

# The neutralization potency of anti-SARS-CoV-2 therapeutic human monoclonal antibodies is retained against novel viral variants

Efi Makdasi<sup>1,&</sup>, Anat Zvi<sup>1,&</sup>, Ron Alcalay<sup>1</sup>, Tal Noy-Porat<sup>1</sup>, Eldar Peretz<sup>1</sup>, Adva echaly<sup>1</sup>, Yinon Levy<sup>1</sup>, Eyal Epstein<sup>1</sup>, Theodor Chitlaru<sup>1</sup>, Ariel Tennenhouse<sup>2</sup>, Moshe talion<sup>1</sup>, David Gur<sup>1</sup>, Nir Paran<sup>1</sup>, Hadas Tamir<sup>1</sup>, Oren Zimhony<sup>3</sup>, Shay Weiss<sup>1</sup>, Michal endelboim<sup>4,5</sup>, Ella Mendelson<sup>4,5</sup>, Neta Zuckerman<sup>4</sup>, Ital Nemet<sup>4</sup>, Limor Kliker<sup>4</sup>, Shmuel zhaki<sup>1</sup>, Shmuel C. Shapira<sup>1</sup>, Tomer Israely<sup>1</sup>, Sarel J. Fleishman<sup>2</sup>, Ohad Mazor<sup>1,\*</sup>, Ronit Rosenfeld<sup>1,\*</sup>

<sup>1</sup> Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel

<sup>2</sup> Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7600001, Israel

<sup>3</sup> Infectious Diseases Unit, Kaplan Medical Center, Rehovot, Israel, affiliated to the School of Medicine, Hebrew University and Hadassah, Jerusalem, Israel

<sup>4</sup> The Central Virology Laboratory, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel

<sup>5</sup> Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel

<sup>&</sup> These authors contributed equally: Efi Makdasi, Anat Zvi

\* These authors jointly supervised this work: Ohad Mazor and Ronit Rosenfeld. email: ohadm@iibr.gov.il; ronitr@iibr.gov.il

24 **Summary**

25 A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were  
26 reported to date, most of which target the spike glycoprotein and in particular its receptor  
27 binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic  
28 implementation of these antibodies has been recently challenged by emerging SARS-CoV-  
29 2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment  
30 of mAbs, previously reported to neutralize the original early-version of the virus, is of high  
31 priority.

32 Four previously selected mAbs targeting non-overlapping epitopes, were evaluated  
33 for their binding potency to RBD versions harboring individual mutations at spike positions  
34 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing  
35 worldwide distributed modifications of the RBD, previously reported to mediate escape  
36 from antibody neutralization. Additionally, the *in vitro* neutralization potencies of the four  
37 RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two  
38 frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the  
39 UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously  
40 suggested to escape many therapeutic mAbs, including those authorized for clinical use.  
41 The possible impact of RBD mutations on recognition by mAbs is addressed by  
42 comparative structural modelling. Finally, we demonstrate the therapeutic potential of  
43 three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection  
44 with each of the virus strains.

45 Our results clearly indicate that despite the accumulation of spike mutations, some  
46 neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly

47 potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel  
48 viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high  
49 clinical concern.

50

51                   **Introduction**

52                   An unprecedented worldwide research and development effort has resulted in the rapid  
53                   development of several prophylactic and therapeutic immune tools to combat the COVID-  
54                   19 pandemic caused by SARS-CoV-2. These tools predominantly target the virus spike  
55                   glycoprotein which is essential for the attachment of the virus to the target cell and hence  
56                   plays an essential role in virus infectivity (Walls et al., 2020). Emergency-authorized  
57                   vaccines against the SARS-CoV-2 spike produced by Pfizer/BioNTech, Moderna,  
58                   AstraZenica, Johnson & Johnson (Krammer, 2020) and others, are already being used in  
59                   mass vaccination campaigns (<https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines>). Additionally, passive immunity was achieved by the  
60                   administration of convalescent plasma or recombinant neutralizing monoclonal antibodies  
61                   [mAbs; (Alam et al., 2021; Weinreich et al., 2021; Wu et al., 2020b)]. This therapeutic  
62                   avenue accelerated the development of many potent neutralizing mAbs, primarily targeting  
63                   the receptor binding domain (RBD) and the N-terminal domain (NTD) of the spike-S1  
64                   subunit [reviewed by (Xiaojie et al., 2020)]. A single therapeutic mAb, generated by Eli  
65                   Lilly and Company, and a dual antibody combination, generated by Regeneron  
66                   Pharmaceuticals, recently received emergency-use authorization (Chen et al., 2021a;  
67                   Weinreich et al., 2021).

69                   Prior to its global expansion, SARS-CoV-2 was expected to exhibit a relatively low  
70                   mutations rates, as compared to many other RNA viruses since its genome encodes a  
71                   proofreading exoribonuclease (Robson et al., 2020). Nevertheless, the long-term global  
72                   spread of the SARS-CoV-2, possibly combined with selective pressure for immune escape  
73                   (Kemp et al., 2021), enabled the emergence of new SARS-CoV-2 variants. Specifically,

74 multiple mutations in the spike glycoprotein are evolving, including mutations that are  
75 located in the spike S1 subunit, particularly residing in the antigenic supersite of the NTD  
76 (Cerutti et al., 2021; McCallum et al., 2021; Noy-Porat et al., 2021) or in the RBD [hACE2-  
77 binding site; (Baum et al., 2020; Chen et al., 2020; Noy-Porat et al., 2020)], sites that  
78 represent a major target of potent virus-neutralizing antibodies.

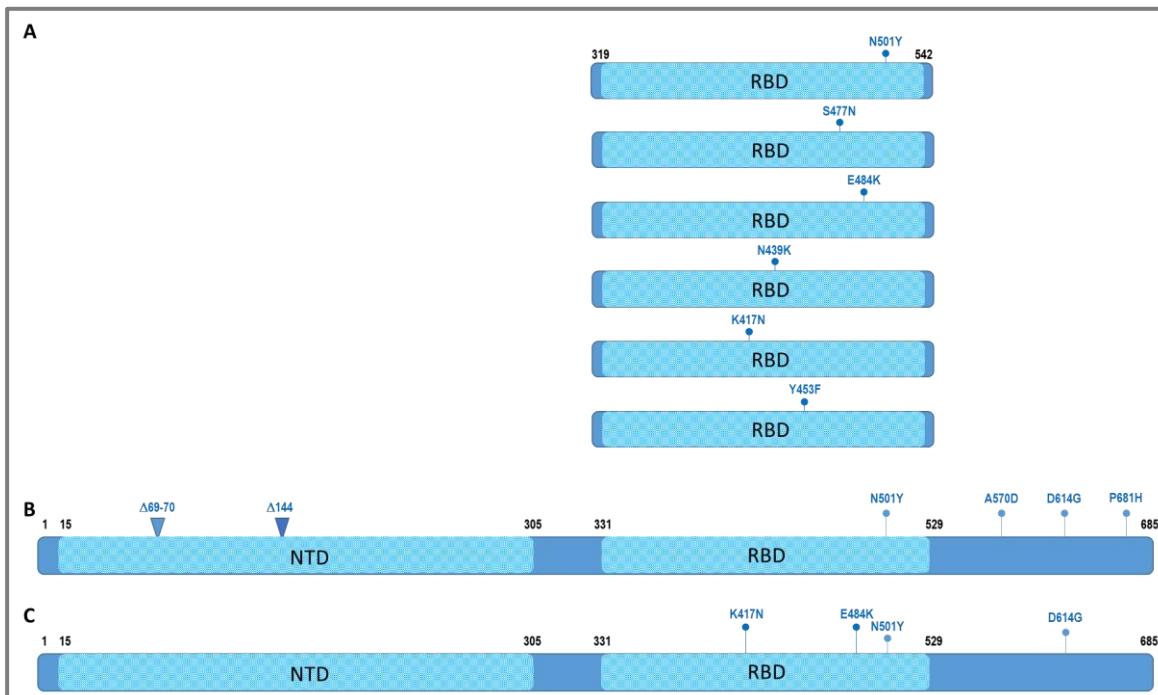
79 The impact of accumulated mutations is closely monitored; yet, only a minor fraction,  
80 which are selectively favorable, might spread and reach high frequency, and more  
81 importantly, become fixed in the population. Emergence of such genetic variants has  
82 important epidemiological consequences since they may exhibit increased transmissibility,  
83 reinfection of vaccination or convalescent individuals, or increase disease severity. The  
84 WHO has recently established the working definitions of “SARS-CoV-2 Variant of  
85 Interest” (VOI) and of “SARS-CoV-2 Variant of Concern” (VOC)  
86 (<https://www.who.int/publications/m/item/weekly-epidemiological-update---23-february-2021>). One of the major VOCs identified and monitored recently, is denoted as  
87 20I/501Y.V1 belonging to the B.1.1.7 lineage, which has a total of 18 nonsynonymous  
88 mutations relative to the original Wuhan strain. In this variant,<sup>7</sup> 7 replacements and 2  
89 deletions reside in the spike protein [see Supplementary Figure 1 for schematic  
90 presentation; (Rambaut et al., 2020b)]. Since its first emergence in the UK in September  
91 2020 (Rambaut et al., 2020a), the B.1.1.7 variant is rapidly globally spreading. As of June  
92 2021, the variant has been detected in over 140 countries, with an apparent cumulative  
93 prevalence of 44% worldwide (for instance, 58%, 33% and 68% in the UK, US and Israel,  
94 respectively) and a worldwide average daily prevalence of ~75% (<https://outbreak.info>).  
95 Two additional VOCs were reported: the B.1.351 lineage (also known as 20H/501Y.V2;

97 schematically depicted in Supplementary Figure 1), identified for the first time in October  
98 2020 in South Africa (Tegally et al., 2021) and the P.1 lineage, (also known as 501Y.V3),  
99 first identified in December 2020 in Brazil (Faria et al., 2021). Both variants are less  
100 abundant worldwide (up to 2%) and mostly contained in the geographic surrounding of  
101 their originating site. The most recent variant determined by the WHO as VOC is the  
102 B.1.617.2 lineage, first identified in India, with an apparent cumulative prevalence of 3%  
103 worldwide (as of June 2021), and very recently also detected in Israel. This variant,  
104 harboring 9 mutations in the spike protein (among which L452R and T478K are in the  
105 RBD), is associated with higher transmissibility (Saito et al., 2021) and potential immune  
106 escape (Planas et al., 2021; Yadav et al., 2021). The full biological and clinical implications  
107 of the new SARS-CoV-2 variants are yet to be determined. Nevertheless, the careful  
108 immunological assessment of known mutations, in particular in the RBD, is essential, due  
109 to the possible impact on vaccines and therapeutic countermeasures, such as monoclonal  
110 antibodies. Of the multitude of possible genomic loci, mutations at several positions were  
111 already reported at relatively high frequency in the  $\sim 2 \times 10^6$  sequences available to date  
112 (GISAID initiative, <https://gisaid.org> (Elbe and Buckland-Merrett, 2017). The most  
113 frequent mutation, N501Y, representing the hallmark of three circulating VOCs (B.1.1.7,  
114 B.1.351 and P.1), was first detected in February 2020, and as of June 2021 is present in  
115 over 70% of the global cases in more than 160 countries. The mutation S477N, was  
116 reported in 43% of the cases worldwide, since its emergence in February 2020. Its  
117 cumulative prevalence is most prominent in Australia (56% as of June 2021). The mutation  
118 E484K, has been detected in more than 120 countries, exhibiting a worldwide cumulative  
119 prevalence of 6%. This mutation was detected in the South African (B.1.351) and Brazilian

120 (P.1) variants and recently in a UK “B.1.1.7+E484K” variant. The N439K, a sentinel  
121 receptor binding motif mutation (Thomson et al., 2021) has an apparent worldwide  
122 cumulative prevalence of 2%, reported in at least 79 countries. This mutation has emerged  
123 in multiple SARS-CoV-2 clades, and is mostly associated with the B.1.258 lineage  
124 derivatives, circulating in central Europe. The K417N mutation was reported in over 1%  
125 of the cases worldwide in at least 105 countries. This mutation represents one of the  
126 hallmarks of the B.1.351 lineage and is exhibited in approximately 50% of South African  
127 cases. The replacement Y453F was detected in at least 15 countries, predominantly in  
128 Denmark. In late 2020, this mutation raised substantial concern, when it was detected in a  
129 variant found in the mink population (Thomson et al., 2021).

130 Both predictive theoretical and experimental approaches revealed that escape mutants can  
131 rapidly occur when SARS-CoV-2 is exposed to selective pressures mediated by  
132 neutralizing polyclonal sera or individual mAbs (Andreano et al., 2020; Liu et al., 2021;  
133 Starr et al., 2021a; Weisblum et al., 2020). More specifically, escape mutations within the  
134 RBD were predicted and experimentally confirmed to affect its function (mainly with  
135 respect to hACE2 binding) and recognition by mAbs. Substitutions N501Y, E484K,  
136 K417N, Y453F, N439K and S477N, were among the most frequent mutations that  
137 mediated immune escape and were shown to reduce and even completely abrogate the  
138 neutralizing activity of several highly potent mAbs, including those which are already in  
139 clinical use (Andreano et al., 2020; Chen et al., 2021b; Liu et al., 2021; Starr et al., 2021a;  
140 Weisblum et al., 2020). These substitutions naturally occurred in infected individuals, most  
141 of which are now represented by SARS-CoV-2 emerged genetic variants which spread  
142 worldwide.

143 We previously reported the isolation of RBD- and NTD-specific mAbs (Barlev-Gross et  
144 al., 2021; Noy-Porat et al., 2020; Noy-Porat et al., 2021; Rosenfeld et al., 2021), among  
145 which the MD65 mAb showed exceptional neutralization potency, as demonstrated by *in*  
146 *vitro* and *in vivo* experiments.

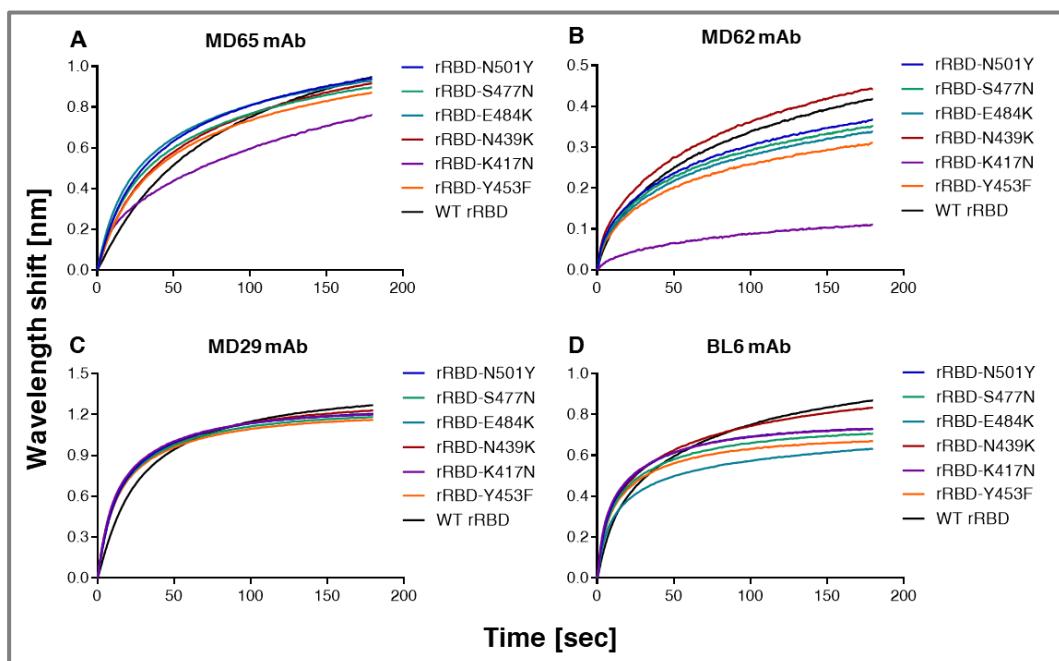

147 In the current study, we present the re-evaluation of four SARS-CoV-2 neutralizing  
148 mAbs (MD65, MD62, MD29 and BL6), directed against four distinct epitopes in the spike  
149 RBD, for their ability to bind RBD variants that represent individual substitutions  
150 encountered in the VOCs. Additionally, we assessed the *in vitro* neutralization capacity of  
151 these four anti-RBD and two anti-NTD mAbs to counteract the SARS-CoV-2 B.1.1.7 and  
152 B.1.351 variants. Comparative structural modeling was conducted to determine the  
153 possible impact of mutations on the binding efficiency of the MD65 mAb. Finally, we  
154 evaluated the *in vivo* therapeutic potential of three selected mAbs by treatment of K18-  
155 hACE2 transgenic mice two days post infection with each of the virus strains.

156

157 **Results and Discussion**

158 **Binding SARS-CoV-2 single mutated-RBD versions by specific mAbs**

159 In the current study, we re-evaluated the antigen-binding of the recently reported mAbs,  
160 MD65, MD62, MD29 and BL6, targeting four distinct RBD epitopes [(Noy-Porat et al.,  
161 2020); Supplementary Figure 2]. The binding capability of these mAbs was tested with  
162 respect to six individual mutations in the SARS-CoV-2 spike recombinant RBD (rRBD),  
163 identified in circulating variants, including VOCs. These inspected mutations are N501Y,  
164 S477N, E484K, N439K, K417N and Y453F as detailed below (Figure 1A; for complete  
165 lineages and mutation reports, see <https://outbreak.info>).




166 **Figure 1. Schematic representation of SARS-CoV-2 RBD and S1 variants. A.**  
167 Depiction of recombinant RBD variant proteins, each including the indicated single highly  
168 frequent replacements reported in the RBD domain. The domain coordinates are according  
169 to the recombinant RBD used throughout the study. **B.** Schematic representation of the  
170 spike S1 subunit, along with the replacements and deletions characterizing the SARS-CoV-  
171 2 B.1.1.7 genetic variant. **C.** Schematic representation of the spike S1 subunit, along with

172 the RBD replacements, characterizing the SARS-CoV-2 B.1.351 genetic variant. The  
173 numbering is according to the Wuhan reference sequence (Accession no. NC\_045512). For  
174 the full panel of replacements in the B.1.1.7 and B.1.351 spike protein, see Supplementary  
175 Figure 1.

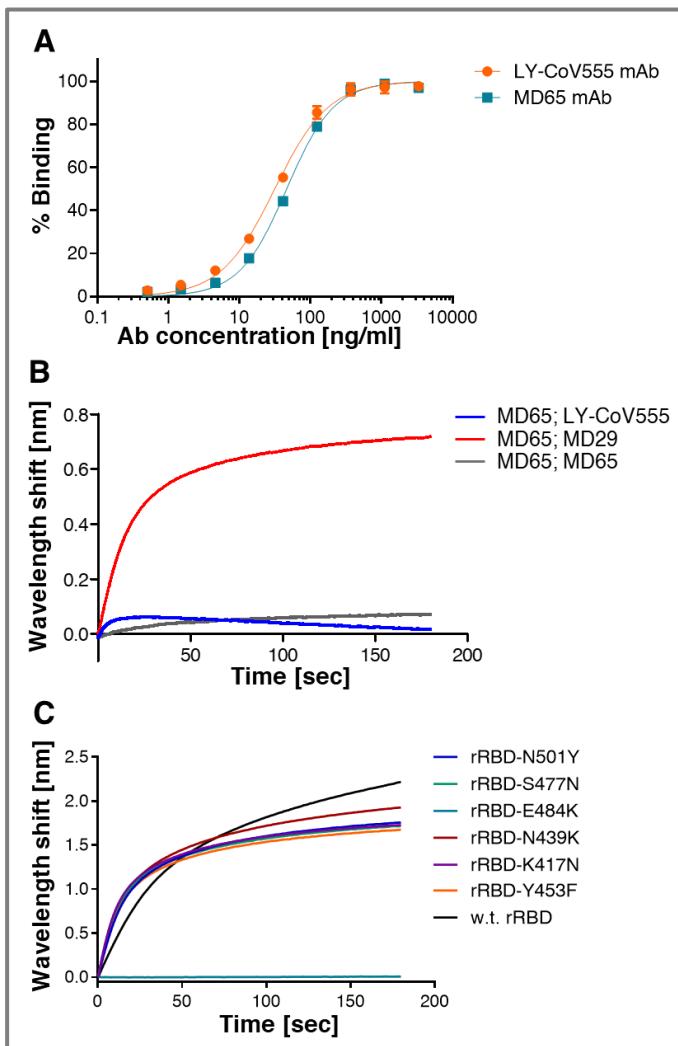
176

177 Biolayer interferometry (BLI) analysis was applied to evaluate the ability of the four RBD-  
178 specific mAbs that we have previously reported to bind the SARS-CoV-2 single mutated-  
179 RBD variants. As presented in Figure 2, the binding of these mAbs was only slightly  
180 affected (5-22% loss of binding) by five of the six substitutions in the RBD. The only  
181 significant reduction in binding capacity, compared to the WT rRBD, was observed for the  
182 K417N mutant by the MD62 mAb (~74% reduction) and to a lesser extent by the MD65  
183 mAb (17% reduced binding). In light of these results, it is anticipated that these mAbs,  
184 previously shown to neutralize SARS-CoV-2 by targeting distinct epitopes on the RBD,  
185 maintain their potency against variant strains carrying these mutations.



186 **Figure 2. MAbs binding of singly-mutated rRBDs.** Binding of the WT and the six  
187 indicated singly-mutated recombinant RBDs by MD65 (A), MD62 (B), MD29 (C) and

188 BL6 (**D**) mAbs, was evaluated by Biolayer interferometry (BLI). Each mAb was  
189 immobilized on a protein-A sensor and incubated with each of the rRBD mutants [N501Y,  
190 S477N, E484K, N439K, K417N and Y453F] or WT rRBD as a control, for 180 sec.


191

192 **Comparison of binding to the SARS-CoV-2 spike protein by MD65 and the**  
193 **commercial licensed LY-CoV555 mAbs**

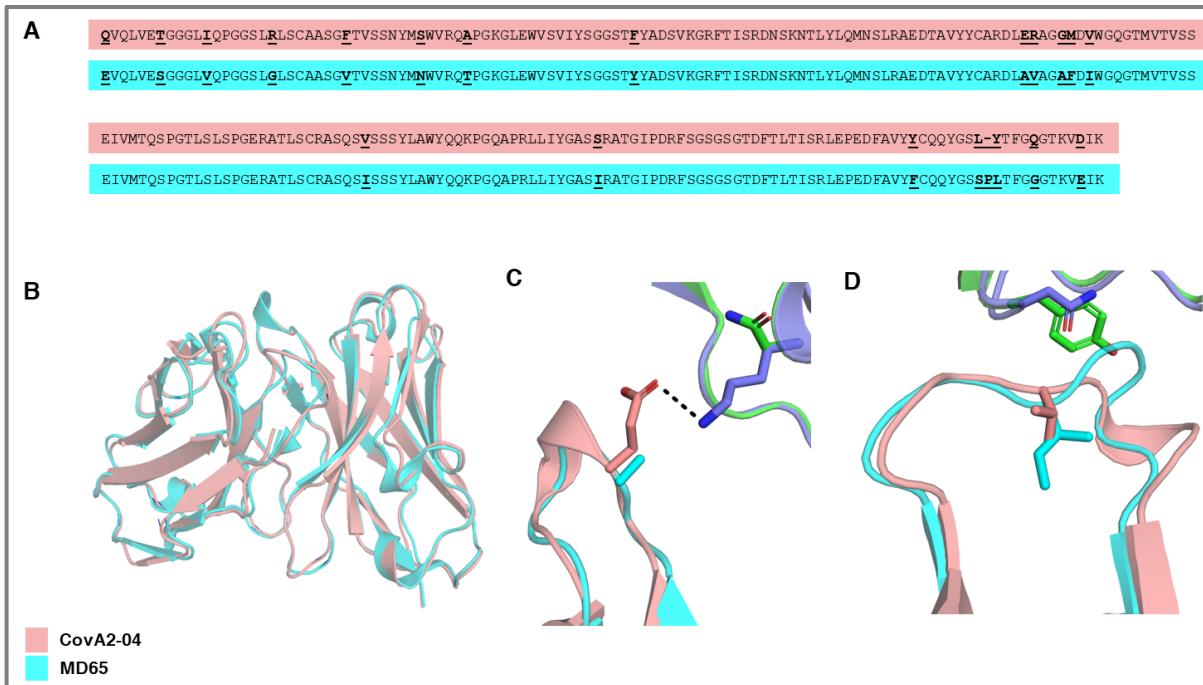
194 Amongst the four RBD-specific mAbs studied here, MD65 is the most effective antibody  
195 in terms of *in vitro* neutralization. Additionally, *in vivo* studies demonstrated that MD65  
196 effectively elicited post-exposure protection in mice at relatively low doses (Rosenfeld et  
197 al., 2021). MD65 (whose variable regions are encoded by the IGHV3-66 and IGKV3-20  
198 germline heavy and light chain alleles, respectively), belongs to a public clonotype  
199 (frequently encoded by IGHV3-53/3-66) that was extensively characterized in the context  
200 of SARS-CoV-2 neutralizing human antibodies (Barnes et al., 2020; Fagiani et al., 2020;  
201 Tan et al., 2021; Yuan et al., 2020), specifically targets the receptor binding motif,  
202 competing with hACE2 binding. Noteworthy, recent studies showed that binding and  
203 neutralization by antibodies belonging to this public clonotype are weakened by either the  
204 K417N or E484K replacements (Andreano et al., 2020; Yuan et al., 2021). Specifically,  
205 the E484K mutation, which is present in several SARS-CoV-2 natural isolates (including  
206 the B.1.351, P.1 and recently identified “B.1.1.7+E484K” VOCs), was reported to be  
207 associated with lower susceptibility to neutralization by some mAbs, convalescent plasma  
208 and sera collected from vaccinated individuals (Chen et al., 2021b; Wang et al., 2021a;  
209 Wang et al., 2021b).

210

211 The RBD-specific therapeutic mAb LY-CoV555 [Bamlanivimab; (Chen et al., 2021a)],  
212 encoded by the germline alleles: IGHV1-69; IGKV1-39, was also shown to block hACE2  
213 binding by SARS-CoV-2 (Jones et al., 2021), and accordingly, possibly compete with  
214 MD65. However, although they may target close epitopes, their recognition pattern may  
215 differ. In order to test whether LY-CoV555 functionality is affected in a similar manner as  
216 MD65, the commercially available LY-CoV555 mAb was used in binding experiments.  
217 First, the binding profile of the LY-CoV555 was tested by ELISA against the SARS-CoV-  
218 2 spike protein, and compared to that of MD65 (Figure 3A), demonstrating similar binding  
219 profiles. An epitope-binning experiment using BLI was performed in the presence of  
220 MD65 and MD29 (as a negative control). As shown in Figure 3B, LY-CoV555 failed to  
221 bind the rRBD protein, presented in complex with MD65 mAb, while significant binding  
222 was observed when the rRBD was presented in complex with MD29 (which binds a  
223 different epitope than MD65). These results clearly indicate that LY-CoV555 and MD65  
224 target overlapping epitopes. Next, the LY-CoV555 binding capacity towards the panel of  
225 RBD mutants was evaluated (Figure 3C), demonstrating equivalent binding of rRBD-  
226 N439K, Y453Y, S477N and N501Y, compared to the WT rRBD. However, LY-CoV555  
227 binding was completely obstructed by the E484K substitution. This observation is in line  
228 with recently reported studies suggesting that the E484K substitution is accountable for the  
229 abolishment of neutralization of SARS-CoV-2 natural variants that carry this mutation by  
230 LY-CoV555 mAb (Starr et al., 2021b; Wang et al., 2021a).



231 **Figure 3. Binding characterization of the LY-CoV555 mAb (Bamlanivimab). A.**  
232 Binding of the LY-CoV555 mAb was evaluated by ELISA against SARS-CoV-2 spike  
233 protein. MD65 was included for comparison. Data shown represent average of triplicates  
234  $\pm$ SEM **B.** BLI was applied for epitope binning experiments. MD65 antibody was  
235 biotinylated, immobilized on a streptavidin sensor and saturated with WT rRBD protein.  
236 The complex was then incubated for 180 s with LY-CoV555 or MD29 and MD65 as  
237 controls. Time 0 represents the binding to the MD65-rRBD complex. **C.** LY-CoV555  
238 binding of the indicated single-mutated rRBDs and the WT rRBD was evaluated by BLI.  
239 LY-CoV555 antibody was immobilized on a protein-A sensor and incubated with each  
240 indicated rRBD for 180 sec.


241

242

243 **Structural modeling of anti-RBD antibodies**

244 To define the molecular basis for the observed high cross-reactivity of MD65 mAb against  
245 all inspected mutant RBDs, we modeled its variable domain structure using *AbPredict2*  
246 [(Lapidoth et al., 2019); Figure 4]. *AbPredict2* uses Rosetta energy calculations as the sole  
247 criterion to predict a model structure on the basis of the variable domain sequence, ignoring  
248 sequence homology to existing antibody structures (Norn et al., 2017), producing energy-  
249 relaxed models. We noted that the recently solved structure of antibody CovA2-04 in  
250 complex with the RBD [Protein Data Bank entry 7jmo; (Wu et al., 2020a)] is very similar  
251 to the top-ranked *AbPredict2* model of MD65 (Ca and carbonyl oxygen root mean square  
252 deviation < 1.0 Å). The two antibodies are also highly similar in their primary amino-acid  
253 sequence (93% V gene sequence identity; Figure 4A), and both derive from the same heavy  
254 and light-chain germline genes (IGHV3-53/66 and IGKV3-20, respectively), hence are  
255 assigned to the same public clonotype. The differences between the two antibodies are  
256 mostly restricted to a diverged amino acid residue in L1, a deletion in L3, and different H3  
257 sequences. The high sequence and structure similarity suggests that the bound state  
258 observed for CovA2-04 may provide a reliable structural framework for analyzing MD65  
259 binding to RBD variants. Therefore, the MD65 model structure was aligned to the CovA2-  
260 04 structure (Figure 4B) to obtain a model of the interaction of MD65 with RBD.

261



262 **Figure 4: Structural basis of MD65 binding to COVID-19 spike variants determined**  
263 **by comparative modeling to the CovA2-04 mAb.**

264 A. Alignment of the primary amino-acid sequences of the heavy (2 upper sequences) and  
265 light (2 lower sequences) chain variable domains of the two antibodies compared (CovA2-  
266 04 in pink and MD65 in cyan). Diverged residues are indicated by bold and underlined  
267 letters. **B-D.** MD65 model structure (cyan) aligned with CovA2-04 crystal structure (pink);  
268 WT (PDB entry 7jmo) and B.1.351 spike (PDB entry 7nxa); violet and green, respectively).  
269 **B.** A view of the superimposed variable domain models of the two mAbs, indicating the  
270 close correspondence of the MD65 model structure and the experimentally determined  
271 structure of CovA2-04. **C.** The Lys residue at position 417 of the WT spike protein forms  
272 a stabilizing hydrogen bond (dashed line) with the Glu residue at position 100 of CovA2-  
273 04. The K417N present in B.1.351 abrogates this stabilizing interaction leading to potential  
274 strain in binding to the negative surface on the CDR H3 loop of CovA2-04. The Ala at the  
275 analogous position in MD65 may relieve this strain. **D.** The small-to-large N501Y  
276 substitution on the B.1.351 spike may physically overlap with the CDR L1 of CovA2-04.  
277 The V29I difference in MD65 (compared to CovA2-04) modifies the CDR L1 backbone  
278 conformation, expanding the space in this region for the bulkier Tyr residue of the spike.

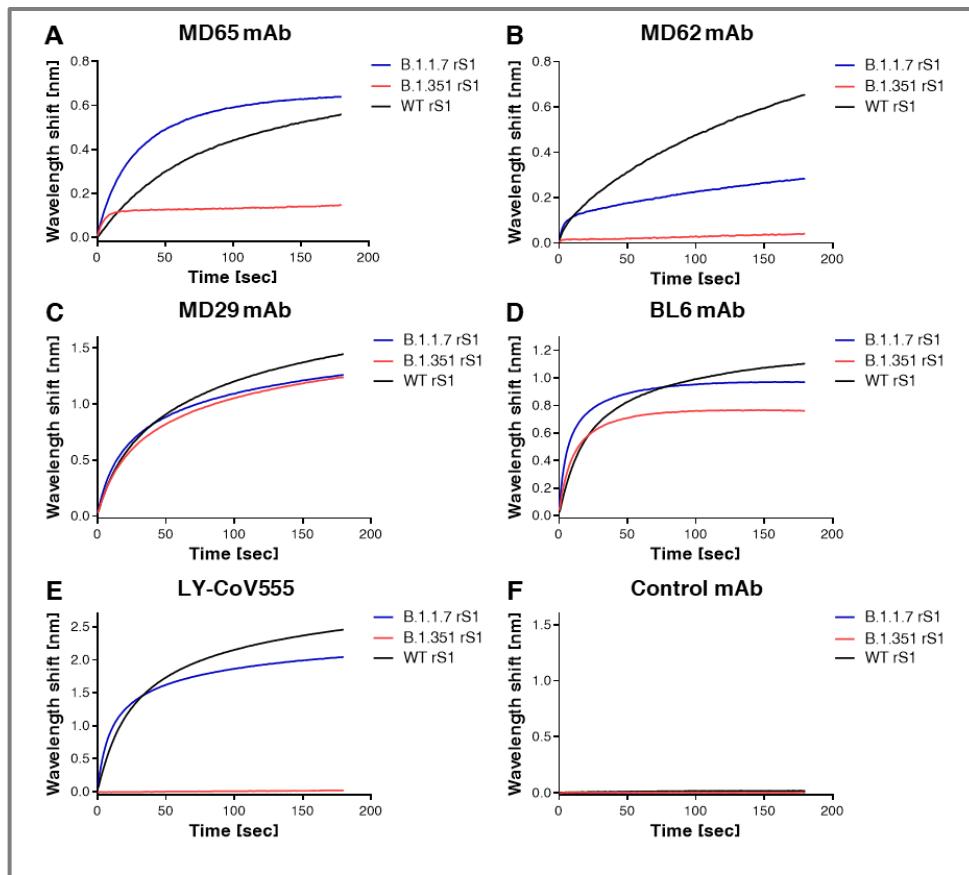
279

280 We initially focused on the K417N mutation located on the B.1.351 spike protein (Figure  
281 4C). Despite the high sequence homology of CovA2-04 and MD65, this mutation abrogates  
282 binding to the former while minimally perturbing binding to the latter (Yuan et al., 2021).  
283 Whereas CDR H3 in CovA2-04 presents a negatively charged sidechain (Glu100;  
284 annotated as Glu97 according to Kabat numbering scheme) to counter the positive charge  
285 on the Lys at position 417 in RBD, the model shows that the H3 loop of MD65 is neutral.  
286 Thus, the K417N mutation may lead to electrostatic strain in binding the CovA2-04  
287 antibody but not in that of MD65. Negative charges are also observed in this position in  
288 other RBD-binding antibodies derived from the IGHV3-53/66 germline gene (Yuan et al.,  
289 2021) and these may be similarly impacted by the K417N mutation.

290

291 Structural modeling may also provide an explanation for the ability of MD65 to neutralize  
292 RBD variants that exhibit the N501Y mutation (Figure 4D). RBD position 501 is proximal  
293 to the tip of CDR L1 of CovA2-04. The *AbPredict2* model predicts that the CDR L1 adopts  
294 a different backbone conformation than CovA2-04 due to the CDR L1 mutation V29I  
295 (refers to position 28 according to the Kabat numbering scheme). In this altered backbone  
296 conformation, the CDR L1 of MD65 provides more space for the bulky Tyr at RBD  
297 position 501. Finally, the structure model suggests that RBD Glu at position 484 is distant  
298 from the interaction with MD65. Therefore, even radical mutations at this position would  
299 not impact antibody binding, as is indeed observed in the binding and neutralization  
300 experiments. Thus, it may be concluded that electrostatic strain at CDR H3 and steric  
301 hindrance in CDR L1 provide a likely mechanistic basis for understanding the differential  
302 effects of RBD mutations on binding affinity and neutralization in this class of antibodies.

303 It remains to be seen whether this explanation extends to additional antibodies belonging  
304 to this class and other spike variants that emerge in the future.


305

306 **Binding SARS-CoV-2 multiply mutated-S1 versions by specific mAbs**

307 The retained binding capabilities, observed for the tested mAbs towards the individual  
308 RBD mutations, may not necessarily predict their interaction in the context of multiple  
309 mutations, present in emerged VOCs. Therefore, we studied the ability of the four RBD-  
310 specific mAbs to bind recombinant mutated spike S1 subunit proteins, representing the  
311 RBD accumulated mutations associated with the B.1.1.7 and B.1.351 genetic variants  
312 (schematically depicted in Figures 1B and 1C, respectively). BLI analyses (Figure 5) were  
313 applied for binding evaluation of recombinant S1:Δ 69-70; Δ 144; N501Y; A570D;  
314 D614G; P681H, representing all the modifications encountered in the S1 of the B.1.1.7  
315 genetic variant (Figure 5, B.1.1.7 rS1, blue curves) and of recombinant S1:K417N; E484K;  
316 N501Y; D614G, representing the RBD-related substitutions of B.1.351 (B.1.351 rS1; red  
317 curves). Recombinant WT S1 subunit (WT rS1; black curves) was used for comparison.  
318 While binding of B.1.1.7 rS1 by MD65, MD29, BL6 and LY-CoV555 was not impaired  
319 by the mutations (Figures 5A, 5C, 5D and 5E, respectively), MD62 binding was reduced  
320 by ~50% (Figure 5B). This observation may not be attributed to the minor reduction (8%  
321 loss of binding) observed in binding of N501Y-RBD mutant by this antibody (Figure 2B)  
322 as it represents the only substitution in the RBD of B.1.1.7. Therefore, it can be speculated  
323 that structural changes in the B.1.1.7 rS1 (Figure 1B) involving the mutated NTD,  
324 allosterically affected MD62 binding.

325 The B.1.351 rS1 (schematically depicted in Figure 1C) includes the N501Y substitution,  
326 as well as the K417N and E484K replacements that were previously shown to substantially  
327 impair binding by various mAbs (Chen et al., 2021b; Cheng et al., 2021; Starr et al., 2021b;  
328 Wang et al., 2021b). Thus, in line with the individual mutation binding results (see Figure  
329 3C for LY-CoV555 and Figure 2D for BL6), the observed binding abrogation of the  
330 B.1.351 rS1 by LY-CoV555 mAb (Figure 5B) and the mild (18%) reduction observed for  
331 BL6 (Figure 5D) can be attributed mainly to the E484K substitution. Similarly, the  
332 complete loss of binding by MD62 (Figure 5B) and significant loss of binding by MD65  
333 (~65%; Figure 5A), may have been mediated by the K417N substitution (see Figures 2B  
334 and 2A for MD62 and MD65, respectively).

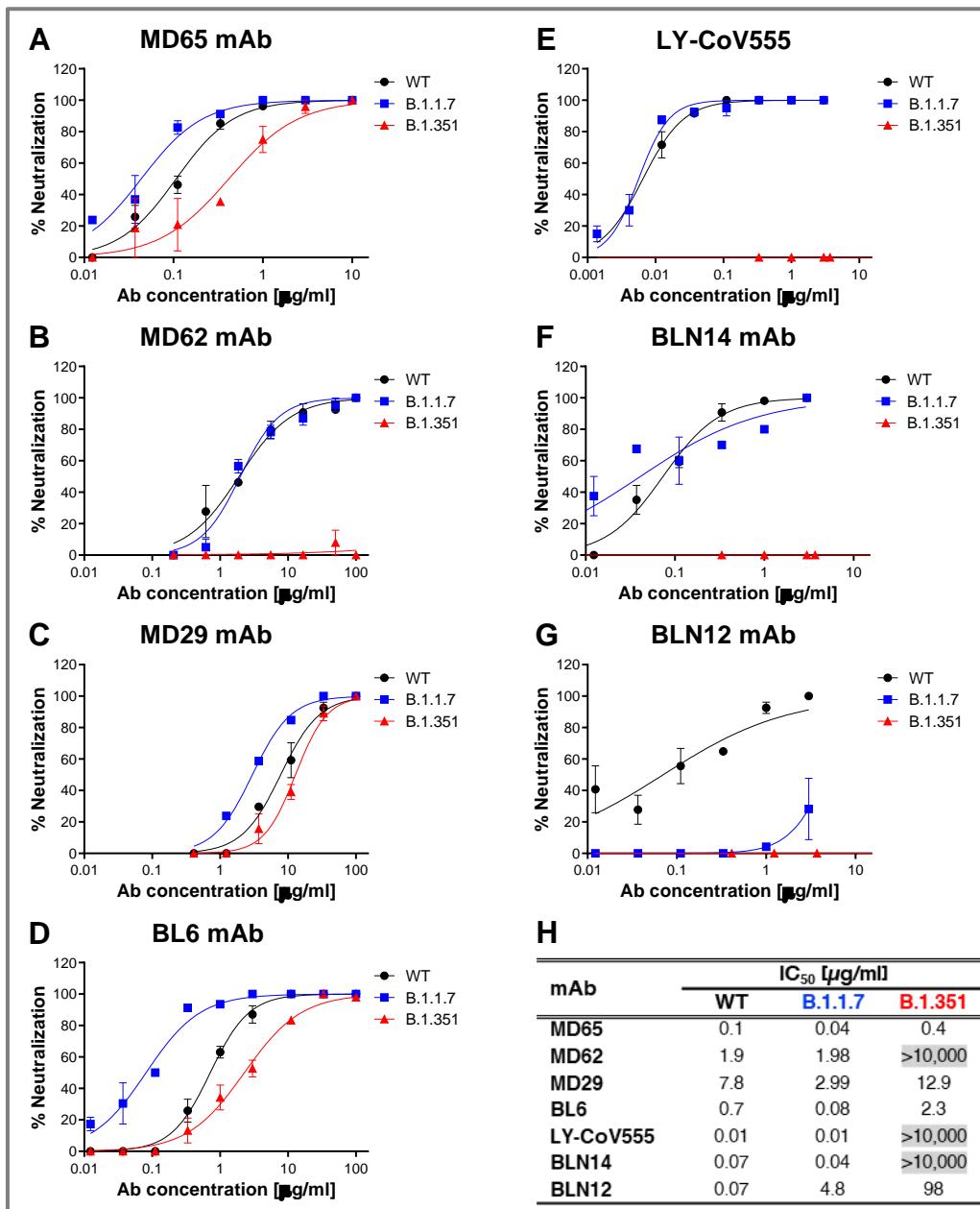
335



336 **Figure 5. Binding of rS1 variants by RBD-specific mAbs.** BLI was applied to evaluate  
337 the ability of each tested mAb to bind the indicated recombinant multiply-mutated spike  
338 S1 subunit proteins: B.1.1.7 rS1 [ $\Delta$  69-70;  $\Delta$  144; N501Y; A570D; D614G; P681H] and  
339 B.1.351 rS1 [K417N; E484K; N501Y; D614G]. Each of the indicated mAbs (A-E), was  
340 immobilized on protein-A sensor and incubated for 180 sec with B.1.1.7 (blue) or B.1.351  
341 (red) rS1 variants or with the WT rS1 (black). Non-specific control antibody (anti-ricin  
342 MH75) was included (F). The figure includes representative graphs of at least two  
343 independent repeats of each experiment, yielding similar results.

344

345 **Antibody-mediated neutralization evaluated by a cell-culture plaque reduction test**


346 In order to conclusively determine the potential of the B.1.1.7 and B.1.351 SARS-CoV-2  
347 genetic variants (see Supplementary Figure 1, for their spike mutations) to escape immune-  
348 neutralization, we evaluated the ability to countermeasure the B.1.1.7 and B.1.351 live  
349 variants of the four RBD-specific mAbs, LY-CoV555, and two additional mAbs, targeting

350 separate epitopes of the NTD (BLN14 and BLN12; (Noy-Porat et al., 2021); see  
351 Supplementary Figure 3 for data pertaining to these 2 anti-NTD antibodies to B.1.1.7 rS1).  
352 To this end, a plaque reduction neutralization test (PRNT) was applied in which each mAb  
353 was tested against either the B.1.1.7 or B.1.351 variants or the parental WT SARS-CoV-2  
354 strain.

355  
356 The results, presented in Figure 6, indicated an effective neutralization of the B.1.1.7  
357 variant (blue curves) by anti-RBD MD65 (panel A), MD62 (panel B), MD29 (Panel C),  
358 BL6 (Panel D) as well as LY-CoV555 (panel E), a neutralization that was not impaired  
359 compared to the WT SARS-CoV-2 strain (black curves). The calculated IC<sub>50</sub> values,  
360 characterizing the neutralization potency of each inspected antibody with respect to the  
361 three tested viral strains, are tabulated in Figure 6H. Interestingly, although MD62 revealed  
362 reduced binding to the B.1.1.7 rS1 compared to the WT rS1 (Figure 5B), its neutralization  
363 capacity of both viral strains was commensurate (Figure 6B). Overall, it can be concluded  
364 that all anti-RBD mAbs studied here fully retained their potency towards the B.1.1.7  
365 variant.

366 As could be anticipated, the B.1.351 variant (Figure 6, red curves) manifested a higher  
367 immune escape potential compared to the B.1.1.7 variant. In line with the complete loss of  
368 binding of the respective viral rS1 by MD62 (Figure 5B) and LY-CoV555 (Figure 5E), the  
369 neutralization capacity of the two mAbs (MD62 and LY-CoV555) against the B.1.351  
370 variant, was completely abolished (Figures 6B and 6E, respectively). By contrast, MD65,  
371 MD29 and BL6 effectively neutralized the B.1.351 variant (Figures 6A, 6C and 5D), albeit,  
372 with a partial decrease in potency.

373 Two anti-NTD mAbs, previously shown to potently neutralize SARS-CoV-2, were also  
374 tested in the *in vitro* neutralization assay. The two mAbs, BLN14 and BLN12, differed in  
375 their potency against the B.1.1.7 variant (Figures 6F and 6G, respectively), with BLN14  
376 showing comparable neutralization to that of the WT, while BLN12 neutralization activity  
377 was markedly hampered. These results are consistent with binding experiments showing  
378 strong binding of B.1.1.7 rS1 by BLN14 and no binding by BLN12 (Supplementary Figure  
379 3). Epitope mapping previously revealed that BLN12 binds a linear epitope which resides  
380 between amino acids 141-155 and also recognizes an N-glycan at position 149 (Noy-Porat  
381 et al., 2021). It can therefore be speculated that the deletion of a Tyr residue at position 144  
382 in the B.1.1.7 variant is responsible for the loss of neutralization of this mAb. BLN14  
383 recognizes a conformational epitope which apparently was not significantly altered by the  
384 Y144 deletion. However, the neutralization capability of both mAbs was dramatically  
385 reduced in the case of the B.1.351 variant, suggesting a considerable structural change at  
386 its NTD. This observation is in agreement with previous studies, which indicated a frequent  
387 loss of functionality among NTD-specific mAbs (Andreano et al., 2020; Wang et al.,  
388 2021b), especially towards variants containing modifications in NTD supersite (Cerutti et  
389 al., 2021; McCallum et al., 2021) associated with significant structural alterations.



390 **Figure 6. Neutralization of SARS-CoV-2 B.1.1.7 and B.1.351 by RBD and NTD-  
391 specific mAbs.** Neutralization capacity of the RBD-specific mAbs: MD65 (A), MD62 (B),  
392 MD29 (C), BL6 (D) and LY-CoV555 (E), and of the NTD-specific BLN14 (F) and BLN12  
393 (G), was evaluated by plaque reduction neutralization test (PRNT). The *in vitro*  
394 neutralization of each of the listed mAbs was assessed against both SARS-CoV-2 B.1.1.7  
395 (blue) and B.1.351 (red) variant, compared to WT SARS-CoV-2 strain (black).  
396 Neutralization potency was determined by the ability of each antibody (at indicated  
397 concentrations) to reduce plaque formation. Results are expressed as percent inhibition of

398 control without Ab. The figure includes a representative graphs of at least two independent  
399 repeats of each experiment, yielding similar results. **H.** Summary of the calculated IC<sub>50</sub>  
400 values [ $\mu$ g/ml]. IC<sub>50</sub> >10,000 indicates complete loss of neutralization capacity,  
401 emphasized by gray shading. The neutralization results, together with previously published  
402 biochemical data of the six inspected mAbs are summarized in Supplementary Table 1.

403

404 **Antibody-mediated protective value evaluated by post-exposure administration in a**  
405 **transgenic murine model of COVID-19**

406 In line with the *in vitro* neutralization performance of the studied mAbs, MD65, BL6 and  
407 BLN14 mAbs were selected for further assessment of their therapeutic potential *in vivo*  
408 against various SARS-CoV-2 variants. Accordingly, K18-hACE2 transgenic mice were  
409 intranasally infected with a lethal dose of either one of the SARS-CoV-2 tested strains. The  
410 infection was characterized by body weight loss accompanied with high mortality (70-  
411 100%, i.e. animals administered with PBS; Figure 7, gray lines) within 6-12 days following  
412 infection. One mg of each of the mAb, was administered intraperitoneally (IP) two days  
413 post infection (dpi). Body weight and survival of experimental animals were monitored  
414 daily for 21 days. The data depicted in Figure 7 clearly demonstrate that antibody  
415 administration to infected animals results in a strong protective effect against the three  
416 variants [see also (Noy-Porat et al., 2021; Rosenfeld et al., 2021) for the effect of the MD65  
417 and BLN14 antibodies against the WT version of SARS-CoV-2]. Notably, the RBD-  
418 specific antibodies MD65 and BL6 exhibited substantial therapeutic ability against all three  
419 viral variants inspected. Treatment with BL6 rescued 83-100% of infected animals  
420 regardless of the infective strain. MD65 afforded complete protection against the WT and  
421 B.1.1.7 strains and 50% protection against the B.1.351 strain. This apparently lower extent  
422 of protection is substantial in view of the fact that a considerably higher dose of this variant

423 was administrated to the experimental animals (see Method Details section). The anti-NTD  
424 antibody BLN14 demonstrated high potency against the WT and B.1.1.7 variant yet, post-  
425 exposure treatment with BLN14 mAb failed to rescue mice from infection with the B.1.351  
426 strain. Taken together, these results are in good agreement with the *in vitro* BLI binding  
427 and PRNT data establishing that these *in vitro* tests may provide a reliable predictive means  
428 for evaluation of therapeutic antibodies.

429

430



431 **Figure 7. Post-exposure therapeutic potency of MD65, BL6 and BLN14 in K18-  
432 hACE2 mice infected with various SARS-CoV-2 strains.** The SARS-CoV-2 strains are  
433 indicated in the left vertical lane and the administered antibodies (colored differently) in  
434 the legends within each individual panel. A single dose of 1 mg Ab/animal of each  
435 indicated mAb was administered at day 2 post viral infection. Left panels: body weight  
436 profiles. Body weight is displayed as percentage change of initial weight. Only data of the  
437 first six days is presented in the control group exhibiting significant mortality. Right panels:  
438 Kaplan-Meyer surviving curves.

439

440 **Conclusions**

441 The unprecedented scale of the COVID-19 pandemic, combined with selective pressure  
442 for escaping immune responses, boosted the rapid evolution of SARS-CoV-2 virus  
443 resulting in antigenic variability which might jeopardize the potency of pre- and post-  
444 exposure immunotherapies. Consequently, attention must be given to the development of  
445 mAb treatments that may combat emerging variants. In this perspective, it is of high  
446 importance to re-evaluate anti-SARS-CoV-2 mAbs previously shown to exhibit  
447 therapeutic potential against the original version of the virus. Furthermore, the impact of  
448 individual mutations on the neutralization potency of mAbs may provide important  
449 information impacting the preparedness for future anticipated antigenic drifts of the virus.  
450 In the current report, we document the neutralization of the most abundant B.1.1.7 variant  
451 (as of today) by four anti-RBD and one anti-NTD mAbs that we recently generated and  
452 determined their therapeutic potential against the original version of the virus. Furthermore,  
453 three RBD-specific mAbs (MD65, MD29 and BL6), retained neutralization against the  
454 B.1.351 VOC. These findings are supported by binding experiments conducted with  
455 individual and combined mutations derived from various variants. The binding and  
456 neutralizing data of the six inspected mAbs targeting distinct epitopes within S1 are  
457 summarized in Supplementary Table 1. The E484K and K417N substitutions in the RBD  
458 reported to mediate the lower susceptibility to neutralization by a significant proportion of  
459 reported mAbs, including clinically-used LY-CoV555 and REGN10933 as well as by  
460 immune post-vaccination sera (Chen et al., 2021b; Cheng et al., 2021; Dejnirattisai et al.,  
461 2021; Hu et al., 2021; Rees-Spear et al., 2021; Starr et al., 2021b; Wang et al., 2021a; Wang  
462 et al., 2021b; Yuan et al., 2021). Of note, the anti-RBD antibody MD65, shown here to

463 retain its neutralizing potential against emerging variants, was recently suggested by  
464 extensive pre-clinical studies to be an important therapeutic for efficient clinical  
465 intervention in COVID-19 cases (Rosenfeld et al., 2021). Structural modeling identified  
466 specific residues in the sequence of the MD65 mAb which may explain the potency of this  
467 antibody against all the viral variants inspected. Finally, the binding and neutralizing data  
468 were confirmed by *in vivo* protection of infected transgenic mice administered with the  
469 various antibodies two days post-infection.

470 In conclusion, the present study substantiates the ability of recently reported mAbs to serve,  
471 individually or in combination as a cocktail formulation, for designing therapeutic  
472 approaches efficient against emerging SARS-CoV-2 variants.

473

474

475 **Acknowledgments**

476 We thank Prof. Dr. Christian Drosten at the Charité Universitätsmedizin, Institute of  
477 Virology, Berlin, Germany for providing the SARS-CoV-2 BavPat1/2020 strain. We wish  
478 to express our gratitude to our colleagues Dr. Sharon Melamed, Boaz Politi, Dr. Liat Bar-  
479 On, Yfat Yahalom-Ronen and Dr. Emanuelle Mamroud, for fruitful discussions and  
480 support. The graphical abstract was created with BioRender.com. Research in the  
481 Fleishman lab was supported by the Weizmann Institute CoronaVirus Fund and by a  
482 charitable donation in memory of Sam Switzer.

483 **Author Contributions**

484 E.M., A.Z., R.A., T.N-P., E.P., A.M., Y.L., E.E., A.T., M.A., D.G., S.J.F., O.M. and R.R.  
485 designed, carried out and analyzed the data. M.M., E.M., N.Z., I.N., and L.K isolated,  
486 sequenced and provided the SARS-CoV-2 variant strains. N.P., H.T. and T.I. cultured and  
487 prepared SARS-CoV-2 viruses for the neutralization experiments. O.Z. and S.W. provided  
488 crucial reagents. S.Y., S.C.S. added fruitful discussions. R.R., O.M., T.C., A.Z., and T. N-  
489 P wrote the manuscript. O.M. and R.R. supervised the project. All authors have reviewed  
490 and approved the final manuscript.

491

492 **Competing Interests**

493 Patent application for the described antibodies was filed by the Israel Institute for  
494 Biological Research. None of the authors declared any additional competing interests.

495 **STAR Methods**

496 **RESOURCE AVAILABILITY**

497 **Lead contact**

498 Further information and requests for resources and reagents should be directed to and will  
499 be fulfilled by the Lead Contact, Ohad Mazor from the Israel Institute for Biological  
500 Research; [ohadm@iibr.gov.il](mailto:ohadm@iibr.gov.il).

501

502 **Materials availability**

503 Antibodies are available for research purposes only under an MTA, which allows the use  
504 of the antibodies for non-commercial purposes but not their disclosure to third parties.  
505 All other data are available from the Lead contact upon reasonable requests.

506

507 **Data and code availability**

508 The published article includes all dataset generated or analyzed during this study.

509 **EXPERIMENTAL MODELS AND SUBJECT DETAILS**

510

511 **Animals**

512 Female K18-hACE2 transgenic (B6.Cg-Tg (K18-hACE2)2Prlmn/J HEMI; Jackson  
513 Laboratories, USA) mice, age 8-16 weeks, were maintained at 20-22°C and a relative  
514 humidity of 50 ± 10% on a 12 hours light/dark cycle, fed with commercial rodent chow  
515 (Koffolk Inc.) and provided with tap water ad libitum. Treatment of animals was in  
516 accordance with regulations outlined in the U.S. Department of Agriculture (USDA)  
517 Animal Welfare Act and the conditions specified in the Guide for Care and Use of  
518 Laboratory Animals, National Institute of Health, 2011. Animal studies were approved by  
519 the local ethical committee on animal experiments (protocol number M-57-20).

520

521 **Cells and virus strains**

522 ExpiCHO-S (Thermoscientific, USA, Cat# A29127) were used for expression of  
523 recombinant proteins as described above.

524 Vero E6 (ATCC® CRL-1586<sup>TM</sup>) were obtained from the American Type Culture  
525 Collection. Cells were grown in Dulbecco's modified Eagle's medium (DMEM)  
526 supplemented with 10% fetal bovine serum (FBS), MEM non-essential amino acids  
527 (NEAA), 2 mM L-glutamine, 100 Units/ml penicillin, 0.1 mg/ml streptomycin and 12.5  
528 Units/ml Nystatin (P/S/N) (Biological Industries, Israel). Cells were cultured at 37°C, 5%  
529 CO<sub>2</sub> at 95% air atmosphere.

530 Wild type (WT) SARS-CoV-2 strain (GISAID accession EPI\_ISL\_406862) was kindly  
531 provided by Bundeswehr Institute of Microbiology, Munich, Germany.

532 WT SARS-CoV-2, isolate Human 2019-nCoV ex China strain BavPat1/2020, was kindly  
533 provided by Prof. Dr. Christian Drosten (Charite', Berlin, Germany) through the European  
534 Virus Archive – Global (EVAg Ref-SKU:026V-03883).

535 SARS-CoV-2 B.1.1.7 (501Y.V1) variant was isolated on Dec 2020 from a person who  
536 came back from the UK. The identity of the B.1.1.7 strain was confirmed using NGS.

537 SARS-CoV-2 B.1.351 (501Y.V2) variant was isolated on Jan 2021 from a person who was  
538 in contact with a patient who came back from South Africa. The identity of the B.1.351  
539 strain was confirmed using NGS.

540 Stocks were prepared by infection of Vero E6 cells for two days. When viral cytopathic  
541 effect (CPE) was observed, media were collected, clarified by centrifugation, aliquoted and  
542 stored at -80°C. Titer of stock was determined by plaque assay using Vero E6 cells.

543 Handling and working with SARS-CoV-2 was conducted in BL3 facility in accordance  
544 with the biosafety guidelines of the IIBR.

545

546 **METHOD DETAILS**

547 **Recombinant Proteins**

548 The SARS-CoV-2 spike (S) stabilized soluble ectodomain, S1 subunit (WT rS1) and  
549 receptor binding domain (WT rRBD) were produced as previously described (Noy-Porat  
550 et al., 2020).

551 The following His-tagged recombinant proteins were purchased from Sino Biologicals:  
552 B.1.1.7 rS1-SARS-CoV-2 spike S1 [ $\Delta$  69-70;  $\Delta$  144; N501Y; A570D; D614G; P681H],  
553 cat#40591-V08H12; B.1.351 rS1-SARS-CoV-2 spike S1 [K417N; E484K; N501Y;  
554 D614G], cat#40591-V08H10; spike RBD[N501Y] cat#40592-V08H82; spike  
555 RBD[S477N] cat#40592-V08H46; spike RBD[E484K] cat#40592-V08H84; spike  
556 RBD[N439K] cat#40592-V08H14; spike RBD[K417N] cat#40592-V08H59; spike  
557 RBD[Y453F] cat#40592-V08H80.

558 All antibodies (except LY-CoV555) were produced as full IgG1 antibodies as described  
559 (Barlev-Gross et al., 2021; Rosenfeld et al., 2021), expressed using ExpiCHO™  
560 Expression system (Thermoscientific, USA) and purified on HiTrap Protein-A column (GE  
561 healthcare, UK). The integrity and purity of the antibodies were analyzed using SDS-  
562 PAGE. Isolation and characterization of the MD29, MD65 and MD62 mAbs, targeting  
563 epitopes I-III on the RBD as previously reported. The BL6 mAb was isolated as described  
564 (Barlev-Gross et al., 2021) and is representing epitope IV on the RBD (competing with the  
565 MD47 mAb (Noy-Porat et al., 2020). BLN12 and BLN14 mAbs, targeting two distinct  
566 epitopes on the NTD, as previously reported (Noy-Porat et al., 2021).

567 LY-CoV555 (Bamlanivimab) (~2.5 mg Ab/ml in 0.9% Sodium Cholride), was obtained as  
568 a remnant from an infusion bag and its set following administration to a COVID-19 patient  
569 at Kaplan Medical Center.

570 All antibodies were extensively dialyzed against PBS and filter-sterilized prior to any *in*  
571 *vitro* or *in vivo* experimentation.

572

### 573 **ELISA**

574 Direct ELISA (Noy-Porat et al., 2016) consisted of coating microtiter plates with 1 µg/ml  
575 of recombinant SARS-CoV-2 spike. ELISA was applied with AP-conjugated Donkey anti-  
576 human IgG (Jackson ImmunoResearch, USA, Cat# 709-055-149 lot 130049; used at  
577 1:2000 working dilution) following detection using *p*-nitrophenyl phosphate (*p*NPP)  
578 substrate (Sigma, Israel).

579

### 580 **Biolayer interferometry (BLI)**

581 Binding studies were carried out using the Octet system (ForteBio, USA, Version 8.1,  
582 2015) that measures biolayer interferometry (BLI). All steps were performed at 30°C with  
583 shaking at 1500 rpm in a black 96-well plate containing 200 µl solution in each well. For  
584 assessment of binding to S1 variants or mutated RBD, antibodies were captured on Protein-  
585 A or anti-Fab CH1 sensors (FAB2G) and incubated with recombinant S1 (WT, B.1.1.7 or  
586 B.1.351) or recombinant RBD (WT or mutated) at a constant concentration of 10 µg/ml  
587 for 180 sec and then transferred to buffer containing wells for additional 60 sec. Binding  
588 was measured as changes over time in light interference. Parallel measurements from  
589 unloaded biosensors were used as control. The anti-ricin MH75 mAb, used as isotype

590 control (Figure 5F). For the comparison of the binding capacity of each tested mAb to a  
591 constant concentration of recombinant RBD or S1, the area under curve (AUC) was  
592 calculated for each binding curve, using GraphPad Prism 5, and percent binding was  
593 calculated compared to the WT protein, representing 100% binding.

594 For epitope binning, MD65 antibody was biotinylated, immobilized on streptavidin sensor,  
595 incubated with a fixed concentration of WT rS1 (20 µg/ml) to reach saturation, washed and  
596 incubated with non-labeled LY-CoV555 for 180 sec. MD29 and MD65 were used as  
597 positive and negative controls, respectively.

598

### 599 **Plaque reduction neutralization test (PRNT)**

600 Plaque reduction neutralization test (PRNT), performed essentially as described (Yahalom-  
601 Ronen et al., 2020). Vero E6 cells were seeded overnight at a density of 0.5e6 cells/well in  
602 12-well plates. Antibody samples were 3-fold serially diluted (ranging from 200 to 0.002  
603 µg/ml) in 400 µl of MEM supplemented with 2% FBS, MEM non-essential amino acids, 2  
604 mM L-glutamine, 100 Units/ml penicillin, 0.1 mg/ml streptomycin and 12.5 Units/ml  
605 Nystatin (Biological Industries, Israel). 400 µl containing 300 PFU/ml of each SARS-CoV-  
606 2 strain, were then added to the mAb solution supplemented with 0.25% guinea pig  
607 complement sera (Sigma, Israel) and the mixture incubated at 37°C, 5% CO<sub>2</sub> for 1 h. Two  
608 hundred µl of each mAb-virus mixture was added in duplicates to the cells for 1 h. Virus  
609 mixture w/o mAb was used as control. 2 ml overlay [supplemented MEM containing 0.4%  
610 tragacanth (Sigma, Israel)] were added to each well and plates were further incubated at  
611 37°C, 5% CO<sub>2</sub> for 48 h for WT and B.1.351 strains or 5 days for the B.1.1.7 strain. The  
612 number of plaques in each well was determined following media aspiration, cells fixation

613 and staining with 1 ml of crystal violet (Biological Industries, Israel). Half-maximum  
614 inhibitory concentration (IC<sub>50</sub>) was defined as mAb concentration at which the plaque  
615 number was reduced by 50%, compared to plaque number of the control (in the absence of  
616 Ab).

617

## 618 **Animal experiments**

619 All animal experiments involving SARS-CoV-2 were conducted in a BSL3 facility.  
620 Infection experiments were carried out using SARS-CoV-2 BavPat1/2020 (WT), B.1.1.7  
621 and B.1.351 strains. SARS-CoV-2 virus diluted in PBS supplemented with 2% FBS  
622 (Biological Industries, Israel) was used to infect anesthetized mice by intranasal  
623 instillation. For mAbs protection evaluation, mice were treated intraperitoneally by single  
624 administration of 1 ml volume, containing 1 mg Ab/mouse, two days following infection  
625 with 500, 10 or 10,000 PFU of the WT, B.1.1.7 and B.1.351 SARS-CoV-2 strains,  
626 respectively. Control groups were administered with PBS. Body weight was monitored  
627 daily throughout the follow-up period post infection.

628

## 629 **Antibody structure prediction**

630 Antibody structure prediction was done using *AbPredict2* with default settings. RMSD  
631 calculation and alignments were done using Pymol. *AbPredict2* is available for academic  
632 use at <http://AbPredict.weizmann.ac.il>.

633

634 **QUANTIFICATION AND STATISTICAL ANALYSIS**

635 All Biolayer Interferometry assays were analyzed using the Octet Data analysis software  
636 (ForteBio, Version 8.1) and visualized using GraphPad Prism 5.

637 ELISA results were analyzed using GraphPad Prism 5. Mean and SEM were calculated  
638 where appropriate and are presented in the relevant figures.

639 All the following statistical analyses were conducted using GraphPad Prism 5. For *In vitro*  
640 neutralization experiments, mean and SEM were calculated for each concentration, curves  
641 were fitted using nonlinear regression and IC<sub>50</sub> values were extrapolated from the resulting  
642 curves. Results are presented in the relevant figures, in the results section and in  
643 Supplementary Table 1.

644 Area under curve (AUC) was calculated for each binding curve presented in Figure 5.  
645 Results are presented in Supplementary Table 1.

646 For all experiments, exact value and meaning of n are presented in the figure legends.

647 For antibody structure modeling, the amino acid sequence of the variable domain of MD65  
648 was submitted to the *AbPredict2* webserver which is available freely for non-commercial  
649 use (<http://AbPredict.weizmann.ac.il>).

## 650 References

- 651 Alam, M.M., Mahmud, S., Aggarwal, S., Fathma, S., Al Mahi, N., Shibli, M.S., Haque, S.M.,  
652 Mahmud, S., and Ahmed, Z. (2021). Clinical Impact of the Early Use of Monoclonal Antibody LY-  
653 CoV555 (Bamlanivimab) on Mortality and Hospitalization Among Elderly Nursing Home Patients:  
654 A Multicenter Retrospective Study. *Cureus* 13, e14933.
- 655 Andreano, E., Piccini, G., Licastro, D., Casalino, L., Johnson, N.V., Paciello, I., Monego, S.D.,  
656 Pantano, E., Manganaro, N., Manenti, A., *et al.* (2020). SARS-CoV-2 escape in vitro from a highly  
657 neutralizing COVID-19 convalescent plasma. *bioRxiv*.
- 658 Barlev-Gross, M., Weiss, S., Ben-Shmuel, A., Sittner, A., Eden, K., Mazuz, N., Glinert, I., Bar-  
659 David, E., Puni, R., Amit, S., *et al.* (2021). Spike vs nucleocapsid SARS-CoV-2 antigen detection:  
660 application in nasopharyngeal swab specimens. *Anal Bioanal Chem* 413, 3501-3510.
- 661 Barnes, C.O., West, A.P., Jr., Huey-Tubman, K.E., Hoffmann, M.A.G., Sharaf, N.G., Hoffman,  
662 Koranda, N., Gristick, H.B., Gaebler, C., Muecksch, F., *et al.* (2020). Structures of Human  
663 Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of  
664 Antibodies. *Cell* 182, 828-842 e816.
- 665 Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., Ni, M., Wei, Y., Mohammadi,  
666 K., Musser, B., *et al.* (2020). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in  
667 rhesus macaques and hamsters. *Science* 370, 1110-1115.
- 668 Cerutti, G., Guo, Y., Zhou, T., Gorman, J., Lee, M., Rapp, M., Reddem, E.R., Yu, J., Bahna, F.,  
669 Bimela, J., *et al.* (2021). Potent SARS-CoV-2 neutralizing antibodies directed against spike N-  
670 terminal domain target a single supersite. *Cell Host Microbe* 29, 819-833 e817.
- 671 Chen, P., Nirula, A., Heller, B., Gottlieb, R.L., Boscia, J., Morris, J., Huhn, G., Cardona, J.,  
672 Mocherla, B., Stosor, V., *et al.* (2021a). SARS-CoV-2 Neutralizing Antibody LY-CoV555 in  
673 Outpatients with Covid-19. *N Engl J Med* 384, 229-237.
- 674 Chen, R.E., Zhang, X., Case, J.B., Winkler, E.S., Liu, Y., VanBlargan, L.A., Liu, J., Errico, J.M., Xie,  
675 X., Suryadevara, N., *et al.* (2021b). Resistance of SARS-CoV-2 variants to neutralization by  
676 monoclonal and serum-derived polyclonal antibodies. *Nat Med*.
- 677 Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., Zhao, J., Liu, P., Gao, L., Li, Z., *et al.* (2020).  
678 Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin  
679 converting enzyme 2 receptor. *Cell Mol Immunol* 17, 647-649.
- 680 Cheng, M.H., Krieger, J.M., Kaynak, B., Ardit, M., and Bahar, I. (2021). Impact of South African  
681 501.V2 Variant on SARS-CoV-2 Spike Infectivity and Neutralization: A Structure-based  
682 Computational Assessment. *bioRxiv*, 2021.2001.2010.426143.
- 683 Dejnirattisai, W., Zhou, D., Supasa, P., Liu, C., Mentzer, A.J., Ginn, H.M., Zhao, Y., Duyvesteyn,  
684 H.M.E., Tuekprakhon, A., Nutalai, R., *et al.* (2021). Antibody evasion by the P.1 strain of SARS-CoV-  
685 2. *Cell* 184, 2939-2954 e2939.
- 686 Elbe, S., and Buckland-Merrett, G. (2017). Data, disease and diplomacy: GISAID's innovative  
687 contribution to global health. *Glob Chall* 1, 33-46.
- 688 Fagiani, F., Catanzaro, M., and Lanni, C. (2020). Molecular features of IGHV3-53-encoded  
689 antibodies elicited by SARS-CoV-2. *Signal Transduct Target Ther* 5, 170.

- 690 Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D.S., Mishra, S., Crispim, M.A.E.,  
691 Sales, F.C.S., Hawryluk, I., McCrone, J.T., *et al.* (2021). Genomics and epidemiology of the P.1 SARS-  
692 CoV-2 lineage in Manaus, Brazil. *Science* 372, 815-821.
- 693 Hu, J., Peng, P., Wang, K., Fang, L., Luo, F.Y., Jin, A.S., Liu, B.Z., Tang, N., and Huang, A.L. (2021).  
694 Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and  
695 monoclonal antibodies. *Cell Mol Immunol.*
- 696 Jones, B.E., Brown-Augsburger, P.L., Corbett, K.S., Westendorf, K., Davies, J., Cujec, T.P.,  
697 Wiethoff, C.M., Blackbourne, J.L., Heinz, B.A., Foster, D., *et al.* (2021). The neutralizing antibody,  
698 LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. *Sci Transl Med* 13.
- 699 Kemp, S.A., Collier, D.A., Datir, R.P., Ferreira, I., Gayed, S., Jahun, A., Hosmillo, M., Rees-Spear,  
700 C., Mlcochova, P., Lumb, I.U., *et al.* (2021). SARS-CoV-2 evolution during treatment of chronic  
701 infection. *Nature* 592, 277-282.
- 702 Krammer, F. (2020). SARS-CoV-2 vaccines in development. *Nature* 586, 516-527.
- 703 Lapidoth, G., Parker, J., Prilusky, J., and Fleishman, S.J. (2019). AbPredict 2: a server for  
704 accurate and unstrained structure prediction of antibody variable domains. *Bioinformatics* 35,  
705 1591-1593.
- 706 Liu, Z., VanBlargan, L.A., Bloyet, L.M., Rothlauf, P.W., Chen, R.E., Stumpf, S., Zhao, H., Errico,  
707 J.M., Theel, E.S., Liebeskind, M.J., *et al.* (2021). Identification of SARS-CoV-2 spike mutations that  
708 attenuate monoclonal and serum antibody neutralization. *Cell Host Microbe*.
- 709 McCallum, M., De Marco, A., Lempp, F.A., Tortorici, M.A., Pinto, D., Walls, A.C., Beltramello,  
710 M., Chen, A., Liu, Z., Zatta, F., *et al.* (2021). N-terminal domain antigenic mapping reveals a site of  
711 vulnerability for SARS-CoV-2. *Cell* 184, 2332-2347 e2316.
- 712 Norn, C.H., Lapidoth, G., and Fleishman, S.J. (2017). High-accuracy modeling of antibody  
713 structures by a search for minimum-energy recombination of backbone fragments. *Proteins* 85,  
714 30-38.
- 715 Noy-Porat, T., Makdasi, E., Alcalay, R., Mechaly, A., Levy, Y., Bercovich-Kinori, A., Zauberman,  
716 A., Tamir, H., Yahalom-Ronen, Y., Israeli, M., *et al.* (2020). A panel of human neutralizing mAbs  
717 targeting SARS-CoV-2 spike at multiple epitopes. *Nat Commun* 11, 4303.
- 718 Noy-Porat, T., Mechaly, A., Levy, Y., Makdasi, E., Alcalay, R., Gur, D., Aftalion, M., Falach, R.,  
719 Leviatan Ben-Arye, S., Lazar, S., *et al.* (2021). Therapeutic antibodies, targeting the SARS-CoV-2  
720 spike N-terminal domain, protect lethally infected K18-hACE2 mice. *iScience* 24, 102479.
- 721 Noy-Porat, T., Rosenfeld, R., Ariel, N., Epstein, E., Alcalay, R., Zvi, A., Kronman, C., Ordentlich,  
722 A., and Mazor, O. (2016). Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from  
723 Immunized Non-Human Primates. *Toxins (Basel)* 8.
- 724 Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M.M., Planchais,  
725 C., Porrot, F., Robillard, N., Puech, J., *et al.* (2021). Reduced sensitivity of infectious SARS-CoV-2  
726 variant B.1.617.2 to monoclonal antibodies and sera from convalescent and vaccinated  
727 individuals. *bioRxiv*, 2021.2005.2026.445838.
- 728 Rambaut, A., Holmes, E.C., O'Toole, A., Hill, V., McCrone, J.T., Ruis, C., du Plessis, L., and Pybus,  
729 O.G. (2020a). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic  
730 epidemiology. *Nat Microbiol* 5, 1403-1407.

- 731 Rambaut, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Connor, T., Peacock,  
732 T., Robertson, D.L., and Volz, E. (2020b). Preliminary genomic characterisation of an emergent  
733 SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. *Virological.org Written on  
734 behalf of COVID-19 Genomics Consortium UK*.
- 735 Rees-Spear, C., Muir, L., Griffith, S.A., Heaney, J., Aldon, Y., Snitselaar, J.L., Thomas, P.,  
736 Graham, C., Seow, J., Lee, N., *et al.* (2021). The effect of spike mutations on SARS-CoV-2  
737 neutralization. *Cell Rep*, 108890.
- 738 Robson, F., Khan, K.S., Le, T.K., Paris, C., Demirbag, S., Barfuss, P., Rocchi, P., and Ng, W.L.  
739 (2020). Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. *Mol Cell* 80,  
740 1136-1138.
- 741 Rosenfeld, R., Noy-Porat, T., Mechaly, A., Makdasi, E., Levy, Y., Alcalay, R., Falach, R., Aftalion,  
742 M., Epstein, E., Gur, D., *et al.* (2021). Post-exposure protection of SARS-CoV-2 lethal infected K18-  
743 hACE2 transgenic mice by neutralizing human monoclonal antibody. *Nat Commun* 12, 944.
- 744 Saito, A., Nasser, H., Uriu, K., Kosugi, Y., Irie, T., Shirakawa, K., Sadamasu, K., Kimura, I., Ito, J.,  
745 Wu, J., *et al.* (2021). SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion.  
746 *bioRxiv*, 2021.2006.2017.448820.
- 747 Starr, T.N., Greaney, A.J., Addetia, A., Hannon, W.W., Choudhary, M.C., Dingens, A.S., Li, J.Z.,  
748 and Bloom, J.D. (2021a). Prospective mapping of viral mutations that escape antibodies used to  
749 treat COVID-19. *Science* 371, 850-854.
- 750 Starr, T.N., Greaney, A.J., Dingens, A.S., and Bloom, J.D. (2021b). Complete map of SARS-CoV-  
751 2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016.  
752 *Cell Rep Med* 2, 100255.
- 753 Tan, T.J.C., Yuan, M., Kuzelka, K., Padron, G.C., Beal, J.R., Chen, X., Wang, Y., Rivera-Cardona,  
754 J., Zhu, X., Stadtmueller, B.M., *et al.* (2021). Sequence signatures of two IGHV3-53/3-66 public  
755 clonotypes to SARS-CoV-2 receptor binding domain. *bioRxiv*.
- 756 Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D.,  
757 Pillay, S., San, E.J., Msomi, N., *et al.* (2021). Emergence of a SARS-CoV-2 variant of concern with  
758 mutations in spike glycoprotein. *Nature*.
- 759 Thomson, E.C., Rosen, L.E., Shepherd, J.G., Spreafico, R., da Silva Filipe, A., Wojcechowskyj,  
760 J.A., Davis, C., Piccoli, L., Pascall, D.J., Dillen, J., *et al.* (2021). Circulating SARS-CoV-2 spike N439K  
761 variants maintain fitness while evading antibody-mediated immunity. *Cell* 184, 1171-1187 e1120.
- 762 Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure,  
763 Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell* 183, 1735.
- 764 Wang, P., Casner, R.G., Nair, M.S., Wang, M., Yu, J., Cerutti, G., Liu, L., Kwong, P.D., Huang, Y.,  
765 Shapiro, L., *et al.* (2021a). Increased resistance of SARS-CoV-2 variant P.1 to antibody  
766 neutralization. *Cell Host Microbe* 29, 747-751 e744.
- 767 Wang, P., Nair, M.S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong,  
768 P.D., *et al.* (2021b). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. *Nature* 593,  
769 130-135.
- 770 Weinreich, D.M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., Musser, B.J., Soo,  
771 Y., Rofail, D., Im, J., *et al.* (2021). REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with  
772 Covid-19. *N Engl J Med* 384, 238-251.

- 773 Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J.C., Muecksch, F.,  
774 Rutkowska, M., Hoffmann, H.H., Michailidis, E., *et al.* (2020). Escape from neutralizing antibodies  
775 by SARS-CoV-2 spike protein variants. *Elife* 9.
- 776 Wu, N.C., Yuan, M., Liu, H., Lee, C.D., Zhu, X., Bangaru, S., Torres, J.L., Caniels, T.G., Brouwer,  
777 P.J.M., van Gils, M.J., *et al.* (2020a). An Alternative Binding Mode of IGHV3-53 Antibodies to the  
778 SARS-CoV-2 Receptor Binding Domain. *Cell Rep* 33, 108274.
- 779 Wu, Y., Hong, K., Ruan, L., Yang, X., Zhang, J., Xu, J., Pan, S., Ren, L., Chen, L., Huang, C., *et al.*  
780 (2020b). Patients with Prolonged Positivity of SARS-CoV-2 RNA Benefit from Convalescent Plasma  
781 Therapy: A Retrospective Study. *Virol Sin* 35, 768-775.
- 782 Xiaojie, S., Yu, L., Lei, Y., Guang, Y., and Min, Q. (2020). Neutralizing antibodies targeting SARS-  
783 CoV-2 spike protein. *Stem Cell Res* 50, 102125.
- 784 Yadav, P.D., Sapkal, G.N., Ella, R., Sahay, R.R., Nyayanit, D.A., Patil, D.Y., Deshpande, G., Shete,  
785 A.M., Gupta, N., Mohan, V.K., *et al.* (2021). Neutralization against B.1.351 and B.1.617.2 with sera  
786 of COVID-19 recovered cases and vaccinees of BBV152. *bioRxiv*, 2021.2006.2005.447177.
- 787 Yahalom-Ronen, Y., Tamir, H., Melamed, S., Politi, B., Shifman, O., Achdout, H., Vitner, E.B.,  
788 Israeli, O., Milrot, E., Stein, D., *et al.* (2020). A single dose of recombinant VSV-G-spike vaccine  
789 provides protection against SARS-CoV-2 challenge. *Nat Commun* 11, 6402.
- 790 Yuan, M., Huang, D., Lee, C.D., Wu, N.C., Jackson, A.M., Zhu, X., Liu, H., Peng, L., van Gils, M.J.,  
791 Sanders, R.W., *et al.* (2021). Structural and functional ramifications of antigenic drift in recent  
792 SARS-CoV-2 variants. *Science*.
- 793 Yuan, M., Liu, H., Wu, N.C., Lee, C.D., Zhu, X., Zhao, F., Huang, D., Yu, W., Hua, Y., Tien, H., *et*  
794 *al.* (2020). Structural basis of a shared antibody response to SARS-CoV-2. *Science* 369, 1119-1123.
- 795