To this end we compare rule-based and data-driven molecular representations in prediction
of drug combination sensitivity and drug synergy scores using standardized results of 14 throughput
screening studies, comprising 64 200 unique combinations of 4 153 molecules tested in 112 cancer
cell lines. We evaluate the clustering performance of molecular representations and quantify their
similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify
an optimal molecular representation type it is necessary to supplement quantitative benchmark results
with qualitative considerations, such as model interpretability and robustness, which may vary between
and throughout preclinical drug development projects.
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1 Introduction

In the past years deep learning (DL) methods have been successfully applied to a variety of research topics in biomedicine
and drug discovery [1–3]. Deep neural networks achieve state-of-the-art performance in medical computer vision tasks
and protein structural modelling, enabling de novo generation of drug candidates and development of prognostic clinical
models [4–8]. However, such performance of DL models is context-dependent [9–12]. While quantitative metrics are
routinely and effectively used to compare various computational methods, overreliance on them is a well-known issue
[13–18]. It is beneficial to supplement performance results on benchmark datasets with estimates of model uncertainty
and robustness, as well as ability to generalize on unseen data [19–21]. These aspects are particularly important in the
biomedical research, where in silico model predictions direct experimental design choices, as exhaustively testing all
combinations of relevant factors is usually unfeasible due to the combinatorial explosion [22,23].

Advances in high throughput screening of bioactive compounds in cancer cell lines promote the development of
personalized cancer treatments [24]. A major goal in such drug sensitivity and resistance testing studies is to prioritize
promising combinatorial therapies that involve coadministration of multiple drugs [25]. By combining synergistic
compounds, often with distinct mechanisms of action, it is possible to overcome single-drug resistance, produce
sustained clinical remissions and diminish adverse reactions [26,27]. Drug synergy refers to a degree of drug-drug
interaction quantified as the difference between expected and observed dose-response profiles measured by a biological
endpoint, such as cell viability or cell toxicity [28]. While synergy characterizes how compounds modulate each other’s
biological activity, combination sensitivity score (CSS) quantifies drug combination efficacy [29]. In addition to the
CSS, we use four synergy scores based on distinct null models, namely Bliss independence, Highest single agent, Loewe
additivity, and Zero Interaction potency in the regression analysis of molecular fingerprints [30–34]. Predicting drug
combination synergy and sensitivity is related to Quantitative Structure Activity Relationship (QSAR) modelling and
Virtual Screening [35,36]. The QSAR captures mathematical associations between drug descriptors and assay endpoints
based on the assumption that structurally similar compounds have similar bioactivity properties, while in the Virtual
Screening studies candidate molecules are prioritized for subsequent experimental validation according to in silico
prediction results [37]. Rule-based molecular fingerprints are commonly used as drug descriptors in QSAR/Virtual
Screening, and MACCS structural keys based on molecular topology are arguably the most popular type of rule-based
fingerprints [38–41]. Other types include circular topological fingerprints that describe combinations of non-hydrogen
atom types and paths between them within a predefined atom neighborhood, and pharmacophore fingerprints that
incorporate local features related to molecular recognition [42-44].

More recently, data-driven fingerprints generated by DL models have been shown to perform well in various research
projects [45]. Majority of such DL fingerprints are based on the encoder-decoder architecture, whereby an approximate
identity function is learned to translate high-dimensional input into a low-dimensional, fixed-size latent manifold,
which is then used to reconstruct the original input [46]. When an encoder-decoder DL model is trained on chemical
structures, its latent manifold is interpreted as a data-driven fingerprint. Examples of early DL fingerprinting models
include a Convolutional Neural Network (CNN), Chemception, and a Recurrent Neural Network, SMILES2Vec, as
well as a Variational Autoencoder model with a CNN encoder and a Gated Recurrent Unit-based decoder [47–51].
Development of attention methods for sequence modelling further contributed to the popularity of data-driven DL
fingerprints, whereas evolution of generative models enabled de novo molecular design through latent space sampling
[52–56]. These DL solutions operate on images of molecules or SMARTS/SMILES sequences to create drug structural
representations [57–59]. Further, DL fingerprints may be enriched with numerical drug descriptors through multitask
DL learning methods or simply by concatenating to latent space [60]. Unlike sequence-based versions, Geometric
Deep Learning fingerprints are derived from molecular graphs, and in addition to global molecular descriptors enable
position-aware encoding of individual atom and bond features [61–67].

There exist several extensive benchmark datasets for ranking DL models in chemoinformatics tasks, such as MoleculeNet,
Open Graph Benchmark and Benchmarking GNNs [68–70]. Despite the widespread use of molecular fingerprints, there
is a lack of systematic evaluation of data-driven DL and rule-based versions. To address the gap, we study 11 types of
molecular representations, comprising seven DL and four rule-based variants, in prediction of cancer drug combination
synergy and sensitivity, based on 17 271 848 data points from 14 cancer drug screening studies (Fig.1, experiment VS
I). By comparing four synergy scores based on distinct null models we identify a preferred synergy formulation for
use in cancer drug combinations research [71,72]. We measure the fingerprint similarity by adapting Centered Kernel
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Alignment as a distance metric (Fig.1, experiment VS II). Lastly, we explore the downstream performance of molecular
representations by clustering compounds assigned to 10 Anatomical Therapeutic Chemical (ATC) classes in one-vs-all
mode (Fig.1, experiment VS III). We believe that our work will contribute to the rational design of drug combinations,
enable easier selection of molecular representations for in silico modelling, and promote further use of Deep Learning
methods in biomedicine.

Figure 1: Study workflow. Compounds found in combinations in the DrugComb database are represented using four rule-based (blue)
and seven data-driven (yellow) fingerprint types. Rule-based fingerprints include topological, and 2D/3D extended connectivity
variants. Data-driven fingerprints are generated using two Variational Autoencoders and two Transformer models trained on ChEMBL
26, Graph Autoencoder trained on DrugComb compounds, and a pre-trained Deep Graph Infomax model (Infomax). The fingerprints
are compared in three tasks: predictions of drug combination sensitivity and four synergy scores (VS I); representation similarity
based on Centered Kernel Alignment (VS II); one-vs-all fingerprint clustering based on ATC drug classes (VS III). VS I results are
also used to identify the most predictive synergy model.

2 Methods

2.1 Data provenance

The DrugComb data portal, one of the largest public drug combination databases, is used to access combination
sensitivity and synergy data [73]. Its October 2 019 release contains standardized and harmonized results of 14 drug
sensitivity and resistance studies on 4 153 drug-like compounds screened in 112 cell lines for a total of 447 993
drug-drug-cell line tuples. Each pairwise drug combination is characterized by the combination sensitivity score (CSS)
and four synergy scores, namely Bliss independence (Bliss), Highest single agent (HSA), Loewe additivity (Loewe),
and Zero interaction potency (ZIP), further details are in the Supplementary Information. ChEMBL (release 26) is
used to obtain SMILES strings, which are subsequently standardized by stripping salt residues and solvent molecules
[74,75]. SMILES shorter than 8 and longer than 140 characters are filtered out. PubChem identifiers (CID) are used to
cross-reference compounds between the databases when necessary. The final DL training dataset consists of 1 795 483
unique SMILES with a median length of 48 and a median absolute deviation of 10.
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2.2 Molecular representations

Fingerprints are numeric arrays of n elements (bits) long, where n ranges between 16 and 1 024 depending on fingerprint
type. Even though n values up to 16,384 have been tested in literature demonstrating a positive correlation between
fingerprint size and downstream prediction performance, not all the studies support these findings [38,76]. Fingerprints
used in the current work are classified into rule-based with binary values and Deep learning-based with continuous
values. Rule-based models are further split into topological, 2D and 3D circular subtypes. Deep Learning fingerprints
are split into sequence and graph subtypes. More detailed classification is found in Table 1.

Table 1: Pearson correlation coefficients of 10 regression algorithms in prediction of synergy and sensitivity scores based on Infomax
300 and Morgan 1 024 bits long fingerprints with one-hot encoded cell line labels as inputs. Averaged results of three independent
5-fold CV rounds on 10% of data run with models’ default hyperparameters.

Fingerprint Type Subtype Length Data format Pretraining
E3FP rule circular 3D 1024 binary no
GAE data graph 16 & 64 continuous no
Infomax data graph 300 continuous yes
Morgan rule circular 2D 300 & 1024 binary no
Topological rule path 1024 binary no
Transformer data sequence 256 & 1024 continuous yes
VAE data sequence 16 & 256 continuous yes

2.2.1 Rule-based fingerprints

Four types of rule-based fingerprints used in the current work are: path-based (Topological 1 024 bits longs), 2D circular
(Morgan 300 and 1 024 bits long) and 3D circular (E3FP 1 024 bits). Topological and Morgan variants are selected due to
their good performance in Virtual Screening experiments [38,43]. E3FP is a 3D extension of 2D extended-connectivity
models, it is generated following the no_Stereo variant [77].

2.2.2 Deep learning-based fingerprints

Seven data-driven molecular fingerprints of different lengths are generated using four types of unsupervised encoder-
decoder DL models, namely a Graph Autoencoder (GAE), a Variational Autoencoder (VAE), a Transformer, and a
pre-trained Deep Graph Infomax (Infomax).
GAE fingerprints. 16 bits long GAE fingerprints are defined via a diagonal semidefinite matrix of singular values
Σ, obtained through the Singular Value Decomposition of GAE embedding matrix [61,62]. Inspired by the Ky Fan
matrix k-norm, equal to the sum of k largest singular values of the matrix, the main diagonal of Σ is used as a 16 bits
long fingerprint [78]. If small molecules result in diagonal shorter than 16 bits, then zero-padding is applied. 64 bits
long GAE fingerprints are generated by concatenating average, min- and max-pooled representations of the embedding
matrix to 16 bits long GAE fingerprints.
VAE fingerprints. VAE fingerprints are 16 and 256 bits long latent spaces of two independently trained VAE models
[49].
Transformer fingerprints. 64 bits long Transformer fingerprints are constructed by concatenating average- and max-
pooled latent embeddings of the 16 bits model with the first output of its last and second last recurrent layers. Similarly,
the 1 024 bits variant is generated from the embedding space of the Transformer 256 bits model [52].
Infomax fingerprints. Infomax fingerprints are 300 bits long, generated using a pre-trained Deep Graph Infomax
model that by design maximizes mutual information between local and global molecular graph features [79,80].

2.3 Deep Learning models used for fingerprint generation

Graph Autoencoder model. Graph Autoencoder model uses a graph G, withV nodes and E edges as input, where
Vcorrespond to atoms and E to atomic bonds. Additional numeric features may be incorporated via node or bond
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feature matrices [81]. A graph G is represented with an adjacency matrix, A n ℝ |V |× |V | , where |V| are node indices, such
that non-zero A elements correspond to existing molecular bonds [82]. A is normalized to be symmetric and contain
self-loops following [83]:

�B4; 5 −;>>? = � + � (1)

�=>A< = �−1/2�B4; 5 −;>>?�
−1/2, (2)

where � is an identity matrix equal in size to �, � is a diagonal node degree matrix such that its main diagonal represents
bond counts of �B4; 5 −;>>? . GAE model is initialized with a node matrix of 54 atom features, where each atom is
represented by an array of one-hot encoded values denoting one of the 37 atoms types, six possible atom degrees, five
atom charges, four variants of chiral configuration and an aromaticity indicator, all generated using RDKit. One-hot
refers to encoding categorical variables as binary arrays. To make the GAE model compatible with previously unseen
atoms a placeholder for an unknown atom type is added. GAE encoder consists of seven convolutional layers with
sum pooling followed by ReLu activation [84]. The decoder part is a dot product of the embedding matrix with itself,
followed by 0.1 dropout and sigmoid activation. Cross-entropy over �=>A< is used as a loss function. Empty nodes in
�=>A< are initialized with zeros.
Variational Autoencoder model. Two VAE models are trained with the embedding sizes of 16 or 256 bits. Both models
have a 54 characters in vocabulary, consisting of 53 unique alphanumeric characters found in SMILES and an additional
empty character for zero-padding. Input length is 140 characters, zero-padded if necessary. VAE encoder consists of
three 1D convolutional layers of 9, 9 and 10 neurons, each followed by SELU activation [85]. The decoder consists of
three GRU layers with a hidden dimension of 501, followed by softmax activation. Loss function is an equally weighted
combination of binary cross-entropy and Kullback–Leibler divergence. Xavier uniform initialization is used to assign
the starting weights of two VAE models [86].
Transformer model. Two Transformers are trained with the embedding sizes of 16 or 256 bits. The vocabulary size for
both models is 58 characters including 53 unique SMILES characters and five tokens for end-of-string, mask, zero-pad,
unknown-character and initialize-decoding. Maximum input length is 141 characters, zero-padded if necessary. Both
models have four-headed attention and six transformer layers, with a dropout of 0.3 applied to the positional encoding
output [54]. Loss function is negative log likelihood. Network weights are initialized with Xavier uniform.
Deep Graph Infomax (Infomax) model. Infomax is pre-trained on 465 000 molecules from ChEMBL 20 and on 2
million molecules from ZINC 15 by Hu et.al. [80,87].

DL Model training. The GAE model is trained on 4 153 DrugComb drug-like compounds, while VAE and Transformer
models are trained on 1 795 483 molecules from DrugComb and ChEMBL 26 databases. Five-fold cross-validation
is used for training all the DL models. Transformer and VAE models are trained for 10 epochs on each fold, GAE is
trained for 40 epochs on each fold. All models use Adam optimizer with a learning rate decay and an initial learning
rate of 1 · 10−3, the training is halted once the learning rate reaches 1 · 10−6 or loss reaches zero [70,88–90]. GAE
hyperparameters are optimized using tree-structured parzen estimators with a budget of 1 000 iterations, other DL
models employ random search [91]. Further training details can be found in Supplementary Information.

2.4 Regression analysis of molecular fingerprints - VS I

Data input. One-hot encoded cell line labels and each of 11 drug fingerprints are used as inputs to regression models
to predict drug combinations sensitivity and synergy. Combination fingerprints are generated by concatenating single
molecular representations, topological fingerprints are bit-averaged [92]. Full dataset contains 362 635 cell line-drug
combination tuples of 3 421 compounds, when filtered by the SMILES strings (SMILES-filtered), and 447 993 combina-
tion tuples of 4 153 molecules, when filtered by the CID (CID-filtered). For each cell line-drug combination tuple, four
synergy scores and CSS sensitivity scores are obtained from DrugComb. If found, biological replicates are averaged,
further, dose-dependent synergy scores are averaged inside cell line-drug combination tuple.
Model selection. Model selection for the regression analysis of molecular fingerprints is split into three steps. In the
first step, 13 different regression models are tested thrice in five-fold cross-validation on the 10% of the full dataset,
sampled without replacement (Supplementary Information). The goal is to identify an optimal type of a regression
model for prediction of four synergy scores and the CSS. The second step concerns hyperparameter tuning of the
previously selected regression model on all available data in ten-fold cross-validation. Lastly, the model is trained in
ten-fold repeated cross-validation on SMILES-filtered and CID-filtered datasets with 90:10 and 60:40 train:test splits
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[93].
Regression performance metrics. Pearson Correlation Coefficient (PCC) and Root Mean Squared Error (RMSE) are
used to assess the regression performance. PCC and RMSE 95% confidence intervals are calculated via Student’s
t-distribution estimate of Fisher’s z transformed PCC values, and via empirical bootstrap with 1 000 iterations and
symmetric confidence intervals [94–98]. RMSE values are normalized by standard deviations. Shapiro-Wilk test is used
to test the normality assumption [99].
Related work. PCC scores of regression models, used to predict single synergy scores in three recent studies, are in the
Supplementary Information section.

2.5 Fingerprint Similarity - VS II and III

Fingerprint similarity metric - VS II. All 11 types of molecular representations vary in length and data types,
making commonly-used metrics, such as Jaccard–Tanimoto or cosine distances poor choices for fingerprint comparison
[100–102]. Jaccard–Tanimoto is suboptimal, as it is based on bits present in one fingerprint, absent in another, and shared
by both [103]. Cosine distance between two vectors, defined as their inner product normalized by the corresponding L2
norms, only measures an angle between two vectors without accounting for differences in their ranges [104]. It may
be possible to post-process DL fingerprints and define common distance metrics on both the binary and real-valued
arrays [105]. However, we opted against it, as we are not aware of any studies that systematically assess DL fingerprint
similarity or quantify downstream effects of such transformations. Recall that an inner product is an unnormalized
measure of similarity allowing metrics based on the Canonical Correlation Analysis (CCA), singular vector CCA and
projection-weighted CCA to be defined on any real-valued arrays [106–108]. All these methods underperform when
the number of compounds is smaller than the dimensionality of feature space, i.e. n bits [109]. It is not intuitive to
use unnormalized inner product as a similarity measure, as it is unbounded and requires original data to be referenced
alongside the similarity scores. Since calculation of pairwise compound distances is not a prerequisite to quantify
their similarity, we compare complete fingerprint matrices using Centered Kernel Alignment (CKA), a modification
of Hilbert-Schmidt Independence Criterion (HSIC) originally proposed to assess nonlinear dependence of two sets of
variables [110].
Fingerprint matrix - VS II and III. Let m compounds be represented with two fingerprint matrices - and . , where
individual fingerprints G8 and ~8 may be of different lengths x and y and data types:

- = [G1, G2, ..., G<]T, G8 n ℝx (3)

. = [~1, ~2, ..., ~<]T, ~8 n ℝy (4)

- and . are normalized by subtracting column means from the corresponding column values.
Linear kernel k - VS II. Let  be a kernel matrix, such that its entries correspond to scalar outputs of a linear kernel
function k. Let k be an inner product, k = G)8 ~8 , where G8 and ~8 are 1D vectors from two fingerprint matrices - and .
corresponding to the same compound or feature. When G8 and ~8 are column vectors,  becomes a feature similarity
matrix:

 
5 40CDA4

-,.
n ℝx × y (5)

If G8 and ~8 are row vectors,  is a sample similarity matrix:

 
B0<?;4

-,.
n ℝm × m (6)

Hilbert-Schmidt Independence Criterion - VS II. Hilbert-Schmidt Independence Criterion (HSIC) is a test statistic
equal to 0 when - and . are independent [103]. Unnormalized HSIC is without an upper bound and equal to:

�(�� ( 5 40CDA4

-,.
) = | |.T- | |2F (7)

�(�� ( B0<?;4

-,.
) = CA024 (--T..T) (8)

where .T- is a dot product of feature vectors and | | · | |2F is a squared Frobenius norm and --T and ..T are left Gram
matrices. Notice that:

 
5 40CDA4

-,.
=  

B0<?;4

-,.
(9)

Further, for centered - and . under linear dot product kernel:

| |.T- | |2F = CA024 (--T..T) = 2>E (-,. ) = | |-T. | |2F (10)
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where 2>E (-,. ) is a cross-covariance matrix of - and . [104].
Centered Kernel Alignment - VS II. HSIC is an empirical statistic that converges to its unbiased value at a rate of

1√
=D<14A > 5 B0<?;4B

[105]. Unbiased HSIC values are used to define Centered Kernel Alignment (CKA), a normalized

version of HSIC that ranges from 0 to 1. CKA is used to quantify the difference between two fingerprint matrices - and
. . When CKA is calculated via the feature similarity, it is defined as:

� � =
�(�� ( 5 40CDA4

-,.
)√

�(�� ( 5 40CDA4

-,-
) × �(�� ( 5 40CDA4

.,.
)

(11)

CKA is a non-linear extension of the CCA and does not require any assumptions about noise distributions in the datasets
[112]. CKA with linear kernel is equivalent to the RV coefficient and Tucker’s Congruence coefficient [109,113–115].
If the number of samples is higher than the number of features, CKA should be calculated using feature similarities.
Conversely, sample space and use of Gram matrices is preferred.
Fingerprint clustering - VS III. The Anatomical Therapeutic Chemical (ATC) Classification System is used to annotate
drugs according to biological systems on which they act, as well as their therapeutic, pharmacological, and chemical
properties [116]. The 2 228 DrugComb compounds found in the ATC database are assigned to 10 classes. All but GAE 16
bits and Morgan 1 024 bits models are then used to generate nine fingerprint matrices. The generated fingerprint matrices
are preprocessed three-fold: by z-score normalization, z-score normalization followed by dimensionality reduction with
PCA, and z-score normalization followed by dimensionality reduction with PLS. For the PCA preprocessing the number
of loadings explaining >0.95 variance is used, PLS regression for dimensionality reduction is performed with ATC
labels as targets. Linear Discriminant Analysis (LDA) is used for one-vs-all clustering with ATC class labels as response
variables, averaged Silhouette score and Variance Ratio Criterion are clustering performance metrics [117,118].
Silhouette score - VS III. Silhouette for a single point is defined as:

B (8) = 1 (8) − 0(8)
<0G (0(8), 1 (8)) (12)

where a is the mean distance between point i and all points within its cluster �8 and b is the smallest mean distance
between point i and all points in a cluster ≠ �8 .
Variance Ratio Criterion - VS III. Variance Ratio Criterion (VRC) is a ratio of between- to within-cluster variation,
adjusted by the number of clusters. VRC is closely related to the F-statistic in ANOVA [119]. Both scores are min-max
scaled to be in [0, 1].

2.6 Computational facilities

All models are trained on Tesla P100 PCIe 16GB GPU. VM deployment is automated with Docker 19.03.9, python-
openstack 3.14.13 and Heat Orchestration Template, Newton release. All experiments are performed using: Catboost
0.24, DGL 0.5, numpy 1.19.1, mlxtend 0.17.3, Optuna 2.2.0, pandas 1.1.3, Python 3.7.6, PyTorch 1.6, RDKit 2020.03.2,
scikit-learn 0.23.2, scipy 1.4.1, XGBoost 1.2.1. Figures are created in R ggplot2 3.3.2, matplotlib 3.3.2 and seaborn
0.11.
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3 Results and Discussion

3.1 Prediction of drug combination synergy and sensitivity - VS I

Regression model selection. We identify Catboost Gradient Boosting on Decision Trees (GBDT) as an optimal
regression model for the prediction of drug combination sensitivity and synergy after testing 13 algorithms on the 10%
of the DrugComb dataset in three replicates (Table 2). Three of the tested algorithms failed to generate any predictions
and are omitted. With optimized hyperparameters GBDT models tend to reach the early stopping criterion in the last
20% of the training on all the fingerprint variants which indicates correctly tuned hyperparameters, further details are in
Supplementary Information. There exist alternative dataset splitting modes that incorporate chemical similarity via
Tanimoto distance or Murcko decomposition [68,120]. While they may better mimic current drug development practices
and lead to a better correlation between in silico predictions and prospective experimental validation, we do not expect
them to produce categorically different results.
Regression performance. Among 11 fingerprinting models, Infomax 300 and VAE 256 achieved the highest PCC in

Table 2: Pearson correlation coefficients of 10 regression algorithms in prediction of synergy and sensitivity scores based on Infomax
300 and Morgan 1 024 bits long fingerprints with one-hot encoded cell line labels as inputs. Models are trained in three replicates,
with default hyperparameters in five-fold CV on 10% of data. VS I

model type CSS Bliss HSA Loewe ZIP rank

sklearn GBDT 0.641 0.331 0.303 0.384 0.384 1
Random Forest 0.609 0.355 0.311 0.374 0.413 2
Catboost GBDT 0.610 0.339 0.244 0.333 0.419 3
XGBoost GBDT 0.624 0.316 0.265 0.345 0.373 4
Bayesian Ridge 0.616 0.315 0.283 0.299 0.367 5
SVR Linear kernel 0.588 0.270 0.219 0.253 0.333 6
Ridge 0.599 0.251 0.219 0.287 0.311 7
Elasticnet 0.332 NaN NaN NaN NaN 8
OLS 0.092 0.023 0.022 0.042 0.030 9
Lasso 0.264 NaN NaN NaN NaN 10

prediction of Loewe synergy score using Catboost Gradient Boosting across all the test folds, cross-validation modes
and duplicate filtering methods. As seen in Figure 2 and Table 3, for the 60 : 40 splits on the SMILES-filtered dataset
Infomax reaches a PCC of 0.6842, while VAE 256 score is 0.6813. All tested fingerprints result in the CSS prediction
scores above 0.85 PCC, with Infomax 300 and VAE 256 fingerprints still ranked on top. Infomax 300 and VAE 256
have overlapping 95% confidence intervals, as such they are considered to be equally performant. E3FP is the best
rule-based fingerprint and is among the top three in most experimental runs. As seen in Figure 3 and Table 4, normalized
RMSE scores further corroborate that DL-based fingerprints are better than rule-based variants in regression tasks.
Further regression results for 90 : 10 and 60 : 40 train : test splits using SMILES and CID-filtered datasets are in the
Supplementary Figures and Tables section (Figures S1-S6 and Tables S1-S6).

Experimental results indicate that if similarity-based clustering or identification of key molecular moieties are of interest,
rule-based fingerprints should be considered. Their average performance in regression is compensated by the inbuilt
interpretability and robust clustering performance [121]. On the other hand, neural fingerprint models are well-suited for
regression tasks, as seen in the VS I experiment. It is important to note that the differences in regression performance
between rule- and DL-based fingerprints do not exceed 0.05 PCC when predicting any synergy scores or the CSS.
Consistently good performance of the DL models and E3FP fingerprints may be offset by their high computational costs
during model training or fingerprint generation, respectively. GAE 64 fingerprints appear to be a reasonable compromise
in terms of the downstream performance and relatively short model training times.
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Figure 2: Drug combination synergy prediction on the SMILES-filtered dataset in 60 : 40 train:test split. 95% confidence intervals
are calculated via Fisher z-transformation. Best models are highlighted with red. VS I

Table 3: Drug combination synergy prediction on the SMILES-filtered dataset in 60 : 40 train:test split. 95% confidence intervals are
calculated via Fisher z-transformation. Best models are highlighted with bold. VS I

fingerprint Pearson’s r and 95% Confidence Interval

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.8641 ±0.0017 0.6048 ±0.0080 0.5716 ±0.0033 0.6479 ±0.0016 0.6394 ±0.0070
GAE 16 0.8540 ±0.0032 0.5654 ±0.0057 0.5304 ±0.0042 0.5996 ±0.0036 0.6137 ±0.0089
GAE 64 0.8667 ±0.0028 0.6038 ±0.0028 0.5703 ±0.0039 0.6589 ±0.0023 0.6351 ±0.0048
Infomax 300 0.8761 ±0.0019 0.6222 ±0.0044 0.5897 ±0.0039 0.6842 ±0.0024 0.6509 ±0.0046
Morgan 300 0.8541 ±0.0022 0.5788 ±0.0080 0.5523 ±0.0024 0.6352 ±0.0024 0.6186 ±0.0078
Morgan 1024 0.8605 ±0.0028 0.5873 ±0.0079 0.5568 ±0.0032 0.6347 ±0.0016 0.6309 ±0.0053
Topological 1024 0.8405 ±0.0019 0.5748 ±0.0042 0.5390 ±0.0039 0.6398 ±0.0028 0.6115 ±0.0058
Transformer 64 0.8582 ±0.0023 0.5756 ±0.0088 0.5522 ±0.0040 0.6318 ±0.0023 0.6209 ±0.0072
Transformer 1024 0.8663 ±0.0022 0.6021 ±0.0064 0.5683 ±0.0037 0.6678 ±0.0020 0.6341 ±0.0051
VAE 16 0.8616 ±0.0018 0.5888 ±0.0070 0.5562 ±0.0034 0.6371 ±0.0024 0.6254 ±0.0070
VAE 256 0.8759 ±0.0022 0.6226 ±0.0050 0.5915 ±0.0031 0.6813 ±0.0013 0.6516 ±0.0047

3.2 Fingerprint similarity - VS II and III

CKA distance (VS II). A heatmap of pairwise CKA similarities between 11 fingerprints, as seen in Figure 4, indicates
that similar types of fingerprints cluster together. Rule-based fingerprints form two clusters corresponding to topological
and circular subtypes. All the DL fingerprints generated by the trained models form the third cluster. Graph-based models
appear to be far removed from all sequence and rule-based variants. GAE 64 is the most different from other trained DL
fingerprints, while being co-clustered with them. Infomax 300 fingerprints, based on a pre-trained Deep Graph Infomax
model, are not part of any cluster. Smaller sequence-based DL fingerprints, namely VAE 16 and Transformer 64 are
at least as similar to each other, as they are to their longer in-type/subtype counterparts. We conclude that fingerprint
type and subtype, as indicated in Table 1, contribute the most to the CKA similarity, followed by fingerprint pretraining
status, size, and data format.
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Figure 3: Drug combination synergy prediction on the SMILES-filtered dataset in 60 : 40 train:test split using RMSE, normalized by
the target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with red.
Normalized RMSE value of 1 indicates that the standard deviation of residuals is equal to the standard deviation of the target, i.e. a
model that predicts mean values for all targets would have such a normalized RMSE. VS I

Table 4: Drug combination sensitivity and synergy prediction on the SMILES-filtered dataset in 60 : 40 train:test split using RMSE,
normalized by the target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are in
bold. VS I

normalized Root Mean Squared Error and 95% Confidence Interval
fingerprint

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.5034 ±0.0011 0.7987 ±0.0063 0.8214 ±0.0051 0.7624 ±0.0029 0.7715 ±0.0090
GAE 16 0.5205 ±0.0020 0.8277 ±0.0079 0.8487 ±0.0036 0.8004 ±0.0046 0.7926 ±0.0119
GAE 64 0.4990 ±0.0016 0.7996 ±0.0072 0.8220 ±0.0045 0.7524 ±0.0035 0.7750 ±0.0098
Infomax 300 0.4822 ±0.0011 0.7852 ±0.0066 0.8081 ±0.0055 0.7285 ±0.0034 0.7616 ±0.0079
Morgan 300 0.5204 ±0.0007 0.8183 ±0.0075 0.8348 ±0.0042 0.7733 ±0.0036 0.7884 ±0.0075
Morgan 1024 0.5097 ±0.0013 0.8120 ±0.0104 0.8315 ±0.0046 0.7729 ±0.0030 0.7783 ±0.0081
Topological 1024 0.5420 ±0.0011 0.8207 ±0.0068 0.8427 ±0.0056 0.7678 ±0.0040 0.7937 ±0.0100
Transformer 64 0.5134 ±0.0014 0.8206 ±0.0094 0.8344 ±0.0050 0.7752 ±0.0035 0.7867 ±0.0075
Transformer 1024 0.4998 ±0.0012 0.8011 ±0.0112 0.8235 ±0.0055 0.7442 ±0.0033 0.7760 ±0.0088
VAE 16 0.5080 ±0.0010 0.8107 ±0.0085 0.8317 ±0.0057 0.7709 ±0.0039 0.7828 ±0.0083
VAE 256 0.4825 ±0.0013 0.7849 ±0.0081 0.8069 ±0.0051 0.7315 ±0.0027 0.7610 ±0.0075

LDA clustering (VS III). To further study the differences between fingerprint models, we perform one-vs-all LDA
classification of 2 228 compounds based on their ATC classes, using nine different fingerprinting models to represent the
molecules. The GAE 16 bits fingerprints are omitted, since GAE 64 bits fingerprints extend their shorter counterparts
by concatenating average, min- and max-pooled embedding spaces. Further, due to the comparable performance of
Morgan 300 and 1 024 bits models in VS I and VS II experiments, only Morgan 300 bits fingerprints are used in LDA
clustering experiments. VS III clustering results are in Table 5 and the overview of DrugComb compounds with the
corresponding ATC classes is in Figure 5. The Infomax 300 bits model achieves the best clustering results on the z-score
normalized fingerprint matrices, followed by three rule-based fingerprints. Dimensionality reduction following z-score
normalization generally improves clustering performance of all rule-based fingerprints. It has the opposite effect on
most DL fingerprints, with the largest reduction seen in the Infomax 300 and GAE 64 models. Longer DL sequence
models, namely VAE 256 and Transformer 1 024, perform better after dimensionality reduction steps, albeit with a
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Figure 4: Heatmap of pairwise CKA distances between 11 fingerprints. Infomax and GAE 64 are Deep Learning fingerprints based
on molecular graphs. VAE and Transformer are sequence-based DL fingerprints. E3FP and variants of Morgan and Topological
fingerprints are generated using rule-based models. VS II

minimal improvement in relative rankings. Such differences between graph and sequence-based DL fingerprints are
supported by the CKA analysis (VS II), indicating that the graph-based fingerprints differ the most from other DL
variants.

4 Conclusion

Choosing an optimal fingerprint type to represent molecular features is an important step in computational drug
discovery. To this end, we systematically compared 11 variants of such molecular representations in predicting drug
combination sensitivity and synergy scores, and evaluated their relationships based on the clustering performance and
CKA-based fingerprint similarity. We found that VAE 256 bits long and 3D circular E3FP 1 024 bits long fingerprints
generated from SMILES strings, as well as Infomax 300 bits long fingerprints based on molecular graphs lead to the
best regression performance. Out of the four tested synergy scores, we observe that Loewe synergy is the easiest to
predict with best models reaching PCC 0.72. CSS, a measure of drug combination efficacy, can be predicted >0.85
PCC with any fingerprint type. We found that the rule-based fingerprinting methods underperform in regression tasks in
comparison to the data-driven DL variants. However, the gap between the best and worst performing fingerprint models
rarely exceeds PCC 0.05. Further, we adapted Centered Kernel Alignment to quantify the extent of similarity between
fingerprint matrices and to demonstrate that similar types of fingerprints cluster together. An optimal similarity measure
for the comparison of single rule-based and data-driven fingerprints remains an open question. Lastly, in one-vs-all
compound clustering using ATC classes as labels rule-based fingerprints perform on par or better than the best DL
representations.
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Table 5: One-vs-all LDA clustering in 10 ATC classes of 2 228 DrugComb compounds represented with nine fingerprint types.
Averaged Silhouette and Variation Ratio Criterion (VRC) scores are rescaled to [0, 1]. Fingerprints are ranked according to scores
on z-score normalized data. PCA and PLS-based dimensionality reduction improves rule-based fingerprint (denoted by R_ prefix)
performance, most DL fingerprints (D_ prefix) decrease performance, VAE 256 and Transformer 1 024 benefit from dimensionality
reduction, although minimally in terms of relative ranking. VS III

fingerprint
z-score z-score + PCA z-score + PLS

silhouette VRC silhouette VRC silhouette VRC

D_Infomax 300 0.984 1.000 0.701 0.251 0.749 0.326
R_E3FP 1024 1.000 0.831 0.993 0.958 0.988 0.959
R_Topo 1024 0.979 0.771 1.000 0.997 1.000 1.000
R_Morgan 300 0.967 0.655 0.993 1.000 0.997 0.984
D_GAE 64 0.440 0.122 0.258 0.064 0.303 0.062
D_VAE 256 0.399 0.049 0.547 0.170 0.574 0.190
D_VAE 16 0.223 0.056 0.076 0.036 0.000 0.006
D_Tranformer 64 0.088 0.004 0.000 0.000 0.120 0.000
D_Transformer 1024 0.000 0.000 0.131 0.023 0.377 0.067

Figure 5: ATC drug classes of the DrugComb compounds (n=3 421). Over one third (n=1 193) compounds do not have a mechanism
of action assigned in the ATC classification system. VS III

We conclude that the quantitative performance differences between rule-based and Deep Learning-based fingerprints
are likely to be insignificant in the context of preclinical studies of small molecule drugs [122,123]. In order to identify
an optimal fingerprint type for a given project we advise enriching quantitative performance metrics with qualitative
concerns, e.g. available chemometric and deep learning expertise, model interpretability requirements, opinions of
project stakeholders and model performance on unseen data. Fingerprints generated using the E3FP 1 024, Infomax 300,
Morgan 1 024 and VAE 256 bits models are suggested as good starting points based on our experimental results and
distinct methodologies underlying their data generating methods [124]. We recommend the Loewe synergy score for use
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in drug combination screening due to its best performance among four tested synergy models tested on dose-response
data from 14 DSRT studies.

This work focuses on the evaluation of single fingerprint types. However, it is worth exploring the impact of combining
several fingerprints together. We expect a statistically significant regression performance increase when combining
molecular representations with low CKA similarity, or using models trained on multimodal data and/or key biological
databases, such as Gene Ontology, Protein Data Bank and UniRef [5,125–127]. Another line of inquiry could address
high computational costs of DL and E3FP models. To this end we suggest exploring alternative molecular representations
and CPU-friendly generative models based on genetic algorithms, such as STONED on SELFIES [128]. Finally, we
hope that in the future biomedical DL research will go beyond representation learning and will be used to derive
novel biological knowledge by e.g. inferring synthetic and retrosynthetic chemical reactions, identifying novel disease-
associated druggable proteins and clinically actionable biomarkers [129–131].

5 Key points

• To choose an optimal molecular fingerprint type it is advised to enrich quantitative metrics of model per-
formance with qualitative concerns related to the nature of downstream tasks, model interpretability and
robustness requirements, as well as available chemometric expertise.

• Data-driven fingerprints, namely VAE 256 bits long trained on SMILES and Infomax 300 bits long trained
molecular graphs are well-suited for regression tasks. 1 024 bits long 2D and 3D circular fingerprints are
flexible and well-performant rule-based models fit for clustering tasks. Graph Autoencoder 64 bits long model
may be used in any analysis scenario as a baseline option.

• Loewe synergy scores enable the highest correlation between in silico predictions and subsequent experimental
validation of drug combination synergy in cancer cell lines.

• Centered Kernel Alignment is an effective measure of molecular representation similarity applicable to any
combination of rule-based and DL fingerprints.

6 Data and code availability

The data and code underlying this article are available in the article and in its online supplementary material.
Code: https://github.com/NetPharMedGroup/publication_fingerprint/
Data: https://doi.org/10.5281/zenodo.4843919
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11 Supplementary Information

11.1 Combination sensitivity and synergy scores

It is known that the choice of an appropriate null model of no interaction is crucial for an accurate assessment of drug
synergy. Four such models are used in the current work. Bliss model is based on probabilistic independence of drug
effects, such that single agents are competing, but independent perturbations each contributing to a total effect [30].
HSA assumes that an expected drug combination effect is the higher of the two single-agent effects at corresponding
concentrations [31]. Degree of non-interaction according to Loewe is equal to the outcome of a sham experiment, that
is combining a drug with itself [32,33]. Zero Interaction Potency (ZIP) assumes that non-interacting drugs minimally
impact each other’s dose-response curves [34]. Combination Sensitivity Score quantifies drug combination efficacy,
which is defined as an average of areas under drug combination dose-response curves, whereby each curve is determined
by fixing one of the drugs at its IC50 concentration [29].

11.2 Regression model performance

13 regression models, representing a wide spectrum of ML algorithms, are compared in prediction of drug combination
synergy and sensitivity. All models are tested with default hyperparameters in five-fold cross-validation using 1 024
bits long Morgan and 300 bits long Infomax fingerprints together with one-hot encoded cell line labels on 10% of
randomly sampled data in three replicates. 13 tested regression models are: Bayesian Ridge, Catboost Gradient Boosting,
ElasticNet, Gaussian Process Regression with a sum of Dot Product and White Kernels, Histogram-based Gradient
Boosting, Isotonic Regression, Lasso regression, LassoLars regression, Linear regression, Ridge regression, Random
Forest, Support Vector Machines with a linear kernel and XGBoost Gradient Boosting. All trees-based models are
limited to a depth of six. Neural networks are not included in the comparison, since on tabular data they tend to perform
on par with the previously mentioned methods, while being less interpretable and more difficult to set up [132,133].

Top four identified regression models are bagging and boosting ensembles, followed by linear kernel Support Vector
Regression and Bayesian Ridge. Gaussian Process Regression, Isotonic and Lassolars models failed to generate any
predictions and their results are omitted from Table 1. Catboost implementation of Gradient Boosting on Decision
Trees (GBDT) is selected for further experiments due to its efficient GPU utilization and two design choices aimed at
reducing overfitting: out-of-the-box categorical encoding that translates classes into numeric representations, binning
them based on the expected value of target statistic, and Ordered Boosting whereby training data is randomly permuted
throughout tree growing process to limit unwanted target metric prediction shift, one of well-known GBDT disadvantages
[134–136].
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Tuned in ten-fold cross-validation best hyperparameters for Catboost GBDT are Poisson bootstrap with 0.66 subsampling
ratio, L2 regularization of 9, tree depth of 10, learning rate of 0.15 with 5 000 boosting iterations and 50 early stopping
rounds. Overall, we conclude that ensembles are the most powerful type of tested ML algorithms in prediction of drug
combination synergy and sensitivity [137].

11.3 Neural Network Training

For all DL models the hyperparameter search consisted of testing various activation functions (GELU, ELU, LeakyReLU,
ReLU, SELU, Sigmoid, Softmax, Swish), dropout ratios (0.1 to 0.5 with 0.1 step size), initial learning rates (1 · 10−1 to
1 · 10−5, with a step size of 0.1), number of patience epochs (1 − 30 with a step size of 1) and learning rate decay factor
(0.9 to 0.1 with a step size of 0.1). Both Transformer models were tested with 3 − 6 attention heads. VAE encoders were
tested with up to 5 convolutional layers and convolutional kernel sizes up to 10; VAE decoder is tested with up to 3
recurrent GRU layers of sizes up to 600.
Transformer. Two Transformer models are trained in 5-fold cross-validation, for up to 10 epochs on each fold with
a decay factor of 0.1 and patience of 5 epochs in batch sizes of 650 and 340 for 16 bits and 256 bits long fingerprint
variants. The final cross-entropy losses are 2 · 10−7 and 1 · 10−8, respectively.
VAE. Two Variational Autoencoder models with the latent spaces of 16 and 256 neurons are trained on ChEMBL 26
using 5-fold cross-validation and 10 epochs on each fold with a decay factor of 0.2 and patience of 2 and 3 epochs,
respectively. An equally weighted sum of binary cross-entropy and KL-divergence is used as a loss metric. The final
losses are 0.9231 and 0.0984 for 16 bits and 256 bits models.
GAE. A single Graph Autoencoder model is trained on 3 421 unique DrugComb compounds in 5-fold cross-validation
mode for 200 epochs with a batch size of 340 for up to 40 epochs per fold. Learning rate decay factor is 0.1 with 30
epochs patience. Cross-entropy over the molecular graph adjacency matrix is used as a loss, with the best score of
0.8604 reached at the end of the 200th epoch.

It is likely that longer training or a more extensive hyperparameter optimization or use of alternative optimizers, such as
SGD with a cyclic learning rate scheduling, may result in lower final loss values, however, we do not expect it to have a
significant influence on downstream experiments [138]. It is interesting to note that optuna-based optimization of the
GAE model resulted in the encoder architecture consisting of seven convolutional layers 54−46−40−34−28−22−16
neurons wide. Such a high number of convolutional layers is somewhat unexpected, as performance of Graph Neural
Networks based on spectral convolutions is expected to deteriorate with the convolutional layer count above six, most
likely due to excessive feature smoothing [139,140]. Such GAE encoder architecture may be explained by a positive
correlation between the performance of Neural Networks and a number of trainable parameters, as a seven layer GAE
model with dot-product based Decoder has circa 10k learnable parameters, whereas Transformer and VAE models have
two orders of magnitude more [141].

11.4 Prior work in drug combination synergy predictions

In three independent studies listed below single synergy scores are predicted. Developed models are cross-validated on
single datasets.
Random Forest. A Random Forest model developed by Menden et.al. achieved a 0.3 PCC in prediction of Loewe
synergy using drug and cell line labels on the AstraZeneca dataset including 910 combinations tested in 85 cancer cell
lines [142].
Convolutional Neural Network. A CNN model introduced by Preur et.al. achieved a 0.73 PCC in prediction of Loewe
synergy from drug fingerprints, physicochemical molecular descriptors and basal expression of 3 984 cancer-associated
genes on the O’Neil dataset including 583 drug combinations tested in 39 cancer cell lines [143,144].
Gradient Boosting and Random Forest. XGBoost and Random Forest models developed by Sidorov et.al. achieved
a 0.64 PCC for a modified version of Bliss synergy from drug fingerprints and their physicochemical characteristics on
the NCI60 Almanac dataset including 5 232 combinations tested in 60 cancer cell lines [26,145].
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12 Supplementary Figures and Tables

Figure S1: Drug combination synergy prediction on the CID-filtered dataset in 60 : 40 train:test split. 95% confidence intervals are
calculated via Fisher z-transformation. Best models are highlighted with red. VS I

Figure S2: Drug combination synergy prediction on the SMILES-filtered dataset in 90 : 10 train:test split. 95% confidence intervals
are calculated via Fisher z-transformation. Best models are highlighted with red. VS I
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Figure S3: Drug combination synergy prediction on the CID-filtered dataset in 90 : 10 train:test split. 95% confidence intervals are
calculated via Fisher z-transformation. Best models are highlighted with red. VS I

Figure S4: Drug combination synergy prediction on the CID-filtered dataset in 60 : 40 train:test split using RMSE, normalized by the
target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with red.
VS I
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Figure S5: Drug combination synergy prediction on the SMILES-filtered dataset in 90 : 10 train:test split using RMSE, normalized
by the target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with
red. VS I

Figure S6: Drug combination synergy prediction on the CID-filtered dataset in 90 : 10 train:test split using RMSE, normalized by the
target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with red.
VS I

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.04.16.439299doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.439299
http://creativecommons.org/licenses/by/4.0/


COMPARATIVE ANALYSIS OF MOLECULAR REPRESENTATIONS

Table S1: Drug combination synergy prediction on the CID-filtered dataset in 60 : 40 train:test split. 95% confidence intervals are
calculated via Fisher z-transformation. Best models are highlighted with bold. VS I

fingerprint Pearson’s r and 95% Confidence Interval

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.8819 ±0.0019 0.6275 ±0.0062 0.6499 ±0.0024 0.6920 ±0.0019 0.6550 ±0.0051
GAE 16 0.8744 ±0.0018 0.5944 ±0.0082 0.6162 ±0.0059 0.6619 ±0.0029 0.6328 ±0.0073
GAE 64 0.8800 ±0.0022 0.6184 ±0.0071 0.6406 ±0.0020 0.6898 ±0.0023 0.6482 ±0.0061
Infomax 300 0.8907 ±0.0016 0.6404 ±0.0062 0.6603 ±0.0022 0.7180 ±0.0014 0.6627 ±0.0052
Morgan 300 0.8771 ±0.0017 0.6092 ±0.0059 0.6305 ±0.0036 0.6757 ±0.0017 0.6431 ±0.0053
Morgan 1024 0.8712 ±0.0022 0.5990 ±0.0065 0.6312 ±0.0025 0.6799 ±0.0018 0.6321 ±0.0093
Topological 1024 0.8718 ±0.0014 0.6007 ±0.0104 0.6223 ±0.0042 0.6764 ±0.0028 0.6374 ±0.0062
Transformer 64 0.8716 ±0.0014 0.6011 ±0.0062 0.6207 ±0.0042 0.6664 ±0.0027 0.6335 ±0.0082
Transformer 1024 0.8854 ±0.0016 0.6322 ±0.0051 0.6523 ±0.0025 0.7088 ±0.0025 0.6558 ±0.0077
VAE 16 0.8767 ±0.0016 0.6067 ±0.0084 0.6312 ±0.0028 0.6763 ±0.0024 0.6367 ±0.0085
VAE 256 0.8908 ±0.0023 0.6358 ±0.0076 0.6632 ±0.0027 0.7166 ±0.0024 0.6629 ±0.0113

Table S2: Drug combination synergy prediction on the SMILES-filtered dataset in 90 : 10 train:test split. 95% confidence intervals
are calculated via Fisher z-transformation. Best models are highlighted with bold. VS I

fingerprint Pearson’s r and 95% Confidence Interval

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.8732 ±0.0058 0.6180 ±0.0103 0.5905 ±0.0091 0.6692 ±0.0039 0.6503 ±0.0153
GAE 16 0.8641 ±0.0063 0.5786 ±0.0138 0.5537 ±0.0090 0.6272 ±0.0043 0.6260 ±0.0135
GAE 64 0.8754 ±0.0064 0.6168 ±0.0124 0.5901 ±0.0100 0.6791 ±0.0034 0.6440 ±0.0138
Infomax 300 0.8826 ±0.0060 0.6357 ±0.0124 0.6069 ±0.0100 0.6990 ±0.0033 0.6580 ±0.0143
Morgan 300 0.8702 ±0.0054 0.6040 ±0.0144 0.5772 ±0.0084 0.6578 ±0.0027 0.6417 ±0.0138
Morgan 1024 0.8640 ±0.0052 0.5960 ±0.0166 0.5697 ±0.0100 0.6573 ±0.0034 0.6323 ±0.0146
Topological 1024 0.8500 ±0.0044 0.5891 ±0.0141 0.5608 ±0.0103 0.6564 ±0.0039 0.6197 ±0.0156
Transformer 64 0.8682 ±0.0047 0.5951 ±0.0155 0.5720 ±0.0089 0.6558 ±0.0031 0.6339 ±0.0159
Transformer 1024 0.8742 ±0.0055 0.6091 ±0.0172 0.5864 ±0.0112 0.6859 ±0.0034 0.6439 ±0.0162
VAE 16 0.8712 ±0.0062 0.6011 ±0.0142 0.5789 ±0.0088 0.6600 ±0.0037 0.6385 ±0.0135
VAE 256 0.8829 ±0.0063 0.6304 ±0.0127 0.6085 ±0.0096 0.6969 ±0.0035 0.6591 ±0.0152
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Table S3: Drug combination synergy prediction on the CID-filtered dataset in 90 : 10 train:test split. 95% confidence intervals are
calculated via Fisher z-transformation. Best models are highlighted with bold. VS I

fingerprint Pearson’s r and 95% Confidence Interval

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.8849 ±0.0049 0.6401 ±0.0126 0.6632 ±0.0050 0.7053 ±0.0045 0.6655 ±0.0199
GAE 16 0.8761 ±0.0041 0.6005 ±0.0166 0.6280 ±0.0047 0.6690 ±0.0063 0.6361 ±0.0186
GAE 64 0.8869 ±0.0050 0.6377 ±0.0113 0.6623 ±0.0058 0.7136 ±0.0062 0.6596 ±0.0145
Infomax 300 0.8942 ±0.0056 0.6579 ±0.0135 0.6759 ±0.0053 0.7320 ±0.0058 0.6719 ±0.0173
Morgan 300 0.8824 ±0.0045 0.6318 ±0.0133 0.6493 ±0.0045 0.6963 ±0.0069 0.6566 ±0.0187
Morgan 1024 0.8748 ±0.0053 0.6149 ±0.0150 0.6430 ±0.0066 0.6932 ±0.0054 0.6458 ±0.0195
TopoA 1024 0.8647 ±0.0049 0.6174 ±0.0133 0.6400 ±0.0052 0.6959 ±0.0055 0.6456 ±0.0118
TB 64 0.8798 ±0.0059 0.6199 ±0.0137 0.6422 ±0.0050 0.6915 ±0.0063 0.6462 ±0.0211
TB 1024 0.8853 ±0.0047 0.6378 ±0.0133 0.6593 ±0.0049 0.7200 ±0.0062 0.6570 ±0.0157
VAE 16 0.8838 ±0.0053 0.6297 ±0.0154 0.6508 ±0.0057 0.6980 ±0.0062 0.6512 ±0.0197
VAE 256 0.8949 ±0.0052 0.6587 ±0.0133 0.6796 ±0.0042 0.7300 ±0.0054 0.6747 ±0.0169

Table S4: Drug combination synergy prediction on the CID-filtered dataset in 60 : 40 train:test split using RMSE, normalized by the
target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with bold.
VS I

normalized Root Mean Squared Error and 95% Confidence Interval
fingerprint

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.4925 ±0.0014 0.8219 ±0.0067 0.8576 ±0.0023 0.7553 ±0.0028 0.7847 ±0.0076
GAE 16 0.4962 ±0.0014 0.8295 ±0.0094 0.8660 ±0.0028 0.7568 ±0.0033 0.7904 ±0.0053
GAE 64 0.5070 ±0.0015 0.8489 ±0.0073 0.8489 ±0.0073 0.7836 ±0.0033 0.8041 ±0.0078
Infomax 300 0.4748 ±0.0011 0.8106 ±0.0088 0.8469 ±0.0027 0.7269 ±0.0023 0.7776 ±0.0073
Morgan 300 0.5018 ±0.0013 0.8371 ±0.0080 0.8755 ±0.0037 0.7707 ±0.0024 0.7950 ±0.0067
Morgan 1024 0.5130 ±0.0016 0.8456 ±0.0070 0.8754 ±0.0023 0.7673 ±0.0025 0.8047 ±0.0072
Topological 1024 0.5118 ±0.0012 0.8437 ±0.0089 0.8828 ±0.0043 0.7697 ±0.0028 0.8000 ±0.0067
Transformer 64 0.5124 ±0.0014 0.8440 ±0.0077 0.8850 ±0.0040 0.7800 ±0.0032 0.8036 ±0.0083
Transformer 1024 0.4855 ±0.0012 0.8178 ±0.0061 0.8549 ±0.0021 0.7370 ±0.0032 0.7837 ±0.0061
VAE 16 0.5027 ±0.0013 0.8392 ±0.0092 0.8750 ±0.0028 0.7703 ±0.0029 0.8007 ±0.0080
VAE 256 0.4744 ±0.0019 0.8128 ±0.0072 0.8439 ±0.0033 0.7286 ±0.0028 0.7758 ±0.0068
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Table S5: Drug combination synergy prediction on the SMILES-filtered dataset in 90 : 10 train:test split using RMSE, normalized by
the target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with
bold. VS I

normalized Root Mean Squared Error and 95% Confidence Interval
fingerprint

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.4881 ±0.0033 0.7906 ±0.0148 0.8089 ±0.0131 0.7430 ±0.0080 0.7638 ±0.0162
GAE 16 0.5041 ±0.0041 0.8203 ±0.0150 0.8351 ±0.0137 0.7788 ±0.0098 0.7845 ±0.0154
GAE 64 0.4842 ±0.0037 0.7914 ±0.0182 0.8090 ±0.0136 0.7337 ±0.0084 0.7694 ±0.0193
Infomax 300 0.4708 ±0.0038 0.7759 ±0.0155 0.7963 ±0.0133 0.7136 ±0.0092 0.7574 ±0.0182
Morgan 300 0.4935 ±0.0033 0.8013 ±0.0153 0.8186 ±0.0132 0.7527 ±0.0083 0.7709 ±0.0148
Morgan 1024 0.5045 ±0.0039 0.8077 ±0.0178 0.8242 ±0.0122 0.7541 ±0.0087 0.7793 ±0.0172
Topological 1024 0.5276 ±0.0033 0.8122 ±0.0150 0.8294 ±0.0146 0.7530 ±0.0084 0.7889 ±0.0142
Transformer 64 0.4972 ±0.0034 0.8082 ±0.0167 0.8222 ±0.0142 0.7545 ±0.0082 0.7776 ±0.0157
Transformer 1024 0.4864 ±0.0033 0.7974 ±0.0157 0.8119 ± 0.0149 0.7269 ±0.0084 0.7693 ±0.0150
VAE 16 0.4919 ±0.0036 0.8034 ±0.0141 0.8174 ±0.0131 0.7509 ±0.0091 0.7737 ±0.0163
VAE 256 0.4701 ±0.0037 0.7805 ±0.0162 0.7952 ±0.0146 0.7159 ±0.0080 0.7561 ±0.0159

Table S6: Drug combination synergy prediction on the CID-filtered dataset in 90 : 10 train:test split using RMSE, normalized by the
target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Best models are highlighted with bold.
VS I

normalized Root Mean Squared Error and 95% Confidence Interval
fingerprint

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.4871 ±0.0033 0.8218 ±0.0162 0.8498 ±0.0107 0.7430 ±0.0049 0.7850 ±0.0243
GAE 16 0.5043 ±0.0027 0.8552 ±0.0146 0.8838 ±0.0105 0.7789 ±0.0049 0.8116 ±0.0188
GAE 64 0.4832 ±0.0030 0.8240 ±0.0176 0.8507 ±0.0110 0.7340 ±0.0048 0.7908 ±0.0218
Infomax 300 0.4683 ±0.0032 0.8055 ±0.0172 0.8367 ±0.0118 0.7126 ±0.0044 0.7789 ±0.0212
Morgan 300 0.4920 ±0.0028 0.8287 ±0.0138 0.8634 ±0.0100 0.7521 ±0.0050 0.7931 ±0.0199
Morgan 1024 0.5068 ±0.0038 0.8440 ±0.0166 0.8699 ±0.0122 0.7557 ±0.0054 0.8035 ±0.0243
Topological 1024 0.5254 ±0.0033 0.8411 ±0.0180 0.8721 ±0.0115 0.7513 ±0.0056 0.8028 ±0.0193
Transformer 64 0.4972 ±0.0036 0.8395 ±0.0182 0.8703 ±0.0112 0.7568 ±0.0048 0.8026 ±0.0257
Transformer 1024 0.4863 ±0.0029 0.8241 ±0.0190 0.8539 ±0.0107 0.7267 ±0.0044 0.7933 ±0.0198
VAE 16 0.4895 ±0.0030 0.8309 ±0.0175 0.8622 ±0.0109 0.7504 ±0.0048 0.7982 ±0.0272
VAE 256 0.4665 ±0.0032 0.8046 ±0.0142 0.8328 ±0.0099 0.7151 ±0.0045 0.7764 ±0.0275
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