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Abstract: 

Cell size is tightly controlled in healthy tissues, but it is poorly understood how variations in 

cell size affect cell physiology. To address this, we employed a high-accuracy mass 

spectrometry-based approach to measure how the proteome changes with cell size. Protein 

concentration changes are widespread, measurable in both asynchronous and G1-arrested 

cell populations, and predicted by subcellular localization, size-dependent changes in mRNA 

concentrations, and protein turnover. As proliferating cells grow larger, protein 

concentration changes typically associated with cellular senescence are increasingly 

pronounced. This suggests that large size is a cause rather than just a consequence of cell 

senescence. Consistent with this hypothesis, larger cells are prone to replicative, DNA 
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damage-, and CDK4/6i-induced senescence. Size-dependent changes to the proteome, 

including those associated with senescence, are not observed when an increase in cell size is 

accompanied by a similar increase in ploidy. This shows that proteome composition is 

determined by the DNA-to-ploidy ratio rather than cell size per se and that polyploidization 

is an elegant method to generate large non-senescent cells as is commonly found in nature. 

Together, our findings show how cell size could impact many aspects of cell physiology 

through remodeling the proteome, thereby providing a rationale for cell size control and 

polyploidization. 
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Main Text: 

Cells have dedicated mechanisms to control their size, which is one of the most prominent 

characteristics of distinct cell types 1-3. The link between the characteristic cell size and cell 

function is more obvious at the extremes of the cell size range. Red blood cells and lymphocytes 

need to be small to squeeze through tight spaces, while macrophages must be larger to engulf a 

wide range of targets. However, in the middle of the cell size range, including epithelial cells and 

fibroblasts, the link between cell size and function is unclear. One possibility is that these cells 

control their size to enhance proliferation, as their rapid turnover is a key part of their physiological 

function 4,5. Yet, even if these cells are optimized for growth and proliferation, as has been 

indicated 4,6, it is unclear why there would be an optimal cell size. As cells get larger, it has long 

been assumed that most proteins and RNA remain at constant concentrations 7-14, and organelle 

volumes, such as the nucleus, increase in direct proportion to cell size 15-17. If protein and RNA 

concentrations remain constant, larger cells should be capable of proportionally more biosynthesis. 

However, this is not the case. There is a limit to the size range of efficient biosynthesis 18, and 

excessively large cells exhibit loss of mitochondrial potential 5, dilution of their cytoplasm 6, and 

reduced proliferation 19. Moreover, recent work has demonstrated the remarkable effect even small 

variations in cell size can have on hematopoietic stem cell proliferation 4. 

One possible explanation for why there is an optimal cell size for biosynthesis would be if many 

key cellular proteins did not remain at constant concentration as cells grow. Then, the further cells 

are from their target size, the more concentrations of these proteins would change, and the more 

growth and metabolism would deviate from the optimum. Intriguingly, investigations of the 

mechanisms cells use to control their size identified a class of proteins whose concentrations 

change with cell size. In budding yeast, human, and plant cells, key cell cycle inhibitors are not 
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synthesized in proportion to cell size so that they are diluted by cell growth, a behavior defined as 

sub-scaling 20-22 (Fig. 1a). Larger cells therefore have lower concentrations of cell cycle inhibitors, 

which promotes their division.  In fission yeast, division is in part promoted by a size-dependent 

increase in the concentration of a cell cycle activator 23, a behavior defined as super-scaling 24 (Fig. 

1a). If this phenomenon of size-dependent protein concentration changes were widespread across 

the proteome it would provide an explanation for why there is an optimal cell size. This is because 

the further a cell would be from its target size, the further its intracellular protein concentrations 

would be from their optimum. To explore this possibility, we first measured how the proteome 

changes as a function of the natural cell size variation in asynchronously proliferating cells. 

To measure the scaling behavior of the human proteome (Fig. 1a), we developed a method based 

on triple-SILAC (Stable Isotope Labeling by Amino acids In Cell Culture) proteomics (described 

in Extended Data Figure 1), which enables the simultaneous measurement of thousands of 

individual proteins that collectively associate will all major cellular components. Asynchronously 

proliferating SILAC-labeled primary human lung fibroblasts (HLFs) were gated for G1 DNA 

content and sorted into three size bins (small, medium, and large) using fluorescence-activated cell 

sorting (FACS) (Fig. 1b). SILAC labeling orientation was swapped for replicate experiments, and 

the attainment of differentially sized G1 cells was confirmed using a Coulter counter (Fig. 1c, 

Extended Data Fig. 2a). The SILAC channel intensities within a peptide “triplet” represent relative 

peptide concentrations (Extended Data Fig. 1a), so we used the behavior of multiple independent 

peptide triplets to determine the size scaling relationship for individual proteins (Fig. 1d). Rather 

than measure SILAC ratios, as is typically done, we calculated a slope value to describe the size 

scaling behavior of each peptide triplet (Fig. 1E, Extended Data Fig. 1d-g). Peptide triplets with 

positive and negative slopes represent peptides (Fig. 1f), and therefore proteins (Fig. 1g), whose 
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concentrations are super- and sub-scaling, respectively, whereas triplets with a slope value near 0 

maintain an approximately constant concentration as a function of G1 cell size. 

We observed a continuum of size scaling behaviors across the proteome, which spanned slope 

values from -1 to 1, indicating that a 2-fold increase in cell size can lead to a 2-fold increase or 

decrease in concentration for a given protein (Fig. 1h, Supplementary Table 1). Several chromatin-

associated High Mobility Group proteins (HMGs), including HMGB1, are diluted in larger cells 

and so exhibit sub-scaling behavior like what has been previously described for RB, Whi5, and 

histones 21,25,26 (Fig. 1f). We also identified a diverse set of super-scaling proteins, such as VAT1, 

whose concentration increases as a function of cell size (Fig. 1d). Setting a requirement for 

multiple independent measurements per protein significantly improved the correspondence 

between replicate experiments and yielded a high-confidence set of ~1,500 proteins, each having 

at least 4 distinct peptide measurements (Fig. 1h, Supplementary Table 1). The size-scaling 

relationship was consistent across all size bins, indicating that similar concentration changes take 

place when cell size increases from small to medium as when it increases from medium to large 

(Extended Data Figure 3). Next, we validated candidate super- and sub-scaling behaviors for a 

subset of proteins using immunofluorescence combined with flow cytometry (Fig. 1i, Extended 

Data Fig. 4). We also confirmed that the process of cell sorting did not affect our proteome 

measurements (Extended Data Fig. 5a) and that isolation of different sized cells using SSC (Side 

Scatter) or the total protein dye CFSE (Carboxyfluorescein succinimidyl ester) as proxies for cell 

size 14,27 yielded similar results (Extended Data Fig. 5b-d, Supplementary Table  1). Since larger 

G1 cells have, on average, spent more time in G1, it is possible that the protein concentration 

changes we observe reflect time in G1 rather than cell size. To control for this possibility, we 

selected different sized G1 cells that were synchronously released from a Thymidine-Nocodazole 
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cell cycle arrest. We found a highly similar size-scaling relationship in our synchronous and 

asynchronous experiments (Extended Data Fig. 6a, Data S1), indicating that cell size, not time in 

the G1 cell cycle phase, is driving changes to the proteome.  

To examine how cell size may influence different aspects of cellular biology, we asked if different 

groups of related or interacting proteins exhibited similar size scaling behavior. Indeed, this was 

the case. For example, all 17 detected histone variants sub-scaled and had slope values near -1 

(Fig. 2a), indicating that histones are diluted by cell growth in G1 25,26. Moreover, 5 of the 6 

detected cathepsin proteases were strongly super-scaling and nearly doubled in concentration from 

the smallest to the largest cell size bin. Interestingly, we found that all individual protein subunits 

of the ribosome and proteasome showed small but highly consistent sub- and super-scaling 

behaviors respectively (Fig. 2a) and that, more generally, proteins that are partners in a complex 

scale similarly (Fig. 2b, Supplementary Table 3). We also re-confirmed the sub-scaling behavior 

of the cell cycle inhibitor RB 21 (Extended Data Fig. 5e, 7e). 

We next assessed how size-scaling behavior relates to subcellular location. To do this, we first 

annotated the proteome based on a strict association with a single, major cellular compartment. 

Subcellular localization was a strong predictor of size scaling behavior, with ER- and lysosome-

resident proteins becoming increasingly concentrated with size, and nucleoplasmic/nucleolar 

proteins becoming more dilute (Fig. 2c, Extended Data Fig. 7a). We observed no clear difference 

in scaling behavior between luminal- and membrane-associated organelle proteins (Extended Data 

Figure 8). We confirmed lysosome super-scaling by measuring the lysosome-labelling dye 

Lysotracker and the lysosomal protein LAMP1 (Extended Data Fig. 7c). A less stringent 2D 

annotation enrichment revealed a range of intermediate scaling behaviors across multiple different 

cellular compartments (Fig. 2d, Supplementary Table 1). Importantly, we confirmed that large 
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cells generated by long-term treatment with the CDK4/6 inhibitor Palbociclib, which arrests cells 

in G1 but does not inhibit cell growth 6,28, recapitulated the proteome changes we observed in size-

sorted G1 cells (Fig. 2e, Supplementary Table 2). In support of these findings, a proteomic analysis 

revealed similar size-scaling relationships when the relative protein concentration was plotted 

against the mean cell size for each cancer cell line in the NCI60 collection 29. Taken together, these 

analyses refute the commonly held assumption that the protein content of cellular components 

scales in uniform proportion to cell volume. While total protein concentration may be largely 

constant within a cell’s natural size range, this is not necessarily true for individual proteins. 

Next, having identified size-dependent changes in concentrations of individual proteins, we sought 

to investigate the underlying mechanisms. We first tested whether changes in a protein’s 

concentration are explained by changes in the concentration of the corresponding mRNA. To do 

this, we performed RNA-seq on size-sorted G1 cells (Supplementary Table 4) and calculated 

mRNA slope values analogous to the protein slopes described in Figure 1. We found that although 

there was significant correlation between the protein and RNA slopes, there was large variability 

in protein scaling slopes for any given RNA slope (Fig. 2f-h). Overall, changes in mRNA 

concentrations explained only a minority of the variation in protein concentration size-dependency 

30. We therefore explored additional variables using linear models. In addition to mRNA 

concentration, we included protein turnover 31, mRNA codon affinity, and subcellular localization 

as variables to predict size-dependent changes in protein concentration. Iterative incorporation of 

each parameter significantly improved the model (Fig. 2F, Extended Data Fig. 9). Using the 

correlation between biological replicates as a benchmark, we conclude that our composite model 

predicts ~60% of the size-dependent variance in protein concentration and strongly supports the 

conclusion that the size-dependency of protein concentration is regulated both pre- and post-
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transcriptionally. Importantly, the size-dependency of the proteome is not specific to a single 

human cell type, as we found a striking degree of similarity in the proteome scaling of primary 

lung fibroblasts (HLF) and immortalized epithelial cells (hTERT RPE-1) (Fig. 2i, Extended Data 

Fig. 6). 

Curiously, increasing cell size in proliferating cells is accompanied by proteomic changes normally 

associated with cell senescence, including the upregulation of beta-galactosidase, lysosomal 

proteins, and metalloproteases, and the downregulation of Ki67, HMGB proteins, and LaminB 32 

(Fig. 3a, Extended Data Fig. 7d). Senescence-associated secretory phenotype (SASP) proteins 33 

were also super scaling (Fig. 3b). While large cell size is associated with senescence 32, it has 

generally been thought that large size results from a senescent cell’s inability to divide while at the 

same time maintaining cell growth. However, our experiments indicate that increasing cell size 

itself results in proteome changes that gradually approach those found in senescent cells and 

support the hypothesis that cell size per se may promote senescence 4,6 (Fig. 3c). This is consistent 

with earlier reports that continued cell growth and hypertrophy are required to induce senescence 

in cell cycle arrested cells 19.  

To test if large cell size contributes to senescence, we used primary human lung fibroblasts (HLF) 

that naturally senesce after 10-15 passages. We sorted HLFs into 4 cell size bins at passage #8, re-

plated the cells, and then cultured them for an additional 5 passages (Extended Data Fig. 10c). 

Cells that were larger at the time of sorting exhibited high levels of senescence-associated beta-

galactosidase (SA-beta-Gal) staining sooner than cells that were smaller at the time of sorting (Fig. 

3d,e). This is despite the fact large and small cells were equally proliferative and did not differ in 

telomere length or in the mRNA concentrations of senescence markers shortly after sorting 

(Extended Data Fig. 10a-d). Next, we sought to examine how cell size contributes to senescence 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

in telomerase-immortalized human retinal pigment epithelium (hTERT RPE-1) cells exposed to a 

low dose of a DNA damaging agent (10 ng/ml Doxorubicin), which causes a stress similar to 

telomere shortening in primary fibroblasts. We note the proteome’s size-dependency in untreated 

G1 hTERT RPE-1 cells is very similar to that of HLFs (Fig. 2i, Extended Data Fig. 7). Consistent 

with the previous result, larger cells increasingly induced the senescence marker SA-beta-Gal upon 

Doxorubicin treatment (Extended Data Fig. 10e,f). Moreover, co-treatment with the mTOR 

inhibitor Rapamycin, which reduces cell size, significantly attenuates the SA-beta-Gal staining 

induced by prolonged treatment with Doxorubicin or the Cdk4/6 inhibitor Palbociclib (Fig. 3f, 

Extended Data Fig. 10g, h), a finding consistent with previous work 34. 

So far, we have only assayed senescence using indirect markers rather than the durable cell cycle 

arrest that defines a senescent cell 35. We therefore sought to more directly test whether large cell 

size inhibits cell cycle re-entry following the withdrawal of two treatments previously shown to 

induce senescence 6. We treated hTERT RPE-1 cells with Palbociclib or a low-dose of Doxorubicin 

for 4 days to induce senescence in a fraction of the cell population. We then washed out the drugs 

and imaged these enlarged cells for 4 additional days to determine which cells re-entered the cell 

cycle and which cells remained durably arrested (Fig. 3g). Importantly, Palbociclib or Doxorubicin 

treatment arrests cells without stopping cell growth, and thus generates a population of cells with 

a range of large cell sizes that exhibit senescent features 6. Since all these cells are exposed to drug 

for the same duration, we can isolate cell size as a determining factor for durable cell cycle arrest. 

We found that the cells that were larger at the time of drug washout are more likely to remain 

arrested than smaller cells (Fig. 3g). This supports the hypothesis that larger size makes cells more 

prone to senescence, consistent with findings for excessively large budding yeast 6. Large cell size 

may help explain the durable cell cycle arrest in response to transient exposure to a DNA damaging 
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agent. This is because the excessive cell growth that occurs while cells delay cell cycle progression 

to repair DNA can inhibit cell cycle re-entry. In addition, it is possible that large cells have 

difficulty in replicating and repairing DNA since most DNA repair and replication factors subscale 

with cell size (Extended Data Fig. 11a). To test this hypothesis, we treated the cells with a low 

concentration (10ng/ml) of Doxorubicin for 24 hours to induce DNA damage, and then quantified 

the numbers of γ-H2AX and 53BP1 loci that mark unrepaired DNA breaks in cell nuclei (Fig. 3h,i; 

Extended Data Fig. 12). We found that the number of those loci per nucleus increases with the 

nucleus area, supporting the idea that larger cells have more DNA damage that may promote 

senescence. Crucially, we are not stating that large cell size is the only driver of senescence, but 

rather proposing that the large size characteristic of senescent cells may itself further promote this 

state by inhibiting cell cycle progression and maintaining cell cycle arrest. Consistent with this 

hypothesis, mutations to the Rb-family proteins that reduce cell size prevent senescence of mouse 

embryonic fibroblasts and hematopoietic stem cells 4,36,37. 

Our data so far are consistent with the hypothesis that large cell size inhibits cell division, and that 

this may be due to widespread changes in the concentrations of individual proteins as cells grow 

larger. The further cells are from their target size, the more protein concentrations deviate from 

their optimum. However, in apparent contradiction to this model, there are many examples of large 

animal cells that proceed through the cell cycle and maintain highly efficient cell growth 38,39. In 

many cases, such large cells are polyploid and therefore do not have an aberrant cell size-to-ploidy 

ratio. We therefore sought to test whether protein size-scaling is determined by cell size per se or 

by the cell size-to-ploidy ratio. To do this, we sought to compare the proteomes of diploid, 

tetraploid, and octoploid (2N, 4N, 8N) G1-phase cells (Fig. 4a,b). To obtain G1 cells with different 

ploidies, we induced endoreduplication in hTERT RPE-1 cells using a moderate dose of the Aurora 
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kinase B inhibitor barasertib (75nM, 48 hours) 38 and sorted 2N, 4N, and 8N G1 cells from a mixed 

population using FACS (Fig. 4a). While ploidy increases are accompanied by a corresponding 

increase in cell size (Fig. 4a), proteomic analysis showed that the ploidy-sorted cells do not exhibit 

the same proteome changes as size-sorted cells with 2N ploidy (Fig. 4c-e, Supplementary Table 

5). Taken together, these results indicate that the proteome’s size-dependency is largely due to 

changes in the cell size-to-ploidy ratio. Thus, despite being different sizes, cells of different ploidy 

maintain similar protein concentrations, which may be why the excessively large size of polyploid 

cells does not inhibit their cell cycle progression. 

Our results here shed some light on the phenomenon of cellular senescence 32,35,40. While the 

senescent cell state has been associated with large cell size, this was mostly thought to be a passive 

consequence of continuing biosynthesis during cell cycle arrest. However, that such large cell sizes 

inhibit cell division implies the relationship between cell size and senescence can also be inverted 

4,6. Taken together, our work suggests a model where large cell size can drive widespread changes 

in protein concentrations away from their optimum, which, through a yet unknown mechanism, 

inhibits cell division to reinforce senescence. 

While it has long been thought that most protein concentrations remain constant as cells grow, this 

paradigm had not previously been tested using a high-throughput quantitative proteomics 

approach. In contradiction to the previous paradigm, many protein concentrations changed with 

cell size.  Some proteins sub-scaled with cell size, and were diluted in larger cells, while others 

super-scaled with cell size so that their concentrations increased as cells grew larger. This finding 

is reflected in the super- and sub-scaling of the mRNA transcripts for various G1/S regulators in 

budding yeast 24. To a large extent, these diverse protein size-scaling behaviors could be predicted 

from a linear model based on mRNA concentration, protein half-life, and subcellular localization, 
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which indicates the importance of both transcriptional and post-transcriptional size-scaling 

mechanisms.  

Our observation here that most protein concentrations change as cells grow provides a rationale 

for why many cells control their size. If the proteome content that supports optimal cell growth is 

only found near the target cell size, then the further a cell deviates from its target size, the further 

protein concentrations will be from their growth-supporting optimum. While a small change in 

the concentration of a single protein may not significantly affect cell physiology, the cumulative 

effect of thousands of small protein concentration changes could account for the drastic drop in 

the efficiency of biosynthesis in large cells 4,6,19. Moreover, since proteome concentrations 

mostly follow the cell size-to-ploidy ratio rather than cell size per se, polyploidization is an 

elegant mechanism for organisms to generate large cells capable of efficient protein synthesis as 

is commonly found in nature. 
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Figure 1. Cell size shapes the human proteome. (a) Schematic illustration of the potential 

scaling relationships between protein amount, concentration, and cell size. (b) Metabolically 

labeled HLFs cells were gated by G1 DNA content and sorted into three size bins based on the 

side scatter parameter (SSC) as a proxy for cell size using FACS. (c) The attainment of 
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differentially sized G1 cells was confirmed using a Coulter counter. Central dots represent the 

mean volume for each size bin and error bars represent the standard deviation. SILAC labeling 

orientation was swapped for replicate experiments. (d) SILAC channel intensities were used to 

infer changes in relative peptide concentration, which are plotted for three example proteins. Each 

dotted line represents an independent peptide measurement. (e) Derivation of a slope value that 

describes the scaling behavior of each peptide triplet. A slope value of 1 corresponds to an increase 

in protein concentration that is proportional to the increase in volume and a slope of -1 corresponds 

to dilution (1/volume). (f) Peptide and (g) protein slope values from two replicate experiments. 

Only proteins with at least 4 independent peptide measurements in both experiments are shown. 

(h) Correlation of protein slope values from two replicate experiments. A threshold for the 

minimum number of peptide measurements per protein is indicated in each panel. (i) 

Immunofluorescence intensity measured as a function of SSC (cell size) using flow cytometry. 

The relative change in the total protein amount is inferred from the measurement of 

carboxyfluorescein succinimidyl ester (CFSE) dye. The data were binned by cell size and plotted 

as mean protein amounts per cell for each size bin (solid lines). Dark shaded area shows standard 

error of the mean for each bin, and light shaded area shows the standard deviation. A representative 

is shown of n=3 biological replicates for each experiment. 100,000 cells were analyzed for each 

sample. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Figure 2. Diverse mechanisms control proteome size-dependency. (a) Scaling behavior of 

protein groups. Significance is determined by t-test between adjacent protein groups. (b) Variance 

of subunit Protein Slope values for 212 annotated protein complexes. Only proteins with 

cytoplasmic annotation are considered. Significance is determined by t-test between the proteins 

grouped by complex and a randomized control set. (c) Scaling behavior of proteins based on 

subcellular localization. The number of highlighted proteins and their average slope are indicated 

for each panel. Ribosomal proteins are plotted in dark blue. (d) 2D annotation enrichment analysis 

using the Protein Slope values calculated in HLF cells. Data S1 contains a complete list of 

enrichment scores for significantly super- or sub-scaling GO terms. (e) Asynchronous hTERT 

RPE-1 cells were arrested in G1 with 1µM Palbociclib. Mean cells size at Day 1 and 3 was 3.5 pL 

and 6.5 pL, respectively. Protein ratios were determined by TMT quantitation. X-axis bins are 

shown in dark blue. Error bars represent the 95% confidence interval and r denotes the Pearson 

correlation coefficient. (f) Ordinary least squares regression model predicts the size scaling 

behavior of 1,700 individual proteins based on their subcellular localization and additional 

features. RNA Slope is calculated in a manner analogous to the Protein Slope using RPKM values. 

The benchmark for predictive accuracy (Prediction %) is determined by the correlation between 

biological replicate experiments. See Extended Data Fig. 9 for a full description of the model. (g) 

Size-dependent concentration changes for a representative set of proteins and their corresponding 

mRNA transcripts. For proteins, each connected line represents a unique peptide measurement 

from two biological replicate experiments (light and dark blue). For RNA, technical replicates are 

denoted in the same color, while biological replicates are denoted in different colors (4 replicates 

in total). (h) Correlation of size-dependent proteome and transcriptome changes. Examples in (g) 

are highlighted are in red. (i) Similarity of the cell size-dependent concentration changes between 
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primary HLF and immortalized hTERT RPE-1 cells. Protein Slope values for each cell type are the 

mean of two biological replicate experiments. Only proteins with at least 3 independent peptide 

measurements in each biological replicate are depicted. 
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Figure 3. Large cell size promotes cell senescence. (a, b) Examples from our proteomics data 

set of cell size-dependent intracellular (a) and SASP (senescence-associated secretory phenotype, 

(b)) protein concentration changes in proliferating cells that are normally associated with 

senescence. (c) Model indicating possible relationships between DNA-related stress, large cell 

size, and cell senescence. (d, e) Replicative senescence of different-sized primary cells. 

Asynchronous HLFs were gated for G1 DNA content and sorted into four bins by size using FACS, 

then replated and stained for the senescence marker SA-beta-Gal at the indicated time points (d). 

Percentage of blue-stained SA-beta-Gal positive cells (e) was calculated for each time point and 

plotted for each sorted size bin as mean ± standard error. Cell sizes for each bin are shown as mean 

± SD in (e). P denotes the cell passage number. (f) Effect of Rapamycin, which reduces cell growth, 

on the percentage (±standard error) of SA-beta-Gal positive cells in hTERT RPE-1 cultures treated 
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with Doxorubicin or Palbociclib for 8 days. Values shown next to each condition indicate the mean 

cell sizes after 8 days of treatment. (g) Large cell size inhibits cell cycle entry to promote 

senescence. hTERT RPE-1 cells were treated with Palbociclib or a low dose of Doxorubicin for 4 

days. Then, the drugs were washed out, and the cells were imaged for 4 days to identify cells that 

re-enter the cell cycle, and cells that remain arrested in a senescent state. Nuclear area was used as 

a proxy for cell size and cell cycle re-entry was determined using the fluorescent cell cycle phase 

reporters Cdt1-mKO2 (G1 reporter) and Geminin-mAG (S/G2/M reporter) 41. (h) 

Immunofluorescence staining of RPE-1 cells treated with DMSO or 10 ng/ml Doxorubicin for 24 

hours against γ-H2AX (red) and 53BP1 (green), with DAPI staining shown in cyan. (i, j) Number 

of γ-H2AX and 53BP1 loci in RPE-1 cells treated with DMSO (i) or 10 ng/ml Doxorubicin (j) 

plotted against the nucleus area, which serves as a proxy for cell size. N = 33 cells for each data 

point in (g). SA-beta-Gal quantification for every data point in (e) included 700-1200 cells 

quantified from 9 different fields of view. In (i) and (j), N = 1602 and N = 1265 cells, respectively. 

All the experiments were performed in biological duplicates. 
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Figure 4. Cell volume-to-ploidy ratio drives size-dependent proteome changes. (a) hTERT 

RPE-1 cells expressing fluorescent cell cycle reporters (Cdt1-mKO2, Geminin-mAG) were treated 

with an aurora kinase inhibitor barasertib (75nM, 48 hours) to partially inhibit cytokinesis. Cells 
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were then sorted based on ploidy and G1 cell cycle phase. The attainment of differentially sized 

G1 cells was confirmed using a Coulter counter. The histogram shows a representative example 

of size distributions for sorted cells, and the numbers next to it represent mean cell size ± standard 

error for n=3 biological replicates. (b) Ploidy-sorted and Size-sorted G1 cells were isolated by 

FACS and their proteomes measured using TMTsixplex. Ploidy-sorted Protein Slope values were 

calculated by plotting the relative protein concentration against the mean cell size in the 2N, 4N, 

and 8N bins to obtain a slope value. (c) Distributions of ploidy-sorted and size-sorted Protein Slope 

values. Despite large increases in cell size from 2N to 8N, concentration changes were minimal. 

(d) Slightly negative correlation between ploidy-sorted and size-sorted Protein Slope values are 

consistent with a small increase in DNA-to-cell volume ratio in polyploid G1 cells. (e) DNA-to-

cell volume-dependent concentration changes for a representative set of proteins. For each protein 

panel, dotted lines represent unique peptide measurements. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 

 

 

 

 

 

 

Supplementary Materials for 
 

Increasing cell size remodels the proteome and promotes senescence 

 
Michael C. Lanz1,†, Evgeny Zatulovskiy1,†,*, Matthew P. Swaffer1, Lichao Zhang2, Ilayda 

Ilerten1, Shuyuan Zhang1, Dong Shin You1, Georgi Marinov3, Patrick McAlpine2, Josh E. 

Elias2, Jan M. Skotheim1* 

 

 

† These authors contributed equally to this work 

* Corresponding authors: Email: skotheim@stanford.edu ; evgeny@stanford.edu 

 

 

This PDF file includes: 

 

Materials and Methods 

Extended Data Fig. 1 to 12 

Captions for Supplementary Tables 1 to 6 

 

 

Other Supplementary Materials for this manuscript include the following:  

 

Supplementary Tables 1 to 6 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Materials and Methods 

 

Cell Culture 

Recently isolated primary fetal human lung fibroblasts (HLF) were purchased from Cell 

Applications, telomerase-immortalized retinal pigment epithelium (hTERT RPE-1, here also 

referred to as RPE-1 for brevity) cells were obtained from the Stearns laboratory at Stanford. All 

cells were cultured at 37ºC with 5% CO2 in Dulbecco's modification of Eagle's medium (DMEM) 

with L-glutamine, 4.5 g/l glucose and sodium pyruvate (Corning), supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Corning) and 1% penicillin/streptomycin.  

 

Fluorescence-activated cell sorting (FACS) 

Fluorescence-activated cell sorting was used to sort live cells by their size and cell cycle phase. To 

do this, the cells were harvested from dishes by trypsinization, stained with 20 µM Hoechst 33342 

DNA dye in PBS for 15 minutes at 37ºC, and then sorted on a BD FACSAria Fusion flow 

cytometer. Consecutive SSC-A over FSC-A, and FSC-H over FSC-A gates were used to isolate 

single cells. Then, G1 cells were gated by DNA content (Hoechst staining). Finally, we collected 

the 10% smallest and 10% largest cells, as well as another 10% of the cells near the average size 

using the gating based on SSC-A signal. During sorting, all cell samples and collection tubes were 

kept at 4ºC. To determine the cell size distributions of the collected samples, aliquots were taken 

from each sorted size bin and measured on a Z2 Coulter counter (Beckman). Sorted cells were 

used for mRNA or protein isolation, or re-plated for assessing senescence dynamics. 

 

Stable Isotope Labeling In Cell culture (SILAC) 
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Cells for SILAC were cultured in special Lysine/Arginine-free DMEM for SILAC (Thermo 

Scientific) with 10% dialyzed heat-inactivated FBS (HyClone) and penicillin/streptomycin. These 

cultures were supplemented with “light”, “intermediate”, or “heavy” versions of Lysine (0.8mM) 

and Arginine (0.4mM) (Cambridge Isotope Laboratories) 42. The “light” (Agr0 Lys0) version of 

the media contained L-Arginine and L-Lysine built with normal 12C and 14N isotopes; the 

“intermediate" (Arg6 Lys4) version had L-Arginine containing six 13C atoms and L-Lysine 

containing four deuterium atoms; the "heavy" (Arg10 Lys8) version had L-Arginine containing 

six 13C and four 15N atoms and L-Lysine containing six 13C and two 15N atoms. Proline (200 mg/l) 

was added to the media to prevent conversion of isotope-coded Arginine into Proline in cells. We 

confirmed that cell proliferation is not impaired in our SILAC medium (Extended Data 2b). To 

ensure complete labelling, the cells were cultured in SILAC media for 5 passages (approximately 

10 doublings) prior to the experiments. 

   

LC-MS/MS sample preparation - SILAC 

See Table S3 for a complete list of proteomic experiments. Small, medium and large cells sorted 

by FACS were pelleted by centrifugation at 500xg for 10 minutes and lysed for 40 minutes on ice 

in RIPA lysis buffer (Abcam) containing a protease and phosphatase inhibitor cocktail. SILAC-

labeled different sized cells were mixed prior to lysis in order to minimize handling error in protein 

extraction, proteolytic digestion, and peptide desalting. Cell lysates were cleared by centrifugation 

at 15000xg for 30 minutes at 4℃. The mixed lysates were then denatured in 1% SDS, reduced 

with 10mM DTT, alkylated with 5mM iodoacetamide, and then precipitated with three volumes 

of a solution containing 50% acetone and 50% ethanol. Proteins were re-solubilized in 2 M urea, 

50 mM Tris-HCl, pH 8.0, and 150 mM NaCl, and then digested with TPCK-treated trypsin (50:1) 
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overnight at 37°C. Trifluoroacetic acid and formic acid were added to the digested peptides for a 

final concentration of 0.2%. Peptides were desalted with a Sep-Pak 50mg C18 column (Waters). 

The C18 column was conditioned with 5 column volumes of 80% acetonitrile and 0.1% acetic acid 

and washed with 5 column volumes of 0.1% trifluoroacetic acid. After samples were loaded, the 

column was washed with 5 column volumes of 0.1% acetic acid followed by elution with 4 column 

volumes of 80% acetonitrile and 0.1% acetic acid. The elution was dried in a Concentrator at 45°C. 

 

LC-MS/MS sample preparation - TMT 

Lysis, denaturation, reduction, and precipitation for SILAC analysis was the same for TMT 

analysis (working solution of Iodoacetamide was dissolved in HEPES rather than Tris buffer). Our 

method for TMT labeling was adapted from Zecha et al. 43 and the Thermo TMT10plex™ Isobaric 

Label Reagent Set Protocol. In brief, acetone precipitated samples were resuspended in 100µm 

TEAB and digested O/N with TPCK trypsin (50:1) in the absence of Tris or Urea. After digestion, 

peptide concentration was ~1µg/ul in 100µM TEAB for all samples. 20µg of peptide was labeled 

using 100µg of Thermo TMT10plex™ in a reaction volume of 25µl for 1 hour. The labeling 

reaction was quenched with 8µL of 5% hydroxylamine for 15 minutes. Labeled peptides were 

pooled, acidified to a pH of ~2 using drops of 10% formic acid, and desalted with a Sep-Pak 50mg 

C18 column as described above.  

 

HILIC fractionation - SILAC 

Desalted peptide samples were reconstituted in 80% acetonitrile and 1% formic acid and 

fractionated by hydrophilic interaction liquid chromatography (HILIC) with a TSK gel Amide-80 

column (2 mm x 150 mm, 5 µm; Tosoh Bioscience). 90 second fractions were collected between 
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10 and 25 minutes of the gradient. Three solvents were used for the gradient: buffer A (90% 

acetonitrile), buffer B (80% acetonitrile and 0.005% trifluoroacetic acid), and buffer C (0.025% 

trifluoroacetic acid). The gradient used consists of a 100% buffer A at time = 0 min; 88% of buffer 

B and 12% of buffer C at time = 5 min; 60% of buffer B and 40% of buffer C at time = 30 min; 

and 5% of buffer B and 95 % of buffer C from time = 35 to 45 min in a flow of 150 µl/min. HILIC 

fractions were dried in a SpeedVac and reconstituted in 0.1% trifluoroacetic acid. A total of 10 

fractions were collected and pooled back into 5 fractions (1-6, 2-7, 3-8, 4-9, 5-10). 

 

High-pH reverse phase fractionation - TMT 

TMT-labeled peptides (Experiment from Figure S5D) were fractionated using a Pierce™ High pH 

Reversed-Phase Peptide Fractionation Kit. The eight default fractions were pooled back to 4 

fractions (1-5, 2-6, 3-7, 4-8). Dried peptides were reconstituted in 0.1% formic acid. 

 

LC-MS/MS data acquisition - SILAC 

Peptide samples were analyzed using a Fusion Lumos mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA) equipped with Dionex Ultimate 3000 LC systems (Thermo Fisher 

Scientific, San Jose, CA). Peptides were separated by capillary reverse phase chromatography on 

a 25 cm reversed phase column (100 µm inner diameter, packed in-house with ReproSil-Pur C18-

AQ 3.0 m resin (Dr. Maisch GmbH)). Liquid chromatography was performed using a two-step 

linear gradient with 4–25 % buffer B (0.1% (v/v) formic acid in acetonitrile) for 90 min followed 

by 25-40 % buffer B for 10 min. Data was acquired in top 20 data dependent mode. Full MS scans 

were acquired in the Orbitrap mass analyzer with a resolution of 120,000 (FWHM) and m/z scan 

range of 340-1500.  Selected precursor ions were subjected to fragmentation using higher-energy 
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collisional dissociation (HCD) with quadrupole isolation, isolation window of 1.6 m/z, and 

normalized collision energy of 30%. HCD fragments were analyzed in the Orbitrap mass analyzer 

with a resolution of 15,000 (FWHM). Fragmented ions were dynamically excluded from further 

selection for a period of 15 seconds. The AGC target was set to 400,000 and 50,000 for full FTMS 

scans and FTMS2 scans, respectively. The maximum injection time was set to 50 ms for full FTMS 

scans and dynamic for FTMS2 scans. 

 

LC-MS/MS data acquisition - TMT 

Desalted TMT-labeled peptides were analyzed on a Fusion Lumos mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA) equipped with a Thermo EASY-nLC 1200 LC system (Thermo 

Fisher Scientific, San Jose, CA). Peptides were separated by capillary reverse phase 

chromatography on a 25 cm column (75 µm inner diameter, packed with 1.6 µm C18 resin, AUR2-

25075C18A, Ionopticks, Victoria Australia). Electrospray Ionization voltage was set to 1550 volts. 

Peptides resulting from on-bead digestion were resuspended in 10 µL of 0.1% formic acid. 2 µL 

was introduced into the Fusion Lumos mass spectrometer using a two-step linear gradient with 6–

33% buffer B (0.1% (v/v) formic acid in 80% acetonitrile) for 145 min followed by 33-45% buffer 

B for 15 min at a flow rate of 300 nL/min. Column temperature was maintained at 40°C throughout 

the procedure. Xcalibur software (Thermo Fisher Scientific) was used for the data acquisition and 

the instrument was operated in data-dependent mode. Survey scans were acquired in the Orbitrap 

mass analyzer over the range of 380 to 1800 m/z with a mass resolution of 70,000 (at m/z 200). 

Ions were selected for fragmentation from the 10 most abundant ions with a charge state of either 

2, 3 or 4 and within an isolation window of 2.0 m/z. Selected ions were fragmented by Higher-

energy Collisional Dissociation (HCD) with normalized collision energies of 27 and the tandem 
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mass spectra was acquired in the Orbitrap mass analyzer with a mass resolution of 17,500 (at m/z 

200). Repeated sequencing of peptides was kept to a minimum by dynamic exclusion of the 

sequenced peptides for 30 seconds. For MS/MS, the AGC target was set to 1e5 and max injection 

time was set to 120ms. Relative changes in peptide concentration were determined at the MS3-

level by isolating and fragmenting the 4 most dominant MS2 ion peaks. 

 

Spectral searches - TMT and SILAC 

All raw files were searched using the Andromeda engine 44 embedded in MaxQuant (v1.6.7.0) 45. 

See Table S4 for a complete summary of the search parameters used for the SILAC- and TMT-

labeled peptide fragments. In brief, 3 label SILAC search was conducted using Maxquant’s default 

Arg6/10 and Lys4/8. For TMT searches, a Reporter ion MS3 search was conducted using 10plex 

TMT isobaric labels. For both TMT and SILAC searches, variable modifications included 

oxidation (M) and protein N-terminal acetylation. Carbamidomthyl (C) was a fixed modification. 

The number of modifications per peptide was capped at five. Digestion was set to tryptic (proline-

blocked). Peptides were “Re-quantified”, and maxquant’s match-between-runs feature was not 

enabled. Database search was conducted using the Uniprot proteome - 

Human_UP000005640_9606. Minimum peptide length was 7 amino acids. FDR was determined 

using a reverse decoy proteome 46. 

 

Peptide quantitation - SILAC 

Our SILAC analysis pipeline uses the peptide feature information in MaxQuant’s “evidence.txt” 

output file. Each row of the “evidence.txt” file represents an independent peptide triplet 

measurement. Contaminant and decoy peptide identifications were discarded. Peptides without 
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signal in any of the three SILAC channels were also excluded. Peptide triplets (each row in the 

“evidence.txt” table) are assigned to a protein based on MaxQuant’s “Leading razor protein” 

designation. For each peptide triplet, the fraction of ion intensity in each SILAC channel was 

calculated by dividing the “Intensity L/M/H” column by the “Intensity” column. SILAC channels 

were normalized by adjusting the fraction of ion intensity in each channel by the median for all 

measured peptides (see Extended Data 1b,c). After normalization, the relative signal difference 

between the SILAC channels for each peptide triplet was plotted against the normalized cell size 

for each of the bins of isolated G1 cells. 

For each peptide, we calculated its slope as follows (mean squared error filtering): 

Y1,2,3 = Relative signal in each SILAC channel (order based on labeling orientation) 

Avg. size = (mean volume of small bin + mean volume of medium bin + mean volume of large 

bin) / 3 

x1 = (Mean volume of small size bin) / Avg. size  

x2 = (Mean volume of medium size bin) / Avg. size  

x3 = (Mean volume of large size bin) / Avg. size  

 

Based on the expectation that our experimental conditions would not result in large, non-linear 

changes in protein expression, we exclude peptide triplets whose three data points did not loosely 

fit a linear regression line. Linear regressions on the ~50,000 triplets/experiment were performed 

using np.polyfit in Python. Regressions with a mean squared error > 0.075 were excluded. Because 

this step significantly improved the overall data quality (Extended Data 1f,g), we concluded that 

our filtering method mostly excludes peptide triplets contaminated by analytical interference or 

that are near the noise floor. 
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Individual peptide measurements were consolidated into a protein level measurement using 

python’s groupby.median. Peptides with the same amino acid sequence that were identified as 

different charge states or in different fractions were considered independent measurements. We 

summarize the size scaling behavior of individual proteins as a slope value derived from a 

regression (similar to what is described above for individual peptides), and each protein slope 

value is based on the behavior of all detected peptides. 

For a given protein, we calculate its cell size-dependent slope as follows: 

yi = Relative signal in the ith SILAC channel (median of all corresponding peptides in this channel) 

xi = same normalized cell size xi as for the peptide slope calculations above 

The protein slope value was determined from a linear fit to the log-transformed data using the 

equation: 

         Log2 (y) = Slope*log2 (x) 

Variables were log-transformed so that a slope of 1 corresponds to an increase in protein 

concentration that is proportional to the increase in volume and a slope of -1 corresponds to 

1/volume dilution. Pearson r and p values for correlation analyses were calculated using scipy’s 

pearsonr module in python. 

 

Protein annotations 

Protein annotations in Figure 2 were sourced from Uniprot columns named “Subcellular location 

[CC]” or “Protein names” 47. For Figure 2c, protein localization was strictly parsed so that each 

annotated protein belongs to only one of the designated groups. Proteins with 2 or more of the 
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depicted annotations were ignored (except for the “Cytoplasm / Nucleus” category, which required 

a nuclear and cytoplasmic annotation). 2D annotation enrichment in Fig. 2d was performed using 

Perseus 48. 

 

Peptide quantitation - TMT 

Our TMT analysis pipeline uses the peptide feature information in MaxQuant’s “evidence.txt” 

output file. Each row of the “evidence.txt” file represents an independent MS3 TMT measurement. 

Contaminant and decoy peptide identifications were discarded. Peptides without signal in any of 

the TMT channels were also excluded. TMT peptide measurements were assigned to protein based 

on MaxQuant’s “Leading razor protein” designation. For each peptide triplet, the fraction of ion 

intensity in each TMT channel was calculated by dividing the “Reporter ion intensity” column by 

the sum of all reporter ion intensities. TMT channels were normalized by adjusting the fraction of 

ion intensity in each channel by the median for all measured peptides (similar to the SILAC 

normalization in Extended Data 1b,c). After normalization, the relative signal difference between 

the TMT channels for each peptide triplet was plotted against the normalized cell size for each of 

the bins of isolated G1 cells. Slope values in Figure S5 were derived in a manner analogous to the 

Slope values calculated in the SILAC experiments. Pearson r and p values for correlation analyses 

were calculated using SciPy’s pearsonr module in python. 

 

Protein complex analysis  

Protein complex annotations were derived from the CORUM database (“Core Complexes” with 

3512 entries). We calculated the Coefficient of Variation (CV) between the Protein Slope values 

of subunits in annotated protein complexes. To do so, all slope values were normalized to a value 
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between 0 and 1. Slope values were then grouped for each protein complex. Only proteins with a 

minimum of 5 independent peptide measurements (between two replicate experiments) and 

protein complexes with at least three quantified subunits were considered in the analysis. 

To generate a randomized dataset, quantified proteins (i.e., proteins with Protein Slope values) 

within each protein complex were replaced with randomly selected proteins using the random 

function from the NumPy library. CV is calculated for both real and randomized datasets and 

compared with ttest_ind (T-test) from scipy.stats library. Only cytoplasmic proteins and protein 

complexes were considered in order to avoid biases from the differential scaling observed in 

different subcellular compartments. 

 

OLS linear regression model 

Multiple linear regression analysis was performed using the statsmodels module in python. The 

prediction of size scaling behavior was based on the 1,700 proteins shared between the protein 

turnover (HeLa cells) 31, RNA Slope, and Protein Slope datasets (at least 2 peptides / protein). 

Independent variables for codon affinity, RNA Slope, and Protein turnover (T50%) were each 

independently standardized by subtracting all values by the dataset’s mean and then dividing by 

the dataset’s standard deviation. The codon affinity refers to the binding affinity at the 3rd codon 

position. The affinity is classified as “low” or “high” based on a prior study 49. The affinity score of a 

gene is the average of the low affinity codon percentage within each amino acid, weighted by the 

percentage of the amino acid in that gene. The subcellular localization variable was based on 

Uniprot’s “Subcellular location [CC]” annotations and entered as a binary value for each 

compartment (1 if a protein possessed an annotation and 0 if it did not). Only subcellular 

compartments that provided nonredundant predictive power were ultimately included in the model. 

A constant value was added to the regression equation using the add_constant function in 
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statsmodels. We set the benchmark for predictive accuracy (Prediction %) as the correlation 

between biological replicate experiments (Protein Slope from Exp #1 vs Exp #2). See Figure S9 

for more details on the model and its coefficients. 

 

RNA extraction and sequencing 

To compare the transcriptomes of different-sized G1 cells, primary HLFs were arrested in the G1 

phase of the cell cycle by a 24-hour treatment with 1μM of the Cdk4/6 inhibitor Palbociclib and 

then sorted into size bins using FACS. To extract RNA, each sample of sorted HLF cells was split 

into two technical replicates each of which contained 200,000 HLF cells, which were then mixed 

with 100,000 D. melanogaster S2 cells as a spike-in. Each sample was then pelleted and RNA was 

extracted using Direct-zol™ RNA Microprep Kit (Zymo Research). mRNA was enriched using 

the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, #E7490). The NEBNext Ultra II 

RNA Library Prep Kit for Illumina® (NEB, #E7775) was then used to prepare libraries for paired-

end (2x150 bp) Illumina sequencing (Novogene). Two independent biological replicates of each 

sample were collected and for each biological replicate, two technical replicates (i.e., separate 

lysis, library prep, and sequencing) were processed. Approximately 40 million reads were 

sequenced per replicate. 

  

RNAseq data processing 

RNA samples contained a mixture of H. sapiens and D. melanogaster spike-in. A combined H. 

sapiens and D. melanogaster genome file was created using the hg38 and dm6 versions of the 

respective genomes and a combined transcriptome annotation was created using the H. sapiens 

gene models from the v29 version of the GENCODE annotation 50 and the BDGP6 D. 
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melanogaster gene models from ENSEMBL release 90 51. For the purposes of RNA-seq data 

quality evaluation, genome browser track generation, and calculating the hg38-to-dm6 ratio, reads 

were aligned against the combined genomes and combined annotated set of splice junctions using 

the STAR aligner (version 2.5.3a; settings: --limitSjdbInsertNsj 10000000 --

outFilterMultimapNmax 50 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 

0.04 --alignIntronMin 10 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --

alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --sjdbScore 1 --twopassMode Basic --

twopass1readsN -1) 52. Read mapping statistics and genome browser tracks were generated using 

custom Python scripts. For quantification purposes, reads were aligned as 2x50mers in 

transcriptome space against an index generated from the combined annotations described above 

using Bowtie (version 1.0.1; settings: -e 200 -a -X 1000) 53. Alignments were then quantified using 

eXpress (version 1.5.1) 54 before effective read count values and TPM (Transcripts Per Million 

transcripts) were then separated for each genome and renormalized TPMs were calculated with 

respect to only the H. sapiens transcripts. 

 

Flow cytometry 

For flow cytometry analysis, cells were grown on dishes to ~50% confluence and harvested by 

trypsinization. The cells were then fixed with 3% formaldehyde for 10 minutes at 37ºC, and then 

permeabilized with 90% methanol for 30 minutes on ice. Fixed and permeabilized cells were 

washed once with PBS, blocked with 3% BSA in PBS for 30 minutes at 37ºC, and then stained 

with primary antibodies for 2 hours at 37ºC. We used the following primary antibodies: HMGB1 

(Abcam, ab79823), HMGN2 (CST, 9437S), RPLP0 (Sigma, SAB1402899), Actin (Sigma-

Aldrich, A2103), UCHL1 (CST, 13179S), VAT1 (Santa Cruz, sc-515705), LAMP1 (CST, 9091), 
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alpha-Tubulin (Abcam, ab6160). After the primary antibodies, the cells were washed twice with a 

wash buffer (1% BSA in PBS + 0.05% Tween® 20), stained with the fluorophore-conjugated 

secondary antibodies Alexa Fluor 488 goat anti-mouse (Life Technologies A11029), Alexa Fluor 

594 goat anti-rabbit (Life Technologies A11037), and Alexa Fluor 405 goat anti-rat (Abcam 

ab175673) at 1:1000 dilution for 1 hour at 37ºC, and then washed twice again. After this treatment, 

the cells were resuspended in PBS containing 3 µM DAPI for DNA staining, incubated for 10 

minutes at room temperature, and then analysed on a Attune NxT flow cytometer (Thermo Fisher). 

To compensate for the nonspecific background staining with antibodies, we measured the 

fluorescence of cells stained with nonspecific Isotype Control antibodies. We then performed a 

linear regression of this nonspecific background signal with the cell size, and subtracted the 

background fluorescence corresponding to the cell’s size from the actual fluorescence signal 

measured for each cell. For total protein staining, live cells were resuspended in PBS, then the 

CellTrace CFSE dye (CarboxyFluorescein Succinimidyl Ester, Thermo Fisher) was added at 5 μM 

concentration, incubated for 30 minutes at 37ºC. The dye was then washed out with FBS-

containing DMEM, and the cells were pelleted and resuspended in PBS for the flow cytometry or 

for the fixation and antibody staining. For the Lysotracker staining, the cells were harvested and 

re-suspended in growth media at a concentration of 106 cells/mL. Then, Lysotracker Red DND-99 

(Thermo Fisher) was added at a concentration of 75nM and incubated at 37ºC for 30 min. Cells 

were spun down and re-suspended for analysis or additional staining. For plotting the flow 

cytometry data, all protein amounts and cell size values were normalized to their means. To 

characterize the degree of size-dependency of protein amounts, we fit a line to the flow cytometry 

data after normalizing these data to mean values. We performed at least three biological replicates 

for each experiment that measured 100,000 cells. 
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To compare the proliferation efficiency of different-sized cells shortly after FACS sorting, the cells 

were left to settle on culture dishes for 2 days, then cultured in the presence of 1µM EdU for 24 

hours to label all the cells that underwent replication within this time period. Cells were then 

stained using a Click-iT™ EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit (Molecular Probes), 

following the manufacturer’s protocol, and analyzed by flow cytometry. To compare the telomere 

lengths of different-sized cells, passage #8 HLF cells were stained using a Flow-FISH Telomere 

PNA Kit (Agilent DAKO) according to the manufacturer’s protocol and analyzed by flow 

cytometry. 

 

Senescence-associated beta-galactosidase (SA-beta-Gal) staining 

To detect senescent cells, the RPE-1 or HLF cells on a dish were stained using the Senescence β-

Galactosidase Staining Kit (Cell Signaling Technology) following the manufacturer’s protocol. 

Briefly, live cells on a dish were washed once with PBS and fixed with 1x Fixation solution for 10 

minutes at room temperature, then rinsed twice with PBS, and stained with β-Galactosidase 

Staining Solution for 48 hours at 37ºC in a dry incubator (no CO2). The cells were then imaged on 

an EVOS M5000 imaging system to obtain a colored brightfield image. The obtained images were 

quantified manually, by a blinded investigator, to determine the percentage of senescent cells, i.e., 

the cells that have a pronounced blue staining. 

 

Live cell fluorescence microscopy 

In preparation for imaging, cells were seeded on 35-mm glass-bottom dishes (MatTek) at low 

density and incubated overnight at 37°C and 5% CO2. Then, the cells were moved to a Zeiss Axio 

Observer Z1 microscope equipped with an incubation chamber and imaged for 96 hours 55. 
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Brightfield and fluorescence images were collected from three dishes at multiple positions every 

20 minutes using an automated stage controlled by the Micro-Manager software. We used a Zyla 

5.5 sCMOS camera, which has a large field of view allowing us to track motile cells within a field 

of view for long durations, and an A-plan 10x/0.25NA Ph1 objective. To distinguish G0/G1 and 

S/G2/M cells in time lapse imaging experiments, we used RPE-1 cells expressing the fluorescent 

cell cycle reporters mKO2-hCdt1 (G1), and mAG-hGeminin (S/G2) 41. These reporters were 

introduced into RPE-1 cells using a lentivirus vector, and the positive, fluorescent population of 

cells was isolated using fluorescence-activated cell sorting. 

 

Immunofluorescent staining for microscopy 

Cells were seeded on a 35-mm collagen-coated glass-bottom dish (MatTek) one day before starting 

the cell treatments. Cells were treated with 10 or 100ng/ml Doxorubicin or with DMSO for 24 

hours, and then stained with antibodies. For the staining, cells were fixed with 4% formaldehyde 

for 10 minutes at room temperature, permeabilized with 0.2% Triton™ X-100 (Sigma-Aldrich) 

for 15 minutes at 4°C, and then blocked with 3% BSA in PBS. Then, the cells were incubated with 

primary rabbit anti-53BP1 antibodies (Novus Biologicals, NB100304, 1:2000 dilution) and mouse 

anti-γ-H2AX antibodies (Sigma Millipore, 05-636-I, 1:200 dilution) overnight at 4°C, washed 

twice with PBS, and then incubated with conjugated Alexa Fluor 647 goat-anti-mouse (Invitrogen, 

A32728) and Alexa Fluor 488 goat-anti-rabbit (Invitrogen, A32731) secondary antibodies at 

1:1000 for 1 hour at room temperature. The cells were washed twice with PBS, incubated with 300 

nM DAPI for 5 minutes at room temperature, and then imaged using a Zeiss Axio Observer Z1 

microscope with an A-plan 10x/0.25NA objective. γ-H2AX and 53BP1 loci were quantified from 

microscopy images using standard tools implemented in FIJI software. 
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Extended Data Figure 1. A SILAC proteomics method to measure how the proteome changes 

as a function of G1 cell size.  

(a) Human cells were metabolically labeled in cell culture, sorted by G1 cell size using FACS, and 

subjected to proteomic analysis. (b) Differences in the amount of total protein contributed from 

the small-, medium-, or large-cell size populations were normalized using the signal 

proportionality from the light, intermediate, and heavy channel of each peptide triplet. Small, 

medium, and large cells were mixed prior to lysis, so the amount of protein in each SILAC channel 

is uneven. Rather than normalize L/H and L/M SILAC ratios separately, we normalize all three 

channels together so that the values in our dataset represent relative changes to each peptide. (c) 

For each individual peptide triplet, we determined the fraction of the triplet’s total ion intensity 

present in each SILAC channel. The distributions of these fractions were then adjusted by the 

median (see methods for a complete description of the normalization process). (d) Peptide slope 

values are calculated from a linear regression of the relative ion intensity in each SILAC channel 

and mean cell size. Mean cell size was determined by Coulter counter prior to mixing and lysis. 

(e) Distribution of mean squared error values for peptide triplet regressions (~50,000 per 

experiment). The mean squared error was used to track the linear fit of each peptide regression. (f) 

Correlation of peptide slopes calculated from biological replicate experiments before and after 

applying a filter for mean squared error (MSE). 27,176 unique peptide measurements were 

identified in both replicate experiments. A unique peptide measurement is defined by the peptide 

sequence, modification state, charge state, and the fraction number (the fraction number is only 

considered if the experiment was pre-fractioned and multiple fractions were analyzed). (g) 

Filtering peptides by mean squared error from a linear fit improves data quality. MSE filtering 

improves the correlation of protein slope values derived from biological replicates, and the 
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improvement is consistent across different thresholds of measurement confidence (i.e., peptide 

measurements per protein). 
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Extended Data Figure 2. Supporting information for SILAC proteomics data shown in 

Figure 1: (a) Coulter counter measurement of HLF cells isolated by FACS. Small, medium, and 

large cell populations are colored based on the SILAC labeling orientation for the two replicate 

experiments in Figure 1. See Table S3 for cell size measurements for all proteomic experiments. 

(b) HFL primary cell proliferation rates in SILAC vs standard medium. 
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Extended Data Figure 3. Cell size-dependent changes to concentrations in the proteome are 

mostly linear: (a) Principal component analysis (PCA) of the replicate experiments performed 

using HLF and hTERT RPE-1 cell lines. Data frame input for the PCA contained the relative 
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SILAC ion channel intensity (“light”, “medium”, and “heavy”) for every measured protein in each 

experiment (after filtering for MSE). Dot size represents the mean cell size corresponding to each 

SILAC channel. PC1 represents the majority of variance in both experiments and correlates with 

the change in cell size. (b) Correlation for the mean squared error (MSE) of the Protein Slope 

regression from two biological replicates. A threshold for the minimum number of peptide 

measurements per protein is increased from left to right. Because very few proteins have 

reproducible large MSE values, we conclude that most proteins scale linearly with G1 cell size. 

(c) Peptide-level measurements for the few proteins with non-linear scaling are plotted below. 
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Extended Data Figure 4. Validation of protein size-scaling behaviors using flow cytometry: 

Cycling HLF and RPE-1 cells were fixed and stained with antibodies against subscaling (HMGB1, 

HMGN2), scaling (RPLP0, beta-Actin), and superscaling proteins (VAT1, UCHL1). Alpha-
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tubulin is used as an internal control for each sample. Using flow cytometry, G1 and non-G1 cells 

were gated by DNA content (DAPI dye) and analyzed separately in panels (a) and (b), 

respectively. The data were binned by cell size (SSC, the side scatter parameter) and plotted as 

mean protein amounts per cell for each size bin (solid lines). Dark shaded area shows standard 

error of the mean for each bin, and light shaded area shows the standard deviation. A representative 

is shown of n=3 biological replicates for each experiment. 100,000 cells were analyzed for each 

sample. 
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Extended Data Figure 5. Controls indicating that cell sorting does not affect proteomics 

measurements: (a) A dish of HLF cells were split into two equal parts, and one half was run 

through the FACS machine while the other half sat on ice. MaxQuant LFQ was used to determine 

whether cells subjected to FACS exhibited altered proteomes. The strong correlation between the 

proteomes of sorted and unsorted cells suggests that FACS did not appreciably bias our 

measurements. (b) MaxQuant LFQ was used to compare proteome samples from CFSE-stained 
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and unlabeled cells. The strong correlation between the proteomes of CFSE-treated and untreated 

cells suggests that using a total protein dye does not appreciably bias our measurement. (c) Peptide 

discovery is not impacted by FACS or CFSE staining. (d) RPE-1 cells with G1 DNA content were 

sorted using total protein / cell (CFSE stain) or side scatter to achieve 3 bins of different sized 

cells. Protein Slope values derived from cells sorted by total protein and side scatter are compared. 

A select set of proteins from the comparison in (d) are highlighted in (e). 
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Extended Data Figure 6. Changes to the proteome are primarily driven by cell size and not 

cell age: (a) Metabolically labeled hTERT RPE-1 cells were synchronously released into the cell 

cycle following a Thymidine-Nocodazole cell cycle arrest. (b) A similar distribution of G1 sizes 

were isolated from cells synchronously released into G1 and from asynchronous cultures. (c) 

Protein slopes were calculated as described in Figure 1. Only proteins with at least 4 peptide 

measurements in both replicate experiments are considered for the violin plots. (d) Correlation of 

Protein Slope values calculated from RPE-1 cells synchronously released into G1 and from 

asynchronous cultures. 
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Extended Data Figure 7. Size scaling of proteome content in an epithelial (RPE-1 hTERT) 

and a fibroblast (HLF) cell line: (a) Distribution of slopes derived from HLF cells for proteins 

associated with the indicated compartments. Violin plots depict the average slopes for the proteins 
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highlighted in Figure 2b. P-values above the violin plots are derived from a t-test between the 

indicated protein group and the rest of the dataset. t-tests comparing the slopes for each group of 

proteins are visualized in a grid format. (b) Replicate experiment using the immortalized hTERT 

RPE-1 cell line was performed as in (a). (c) Validation of lysosome super-scaling with cell size 

using flow cytometry. Both the lysosomal protein LAMP1 and the Lysotracker dye amount 

increase with cell size faster than Actin, which is a proxy for total protein. The data for G1 hTERT 

RPE-1 cells were binned by cell size (SSC, the side scatter parameter) and plotted as mean protein 

amounts per cell for each size bin (solid lines). Dark shaded area shows standard error of the mean 

for each bin, and light shaded area shows the standard deviation. A representative is shown of n=5 

biological replicates for each experiment. About 100,000 cells were analyzed for each sample. (d) 

Examples from our proteomics data set of cell-size-dependent protein concentration changes in 

proliferating cells that are normally associated with senescence. (e) RB is diluted with increasing 

G1 cell size. 
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Extended Data Figure 8. Scaling behavior of lumenal and membrane-associated proteins: (a) 

Scaling behavior of proteins predicted to contain a transmembrane domain (Uniprot’s 

“Transmembrane” annotation column). (b) Scaling behavior of ER proteins that are annotated to 

be either membrane-associated or not (i.e., lumenal). 
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Extended Data Figure 9. Linear regression analysis predicts size scaling behavior of 

individual proteins: The prediction of size scaling behavior was based on the 1,700 proteins that 

are in the published protein turnover dataset (HeLa cells) 31, as well as our RNA Slope, and Protein 

Slope datasets (at least 2 peptides / protein) that we report here. Independent variables for codon 

affinity, RNA Slope, and Protein turnover (time to replace 50% of a given protein species) were 

each independently standardized by subtracting all values by the dataset’s mean and then dividing 

by the dataset’s standard deviation. The subcellular localization variable was based on Uniprot’s 

“Subcellular location [CC]” annotations and entered as a binary value for each compartment (1 if 

a protein possessed an annotation and 0 if it did not). Only subcellular compartments that provided 

nonredundant predictive power were ultimately included in the model. A constant value was added 

to the regression equation using the add_constant function in statsmodels. We set the benchmark 

for predictive accuracy (Prediction %) as the correlation between biological replicate experiments, 

i.e., Protein Slope from Exp #1 vs Exp #2. 
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Extended Data Figure 10. Analysis of senescence markers in different-sized cells: (a) 

Transcript levels of key senescence reporter genes in size-sorted HLF cells. G1 HLF cells were 

sorted into four size bins using FACS. The concentrations of TP53, CDKN2A, CDKN2B, and 

GLB1 mRNAs were then determined by RNAseq and plotted against the mean cell size for each 

bin. Each colored line represents one of four replicates. (b) Flow-FISH Telomere PNA staining in 

passage #8 HLF cells plotted against cell size. (c) Cell size distributions for the four bins of FACS-

sorted HLF cells that were then re-plated and passaged to determine replicative senescence 

dynamics (see Fig. 3d,e), as measured with a Coulter counter. (d) Percentage of S/G2/M phase 

cells (left) and percentage of EdU-positive cells after 24 hours labeling with 1µM EdU in HLF 

cells, 2 days after sorting G1 cells by cell size. (e-f) Asynchronous hTERT RPE-1 cells were gated 

for G1 DNA content and sorted into four bins by size using FACS (e). Then the sorted cells were 

replated and cultured in the presence of the DNA damaging agent Doxorubicin (10 ng/ml), and 

then stained for SA-beta-Gal at the indicated time points to determine the DNA-damage-induced 

senescence dynamics (f). (g-h) Cell size distributions (g) and SA-beta-Gal staining images (h) of 

the RPE-1 cells treated for 8 days with DMSO, Palbociclib or Doxorubicin, in the presence or 

absence of Rapamycin to determine the effect of cell size reduction on senescence dynamics (see 

Fig. 3f). Each of the experiments in (b-h) was performed in two biological replicates. 
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Extended Data Figure 11. Classes of sub- and super-scaling proteins in HLF and hTERT 

RPE-1 cells: (a) Slopes for proteins grouped by Uniprot GO annotations for DNA repair 

(GO:0006281) and DNA replication (GO:0006260). (b) Size-dependent proteome changes from 

this study correlate with the senescence-associated SASP and cell cycle gene expression changes 

defined by Ruscetti, et al. 33. 
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Extended Data Figure 12. Correlation between the cell size and the number of DNA damage 

foci in RPE-1 cells. (a-c) Distribution of nuclear areas (a) and numbers of γ-H2AX (b) and 53BP1 

(c) loci per nucleus in RPE-1 cells treated with DMSO, 10 ng/ml or 100 ng/ml Doxorubicin for 24 

hours. (d) Correlation between the γ-H2AX and 53BP1 loci numbers in each RPE-1 nucleus. (e-f) 

Correlation between the nuclear area and the number of γ-H2AX (e) and 53BP1 (f) loci per nucleus 

in each RPE-1 cell nucleus after treatment with 100 ng/ml Doxorubicin for 24 hours. n = 1602 

cells for DMSO, n = 1265 cells for 10 ng/ml Doxorubicin, and n = 1062 cells for 100 ng/ml 

Doxorubicin. 
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Data S1. Protein and Peptide Slope values for size-sorted G1 cells 

Data S2. Long-term Palbociclib time course 

Data S3. Scaling behavior of protein complexes and their associated subunits 

Data S4. mRNA concentrations in G1 HLF cells sorted into three size bins  

Data S5. Ploidy-sorted Protein Slopes 

Data S6. Experiment List and MaxQuant spectral search parameter file 
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