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Abstract

Advances in single cell RNA sequencing (scRNAseq) technologies uncovered an unexpected complexity in solid
tumors, underlining the relevance of intratumor heterogeneity for cancer progression and therapeutic resistance.
Heterogeneity in the mutational composition of cancer cells is well captured by tumor phylogenies, which demon-
strate how distinct cell populations evolve, and, e.g. develop metastatic potential or resistance to specific treatments.
Unfortunately, because of their low read coverage per cell, mutation calls that can be made from scRNAseq data
are very sparse and noisy. Additionally, available tumor phylogeny reconstruction methods cannot computationally
handle a large number of cells and mutations present in typical scRNAseq datasets. Finally, there are no principled
methods to assess distinct subclones observed in inferred tumor phylogenies and the genomic alterations that seed
them. Here we present Trisicell, a computational toolkit for scalable tumor phylogeny reconstruction and evalu-
ation from scRNAseq as well as single cell genome or exome sequencing data. Trisicell allows the identification
of reliable subtrees of a tumor phylogeny, offering the ability to focus on the most important subclones and the
genomic alterations that are associated with subclonal proliferation. We comprehensively assessed Trisicell on a
melanoma model by comparing the phylogeny it builds using scRNAseq data, to those using matching bulk whole
exome (bWES) and transcriptome (bWTS) sequencing data from clonal sublines derived from single cells. Our
results demonstrate that tumor phylogenies based on mutation calls from scRNAseq data can be robustly inferred
and evaluated by Trisicell. We also applied Trisicell to reconstruct and evaluate the phylogeny it builds us-
ing scRNAseq data from melanomas of the same mouse model after treatment with immune checkpoint blockade
(ICB). After integratively analyzing our cell-specific mutation calls with their expression profiles, we observed that
each subclone with a distinct set of novel somatic mutations is strongly associated with a distinct developmental
status. Moreover, each subclone had developed a specific ICB-resistance mechanism. These results demonstrate
that Trisicell can robustly utilize scRNAseq data to delineate intratumoral heterogeneity and tumor evolution.
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1 Introduction
Cancer is a genomic disease that originates in distinct cells and grows through an evolutionary process, including
acquisition of genomic alterations, environmental selection, clonal expansion, and competition. The “natural history”
of cancer development results in extensive intratumor heterogeneity, which drives disease progression and therapeutic
resistance [1, 2, 3, 4]. From a genomic point of view, the subclonal makeup of tumors can be better understood
through modeling their evolutionary history as a branched process, in the form of a phylogenetic tree [5]. Tumor
phylogenies depict relative temporal order of genomic alteration events during tumorigenesis. As such, they can help
identify key mutations driving the formation of distinct subpopulations, especially those that are resistant to therapies.
Furthermore, tumor phylogenies can also reveal metastatic seeding patterns and sets of mutations harbored by the
metastasis seeding cells [6].

The first computational tools for reconstructing tumor phylogeny were developed for bulk genome/exome sequenc-
ing data (see [7] for a survey). Unfortunately, since bulk sequencing provides only an aggregate signal over a large
number of cells, it offers a very limited resolution in the inferred trees of tumor evolution. Specifically, computa-
tional methods based on bulk sequencing data are frequently unable to distinguish between multiple distinct trees that
describe the observed data equally well [8, 9, 10].

The rise of single cell sequencing (SCS) has made it possible to explore the makeup of tumors at a higher, cellular
resolution. In particular, single cell transcriptomic sequencing (scRNAseq) has significantly improved our understand-
ing of intratumor heterogeneity from a gene expression point of view (see [11] for a survey). As per its application to
developmental biology, scRNAseq has enabled the identification of tumor subpopulations based on their gene expres-
sion, differentiation status and lineages, and how they respond to therapies. Unfortunately, computational methods
for tracing lineages through gene expression profiles require a hypothesis of developmental origin, and as such, can not
help infer the evolutionary history of the tumor in detail [12]. In contrast, recently developed barcoding techniques
(see [13] for a survey) can help perform detailed lineage tracing up to the time of the original tumor biopsy, but
not earlier. Finally, tumor phylogenies based on genomic alterations observed in single cells provide a very detailed
evolutionary history of a tumor and are our main focus in this paper.

Many of the methods developed for tumor phylogeny inference from single cell data primarily employed genomic
mutations and short indels observed in single cells. The first methods in this domain, such as SCITE [14] and OncoNEM
[15], aimed to build the “most likely” tumor phylogeny through genomic SCS data under the “infinite sites” assumption
(ISA). Even though some (e.g. SiFit [16] and SiCloneFit [17]) relaxed this assumption by allowing ISA violations at a
given “cost” and others (e.g. SPhyR [18]) generalized it to a Dollo parsimony, the majority of available tools still employ
ISA (see [19] for a survey), and aim to infer a “perfect phylogeny” by “correcting for noise” in genotype calls (due to,
e.g., allele dropout or low sequence coverage), possibly with a maximum likelihood/parsimony approach. Since this is
a computationally hard (in fact “NP-hard”) problem [20, 21, 22, 18] any principled approach has a theoretical upper
bound with respect to the scale of the SCS data it can handle. As a result, available methods either employ MCMC
(Markov Chain Monte Carlo) methods and other heuristics (e.g. SCITE [14]), which can not guarantee optimality, or
use Integer Linear Programming or Boolean Constraint Satisfaction problem solvers (e.g. PhISCS [23]), which have
worst-case running times exponential with the input size. Even recent, custom-built branch and bound approaches
such as PhISCS-BnB [24] can not cope with the scale of emerging SCS datasets with thousands of mutations detected
in hundreds of cells. As a result, the only scalable tumor phylogeny inference methods in existence are the “distance-
based” heuristics (e.g. neighbor-join-based ScisTree [22]), which have known theoretical limitations and can not offer
performance guarantees.1 An orthogonal set of tools utilize single cell copy number variation (CNV) calls, (e.g. offered
by Chromium Single Cell CNV Solution from 10x Genomics), to infer the evolutionary history of tumors (e.g. [25])
but they work only with a limited number of (sub)clones and copy number alteration events.

The combination of single cell sequencing and phylogenetic analysis is the key to understanding intratumor het-
erogeneity. Unfortunately, single cell genome sequencing (scWGS) and exome sequencing (scWES) are prohibitively
expensive and suffer from high levels of sequencing noise [26]; as a result, they are not commonly employed. In con-
trast, single cell whole transcriptome sequencing protocols, such as Smart-seq2 [27], have gained popularity due to
their relatively modest cost. However, their ability to offer information about (expressed) mutations and copy number
alterations has been underutilized. In fact, there have been only two attempts to (1) cluster single cells based on
their mutational profiles derived from scRNAseq data and/or (2) utilize these clusters to build phylogenies. The first
was DENDRO [28], which, as per ScisTree, is a greedy hierarchical clustering method based on coverage-weighted
differences between cells, and thus has theoretical limitations with respect to accuracy. Another was Cardelino [29],

1Consider a simple example with a noise-free input comprised of three cells and m > 4 mutations. Suppose the first cell has only the
first mutation, the second cell has only the second mutation and the third cell has all mutations except the first mutation. Among these
cells, the “nearest” two are the first and second, with a Hamming distance of 2. A distance-based greedy method could conclude that
the first and second cells are siblings, and their parent is a sibling of the third cell. ISA dictates that this parent node does not include
any mutation. This would imply that the second mutation occurs independently both in the third cell and the second cell, violating ISA.
However there is an alternative, ISA satisfying solution where the second and third cells are siblings, and their parent is a sibling of the
first cell.
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which, as per SCITE, simultaneously assigns cells and mutations to nodes/clones. Since Cardelino is based on Gibbs
sampling, it offers no performance guarantee and does not scale up to infer sizable/detailed phylogenies (e.g., most of
the trees reported in [29] consist of 4 nodes).

To address some of the key challenges in tumor phylogeny reconstruction from single cell genomic and, in par-
ticular, transcriptomic sequencing data, we developed Trisicell (Triple-toolkit for single-cell tumor phylogenetics)
comprised of three computational methods of independent but complementary aims and applications (see Figure 1):
(1) Trisicell-PartF is the first method devised to compute the partition function of a tumor phylogeny. Given an
input genotype matrix, Trisicell-PartF employs a localized sampling strategy to compute the probability of (and
thus our confidence in) any user-specified set of cells forming a subclone seeded by one or more (again user-specified)
mutations. Importantly, we prove that, as the sample size increases, the output of Trisicell-PartF converges to
the correct value of the partition function. (2) Trisicell-Cons is devised to compare two or more phylogenies (more
specifically cell-lineage trees) derived from the same single cell data, and build their consensus tree by “collapsing”
the minimum number of their edges so that the resulting trees are isomorphic. Trisicell-Cons guarantees to build
the optimal consensus tree across phylogenies inferred by distinct methods and/or data types, and helps in identifying
robust evolutionary relationships between cells/mutations. (3) Trisicell-Boost is a booster for phylogeny inference
methods allowing them to scale up and handle large and noisy scRNAseq datasets. For that, Trisicell-Boost, itera-
tively samples random subsets of mutations and builds the phylogeny of each subset through a user-selected inference
method (e.g. SCITE or PhISCS). It then establishes the consensus of these phylogenies as the global phylogeny of the
tumor sample. In combination, the three components of Trisicell provide means to infer large scale tumor phyloge-
nies, compare them in a principled manner, and assess their distinct substructures/subclones, especially through the
use of scRNAseq data.

We assessed Trisicell on both simulated and real tumor sequencing data for phylogeny reconstruction and
evaluation. In particular, we applied Trisicell to study melanoma, the malignant disease of melanocytes.

During embryonic development, neural crest (NC) differentiates to melanoblasts; they migrate and mature to
melanocytes in skin. In normal skin, melanocytes accumulate mutations induced by ultraviolet radiation (UV) or
other carcinogens over time. In rare instances, some melanocytes are transformed into melanoma. It was recently
shown that human melanoma can be categorized into four distinct developmental subtypes [30] that are associated with
expression of specific marker genes: “undifferentiated” subtype with the highest expression of Axl, “NC-like” subtype
with high level of Axl and Erbb3, as well as “transitory” and “melanocytic” subtypes with lower level of Erbb3 but
high level of Mitf. In a recent study, we have also developed a “melanocytic plasticity signature” (MPS) score, which
involves the expression levels of 45 genes: a higher MPS score correlates with higher plasticity and lower differentiation
[31]. Importantly, therapeutic response to immune checkpoint blockade (ICB) is associated with the MPS score in
both mouse and human melanomas.

For our recent study, we have generated multiple mouse melanoma models using distinct and relevant genetic
alleles and carcinogenic procedures. Among them, the “M4” mouse melanoma model represents UV-induced RAS-
mutated, differentiation-transitory subtype of human melanoma. This model responds to anti-CTLA-4 in a diverse
manner, replicating the clinical treatment of melanoma with immune checkpoint inhibitors. Histological analysis of
the tumors from this model also demonstrated a heterogeneous distribution of melanocytic makers’ expression values
(TRP2, TYRP1, and SOX10), as well as pigmentation [31]. Therefore, it is a suitable model for studying intratumor
heterogeneity.

In this study, we have applied Trisicell to sequencing data derived from the melanoma line B2905 derived from
the M4 melanoma model. Specifically for this paper, we isolated and expanded 24 single cells from B2905 cell line
to distinct “clonal sublines” that possess genomically uniform populations. Three tasks were performed: (i) On each
subline, we performed high coverage bulk whole exome sequencing (bWES). (ii) We selected ∼ 8 single cells from each
subline and applied full-length transcriptome sequencing via the Smart-seq2 protocol [32] (scRNAseq). (iii) We finally
selected 11 of these 24 sublines and implanted them in syngeneic C57BL/6 mice, each with 3 replicates, and performed
bulk whole transcriptome sequencing (bWTS) on the resulting tumors (see Section 2.3 for the selection criteria).

The high coverage bWES data forms a “gold standard” for mutation calling in each of the 24 sublines. For
each subline, we compared the mutations identified in bWES data to those derived from bWTS and scRNAseq data to
identify those mutations that are expressed. Additionally, we evaluated “mutation calls” on both bWTS and scRNAseq
data that are not present in bWES data to assess the scale of sequencing artifacts and RNA editing events [33] that
lead to false positive mutation calls in transcriptome sequencing data. Since for some sublines we obtained bWTS data
from three distinct replicates and scRNAseq data from eight single cells for each subline, these mutation calls are very
robust. As a result, this tri-modal sequencing dataset offers a powerful way to benchmark computational methods for
tumor phylogeny reconstruction and evaluation, especially through the whole and single cell transcriptome sequencing.

We first employed simulated data to benchmark Trisicell-Boost using two existing tumor phylogeny inference
methods, namely SCITE and PhISCS, which we ran both as stand-alone programs as well as after boosting them
with Trisicell-Boost. We observed that the run time performance of PhISCS as well as both the running time and
accuracy of SCITE were substantially improved through the use of Trisicell-Boost, particularly when solving large
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problem instances.
Next, we assessed Trisicell on the tri-modal sequencing dataset generated from 24 clonal sublines of parental

(B2905) cell line derived from the “M4” mouse melanoma model [31]. Having assessed that Trisicell-Boost (boosting,
e.g. SCITE) achieves high levels of accuracy on simulated genomic data, we first applied it to the bWES data. The
resulting phylogeny clusters the most rapidly growing sublines in vivo in a distinct clade. The probabilities of specific
mutations seeding this subclone, as computed by Trisicell-PartF, is also very high, offering further evidence for the
correctness of not only the topology of the inferred phylogeny but also its mutational placements.

We then built phylogenies for both bWTS data from 11 sublines (selected out of 24, as described in Section 2.3)
and the scRNAseq data from all 24 sublines. Trisicell-Cons demonstrated that these phylogenies were in strong
agreement with what we obtained for bWES data. Importantly, these phylogenies exhibited (almost) perfect clustering
across cells (∼ 8 cells per subline, 175 cells in total) and replicate originating from the same subline (3 replicates per
subline), further validating the implied evolutionary relationships between cells and sublines inferred through scRNAseq
and bWTS data.

After extensively evaluating Trisicell on our tri-modal sequencing dataset, we applied it to a larger, preclinical,
dataset involving B2905 melanoma cell line implanted in syngeneic (C57BL/6) mice, this time treated with anti-
CTLA-4 immune checkpoint inhibitor. We sequenced a total of 764 cells from four anti-CTLA-4-treated tumors as
well as two control tumors, via Smart-seq2 protocol, which, again, allowed the identification of mutations in full-length
transcripts. The phylogeny we built for this large scale scRNAseq dataset features distinct subclones strongly associated
with differentiation status and therapeutic response, leading to the conclusion that a subset of seed mutations drove
reshaping of the developmental landscape of the tumor, resulting in substantial phenotypic heterogeneity.

2 Results
2.1 Development of Trisicell
Trisicell is comprised of three computational methods of independent use and interest: respectively for assessing,
integrating, and boosting tumor phylogeny reconstruction methods so as to obtain reliable evolutionary histories of
cancers in a scalable manner. Importantly, we also present matching whole transcriptome and exome sequencing data
from clonal sublines, each derived from a single cell of a melanoma mouse model, as well as single cell transcriptome
sequencing data from these sublines. As will be detailed below, by jointly evaluating Trisicell inferred and validated
phylogenies on these clonal sublines with matching gene expression data, we demonstrate that certain subpopulations
of the melanoma mouse model seeded by specific mutations share developmental status, implying a connection to
tumor evolution. We expect that this dataset will help future method development efforts by offering a high-quality
platform for benchmarking, parameter tuning, and integration with other methods.

Trisicell is comprised of the following three tools:
(1) Available methods for tumor phylogeny inference from single cell data aim to reconstruct the “most likely” tree

using a noisy genotype matrix as their primary input. Even if all of the mutation calls in the genotype matrix are
correct and the method used can guarantee optimality, the output tree is just one of the many possible interpretations
of the input data as it only represents the “global” optimum. However, in many cases, we are interested in the likelihood
(and the reliability) of “local structures”. This is commonly encountered in structural biology, e.g. in RNA-structure
prediction where the goal is typically computing the most likely/thermodynamically stable secondary structure [34].
The secondary structure of an RNA strand can be represented as a tree and the likelihood of distinct subtrees of the
secondary structure can be assessed through a “partition function algorithm” [35, 36].2 Trisicell-PartF features
the first partition function formulation for a tumor phylogeny and employs a sampling strategy to compute it for
any user-defined subtree/subclone seeded by one or more mutations. Importantly, we prove that, as the sample size
increases, the output of Trisicell-PartF converges to the correct value of the partition function.

(2) In order to “solve” large instances of tumor phylogeny reconstruction problem, available approaches make
implicit and explicit assumptions on data behavior and, as a result, may output different trees for a given input
genotype matrix. In fact, even the set of mutations themselves, and thus the genotype matrix derived from a read
collection, may vary significantly as a consequence of the employed mutation calling pipelines. Furthermore, the type
of sequencing used for mutation calls (e.g., targeted or whole, genome or transcriptome sequencing) could result in
distinct mutation calls for a given set of cells. As a result, it is many times not feasible to compare phylogenies
describing the lineages of a given set of cells from a tumor sample through their “mutation tree” representation, where
each node is labeled with one or more distinct mutations. Unfortunately, since available measures for comparing tumor
phylogenies were typically not developed for single cell data, they focus on how mutations (and not cells) are placed

2In the context of RNA-structure prediction, given the collection of potential base pairs as a set of random variables, the partition
function represents the marginal probability of a particular base pair (or set of “non-conflicting” subset of base pairs), i.e., the total
probability of all possible configurations that feature the base pair(s).
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on distinct lineages.3 As will be described below, our Trisicell-Cons features a novel measure to compare two or
more cell lineage trees. Here we use the broad definition of a cell lineage tree as a phylogeny where leaves and some of
the internal nodes are each labeled with one or more cells (in contrast to a narrower definition where only leaves are
labeled with a unique identifier [22]) . Our measure is based on a specific notion of a “consensus” between two trees,
accompanied with an algorithm named Trisicell-Cons and its implementation to build this consensus. On a given
set of cell lineage trees, Trisicell-Cons minimizes the number of edges to be “collapsed” so that the resulting trees
are isomorphic. As such, Trisicell-Cons generalizes the consensus taxonomic tree construction algorithm of Day [41]
for dendrograms, i.e. trees where only leaves are labeled with a single unique label. In order to modify Day’s algorithm
for tumor phylogenies where any internal or leaf node may have an arbitrary number of labels4, we developed a new
combinatorial approach and implemented it in Trisicell-Cons. We note that Trisicell-Cons provably obtains the
largest possible consensus tree between the two input phylogenies in time quadratic with the input size. As we will
demonstrate, it can be employed to integrate phylogenies obtained by various methods and data types to help infer a
more reliable evolutionary history of a tumor.

(3) Trisicell-Boost is a “booster” strategy for scaling up available tumor phylogeny inference methods, especially
those based on principled but relatively slow combinatorial approaches such as SCITE and PhISCS. It relies on the
observation that the “correct” phylogeny involving any subset of mutations in a tumor preserves the relative order
of mutations with respect to their ancestor-descendant and different-lineage dependencies compared to the “correct”
phylogeny on the entire set of mutations. In its implementation, Trisicell-Boost first performs a sampling and
phylogeny inference step in which a specified number of mutations and cells from the input genotype matrix are
sampled and, using the resulting submatrix as input, a perfect phylogeny is built through any user-selected phylogeny
inference tool that works well on small-scale data. This atomic step is repeated for a user-defined number of times
resulting in a collection of smaller phylogenies on distinct subsets of mutations. Since these phylogenies are obtained
independently from each other, their inference tasks could be executed in parallel. Once this step is completed
Trisicell-Boost reconciles them into a single phylogeny featuring the complete set of mutations and cells.

An overview of Trisicell methods is depicted in Figure 1.

2.2 Benchmarking tumor phylogeny reconstruction methods on simulated data

Using the procedure described in Supplementary Section H which has been employed to assess many of the available
methods for tumor phylogeny inference (including SCITE, PhISCS, OncoNEM, and B-SCITE) we simulated 80 distinct
genotype matrices under infinite sites model, with a varying number of mutations (300 and 1000), cells (300 and 1000)
and false negative mutation calling rates (0.05 and 0.20). The false positive mutation calling rate was set to 0.001 and
the size of the simulated tree of tumor evolution was set to 100 in all simulations (see Supplementary Section H for a
more detailed discussion on the tree size and other parameter settings).5.

On each simulated dataset, we compared Trisicell-Boost against both SCITE and PhISCS as stand-alone
programs.6 The accuracy of each tool for each parameter setting is provided in Figure 2. As can be seen, the results
obtained by all three methods are comparable when n = m = 300. This is also the case when n = 1000 and m = 300
when false negative rate is 0.05, however PhISCS fails to report solutions for some instances when false negative rate
is 0.2. When m = 1000 the performance of SCITE (with a 24-hour time limit) under both measures falls substantially
below that of Trisicell-Boost. PhISCS also has difficulty handling certain problem instances in 24 hours when
m = 1000, with the exception for n = 300 and the false negative rate of 0.05; for this setting it performs similar to
Trisicell-Boost. It is worth noting that, with respect to different-lineage accuracy measure, Trisicell-Boost is
near perfect across all simulations. With respect to ancestor-descendant accuracy measure, Trisicell-Boost also
achieves very high accuracy, which increases as the number of simulated single cells is increased. An evaluation of the
robustness of Trisicell-Boost to the presence of deletion events, which are a major cause of violations of infinite
sites assumption, and additional information of running simulations can be found in Supplementary Section K.

3Examples include the number of ancestor-descendant and different-lineage relationships shared across the trees compared, as well as
more sophisticated measures such as the Multi-Labeled Tree Edit Distance and others [23, 37, 38, 39, 40].

4which is important especially since many methods build phylogenies based on mutations shared by at least two cells or pre-cluster cells
based on their mutational profiles

5Another parameter used in our simulations is the missing value rate γ, which determines the fraction of entries in the genotype matrix
which are unknown. We used γ = 0.2 in our simulations. This choice is consistent with the missing value rates observed in single cell
genome sequencing data but is somewhat lower than that we observed in our real scRNAseq data. Our simulations aim to compare the
performance of Trisicell-Boost to the methods it boosts, in particular SCITE and PhISCS, which were developed for genome sequence
data. For higher missing value rates, a comparison of Trisicell-Boost to SCITE, PhISCS, as well as DENDRO and Cardelino, tools
developed specifically for RNAseq data, is provided for real scRNAseq datasets.

6Since the model employed by SCITE and PhISCS are identical, the trees they built were isomorphic for many of the smaller datasets;
thus we do not report Trisicell-Boost’s results for SCITE and PhISCS separately.
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2.3 Benchmarking tumor phylogeny reconstruction methods on clonal sublines from
the M4 melanoma model

Melanocytes are derived from the neural crest during embryonic development. In normal skin, melanocytes accumulate
mutations induced by ultraviolet radiation (UV) or other carcinogens over time. In rare instances, some of them are
transformed into melanoma. It was recently shown that human melanoma can be categorized into four distinct
developmental subtypes. Ranked with respect to differentiation levels, they are “undifferentiated”, “neural crest-
like”, “transitory”, and “melanocytic” [30]. In a previous study [31], we have generated multiple mouse melanoma
models using distinct genetic alleles and carcinogenic procedures with the aim of better modeling human melanoma.
Previously, through comparative analysis, we have also identified a “melanocytic plasticity signature” (MPS) composed
of 45 genes, which allows quantification of the developmental status of melanoma: a higher MPS score correlates with
higher plasticity and lower differentiation [31]. We have found that therapeutic responses to immune checkpoint
inhibitors are associated with MPS scores in both mouse and human melanomas. In this study, we used the B2905 cell
line derived from “M4” mouse melanoma model that represents UV-induced RAS-mutated, differentiation-transitory
subtype of human melanoma. This model responds to anti-CTLA-4 in a diverse manner [31], replicating the clinical
treatment of melanoma with immune checkpoint inhibitors. Therefore, it is a suitable model for studying tumor
heterogeneity.

In order to investigate Trisicell-Boost’s applicability to experimental datasets, we generated three types of
sequencing data from tumors derived from the parental M4 (B2905) mouse melanoma model. First, 24 single cells
from M4 were expanded into clonal sublines, and then subjected to bulk whole exome sequencing (bWES). We then
implanted each subline into five syngeneic mice to monitor their growth kinetics. Out of the 24 sublines, 11 reached
100% tumor-take rate. Each of these tumors was harvested at an endpoint, and 3 tumors from each subline were
subjected to bulk whole transcriptome sequencing (bWTS) as triplicates (Figure 3a). Additionally, we extracted 8
single cells from each subline and subjected them to Smart-seq2 protocol to obtain scRNAseq data (Figure 4a).

For assessing Trisicell on this tri-modal sequencing dataset, we first built the phylogeny of the 24 clonal sublines,
through mutation calls that we made on their bWES data using Trisicell-Boost (Figure 4b). Next, we built the
phylogeny of the 11 sublines (each with 3 replicates) through mutation calls that we made on their bWTS data
(Figure 3c). Then, by the use of Trisicell-Cons, we constructed the consensus of the subline phylogenies that we
had built through the use of bWES data and bWTS data, which exhibited only minor differences (in the location of
the subtree with sublines C1, C4, and C22; see Figure 3f). Furthermore, the tree we built using bWTS data was very
similar to that using bWES data with respect to commonly used measures of accuracy (Figure 3e). Note that, even
though the exact set of mutation calls made on any given subline from bWTS data differed from that of bWES data,
the mutation calls made on the bWTS data differed minimally across the three replicates of the same subline (see
Figure 3c for those mutations also observed in bWES data and Figure S16 for the entire set of mutations). As a result,
the Trisicell-Boost built phylogeny on bWTS data was able to cluster all replicates from each subline correctly,
demonstrating its potential use on mutations derived from RNAseq data for tumor phylogeny reconstruction.7 In
contrast, DENDRO and Cardelino, the only other tools for tumor phylogeny inference through RNAseq reads, both
failed to cluster replicates of certain sublines correctly, as discussed in more detail below.

The phylogeny built on bWES data features a subtree comprised of the most rapidly growing sublines (measured
by the survival time8) in vivo (Figure 4b). These sublines, i.e., C11, C15, C16, and C18, are seeded by a distinct
set of mutations, several of which are also observed in bWTS data.9 An analysis of this subtree in both bWES and
bWTS phylogenies by Trisicell-PartF (see Figure 3g,h) suggests that some of these seeding mutations (especially
the seven observed in both bWTS and bWES data, all with high probability) may have contributed to the emergence
and proliferation of the associated subclone. In particular, Map2 is a known melanoma cell proliferation inhibitor [42].
A non-synonymous SNV in exon9:c.G739C:p.G247R of this gene is likely one of the contributors to the rapid tumor
growth in these sublines.

As mentioned earlier, we have also used our bWTS dataset to evaluate DENDRO and Cardelino, the only other
tools for tumor phylogeny inference via RNAseq reads, in addition to SCITE and PhISCS, this time as stand-alone
tools. DENDRO produced a tree which is substantially different from the bWES tree (e.g. it clustered the most
aggressive sublines with some of the least aggressive); in fact, it even failed to cluster replicates of certain sublines
correctly. Cardelino on the other hand is primarily developed for assigning mutations to the nodes of a preset topology
and could not infer trees of this scale - see Supplementary Sections P and Q). SCITE and PhISCS on the other hand
produce phylogenies (almost) isomorphic to their boosted versions with Trisicell-Boost, providing further evidence
for the robustness of Trisicell-Boost in scaling up these methods; see Supplementary Section O. (Note that for
brevity we only provide the results for SCITE as PhISCS results were identical.)

7Even though for most sublines, the expression profiles of all three replicates were very similar, in rare cases a replicate had a substantially
different gene expression profile, suggesting an epigenomic alteration.

8Survival time is defined as the post-inoculation time required for the tumor to reach the pre-determined endpoint, size of 1000 mm3.
9bWTS data does not include all mutations or sublines.
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We finally built the scRNAseq based phylogeny of ∼ 8 single cells derived from each of the 24 sublines. A total
of 175 (out of 24 × 8 = 192) cells provided sufficient read coverage to perform mutation calling. In order to reduce
transcriptome sequencing artifacts and RNA editing, we only consider those mutations shared by the corresponding
bWES data. Finally, to account for deletion events (leading to loss of heterozygosity LOH), if a mutation in a gene
with a copy number of 1 is not observed in a cell, we set its status to “NA” (i.e. unknown) (see Supplementary
Section R for details of copy number profiling). The resulting phylogeny obtained by Trisicell-Boost (again
boosting SCITE) is provided in Figure 4c. Notice that the cells originating from the same subline are well clustered,
akin to the clustering of replicates from each subline in the bWTS phylogeny. Furthermore, the major subtrees of
the scRNAseq phylogeny are identical to that of the bWES phylogeny as demonstrated by their Trisicell-Cons
consensus shown in Figure 4d. For example, the subtree featuring the most rapidly growing sublines in vivo (i.e. C11,
C15, C16, C18) in bWES phylogeny is preserved in the scRNAseq phylogeny. Additionally, ancestor-descendant and
different-lineage mutation pair relationships in the scRNAseq mutation tree with respect to the bWES mutation tree
are highly preserved (Figure 4e). Overall, the phylogeny demonstrates that Trisicell-Boost can be used to infer
detailed and scalable tumor phylogenies through the use of scRNAseq data, especially when combined with bulk whole
genome or exome sequencing data for mutation calling. (The corresponding phylogenies we built for all “mutations”
observed in bWTS and scRNAseq data can be found in Supplementary Section N.)

We also evaluated DENDRO and Cardelino, as well as SCITE and PhISCS as stand-alone tools, on the scRNAseq
dataset. As in the case of some larger simulations, PhISCS could not complete the task in 24 hours; this is because
it necessarily searches for the minimum possible noise reduction for obtaining a phylogeny. SCITE on the other hand
produced a result since it is designed to search for a solution in a user-specified time, but its output could be sub-
optimal. The tree built by SCITE is given in Figure S19: even though SCITE clusters cells from each subline well,
the relative placement of the sublines does not agree with that in the bWES phylogeny as demonstrated by their
Trisicell-Cons built consensus. DENDRO, in contrast, failed to cluster cells from the same subline Figure S21.
Similarly, Cardelino, even when used for cell clustering only, fails to perform well on this dataset (see Supplementary
Section Q).

2.4 Application of Trisicell to anti-CTLA-4-treated tumors derived from the M4
melanoma model

To investigate the origin of intratumoral heterogeneity and its impact on the resistance to anti-CTLA-4, we performed
a preclinical study involving six mice implanted with M4 melanoma, four of which were treated with anti-CTLA-4
antibodies, and the remaining two with generic immunoglobulin IgGb as control (Figure 5a).10 A total of 764 cells
from all six tumors that passed the quality control and had sufficient read depth were selected for downstream analysis.

Trisicell analysis. To study the subclonal structure of the anti-CTLA-4 treated M4 melanoma, we applied
Trisicell to reconstruct the phylogeny from all six tumors. The cells were first locally grouped into 64 mutationally
homogeneous clusters and each cluster’s reads were re-evaluated to establish their mutation profiles (a similar approach
for clustering cells prior to mutation calling have been used earlier, e.g. for CNV profiles [25, 43]). Trisicell-Boost
inferred phylogeny on this dataset is provided in Figure 5b.

As a next step, for each leaf node we calculated the median of (1) “melanocytic plasticity signature” (MPS) [31]
and (2) expression of neural crest (NC) lineage developmental markers including Axl (undifferentiated/NC), Erbb3
(NC/transitory), and Mitf (differentiated) [30]. To compare the phenotypes, we also analyzed the proportion of (1)
cells from distinct UMAP clusters (see below for UMAP analysis); (2) cells from distinct tumors; and (3) cells from
control vs anti-CTLA-4 treatment groups. When tracing specific mutations in each node, the “hotspot” mutations at
Kras, Sf3b1, and Trp53 (p53) were found in the five internal nodes closest to the root. This is expected since these
are the well-known “driver” mutations and they frequently occur in human melanoma. Interestingly, the phylogeny
features five major subtrees (or clades), which are strongly associated with MPS values, as well as expression of Axl
and Mitf : clade B1 (MPShigh, Axl+), clade B2 (MPShigh, Mitf+), clade B3 (MPSmedium, Axl−, Mitf+), clade B4
(MPSmedium, Axl+, Mitf+), and clade B5 (MPSlow, Mitf+). Across these subtrees, the expression of Erbb3 is similar
to Mitf. The seeding mutations of these subtrees include those in Pik3r2, Gna11, Adgr3, Pten, Brd1, and Top2a, genes
that are recurrently mutated in human melanoma.

The identification of distinct clades in the phylogeny allowed us to trace the subclonal evolution as a consequence
of anti-CTLA-4 treatment. To examine the association between the tumors and clades, we calculate the proportion
of cells from each tumor and treatment group for each leaf, as shown in the sixth and seventh panels under the
phylogeny in Figure 5b, respectively. While four clades (B2 to B5) do not enrich cells from specific tumors, B1 has

10The tumors were harvested when their size reached about 500 mm3 as endpoint. For scRNAseq analysis, the two control group tumors
were harvested at day 41 and 54. From anti-CTLA-4 group, one tumor was harvested at day 54, another at day 75 and final two at day 85
(see Supplementary Section F). The variable time of endpoint demonstrates the diverse growth kinetics and therapeutic responses of this
model.
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significantly higher number of cells from tumor m122 of the anti-CTLA-4 treatment group. In correspondence, we
investigated the subclonal response to the treatment by calculating the proportion of cells from each clade for each
tumor; see Figure 5d. Observe that during the growth of tumor m122, clade B1 became predominant while B2 and B3
diminished, which suggests that these three clades were subjected to strong selection pressure. The fraction of clade B1
also slightly increased in tumor m103 and m109, but not in m115. Interestingly, our previous study had demonstrated
that melanoma resistance is associated with high plasticity, consistent with the fact that B1 clade exhibits the highest
MPS scores and expression of “undifferentiated” markers[31].

Our new results suggest that subclonal selection may not happen in every tumor responding to therapy. Since it
has been reported that cancer cells can adapt to the therapeutic stress via a non-genetic mechanisms [44], we analyzed
deferentially expressed genes in each clade by comparing anti-CTLA-4 treated tumors against control tumors (see
Supplementary Section D) and then subjected them to Gene Set Enrichment Analysis (GSEA) (see Supplementary
Section E). Interestingly, differentially expressed genes of clade B1 are mostly enriched in inflammatory pathways,
especially in m122, suggesting that cells of clade B1 were “intrinsically” resistant and thus selected by the immune
response. This is consistent with our previous discovery that undifferentiated subtype of melanoma is resistant to
immune checkpoint blockade [31], as clade B1 cells exhibit high MPS scores and Axl expression. Cells in other clades
seem to activate pathways relevant to mesenchymal stem cells (myogenesis and cholesterol homeostasis in B2 and B3),
mitotic arrest (mitotic spindle and G2M checkpoint in B4), and energy metabolism (oxidative phosphorylation in B5).

Expression profile based clustering of cells with UMAP. In order to compare phylogenetic analysis with
gene expression profile analysis we employed Seurat package [45]11 which resulted in seven clusters with distinct gene
expression patterns (see Figure 5c), corresponding to differentially expressed gene sets (see Supplementary Section G).
We examined the expression of lineage markers in these clusters and noticed that clusters c5 and c6 in Figure 5c have
higher median MPS scores and more Axl+ cells than others, suggesting that they are less differentiated. Among these
clusters c6 includes no Erbb3+ cells indicating that it is even less differentiated than c5. In contrast, the remaining
clusters have lower MPS scores and more Mitf+ cells, indicating that they are more differentiated. Noticeably, the
distribution of the expression patterns of these genes is heterogeneous, even among the cells from the same cluster. For
example, Axl+ cells are also present in the five clusters with lower MPS scores. This implies that the UMAP clusters
are only weakly associated with developmental status.

A comparison of Trisicell inferred phylogeny and UMAP clusters. We calculated the proportion of cells
from each UMAP cluster (see Figure 5c) in each leaf node of the phylogeny. As can be seen in the fifth panel of
Figure 5b, clade B5 is enriched with UMAP clusters c3 and c7, and clade B3 is enriched with UMAP cluster c1; all
these clusters are Mitf+. In contrast, the two Axl+ clades, B1 and B4, are not enriched with cells from any particular
UMAP cluster. These results indicate that the mutation-based clades in the phylogeny are associated with distinct
developmental status defined by MPS score and lineage markers, rather than the overall gene expression patterns as
suggested by UMAP clusters.

In conclusion, our study demonstrates that Trisicell inferred tumor phylogeny from transcriptomic mutational
profiles of single cells can robustly trace distinct subclones, making it feasible to study their specific treatment responses.
Our results are consistent with recent studies reporting on distinct subclonal populations that develop specific resistance
or adaptation mechanisms to therapy [49, 50].

3 Discussion
The large scale of and high levels of noise in single cell whole transcriptome sequencing (scRNAseq) datasets have lim-
ited their use in tumor phylogeny reconstruction and mutational heterogeneity analysis. Here we introduce Trisicell,
an algorithmic toolkit to not only (i) build scalable tumor phylogenies by boosting available phylogeny reconstruction
methods to handle large scRNAseq datasets with high levels of noise, but also (ii) compare multiple phylogenies built
for a tumor sample by the use of distinct data types and methods, and establish their consensus phylogeny, and
(iii) compute the partition of a tumor phylogeny to evaluate the robustness of its distinct subtrees and their seeding
mutations.

We evaluated Trisicell on a tri-modal sequencing dataset comprised of bulk whole exome and transcriptome
sequencing data from single cell derived clonal sublines (each with a homogeneous mutational profile) of a melanoma
cell line M4, as well as scRNAseq data from multiple cells from each subline, obtained through Smart-seq2 protocol.
Trisicell produced robust results on this dataset with a broad consensus among the phylogenies it built for the three
data types. Importantly, Trisicell’s partition function formulation was able to determine that specific subtrees of

11Briefly, Seurat uses graph-based clustering approaches such as [46, 47] that embed cells in a graph structure where edges between cells
indicate similar feature expression patterns. It then attempts to partition this graph into interconnected “communities” using Louvain or
smart local moving (SLM) methods [48].
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the phylogeny with distinct growth patterns have very likely been seeded by a distinct set of mutations, suggesting
that these mutations are possible subclonal drivers of tumor growth (Figure 4b). In general, the phylogeny strongly
correlates with in vivo growth and developmental status, supporting that some of these mutations exhibit function
and drive subclonal selection during tumor progression.

We note that only a fraction of the mutation calls on the exome and transcriptome data from the M4 melanoma are
shared (see Figure 3d). This may be attributed to the fact that not all genes are expressed, and that post-transcriptional
processing and modification can introduce sequence variants not present in the genome [51]. Nevertheless, Trisicell
inferred phylogenies based on mutation calls using exome and transcriptome data turned out to be nearly identical.
This concordance suggests that it is primarily the expressed mutations that are under selection pressure and drive
the subclonal evolution of the tumors; other mutations could be neutral or negatively selected under stress. This
observation is also supported by the fact that the proportion of mutations that are expressed decreases on lineages
from the root to the leaf nodes (see Figure 3b and Figure 3c). The implied functionality of expressed mutation calls
for further analysis, which we leave to future studies.

The tri-modal melanoma sequencing dataset we generated for this study is of independent interest, as it offers
means to assess the accuracy and robustness of tumor phylogeny inference tools based on both bulk and single cell
RNAseq data. Additionally, we applied Trisicell to analyze six tumors from a preclinical study of M4 melanoma
model, among which four were from mice treated with anti-CTLA-4 and the other two from the control treatment.
A large set of cells harvested from each tumor were then subjected to Smart-seq2 protocol to produce a large scale
scRNAseq dataset. We then applied Trisicell to this dataset and cross-evaluated the phylogeny based on mutation
calls from each cell, as compared to clusters derived from gene expression profiles. We observed that the subtrees of
the phylogeny are better associated with developmental status (as defined by MPS) and neural crest lineage markers
than UMAP clusters, which are based on overall gene expression (Figure 5c). Even though the five main subtrees
(clades) in the scRNAseq phylogeny all share driver mutations frequently observed in melanoma (i.e. in Kras, Sf3b1,
and Trp53), each subtree features a specific combination of mutations and developmental status.

Surprisingly, anti-CTLA-4 treatment did not have an impact on cell lineages. Moreover, among the four anti-CTLA-
4-treated tumors, significant subclonal selection occurred in one sample (m122), and adaptation by transcriptional
change occurred in the remaining three, consistent with recent studies which suggest that therapeutic resistance is
mostly caused by a combination of genetic and non-genetic mechanisms [44]. These results demonstrate that Trisicell
inferred phylogenies allow us to trace lineages and subtrees of cells receiving a particular treatment in detail, adding
a key dimension to the studies of intratumor heterogeneity.

In conclusion our results demonstrate the importance of phylogenetic analysis in studying tumor evolution and
intratumor heterogeneity. This can be achieved through the innovative use of scRNAseq data, which have been
primarily used for identifying gene expression differences across distinct cell types. The ability of Trisicell to build
large scale, robust tumor phylogenies, to identify and evaluate distinct subtrees and seeding mutations greatly expands
possible applications of scRNAseq data including subclonal driver mutation discovery and lineage tracing.
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Figure 1 | Overview of Trisicell. Tumors are typically heterogeneous and are made of distinct populations of cells, each with a
distinct set of somatic mutations. Whole single cell RNAseq (scRNAseq) data from a tumor is used for calling expressed mutations in
each cell; scRNAseq data can be additionally used to derive single cell expression profiles. Trisicell-Boost can then be applied to cell-
specific mutation sets for scalable and robust tumor phylogeny reconstruction. Additional tumor phylogeny reconstruction tools may infer
alternative trees, which can all be integrated into a single consensus phylogeny through the use of Trisicell-Cons.a Expression profiles
of cells harbored in distinct subtrees of the resulting phylogeny may suggest distinct subclonal phenotypes. Expressed mutations seeding
these subtrees can be evaluated by Trisicell-PartF to identify high confidence mutations strongly associated with each subclone.

aAlternative phylogenies can also be obtained through other means of sequencing (e.g. DNA).
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Figure 2 | Benchmarking Trisicell-Boost on simulated data. A Comparison of SCITE and PhISCS with their Trisicell-Boost
boosted versiona on simulated data, with respect to two commonly used measures of accuracy (see Supplementary Section I for definitions).
Boosting SCITE and PhISCS does not result in loss of accuracy on smaller datasets that they can handle well as stand-alone tools. However,
their performance is substantially improved by the boost they received from Trisicell-Boost on larger datasets.
Details on the simulations and accuracy measures are provided in Supplementary Sections H and I. The parameters n, m and fn respectively
denote the number of simulated single cells, mutations and the false negative rate in single cell sequencing data. For each value of m (300
or 1000), 10 distinct trees of tumor evolution were simulated and then for each value of n (300 or 1000) and fn (0.05 or 0.20) genotype
matrices were derived from these trees. In all experiments, the false positive rate was set to 0.001 (i.e., 0.1%) and the missing entries rate
was set to 0.05 (i.e., 5%). Note that PhISCS could not terminate within the 24-hour time limit on some instances of the problem - these
cases are excluded from the results. The exact number of these instances can be found in Figure S14a.

aEven though SCITE and PhISCS use different combinatorial approaches, they have the same objective and constraints and thus their
output on smaller trees (i.e. those which are employed by Trisicell-Boost) are isomorphic. As a result, we do not report on boosted
versions of SCITE and PhISCS separately.
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Figure 3 | Comparison of Trisicell built phylogenies using bulk whole transcriptome sequencing (bWTS) vs bulk whole
exome sequencing (bWES) data from 11 clonal sublines.a (a) Overview of the experimental protocol specific to bWES and bWTS
data generation. (b) bWES-based phylogeny by Trisicell-Boost. The number of somatic de novo mutations is shown for each node.
The color used for the label of each subline indicates its “aggressiveness”. In decreasing order of aggressiveness they are: red, orange,
purple, and green.b (c) bWTS-based phylogeny by Trisicell-Boost; each subline had five independently grown replicates; the fastest
growing three (see Figure S2) were sequenced. (d) The number of shared and private “mutation” calls across bWES and bWTS, as well
as scRNAseq data (see Figure 4 for results on scRNAseq data). (e) Commonly used measures of accuracy for the bWTS phylogeny with
respect to the bWES phylogeny (see Supplementary Section I for definitions). (f) Trisicell-Cons inferred consensus tree for bWES and
bWTS phylogenies. The number of somatic de novo mutations shown in the nodes of the consensus tree are for those shared between these
two phylogenies. (g) Trisicell-PartF calculated the probability of each mutation seeding the aggressive subtree of the bWES phylogeny,
comprised of sublines C15, C18, C11, C16, and C8.c (h) Trisicell-PartF calculated the probability of each expressed mutation seeding
the subtree comprised of the most rapidly growing tumors in the bWTS phylogeny.d

aSee Figure S2 for the criteria used to select these 11 sublines out of 24.
bAggressiveness of a subline is measured with respect to the median survival time (in days) and grouped by quartiles (red: <Q25, orange:

Q25-median, purple: median-Q75, green: >Q75).
cA mutation with a high probability is likely to have occurred at the root of a subtree that is comprised of the sublines C15, C18, C11,

C16, and C8.
dAll expressed mutations have probability 1 but some that are not expressed have lower probabilities.
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Figure 4 | Comparison of Trisicell built phylogenies using single cell RNA-seq (scRNAseq) vs bulk whole exome se-
quencing (bWES) data from 24 clonal sublines. (a) Overview of the experimental protocol specific to bWES and scRNAseq data
generation. (b) bWES-based phylogeny inferred by Trisicell-Boost. The number of somatic de novo mutations is shown for each node.
The color used for the label of each subline indicates its aggressiveness. In decreasing order of aggressiveness they are: red, orange, purple,
green, and blue.a (c) scRNAseq-based phylogeny by Trisicell-Boost; from each subline ∼ 8 cells were sampled and sequenced. Cell
colors indicate the subline they were sampled from. The cells for each subline are well clustered, with the exception of C2 and C3, which
are mixed.b (d) Trisicell-Cons inferred consensus tree for bWES and scRNAseq phylogenies. The number of somatic de novo mutations
shown in the nodes of the consensus tree is for those shared between these two phylogenies. (e) Commonly used measures of accuracy for
the scRNAseq phylogeny with respect to the bWES phylogeny (see Supplementary Section I for definitions).

aAggressiveness of a subline is measured with respect to the median survival time (in days) and grouped by quartiles (red: <Q25, orange:
Q25-median, purple: median-Q75, green: >Q75, blue: <3 tumors formed).

bIn the consensus tree of panel (d), only C3 is represented.
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Figure 5 | Trisicell-Boost inferred scRNAseq phylogeny for (M4 derived) tumors treated with anti-CTLA-4 immune
checkpoint inhibitor. (a) Overview of the experimental protocol specific to this scRNAseq data. (b) Trisicell-Boost inferred phylogeny
where each leaf represents a group of cells with similar mutational profiles. The number of somatic de novo mutations is shown for each
node. For each leaf, (i) the corresponding melanocytic plasticity signature (MPS) score and the expression values of lineage markers, (ii)
Axl, (iii) Erbb3, and (iv) Mitf are shown in the panels below the phylogeny. Based on these, five major subtrees/clades, B1, B2, B3, B4, and
B5 can be distinguished. Additional panels depict the proportion of cells in each leaf with respect to (v) expression profile based UMAP
clustering, (vi) mouse id, and (vii) the type of treatment they received. (c) Clustering of cells with respect to overall gene expression
profiles via UMAP (clusters are annotated by lineage markers). (d) The proportion of cells from each major subtree/clade of the phylogeny
in each mouse.
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5 Methods
Input data and notation. Given a sequencing experiment involves n single cells (or clonal sublines as in the case of
our bWES and bWTS datasets), we denote them by C = {C1, C2, . . . , Cn}. After data processing and mutation calling,
suppose that m putative mutations were detected (a mutation is considered to be detected if it is reported as present
in at least one single cell) and denote the set of detected mutations by M = {M1,M2, . . . ,Mm}. The observed status
of mutations in cells can be represented by a ternary “genotype matrix” I with n rows (cells), m columns (mutations),
where each entry is from the set {0, 1, ?}. Here Iij = 1 indicates that mutation Mj is reported to be present in cell
Ci and Iij = 0 indicates that Mj is reported to be absent in Cj . In some cases we do not have sufficient read count
information to call any of the present or absent states so we set Iij =? and call that a “missing entry”. We assume
that mutations from regions affected by deletions are filtered from the input and that commonly used infinite sites
assumption (ISA) holds, that is, each mutation is acquired exactly once during tumor evolution and it is never lost in
any of the descendants of the cell of its first occurrence.12

5.1 Trisicell-PartF: a partition function method to assess the likelihood of specific
somatic mutations seeding a subclone

We first introduce a partition function formulation for a genotype matrix and describe a novel sampling method to
calculate the marginal probability of a user-defined set of cells forming a distinct subtree of the tumor phylogeny,
seeded by a user-defined mutation. This formulation allows us to assess our confidence in a particular set of cells to
form a subtree/subclone, seeded by a particular mutation.13

Preliminaries. Let [x] = {1, 2, . . . , x} for any positive integer x. Recall that we fix n and m and consider n cells,
m mutations to study matrices H ∈ {0, 1}n×m, where Hi,j = 1 indicates that ith cell harbors jth mutation. We use
Hj to denote the jth column of H. With a slight abuse of notation, we use binary vectors of length n and subsets
of [n] interchangeably. For example Hj denotes the profile of jth mutation both as a binary vector and as a subset
of cells that harbors j. Based on the definition of three-gamets rule from [23], we define G ⊂ {0, 1}n×m to be the
set of matrices that satisfy three-gamets rule. Recall cell lineage trees introduced earlier; we further restrict this
definition to Binary Cell Lineage Tree (BCLT). BCLTs are cell lineage trees with n observed cells as their leaves
and latent subclones as their internal nodes, and each internal node has exactly two children. Notice that any cell
lineage tree can be transformed to a BCLT. Also, let BCLT(H) denote an arbitrary BCLT consistent with H for any
H ∈ G. Furthermore, let Tn denote the set of all possible BCLTs possible for n cells. We drop the subscript n as it is
fixed throughout this section. We use bold fonts for random variables to distinguish them from their non-stochastic
counterparts. For example we use X ∈ {0, 1}n×m to refer to the unobserved ground truth. Finally, we use H ∼ D to
indicate that the random variable H follows the distribution implied by some distribution D.

Obtaining P : a matrix of independent probabilities. We define a matrix P ∈ [0, 1]n×m based on the input
matrix I and noise rates α and β. The value Pi,j is equal to the probability that ith cell harbors jth mutation in the
ground truth, i.e., Xi,j = 1, given Ii,j , α and β. Formally, Pi,j = P [Xi,j = 1|Ii,j , α, β].

We can use the Bayes rule, along with the assumption that Xi,j is equally likely to take values 0 or 1 (before
observing I) to calculate I as follows. Fix α and β, and consider the case Ii,j = 1 first:

Pi,j = P [Xi,j = 1|Ii,j = 1]

=
P [Ii,j = 1|Xi,j = 1]P [Xi,j = 1]

P [Ii,j = 1|Xi,j = 0]P [Xi,j = 0] + P [Ii,j = 1|Xi,j = 1]P [Xi,j = 1]

=
0.5 · P [Ii,j = 1|Xi,j = 1]

0.5 · P [Ii,j = 1|Xi,j = 0] + 0.5 · P [Ii,j = 1|Xi,j = 1]

=
1− β

α+ 1− β

(1)

Similarly, for Ii,j = 0 case, we have Pi,j = P [Xi,j = 1|Ii,j = 0] = β
β+1−α .

There are more sophisticated methods for obtaining P from the output of SCS process (e.g., see [52]). Our method,
presented in this section, is general and works independent of how P is calculated.

12Nevertheless, we have assessed the robustness of our methods in the presence of undetected deletions that result in mutational losses
and possible ISA violations.

13The formulation naturally generalizes to any user defined set of mutations - including the empty set, in which case it represents the
probability of a user defined set of cells to form a subclone without a specific seeding mutation.
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In the following we present our formulation for partition function problem. Intuitively, the problem aims to measure
our confidence for a template of claims about ground truth phylogenetic tree X: Fix a mutation c and a subset of
cells R. How confident one can be to claim that the cells in R form a subtree with the root edge of the subtree labeled
with c, given P implied by our observations. Notice that this claim is equivalent to Xc = R.

In the rest of this section we let D(P ) denote the following distribution over {0, 1}n×m. If H ∼ D(P ) then the
probability of Hi,j = 1 is equal to Pi,j , independent of all other coordinates in H.

Problem. Given a matrix of independent probabilities P ∈ [0, 1]n×m, a mutation c ∈ [m] and a subset of cells
R ⊂ [n], estimate ProbH∼D(P )[Xc = R|H ∈ G]. That is, what is the probability that the cth column of H is equal
to R, given that H is coming from the distribution defined by P conditioned on being in G.

Approach. First, we present a way to sample BCLTs. In short, our algorithm builds a sample tree in a bottom-up
manner giving priority to nodes that correspond to the similar rows in P as well as nodes that have more mutations
in common. Then a number of such samples is constructed and used to estimate ProbH∼D(P )[Xc = R ∧H ∈ G] and
ProbH∼D(P )[H ∈ G], separately. Then our original goal ProbH∼D(P )[Xc = R|H ∈ G] can be calculated via following
equation due to the definition of conditional probability:

ProbH∼D(P )[Xc = R|H ∈ G] =
ProbH∼D(P )[Xc = R ∧H ∈ G]

ProbH∼D(P )[H ∈ G]
(2)

5.1.1 Sampling BCLTs

Algorithm 1 builds a random tree recursively. At each call to this algorithm a pair of rows is chosen based on two
criteria: (I) expected number of mutations in common and (II) similarity of the two cells. Then the rows corresponding
to this pair of cells are substituted by one new row representing the cells parent. Then the algorithm is recursively
called for the new matrix. Let E denote the distribution of trees that can be output by this algorithm. Moreover, this
algorithm can be modified to output the probability that each tree T is sampled, i.e., ProbT∼E [T = T ].

Algorithm 1 | Sample BCLT

Input: P ∈ [0, 1]n×m and parameters,
Output: A sample BCLT.

1: normalization_factor← 0
2: for (a, b) ∈ [n], a ̸= b do
3: sa,b ← (Pa ⊙ Pb)− |Pa − Pb| ▷ Pairs with higher score are more probable to be chosen.
4: normalization_factor← normalization_factor + esa,b

5: for (a, b) ∈ [n], a ̸= b do
6: pa,b ← esa,b/normalization_factor ▷ Ensuring that p.,. form a valid probability distribution over pairs of rows.
7: Choose one (a, b) ∈ [n], a ̸= b according to probabilities pa,b
8: parent← min(Pa, Pb)
9: Remove ath and bth rows from P and add parent

10: Calculate the tree for the new matrix recursively.
11: Add a and b as leaves and return resulting tree.

5.1.2 Estimating the probability of Xc = R ∧H ∈ G

Fix c,R,A, P . Given a T sampled by Algorithm 1 we define a quantity below that will be used to estimate
ProbH∼D(P )[Xc = R ∧H ∈ G]:

numerator_estimator(T ) = ProbH∼D(P )[Xc = R ∧H ∈ G|BCLT(H) = T ]
ProbH∼D(P )[BCLT(H) = T ]

ProbT∼E [T = T ]
. (3)

We show in Lemma 5.1 that this value is an unbiased estimator of Equation (2). Algorithms 1 to 3 can output
ProbT∼E [T = T ] (along with each T ), ProbH∼D(P )[BCLT(H) = T ] , and ProbH∼D(P )[Xc = R ∧H ∈ G|BCLT(H) =
T ], respectively. The proof can be found in Supplementary Section A.

Lemma 5.1. Let v be the variance of the estimator in Equation (3). Algorithm 4 outputs a value p̂ such that
Prob

[
|p̂− ProbH∼D(P )[Xc = R ∧H ∈ G]| > ϵ

]
< δ, when N is set to v

δϵ2 .
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Algorithm 2 | Calculate ProbH∼D(P )[BCLT(H) = T ] used in Equation (3) given one BCLT

Input: P ∈ [0, 1]n×m, a BCLT T
Output: The value of ProbH∼D(P )[BCLT(H) = T ].

1: for each mutation j ∈ [m] do
2: for each subtree F in T do
3: Calculate pj,F as the probability for the event jth column in H is equal to F

4: return
∏

j

∑
F pj,F

Algorithm 3 | Calculate ProbH∼D(P )[Xc = R ∧H ∈ G|BCLT(H) = T ] used in Equation (3) given one BCLT

Input: P ∈ [0, 1]n×m, c ∈ [m], R ⊂ [n], a BCLT T
Output: The value of ProbH∼D(P )[Xc = R ∧H ∈ G|BCLT(H) = T ].

1: for each subtree F in T do
2: Calculate pc,F as the probability for the event cth column in H is equal to F

3: return pc,R∑
F pc,F

Algorithm 4 | Estimate ProbH∼D(P )[Xc = R ∧H ∈ G]

Input: P ∈ [0, 1]n×m, c ∈ [m], R ⊂ [n] N sample size
Output: An estimate to ProbH∼D(P )[Xc = R ∧H ∈ G].

1: for i ∈ [N ] do
2: Ti ← a sample BCLT using Algorithm 1
3: ei ← estimate(Ti) through Equation (3) and Algorithms Algorithms 2 and 3
4: return Average(e1, . . . , eN )

5.1.3 Estimate ProbH∼D(P )[H ∈ G]

The approach for estimating ProbH∼D(P )[H ∈ G] is similar to the previous section, except that we will use the
following estimator (instead of numerator_estimator in Equation (3)).

denominator_estimator(T ) =
ProbH∼D(P )[BCLT(H) = T ]

ProbT∼E [T = T ]
(4)

Lemma 5.2 proves a theoretical guarantee for denominator_estimator similar to Lemma 5.1. The proof can be found
in Supplementary Section A.

Algorithm 5 | Estimate ProbH∼D(P )[H ∈ G]

Input: P ∈ [0, 1]n×m, c ∈ [m], R ⊂ [n] N sample size
Output: An estimate to ProbH∼D(P )[Xc = R ∧H ∈ G].

1: for i ∈ [N ] do
2: Ti ← a sample BCLT using Algorithm 1
3: ei ← denominator_estimator(Ti) through Equation (4).
4: return Average(e1, . . . , eN )

Lemma 5.2. Let v be the variance of the estimator in Equation (4). Algorithm 4 outputs a value p̂ such that
Prob

[
|p̂− ProbH∼D(P )[H ∈ G]| > ϵ

]
< δ, when N is set to v

δϵ2 .

5.1.4 Putting all together

Given P , c, and R, our algorithm estimates ProbH∼D(P )[Xc = R|H ∈ G] in four phases as follows:

1. Draws a predetermined number of sample BCLTs (Algorithm 1).
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2. Estimates ProbH∼D(P )[Xc = R ∧H ∈ G] with the guarantee given in Lemma 5.1 (Algorithm 4).
3. Estimates ProbH∼D(P )[H ∈ G] with the guarantee given in Lemma Lemma 5.2 (Algorithm 4).
4. Outputs an estimate for ProbH∼D(P )[Xc = R ∧H ∈ G] by dividing the estimate from step 2 by the estimate

from step 3.

An experimental evaluation of this method on simulated data can be found in Supplementary Section J.

5.2 Trisicell-Cons: an algorithm for building consensus tumor phylogenies
As mentioned earlier, it is desirable to establish a “consensus” between two or more phylogenies that represent the
evolution of a tumor sample. Since the set C of cells (or clonal sublines) of the input genotype matrix representing a
tumor is fixed but the mutation calls may vary, we focus on establishing a consensus between cell lineage trees rather
than mutation trees.14 Thus we introduce a simple, deterministic, exact algorithm for building a consensus tree of two
or more cell lineage trees, which runs in time quadratic with the input size. The ancestor-descendant relationships
between cells implied by the consensus of multiple cell lineage trees, each obtained through distinct methods and data
types, are likely to be more reliable. Edges maintained in the consensus tree are also more likely to be labeled by
mutations that “seed” the associated subtree.

Given sequencing data from n cells, labeled C = {C1, C2, . . . Cn}, let rooted trees T a and T b represent two distinct
evolutionary scenarios for C. We assume for both that: (i) each edge has a positive “weight”, (ii) each node has 0, 1
or more labels and each leaf node has at least 1 label, (iii) each internal node without a label has at least two children,
(iv) each label occurs exactly once in each tree, (v) the set of labels are identical in the two trees.15 The weight of an
edge represents the number of mutations that distinguish a (possibly inferred) parent node from its child. We call such
a tree a generalized cell lineage tree and as the label sets of the two trees are identical, we say they are comparable.

We now define the merge-with-parent operation on any given non-root node v of a tree: the operation merges v
with its parent w and deletes edge (w, v) so that (a) the new label set of w becomes the union of the original label sets
of w and v, and (b) the new set of children of w is the union of the original sets of children of w and v minus v (as it
ceases to exist). Observe that after merge-with-parent operations, the sets of labels on each node remain disjoint from
one another. The cost of a merge-with-parent operation is defined to be the weight of the edge (w, v). Our goal is to
perform a sequence of merge-with-parent operations on the two trees with minimum total cost so that the resulting
trees are isomorphic – and can be thought of as a single tree T c, which we call the consensus tree of T a and T b.

Definition 5.1. Given a pair of comparable cell lineage trees and a node v in either tree, let L(v) denote the complete
set of labels in the subtree rooted at v (including the labels of v itself). Then the two trees are isomorphic, if there is a
bijection between their nodes such that for any pair of matched nodes v and w, L(v) = L(w).

For any two nodes v, w in one tree, L(w) ⊆ L(v) if w is a descendant of v, and, if there is no ancestor/descendant
relationship between v and w, L(v) and L(w) are disjoint. Also, note that a matched leaf in T a must be matched to
a leaf in T b, and their labels must be identical. This isomorphism implies that the two trees look identical:

Lemma 5.3. Any two comparable cell lineage trees T a and T b are isomorphic if and only if there is a bijection between
their nodes where (i) the label sets of matched nodes are identical, and (ii) children of matched nodes are also matched.

The proofs of Lemma 5.3 and the following lemmata in this section can be found in Supplementary Section B.
We now describe our algorithm to compute T c. For simplicity, we consider a node to be its own lowest ancestor.

First Step. For any pair of labels x and y where x is in an ancestor of the node of y in T a, but not in T b, the
algorithm performs subsequent merge-with-parent operations in T b, from the node of x, up to the lowest common
ancestor of the nodes of x and y so x becomes an ancestor of y in T b. (A symmetric action happens when T a and T b

are reversed.) Note that, if x is a proper ancestor of y (i.e., they are not in the same node) in T a and y is a proper
ancestor of x in T b, the sequences of merge operations triggered in the two trees will end up placing x and y in the
same node in both T a and T b. We now show that the above operations are necessary.

Lemma 5.4. Let x reside in an ancestor of the node containing y in T a (for simplicity, we can say x is an ancestor of
y) and not in T b. Let z be the lowest common ancestor or x and y in T b. Then, any construction of T c must involve
removing the edges between x and z in T b through merge-with-parent operations.

We can see that once the first step concludes, ancestor-descendant relationships are consistent across the two trees.
14In addition, the problem of building a consensus across mutation trees through “edit operations” including deletion or move of mutation

labels from one edge to another is NP-hard [23].The single polynomial time computable “consensus” construction approach allows edit
operations on leaf nodes only [37].

15The trees could have been built by two distinct methods on the same set of mutation calls on each single cell, or could have been built
by the same method using different subsets of mutations.
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Lemma 5.5. After the first step, any two labels x and y (a) are either in the same node in both trees, or (b) have the
same ancestor-descendant relationship in both trees, or (c) have no ancestor-descendant relationship in either tree.

The output of the first step will thus be two comparable cell lineage trees in which no pair of labels have “different”
ancestor-descendant relationship between the trees. We will call them T ′a and T ′b.

Second Step. Based on the observation above, the algorithm now replaces each node’s label set with a single new
label. The result of this step will be two trees T ′′a and T ′′b, respectively corresponding to trees T ′a and T ′b, in which
(1) each leaf node has exactly 1 label and each internal node has either 1 or 0 labels, where each label represents a
set of labels from the original trees; (2) the label set of the two trees are identical. As such, T ′′a and T ′′b are (still)
comparable cell lineage trees that satisfy the following.

Lemma 5.6. For each leaf v in a tree, there exists exactly one leaf w in the other tree where L(v) = L(w). For each
internal node v in each tree there exists at most one internal node w in the other tree such that L(v) = L(w).

We call a node v in each tree for which there is a corresponding node w in the other tree such that L(v) = L(w) a
matched node. All other nodes are said to be unmatched. The following holds by definition.

Lemma 5.7. If all nodes of any of the trees are matched and the trees have the same number of nodes then the two
trees are isomorphic.

Lemma 5.8. For each tree, any node v with a label l must have a matched node w in the other tree with label l.

Third Step. The algorithm processes T ′′a and T ′′b to compute their consensus T ′′c, which is convertible to T c.
W.l.o.g., consider any matched internal node v in T ′′a for which the subtree rooted at v has no matched internal nodes
(including when all children of v are leaves). Let w be the node matched to v in T ′′b. The algorithm computes the
consensus of the subtrees rooted at v and w (these subtrees must be comparable cell lineage trees) by performing
merge-with-parent operations on all internal nodes such that the subtrees end up as star trees; a star tree is a rooted
tree with no internal nodes.

In case v and w are the roots of respective trees T a and T b the algorithm terminates at this point since the resulting
trees must be isomorphic.16 If they are not roots, then the algorithm “replaces” the subtrees rooted by v and w by
respective leaf nodes v and w, both with a new label l and iterates.

Lemma 5.9. The algorithm described above computes a consensus tree T c in ((|T a|+ |T b|)2) time and linear space.

Lemma 5.10. The algorithm terminates with isomorphic trees.

We can now argue about the optimality of the algorithm.

Lemma 5.11. Each merge-with-parent operation by the algorithm is necessary for obtaining a consensus tree.

Since all the edges that the algorithm removes are those that must be removed, the Corollary below follows.

Corollary 5.1. The algorithm terminates with a consensus by removing edges whose total cost is minimum possible.

Corollary 5.2. The algorithm can be generalized to k > 2 input trees by recursively constructing the consensus tree
of the first k − 1 input trees and then building the consensus of that tree and the final input tree.

5.3 Trisicell-Boost: a divide and conquer booster for scalable tumor phylogeny infer-
ence

Due to false mutation calls and missing entries, the matrix I is usually different from the true genotype matrix and
does not admit perfect phylogeny. There are several methods that aim to correct (and possibly impute missing) entries
of I so that the resulting matrix Y admits a perfect phylogeny, by minimizing the weighted number of 1 → 0 “flips”
(which represent false positives) and 0→ 1 “flips” (which represent false negatives) [14, 15, 22, 23, 24].

Let T denote (one of) the most likely mutation tree(s) of tumor evolution, where the log-likelihood of a tree is
defined based on a scoring model commonly used in the existing tree inference methods. While the existing methods
such as PhISCS or SCITE can in principle infer T , these methods do not scale well in terms of the running time on large
datasets. As we show, for example, on simulated genotype matrices of size 1000×1000, these tools either do not termi-
nate within a time limit of 24 hours (e.g. PhISCS, ScisTree) or yield trees that have a sizeable number of mutational
pairs that are misplaced in terms of commonly used ancestor-descendant and different-lineage measures (e.g. SCITE).
This motivated us to introduce Trisicell-Boost, a novel method for tumor phylogeny reconstruction that can handle

16Note that at the time of termination, all subtrees that have been replaced by a single leaf node should be reinstated.
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such (simulated) datasets within the time limit and achieve high accuracy. As will be shown, Trisicell-Boost is
robust to various types of noise, including the presence of mutations affected by copy number aberrations, possibly
resulting in ISA violations. On “real” melanoma WES data involving clonal sublines, the Trisicell-Boost inferred
phylogenies are not only (almost) identical to that obtained by (much slower but provably optimal) PhISCS-BnB, but
also very similar to that it obtains on matching WTS data. Finally, these phylogenies, as well as that obtained for on
a melanoma scRNAseq dataset, highly associate with phenotypes such as cell differentiation status and tumor growth.

In designing Trisicell-Boost we extensively rely on the observation that any subset of mutations from M also
forms a mutation tree [53]. We first sample a given number of submatrices of I, each obtained by taking a random
subset of z columns (mutations) of I. In our experiments we sample ≈ 50 · m

2

z2 submatrices, implying that, on average,
each pair of mutations appears together in approximately 50 submatrices. This plays an important role in obtaining
reliable weights that are defined and used below. Although in principle the constant 50 can be any other positive value
depending on computational resources and time, we recommend using at least 10. Similarly, we recommend that each
sampled submatrix has at least 10 columns (i.e., z ≥ 10). We then run PhISCS on each of the submatrices and obtain
a mutation tree for the corresponding set of sampled mutations. Note that on the smaller input matrices, PhISCS,
under the model that it uses, can provide a guarantee of optimality of the reported solutions. This is the main reason
why it was our primary choice for obtaining trees on sampled submatrices, although any other tool that performs well
on smaller inputs (e.g., SCITE, OncoNEM, ScisTree or several others) can be used for this purpose.

Once the tree for each sampled submatrix is obtained, we do the following: for each pair of mutations Mi and Mj

and each submatrix in which both Mi and Mj were sampled, we obtain phylogenetic dependency between them. Given
a submatrix where both are present, Mi and Mj can have one of the following dependencies in the inferred tree:

1. Ancestor-descendant where (the first occurence) node of Mi is an ancestor of that of Mj . We denote by aij
the total number of submatrices for which Mi and Mj have this dependency in their inferred trees.

2. Descendant-ancestor where node of Mi is a strict descendant of the node of Mj . As per above, we denote the
number of submatrices for which this is a case as dij . Note that dij = aji.

3. Same-node where both Mi and Mj occur (for the first time) at the same node. We denote the number of
reported trees in which this holds by sij .

4. Different-lineage where Mi and Mj occur at nodes that are on different tree lineages (i.e., their nodes are
different and neither of them is an ancestor of the other). We denote by lij the number of submatrices for which
Mi and Mj are in this dependency in their inferred trees.

5. Unknown dependency where the phylogeny inference tool used reports that at least one of Mi and Mj is
absent in all cells.

Let tij = aij + dij + lij + sij . Based on the above, we define three weights: Aij (ancestor-descendant weight), Dij

(descendant-ancestor weight), and Lij (different-lineage weight), which are respectfully defined as:

Aij =
aij +

sij
2

tij
, Dij =

dij +
sij
2

tij
, Lij =

lij
tij

.

Consider now an arbitrary mutation tree T of size m + 1 where the root node is mutation-free representing a
population of healthy cells, at each node we have exactly one mutation label from M and no mutational label appears
more than once. We say that mutation Mi is an ancestor of Mj if and only if node labeled by Mi is an ancestor of
node labeled by Mj . Analogously we define Mi being descendant of or on different lineages compared of Mj . Using
the above notation we can define score S(T ) of the tree T as follows:

S(T ) =
m∑
i=1

m∑
j=i+1

δ
(A)
ij ·Aij + δ

(D)
ij ·Dij + δ

(L)
ij · Lij , (5)

where δ
(A)
ij is an indicator variable with value set to 1 if and only if mutation Mi is ancestor of mutation Mj in

T . Variables δ
(D)
ij and δ

(L)
ij are defined analogously and indicate whether Mi is descendant of Mj (variable δ

(D)
ij ) or

whether these two mutations occur on different lineages (variable δ
(L)
ij ).

We leave finding a tree T for which S(T ) is maximized as an open problem and instead propose a fast heuristic for
building a tree iteratively by adding mutations in a specified order and one at a time. Full details of this heuristic are
provided in Supplementary Section C.
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5.4 Wet lab data generation to validate Trisicell
The “M4” mouse model of UV-induced melanoma used in this study is described in [31]. In brief, pups of Hgf-transgenic
C57BL/6 mice received UV irradiation at post-natal day three, and melanoma occurred in 8-12 months in some mice.
One of the tumors was harvested from a mouse and subjected to in vitro culture. After consecutive passage, the
melanoma line was built and named B2905 cell line.

5.4.1 Establishing and characterization of the 24 clonal sublines of B2905

The parental B2905 cells were subjected to fluorescence-aided cell sorting (FACS) to sort single cells into individual
wells of a 96-well plate, which was brought to in vitro culture. Cells were found growing in twenty-four wells. They
were expanded by consecutive passages to build the twenty-four clonal sublines derived from single cells of B2905. To
characterize each subline, exome and single cell RNA were analyzed. For exome analysis, genomic DNA was prepared
from cells harvested from each subline and subjected to exome capture protocol, followed by whole exome sequencing
on Illumina HighSeq platform. For single cell analysis, 16 single cells from each subline were sorted to individual well
of 96-well plate by FACS. cDNA library was prepared from the RNA of single cells in each well following Smart-seq2
protocol [32]. After quality control check, the cDNA libraries of 8 selected cells from each subline (in total 8×24 = 192)
were sequenced on the NovaSeq platform. For downstream analysis and mutation calling, 175 cells that had sufficient
coverage across all genes were selected.

5.4.2 Analysis of in vivo tumors derived from the clonal sublines of B2905

To test the growth kinetics in vivo, one million cells of each clonal subline were implanted into five syngeneic C57BL/6
mice subcutaneously. The size of tumors was measured twice a week. Eleven sublines showed 100% tumor-take rate
within 90 days. Three tumors from each of these sublines were selected as triplicates. They were subjected to RNA
preparation, followed by mRNA sequencing.

5.4.3 single cell sequencing of melanoma in the preclinical study

For the preclinical study of anti-CTLA-4, one million cells of B2905 were subcutaneously implanted into twenty
C57BL/6 mice. When the tumors reaching 75 mm3, the mice were randomized to two groups of equal number to
receive either mouse anti-mouse CTLA-4 antibody (clone 9D9, Bio X Cell) or mouse IgG2b as isotype control (clone
MPC-11, Bio X Cell). When the tumor reached around 500 mm3, the mouse was euthanized for tumor harvest. The
two control group tumors were harvested at day 41 and 54 and from anti-CTLA-4 group, one tumor was harvested
at day 54, another at day 75 and final two at day 85 (see Supplementary Section F for tumor size detail). A single
cell suspension was prepared from the tumor as described previously [54], stained with antibodies, nuclear dye, and
viability dye, and then subjected FACS to sort CD45-;CD31- nucleated alive single cells into individual wells of 96-
well plates. A total of 1008 cells from four anti-CTLA-4 treated tumors and 384 cells from the control tumors were
collected. cDNA library was prepared from the RNA of single cells in each well following Smart-seq2 protocol [32].
After a quality control check, the cDNA libraries from 1248 cells (960 from four anti-CTLA-4 treated tumors and
288 cells from the control tumors) were sequenced on the NovaSeq platform. For downstream analysis and mutation
calling, 764 cells (595 from four anti-CTLA-4 treated tumors and 169 cells from the control tumors) that had sufficient
coverage across all genes were selected.

5.5 Somatic variant calling pipeline
Several studies have explored SNVs/Indels in scRNAseq data to decipher the heterogeneity of cell populations [55,
56, 57, 58, 59]. We used GATK Best Practices [60] to call mutations from scRNAseq, bWTS and bWES datasets.17

Briefly, after trimming and quality control of reads by FastQ (v0.11.9) [61] and Trim Galore (v0.6.5), raw reads were
mapped to the mouse genome (GRCm38, mm10) using STAR (v2.7.3a) [62] in two-pass mode which improves the
mapping quality at junction sites. Then Picard (v2.22.3) was used for removing duplicated mapped reads and doing
indel realignment and base re-calibration. During base quality recalibration, dbSNP variants were used as known sites.
In the next step, HaplotypeCaller (v3.8) [63] was used to call the mutations for every single cell separately in GVCF
mode. After that, GenotypeGVCFs was used to call the mutations in a joint mode (as pseudo-bulk). These steps
keep specificity and sensitivity of calling mutations high. Afterwards, the mutations were annotated using ANNOVAR
(v2019.10.24) [64]. Following that, mutations that marked as unknown and non-exonic were filtered out. For further
confidence, mouse SNPs/Indels filtration was applied to the VCF files based on normal mouse spleen SNPs in addition
to a curated in-house database. Finally, somatic-mutations associated with less than 10 reads in at least 2 cells were
filtered out. (see Supplementary Section M for more details)

17Depends on the data there are some modifications in the pipeline.
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5.6 single cell gene expression quantification and quality control
RSEM (v1.3.2) [65] was used to extract expected counts, TPM and FPKM information. The Seurat package (v4.0.0)
[45] was used for clustering and UMAP analysis. The low-quality cells were removed if any of the following is true:
1) percentage of mitochondrial genes is above 20%; 2) the number of reads is less than 500,000; 3) nFeature_RNA <
1000 (see Supplementary Sections F and L for more details)

To remove batch effect due to different datasets, we used the functions of FindIntegrationAnchors and IntegrateData
in Seurat package. Clustering analysis was performed with FindClusters (resolution = 0.5).

5.7 Differential gene expression, pathway, and gene set enrichment analyses
Differential gene expression was performed using DESeq2 (v1.30.0) [66]. The contrasts include aCTLA4 cells vs IgG
cells in each branch in the phylogenetic tree. FDR was used as 0.1.

The rank list of differentially expressed genes (DEGs) was used to perform gene set enrichment analysis (GSEA)
with the R package FGSEA (v1.16.0) [67]. We performed GSEA with the Hallmark gene sets available in the R
package MSigDB (v7.2.1) [68]. Results are presented in Supplementary Section E.

Data availability
Sequence data have been deposited at NCBI GEO with the accession code GSExxxxxx.

Code availability
Trisicell is available at https://trisicell.readthedocs.io
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