

A viral toolbox for conditional and transneuronal gene expression in zebrafish

Chie Satou^{1,*}, Rachael L. Neve², Hassana K. Oyibo¹, Paweł Zmarz^{1,7}, Kuo-Hua Huang^{1,8}, Estelle Arn Bouldoires¹, Takuma Mori³, Shin-ichi Higashijima^{4,5}, Georg B. Keller^{1,6}, Rainer W. Friedrich^{1,6,*}

Affiliations

1. Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
2. Gene Delivery Technology Core, Massachusetts General Hospital, MA, USA
3. Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, JAPAN
4. National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki, Japan
5. Graduate University for Advanced Studies, Okazaki, Aichi, Japan
6. Faculty of Natural Sciences, University of Basel, Basel, Switzerland
7. Present address: Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
8. Present address: Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan

*** Corresponding authors:** chie.satou@fmi.ch, rainer.friedrich@fmi.ch

Contact:

Rainer Friedrich, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.

Phone: +41 79 666 8072

Email: rainer.friedrich@fmi.ch

1 **Abstract:**

2 **The zebrafish is an important model in systems neuroscience but a key limitation is the lack of viral**
3 **tools to dissect the structure and function of neuronal circuitry. We developed methods for efficient**
4 **gene transfer and retrograde tracing in adult and larval zebrafish by herpes simplex viruses**
5 **(HSV1). HSV1 can be combined with the Gal4/UAS system to target cell types with high spatial,**
6 **temporal and molecular specificity. We also established methods for efficient transneuronal tracing**
7 **by modified rabies viruses in zebrafish. We demonstrate that HSV1 and rabies viruses can be used**
8 **to visualize and manipulate genetically or anatomically identified neurons within and across**
9 **different brain areas of adult and larval zebrafish. An expandable library of viruses is provided to**
10 **express fluorescent proteins, calcium indicators, optogenetic probes, toxins and other molecular**
11 **tools. This toolbox creates new opportunities to interrogate neuronal circuits in zebrafish through**
12 **combinations of genetic and viral approaches.**

13

14 **Introduction**

15 The zebrafish is an important vertebrate model in systems neuroscience because its small, optically
16 accessible brain provides unique opportunities to analyze neuronal circuits and behavior^{1,2}. Key methods
17 established in zebrafish include large-scale imaging of neuronal population activity, behavioral
18 approaches including virtual realities, and genetic manipulations¹⁻⁸, but efficient methods for viral gene
19 transfer are still lacking. Viral vectors are important experimental tools in mammals because they enable
20 the visualization and manipulation of defined neurons with high spatial, temporal and molecular
21 specificity, and because they can bypass the need to generate transgenic animals^{9,10}. Moreover, engineered
22 viral tools that cross synapses allow for the visualization and physiological analysis of synaptically
23 connected neuronal cohorts¹¹⁻¹³. Our goal was to establish similar methods for specific viral gene transfer
24 and transneuronal tracing in zebrafish.

25

26 **Results**

27 **Optimization of the temperature regime for viral gene transfer**

28 Previous studies demonstrated that adeno-associated viruses (AAVs), which are widely used for gene
29 transfer in mammals and other amniotes, fail to infect neurons in the zebrafish brain¹⁴. Infection of
30 zebrafish neurons by other viruses has been reported but efficiency was usually low and viral vectors for
31 conditional gene expression in transgenic fish have not been described. To improve upon these points, we

32 first focused on herpes simplex virus 1 (HSV1), a DNA virus that can infect zebrafish neurons both
33 locally and retrogradely via projecting axons without obvious signs of cytotoxicity¹⁵. We first explored
34 whether HSV1-mediated gene transfer can be further improved by optimizing the temperature regime.
35 Zebrafish are usually kept at 26 – 28.5 °C but the temperature range of natural habitats is broad (up to
36 >38 °C) and temperature tolerance in the laboratory extends up to ~41 °C^{16,17}. We therefore tested whether
37 viral gene expression is more efficient at temperatures near those of mammalian hosts (37 °C).

38 After injection of amplicon type HSV1 viruses into the brain of adult or larval zebrafish using established
39 procedures¹⁵, swimming behavior appeared normal both at standard laboratory temperatures (26 -
40 28.5 °C) and when fish were kept at 35 – 37 °C (Supplementary Movies 1 – 3). To further examine effects
41 of temperature on behavior we trained two groups of adult zebrafish in an odor discrimination task^{6,18} that
42 comprised one day of acclimatization to the setup followed by five days of appetitive conditioning (nine
43 training trials with a rewarded odor [CS+] and with a non-rewarded odor [CS-] each per day). Group 1
44 (control) underwent no surgery and was kept at the standard laboratory temperature. Group 2 was injected
45 with an HSV1 and subsequently kept at 36 °C for two days before training commenced (Fig. S1a).
46 Learning was assessed by a standard discrimination score and not significantly different between groups.
47 These results confirm that swimming behavior and olfactory discrimination learning were not
48 significantly impaired by virus injection or subsequent incubation at temperatures near 37 °C.

49 To examine the temperature-dependence of HSV1-mediated gene expression we injected adult zebrafish
50 expressing green fluorescent protein (GFP) under the *vglut1* promoter (Tg[*vglut1*:GFP]) with
51 HSV1[*LTCMV*:DsRed], an HSV1 with an insert encoding the red-fluorescent protein DsRed under the
52 control of a non-specific promoter for long-term expression (*LTCMV*). Injections were targeted
53 unilaterally into the olfactory bulb (OB) and fish were then maintained at 26 °C or 36 °C for 6 days after
54 injection (Fig. 1a). Consistent with previous results¹⁵, reporter expression (DsRed) was observed in the
55 injected OB (Fig. S1c). Moreover, retrogradely labeled neurons were present in telencephalic areas that
56 project to the OB, most notably in the posterior zone of the dorsal telencephalon (Dp), the homolog of
57 mammalian olfactory cortex (Fig. S1c). After incubation at 36 °C, substantially more neurons expressed
58 DsRed (Fig. 1b). In addition, retrograde labeling was detected in a small but distinct population of
59 neurons in the dorsal telencephalon that was not seen at 26 °C (Fig. 1b, c). DsRed expression at 36 °C was
60 first detected ~12 hours after injection and stable for at least 10 days (Fig. S1d). Moreover, increasing the
61 temperature from 26 °C to 36 °C three days after the injection failed to enhance expression (Fig. 1a, c).
62 These results show that adjusting the temperature to that of mammalian hosts can substantially increase
63 the efficiency of HSV1-mediated viral gene transfer in zebrafish.

64 To explore viral gene delivery at earlier developmental stages we injected HSV1[*LTCMV*:GFP] into the
65 optic tectum of zebrafish larvae at 3 days post fertilization (dpf) and examined expression 48 h later.
66 Consistent with previous observations¹⁵, expression of GFP was observed when fish were kept at 28.5 °C
67 (N = 3 fish) but the number of GFP-positive cells further increased when temperature was raised to 32 °C
68 (N = 5) or 35 °C (N = 10; Fig. S2a). Strong and widespread expression was also observed when the virus
69 was injected at 5 dpf (N = 14) or 14 dpf (N = 9) and fish were subsequently kept at 35 °C for 48 h (Fig.
70 S2b,c). When HSV1[*LTCMV*:GFP] was injected into muscles of the trunk at 5 dpf, strong and selective
71 retrograde labeling was observed in motor neurons in the spinal cord after keeping fish at 35 °C for 48 h
72 (N = 4; Fig. S2d). These results indicate that HSV1 can be used for gene delivery and retrograde neuronal
73 tracing throughout development.

74

75 **Intersection of HSV1 with the Gal4/UAS system**

76 Viral vectors are often combined with transgenic lines to target specific cell types using two-component
77 expression systems (e.g., injection of a Cre-dependent viral construct into Cre-expressing mice). In
78 zebrafish, the most widely used two-component expression system is the Gal4/UAS system. We therefore
79 explored the possibility to combine viral delivery of UAS-dependent expression constructs with Gal4-
80 expressing driver lines. We first created a Gateway expression vector²⁰ to simplify the construction of
81 HSV1 for UAS-dependent expression (Fig. 2a). We then generated HSV1[UAS:TVA-mCherry] to
82 expresses a fusion of the transmembrane protein TVA and the red fluorescent protein mCherry under
83 UAS control. This virus did not drive expression when injected into the brain of wt zebrafish (N = 3; not
84 shown).

85 We injected HSV1[UAS:TVA-mCherry] into the cerebellum of adult Tg[*gad1b*:GFP; *gad1b*:Gal4] fish¹⁸,
86 which express Gal4 and GFP under the control of the *gad1b* promoter, a marker of GABAergic neurons.
87 Consistent with the distribution of GABAergic neurons in the cerebellum, GFP was expressed in Purkinje
88 neurons and in a sparse neuronal population in the granular layer, presumably Golgi cells. mCherry was
89 co-expressed with GFP in a subset of Purkinje neurons and putative Golgi cells (97.7 ± 1.2 % of
90 mCherry-positive neurons were also GFP-positive; mean ± s.d.; N = 4 fish; Fig. 2b,c). No expression was
91 detected in the dense population of GFP-negative granule cells in the granular layer.

92 Co-expression of mCherry and GFP was observed also when the injection of HSV1[UAS:TVA-mCherry]
93 was directed at a cluster of GABAergic neurons near Dp in adult Tg[*gad1b*:GFP; *gad1b*:Gal4] fish (94.8
94 ± 4.5 % of mCherry+ neurons coexpressed GFP; mean ± s.d.; N = 5 fish; Fig. 2c, Fig. S3). Interestingly,
95 mCherry-expressing neurites arborized extensively in the lateral pallium but spared a region of Dp

96 immediately adjacent to the *gad1b*-positive cluster, indicating that the dorsal telencephalon contains
97 specific long-range projections of GABAergic neurons (Fig. S3a). In zebrafish larvae (7 dpf) we injected
98 HSV1[UAS:GFP] into the hindbrain of Tg[*gad1b*:Gal4; *gad1b*:DsRed] fish (N = 3) and detected
99 expression of GFP selectively in DsRed-positive cells in the hindbrain and cerebellum (Fig. S2e). These
100 observations indicate that HSV1 can be combined with the Gal4/UAS system to enhance the specificity of
101 cellular targeting.

102 To corroborate this conclusion we designed experiments to target sparse neuronal populations. We first
103 injected HSV1[UAS:Venus-CAAX] into the optic tectum of Tg[*th*:Gal4; UAS:tdTomato-CAAX] fish,
104 which express Gal4 and the red-fluorescent protein tdTomato-CAAX under the control of the tyrosine
105 hydroxylase-1 promoter, a marker for catecholaminergic neurons. This procedure resulted in the selective
106 expression of the membrane-associated protein Venus-CAAX in a small number of tdTomato-CAAX-
107 positive neurons in the locus coeruleus with complex long-distance axonal projections, indicating that
108 expression was specifically directed to catecholaminergic (noradrenergic) neurons (Fig. 2d; N = 4 fish).
109 In additional experiments we first injected HSV1[LTCMV:Gal4] into the OB of wt zebrafish and
110 subsequently injected HSV1[UAS:GFP] into the dorsal telencephalon. Expression of GFP was observed
111 specifically in OB-projecting neurons of the dorsal telencephalon without expression elsewhere (Fig. 2e).
112 To assess the efficiency of this intersectional targeting approach we compared the number of labeled
113 neurons using either the Gal4/UAS system or the one-component approach (injection of
114 HSV1[LTCMV:DsRed] into OB). Both approaches yielded similar numbers of labeled neurons in the
115 dorsal telencephalon (Fig. 2f). We therefore conclude that HSV1 can be combined with the Gal4/UAS
116 system in intersectional approaches with high efficiency and low leakiness.

117 We next explored strategies for co-expression of multiple transgenes in the same neurons. When red and
118 green reporter constructs were co-packaged into the same virus (HSV1[UAS:TVA-mCherry &
119 UAS:GFP]), injection into the cerebellum of Tg[*gad1b*:Gal4] resulted in a high rate of co-expression, as
120 expected ($89.5 \pm 8.7\%$ co-expression; mean \pm s.d.; N = 3 fish; Fig. S4a, c). However, the rate of co-
121 expression did not reach 100 %, possibly because not all virus particles received both constructs during
122 packaging. Interestingly, co-injection of the same responder constructs packaged into separate viruses
123 (HSV1[UAS:TVA-mCherry] and HSV1[UAS:GFP]) produced a similar rate of co-expression, even when
124 overall expression was sparse ($84.3 \pm 6.0\%$ co-expression; mean \pm s.d.; N = 3 fish; Fig. S4b, c). These
125 results indicate that co-packaging and co-injection of viruses can be used to express multiple transgenes
126 in the same neurons.

127 We also tested HSV1 as a tool for functional manipulations of neurons and behavior. We first injected
128 HSV1[LTCMV:Gal4] into the OB of wt zebrafish and subsequently co-injected HSV1[UAS:GCaMP6f]

129 and HSV1[UAS:Chrimson-tdTomato] into the dorsal telencephalon. This procedure resulted in the co-
130 expression of the green-fluorescent calcium indicator GCaMP6f²¹ and the red-light-gated cation channel
131 Chrimson-tdTomato²² in OB-projecting neurons of the dorsal telencephalon. Brief (500 ms) illumination
132 with red light evoked GCaMP6f fluorescence transients that increased in amplitude with increasing light
133 intensity (Fig. S5; 11 neurons in N = 1 fish). Hence, transgene-expressing neurons were functional and
134 responsive to optogenetic stimulation. To explore strategies for neuronal ablations we expressed tetanus
135 toxin light chain (TeNT) in GABAergic neurons of the cerebellum by injecting HSV1[UAS:TeNT-GFP]
136 into the cerebellum of Tg[gad1b:Gal4] fish. Injected fish showed abnormal body posture and swimming
137 patterns while control fish injected with HSV1[UAS:GFP] swam normally (Supplementary Movie 4).
138 HSV1-mediated gene transfer thus offers a wide range of opportunities for anatomical and functional
139 experiments in zebrafish.

140 We have so far assembled a collection of 26 different HSV1s for applications in zebrafish
141 (Supplementary Table1). 15 of these drive expression of fluorescent markers, calcium indicators, Gal4 or
142 optogenetic probes under the control of the non-specific LTCMV promoter for regional transgene
143 expression and retrograde tracing. The remaining 11 HSV1s drive expression of fluorescent markers,
144 optogenetic probes, toxins and other proteins under UAS control for intersectional targeting of neurons
145 using the Gal4/UAS system. This toolbox is available and can be further expanded using our UAS-
146 containing expression vector (Fig. 2a).

147

148 **Transneuronal viral tracing in zebrafish**

149 The ability of some viruses to cross synapses has been exploited to express transgenes in synaptically
150 connected cohorts of neurons. In zebrafish and other species, neurons were traced across one or multiple
151 synapses using engineered vesicular stomatitis viruses (VSVs) but these tools have not been used widely
152 as biological tools, possibly because they can exhibit toxicity²³⁻²⁵. In rodents, modified rabies viruses
153 have become important tools to analyze connectivity and structure-function relationships in neuronal
154 circuits. These vectors can infect specific “starter” neurons and are transmitted retrogradely to presynaptic
155 neurons across one synapse. Specific infection is achieved by expressing the receptor protein TVA in the
156 starter neuron and pseudotyping the virus with the envelope protein EnvA¹¹. To limit retrograde transfer
157 to one synapse, an essential glycoprotein (G) is deleted from the viral genome and supplied in *trans* only
158 in the starter neurons. In zebrafish, the G-deleted rabies virus (RVΔG) has been reported to infect
159 neurons¹⁴ and to cross synapses when complemented with G but the efficiency of retrograde synaptic
160 transfer appeared very low²⁶.

161 To enhance the efficiency of viral infection and transneuronal tracing we first explored the effect of
162 temperature. When we injected EnvA-coated RVΔG expressing GFP (EnvA-RVΔG-GFP) into the
163 telencephalon of wt fish at 36 °C, no GFP expression was observed (Fig. S6). We then injected EnvA-
164 RVΔG-GFP into the telencephalon of *Tg[gad1b:Gal4; UAS:TVA-mCherry]* fish that express TVA-
165 mCherry in GABAergic neurons. After 6 days, efficient and selective infection of neurons expressing
166 GFP was observed at 36 °C but not at 26 °C, nor when the temperature was raised from 26 °C to 36 °C
167 three days post injection (Fig. S7). Hence, infection of zebrafish neurons by EnvA-RVΔG-GFP required
168 TVA and was substantially more efficient when the temperature was close to the body temperature of
169 natural hosts. Subsequent experiments were therefore performed at 35 – 37 °C.

170 To assess potential toxicity of RVΔG we injected EnvA-RVΔG-GFP into the OB of *Tg[gad1b:Gal4;*
171 *UAS:TVA-mCherry]* fish as before, dissociated the OB, and performed RNA sequencing after
172 fluorescence-activated cell sorting. This approach allowed us to compare transcriptomes of GABAergic
173 neurons infected by RVΔG (green and red) to transcriptomes of non-infected GABAergic neurons
174 expressing only the TVA receptor (red only; Fig. S8). Of 19'819 endogenous genes analyzed, 522 were
175 significantly downregulated while 27 were significantly upregulated in infected cells. Among these, stress
176 markers occurred with approximately average frequency (downregulated: 27 out of 471 stress marker
177 genes; upregulated: 1/471) and cell death markers were underrepresented (downregulated: 14/651 genes;
178 upregulated: 4/651; Fig. 3a-c; Supplementary Table2). The 65 gene ontology (GO) terms that were
179 significantly associated with the set of regulated genes were primarily related to immune responses while
180 GO terms related to stress, cell death, electrophysiological properties or synapses were rare or absent
181 (Supplementary Table 3). These results indicate that RVΔG does not have major effects on the health or
182 physiological status of infected neurons.

183 To directly compare neuronal activity of infected and uninfected neurons we targeted the dense
184 population of GABAergic interneurons in the deep layers of the OB. We injected EnvA-RVΔG-mCherry
185 into the OB of adult *Tg[gad1b:Gal4; UAS:TVA-mCherry]* fish and detected infection in a subset of
186 neurons by the strong cytoplasmic and nuclear expression of mCherry, which could easily be
187 distinguished from the weak, membrane-associated background expression of TVA-mCherry (Fig. 3c).
188 We then loaded neurons non-specifically with the green-fluorescent calcium indicator Oregon Green 488
189 BAPTA-1 (OGB1) by bolus injection of the AM ester²⁷ and measured odor responses of all neurons
190 simultaneously (Fig. 3d). No obvious differences were detected in the time course or amplitude
191 distribution of odor responses between infected neurons (N = 1293 neurons from four fish) and uninfected
192 neurons (N = 559 from the same four fish; Fig. 3e-g). Together, these results indicate that infection with
193 RVΔG did not compromise the health or physiological function of neurons.

194 Efficient transneuronal spread of the rabies virus depends on the expression level of the viral glycoprotein
195 in starter cells^{28,29}. We therefore took two steps to enhance glycoprotein expression. First, we optimized
196 codon usage for zebrafish. Second, we expressed TVA and the codon-optimized glycoprotein (zoSADG)
197 using HSV1 because viral vectors typically reach higher expression levels than transgenics¹⁵. In rodents,
198 starter neurons expressing high levels of G often disappear in parallel with the emergence of
199 transneuronal expression, presumably because long-term expression of G is toxic^{30,31}. We therefore
200 determined the time course of transgene expression under different experimental conditions. We first
201 focused on the cerebellum where GABAergic Purkinje neurons receive local synaptic input from different
202 types of cerebellar neurons and long-range input from neurons in the contralateral inferior olive (climbing
203 fibers; Fig. 4a). We injected a mixture of HSV1[UAS:TVA-mCherry] and EnvA-RVΔG-GFP into the
204 cerebellum of Tg[gad1b:Gal4] fish and examined expression for up to 10 days. As observed before
205 (Fig. 2b), mCherry expression was localized to Purkinje neurons and putative Golgi cells. Neurons
206 expressing GFP were concentrated around the injection site and usually co-expressed mCherry (Fig 4b,
207 d). Rarely, GFP expression was observed in mCherry-negative neurons (Fig. 4d), which may indicate
208 TVA-independent viral entry. However, as no GFP expression was observed when EnvA-RVΔG-GFP
209 was injected into wt animals (Fig. S6), it appears more likely that GFP+/mCherry- neurons initially
210 expressed TVA but subsequently lost expression due to the slight decline of expression driven by the viral
211 promoter (Fig. S1b). Co-expression of mCherry and GFP was stable for at least 10 days after injection
212 and GFP+/mCherry- neurons remained very rare (Fig. 4d). These results confirm the specificity of EnvA-
213 RVΔG-GFP infection and provide additional evidence that expression of TVA-mCherry or the infection
214 by RVΔG alone are not toxic in the absence of glycoprotein. No expression of GFP was observed in the
215 inferior olive, consistent with the expectation that RVΔG does not spread in the absence of glycoprotein.
216 To examine whether the delivery of glycoprotein to starter cells can drive transneuronal spread, we
217 injected a mixture of HSV1[UAS:TVA-mCherry], HSV1[UAS:zoSADG] and EnvA-RVΔG-GFP into the
218 cerebellum of Tg[gad1b:Gal4] fish. Unlike in the absence of glycoprotein, the number of mCherry-
219 expressing Purkinje neurons and putative Golgi cells now declined over the incubation period of 10 days.
220 The number of neurons expressing GFP, in contrast, was low initially but increased steeply between 6 and
221 10 days after injection (Fig. 4d). In the cerebellum, GFP was expressed in Purkinje cells and throughout
222 the granular layer (Fig. 4c). The number and spatial distribution of GFP-expressing neurons in the
223 granular layer was clearly different from mCherry expression in the absence of glycoprotein
224 (Tg[gad1b:Gal4] fish injected with HSV1[UAS:TVA-mCherry]; Fig. 2b), indicating that GFP was
225 expressed in granule cells. Moreover, GFP-positive neurons were found in the contralateral inferior olive
226 (Fig. 4c). We therefore conclude that *trans*-complementation with zoSADG in starter cells promoted
227 transneuronal spread of the rabies virus.

228 Transneuronal viral transfer for synaptic inputs to Purkinje neurons from the inferior olive was quantified
229 in each individual by a convergence index that is defined as the number of transneuronally labeled
230 neurons (here: GFP+/mCherry- neurons in the inferior olive) normalized to the number of starter cells
231 (here: GFP+/mCherry+ Purkinje neurons)^{29,32}. This index does not reflect the true convergence because
232 an unknown number of starter neurons has disappeared at the time when neurons are counted. We
233 nevertheless used this index to assess transneuronal spread because it has been established previously as a
234 benchmark in rodents^{29,32}. The convergence index was 1.00 ± 0.95 (mean \pm s.d.; $N = 4$ fish; Fig. 4e),
235 which is comparable to values reported in mammals²⁹.

236 To corroborate these results we also examined transneuronal tracing from starter neurons in telencephalic
237 area Dp. In this area, both glutamatergic principal neurons and GABAergic interneurons receive long-
238 range input from mitral cells in the OB (Fig. 4f). In addition, Dp receives other telencephalic inputs that
239 are not well characterized. When a mixture of HSV1[UAS:TVA-mCherry] and EnvA-RVΔG-GFP was
240 injected into Tg[gad1b:Gal4] fish (Fig. 4g), GFP expression was largely restricted to a cluster of neurons
241 that co-expressed mCherry (Fig. 4g). This cluster was located near a prominent furrow that separates an
242 anterior from a posterior compartment of Dp, consistent with the known location of GABAergic neurons
243 in Dp¹⁸. When HSV1[UAS:zoSADG] was added to the injected virus mixture, mCherry expression
244 became rare while a large number of neurons in different telencephalic areas expressed GFP (Fig. 4h, i).
245 Moreover, GFP was expressed in the olfactory bulb by neurons with the characteristic morphology of
246 mitral cells, but not by other cells (Fig. 4h).

247 Similar observations were made when the infection was targeted to glutamatergic starter neurons by
248 injecting the cocktail of viruses into Dp of Tg[vglut1:Gal4] fish (Fig. S9). In the absence of
249 HSV1[UAS:zoSADG], GFP was co-expressed with mCherry and restricted to the injection site, while in
250 the presence of HSV1[UAS:zoSADG], expression of mCherry disappeared and GFP expression became
251 more widespread, including neurons in the OB (Fig. S9). Note that *vglut1* is expressed in excitatory
252 neurons in the telencephalon but not in the OB (Fig. S10), implying that labeling of OB neurons cannot
253 be explained by direct infection. Convergence indices for projections of mitral cells to GABAergic or
254 glutamatergic starter neurons in Dp were 0.70 ± 0.21 and 1.31 ± 1.20 (mean \pm s.d.; $N = 5$ and $N = 4$ fish,
255 respectively; Fig. 4j). These results confirm that EnvA-RVΔG selectively infects TVA-expressing target
256 neurons and undergoes monosynaptic retrograde transneuronal transfer when complemented with
257 zoSADG.

258 To examine transneuronal viral spread at early developmental stages we injected EnvA-RVΔG-GFP into
259 the spinal cord of Tg[gad1b:Gal4; UAS:TVA-mCherry] fish at 10 dpf and analyzed fluorescence after
260 6 – 7 days. In the absence of zoSADG, GFP expression was restricted to mCherry-positive neurons

261 around the injection site (Fig. 5a). When zoSADG was supplied in *trans* by co-injecting EnvA-RVΔG-
262 GFP with HSV1[UAS:zoSADG], GFP expression was observed throughout the spinal cord and in the
263 brainstem (Fig. 5b). GFP-positive neurons distant from the injection site did usually not co-express
264 mCherry. We therefore conclude that glycoprotein-dependent retrograde transneuronal transfer also
265 occurs at larval stages.

266

267 **Discussion**

268 In summary, we found that viral infection and transgene expression in zebrafish can be significantly
269 enhanced by adjusting the temperature to that of the natural viral host. HSV1 vectors can be combined
270 with the Gal4/UAS system for intersectional gene expression strategies without obvious leakiness. We
271 applied HSV1s to target the expression of multiple transgenes to different brain areas and neuron types in
272 the adult zebrafish brain and in larvae. Hence, HSV1-mediated gene transfer and retrograde tracing has a
273 wide range of potential of applications in zebrafish.

274 We have generated a collection of HSV1s for the direct or conditional expression of different transgenes
275 including fluorescent markers, calcium indicators, optogenetic probes, and toxins (Supplementary
276 Table1). This toolbox opens novel opportunities for the fast and flexible interrogation of neurons in

277 zebrafish. Intersectional strategies can be used to target narrowly defined types of neurons by combining
278 the genetic specificity of promoters and the Gal4/UAS system with the spatial and temporal precision of
279 injections. For example, anatomically defined sets of projection neurons can be targeted by retrograde
280 HSV1-mediated delivery of Gal4 and subsequent HSV1-mediated delivery of a UAS responder.

281 Importantly, expression can be directed to specific neurons by injecting HSV1 with UAS-dependent
282 inserts into existing Gal4 driver lines. Such approaches can immediately capitalize on the broad spectrum
283 of Gal4 driver lines that has been created using defined promoters and random insertion strategies³³⁻³⁵.
284 Conceivably, viral delivery of UAS responders may also be useful to overcome the slow loss of
285 expression observed in some Gal4/UAS transgenic lines over generations because it bypasses epigenetic
286 silencing of the highly repetitive UAS elements^{36,37}.

287 We further established procedures for retrograde monosynaptic tracing using rabies viruses that greatly
288 enhanced the efficiency of transneuronal transfer compared to a previous study in zebrafish²⁶.

289 Temperature adjustments were important but unlikely to be the only factor underlying the enhanced
290 transneuronal spread because the temperature difference to the previous study was only 1.5 °C²⁶. We
291 therefore assume that increased glycoprotein expression by codon optimization, viral gene delivery, and
292 possibly small differences in the experimental schedule also contributed significantly. Transcriptomics

293 and measurements of odor-evoked activity revealed no signs of toxicity of RVΔG alone, indicating that
294 transneuronally labeled neurons are healthy even though starter neurons disappear.

295 Transneuronal spread of rabies viruses was glycoprotein-dependent and labeled substantial numbers of
296 putative presynaptic neurons from different starter neurons, both in adult zebrafish and in larvae.
297 Convergence ratios were similar to those observed in rodents despite the fact that zebrafish neurons are
298 smaller and probably receive fewer synaptic inputs. These results suggest that the efficiency of
299 transneuronal tracing was in the same range as in rodents although quantitative comparisons are difficult.
300 In the future, further improvements may be achieved by modifications that are currently explored in
301 rodents such as the design of optimized glycoproteins²⁹ or trans-complementation with a second viral
302 gene³⁸. The apparent long-term toxicity of the glycoprotein may be circumvented by transient expression
303 using a negative feedback system³⁹. Hence, rabies-based transneuronal tracers are promising tools for the
304 structural and functional dissection of neuronal circuitry in zebrafish.

305 Retrograde tracing of connected neuronal cohorts using rabies viruses has become an important approach
306 to decipher the functional logic of neuronal connectivity in rodents. Our results pave the way for
307 applications of this approach in zebrafish. The small size of zebrafish facilitates the combination of
308 neuronal circuit tracing with other methods such high-resolution imaging of neuronal activity patterns
309 throughout large brain areas. Transneuronal tracing in the anterograde direction from starter neurons that
310 were not genetically defined has previously been achieved using VSVs in larval zebrafish^{23,24}. Recently, it
311 has been reported that the cytotoxicity of VSVs used in initial studies can be reduced²⁵, suggesting that
312 anterograde transneuronal tracing using VSVs may complement retrograde transneuronal tracing by
313 rabies viruses. Our experiments were designed primarily to explore HSV1 and rabies viruses as tools for
314 structural and functional analyses of neuronal circuits and behavior. Moreover, the ability of HSV1 and
315 rabies viruses, as well as VSVs, to infect larval neurons may be exploited for studies of development,
316 although the temporal resolution will be limited by the time required for viral gene expression (days).
317 Viral tools and their combination with transgenic lines and optical approaches therefore offer a wide
318 range of experimental opportunities that have not been available in zebrafish so far.

319 **References**

- 320 1. Friedrich, R. W., Jacobson, G. A. & Zhu, P. Circuit Neuroscience in Zebrafish. *Curr. Biol.* **20**, R371–R381
321 (2010).
- 322 2. Vanwalleghem, G. C., Ahrens, M. B. & Scott, E. K. Integrative whole-brain neuroscience in larval
323 zebrafish. *Curr. Opin. Neurobiol.* **50**, 136–145 (2018).
- 324 3. Aoki, T. *et al.* Imaging of neural ensemble for the retrieval of a learned behavioral program. *Neuron* **78**,
325 881–894 (2013).
- 326 4. Cherng, B. W., Islam, T., Torigoe, M., Tsuboi, T. & Okamoto, H. The Dorsal Lateral Habenula-
327 Interpeduncular Nucleus Pathway Is Essential for Left-Right-Dependent Decision Making in Zebrafish. *Cell
328 Rep.* **32**, 108143 (2020).
- 329 5. Huang, K. H. *et al.* A virtual reality system to analyze neural activity and behavior in adult zebrafish. *Nat.
330 Methods* **17**, 343–351 (2020).
- 331 6. Namekawa, I., Moenig, N. R. & Friedrich, R. W. Rapid olfactory discrimination learning in adult zebrafish.
332 *Exp. Brain Res.* **236**, 2959–2969 (2018).
- 333 7. Satou, C. *et al.* Functional Diversity of Glycinergic Commissural Inhibitory Neurons in Larval Zebrafish.
334 *Cell Rep.* **30**, 3036–3050.e4 (2020).
- 335 8. Amo, R. *et al.* The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for
336 adaptive active avoidance of danger. *Neuron* **84**, 1034–1048 (2014).
- 337 9. Jüttner, J. *et al.* Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human
338 primates and humans. *Nat. Neurosci.* **22**, 1345–1356 (2019).
- 339 10. Luo, L., Callaway, E. M. & Svoboda, K. Genetic Dissection of Neural Circuits : A Decade of Progress.
340 *Neuron* **98**, 256–281 (2018).
- 341 11. Wickersham, I. R. *et al.* Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically
342 Targeted Neurons. *Neuron* **53**, 639–647 (2007).
- 343 12. Ghanem, A. & Conzelmann, K. K. G gene-deficient single-round rabies viruses for neuronal circuit analysis.
344 *Virus Res.* **216**, 41–54 (2016).
- 345 13. Callaway, E. M. & Luo, L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. *J.
346 Neurosci.* **35**, 8979–8985 (2015).
- 347 14. Zhu, P. *et al.* Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the tet
348 system. *Front. Neural Circuits* **3**, 1–12 (2009).
- 349 15. Zou, M., De Koninck, P., Neve, R. L. & Friedrich, R. W. Fast gene transfer into the adult zebrafish brain by
350 herpes simplex virus 1 (HSV-1) and electroporation: Methods and optogenetic applications. *Front. Neural
351 Circuits* **8**, 1–16 (2014).
- 352 16. López-Olmeda, J. F. & Sánchez-Vázquez, F. J. Thermal biology of zebrafish (*Danio rerio*). *J. Therm. Biol.*
353 **36**, 91–104 (2011).
- 354 17. Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. Zebrafish in the wild: A review of natural
355 history and new notes from the field. *Zebrafish* **4**, 21–40 (2007).
- 356 18. Frank, T., Mönig, N. R., Satou, C., Higashijima, S. ichi & Friedrich, R. W. Associative conditioning remaps
357 odor representations and modifies inhibition in a higher olfactory brain area. *Nat. Neurosci.* **22**, 1844–1856
358 (2019).
- 359 19. Dana, H. *et al.* High-performance calcium sensors for imaging activity in neuronal populations and
360 microcompartments. *Nat. Methods* **16**, 649–657 (2019).

361 20. Reece-hoyes, J. S. & Walhout, A. J. M. Gateway Recombinational Cloning. (2018)
362 doi:10.1101/pdb.top094912.

363 21. Chen, T. W. *et al.* Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature* **499**, 295–300
364 (2013).

365 22. Klapoetke, N. C. *et al.* Independent optical excitation of distinct neural populations. *Nat. Methods* **11**, 338–
366 346 (2014).

367 23. Mundell, N. A. *et al.* Vesicular Stomatitis Virus Enables Gene Transfer and Transsynaptic Tracing in a
368 Wide Range of Organisms. **1663**, 1639–1663 (2015).

369 24. Ma, M., Kler, S. & Pan, Y. A. Structural Neural Connectivity Analysis in Zebrafish With Restricted
370 Anterograde Transneuronal Viral Labeling and Quantitative Brain Mapping. *Front. Neural Circuits* **13**,
371 (2020).

372 25. Kler, S., Ma, M., Narayan, S., Ahrens, M. B. & Albert, Y. Cre-Dependent Anterograde Transsynaptic
373 Labeling and Functional Imaging in Zebrafish Using VSV With Reduced Cytotoxicity. *Front. Neuroanat.*
374 **15**, 1–10 (2021).

375 26. Dohaku, R. *et al.* Tracing of afferent connections in the zebrafish cerebellum using recombinant rabies virus.
376 *Front. Neural Circuits* **13**, 1–15 (2019).

377 27. Yaksi, E. & Friedrich, R. W. Reconstruction of firing rate changes across neuronal populations by
378 temporally deconvolved Ca²⁺ imaging. *Nat. Methods* **3**, 377–383 (2006).

379 28. Miyamichi, K. *et al.* Dissecting local circuits: Parvalbumin interneurons underlie broad feedback control of
380 olfactory bulb output. *Neuron* **80**, 1232–1245 (2013).

381 29. Kim, E. J. *et al.* Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus
382 Glycoproteins Report Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus
383 Glycoproteins. *Cell Reports* **15**, 692–699 (2016).

384 30. Faber, M. *et al.* Overexpression of the Rabies Virus Glycoprotein Results in Enhancement of Apoptosis and
385 Antiviral Immune Response. *J. Virol.* **76**, 3374–3381 (2002).

386 31. Ohara, S., Sato, S., Oyama, K., Tsutsui, K. I. & Iijima, T. Rabies virus vector transgene expression level and
387 cytotoxicity improvement induced by deletion of glycoprotein gene. *PLoS One* **8**, (2013).

388 32. Miyamichi, K. *et al.* Cortical representations of olfactory input by trans-synaptic tracing. *Nature* **472**, 191–
389 199 (2011).

390 33. Satou, C. *et al.* Transgenic tools to characterize neuronal properties of discrete populations of zebrafish
391 neurons. *Development* **140**, 3927–3931 (2013).

392 34. Asakawa, K. *et al.* Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and
393 enhancer trapping in zebrafish. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 1255–1260 (2008).

394 35. Förster, D. *et al.* Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain
395 with a new set of BAC transgenic tools. *Sci. Rep.* **7**, 1–11 (2017).

396 36. Akitake, C. M., Macurak, M., Halpern, M. E. & Goll, M. G. Transgenerational analysis of transcriptional
397 silencing in zebrafish. *Dev. Biol.* **352**, 191–201 (2011).

398 37. Goll, M. G., Anderson, R., Stainier, D. Y. R., Spradling, A. C. & Halpern, M. E. Transcriptional silencing
399 and reactivation in transgenic zebrafish. *Genetics* **182**, 747–755 (2009).

400 38. Chatterjee, S. *et al.* Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of
401 projection neurons. *Nat. Neurosci.* **21**, 638–646 (2018).

402 39. Ciabatti, E., González-Rueda, A., Mariotti, L., Morgese, F. & Tripodi, M. Life-Long Genetic and Functional
403 Access to Neural Circuits Using Self-Inactivating Rabies Virus. *Cell* **170**, 382–392.e14 (2017).

404 40. Li, J. *et al.* Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using
405 the CRISPR/Cas9 system. *Cell Res.* **25**, 634–637 (2015).

406 41. Miyasaka, N. *et al.* Olfactory projectome in the zebrafish forebrain revealed by genetic single-neuron
407 labelling. *Nat. Commun.* **5**, (2014).

408 42. Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified
409 the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for
410 transposition. *Genetics* **174**, 639–649 (2006).

411 43. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-Brain Mapping of Direct
412 Inputs to Midbrain Dopamine Neurons. *Neuron* **74**, 858–873 (2012).

413 44. Kimura, Y., Hisano, Y., Kawahara, A. & Higashijima, S. I. Efficient generation of knock-in transgenic
414 zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. *Sci. Rep.* **4**, 1–7
415 (2014).

416 45. Wertz, A. *et al.* Network Modules. *Science* (80-). **349**, 70–74 (2015).

417 46. Vélez-Fort, M. *et al.* The stimulus selectivity and connectivity of layer six principal cells reveals cortical
418 microcircuits underlying visual processing. *Neuron* **83**, 1431–1443 (2014).

419 47. Susaki, E. A. *et al.* Whole-brain imaging with single-cell resolution using chemical cocktails and
420 computational analysis. *Cell* **157**, 726–739 (2014).

421 48. Attinger, A., Wang, B., Keller Correspondence, G. B. & Keller, G. B. Visuomotor Coupling Shapes the
422 Functional Development of Mouse Visual Cortex. *Cell* **169**, 1291–1302.e14 (2017).

423 49. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging Large-Scale Neural
424 Activity with Cellular Resolution in Awake, Mobile Mice. *Neuron* **56**, 43–57 (2007).

425 50. Jacobson, G. A., Rupprecht, P. & Friedrich, R. W. Experience-Dependent Plasticity of Odor Representations
426 in the Telencephalon of Zebrafish. *Curr. Biol.* 1–14 (2017) doi:10.1016/j.cub.2017.11.007.

427 51. Mathieson, W. B. & Maler, L. Journal of Sensory, Morphological and electrophysiological properties of a
428 novel in vitro preparation: the electrosensory lateral line lobe brain slice. *J Comp Physiol A* **163**, 489–506
429 (1988).

430 52. Rupprecht, P. & Friedrich, R. W. Precise Synaptic Balance in the Zebrafish Homolog of Olfactory Cortex.
431 *Neuron* **100**, 669–683.e5 (2018).

432 53. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: Flexible software for operating laser scanning
433 microscopes. *Biomed. Eng. Online* **2**, 1–9 (2003).

434 54. Hempel, C. M., Sugino, K. & Nelson, S. B. A manual method for the purification of fluorescently labeled
435 neurons from the mammalian brain. *Nat. Protoc.* **2**, 2924–2929 (2007).

436 55. Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat. Protoc.* **9**, 171–181 (2014).

437 56. Picelli, S. *et al.* Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.
438 *Genome Res.* **24**, 2033–2040 (2014).

439 57. Gaidatzis, D., Lerch, A., Hahne, F. & Stadler, M. B. QuasR: Quantification and annotation of short reads in
440 R. *Bioinformatics* **31**, 1130–1132 (2015).

441 58. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a
442 deletion-mutant rabies virus. *Nat. Methods* **4**, 47–49 (2007).

443 59. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential
444 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2009).

445 60. Eggermont, J. & Proudfoot, N. J. Poly(A) signals and transcriptional pause sites combine to prevent

446 interference between RNA polymerase II promoters. *EMBO J.* **12**, 2539–2548 (1993).

447

448

449 **Acknowledgements**

450 We thank Hans-Rudolf Hotz for offering the QuasR tools in the FMI Galaxy, Hubertus Kohler for FACS
451 experiments, and Sébastien Smallwood and Stéphane Thiry for RNA sequencing. We thank Aya Takeoka
452 for comments on the manuscript and the Friedrich group for stimulating discussions. This work was
453 supported by the Novartis Research Foundation, by fellowships from the European Union (Marie Curie)
454 and JSPS (C.S.), by the European Research Council (ERC) under the European Union’s Horizon 2020
455 research and innovation program (grant agreement no. 742576), and by the Swiss National Science
456 Foundation (grant no. 31003A_172925/1).

457

458 **Author contributions**

459 C.S. developed the methodology, designed and performed experiments, analyzed data and wrote the
460 manuscript. R.L.N. produced HSV1. H.K.O. produced rabies virus. P. Z. performed and analyzed
461 optogenetic and calcium imaging experiments. K.H. developed head-fix preparation and in vivo imaging
462 technique. E.A.B. helped molecular biology to establish HSV1[UAS:GFP], M.T. helped to establish
463 rabies virus tracing in zebrafish. S.H. created transgenic fish. G.B.K. supervised the project. R.W.F.
464 supervised the project and wrote the manuscript.

465

466 **Competing interests**

467 R.L.N. is the head of the Gene Delivery Technology Core at Massachusetts General Hospital where
468 HSV1 can be obtained commercially.

469

470 **Methods**

471 **Animals**

472 Experiments were performed in adult (5 – 15 month old) zebrafish (*Danio rerio*) of both sexes. Fish were bred
473 under standard laboratory conditions (26 – 27°C, 13 h/11 h light/dark cycle). All experiments were approved
474 by the Veterinary Department of the Canton Basel-Stadt (Switzerland).

475 The following transgenic fish lines were used: Tg[gad1b:GFP]³³, Tg[gad1b:Gal4]¹⁸, Tg [vglut2a:loxP-DsRed-
476 loxP-GFP]³³, Tg[th:Gal4]⁴⁰, Tg[vglut1:GFP] (created in this study), Tg[vglut1:Gal4] (created in this study),
477 Tg[UAS:tdTomato-CAAX]⁴¹ and Tg[UAS:TVA-mCherry] (created in this study). Note that Tg[gad1b:GFP]
478 and Tg[gad1b:Gal4] were created using the same BAC (zC24M22).

479 Optogenetic experiments and odor discrimination training were performed in fish with low pigmentation that
480 were derived by selection from a wt population. We refer to this genetic background as “Basel-golden”. These
481 fish facilitate non-invasive optical access to the brain in adults and show no obvious impairments or behavioral
482 alterations.

483

484 **Transgenic fish, DNA constructs and virus production**

485 Tg[UAS:TVA-mCherry] fish were created using standard procedures based on the Tol2 transposon⁴². TVA-
486 mCherry was amplified by PCR from a plasmid (gift from Dr. Uchida, Addgene plasmid #38044 ;
487 <http://n2t.net/addgene:38044> ; RRID:Addgene_38044, ref⁴³) and inserted into a 5xUAS vector³⁴.
488 Tg[vglut1:GFP] fish were established using the CRISPR/Cas9 method⁴⁴. Insertion of a construct containing the
489 hsp70 promoter was targeted at a site upstream of the vglut1 gene using the target sequence
490 gagagagactcggcgccgc. The same procedure and target sequence was used to generate Tg[vglut1:loxP-
491 mCherry-loxP-Gal4]. This line was then crossed to Tg[hspa8:Cre-mCherry-NLS] (ZFIN ID: ZDB-ALT-
492 201210-1), which expresses Cre ubiquitously, to generate Tg[vglut1:Gal4].

493 For HSV1 production, constructs containing *LTCMV*:DsRed, *LTCMV*:GFP, *LTCMV*:Gal4 and
494 *LTCMV*:jGCaMP7b were created at the Gene Delivery Technology Core of the Massachusetts General
495 Hospital. Constructs containing *UAS*:GFP, *UAS*:Venus-CAAX, *UAS*:GCamp6f, *UAS*:tdTomato,
496 *UAS*:TeNTGFP, *UAS*:TVA-mCherry, and *UAS*:zoSADG were created using the Gateway construct described
497 in Fig. 2A. The transcriptional blocker (Fig. 2a) and zoSADG were synthesized with the following sequences:

498 Transcriptional blocker:

499 caataaaaatatctttatttcattacatctgtgttggtttttgtgaatcgatagactaacaatacgctctccatcaaaacaaaacgaaacaaaacaaactagcaaa
500 ataggctgtccccagtgcaagtgcaggtccagaacatcttc

501 zoSADG:

502 atggcctcaggcgtctgtgtgcctctgtgtggaaaattccctatctacacaatccggataaactgggacccatcg
503 acatccaccacccgtgcgtccataacaacctgggtggaggatggggatgcactaacctcgatggggatctccatcgatggggatacatctcg
504 gctatcaaggtgaacggattcacctgtacaggagggtgactgaggctgagacatacacaacttcgtggatacgatggggatacatctcg
505 cagacccatcacccatgtcgatggactgtgcctacaactggaaatggctggacccttagatatggggatccctgcacaacccttacccctgactacagatgg
506 gctgtacatcgatggggatccctgcataactggaaatggggatccctgcacaacccttacccctgactacagatgg
507 aaagtgcgtcggtggcagtgtccacttactgtcaaccaaccacgactacccatcgatggggatccctgcacaacccttacccctgactacagatgg
508 actaactctagaggaaaagagacttctaaaggatctgagacactgctggggatccctgcacaacccttacccctgactacagatggggatccctgcaca
509 tgtggagtgtggactgagactgtggacggaaacctgggtggcagcatgcagacaagcaacgagaccaactgggtgtccctccagacaaaactgg
510 gactttagaagcgatgagattgagcaccttgggtggaggagctgggtgagaaaaagagaggaggatgtctggacgctctggagagcatcatgaca
511 gtgtcttcagaagactgagccacctgagaaaactgggtccggattcgaaaggctatacatctcaacaaaactgtatggggatgtactacaaga
512 gctgtggagaacatggaaacgagatccctgcctctaaaggatgcctgagatggggaggaagatgtcaccacacgtgaacggagtttacggatcatttgg

513 gtcccgacggcaatgtgctatccggaaatgcagagcagcctgtccagcaacacatggagttgctcgagagtagtgtgatacccttagtccatccactcgca
514 gatcctccacagtgtcaaggatggtgacggcgtgaggactttagaggtcatctccctgatgtgcacaaccagggtctggagtgatctggactgccaa
515 actggggaaagtacgtgctgctgctggagctgtgatgtgcacatctccctgatgacatgtttagaagagtgaacagatctgagctcacag
516 cacaacacctgagaggaacttggaaagagagggtgagcgtgacacccatctcagagcggaaagatctctagctggagtcacataagtctggaggtgaaactagactgt
517 ga.

518 All HSV1 viruses were produced by Gene Delivery Technology Core in the Massachusetts General Hospital
519 (<https://researchcores.partners.org/mvvc/about>, titer: 5×10^9 iu/ml). EnvA-RV Δ G-GFP (titer: 2.2×10^9 iu/ml)
520 and EnvA-RV Δ G-mCherry (titer: 4.2×10^8 iu/ml) were produced by the FMI viral core.

521

522 **Virus injection**

523 Virus injections were performed as described¹⁵ with minor modifications. Adult fish were anesthetized in
524 0.03 % tricaine methanesulfonate (MS-222) and placed under a dissection microscope. MS-222 (0.01 %) was
525 continuously delivered into the mouth through a small cannula. A small craniotomy was made over the dorsal
526 telencephalon near the midline, over the OBs, or over the cerebellum. If multiple viruses were injected in the
527 same region, virus suspensions were mixed. Phenol red (0.05 %) was added to the suspension to visualize the
528 injection. Micropipettes pulled from borosilicate glass were inserted vertically through the craniotomy. The
529 depth of injections was approximately 100 μ m in the dorsal telencephalon, 50 μ m in the OB, 100-150 μ m in
530 the cerebellum, 300-500 μ m in Dp and 50 – 200 μ m in the tectum. The injected volume was 50 nl – 100 nl.
531 After surgery, fish were kept in standard holding tanks at 35 °C – 37 °C unless noted otherwise.

532 Larval fish were anesthetized in 0.03 % tricaine methanesulfonate (MS-222) and placed on an agarose plate
533 under a dissection microscope. Micropipettes pulled from borosilicate glass were inserted vertically into the
534 target region (spinal cord, muscle or brain) without a craniotomy. The injected volume was 250 pl – 500 pl.
535 After retraction of the pipette, fish were kept in standard tanks in an incubator at 28.5 °C, 32 °C or 35 °C.

536 For transneuronal rabies tracing, all components were co-injected. To test whether the efficiency of infection
537 and transneuronal labeling can be enhanced when HSV1[UAS:TVA-mCherry] and HSV1[UAS:zoSADG]
538 are expressed prior to the injection of EnvA-RV Δ G-GFP, we also performed experiments with two separate
539 injections. However, the number of GFP-positive neurons was not increased when EnvA-RV Δ G-GFP
540 was injected two (n = 3 fish) or four (n = 3 fish) days after HSV1[UAS:TVA-mCherry] and
541 HSV1[UAS:zoSADG] (not shown), consistent with observations in rodents^{45,46}. We assume that this
542 observation can be explained by at least two factors. First, rabies virus appears to remain close to the
543 injection site for an extended period of time, possibly because it has high affinity for membranes. Second,
544 it is difficult to precisely target the two separate injections at the same neurons.

545 Transneuronal spread of the rabies virus was determined by quantitative analyses of neurons that expressed
546 GFP but not TVA-mCherry. In theory, some of these neurons could be two (or more) synapses away from the
547 starter cell if they target other neurons that received only the glycoprotein but not TVA-mCherry, if these
548 neurons in turn were presynaptic to a starter neuron. However, because labeling was sparse and because the
549 number of neurons receiving G only should be low, the probability of such events should be very low.
550 Moreover, because transneuronal gene expression is observed only after a delay of >6 days, multi-step events
551 should be very rare 10 days post infection. Multi-step events were therefore not taken into account in our
552 quantitative analyses.

553

554 **Clearing of brain samples**

555 We adapted the original Cubic protocol⁴⁷ to small samples such as adult zebrafish brains. After fixation with
556 4 % paraformaldehyde overnight, samples were soaked with reagent 1A (10% w/v Triton, 5wt% NNNN-
557 tetrakis (2HP) ethylenediamine and 10 % w/v urea) for 2.5 h at room temperature and for 6 h at 37 °C with
558 mild shaking and multiple solution exchanges. Subsequently, samples were washed in PBS overnight at room
559 temperature. On the next day, samples were treated with reagent 2 (25 % w/v urea, 50 % w/v sucrose and 10 %
560 w/v triethanolamine) for refractive index matching, mounted in glass bottom dishes, and covered by 16 x 16
561 mm cover glasses to avoid drift. Images were acquired using a Zeiss 10x water-immersion objective lens (N.A.
562 = 0.45) on an upright Zeiss LSM 700 confocal microscope.

563

564 **Immunohistochemistry**

565 For rabies virus tracing in the cerebellar circuit, GFP and mCherry signals were detected by
566 immunocytochemistry. Brain samples were fixed overnight in 4 % paraformaldehyde and sectioned (100 µm)
567 on a Leica VT1000 vibratome. Primary antibodies were anti-GFP (Thermofisher, A10262, 1:200) and anti-
568 RFP (5F8, chromotek, 1:200). Secondary antibodies were conjugated to Alexa Fluor 488 or 594 (Invitrogen,
569 1:200).

570

571 **Neuron counts**

572 For whole brain imaging (Fig. 1c, 1g and S1d), z stacks (7-10 µm steps) were acquired using an upright Zeiss
573 LSM 700 confocal microscope with a 10x objective (water, N.A. = 0.45, pixel size 1.25 µm). GFP or DsRed-
574 expressing neurons in the dorsal telencephalon were counted manually.

575 Z stacks from individual brain slices (1 – 2 um steps, Fig. 2f, 4d, 4i, 4j, and S4c) were acquired using an
576 upright Zeiss LSM 700 confocal microscope with a 20x objective (air, N.A. = 0.8, pixel size 0.625 um). For
577 non-rabies injections, a single slice, containing the largest number of labelled neurons, was chosen from each
578 brain sample for cell counting. For rabies injections, all slices were used for cell counting. Cells expressing
579 GFP and/or mCherry in specific regions (cerebellum, telencephalon, olfactory bulb) were counted manually.

580

581 **Optogenetics and imaging *in vivo***

582 Multiphoton calcium imaging and simultaneous ChrimsonR stimulation was performed as described⁴⁸ using a
583 modified B-scope (Thorlabs) with a 12 kHz resonant scanner (Cambridge Technology) at excitation
584 wavelengths of 930 nm (GCaMP6f) or 1100 nm (tdTomato) and an average power under the objective of
585 30 mW at 930 nm. Optogenetic stimulation with ChrimsonR was performed using an LED (UHP-T-595,
586 Prizmatix; 595 nm). Light paths for imaging and stimulation were combined using a dichroic mirror (ZT775sp-
587 2p, Chroma). Emitted light was split using a second dichroic mirror (F38-555SG, Semrock), band-pass filtered
588 with a 525/50 filter (Semrock) for GCaMP6f imaging and with a 607/70 filter (Semrock) for tdTomato, and
589 focused onto a GaAsP photomultiplier (H7422, Hamamatsu). The signal was amplified (DHPCA-100, Femto),
590 digitized at 800 MHz (NI5772, National Instruments), and band-pass filtered around 80 MHz using a digital
591 Fourier-transform filter implemented on an FPGA (NI5772, National Instruments). LED activation was
592 synchronized to the turnaround phase of the resonant scanner when no data were acquired. Images were
593 acquired at 60 Hz with a resolution of 750 x 400 pixels, corresponding to a field of view of 300 µm x 250 µm.
594 Images were acquired sequentially in four different focal planes by moving the objective (Nikon 16x, 0.8 NA)
595 with a piezo-electric linear actuator (Physik Instrumente; effective frame rate: 15 Hz per plane). Anatomical
596 snapshots were generated by averaging 1000 images in the absence of optogenetic stimulation.

597 Basel-golden fish were head-fixed in a custom chamber and neurons in the dorsal telencephalon were imaged
598 through the intact skull⁵. Optogenetic stimuli (500 ms duration) were applied randomly every 6 – 11 s. The
599 average power of each stimulus was chosen at random to be 1.3 mW, 2.4 mW, 4.7 mW, or 8.6 mW under the
600 objective. The total duration of an imaging session was 11 min.

601 Raw images were full frame registered to correct for motion. Regions of interest were manually selected based
602 on neuronal co-expression of GCaMP6f and ChrimsonR-tdTomato (N = 11 neurons). Raw fluorescence traces
603 were calculated as mean of the pixel values in a given region of interest in each imaging frame. Raw traces
604 were then corrected for slow drift in fluorescence using an 8th-percentile filtering with a 15 s window⁴⁹. ΔF/F
605 traces were computed by dividing raw fluorescence trace by the median calculated over the entire fluorescence
606 distribution for each region of interest. Responses were pooled across neurons and pulses of the same intensity,
607 and the resulting population responses were normalized by subtracting average population activity in a 1 s
608 baseline window prior to the pulse. The standard error of the mean population response was computed over
609 average responses of individual neurons.

610

611 **Calcium imaging in the OB**

612 Calcium imaging in the adult OB was performed 4 – 10 days after viral injections in an explant preparation of
613 the entire brain and nose^{18,50} that was continuously superfused with artificial cerebrospinal fluid (ACSF)
614 containing (in mM) 124 NaCl, 2 KCl, 1.25KH₂PO₄, 1.6 MgSO₄, 22 D-(+)-Glucose, 2 CaCl₂, 24 NaHCO₃,
615 pH 7.2⁵¹. Oregon Green 488 1,2-bis-(*o*-aminophenoxy)-ethane-*N,N,N,N*-tetraacetic acid, tetraacetoxymethyl
616 ester (OGB-1; Thermo Fisher Scientific) was injected into the OB as described¹⁸. Two-photon calcium
617 imaging started >1 hr after dye injection. Odors were prepared and delivered to the nose for 5 s as described⁵².
618 Inter-stimulus intervals (ISIs) were >2 min.

619 Multiphoton calcium imaging was performed using a custom-built microscope with a 20x water immersion
620 objective (NA 1.0; Zeiss) and galvo scanners⁵⁰. Excitation wavelengths were 930 nm (OGB-1) or 1010 nm
621 (mCherry). The average power under the objective was 50 mW at 930 nm and 20 mW at 1010 nm. The emitted
622 light was split by a dichroic mirror (DMSP550L, Thorlabs), band-pass filtered with a 515/30 filter (Chroma) or
623 with a 641/75 filter (Semrock), and collected with a GaAsP photomultiplier (H7422-40MOD or H11706P-40,
624 Hamamatsu). Images were acquired at 8 Hz using Scanimage 5.5-1 (Vidrio Technologies, LLC)⁵³ with a
625 resolution of 256 x 256 pixels.

626

627 **Tissue dissociation and cell sorting**

628 EnvA-RVΔG-GFP was injected into one or both OBs of Tg[*gad1b*:Gal4;UAS:TVA-mCherry] fish. Cells were
629 dissociated and sorted as per previous protocol⁵⁴ with modification for fish. Briefly, after 3 – 4 days at 36 °C,
630 fish were anesthetized by cooling to 4 °C and decapitated in ACSF supplemented with 50 mM 2-Amino-5-
631 phosphonovaleric acid (APV), 20 mM 6,7-Dinitroquinoxaline-2,3-dione (DNQX), 5 mg/ml actinomycin D
632 (ACT-D), tetrodotoxin (TTX) 100 nM and 10 g/l Trehalose. OB samples were taken and harvested and kept in
633 ACSF. After pooling OB samples from 3 – 5 fish, samples were treated with pronase-mix (1 g/l protease type
634 xiv and 33 mg/l of collagenase in ACSF) for 10 minutes and the solution was replaced with fresh ACSF
635 containing 1 % FBS. Samples were then triturated gently with small custom-made glass pipettes and stored on
636 ice. DAPI was added to the samples to detect dead cells and cells were sorted based on GFP and mCherry
637 fluorescence using a 70 or 100 μm nozzle (BD FACSAria III; BD Biosciences). Sorted cells were kept in a
638 lysate buffer and stored at -80 °C until further processing.

639

640 **RNA sequencing**

641 RNA was purified using a single-cell RNA purification Kit (Norgen). mRNA-seq libraries were generated
642 using the SmartSeq2 approach⁵⁵ with the following modifications: For cDNA pre-amplification, up to 10 ng of
643 RNA was used as input and reverse transcription was performed using Superscript IV (Thermo Fisher
644 Scientific - 50 °C for 10 min, 80 °C for 10 min). Amplified cDNA (1 ng) was converted to indexed sequencing
645 libraries by fragmentation, using in-house purified Tn5⁵⁶ and Illumina Nextera primers. Libraries were
646 sequenced on an Illumina HiSeq2500, as 50 bp single-end reads.

647

648 Sequenced reads were pre-processed with preprocessReads from the Bioconductor package QuasR (version
649 1.24.2)⁵⁷ with default parameters except for Rpattern = "CTGTCTCTTACACATCT". Processed reads
650 were then aligned against the chromosome sequences of fish genome (danRer11) using qAlign (QuasR) with
651 default parameters except for aligner = "Rhisat2", splicedAlignment = "TRUE", and auxiliaryFile =
652 "mCherry_GFP1.fa". mCherry and GFP sequences matched the sequences in the plasmids used to generate
653 transgenic fish (Tg[UAS:TV-mCherry]) or rabies virus⁵⁸.

654

655 Raw gene counts were obtained using qCount (QuasR) with default parameters and ZFIN gene models
656 (https://zfin.org/downloads/zfin_genes.gff3, downloaded 18-Jul-2019) or the auxiliary file as query. The count
657 table was filtered to remove genes which had less than 2 samples with at least 1 cpm. Differential gene
658 expression was calculated with the Bioconductor package edgeR (version 3.26.4)⁵⁹ using the quasi-likelihood
659 F-test after applying the calcNormFactors function, obtaining the dispersion estimates and fitting the negative
660 binomial generalized linear models. The following threshold was applied: Significant differences in gene
661 expression were detected by applying a threshold of abs(logFC (fold change)) >3, logCPM (counts per million
662 reads mapped to the annotation) >3, and FDR (False Discovery Rate) <0.05. Stress marker genes
663 (GO:0033554) and cell death marker genes (GO:0008219) were chosen from Gene Ontology database
664 (AmiGo2: <http://amigo.geneontology.org/amigo/landing>). Gene ontology term for differentially expressed
665 genes were found using GENERIC GENE ONTOLOGY (GO) TERM FINDER ([https://go.princeton.edu/cgi-
666 bin/GOTermFinder](https://go.princeton.edu/cgi-bin/GOTermFinder)).
667

668

Odor discrimination training and analysis of behavior

669 In the experimental group, Basel-golden fish were injected with HSV1[LTCMV:jGCaMP7b] into both OBs and
670 kept at 36 °C for 2 days prior to behavioral training. Associative conditioning was performed as described^{6,18}.
671 Briefly, individual fish were acclimated to the behavioral setup without food for 1 – 3 days and subsequently
672 trained to associate one odor stimulus (CS⁺: alanine) with a food reward, whereas a second odor stimulus (CS⁻:
673 tryptophan) was not rewarded. Each odor was infused into the tank for 30 s nine times per day in an alternating
674 sequence (inter-trial interval: 20 min) for five consecutive days. A small amount of food was delivered at a
675 specific location at the end of the presentation of the CS⁺ but not the CS⁻. 3D swimming trajectories were
676 reconstructed from videos acquired by two orthogonal cameras (Logitech HD Pro C920). The following
677 behavioral components were extracted from the trajectories: swimming speed, elevation in water column,
678 presence in the reward zone, surface sampling, distance to the odor inflow and rhythmic circular swimming.
679 The components were combined into a compound score of appetitive behavior as described⁶. The learning
680 index was calculated as the difference between the mean behavioral scores in response to the CS⁺ and CS⁻
681 during the final day of training (last nine trials with each odor) in each fish.

682

683

684

685

686

687 **Data availability**

688 Transcriptomic data generated in this study have been deposited at ArrayExpress (accession number: E-
689 MTAB-11083).

690 Requests for HSV1 and the vectors shown in Fig. 2a should be addressed to R.L.N.
691 The data that support the findings of this study are available from the corresponding authors upon reasonable
692 request.

693

694 **Code availability**

695 All code used in this study is available from the corresponding authors upon reasonable request.

696

697 **Figure Legends**

698

699 **Fig 1. HSV1-mediated gene delivery in adult zebrafish**

700 **(a)** Procedure to test temperature-dependence of HSV1-mediated gene expression.

701 **(b)** Maximum intensity projection after injection of HSV1[*LTCMV*:DsRed] into one OB (arrow) of a
702 Tg[*vglut1*:GFP] fish and incubation at 36 °C. White arrowhead indicates the OB-projecting area in the
703 dorsal telencephalon used for quantification in Fig. 1c and Fig. 2f(f). *vglut1*:GFP expression served as a
704 morphological marker.

705 **(c)** Mean number of labeled neurons in the dorsal telencephalon after injection of HSV1[*LTCMV*:DsRed]
706 into the ipsilateral olfactory bulb and incubation at different temperatures. In this and similar plots, black
707 dots represent data from individual fish, box plot indicates median and 25th and 75th percentiles, circles
708 and error bars indicate mean and s.d., respectively, over individual fish. N: number of fish.

709

710 **Fig 2. Conditional HSV1-mediated gene expression using the Gal4/UAS system**

711 **(a)** Construction of the UAS vector for HSV packaging. Genes of interest (GOI) are inserted downstream
712 of the 5xUAS sequences by recombination cloning using the Gateway system. The transcriptional blocker
713 minimizes leaky expression⁶⁰.

714 **(b)** Injection of HSV1[UAS:TVA-mCherry] into the cerebellum of Tg[*gad1b*:Gal4; *gad1b*:GFP] double
715 transgenic fish. Note co-localization of mCherry and GFP in Purkinje cells (arrowheads) and putative
716 Golgi cells (arrows). ML: molecular layer; PL: Purkinje layer; GL: granular layer.

717 **(c)** Fraction of mCherry-positive neurons that co-expressed GFP after injection of HSV1[UAS:TVA-
718 mCherry] into the cerebellum or Dp of Tg[*gad1b*:Gal4; *gad1b*:GFP] double transgenic fish. N: number of
719 fish.

720 **(d)** Injection of HSV1[UAS:Venus-CAAX] into the optic tectum of Tg[*th*:Gal4; UAS:tdTomato-CAAX]
721 fish. Venus-CAAX was expressed by a small number of neurons with somata in the locus coeruleus and
722 extensive projections to the optic tectum and other brain areas. Images on the right are close-ups of the
723 boxed region showing co-expression of Venus-CAAX (green) with tdTomato (red) in the locus coeruleus.

724 **(e)** Injection of HSV1[*LTCMV*:Gal4] into the OB and HSV1[UAS:GFP] into the dorsal telencephalon of
725 wt fish. Note selective expression of GFP in OB-projecting neurons (arrowhead; dashed outline).

726 **(f)** Number of neurons labeled in the dorsal telencephalon by a single injection of HSV1[*LTCMV*:DsRed]
727 into the OB ('One way') or by two injections using the two-component Gal4/UAS system ('Gal4/UAS').
728 N: number of fish.

729

730 **Fig 3. Effects of RV infection on neuronal health and function**

731 (a) Fraction of genes that were significantly up- or down-regulated genes in RVΔG-infected cells out of
732 all 19'819 genes, out of the 471 stress markers (GO:0033554), and out of the 651 cell-death markers
733 (GO:0008219). Differences in expression level were considered significant when $\text{abs}(\text{logFC} \text{ (fold}$
734 $\text{change}) > 3$, $\text{log}(\text{counts per million reads mapped}) > 3$, and $\text{FDR} < 0.05$. The FDR (False Discovery Rate)
735 corrects for multiple testing.

736 (b) Volcano plots displaying differential gene expression in RVΔG-infected and uninfected cells. Colored dots
737 indicate stress markers (left) and cell death markers (right) (orange: upregulated, blue: downregulated). Yellow
738 outline depicts statistically significant difference in expression level.

739 (c) OGB-1 labeling and mCherry expression in the deep (granule cell) layer of the adult zebrafish OB
740 after injection of EnvA-RVΔG-mCherry into the OB of *Tg[gad1b:Gal4; UAS:TVA-mCherry]* fish and
741 bolus loading of OGB-1.

742 (d) Ca^{2+} signals evoked by two different odors in the same optical plane (single trials). Odors: alanine
743 (Ala), taurodeoxycholic acid (TDCA).

744 (e) Randomly selected responses of seven infected (magenta) neurons and seven uninfected (green)
745 neurons from the same optical plane to two odors (single trials).

746 (f) Odor-evoked Ca^{2+} signals of infected ($N = 559$) and uninfected ($N = 1293$) OB cells from $N = 4$ fish,
747 averaged over all odors ($N = 6$) and repetitions ($N = 3$ for each odor). Shading indicates s.e.m.; bar
748 indicates odor stimulation.

749 (g) Distribution of response amplitudes in non-infected and infected cells to different odors ($N = 6$),
750 averaged over trials ($N = 3$). Distributions of were not significantly different ($p = 0.24$, Kolmogorov–
751 Smirnov test).

752

753 **Fig 4. Transneuronal tracing using pseudotyped rabies virus in adult zebrafish**

754 (a) Schematic of the cerebellar circuit. Glutamatergic neurons are shown in red colors, GABAergic
755 neurons in blue colors. Purkinje cells receive extra-cerebellar input exclusively from the inferior olive.

756 (b) Co-injection of EnvA-RVΔG-GFP and HSV1[UAS:TVA-mCherry] into the cerebellum of
757 *Tg[gad1b:Gal4]* fish in the absence of glycoprotein. Left: schematic. Center: expression of TVA-mCherry
758 (magenta) and GFP (green) in the cerebellum. Regions in the Purkinje and granular layers (dashed
759 rectangles) are enlarged. Unfilled white arrowheads indicate GFP+/mCherry+ neurons. Right: expression
760 of GFP in the hindbrain. Region covering the inferior olive (dashed rectangle) is enlarged. Expression of
761 GFP was restricted to putative starter neurons; no expression was detected in the inferior olive. ML:
762 molecular layer; PL: Purkinje layer; GL: granular layer.

763 (c) Same as in (b) but the glycoprotein (zoSADG) was supplied to starter neurons in *trans* by co-injection
764 of HSV1[UAS:zoSADG]. Filled white arrowheads indicate GFP+/mCherry- neurons. Note expression of
765 GFP in putative granule cells and in neurons of the inferior olive, indicating transneuronal spread.

766 (d) Number of neurons that expressed GFP and mCherry (putative starter neurons) or GFP alone (putative
767 presynaptic neurons) at different time points after injection of EnvA-RVΔG and HSV1[UAS:TVA-
768 mCherry] into the cerebellum of *Tg[gad1b:Gal4]* fish. Left: without glycoprotein; right: with trans-

769 complementation of zoSADG in starter neurons. Note that labeling of putative presynaptic neurons
770 emerged between 6 and 10 days post injection only when zoSADG was trans-complemented in starter
771 neurons. In all plots, black dots represent data from individual fish, box plot indicates median and the 25th
772 and 75th percentiles, circles and error bars indicate mean and s.d. over individual fish. N: number of fish.

773 (e) Convergence index for the projection from the inferior olive to the cerebellum at different time points.
774 The convergence index is the numerical ratio of transneuronally labeled neurons (GFP+/mCherry-
775 neurons in the inferior olive) and putative starter cells in the cerebellum (GFP+/mCherry+ Purkinje
776 neurons). N: number of fish.

777 (f) Schematic of the putative circuitry in telencephalic area Dp. Glutamatergic neurons are shown in red
778 colors, GABAergic neurons in blue colors. Long-range projections from mitral cells in the olfactory bulb
779 terminate on glutamatergic neurons and on GABAergic interneurons in Dp. Additional long-range
780 projections originate in other telencephalic areas.

781 (g) Co-injection of EnvA-RVΔG and HSV1[UAS:TVA-mCherry] into Dp of Tg[gad1b:Gal4] fish in the
782 absence of glycoprotein. Coronal section through the injected telencephalic hemisphere at the level of Dp.
783 Area outlined by dashed rectangle is enlarged. Co-expression of GFP (green) and mCherry (magenta)
784 indicates starter cells.

785 (h) Same as in (g) but with trans-complementation of zoSADG in starter neurons by co-injection of
786 HSV1[UAS:zoSADG]. Left: coronal section through the injected telencephalic hemisphere. Right:
787 coronal section through the ipsilateral OB. Expression of GFP only (green) indicates transneuronally
788 labeled neurons.

789 (i) Number of neurons in the telencephalon that expressed GFP and mCherry (putative starter neurons) or
790 GFP alone (putative presynaptic neurons) after injection of EnvA-RVΔG and HSV1[UAS:TVA-mCherry]
791 into Dp with (+) or without (-) trans-complementation with zoSADG in starter neurons
792 (HSV1[UAS:zoSADG]). Left: injection into Tg[gad1b:Gal4] fish; right: injection into Tg[vglut1:Gal4]
793 fish (right). Expression was analyzed 10 days post injection. N: number of fish.

794 (j) Convergence index for the projection of transneuronally labeled neurons in the OB to Dp when EnvA-
795 RVΔG was targeted to GABAergic neurons (viral injections into Tg[gad1b:Gal4] fish) or to
796 glutamatergic neurons (injections into Tg[vglut1:Gal4] fish) in Dp. Expression was analyzed at 10 days
797 post injection. N: number of fish.

798

799 **Fig 5. Transneuronal tracing using pseudotyped rabies virus in zebrafish larvae**

800 (a) Expression of GFP (green) and TVA-mCherry (red) 6 days after injection of EnvA-RVΔG-GFP into
801 the spinal cord of Tg[gad1b:Gal4;UAS:TVA-mCherry] fish at 7 dpf. Boxed region is enlarged on the
802 right.

803 (b) Same after co-injection of EnvA-RVΔG-GFP and HSV1[UAS:zoSADG] into the spinal cord of
804 Tg[gad1b:Gal4;UAS:TVA-mCherry] fish at 7 dpf.

805

806

807 **Supplementary Figure Legends**

808 **Fig S1. Temperature-dependence and time course of HSV1-mediated gene expression**

809 **(a)** Sequence of virus injections, temperature changes and associative conditioning to assess effects of
810 experimental manipulations on discrimination learning.

811 **(b)** Learning index (behavioral discrimination score) on the last day of training. Plot symbols represent
812 data from individual fish; box plots show median and 25th and 75th percentiles, circles and error bars
813 indicate mean and s.d. over individual fish. N: number of fish. Control fish (group 1) were not injected
814 and kept at standard laboratory temperature. The experimental group (group 2) was injected with
815 HSV1[*LTCMV*:jGCaMP7b], an amplicon type of HSV1 with an insert encoding the calcium indicator
816 GCamp7b¹⁹ under the control of a non-specific promoter for long-term expression (*LTCMV*), and
817 subsequently kept at 36 °C for two days before training **(a)**. Performance was not significantly different
818 between groups (p = 0.76, Wilcoxon rank sum test).

819 **(c)** Expression of DsRed (magenta) six days after injection of HSV1[*LTCMV*:DsRed] into the OB (arrow)
820 of an adult Tg[*vglut1*:GFP] fish kept at 26 °C (maximum projection of confocal stack). Boxed areas (OB
821 and Dp) are enlarged below. The number of DsRed-expressing neurons is low compared to DsRed
822 expression at 36 °C (Fig. 1).

823 **(d)** DsRed expression in the dorsal telencephalon at different timepoints after injection of
824 HSV1[*LTCMV*:DsRed] into the ipsilateral OB. Fish were kept at 36 °C. Black dots represent data from
825 individual fish, box plot indicates median and 25th and 75th percentiles, circles and error bars indicate
826 mean and s.d. over individual fish. N: number of fish.

827

828

829 **Fig S2. HSV1-mediated gene delivery in larvae zebrafish and Gal4/UAS**

830 **(a)** Expression of GFP 48 h after injection of HSV1[*LTCMV*:GFP] into the optic tectum of zebrafish
831 larvae (3 dpf; maximum intensity projection of confocal stack). Larvae were kept after the injection at
832 28.5, 32 or 35 °C.

833 **(b)** Expression of GFP 48 h after injection of HSV1[*LTCMV*:GFP] into the optic tectum of a larva at 5
834 dpf (maximum intensity projection of confocal stack). The larva was kept after the injection at 35 °C.

835 **(c)** Expression of GFP 48 h after injection of HSV1[*LTCMV*:GFP] into the optic tectum of a larva at 14
836 dpf (maximum intensity projection of confocal stack). The larva was kept after the injection at 35 °C.

837 **(d)** Expression of GFP 48 h after injection of HSV1[*LTCMV*:GFP] into trunk muscles at 7 dpf (maximum
838 intensity projection of confocal stack). The larva was kept after the injection at 35 °C. Note retrograde
839 labeling of motor neurons (M.N.).

840 **(e)** Expression of GFP 48 h after injection of HSV1[UAS:GFP] into the hindbrain of a Tg[*gad1b*:Gal4;
841 *gad1b*:DsRed] larva at 7 dpf (maximum intensity projection of confocal stack). The larva was kept after
842 the injection at 35 °C. Note co-localization of DsRed and GFP in hindbrain and cerebellum.

843

844 **Fig S3. Targeting of GABAergic neurons in the telencephalon**

845 (a) Coronal section through the telencephalon at the level of Dp after injection of HSV1[UAS:TVA-
846 mCherry] into Tg[gad1b:Gal4; gad1b:GFP] double transgenic fish. The injection was targeted to a
847 volume around Dp. mCherry was expressed predominantly in a cluster of GFP-positive neurons
848 associated with Dp. Note long-range projections of mCherry-expressing neurons to multiple
849 telencephalic areas.

850 (b) Enlargements of boxed region in (a). Arrowheads indicate GFP+/mCherry+ neurons.

851

852 **Fig S4. Co-packaging of 2 different viruses does not facilitate co-infection of 2 viruses.**

853 (a) Expression of GFP and mCherry after injection of HSV1[UAS:GFP & UAS:TVA-mCherry] into the
854 cerebellum of Tg[gad1b:Gal4] fish. In this virus, two expression constructs, UAS:GFP and UAS:TVA-
855 mCherry, are packaged into the same virus particles. Expression is observed in Purkinje neurons and in
856 putative Golgi cells. Note high rate of co-expression of GFP and mCherry. ML: molecular layer; PL:
857 Purkinje layer; GL: granular layer.

858 (b) Expression of GFP and mCherry in the Purkinje layer after co-injection of two independent viruses
859 (HSV1[UAS:GFP] and HSV1[UAS:TVA-mCherry]) into the cerebellum of Tg[gad1b:Gal4] fish. Note
860 that the rate of co-expression was high even though GFP and mCherry were delivered by separate viruses.
861 Note also that the overall expression was sparse, implying that co-expression was unlikely to occur by
862 chance.

863 (c) Percentage of GFP and mCherry-expressing neurons among all fluorescent neurons. Filled circles
864 represent data from individual fish, box plot indicates median and the 25th and 75th percentiles, and open
865 circles indicate mean over individual fish. N: number of fish.

866

867 **Fig S5. Optogenetic manipulations using HSV1**

868 (a) Schematic: injection of HSV1[LTCMV:Gal4] into the OB and subsequent co-injection of
869 HSV1[UAS:GCaMP6f] and HSV1[UAS:Chrimson-tdTomato] into the dorsal telencephalon of wt fish.

870 (b) Simultaneously recorded calcium transients evoked by optical stimulation of different light intensity
871 (vertical lines) in three example neurons.

872 (c) Mean change GCaMP6f evoked by optical stimulation of different light intensity (N = 11 neurons;
873 11 – 18 light stimuli at each intensity). Shading shows SEM is over cell.

874

875 **Fig S6. Injection of pseudotyped rabies virus does not infect neurons in the absence of TVA**

876 (a) Absence of expression after injection of EnvA-RVΔG-GFP into the telencephalon of adult wt fish.

877 (b) Absence of expression after injection of EnvA-RVΔG-GFP into the optic tectum of wt fish at 7 dpf.

878

879 **Fig S7. Temperature-dependence of infection by rabies virus**

880 **(a)** Experimental scheme: Rabies virus (EnvA-RVΔG-GFP) was injected into the telencephalon of
881 transgenic fish expressing TVA-mCherry in GABAergic neurons (Tg[gad1b:Gal4; UAS:TVa-mCherry]).

882 **(b)** Expression of TVA-mCherry and GFP when fish were kept at 26 °C for 6 days after injection. Note
883 almost complete absence of GFP expression.

884 **(c)** Expression of TVA-mCherry and GFP when fish were kept at 36 °C for 6 days after injection. Note
885 strong GFP expression.

886 **(d)** Expression of TVA-mCherry and GFP six days after injection when the housing temperature was
887 increased from 26 °C to 36 °C 3 days after injection. GFP expression was weak and sparse.

888

889 **Fig S8. Analysis of gene expression in GABAergic neurons**

890 **(a)** Schematic: injection of EnvA-RVΔG-GFP into the OB of adult Tg[gad1b:Gal4;UAS:TVa-mCherry]
891 fish.

892 **(b)** Example of FACS analysis of GFP and mCherry expression. Boxes depict cells selected as
893 mCherry+/GFP+ (EnvA-RVΔG-GFP infected gad1b neurons), mCherry+/GFP- (non-infected gad1b
894 neurons), mCherry-/GFP- (negative control containing other OB cells). gad1b is one of two isoforms of
895 gad1 that are expressed differentially in GABAergic neurons.

896 **(c)** Expression of marker genes (x-axis) in infected gad1b neurons (mCherry+/GFP+; green), non-infected
897 gad1b neurons (mCherry+/GFP-; magenta), and other OB cells (mCherry-/GFP-; black). Cells classified
898 as gad1b-positive by fluorescence markers, but not other cells, expressed gad1b but not gad1a, the other
899 gad1 isoform. Expression of fluorescent marker genes followed the detection of fluorescent markers by
900 FACS. The neuronal marker *elav3* was present in all three pools. Plot symbols represent data from
901 individual samples; box plots show median and 25th and 75th percentiles, circles and error bars indicate
902 mean and s.d. over individual samples (N = 8 samples).

903 **(d)** Expression of negative markers for GABAergic neurons. The selected marker genes (*slc17a6a*,
904 *slc17a6b*, *tbx21*, *lhx2b* and *lhx9*) should be expressed in mitral cells of the OB and other excitatory
905 neurons but not in GABAergic neurons. Consistent with this expectation, expression of all negative
906 markers was low or absent in pools of gad1b cells selected by FACS (N = 8 samples).

907

908 **Fig S9. Transneuronal tracing using pseudotyped rabies virus from *vglut1* + neurons in Dp in adult
909 zebrafish**

910 **(a)** Co-injection of EnvA-RVΔG-GFP and HSV1[UAS:TVa-mCherry] into Dp of Tg[vglut1:Gal4] fish in
911 the absence of glycoprotein. Coronal section through the injected telencephalic hemisphere at the level of
912 Dp. Area outlined by dashed rectangle is enlarged. Co-expression of GFP (green) and mCherry (magenta)
913 indicates starter cells.

914 (b) Same as in (a) but with trans-complementation of zoSADG in starter neurons by co-injection of
915 HSV1[UAS:zoSADG]. Left: coronal section through the injected telencephalic hemisphere. Right:
916 coronal section through the ipsilateral olfactory bulb. Expression of GFP only (green) indicates
917 transneuronally labeled neurons.

918

919 **Fig S10. Expression pattern of *vglut1* and *vglut2* in olfactory bulb and Dp**

920 (a) Coronal cross sections through the OB and anterior telencephalon from Tg[vglut2a:RFP; vglut1:GFP]
921 double transgenic fish. Note that *vglut2a* (magenta) is expressed by axons of olfactory sensory neurons
922 innervating glomeruli in the OB and by a subset of mitral cells, while expression of *vglut1* (green) in the
923 OB is weak or absent. Dotted lines outline OBs.

924 (b) More posterior coronal cross sections through the telencephalon of the same fish at the level of Dp.
925 Note that expression of *vglut2a* and *vglut1* in the telencephalon are largely complementary. Neurons in
926 Dp express primarily *vglut1*. Dotted areas indicate the dorsal lateral telencephalic area (DL) and Dp.

927

928

929

930

931

932

933 **Movie1:** Swimming behavior of adult zebrafish injected with an HSV1[LTCMV:DsRed] into the OB at
934 27 °C. Fish were kept at 27 °C for 10 days after the injection.

935

936 **Movie2:**

937 Swimming behavior of adult zebrafish injected with an HSV1[LTCMV:DsRed] into the OB at 37 °C. Fish
938 were kept at 37 °C for 10 days after the injection.

939

940 **Movie3:** Swimming behavior of zebrafish larvae injected with an HSV1[LTCMV:GFP] into the optic
941 tectum at 35 °C. Fish were injected at 7 dpf and kept for 2 days at 35 °C.

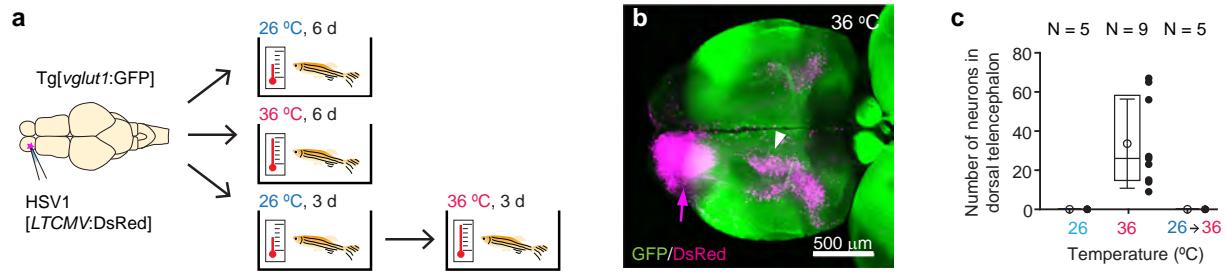
942

943 **Movie4:** Effect of TeNT expression in GABAergic neurons of the cerebellum on swimming behavior.
944 Left: Tg[gad1b:Gal4] fish 3 days after injection of HSV1[UAS:GFP] into the cerebellum (control). Right:
945 Tg[gad1b:Gal4] fish 3 days after injection of HSV1[UAS:TeNT-GFP] into the cerebellum. Top: side
946 view; bottom: top view of the same tanks.

947

948 **Table1.** List of HSV1 available. Requests for HSV1 and the destination vector shown in Fig. 2a should
949 be addressed to R.L.N.

950


951 **Table2.** List of genes that were significantly up- or downregulated in cells infected by RVΔG. Genes
952 associated with GO terms cellular response to stress (GO:0033554) and cell death (GO: 0008219) are
953 listed at the top (colored rows).

954

955 **Table3.** Gene ontology (GO) terms that showed a significant association with the set of regulated genes
956 in RVΔG-infected cells (Supplementary Table 2), sorted by probability (p-value). Note that most GO
957 terms are linked to immunity. GO terms linked to stress, cell death or synaptic functions are rare or
958 absent.

959

960

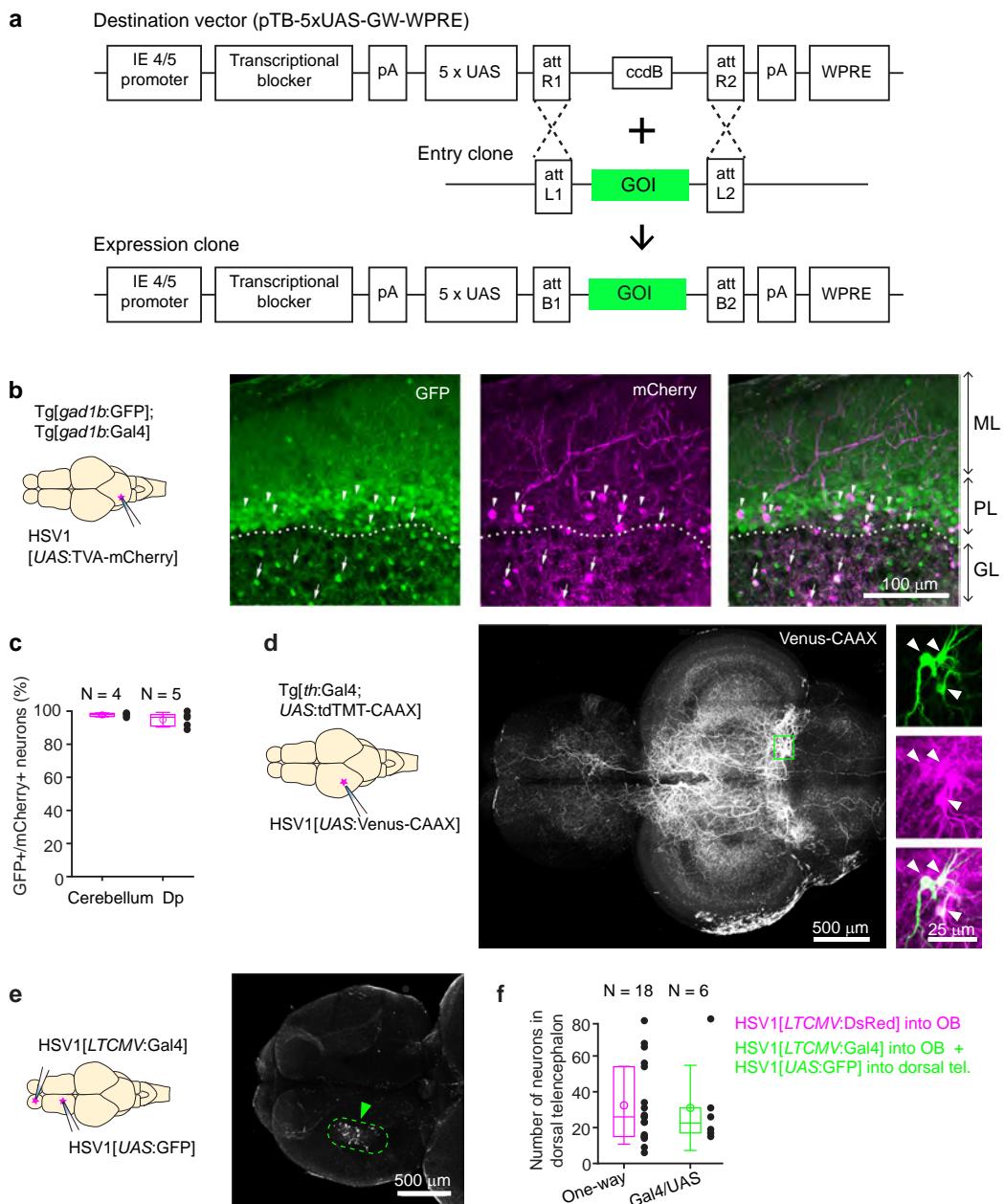


Fig 1. HSV1-mediated gene delivery in adult zebrafish

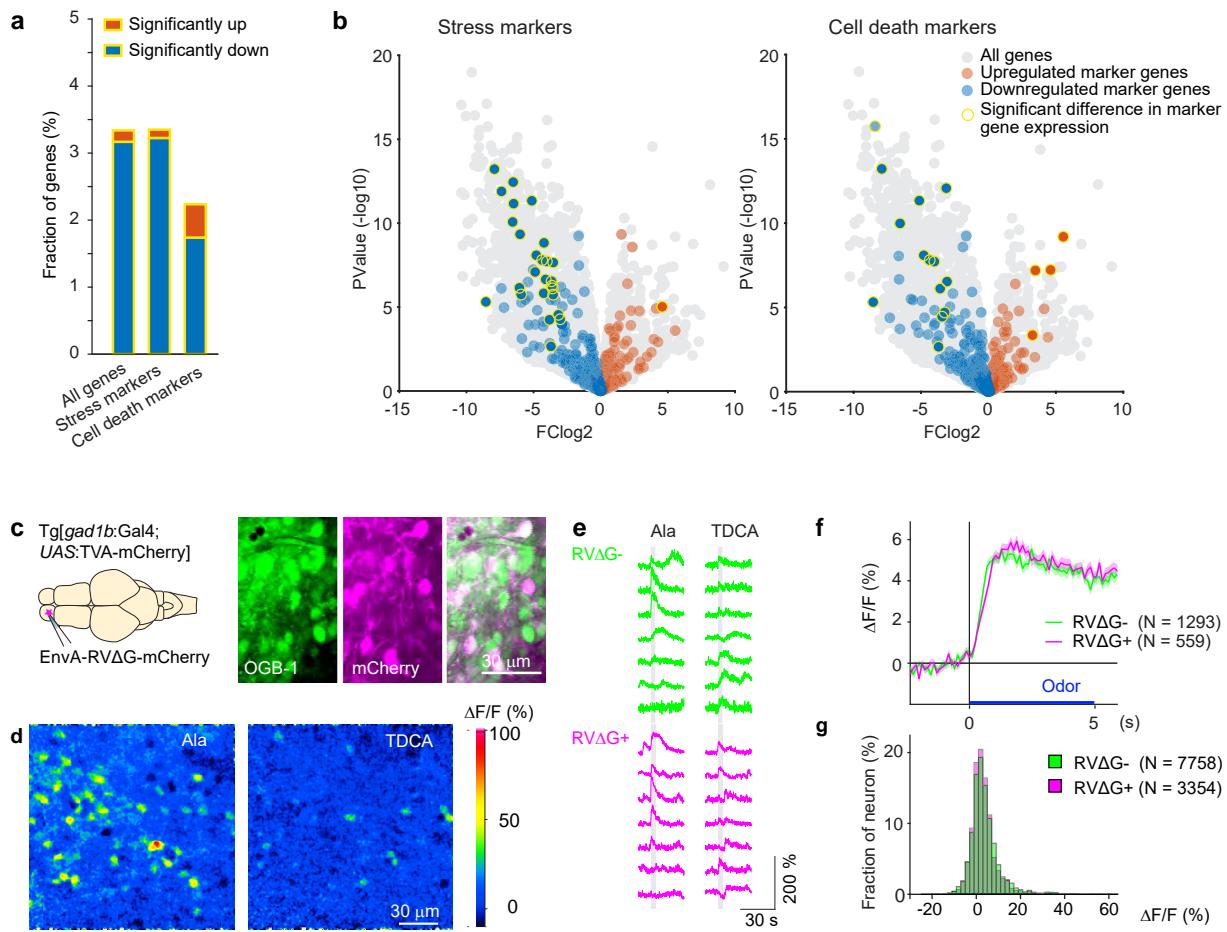
(a) Procedure to test temperature-dependence of HSV1-mediated gene expression.

(b) Maximum intensity projection after injection of HSV1[LTCMV:DsRed] into one OB (arrow) of a Tg[vglut1:GFP] fish and incubation at 36 °C. White arrowhead indicates the OB-projecting area in the dorsal telencephalon used for quantification in Fig. 1c and Fig. 2f. vglut1:GFP expression served as a morphological marker.

(c) Mean number of labeled neurons in the dorsal telencephalon after injection of HSV1[LTCMV:DsRed] into the ipsilateral olfactory bulb and incubation at different temperatures. In this and similar plots, black dots represent data from individual fish, box plot indicates median and 25th and 75th percentiles, circles and error bars indicate mean and s.d., respectively, over individual fish. N: number of fish.

Fig 2. Conditional HSV1-mediated gene expression using the Gal4/UAS system

(a) Construction of the UAS vector for HSV packaging. Genes of interest (GOI) are inserted downstream of the 5xUAS sequences by recombination cloning using the Gateway system. The transcriptional blocker minimizes leaky expression⁶⁰.


(b) Injection of HSV1[UAS:TVA-mCherry] into the cerebellum of Tg[gad1b:Gal4; gad1b:GFP] double transgenic fish. Note co-localization of mCherry and GFP in Purkinje cells (arrowheads) and putative Golgi cells (arrows). ML: molecular layer; PL: Purkinje layer; GL: granular layer.

(c) Fraction of mCherry-positive neurons that co-expressed GFP after injection of HSV1[UAS:TVA-mCherry] into the cerebellum or Dp of Tg[gad1b:Gal4; gad1b:GFP] double transgenic fish. N: number of fish.

(d) Injection of HSV1[UAS:Venus-CAAX] into the optic tectum of Tg[th:Gal4; UAS:tdTomato-CAAX] fish. Venus-CAAX was expressed by a small number of neurons with somata in the locus coeruleus and extensive projections to the optic tectum and other brain areas. Images on the right are close-ups of the boxed region showing co-expression of Venus-CAAX (green) with tdTomato (red) in the locus coeruleus.

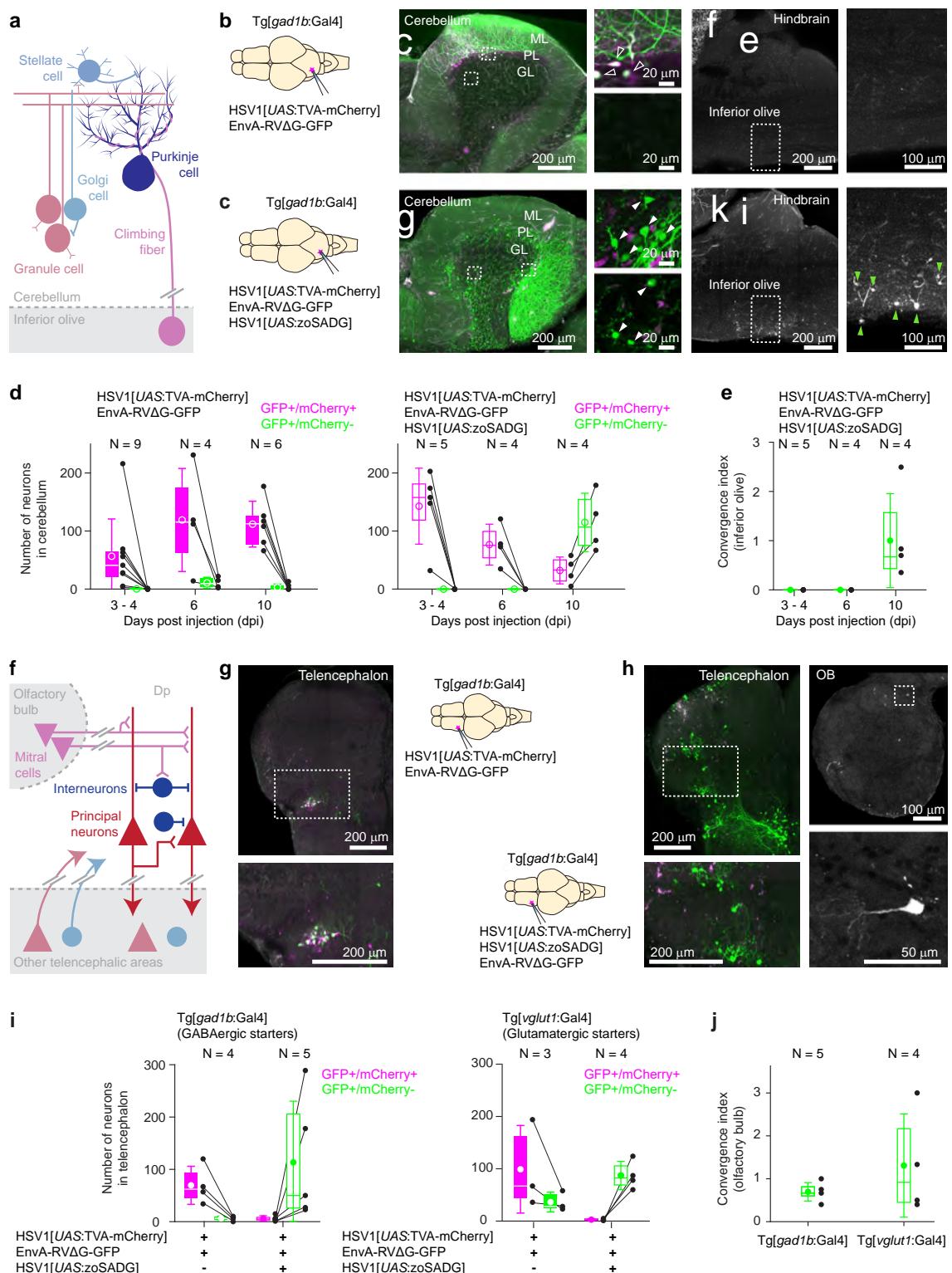
(e) Injection of HSV1[LTCMV:Gal4] into the OB and HSV1[UAS:GFP] into the dorsal telencephalon of wt fish. Note selective expression of GFP in OB-projecting neurons (arrowhead; dashed outline).

(f) Number of neurons labeled in the dorsal telencephalon by a single injection of HSV1[LTCMV:DsRed] into the OB ('One way') or by two injections using the two-component Gal4/UAS system ('Gal4/UAS'). N: number of fish.

Fig 3. Effects of RV infection on neuronal health and function

(a) Fraction of genes that were significantly up- or down-regulated genes in RVΔG-infected cells out of all 19'819 genes, out of the 471 stress markers (GO:0033554), and out of the 651 cell-death markers (GO:0008219). Differences in expression level were considered significant when $\text{abs}(\log\text{FC}) > 3$, $\log(\text{counts per million reads mapped}) > 3$, and $\text{FDR} < 0.05$. The FDR (False Discovery Rate) corrects for multiple testing.

(b) Volcano plots displaying differential gene expression in RVΔG-infected and uninfected cells. Colored dots indicate stress markers (left) and cell death markers (right) (orange: upregulated, blue: downregulated). Yellow outline depicts statistically significant difference in expression level.


(c) OGB-1 labeling and mCherry expression in the deep (granule cell) layer of the adult zebrafish OB after injection of EnvA-RVΔG-mCherry into the OB of Tg[gad1b:Gal4; UAS:TVA-mCherry] fish and bolus loading of OGB-1.

(d) Ca²⁺ signals evoked by two different odors in the same optical plane (single trials). Odors: alanine (Ala), taurodeoxycholic acid (TDCA).

(e) Randomly selected responses of seven infected (magenta) neurons and seven uninfected (green) neurons from the same optical plane to two odors (single trials).

(f) Odor-evoked Ca²⁺ signals of infected (N = 559) and uninfected (N = 1293) OB cells from N = 4 fish, averaged over all odors (N = 6) and repetitions (N = 3 for each odor). Shading indicates s.e.m.; bar indicates odor stimulation.

(g) Distribution of response amplitudes in non-infected and infected cells to different odors (N = 6), averaged over trials (N = 3). Distributions of were not significantly different (p = 0.24, Kolmogorov–Smirnov test).

Fig 4. Transneuronal tracing using pseudotyped rabies virus in adult zebrafish

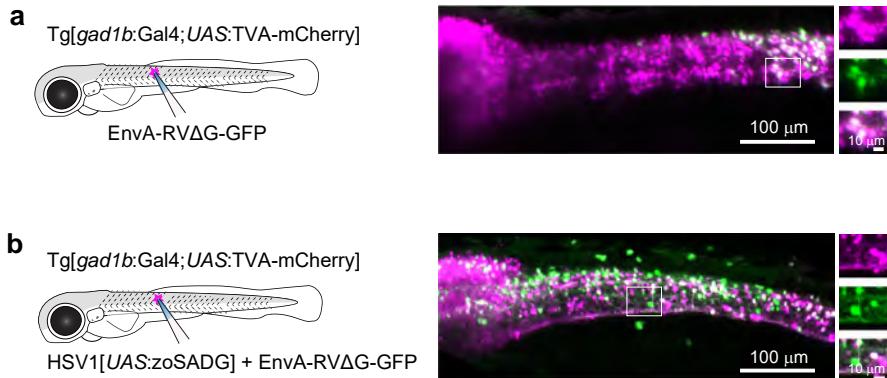
(a) Schematic of the cerebellar circuit. Glutamatergic neurons are shown in red colors, GABAergic neurons in blue colors. Purkinje cells receive extra-cerebellar input exclusively from the inferior olive.

(b) Co-injection of EnvA-RVΔG-GFP and HSV1[UAS:TVA-mCherry] into the cerebellum of *Tg[gad1b:Gal4]* fish in the absence of glycoprotein. Left: schematic. Center: expression of TVA-mCherry (magenta) and GFP (green) in the cerebellum. Regions in the Purkinje and granular layers (dashed rectangles) are enlarged. Unfilled white arrowheads indicate GFP+/mCherry+ neurons. Right: expression of GFP was restricted to putative starter neurons; no expression was detected in the inferior olive. ML: molecular layer; PL: Purkinje layer; GL: granular layer.

(c) Same as in (b) but the glycoprotein (zoSADG) was supplied to starter neurons in trans by co-injection of HSV1[UAS:zoSADG]. Filled white arrowheads indicate GFP+/mCherry- neurons. Note expression of GFP in putative granule cells and in neurons of the inferior olive, indicating transneuronal spread.

(d) Number of neurons that expressed GFP and mCherry (putative starter neurons) or GFP alone (putative presynaptic neurons) at different time points after injection of EnvA-RVΔG and HSV1[UAS:TVA-mCherry] into the cerebellum of *Tg[gad1b:Gal4]* fish. Left: without glycoprotein; right: with trans-complementation of zoSADG in starter neurons. Note that labeling of putative presynaptic neurons emerged between 6 and 10 days post injection only when zoSADG was trans-complemented in starter neurons. In all plots, black dots represent data from individual fish, box plot indicates median and the 25th and 75th percentiles, circles and error bars indicate mean and s.d. over individual fish. N: number of fish.

(e) Convergence index for the projection from the inferior olive to the cerebellum at different time points. The convergence index is the numerical ratio of transneuronally labeled neurons (GFP+/mCherry- neurons in the inferior olive) and putative starter cells in the cerebellum (GFP+/mCherry+ Purkinje neurons). N: number of fish.


(f) Schematic of the putative circuitry in telencephalic area Dp. Glutamatergic neurons are shown in red colors, GABAergic interneurons in blue colors. Long-range projections from mitral cells in the olfactory bulb terminate on glutamatergic neurons and on GABAergic interneurons in Dp. Additional long-range projections originate in other telencephalic areas.

(g) Co-injection of EnvA-RVΔG and HSV1[UAS:TVA-mCherry] into Dp of *Tg[gad1b:Gal4]* fish in the absence of glycoprotein. Coronal section through the injected telencephalic hemisphere at the level of Dp. Area outlined by dashed rectangle is enlarged. Co-expression of GFP (green) and mCherry (magenta) indicates starter cells.

(h) Same as in (g) but with trans-complementation of zoSADG in starter neurons by co-injection of HSV1[UAS:zoSADG]. Left: coronal section through the injected telencephalic hemisphere. Right: coronal section through the ipsilateral OB. Expression of GFP only (green) indicates transneuronally labeled neurons.

(i) Number of neurons in the telencephalon that expressed GFP and mCherry (putative starter neurons) or GFP alone (putative presynaptic neurons) after injection of EnvA-RVΔG and HSV1[UAS:TVA-mCherry] into Dp with (+) or without (-) trans-complementation with zoSADG in starter neurons (HSV1[UAS:zoSADG]). Left: injection into *Tg[gad1b:Gal4]* fish; right: injection into *Tg[vglut1:Gal4]* fish. Expression was analyzed 10 days post injection. N: number of fish.

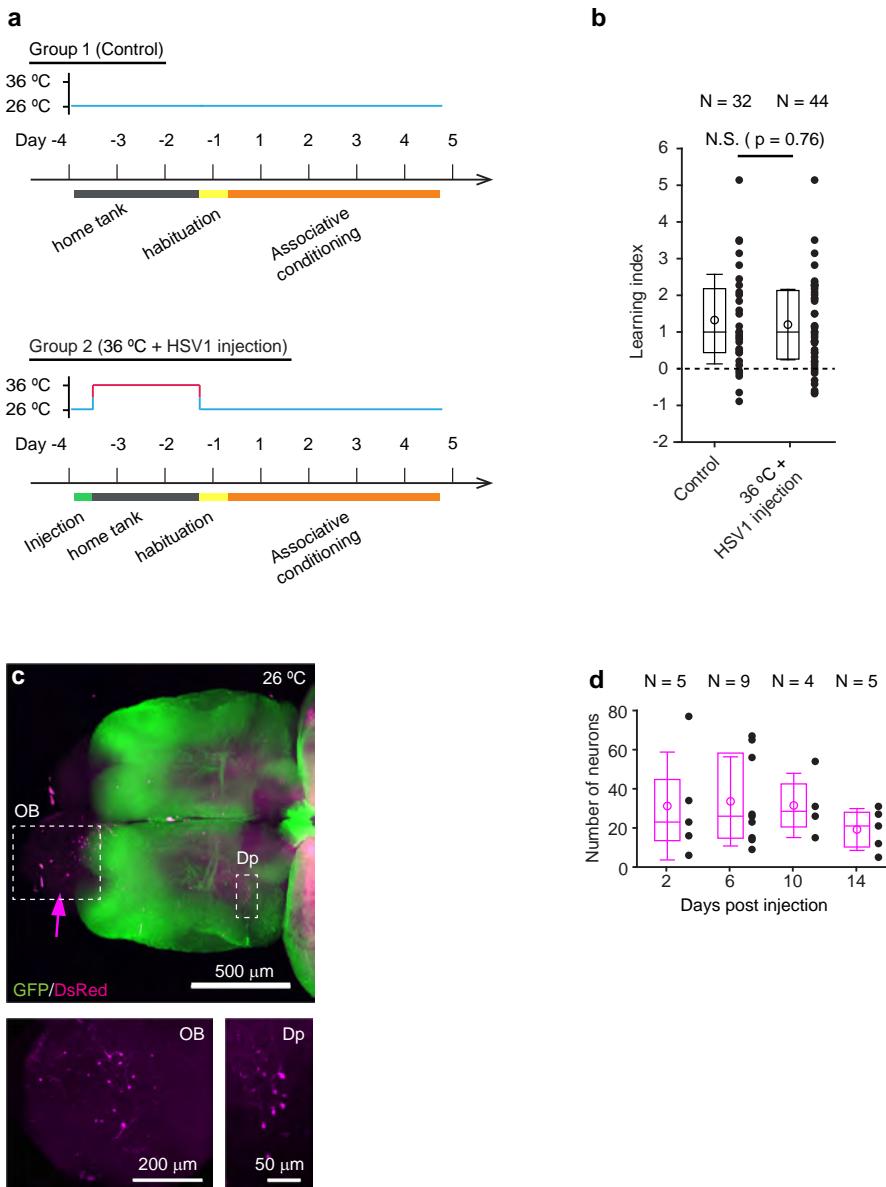
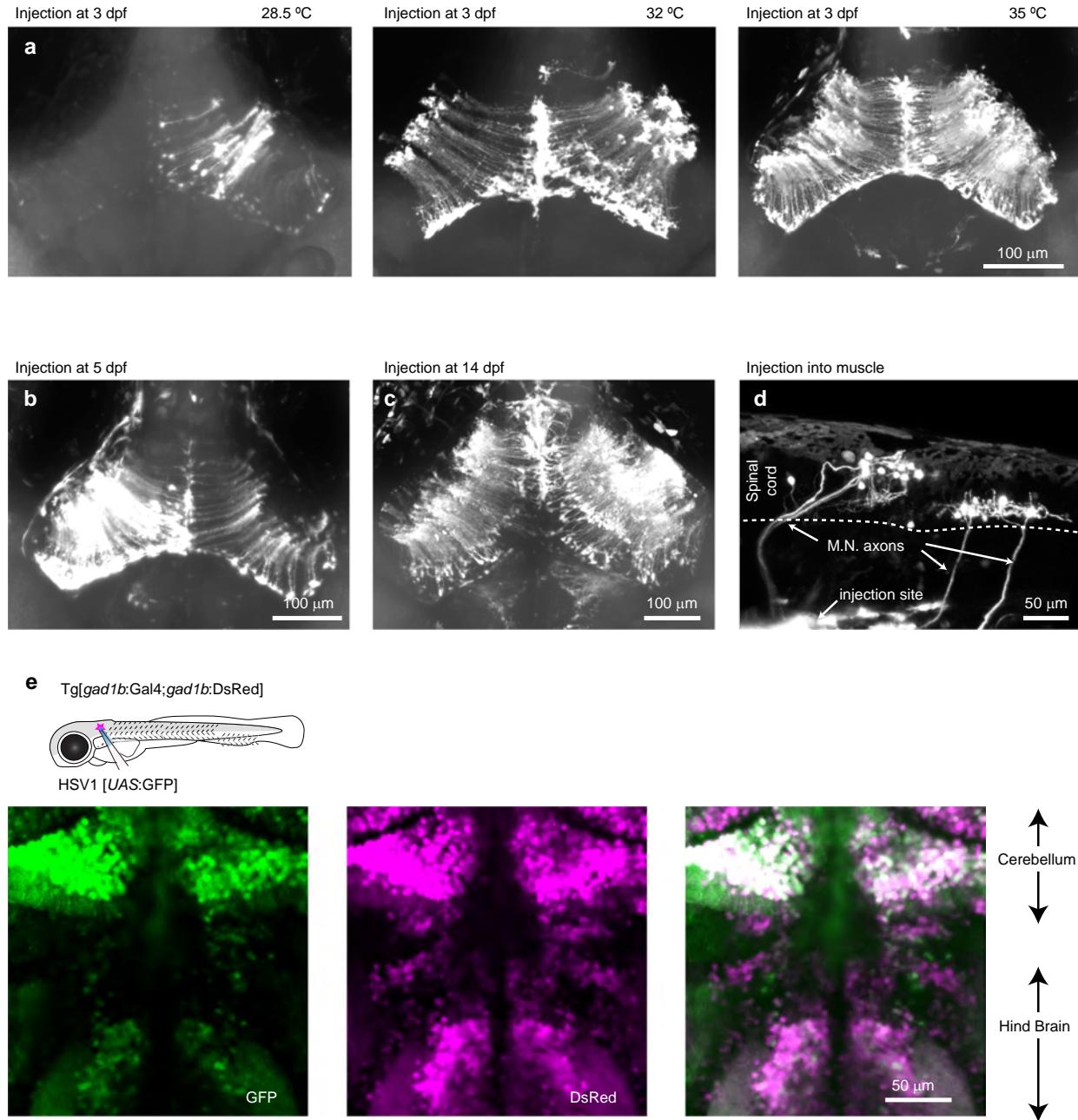

(j) Convergence index for the projection of transneuronally labeled neurons in the OB to Dp when EnvA-RVΔG was targeted to GABAergic neurons (viral injections into *Tg[gad1b:Gal4]* fish) or to glutamatergic neurons (injections into *Tg[vglut1:Gal4]* fish) in Dp. Expression was analyzed at 10 days post injection. N: number of fish.

Fig 5. Transneuronal tracing using pseudotyped rabies virus in zebrafish larvae

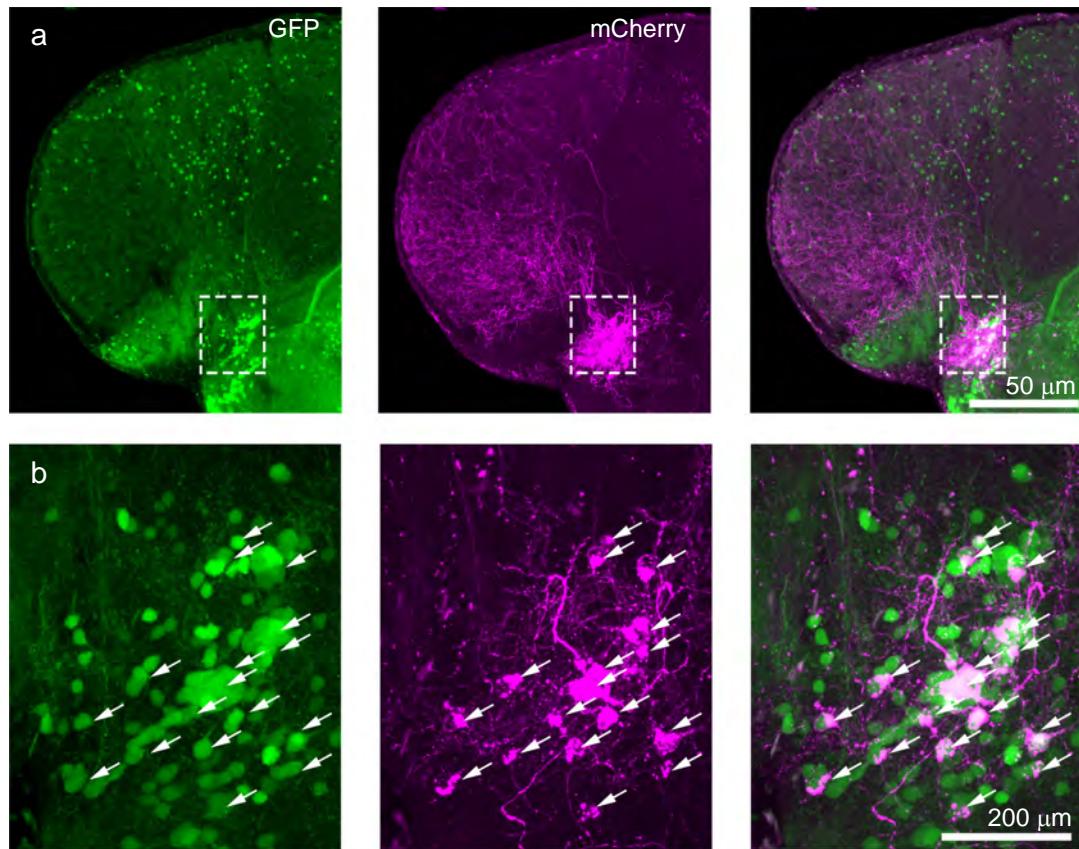
(a) Expression of GFP (green) and TVA-mCherry (red) 6 days after injection of EnvA-RV Δ G-GFP into the spinal cord of Tg[gad1b:Gal4;UAS:TVA-mCherry] fish at 7 dpf. Boxed region is enlarged on the right.

(b) Same after co-injection of EnvA-RV Δ G-GFP and HSV1[UAS:zoSADG] into the spinal cord of Tg[gad1b:Gal4;UAS:TVA-mCherry] fish at 7 dpf.

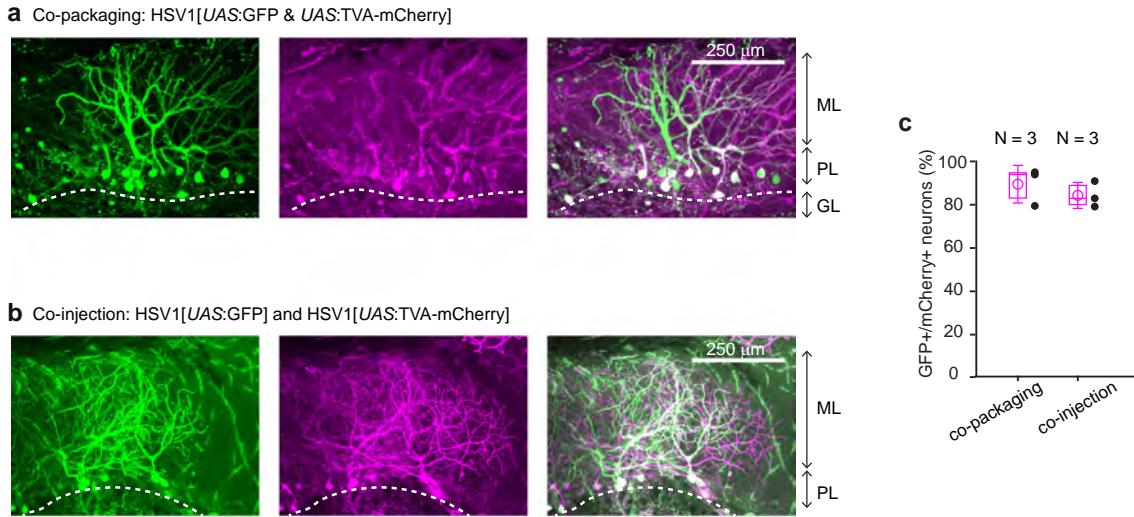

Fig S1. Temperature-dependence and time course of HSV1-mediated gene expression

(a) Sequence of virus injections, temperature changes and associative conditioning to assess effects of experimental manipulations on discrimination learning.

(b) Learning index (behavioral discrimination score) on the last day of training. Plot symbols represent data from individual fish; box plots show median and 25th and 75th percentiles, circles and error bars indicate mean and s.d. over individual fish. N: number of fish. Performance was not significantly different between groups ($p = 0.76$, Wilcoxon rank sum test)


(c) Expression of DsRed (magenta) six days after injection of HSV1[LTCMV:DsRed] into the OB (arrow) of an adult Tg[vglut1:GFP] fish kept at 26 °C (maximum projection of confocal stack). Boxed areas (OB and Dp) are enlarged below. The number of DsRed-expressing neurons is low compared to DsRed expression at 36 °C (Fig. 1).

(d) DsRed expression in the dorsal telencephalon at different timepoints after injection of HSV1[LTCMV:DsRed] into the ipsilateral OB. Fish were kept at 36 °C. Black dots represent data from individual fish, box plot indicates median and 25th and 75th percentiles, circles and error bars indicate mean and s.d. over individual fish. N: number of fish.


Fig S2. HSV1-mediated gene delivery in larvae zebrafish and Gal4/UAS

- (a) Expression of GFP 48 h after injection of HSV1[LTCMV:GFP] into the optic tectum of zebrafish larvae (3 dpf; maximum intensity projection of confocal stack). Larvae were kept after the injection at 28.5, 32 or 35 °C.
- (b) Expression of GFP 48 h after injection of HSV1[LTCMV:GFP] into the optic tectum of a larva at 5 dpf (maximum intensity projection of confocal stack). The larva was kept after the injection at 35 °C.
- (c) Expression of GFP 48 h after injection of HSV1[LTCMV:GFP] into the optic tectum of a larva at 14 dpf (maximum intensity projection of confocal stack). The larva was kept after the injection at 35 °C.
- (d) Expression of GFP 48 h after injection of HSV1[LTCMV:GFP] into trunk muscles at 7 dpf (maximum intensity projection of confocal stack). The larva was kept after the injection at 35 °C. Note retrograde labeling of motor neurons (M.N.).
- (e) Expression of GFP 48 h after injection of HSV1[UAS:GFP] into the hindbrain of a Tg[gad1b:Gal4; gad1b:DsRed] larva at 7 dpf (maximum intensity projection of confocal stack). The larva was kept after the injection at 35 °C. Note co-localization of DsRed and GFP in hindbrain and cerebellum.

Fig S3. Targeting of GABAergic neurons in the telencephalon

(a) Coronal section through the telencephalon at the level of Dp after injection of HSV1[UAS:TVA-mCherry] into Tg[gad1b:Gal4; gad1b:GFP] double transgenic fish. The injection was targeted to a volume around Dp. mCherry was expressed predominantly in a cluster of GFP-positive neurons associated with Dp. Note long-range projections of mCherry-expressing neurons to multiple telencephalic areas.
(b) Enlargements of boxed region in (a). Arrows indicate GFP+/mCherry+ neurons.

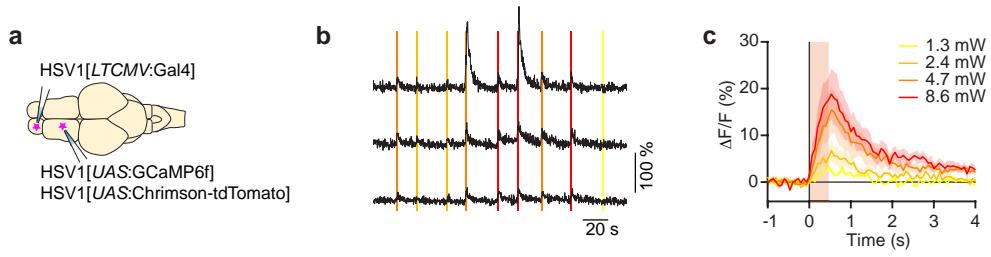


Fig S4. Co-packaging of 2 different viruses does not facilitate co-infection of 2 viruses.

(a) Expression of GFP and mCherry after injection of HSV1[UAS:GFP & UAS:TVA-mCherry] into the cerebellum of *Tg[gad1b:Gal4]* fish. In this virus, two expression constructs, UAS:GFP and UAS:TVA-mCherry, are packaged into the same virus particles. Expression is observed in Purkinje neurons and in putative Golgi cells. Note high rate of co-expression of GFP and mCherry. ML: molecular layer; PL: Purkinje layer; GL: granular layer.

(b) Expression of GFP and mCherry in the Purkinje layer after co-injection of two independent viruses (HSV1[UAS:GFP] and HSV1[UAS:TVA-mCherry]) into the cerebellum of *Tg[gad1b:Gal4]* fish. Note that the rate of co-expression was high even though GFP and mCherry were delivered by separate viruses. Note also that the overall expression was sparse, implying that co-expression was unlikely to occur by chance.

(c) Percentage of GFP and mCherry-expressing neurons among all fluorescent neurons. Filled circles represent data from individual fish, box plot indicates median and the 25th and 75th percentiles, and open circles indicate mean over individual fish. N: number of fish.

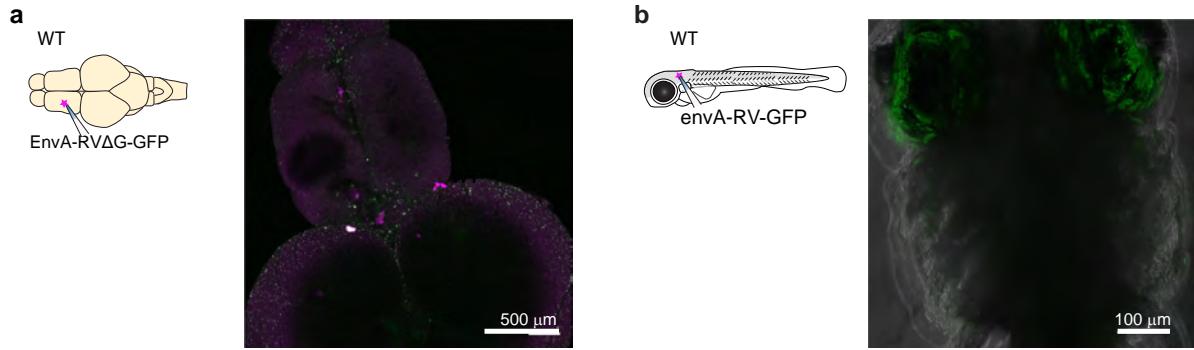
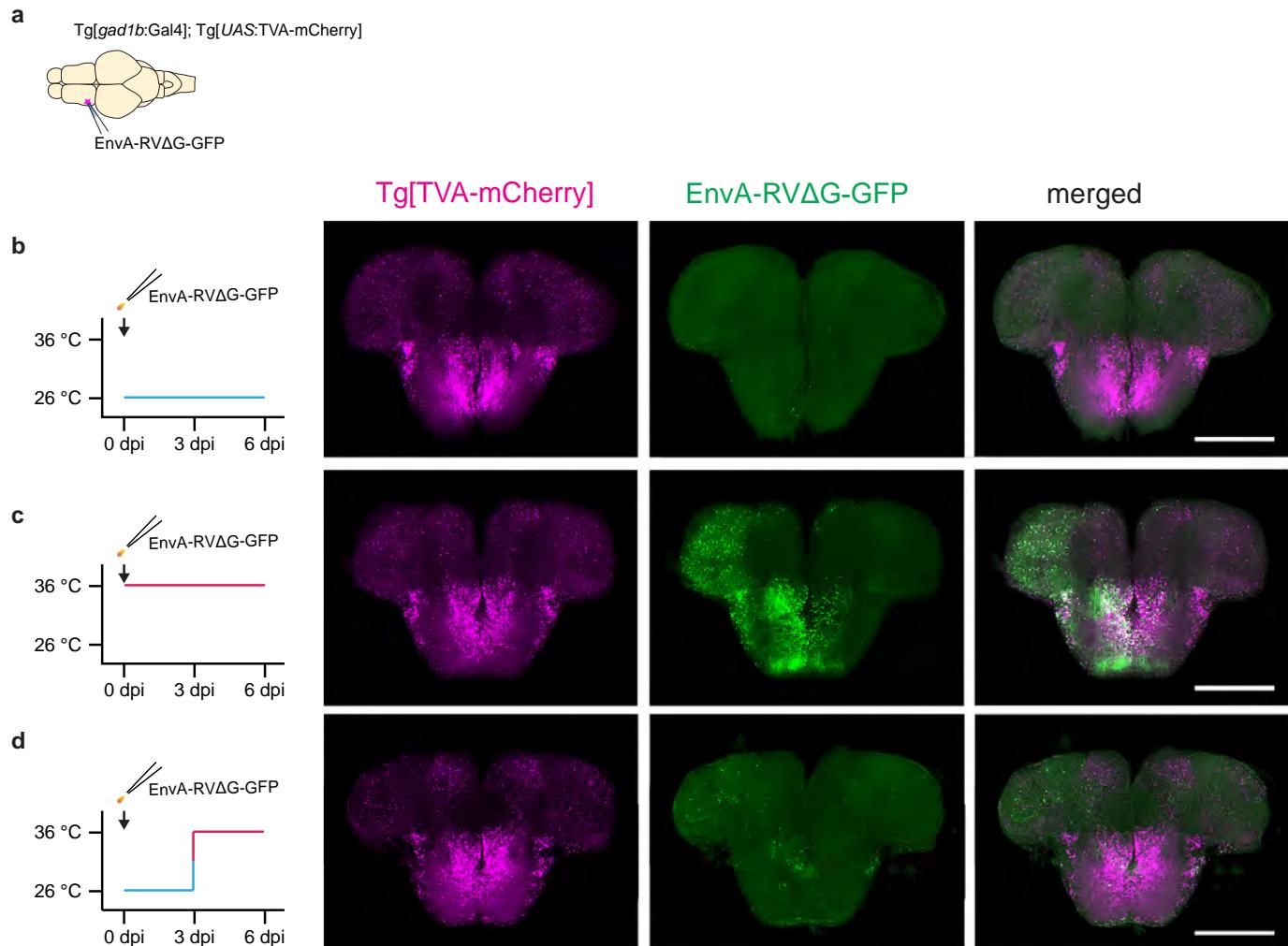


Fig S5. Optogenetic manipulations using HSV1

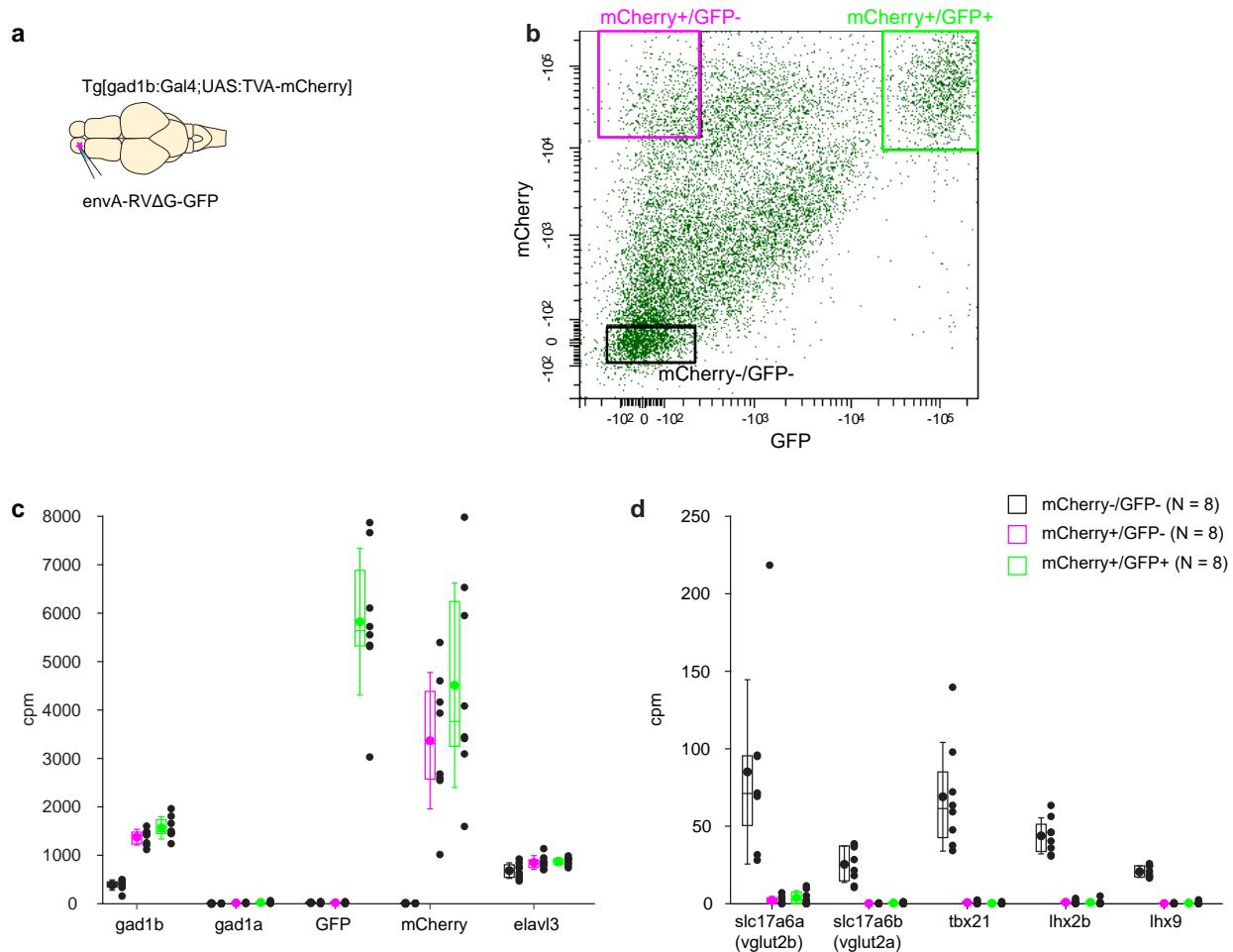
(a) Schematic: injection of HSV1[LTCMV:Gal4] into the OB and subsequent co-injection of HSV1[UAS:GCaMP6f] and HSV1[UAS:Chrimson-tdTomato] into the dorsal telencephalon of wt fish.


(b) Simultaneously recorded calcium transients evoked by optical stimulation of different light intensity (vertical lines) in three example neurons.

(c) Mean change GCaMP6f evoked by optical stimulation of different light intensity (N = 11 neurons; 11 → 18 light stimuli at each intensity). Shading shows SEM is over cell.

Fig S6. Injection of pseudotyped rabies virus does not infect neurons in the absence of TVA

(a) Absence of expression after injection of EnvA-RV Δ G-GFP into the telencephalon of adult wt fish.
(b) Absence of expression after injection of EnvA-RV Δ G-GFP into the optic tectum of wt fish at 7 dpf.

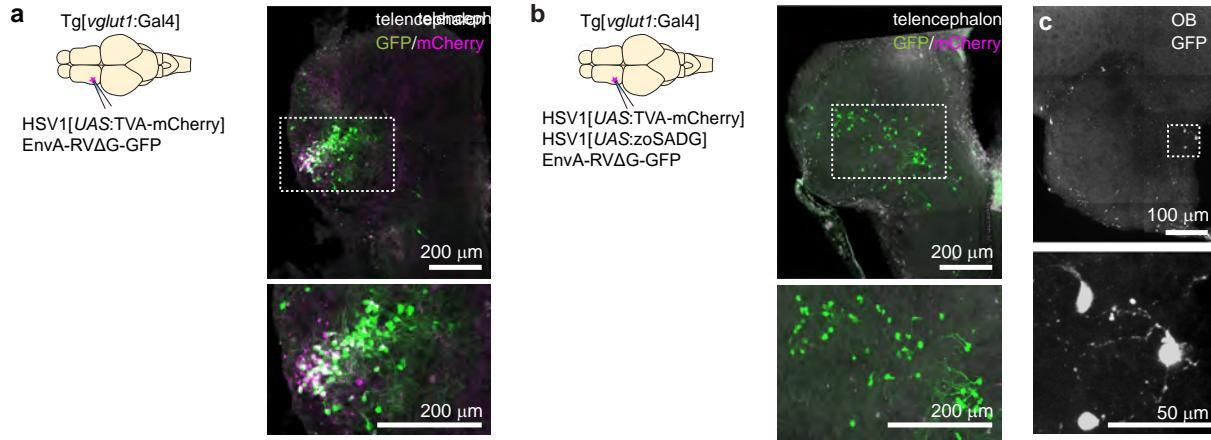

Fig S7. Temperature-dependence of infection by rabies virus

(a) Experimental scheme: Rabies virus (EnvA-RVΔG-GFP) was injected into the telencephalon of transgenic fish expressing TVa-mCherry in GABAergic neurons (Tg[gad1b:Gal4; UAS:TVa-mCherry]).

(b) Expression of TVa-mCherry and GFP when fish were kept at 26 °C for 6 days after injection. Note almost complete absence of GFP expression.

(c) Expression of TVa-mCherry and GFP when fish were kept at 36 °C for 6 days after injection. Note strong GFP expression.

(d) Expression of TVa-mCherry and GFP six days after injection when the housing temperature was increased from 26 °C to 36 °C 3 days after injection. GFP expression was weak and sparse.


Fig S8. Analysis of gene expression in GABAergic neurons

(a) Schematic: injection of EnvA-RV Δ G-GFP into the OB of adult Tg[gad1b:Gal4;UAS:TVa-mCherry] fish.

(b) Example of FACS analysis of GFP and mCherry expression. Boxes depict cells selected as mCherry+/GFP+ (EnvA-RV Δ G-GFP infected gad1b neurons), mCherry+/GFP- (non-infected gad1b neurons), mCherry-/GFP- (negative control containing other OB cells). gad1b is one of two isoforms of gad1 that are expressed differentially in GABAergic neurons.

(c) Expression of marker genes (x-axis) in infected gad1b neurons (mCherry+/GFP+; green), non-infected gad1b neurons (mCherry+/GFP-; magenta), and other OB cells (mCherry-/GFP-; black). Cells classified as gad1b-positive by fluorescence markers, but not other cells, expressed gad1b but not gad1a, the other gad1 isoform. Expression of fluorescent marker genes followed the detection of fluorescent markers by FACS. The neuronal marker elavl3 was present in all three pools. Plot symbols represent data from individual samples; box plots show median and 25th and 75th percentiles, circles and error bars indicate mean and s.d. over individual samples (N = 8 samples).

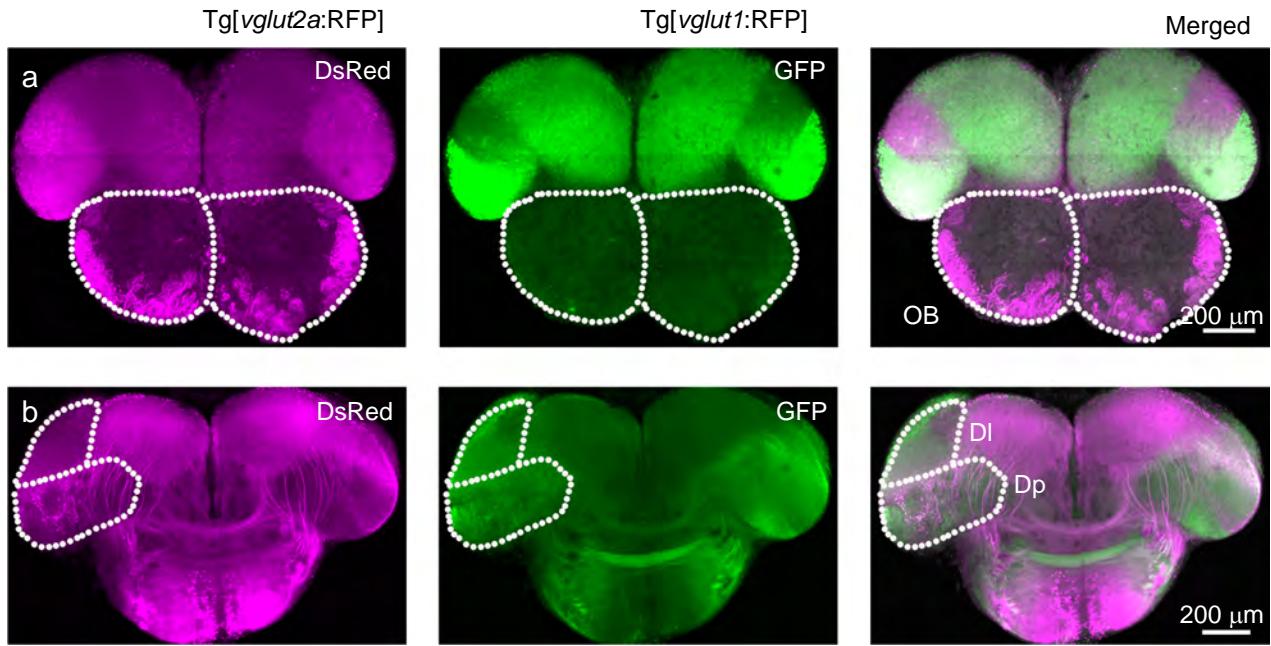

(d) Expression of negative markers for GABAergic neurons. The selected marker genes (slc17a6a, slc17a6b, tbx21, lhx2b and lhx9) should be expressed in mitral cells of the OB and other excitatory neurons but not in GABAergic neurons. Consistent with this expectation, expression of all negative markers was low or absent in pools of gad1b cells selected by FACS (N = 8 samples).

Fig S9. Transneuronal tracing using pseudotyped rabies virus from vglut1+ neurons in Dp in adult zebrafish

(a) Co-injection of EnvA-RVΔG-GFP and HSV1[UAS:TVa-mCherry] into Dp of Tg[vglut1:Gal4] fish in the absence of glycoprotein. Coronal section through the injected telencephalic hemisphere at the level of Dp. Area outlined by dashed rectangle is enlarged. Co-expression of GFP (green) and mCherry (magenta) indicates starter cells.

(b) Same as in (a) but with trans-complementation of zoSADG in starter neurons by co-injection of HSV1[UAS:zoSADG]. Left: coronal section through the injected telencephalic hemisphere. Right: coronal section through the ipsilateral olfactory bulb. Expression of GFP only (green) indicates transneuronally labeled neurons.

Fig S10. Expression pattern of vglut1 and vglut2 in olfactory bulb and Dp

(a) Coronal cross sections through the OB and anterior telencephalon from Tg[vglut2a:RFP; vglut1:GFP] double transgenic fish. Note that vglut2a (magenta) is expressed by axons of olfactory sensory neurons innervating glomeruli in the OB and by a subset of mitral cells, while expression of vglut1 (green) in the OB is weak or absent. Dotted lines outline OBs.

(b) More posterior coronal cross sections through the telencephalon of the same fish at the level of Dp. Note that expression of vglut2a and vglut1 in the telencephalon are largely complementary. Neurons in Dp express primarily vglut1. Dotted areas indicate the dorsal lateral telencephalic area (DI) and Dp.

Table 1

Promoter	Transgene	Transgene description	Comments
LTCMV	GFP	Green fluorescent protein	Fig. S2
	DsRed	Red fluorescent protein	Fig. 1b, Fig. S2c
	mCherry	Red fluorescent protein	
	tdTomato	Red fluorescent protein	
	tagBFP-CAAX	Blue fluorescent protein, membrane targeted	
	Venus-CAAX	Yellow fluorescent protein (YFP), membrane targeted	
	TVA-mCherry	TVA-mCherry fusion	
	GCamp6s	Green fluorescent calcium indicator	
	Gal4	Gal4	Fig. 2e, Fig. S5
	ChR2-YFP	Channelrhodopsin-2-YFP fusion	
	ChR2-mCherry	ChR2-mCherry fusion	
	eNpHR3.0	Halorhodopsin	
	H2B_GCamp6s	Green fluorescent calcium indicator, targeted to nucleus	
	jGCamp7s	Green fluorescent calcium indicator	
	jGCamp7b	Green fluorescent calcium indicator	Fig. S1 b
UAS	GFP	Green fluorescent protein	Fig. 2b, Fig. S2e, Fig. S4
	mCherry	Red fluorescent protein	
	tagBFP-CAAX	Blue fluorescent protein, membrane targeted	
	Venus-CAAX	Yellow fluorescent protein (YFP), membrane targeted	Fig. 2d
	GCamp6f	Green fluorescent calcium indicator	Fig. S5
	Chrimson-tdTomato	Chrimson-tdTomato fusion	Fig. S5
	Jaws-mRuby	Jaws-mRuby fusion	
	TVA-mCherry	TVA-mCherry fusion	Fig. 2e, Fig 4, Fig. S3, Fig. S4, Fig. S9
	zoSADG	glycoprotein for rabies tracing	Fig4, Fig5, Fig. S9
	TeNT-GFP	tetanus toxin light chain fused with GFP	Movie 4
	DT(Diphtheria toxin)	diphtheria toxin	

Table 2

primaryID	secondaryID	logFC	logCPM	PValue	FDR	marker genes	up/down
blk	2699	-8.55359	3.676689	4.88E-06	0.000114	stress/death marker	down
pycard	916	-7.91768	6.028085	6.07E-14	2.94E-11	stress/death marker	down
crip1	1171	-5.13301	6.208011	4.64E-12	8.89E-10	stress/death marker	down
cd74b	1071	-4.80341	10.0098	8.15E-09	4.61E-07	stress/death marker	down
cd74a	1273	-4.36402	10.47257	1.59E-08	8.08E-07	stress/death marker	down
socs3a	1935	-4.0175	6.369958	1.92E-08	9.53E-07	stress/death marker	down
anxa1a	1317	-3.70614	3.829076	0.002201	0.019825	stress/death marker	down
nck1a	1736	-3.58713	4.058904	7.73E-07	2.31E-05	stress/death marker	down
apoeb	1718	-7.39177	9.457418	1.28E-12	3.19E-10	stress marker	down
caspa	1542	-6.56129	3.604579	8.50E-11	9.53E-09	stress marker	down
tnfaip8l2a	2999	-6.52287	4.579522	3.59E-13	1.18E-10	stress marker	down
caspb	1819	-6.49	6.385322	6.89E-12	1.29E-09	stress marker	down
tnfsf10l	6065	-6.05507	3.205281	7.12E-07	2.17E-05	stress marker	down
kita	3558	-5.92947	3.361018	1.80E-06	4.77E-05	stress marker	down
gsdmeb	2380	-4.88661	4.555983	8.11E-08	3.24E-06	stress marker	down
bnip4	1401	-4.24925	3.11159	1.51E-06	4.08E-05	stress marker	down
casp22	1164	-4.22537	4.434146	1.50E-09	1.11E-07	stress marker	down
lgals3b	1678	-4.1048	4.698176	2.26E-07	7.85E-06	stress marker	down
gsdmea	2051	-3.81746	3.240636	5.71E-05	0.000945	stress marker	down
pak2a	2569	-3.66208	4.849555	2.89E-07	9.72E-06	stress marker	down
si:ch211-61	1149	-3.64003	4.54818	5.38E-07	1.70E-05	stress marker	down
tradd	1302	-3.54664	3.278696	1.82E-06	4.82E-05	stress marker	down
ngfrb	1974	-3.53524	4.579012	2.23E-08	1.10E-06	stress marker	down
dnase2b	1363	-3.31229	3.082677	4.85E-05	0.00083	stress marker	down
prkcdb	6370	-3.16048	4.454486	2.88E-05	0.00053	stress marker	down
bida	917	-3.01785	5.5786	5.34E-05	0.000897	stress marker	down
mcamb	3597	-8.41473	5.820929	1.80E-16	4.23E-13	cell death marker	down
cdk1	1367	-6.56203	4.325484	1.05E-10	1.11E-08	cell death marker	down
csrp1a	2786	-3.44261	4.812245	3.59E-05	0.000641	cell death marker	down
neil3	2301	-3.25707	3.685709	2.00E-05	0.000387	cell death marker	down
rmi2	2164	-3.13634	6.819279	8.49E-13	2.29E-10	cell death marker	down
ccnd1	2826	-3.08015	4.219045	2.95E-07	9.89E-06	cell death marker	down
tnfrsf9a	1514	4.579845	5.164639	9.66E-06	0.000207	stress	up
nfe2l1a	3303	3.262241	4.401034	0.000447	0.005445	celldeath	up
sesn2	2194	3.473355	5.379293	6.45E-08	2.65E-06	celldesigner	up
nfe2l2b	3002	4.602282	3.492498	6.01E-08	2.49E-06	celldesigner	up
ppp1r15b	2374	5.54702	4.987662	6.44E-10	5.44E-08	celldesigner	up
calhm6	1503	-10.39	4.351855	8.98E-18	4.93E-14		
si:ch211-1	1511	-10.271	3.261507	2.14E-09	1.45E-07		
si:dkey-148	1358	-10.1629	3.959676	2.06E-12	4.60E-10		
sla1a	1350	-10.0414	4.302244	4.15E-17	1.37E-13		
si:dkeyp-8	1795	-9.91392	3.616256	1.07E-09	8.43E-08		
csf1ra	3459	-9.60321	6.558032	1.03E-19	1.69E-15		
si:dkey-256	1744	-9.564	3.105679	5.59E-11	6.77E-09		

pdk2b	2368	-9.51768	3.090735	1.42E-09	1.06E-07
cmkrlr1	1157	-9.40585	4.534274	3.51E-14	2.05E-11
sb:cb81	2447	-9.37527	4.232372	3.79E-17	1.37E-13
stoml3b	1193	-9.2643	3.289006	1.15E-14	8.83E-12
zgc:101715	1451	-9.11748	3.342702	4.38E-14	2.22E-11
c1qc	930	-9.08859	8.200282	6.64E-16	1.22E-12
zgc:173915	1007	-9.08576	4.634535	1.53E-12	3.65E-10
il10ra	3764	-9.0722	5.715717	2.95E-15	3.10E-12
si:dkey-321	5121	-9.03052	4.856579	2.85E-16	5.88E-13
si:dkey-5n1	810	-9.02918	6.885871	1.18E-14	8.83E-12
kif23	3960	-8.97105	3.341794	1.10E-07	4.17E-06
si:ch211-24	646	-8.97032	3.0444	5.20E-09	3.10E-07
bin1b	2143	-8.9085	4.098503	3.77E-14	2.07E-11
tgm2l	2543	-8.89724	3.159136	5.49E-12	1.04E-09
rhoga	809	-8.74729	3.093063	1.99E-14	1.42E-11
cfbl	2575	-8.56078	3.934788	1.97E-07	7.03E-06
entpd1	2659	-8.48709	6.351139	7.66E-18	4.93E-14
csf1rb	2894	-8.37452	3.276585	1.35E-12	3.32E-10
p2ry12	1371	-8.33272	3.360911	2.25E-13	8.24E-11
c1qa	1133	-8.26953	7.133016	6.73E-13	1.95E-10
lpcat2	2803	-8.20867	3.298753	5.99E-09	3.51E-07
si:ch211-16	2166	-8.19908	4.439234	1.15E-13	4.73E-11
tlr8b	2406	-8.19408	4.043758	6.75E-13	1.95E-10
ccr12a	1113	-8.17951	5.740079	2.45E-15	3.10E-12
zgc:172090	3071	-8.09484	3.768059	3.12E-12	6.50E-10
si:ch1073-1	913	-8.0804	3.63831	5.37E-05	0.000899
si:dkey-181	1738	-8.07066	3.816518	5.67E-09	3.35E-07
plcg2	4465	-8.00751	4.947682	1.47E-11	2.41E-09
zgc:112492	1977	-8.00113	7.268004	5.43E-15	4.71E-12
sema4aa	1971	-7.99144	3.622184	5.86E-11	7.00E-09
si:ch211-28	1720	-7.92341	3.625703	1.77E-11	2.68E-09
c1qb	940	-7.91322	7.500759	1.38E-13	5.42E-11
lgals3bpa	1977	-7.86465	6.817372	3.60E-14	2.05E-11
itga4	2270	-7.83543	4.118082	1.13E-13	4.73E-11
si:ch211-10	5290	-7.78794	3.71111	5.41E-08	2.32E-06
mfap4	1150	-7.76643	3.54577	5.47E-10	4.79E-08
tlr21	3055	-7.71987	5.062953	2.71E-14	1.69E-11
im:715403	1050	-7.71657	3.29163	2.15E-09	1.46E-07
si:rp71-681	2212	-7.70411	4.73623	3.21E-12	6.53E-10
havcr1	1184	-7.7005	6.641428	2.62E-13	9.38E-11
f11r.1	1749	-7.65514	3.721817	1.05E-13	4.73E-11
si:dkeyp-10	839	-7.60183	4.522757	8.60E-09	4.77E-07
si:dkey-1h1	1705	-7.56723	4.309768	6.97E-09	4.02E-07
itgae.1	2608	-7.54668	5.480978	1.22E-11	2.08E-09
si:dkeyp-61	6213	-7.54631	5.15099	3.89E-14	2.07E-11
dnase1l4.2	3425	-7.53575	4.848219	1.84E-11	2.75E-09
lgals3bpb	1994	-7.47349	11.77677	2.45E-14	1.65E-11

fam83ha	7192	-7.46836	3.029466	2.40E-12	5.20E-10
ccl34b.1	503	-7.46171	10.04738	4.44E-14	2.22E-11
si:ch211-2:	1654	-7.38678	3.651934	8.28E-08	3.30E-06
gpat3	2637	-7.3775	3.294922	1.19E-10	1.23E-08
apoc1	783	-7.36563	8.70788	5.70E-11	6.85E-09
fut7	1275	-7.35632	3.696356	2.30E-09	1.55E-07
ms4a17a.6	962	-7.34765	6.158979	1.07E-13	4.73E-11
wasa	2502	-7.34092	4.248075	8.52E-14	4.01E-11
cx32.2	1071	-7.30629	4.567917	1.49E-10	1.47E-08
lgals9l1	2201	-7.26349	7.963593	6.64E-15	5.47E-12
ikbke	2508	-7.26117	3.388682	3.14E-09	2.02E-07
si:dkey-7i4	1564	-7.25879	3.816286	6.66E-08	2.72E-06
adama8a	3251	-7.25647	3.147203	2.11E-08	1.05E-06
arhgap27	4401	-7.21943	5.045676	1.91E-13	7.15E-11
myo1f	3684	-7.21098	4.320156	2.17E-11	3.16E-09
trim33l	4150	-7.20774	3.382336	6.81E-10	5.69E-08
gpr18	945	-7.20009	5.424085	3.95E-11	5.29E-09
si:dkey-23i	2429	-7.12827	5.224191	8.22E-10	6.74E-08
anxa4	1485	-7.10838	5.404433	3.31E-13	1.14E-10
kcnj10a	1843	-7.09252	3.071384	1.77E-09	1.26E-07
tk1	2754	-7.07147	3.175439	1.01E-09	8.09E-08
zgc:123107	1985	-7.05689	5.896833	1.81E-12	4.15E-10
mrc1b	3699	-7.04138	6.294669	2.49E-11	3.60E-09
inpp5d	2826	-7.01212	6.080787	1.53E-13	5.87E-11
si:dkey-33i	2802	-6.99607	3.304151	1.02E-10	1.10E-08
il1fma	1744	-6.99208	3.003249	1.56E-09	1.14E-07
slc43a3b	2532	-6.99121	4.267088	1.70E-11	2.62E-09
lpxn	1249	-6.9908	3.413242	8.37E-08	3.32E-06
ncf1	2133	-6.97863	5.396604	1.61E-11	2.56E-09
tpst2	2939	-6.9511	3.355849	5.34E-11	6.61E-09
edaradd	1887	-6.9351	3.606989	1.24E-06	3.42E-05
itgae.2	3070	-6.90987	4.978628	7.65E-12	1.42E-09
fybb	2969	-6.90743	5.096577	7.95E-13	2.18E-10
si:ch211-19	778	-6.89614	4.194368	4.59E-13	1.45E-10
cxcr3.2	1893	-6.89313	5.745659	8.75E-12	1.60E-09
ptk2ba	3201	-6.87709	3.866064	6.66E-09	3.85E-07
si:dkey-33i	1891	-6.87032	4.640381	3.37E-11	4.70E-09
esco2	2339	-6.87023	3.001886	1.96E-11	2.88E-09
dok2	1591	-6.8158	3.373412	1.59E-12	3.74E-10
ptpn6	825	-6.8136	5.664735	1.76E-11	2.68E-09
gpr183a	1448	-6.79298	5.014105	3.53E-12	6.93E-10
fxyd1	1072	-6.77715	4.504522	2.92E-12	6.25E-10
si:zfos-741	1108	-6.77401	4.537165	2.50E-14	1.65E-11
rgs18	1694	-6.76696	5.686287	1.52E-11	2.43E-09
smc4	4193	-6.73144	3.796677	8.61E-08	3.41E-06
cyba	1033	-6.72796	6.847746	3.59E-15	3.41E-12
prkacba	2483	-6.715	4.405069	5.49E-08	2.34E-06

zgc:123010	4414	-6.69991	3.7256	1.32E-10	1.34E-08
si:dkey-271	1009	-6.67355	3.128548	3.70E-10	3.39E-08
ikzf1	2301	-6.63884	4.76291	3.44E-07	1.14E-05
abo	1238	-6.63256	3.998867	1.03E-07	3.98E-06
cd4-1	2043	-6.61853	4.048068	8.18E-05	0.00129
slc7a7	2395	-6.61253	3.768626	6.18E-11	7.33E-09
clic1	2440	-6.58656	6.704249	3.35E-12	6.69E-10
itgb2	3489	-6.57167	6.740088	5.27E-13	1.58E-10
ccdc88b	5067	-6.56981	4.294944	6.52E-09	3.79E-07
skap2	1524	-6.55845	4.776501	3.75E-10	3.41E-08
si:ch211-1	920	-6.54565	4.186354	2.54E-11	3.60E-09
zgc:153317	827	-6.54449	4.965433	4.01E-13	1.30E-10
cd22	1834	-6.49337	3.257232	9.46E-09	5.16E-07
gmip	3356	-6.39194	4.812563	7.35E-11	8.59E-09
rac2	1163	-6.36626	6.795421	1.18E-12	2.98E-10
gsto2	1088	-6.3644	6.076688	3.59E-13	1.18E-10
ctsk	1639	-6.36243	5.55315	4.80E-11	6.18E-09
capgb	1902	-6.35208	5.903055	4.77E-11	6.18E-09
grapa	1419	-6.32967	3.970559	8.29E-11	9.47E-09
kif11	3677	-6.31907	3.116131	1.13E-10	1.18E-08
krt18b	1889	-6.29179	5.724327	8.57E-11	9.54E-09
coro1a	1813	-6.29029	8.894132	1.83E-15	2.74E-12
ltb4r	3752	-6.26428	3.297134	1.14E-09	8.95E-08
myo1g	2997	-6.25781	4.760754	1.41E-10	1.42E-08
arpc1b	1702	-6.24955	7.992704	3.72E-15	3.41E-12
wipf1a	1851	-6.23643	4.762151	2.78E-08	1.33E-06
cxcl11.5	259	-6.23483	3.440395	1.33E-08	7.07E-07
zgc:193725	516	-6.2333	5.626308	1.16E-12	2.98E-10
tprg1	1587	-6.22348	3.960485	3.01E-08	1.43E-06
grn1	1618	-6.21813	6.383974	1.68E-10	1.63E-08
itm2bb	1505	-6.21482	7.694584	7.37E-16	1.22E-12
knl1	5496	-6.21044	3.376769	1.15E-06	3.23E-05
si:ch73-380	1529	-6.20687	3.906146	1.16E-09	9.09E-08
grna	4163	-6.16682	7.455984	1.14E-12	2.97E-10
spi1a	2287	-6.16146	5.984179	1.26E-13	5.05E-11
fam117ab	2156	-6.15802	3.014125	9.45E-09	5.16E-07
hck	7256	-6.12147	6.314793	1.12E-13	4.73E-11
zgc:110216	871	-6.1172	3.175557	5.16E-10	4.57E-08
ssuh2.4	1248	-6.11585	3.454477	1.41E-09	1.05E-07
zgc:110540	1584	-6.11066	3.983982	1.50E-08	7.74E-07
fgl2a	2524	-6.10368	3.452771	1.82E-09	1.28E-07
ano6	4205	-6.09562	4.561703	2.53E-11	3.60E-09
wipf1b	4085	-6.09487	4.573721	6.47E-10	5.44E-08
unc93b1	2489	-6.09204	4.834007	3.70E-11	5.04E-09
klhl6	2488	-6.09164	3.446584	2.74E-08	1.32E-06
samsn1a	2760	-6.09047	5.631879	1.36E-11	2.26E-09
tnfsf10	1879	-6.07853	4.21198	2.10E-10	2.01E-08

hlx1	1489	-6.04149	3.333557	8.23E-07	2.43E-05
dnase2	3476	-6.01074	3.54114	4.63E-10	4.17E-08
csf2rb	2322	-5.99683	4.956642	1.90E-09	1.33E-07
si:dkey-21:	982	-5.99598	4.282768	8.64E-10	7.04E-08
fcer1g	491	-5.98436	6.143764	2.88E-13	1.01E-10
itpr3	8687	-5.96891	3.5609	5.63E-07	1.76E-05
itgb7	2440	-5.95446	4.050192	1.03E-07	3.98E-06
rgs14a	2583	-5.93934	3.503998	1.56E-08	8.01E-07
ms4a17a.1	1054	-5.90552	5.553394	3.17E-12	6.53E-10
si:ch211-1:	650	-5.89343	3.789355	1.64E-09	1.19E-07
ttk	3330	-5.89199	3.740549	1.36E-08	7.14E-07
enpp1	3932	-5.86953	6.924821	1.94E-11	2.88E-09
kel	2890	-5.86268	3.560545	4.29E-08	1.91E-06
slc29a1b	4805	-5.86213	3.133898	1.26E-09	9.67E-08
ptprja	5618	-5.85364	4.649104	4.49E-08	1.98E-06
mpeg1.1	2634	-5.83591	6.795263	8.39E-11	9.47E-09
atp6v0e1	836	-5.78222	4.925977	2.56E-11	3.60E-09
si:dkey-10:	838	-5.73796	3.023258	1.15E-06	3.24E-05
dnph1	667	-5.7363	3.293293	1.34E-08	7.08E-07
si:ch211-7:	1840	-5.73159	6.159251	5.38E-11	6.61E-09
me1	2067	-5.71822	3.020836	2.68E-08	1.30E-06
ponzr1	1435	-5.71062	7.74013	1.45E-11	2.39E-09
grn2	783	-5.70132	3.968429	3.98E-08	1.80E-06
zgc:171506	1295	-5.69589	3.463775	1.86E-08	9.31E-07
si:ch211-2:	1370	-5.68653	3.129444	2.75E-08	1.32E-06
rin3	5791	-5.68382	3.422524	2.61E-08	1.27E-06
fabp11a	674	-5.67152	4.462765	1.33E-06	3.64E-05
si:ch73-22:	926	-5.6658	5.215537	3.17E-07	1.06E-05
si:ch211-1:	6759	-5.63294	3.493092	2.22E-07	7.73E-06
zgc:110339	1040	-5.60424	4.419098	3.87E-11	5.22E-09
si:dkey-26:	3382	-5.6029	3.23936	1.38E-09	1.04E-07
zgc:101783	1582	-5.59431	3.23463	1.58E-08	8.07E-07
aplnrb	2087	-5.57484	4.617176	8.00E-09	4.56E-07
f13a1b	3162	-5.57336	4.345208	9.51E-09	5.17E-07
slc3a2a	2079	-5.57244	5.751776	1.69E-09	1.22E-07
cxcl8b.1	714	-5.54711	3.685568	0.000248	0.00334
eef1da	1607	-5.53799	7.740961	5.00E-13	1.56E-10
gnpda1	1346	-5.53174	4.24265	1.06E-10	1.12E-08
alox5ap	1304	-5.5002	3.698811	5.52E-08	2.34E-06
wee2	2245	-5.47644	3.158668	1.50E-08	7.75E-07
si:ch211-2:	1205	-5.47061	4.161078	7.25E-09	4.15E-07
ahnak	20569	-5.44864	4.482993	3.09E-09	2.00E-07
dhrs9	1351	-5.44507	3.51788	2.33E-08	1.14E-06
blnk	3517	-5.43461	5.202384	2.05E-09	1.41E-07
arhgap17b	1904	-5.42888	4.531299	1.79E-09	1.27E-07
mpzl2b	1608	-5.42569	3.951077	7.09E-08	2.87E-06
grap2a	1829	-5.41182	6.070648	5.16E-11	6.54E-09

tlr3	3161	-5.40996	5.517135	6.58E-07	2.03E-05
lpar5a	1571	-5.39378	4.690987	3.35E-09	2.12E-07
hcls1	2495	-5.38296	6.006668	3.50E-10	3.22E-08
apbb1ip	3287	-5.36059	5.594083	4.49E-08	1.98E-06
gpr65	1331	-5.33736	3.25469	5.62E-08	2.37E-06
plekhf1	1225	-5.33663	4.539008	5.69E-10	4.96E-08
antxr1c	6703	-5.33535	3.73568	8.14E-08	3.25E-06
tlcd1	1076	-5.33352	3.023806	3.76E-08	1.73E-06
rgn	1490	-5.33302	3.174138	4.31E-09	2.62E-07
notch1a	6096	-5.31687	3.961899	7.39E-10	6.09E-08
adcy7	10228	-5.29656	4.911045	9.24E-11	1.01E-08
pfn1	1540	-5.29118	10.69854	1.07E-12	2.83E-10
wasf2	3321	-5.29117	4.361607	3.22E-09	2.06E-07
rnaset2l	995	-5.2852	6.427019	1.49E-11	2.41E-09
pik3r5	2823	-5.28036	3.436336	3.51E-07	1.16E-05
si:dkey-27i	706	-5.27799	7.121681	3.37E-12	6.69E-10
wasb	1735	-5.26685	6.276717	4.91E-08	2.13E-06
itpkcb	3844	-5.25908	3.168152	1.12E-06	3.16E-05
si:ch211-2:	2048	-5.24928	7.477174	3.48E-11	4.82E-09
kpna2	1933	-5.24507	4.908564	5.72E-10	4.96E-08
gstt1a	1674	-5.22965	3.658929	2.19E-07	7.66E-06
si:ch73-24i	2779	-5.22912	4.513749	3.86E-08	1.76E-06
il2rga	1135	-5.22598	5.548132	2.63E-09	1.73E-07
ampd3b	3081	-5.22563	4.235599	3.11E-08	1.47E-06
cyfip1	4645	-5.2206	5.930294	1.50E-10	1.48E-08
ostf1	3322	-5.21755	3.474732	3.45E-09	2.15E-07
pparg	1581	-5.21527	3.78603	4.92E-09	2.95E-07
rbp4	1122	-5.18913	4.240103	0.000482	0.005812
mtmr8	3126	-5.17214	3.863115	2.68E-08	1.30E-06
rhogb	1957	-5.17203	5.441925	1.19E-11	2.03E-09
rgl1	4786	-5.16981	3.335712	8.71E-08	3.44E-06
ephx2	2170	-5.15157	3.472828	1.10E-06	3.12E-05
stx7l	2408	-5.14742	3.220775	1.25E-07	4.69E-06
ifi30	1041	-5.14192	6.001759	1.81E-09	1.28E-07
stx11a	1526	-5.14187	4.863036	6.32E-09	3.70E-07
snx33	4452	-5.12527	3.990311	8.31E-09	4.64E-07
plk1	2538	-5.08974	4.207503	3.59E-07	1.18E-05
snx9b	2965	-5.08741	4.626339	1.11E-07	4.23E-06
abi3a	2447	-5.08691	4.931541	1.25E-10	1.28E-08
tacc3	3275	-5.07545	3.463467	2.69E-07	9.13E-06
chaf1b	2548	-5.02924	3.145242	2.16E-06	5.60E-05
slco2b1	2782	-5.00378	5.011461	3.65E-09	2.26E-07
si:ch211-1:	972	-5.00336	6.013044	8.30E-09	4.64E-07
top2a	2839	-4.98978	3.906693	1.38E-08	7.22E-07
rasgrp4	3443	-4.9744	5.005735	5.91E-09	3.48E-07
arhgap4a	2964	-4.97419	4.490722	1.22E-06	3.39E-05
myh9a	6842	-4.96904	3.874687	9.27E-08	3.62E-06

lifrb	3101	-4.96743	3.673836	6.69E-07	2.06E-05
adap2	1291	-4.96277	4.105948	1.05E-07	4.01E-06
xpnpep2	2837	-4.96094	3.555436	9.20E-07	2.64E-05
myd88	1485	-4.94839	4.502204	1.35E-08	7.10E-07
pitpnaa	1799	-4.93084	4.364783	2.79E-08	1.33E-06
si:ch211-2:	2945	-4.92927	5.831847	3.89E-08	1.76E-06
f13a1a.1	3541	-4.90229	4.260768	0.000575	0.006744
cdh30	2492	-4.89217	3.0878	5.37E-05	0.000899
prkcq	2128	-4.88934	3.555412	8.19E-06	0.000181
ctsl.1	1434	-4.87462	3.325039	0.0027	0.023449
irf5	2539	-4.87107	3.074134	1.95E-06	5.09E-05
zgc:10172:	915	-4.86052	3.764231	6.14E-08	2.53E-06
si:dkey-18:	3441	-4.83741	4.911856	2.31E-07	7.99E-06
nutf2l	833	-4.83191	4.562038	5.56E-08	2.35E-06
flvcr2b	2505	-4.82902	4.328858	8.34E-07	2.45E-05
itprid2	4552	-4.76987	4.819814	9.39E-10	7.59E-08
tmc8	3177	-4.75391	3.629136	5.67E-06	0.000131
lcp2a	2034	-4.7439	5.638843	2.98E-10	2.78E-08
map3k1	4122	-4.74336	4.806579	1.58E-07	5.82E-06
jac2	1016	-4.73677	5.445929	0.000827	0.009069
glb1l	2095	-4.71537	4.901345	8.24E-09	4.64E-07
fli1b	2827	-4.71029	5.927144	8.92E-07	2.58E-05
ppp1r18	4779	-4.70587	4.511345	4.47E-09	2.70E-07
sh3bp2	1485	-4.7015	4.584956	7.65E-07	2.30E-05
lrrc8da	5389	-4.69889	4.268579	3.11E-06	7.67E-05
igf2b	3385	-4.69883	5.111442	9.74E-09	5.28E-07
jac3	1289	-4.684	3.635914	0.00061	0.007053
si:dkey-25:	5084	-4.68241	3.185553	6.97E-05	0.001123
snx22	1066	-4.66849	3.909313	3.29E-09	2.10E-07
plxnc1	3171	-4.6396	4.783128	3.18E-10	2.95E-08
si:dkey-20:	3053	-4.6307	4.145849	2.33E-08	1.14E-06
si:dkey-17:	2451	-4.62265	5.142877	1.97E-06	5.13E-05
cd82b	3342	-4.61856	3.96336	1.14E-05	0.000238
arhgef10	4004	-4.61737	3.074743	2.36E-07	8.11E-06
si:dkey-18:	1380	-4.59616	5.821332	1.80E-10	1.73E-08
ms4a17a.9	2247	-4.58961	3.848891	5.96E-08	2.48E-06
uap1l1	1911	-4.56385	4.248701	4.82E-07	1.53E-05
mfng	1857	-4.55618	5.889677	6.98E-07	2.14E-05
anxa2a	1639	-4.53833	4.161123	8.92E-06	0.000193
kctd12.2	1479	-4.53759	6.042336	7.00E-13	1.95E-10
cfp	5130	-4.5368	5.4558	7.62E-11	8.85E-09
anxa5b	1913	-4.52723	3.862974	6.52E-06	0.000148
ccl34b.8	533	-4.51707	5.784373	0.000129	0.001914
mhc2a	1590	-4.51251	8.414729	5.33E-08	2.29E-06
si:dkeyp-6:	6843	-4.51068	4.785306	1.68E-06	4.49E-05
rin2	6162	-4.4969	4.44012	1.08E-08	5.75E-07
niban1b	3364	-4.49176	3.289794	7.88E-08	3.17E-06

tmcc3	3507	-4.47317	4.856199	3.67E-09	2.26E-07
capn2b	2454	-4.4521	3.261582	4.14E-05	0.000723
si:ch73-23	862	-4.43896	4.420901	5.51E-08	2.34E-06
ehd4	2052	-4.43713	5.558764	1.46E-07	5.39E-06
galnt6	3301	-4.43627	3.622361	4.16E-06	9.90E-05
dnajc5gb	2669	-4.43348	3.793567	5.93E-08	2.48E-06
timd4	1424	-4.42573	3.223874	1.31E-05	0.000269
zgc:15365	2161	-4.39584	6.492608	9.65E-08	3.74E-06
olig1	1477	-4.38947	4.94993	1.07E-08	5.74E-07
gnsb	1934	-4.38784	3.294982	1.21E-06	3.35E-05
ace2	2870	-4.38385	3.37079	1.49E-05	0.0003
glud1a	2482	-4.37718	6.423205	2.11E-12	4.64E-10
jak3	3612	-4.37386	3.247807	8.31E-07	2.45E-05
ccr9a	1856	-4.36801	5.381074	8.79E-07	2.57E-05
si:ch73-24	2336	-4.36209	4.87447	2.25E-07	7.83E-06
dnase1l1	1741	-4.35644	4.600647	1.15E-11	2.02E-09
tuba8l3	1556	-4.35176	4.692818	8.00E-08	3.21E-06
man2a1	4037	-4.34766	3.92296	9.03E-07	2.60E-05
rnaseka	1000	-4.3441	4.573851	9.48E-10	7.62E-08
btk	2634	-4.30352	4.279735	4.64E-06	0.000109
mhc1zja	1388	-4.28632	3.227249	2.18E-06	5.64E-05
lgals9l3	2454	-4.28251	7.326678	1.84E-09	1.29E-07
tagapb	2316	-4.28188	6.45975	6.98E-08	2.83E-06
pitpnc1b	2094	-4.28134	3.36557	2.28E-06	5.85E-05
rhof	1448	-4.25959	4.226267	8.56E-05	0.001343
unc13d	4192	-4.25092	4.649695	1.93E-06	5.07E-05
prg4a	1999	-4.25092	5.443901	9.37E-12	1.70E-09
si:dkey-26	1360	-4.25086	4.822505	1.30E-09	9.89E-08
bcam	2220	-4.2465	3.043259	7.20E-07	2.19E-05
cldnk	1729	-4.24176	3.685421	2.67E-06	6.70E-05
slc43a1a	2967	-4.24014	3.212915	9.30E-06	0.0002
si:dkey-18	7434	-4.23639	5.113268	1.58E-06	4.25E-05
spi1b	2376	-4.22694	6.058692	3.02E-09	1.98E-07
tmem176l	4764	-4.21548	3.610698	2.82E-05	0.00052
mob1a	1647	-4.20275	6.432844	5.36E-11	6.61E-09
cdk2	1734	-4.1989	3.374312	7.34E-08	2.96E-06
gpr17	1020	-4.1837	4.243183	2.35E-05	0.000443
arhgap31	4378	-4.18077	3.226644	9.02E-07	2.60E-05
cabz01093	5437	-4.17787	3.042953	1.62E-06	4.34E-05
mag	2496	-4.17651	4.633782	1.07E-05	0.000225
nkx2.2a	1791	-4.1739	3.087585	9.24E-05	0.001425
si:dkey-68	1192	-4.17122	3.738474	1.10E-05	0.000232
anxa3b	1864	-4.16644	6.912076	1.82E-08	9.17E-07
cnn2	2452	-4.16501	5.572361	5.76E-10	4.97E-08
ncf4	2216	-4.15616	3.765017	6.07E-08	2.51E-06
rbck1	2809	-4.14877	3.095654	1.93E-06	5.06E-05
gnaia	3744	-4.14553	5.307481	3.44E-09	2.15E-07

cyth4b	1752	-4.12273	3.904627	3.67E-06	8.89E-05
mpz	3017	-4.11663	7.069336	4.53E-09	2.72E-07
si:ch73-26	1747	-4.10983	3.112336	3.58E-05	0.00064
si:dkey-20	2209	-4.10883	3.764472	2.09E-06	5.42E-05
sult1st1	1614	-4.10863	3.09415	6.90E-07	2.12E-05
si:dkey-22	1731	-4.09626	4.823491	1.18E-06	3.31E-05
cmtm3	1705	-4.08909	4.288679	1.93E-07	6.93E-06
cybb	3495	-4.07785	6.481948	1.31E-10	1.33E-08
cdc25b	3191	-4.07471	5.301512	8.39E-11	9.47E-09
cxcl11.7	514	-4.07463	3.529502	7.31E-06	0.000163
hhipl1	3000	-4.07313	3.367543	4.51E-08	1.98E-06
sox10	3205	-4.07031	3.594972	8.75E-06	0.000191
malt3	2006	-4.05967	3.871727	5.73E-06	0.000133
swap70b	2777	-4.0561	5.542431	8.67E-09	4.79E-07
plp1b	2150	-4.0516	7.063861	4.21E-07	1.36E-05
cdca8	1916	-4.04963	3.09761	4.93E-05	0.000838
sh3bp1	2819	-4.04573	5.365886	7.57E-06	0.000168
rgs13	1279	-4.04065	5.09582	1.35E-07	5.04E-06
cdc14ab	4587	-4.0341	3.353984	9.36E-06	0.000201
si:ch73-33	1369	-4.0291	3.645312	6.02E-06	0.000138
serinc2	1963	-4.0241	5.65218	2.78E-14	1.69E-11
srgn	1961	-3.99485	7.406068	4.19E-09	2.57E-07
lgals2a	883	-3.98491	8.299424	7.19E-17	1.98E-13
si:ch211-1	3041	-3.95922	6.385952	7.02E-06	0.000158
tgfb1	3037	-3.94993	3.877888	0.000218	0.002973
etv4	1974	-3.93551	5.756378	4.21E-09	2.57E-07
myo9b	7892	-3.93452	4.399617	5.66E-08	2.38E-06
zgc:64051	1448	-3.9329	7.547311	1.22E-05	0.000253
mhc2dab	1428	-3.92296	4.947086	0.003762	0.030282
si:dkey-18	851	-3.90794	3.223749	3.82E-06	9.19E-05
olig2	1684	-3.9044	5.118098	1.97E-07	7.03E-06
timp4.3	912	-3.89369	5.457788	1.56E-08	7.99E-07
si:dkeyp-11	1676	-3.88993	5.978579	2.86E-06	7.17E-05
s100a10b	872	-3.88792	6.075417	7.34E-07	2.23E-05
arhgap12a	3954	-3.88379	3.574402	3.99E-08	1.80E-06
npc2	1236	-3.88183	7.490699	3.01E-15	3.10E-12
itpka	3108	-3.86342	3.747536	5.37E-06	0.000125
robo4	3715	-3.85036	4.313533	8.34E-06	0.000183
grap2b	2396	-3.847	5.56503	2.54E-07	8.65E-06
si:dkey-17	12090	-3.84563	4.325381	9.32E-08	3.63E-06
ctsa	748	-3.84453	4.381696	3.93E-10	3.56E-08
malt2	3148	-3.8371	4.147979	0.000124	0.001843
wdfy4	2886	-3.8299	3.647256	5.04E-06	0.000118
klf12a	2479	-3.82843	4.124118	4.01E-08	1.80E-06
ehbp1l1b	9265	-3.82825	5.444675	3.19E-08	1.50E-06
acsI4b	3641	-3.82697	3.036008	6.07E-06	0.000139
aspm	10507	-3.80665	4.037961	1.01E-05	0.000214

si:ch211-11	4277	-3.78735	3.649657	3.38E-09	2.12E-07
reep3a	3865	-3.77709	3.21264	7.27E-06	0.000163
lrrkip1a	6555	-3.76733	4.923809	1.78E-07	6.52E-06
dlgap5	3267	-3.76275	3.258758	5.23E-05	0.000879
ninj2	1002	-3.76241	4.063325	2.64E-06	6.64E-05
sypl2b	1966	-3.75626	5.252935	1.11E-05	0.000233
sema5a	4513	-3.74902	6.670327	8.86E-11	9.73E-09
si:ch73-861	1054	-3.74737	3.701795	9.75E-06	0.000209
foxj2	1598	-3.73228	3.888745	4.87E-08	2.12E-06
slc7a10b	2242	-3.72931	3.344854	6.29E-06	0.000143
ctss2.1	1227	-3.71608	7.510285	2.78E-08	1.33E-06
aplnra	1708	-3.7147	5.50186	4.02E-07	1.32E-05
si:cabz010	1023	-3.70181	5.051546	4.70E-05	0.000809
mki67	8187	-3.68279	5.568542	1.12E-06	3.17E-05
si:zfos-464	2116	-3.68003	3.9506	0.000122	0.001816
pygb	2860	-3.67725	3.484544	1.37E-05	0.000281
zgc:101581	4188	-3.67498	3.506911	2.51E-05	0.000471
si:ch211-11	2249	-3.65166	3.066744	9.27E-05	0.001428
mapre1a	1699	-3.6467	6.701483	2.32E-15	3.10E-12
si:dkey-761	2932	-3.64382	3.41056	2.02E-05	0.00039
elk3	2275	-3.63811	4.58869	9.12E-08	3.57E-06
spata2l	2307	-3.63613	3.077659	3.39E-05	0.000614
snx10b	2241	-3.63464	3.521565	2.45E-06	6.20E-05
zgc:110591	2333	-3.62196	4.846818	1.04E-06	2.98E-05
cgas	810	-3.61538	3.287647	0.000183	0.002558
ctss2.2	1267	-3.61405	6.579532	4.67E-07	1.49E-05
cyp3c1	2217	-3.61023	4.213902	1.86E-05	0.000364
zfp36l1a	1899	-3.60736	6.941516	6.90E-13	1.95E-10
syngr2a	3500	-3.6028	4.527218	1.68E-06	4.49E-05
fzd2	2440	-3.60191	5.849651	1.33E-09	1.01E-07
epdl1	1983	-3.59239	3.482754	2.77E-05	0.000513
npsn	1553	-3.5739	3.676872	0.003639	0.029586
il7r	1617	-3.57014	5.529228	0.001354	0.013509
si:ch73-231	3659	-3.56836	4.242986	1.11E-06	3.14E-05
tcea3	2108	-3.55634	4.129173	3.97E-06	9.52E-05
asah1b	1726	-3.55355	6.565242	3.05E-12	6.44E-10
rab44	6889	-3.55272	4.773442	7.30E-10	6.08E-08
jpt2	2146	-3.54592	6.259813	1.44E-10	1.43E-08
fam49ba	2280	-3.54554	5.335237	3.20E-08	1.50E-06
ctbs	1568	-3.52992	3.573678	8.31E-06	0.000182
tpp1	2198	-3.52027	4.474223	1.25E-10	1.28E-08
icn	408	-3.50698	4.94438	9.60E-06	0.000206
cd59	1144	-3.48787	7.798522	1.47E-05	0.000296
rxraa	1699	-3.47169	4.362481	4.11E-08	1.85E-06
bdh2	1719	-3.44745	3.138041	2.31E-06	5.90E-05
arhgef31	2286	-3.44741	4.991602	2.86E-07	9.64E-06
rilpl2	2009	-3.44375	3.145831	0.000294	0.003832

b3gnt3.4	1427	-3.41535	3.545608	1.06E-05	0.000224
si:ch73-15:	2343	-3.41057	4.978349	2.07E-06	5.37E-05
draxin	8513	-3.41039	4.530343	3.73E-06	8.99E-05
mov10b.2	3131	-3.39212	4.92879	2.29E-06	5.88E-05
eif4ebp3l	1181	-3.39051	3.353764	6.01E-06	0.000138
sh2b3	1791	-3.38558	3.651054	0.0002	0.002749
tor4aa	2819	-3.36987	3.607388	0.000586	0.006828
dennd2c	3685	-3.36923	3.394374	1.80E-05	0.000353
arhgap15	1680	-3.36856	4.054182	1.95E-09	1.35E-07
paox1	2182	-3.34843	3.470282	0.000155	0.002228
mmp14b	4473	-3.34366	4.577592	1.30E-07	4.86E-06
si:ch1073-:	1331	-3.33492	4.230913	9.97E-06	0.000212
cib1	1353	-3.33478	4.834651	1.56E-06	4.21E-05
tpx2	2748	-3.319	3.176199	0.001733	0.016478
si:ch1073-!	1924	-3.3187	3.040662	1.11E-05	0.000232
si:ch211-10	1005	-3.31672	4.503534	0.004108	0.032401
dock8	7072	-3.30149	5.975038	4.79E-07	1.53E-05
myrf	5038	-3.30071	3.166781	0.001581	0.015356
peli2	2448	-3.29891	3.425943	0.000579	0.006779
pacc1	2017	-3.29779	3.500781	0.0004	0.004946
rgcc	1661	-3.29604	3.916799	1.89E-07	6.82E-06
glipr1a	828	-3.29207	3.445232	1.35E-05	0.000278
ugt8	5298	-3.28093	4.009998	0.000653	0.007452
smc2	4073	-3.27565	3.847737	0.000267	0.003552
p2ry10	1445	-3.27489	3.024895	0.002565	0.022465
rbm47	7222	-3.27403	5.124896	3.35E-05	0.000609
gzm3	802	-3.26733	3.878358	0.003788	0.030405
fa2h	5711	-3.26491	3.496754	0.00013	0.001922
Sep-12	4427	-3.26434	6.487622	5.21E-10	4.59E-08
parvg	1492	-3.25983	5.40895	6.58E-07	2.03E-05
prex1	7934	-3.25416	5.8839	1.05E-06	2.99E-05
ada2b	2228	-3.24834	3.00663	1.04E-06	2.97E-05
ptbp1a	4314	-3.24445	4.976362	1.12E-05	0.000234
cdca7a	1741	-3.21906	3.484806	0.000874	0.009497
btr09	2511	-3.19686	3.975973	1.81E-06	4.79E-05
fhod1	5712	-3.18398	3.245273	8.91E-05	0.001386
p2rx7	1877	-3.18015	5.087771	1.86E-07	6.75E-06
cxcr4b	1674	-3.173	7.523554	3.13E-06	7.71E-05
gab1	4453	-3.16926	5.109654	5.30E-07	1.68E-05
lpar5b	1301	-3.14392	3.574826	0.001611	0.015565
litaf	2374	-3.14284	7.309642	1.94E-12	4.39E-10
c7b	2612	-3.1418	5.586824	0.000144	0.002099
txnipa	2753	-3.13304	7.369882	6.52E-11	7.67E-09
si:dkey-23:	5656	-3.13301	4.550869	1.63E-10	1.59E-08
sox9a	1784	-3.13135	3.823582	5.80E-06	0.000134
tmem63a	2958	-3.12369	3.030938	0.003335	0.02764
sash3	1558	-3.12056	6.85863	3.13E-07	1.04E-05

slc38a5a	3639	-3.11652	3.373367	0.000891	0.009641
si:dkey-26c	1250	-3.10145	6.511819	4.01E-11	5.33E-09
frmd4ba	4516	-3.0986	3.837903	1.71E-05	0.000337
cspg5b	3332	-3.09541	3.150778	9.97E-05	0.001523
cxcl32b.1	798	-3.08104	4.926649	0.004967	0.037682
ptprc	3997	-3.05266	6.820259	5.66E-09	3.35E-07
bin2b	2438	-3.04751	5.528214	1.71E-05	0.000337
zgc:15315:	2503	-3.03525	3.0317	0.002222	0.01995
iqgap1	7680	-3.02729	5.642788	2.60E-08	1.27E-06
phf19	4073	-3.02402	3.738168	0.000383	0.00477
alox12	3595	-3.00358	4.26455	5.94E-10	5.05E-08
itpr2	5841	-3.00032	5.340626	1.83E-08	9.20E-07
ociad2	1483	3.00855	3.956523	2.14E-05	0.000408
scube1	4038	3.030827	3.563031	0.006195	0.04448
kitb	2903	3.142948	3.517037	0.00053	0.006273
fmnl3	5605	3.165834	4.077171	0.000187	0.00261
tuft1a	3237	3.284301	4.991177	9.14E-05	0.001415
si:ch211-2:	1424	3.743359	3.184179	0.000857	0.009347
atf3	2701	3.830712	6.557653	1.98E-09	1.36E-07
dynll1	1000	3.854694	11.04169	2.73E-15	3.10E-12
scgn	1605	3.863703	3.583968	0.001575	0.015309
cd83	888	3.989025	6.171617	1.79E-06	4.76E-05
si:ch73-33:	1499	4.187793	6.28041	1.80E-05	0.000353
homeza	2117	4.220133	3.78839	8.97E-05	0.001392
si:ch211-1:	1057	4.306881	6.052418	7.30E-06	0.000163
si:dkey-31c	777	4.348411	3.703514	1.55E-07	5.73E-06
hunk	1830	4.519412	4.768265	6.87E-07	2.11E-05
zgc:19410:	777	4.615589	6.196546	4.34E-07	1.40E-05
si:dkey-31c	766	4.62671	4.273604	2.44E-07	8.38E-06
si:ch211-2:	1071	4.764516	4.677218	4.56E-05	0.000786
insm1a	1190	4.765792	3.080093	4.11E-07	1.34E-05
traf3ip2l	1765	4.923479	4.36792	6.87E-06	0.000155
ifnphi1	823	5.408527	5.285983	3.87E-08	1.76E-06
cxcl18b	1101	6.878814	7.159051	1.76E-09	1.26E-07
GFP1	720	8.134915	10.89424	5.12E-13	1.56E-10
ifnphi2	546	9.144219	3.479161	3.78E-08	1.73E-06

Table 3

GO term	Cluster frequency	Genome frequency	Corr. P-value	FDR	FALSE Pos.	Genes annotated to the term
immune system process	104 of 529 genes, 19.7%	1377 of 25457 genes, 5.4%	6.72E-28	0.00%	0	cgas, ccl34b.1, c1qa, scube1, cd4-1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, tnfsf10l, klhl6, rac2, cfp, ctsl.1, si:dkey-1h24.6, hlx1, blk, si:ch211-66k16.27, mhca2a, sh2b3, rgs18, slc7a7, fybb, tlr3, notch1a, ikzf1, c1qc, ccr9a, prg4a, unc93b1, p2ry12, igf2b, hck, mhca1zja, skap2, dok2, inpp5d, itgb2, cd74b, mfap4, gpr183a, ptpn6, zgc:123107, ifi30, cmklr1, ada2b, tlr8b, gpr65, cxcr3.2, ifnphi1, ctss2.1, caspb, jak3, il2rga, si:ch73-226l13.2, c7b, il1fma, pycard, zgc:153654, cyba, ifnphi2, spi1b, ccr12a, c1qb, ccl34b.8, tnfsf10, kita, ctss2.2, rhogb, wasb, myd88, cxcl18b, cdca7a, il7r, f11r.1, fam49ba, arpc1b, spi1a, traf3ip2l, bdh2, cd74a, ephx2, csf1rb, cfbl, caspa, irf5, ctsk, rhoga, sla1a, lgals9l1, tnfai8l2a, tlr21, cxcr4b, kitb, si:ch73-158p21.3, lgals9l3, cd83, adam8a, csf1ra, zgc:173915, lgals3b, mhca2dab, p2rx7, anxa1a
immune response	61 of 529 genes, 11.5%	712 of 25457 genes, 2.8%	9.10E-18	0.00%	0	cgas, ccr12a, ccl34b.1, c1qb, c1qa, ccl34b.8, tnfsf10, cxcl32b.1, cxcl11.5, ptk2ba, kita, tnfsf10l, klhl6, ctss2.2, cfp, ctsl.1, si:dkey-1h24.6, myd88, blk, si:ch211-66k16.27, cxcl18b, mhca2a, fybb, tlr3, c1qc, ccr9a, prg4a, unc93b1, hck, traf3ip2l, mhca1zja, cd74a, cd74b, mfap4, cfbl, zgc:123107, ptpn6, gpr183a, caspa, cmklr1, tlr8b, cxcr3.2, ctsk, ctss2.1, sla1a, tnfai8l2a, tlr21, caspb, cxcr4b, kitb, si:ch73-158p21.3, si:ch73-226l13.2, cd83, c7b, zgc:173915, csf1ra, il1fma, mhca2dab, pycard, anxa1a, zgc:153654
regulation of immune system process	42 of 529 genes, 7.9%	460 of 25457 genes, 1.8%	1.69E-12	0.00%	0	spi1b, cgas, c1qb, c1qa, ptk2ba, kita, klhl6, rac2, rhogb, wasb, si:dkey-1h24.6, myd88, blk, cdca7a, f11r.1, fam49ba, fybb, tlr3, c1qc, unc93b1, spi1a, igf2b, inpp5d, cd74a, cd74b, csf1rb, mfap4, cfbl, tlr8b, gpr65, ifnphi1, rhoga, lgals9l1, tlr21, cxcr4b, kitb, lgals9l3, c7b, csf1ra, zgc:173915, adam8a, anxa1a
cell migration	52 of 529 genes, 9.8%	818 of 25457 genes, 3.2%	1.55E-09	0.00%	0	ccr12a, ccl34b.1, ccl34b.8, apoc1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, kita, rac2, insm1a, nkx2.2a, lpxn, rhogb, wasb, myd88, cxcl18b, sema5a, plxnc1, fam83ha, ccr9a, csrp1a, sema4aa, inpp5d, itgb2, rhof, cnn2, gpr183a, cmklr1, coro1a, robo4, rgs14a, sox10, cxcr3.2, fmn1, rhoga, fzd2, arhgap4a, cxcr4b, kitb, aplnra, itgb7, adam8a, csf1ra, aplnrb, mmp14b, lgals3b, p2rx7, anxa1a, ngfrb, olig2, cyba
cell chemotaxis	22 of 529 genes, 4.2%	160 of 25457 genes, 0.6%	4.24E-09	0.00%	0	ccr12a, ccl34b.1, ccl34b.8, cxcl32b.1, ano6, cxcl11.5, gpr183a, ptk2ba, rac2, cmklr1, wasb, myd88, cxcl18b, cxcr3.2, cxcr4b, ccr9a, csf1ra, lgals3b, p2rx7, anxa1a, inpp5d, cyba
defense response	40 of 529 genes, 7.6%	542 of 25457 genes, 2.1%	8.14E-09	0.00%	0	cgas, ccl34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, ptk2ba, rac2, cybb, myd88, blk, si:ch211-66k16.27, cxcl18b, ncf1, tlr3, cd59, unc93b1, p2ry12, hck, mfap4, ptpn6, caspa, mpeg1.1, npsn, irf5, tlr8b, cxcr3.2, ifnphi1, sla1a, tnfai8l2a, tlr21, caspb, cxcr4b, si:ch73-226l13.2, il1fma, adam8a, csf1ra, zgc:173915, pycard, anxa1a, ifnphi2
cell motility	53 of 529 genes, 10.0%	888 of 25457 genes, 3.5%	1.03E-08	0.00%	0	ccr12a, ccl34b.1, ccl34b.8, apoc1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, kita, rac2, insm1a, nkx2.2a, lpxn, rhogb, wasb, myd88, cxcl18b, sema5a, plxnc1, fam83ha, ccr9a, csrp1a, sema4aa, inpp5d, itgb2, rhof, cnn2, gpr183a, cmklr1, coro1a, robo4, rgs14a, sox10, cxcr3.2, fmn1, rhoga, fzd2, anxa5b, arhgap4a, cxcr4b, kitb, aplnra, itgb7, adam8a, csf1ra, aplnrb, mmp14b, lgals3b, p2rx7, anxa1a, ngfrb, olig2, cyba
localization of cell	53 of 529 genes, 10.0%	888 of 25457 genes, 3.5%	1.03E-08	0.00%	0	ccr12a, ccl34b.1, ccl34b.8, apoc1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, kita, rac2, insm1a, nkx2.2a, lpxn, rhogb, wasb, myd88, cxcl18b, sema5a, plxnc1, fam83ha, ccr9a, csrp1a, sema4aa, inpp5d, itgb2, rhof, cnn2, gpr183a, cmklr1, coro1a, robo4, rgs14a, sox10, cxcr3.2, fmn1, rhoga, fzd2, anxa5b, arhgap4a, cxcr4b, kitb, aplnra, itgb7, adam8a, csf1ra, aplnrb, mmp14b, lgals3b, p2rx7, anxa1a, ngfrb, olig2, cyba
leukocyte chemotaxis	19 of 529 genes, 3.6%	121 of 25457 genes, 0.5%	1.21E-08	0.00%	0	ccl34b.1, ccl34b.8, cxcl32b.1, ano6, cxcl11.5, gpr183a, ptk2ba, rac2, wasb, myd88, cxcl18b, cxcr3.2, cxcr4b, csf1ra, lgals3b, p2rx7, inpp5d, anxa1a, cyba
leukocyte migration	22 of 529 genes, 4.2%	169 of 25457 genes, 0.7%	1.29E-08	0.00%	0	ccl34b.1, ccl34b.8, cxcl32b.1, ano6, cxcl11.5, gpr183a, ptk2ba, rac2, rhogb, wasb, myd88, cxcl18b, cxcr3.2, rhoga, cxcr4b, adam8a, csf1ra, lgals3b, p2rx7, anxa1a, inpp5d, cyba
cell activation	25 of 529 genes, 4.7%	253 of 25457 genes, 1.0%	2.20E-07	0.00%	0	cd74b, cd4-1, gpr183a, kita, si:dkey-1h24.6, myd88, blk, il7r, cxcr3.2, ptbp1a, fam49ba, im:7154036, lgals9l1, arpc1b, ikzf1, kitb, lgals9l3, jak3, p2ry12, igf2b, cd83, il2rga, anxa1a, skap2, cd74a

movement of cell or subcellular component	64 of 529 genes, 12.1%	1303 of 25457 genes, 5.1%	2.56E-07	0.00%	0	ccl34b.1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, rac2, lpxn, wipf1b, ccr9a, csp1a, inpp5d, sema4aa, itgb2, myo1g, cnn2, gpr183a, kif11, cmklr1, kif23, cxcr3.2, fzd2, aplnra, aplnrb, mmp14b, ngfrb, olig2, cyba, ccr12a, cyfip1, apoc1, ccl34b.8, kita, insm1a, nkk2.2a, draxin, wasb, rhogb, myd88, cxcl18b, wasa, sema5a, plxnc1, fam83ha, myo9b, wipf1a, rhof, coro1a, mcamb, rgs14a, robo4, sox10, fmn3, rhoga, arhgap4a, anxa5b, myo1f, kitb, cxcr4b, itgb7, csf1ra, adam8a, lgals3b, anxa1a, p2rx7
response to stimulus	205 of 529 genes, 38.8%	6725 of 25457 genes, 26.4%	4.13E-07	0.00%	0	rab44, cgas, ccl34b.1, c1qa, scube1, cd4-1, cyth4b, ano6, cxcl11.5, atf3, entpd1, rac2, si:dkey-32n7.4, cfp, si:dkey-1h24.6, dock8, cybb, si:ch211-66k16.27, edaradd, mhc2a, sh2b3, rasgrp4, arhgap15, fybb, tlr3, notch1a, cd59, blnk, neil3, mhc1zja, csp1a, hunk, sema4aa, lpar5b, si:ch211-246e12.3, rxraa, tagapb, cdk2, p2ry10, lpar5a, cnn2, f13a1b, mpeg1.1, gpr183a, ptnp6, zgc:123107, npsn, cmklr1, tlr8b, gpr65, cxcr3.2, apbb1ip, ifnphi1, ninj2, ctss2.1, im:7154036, caspb, esco2, gpr17, aplnra, sesn2, si:ch73-226l13.2, plcg2, zgc:153654, rgl1, lgals2a, ttk, itga4, bnip4, itgae.2, c1qb, ccl34b.8, tnfsf10, tradd, kita, insm1a, nkk2.2a, ostf1, draxin, myd88, gpr18, il7r, plxnc1, pak2a, cd74a, peli2, rbck1, cfb1, rgn, caspa, crip1, socs3a, irf5, fcer1g, lcp2a, ctsk, il10ra, nfe2l1a, sla1a, arhgap12a, arhgap4a, rin3, tnfaip8l2a, cxcr4b, temp4.3, kitb, si:ch73-158p21.3, mtmr8, itgb7, p2rx7, anxa1a, tuft1a, pik3r5, cxcl32b.1, btk, ptk2ba, adcy7, khlh6, tnfsf10l, lpxn, ltb4r, ctsl.1, blk, ncfl, si:dkey-188i13.6, rgs18, c1qc, ccr9a, prg4a, p2ry12, unc93b1, hck, igf2b, prex1, inpp5d, itgb2, prkcq, cd74b, mfap4, ccnd1, si:dkey-265e15.2, sh3bp2, iggap1, ptbp1a, f13a1a.1, fzd2, arhgef3l, si:dkey-188i13.8, slc7a10b, jak3, si:ch1073-90m23.1, il2rga, c7b, il1fma, aplnrb, pycard, si:ch211-191c10.1, lifrb, ngfrb, ifnphi2, cyba, ccr12a, cyfip1, arhgap31, si:dkey-172h23.2, ctss2.2, rbp4, wasb, rhogb, ppp1r15b, sult1st1, cxcl18b, rin2, si:ch211-241f5.3, arhgap17b, sema5a, prkacba, bida, fam83ha, myo9b, traf3ip2l, mfng, cdk1, tgbf1, rhof, csf1rb, rmi2, arhgap27, robo4, mcamb, rgs14a, rhoga, slc38a5a, tlr21, ptprra, gmip, nfe2l2b, cd83, adam8a, csf1ra, zgc:173915, si:dkey-204f11.64, lgals3b, mhc2dab, gnaia
leukocyte activation	23 of 529 genes, 4.3%	228 of 25457 genes, 0.9%	8.04E-07	0.00%	0	cd74b, cd4-1, gpr183a, kita, si:dkey-1h24.6, myd88, blk, il7r, cxcr3.2, fam49ba, lgals9l1, arpc1b, ikzf1, kitb, lgals9l3, jak3, p2ry12, igf2b, cd83, il2rga, anxa1a, skap2, cd74a
immune effector process	22 of 529 genes, 4.2%	211 of 25457 genes, 0.8%	1.02E-06	0.00%	0	cd74b, cgas, mfap4, c1qb, c1qa, cfb1, gpr183a, rac2, irf5, myd88, tlr8b, blk, cxcr3.2, ifnphi1, tlr3, c1qc, cd83, c7b, zgc:173915, anxa1a, cd74a, ifnphi2
myeloid leukocyte migration	18 of 529 genes, 3.4%	144 of 25457 genes, 0.6%	2.01E-06	0.00%	0	ccl34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, rac2, rhogb, wasb, myd88, cxcl18b, cxcr3.2, rhoga, cxcr4b, csf1ra, lgals3b, inpp5d, anxa1a, p2rx7, cyba
positive regulation of biological process	102 of 529 genes, 19.3%	2709 of 25457 genes, 10.6%	2.93E-06	0.00%	0	cgas, ccl34b.1, c1qa, pik3r5, cd4-1, cxcl32b.1, ano6, tnfsf10l, khlh6, rac2, si:dkey-1h24.6, cdc14ab, blk, tpx2, fybb, tlr3, myrf, notch1a, c1qc, unc93b1, igf2b, sema4aa, lpar5b, rxraa, cd74b, cdc25b, cdk2, mfap4, p2ry10, foxj2, lpar5a, scgn, gpr183a, ccnd1, si:dkey-206d17.12, trim33l, tlr8b, gpr65, ptbp1a, si:ch211-113a14.18, arhgef3l, caspb, evt4, esco2, gpr17, aplnra, sesn2, c7b, aplnrb, wasf2, pycard, olig2, lgals2a, spi1b, bnip4, c1qb, ccl34b.8, tradd, kita, si:dkey-172h23.2, nkk2.2a, wasb, ppp1r15b, gpr18, myd88, wasa, il7r, sema5a, bida, fam49ba, plxnc1, arpc1b, fam83ha, pak2a, traf3ip2l, ptprc, cd74a, rbck1, csf1rb, cfb1, casp22, caspa, robo4, sox10, nfe2l1a, pparg, sox9a, lgals9l1, pfn1, swap70b, tlr21, cxcr4b, kitb, lgals9l3, nfe2l2b, adam8a, csf1ra, zgc:173915, lgals3b, apoeb, anxa1a, top2a
locomotion	55 of 529 genes, 10.4%	1108 of 25457 genes, 4.4%	3.85E-06	0.00%	0	cyfip1, ccr12a, ccl34b.1, ccl34b.8, apoc1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, kita, rac2, insm1a, nkk2.2a, lpxn, draxin, rhogb, wasb, myd88, cxcl18b, sema5a, plxnc1, fam83ha, ccr9a, csp1a, sema4aa, inpp5d, itgb2, rhof, cnn2, gpr183a, cmklr1, coro1a, robo4, rgs14a, sox10, cxcr3.2, fmn3, rhoga, fzd2, anxa5b, arhgap4a, cxcr4b, kitb, aplnra, itgb7, adam8a, csf1ra, aplnrb, mmp14b, lgals3b, p2rx7, anxa1a, ngfrb, olig2, cyba
lymphocyte activation	20 of 529 genes, 3.8%	199 of 25457 genes, 0.8%	1.16E-05	0.00%	0	cd74b, cd4-1, gpr183a, kita, si:dkey-1h24.6, blk, il7r, fam49ba, lgals9l1, arpc1b, ikzf1, kitb, lgals9l3, jak3, cd83, il2rga, igf2b, anxa1a, skap2, cd74a
positive regulation of response to stimulus	46 of 529 genes, 8.7%	871 of 25457 genes, 3.4%	1.32E-05	0.00%	0	lgals2a, cgas, ccl34b.1, c1qb, c1qa, ccl34b.8, pik3r5, cd4-1, cxcl32b.1, tradd, kita, si:dkey-172h23.2, tnfsf10l, khlh6, si:dkey-1h24.6, myd88, gpr18, blk, il7r, bida, fybb, tlr3, c1qc, unc93b1, igf2b, traf3ip2l, lpar5b, cd74b, rbck1, mfap4, cfb1, p2ry10, gpr183a, robo4, tlr8b, gpr65, arhgef3l, tlr21, cxcr4b, kitb, gpr17, c7b, csf1ra, zgc:173915, anxa1a
leukocyte differentiation	16 of 529 genes, 3.0%	129 of 25457 genes, 0.5%	1.87E-05	0.00%	0	spi1b, csf1rb, gpr183a, kita, ada2b, blk, il7r, slc7a7, arpc1b, ikzf1, kitb, spi1a, jak3, il2rga, csf1ra, anxa1a

granulocyte migration	16 of 529 genes, 3.0%	129 of 25457 genes, 0.5%	1.87E-05	0.00%	0	cd34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, rac2, rhogb, wasb, myd88, cxcl18b, rhoga, cxcr4b, csf1ra, lgals3b, inpp5d, anxa1a, cyba
macrophage chemotaxis	7 of 529 genes, 1.3%	16 of 25457 genes, 0.1%	2.46E-05	0.00%	0	rac2, csf1ra, lgals3b, wasb, p2rx7, cyba, cxcr3.2
positive regulation of immune system process	25 of 529 genes, 4.7%	318 of 25457 genes, 1.2%	2.47E-05	0.00%	0	cd74b, cgas, mfap4, c1qb, c1qa, cfbl, klhl6, rac2, si:dkey-1h24.6, myd88, blk, tlr8b, fam49ba, fybb, tlr3, tlr21, c1qc, unc93b1, igf2b, c7b, zgc:173915, csf1ra, adam8a, anxa1a, cd74a
T cell activation	15 of 529 genes, 2.8%	115 of 25457 genes, 0.5%	2.68E-05	0.00%	0	cd74b, fam49ba, arpc1b, lgals9l1, cd4-1, ikzf1, gpr183a, lgals9l3, jak3, igf2b, cd83, si:dkey-1h24.6, anxa1a, il7r, cd74a
chemotaxis	31 of 529 genes, 5.9%	473 of 25457 genes, 1.9%	3.49E-05	0.00%	0	cyfip1, ccr12a, ccl34b.1, ccl34b.8, cxcl32b.1, ano6, cxcl11.5, gpr183a, ptk2ba, rac2, cmklr1, nkk2.2a, draxin, robo4, rhogb, wasb, myd88, cxcl18b, cxcr3.2, sema5a, rhoga, plxnc1, cxcr4b, ccr9a, csf1ra, lgals3b, p2rx7, anxa1a, inpp5d, sema4aa, cyba
innate immune response	23 of 529 genes, 4.3%	282 of 25457 genes, 1.1%	4.74E-05	0.00%	0	cgas, mfap4, ccl34b.1, ccl34b.8, cxcl32b.1, caspa, ptpn6, ptk2ba, myd88, blk, tlr8b, si:ch211-66k16.27, cxcr3.2, sla1a, tlr3, tnfai8l2a, tlr21, caspb, unc93b1, hck, zgc:173915, csf1ra, pycard
macrophage migration	7 of 529 genes, 1.3%	18 of 25457 genes, 0.1%	6.62E-05	0.00%	0	rac2, csf1ra, lgals3b, wasb, p2rx7, cyba, cxcr3.2
taxis	31 of 529 genes, 5.9%	490 of 25457 genes, 1.9%	7.80E-05	0.00%	0	cyfip1, ccr12a, ccl34b.1, ccl34b.8, cxcl32b.1, ano6, cxcl11.5, gpr183a, ptk2ba, rac2, cmklr1, nkk2.2a, draxin, robo4, rhogb, wasb, myd88, cxcl18b, cxcr3.2, sema5a, rhoga, plxnc1, cxcr4b, ccr9a, csf1ra, lgals3b, p2rx7, anxa1a, inpp5d, sema4aa, cyba
regulation of cell motility	22 of 529 genes, 4.2%	273 of 25457 genes, 1.1%	0.00011	0.00%	0	cnn2, gpr183a, ptk2ba, kita, rac2, robo4, rhogb, wasb, sema5a, rhoga, plxnc1, arhgap4a, anxa5b, fam83ha, cxcr4b, kitb, adam8a, csf1ra, anxa1a, inpp5d, sema4aa, ngfrb
regulation of cell migration	21 of 529 genes, 4.0%	254 of 25457 genes, 1.0%	0.00015	0.00%	0	cnn2, gpr183a, ptk2ba, kita, rac2, robo4, rhogb, wasb, sema5a, rhoga, plxnc1, arhgap4a, fam83ha, cxcr4b, kitb, adam8a, csf1ra, anxa1a, inpp5d, sema4aa, ngfrb
regulation of leukocyte migration	10 of 529 genes, 1.9%	53 of 25457 genes, 0.2%	0.00019	0.00%	0	rhoga, ptk2ba, cxcr4b, rac2, csf1ra, adam8a, wasb, rhogb, anxa1a, inpp5d
regulation of response to stimulus	72 of 529 genes, 13.6%	1829 of 25457 genes, 7.2%	0.00019	0.00%	0	cgas, ccl34b.1, c1qa, pik3r5, cd4-1, cxcl32b.1, cyth4b, btk, cxcl11.5, ptk2ba, tnfsf10, klhl6, rac2, si:dkey-1h24.6, blk, fybb, tlr3, c1qc, unc93b1, igf2b, inpp5d, sema4aa, lpar5b, si:ch211-246e12.3, cd74b, mfap4, p2ry10, cnn2, gpr183a, tlr8b, gpr65, ptpb1a, ifnph1, arhgef3l, gpr17, aplnra, sesn2, si:ch1073-90m23.1, c7b, aplnrb, lgals2a, c1qb, ccl34b.8, kita, tradd, si:dkey-172h23.2, draxin, gpr18, myd88, il7r, arhgap17b, sema5a, bida, traf3ip2l, mfng, cd74a, peli2, rbck1, cfbl, rmi2, rgn, socs3a, robo4, sla1a, ptprra, tlr21, cxcr4b, kitb, zgc:173915, csf1ra, lgals3b, anxa1a
positive regulation of intracellular signal transduction	26 of 529 genes, 4.9%	384 of 25457 genes, 1.5%	0.00025	0.00%	0	cd74b, cgas, rbck1, ccl34b.1, p2ry10, ccl34b.8, pik3r5, cd4-1, cxcl32b.1, gpr183a, tradd, kita, si:dkey-172h23.2, robo4, myd88, gpr18, gpr65, il7r, bida, arhgef3l, kitb, gpr17, traf3ip2l, igf2b, lpar5b, cd74a
granulocyte chemotaxis	13 of 529 genes, 2.5%	101 of 25457 genes, 0.4%	0.00028	0.00%	0	ccl34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, cxcr4b, rac2, csf1ra, lgals3b, wasb, myd88, anxa1a, cxcl18b, inpp5d
response to cytokine	19 of 529 genes, 3.6%	221 of 25457 genes, 0.9%	0.00033	0.00%	0	cd74b, csf1rb, ccl34b.1, ccl34b.8, cd4-1, cxcl32b.1, cxcl11.5, kita, irf5, cxcl18b, cxcr3.2, il10ra, timp4.3, kitb, il2rga, csf1ra, anxa1a, lirfb, cd74a
neutrophil migration	14 of 529 genes, 2.6%	122 of 25457 genes, 0.5%	0.0004	0.00%	0	rhoga, ccl34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, cxcr4b, rac2, lgals3b, rhogb, wasb, myd88, cxcl18b, inpp5d, cyba
regulation of locomotion	22 of 529 genes, 4.2%	296 of 25457 genes, 1.2%	0.00047	0.00%	0	cnn2, gpr183a, ptk2ba, kita, rac2, robo4, rhogb, wasb, sema5a, rhoga, plxnc1, arhgap4a, anxa5b, fam83ha, cxcr4b, kitb, adam8a, csf1ra, anxa1a, inpp5d, sema4aa, ngfrb
regulation of cellular component movement	22 of 529 genes, 4.2%	296 of 25457 genes, 1.2%	0.00047	0.00%	0	cnn2, gpr183a, ptk2ba, kita, rac2, robo4, rhogb, wasb, sema5a, rhoga, plxnc1, arhgap4a, anxa5b, fam83ha, cxcr4b, kitb, adam8a, csf1ra, anxa1a, inpp5d, sema4aa, ngfrb
regulation of immune response	22 of 529 genes, 4.2%	298 of 25457 genes, 1.2%	0.00053	0.00%	0	cd74b, cgas, mfap4, c1qb, c1qa, cfbl, kita, klhl6, si:dkey-1h24.6, myd88, blk, tlr8b, fybb, tlr3, tlr21, kitb, c1qc, unc93b1, c7b, zgc:173915, anxa1a, cd74a

intracellular signal transduction	74 of 529 genes, 14.0%	1953 of 25457 genes, 7.7%	0.00057	0.00%	0	cgas, tuft1a, ccl34b.1, pik3r5, cd4-1, cxcl32b.1, cyth4b, btk, adcy7, rac2, dock8, sh2b3, rasgrp4, blnk, ccr9a, igf2b, prex1, cspn1a, hunk, lpar5b, prkcq, si:ch211-246e12.3, cd74b, p2ry10, cnn2, gpr183a, cmklr1, si:dkey-265e15.2, gpr65, cxcr3.2, arhgef3l, gpr17, aplnra0, jak3, sesn2, si:ch1073-90m23.1, aplnrb, plcg2, si:ch211-191c10.1, pycard, ngfrb, rg1, ccr12a, ccl34b.8, arhgap31, kita, tradd, si:dkey-172h23.2, rhogb, gpr18, myd88, il1r, si:ch211-241f5.3, arhgap17b, prkacba, bida, pak2a, traf3ip2l, myo9b, cd74a, rbck1, rho, rgn, crip1, socs3a, rgs14a, robo4, lcp2a, rhoga, ptpria, cxcr4b, gmpip, kitb, mtmr8
gliogenesis	15 of 529 genes, 2.8%	145 of 25457 genes, 0.6%	0.0006	0.00%	0	olig1, sox9a, slc7a7, myrf, swap70b, notch1a, gpr183a, tuba8l3, plp1b, nkk2.2a, csf1ra, sox10, anxa1a, il7r, olig2
regulation of intracellular signal transduction	36 of 529 genes, 6.8%	684 of 25457 genes, 2.7%	0.00063	0.00%	0	cgas, ccl34b.1, ccl34b.8, pik3r5, cd4-1, cxcl32b.1, cyth4b, tradd, kita, si:dkey-172h23.2, myd88, gpr18, il1r, arhgap17b, bida, igf2b, traf3ip2l, lpar5b, cd74a, si:ch211-246e12.3, cd74b, rbck1, p2ry10, gpr183a, rgn, cnn2, robo4, gpr65, arhgef3l, ptpria, kitb, gpr17, sesn2, aplnra, si:ch1073-90m23.1, aplnrb
response to stress	68 of 529 genes, 12.9%	1743 of 25457 genes, 6.8%	0.00063	0.00%	0	cgas, ccl34b.1, cxcl32b.1, ano6, cxcl11.5, ptk2ba, rac2, cybb, blk, si:ch211-66k16.27, ncf1, tlr3, cd59, unc93b1, p2ry12, igf2b, hck, neil3, cspn1a, cd74b, mfap4, lpar5a, f13a1b, mpeg1.1, ptnp6, ccnd1, npsn, tlr8b, cxcr3.2, ifnphi1, ninj2, f13a1a.1, im:7154036, fzd2, caspb, esco2, sesn2, si:ch73-226l13.2, il1fma, pycard, ifnphi2, ttk, lgals2a, ccl34b.8, insm1a, ppp1r15b, myd88, cxcl18b, pak2a, cd74a, cdk1, rmi2, caspa, crip1, irf5, socs3a, mcamb, nfe2l1a, il10ra, sla1a, tnfaipl2a, tlr21, cxcr4b, nfe2l2b, adam8a, csf1ra, zgc:173915, anxa1a
cytokine-mediated signaling pathway	17 of 529 genes, 3.2%	187 of 25457 genes, 0.7%	0.00065	0.00%	0	cd74b, csf1rb, ccl34b.1, ccl34b.8, cd4-1, cxcl32b.1, cxcl11.5, kita, irf5, cxcl18b, cxcr3.2, il10ra, kitb, il2rga, csf1ra, lifrb, cd74a
regulation of developmental process	44 of 529 genes, 8.3%	942 of 25457 genes, 3.7%	0.00089	0.00%	0	lgals2a, spi1b, cyfip1, ano6, ptk2ba, enpp1, rac2, slc3a2a, rhogb, myd88, cdca7a, f11r.1, grn2, sema5a, plxnc1, notch1a, pak2a, spi1a, igf2b, rbm47, sema4aa, cdk1, cdc25b, csf1rb, rho, gpr183a, ccnd1, grn1, socs3a, sox10, gpr65, ptbp1a, fmnl3, rhoga, sox9a, swap70b, cxcr4b, grna, aplnra, csf1ra, aplnrb, kctd12.2, anxa1a, olig2
positive regulation of immune response	20 of 529 genes, 3.8%	259 of 25457 genes, 1.0%	0.0009	0.00%	0	cd74b, cgas, mfap4, c1qb, c1qa, cfbl, klhl6, si:dkey-1h24.6, myd88, blk, tlr8b, fybb, tlr3, tlr21, c1qc, unc93b1, c7b, zgc:173915, anxa1a, cd74a
leukocyte activation involved in immune response	8 of 529 genes, 1.5%	36 of 25457 genes, 0.1%	0.00094	0.00%	0	cd74b, gpr183a, cd83, blk, myd88, anxa1a, cxcr3.2, cd74a
cellular response to cytokine stimulus	17 of 529 genes, 3.2%	193 of 25457 genes, 0.8%	0.00103	0.00%	0	cd74b, csf1rb, ccl34b.1, ccl34b.8, cd4-1, cxcl32b.1, cxcl11.5, kita, irf5, cxcl18b, cxcr3.2, il10ra, kitb, il2rga, csf1ra, lifrb, cd74a
positive regulation of cytosolic calcium ion concentration	16 of 529 genes, 3.0%	176 of 25457 genes, 0.7%	0.00144	0.00%	0	itpr2, ccr12a, p2ry10, cmklr1, gpr18, gpr65, cxcr3.2, ptbp1a, cxcr4b, ccr9a, gpr17, aplnra, aplnrb, itpr3, p2rx7, lpar5b
cell activation involved in immune response	8 of 529 genes, 1.5%	38 of 25457 genes, 0.1%	0.00147	0.00%	0	cd74b, gpr183a, cd83, blk, myd88, anxa1a, cxcr3.2, cd74a
response to external stimulus	50 of 529 genes, 9.5%	1161 of 25457 genes, 4.6%	0.00162	0.00%	0	cgas, cyfip1, ccr12a, ccl34b.1, ccl34b.8, cxcl32b.1, ano6, cxcl11.5, ptk2ba, atf3, rac2, nkk2.2a, draxin, rhogb, wasb, myd88, blk, cxcl18b, ncf1, sema5a, plxnc1, tlr3, cd59, ccr9a, inpp5d, sema4aa, cfbl, gpr183a, mpeg1.1, npsn, cmklr1, socs3a, irf5, robo4, tlr8b, cxcr3.2, ctsk, ifnphi1, rhoga, tlr21, caspb, cxcr4b, sesn2, csf1ra, lgals3b, pycard, p2rx7, anxa1a, ifnphi2, cyba
inflammatory response	19 of 529 genes, 3.6%	246 of 25457 genes, 1.0%	0.00172	0.00%	0	ccl34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, myd88, tlr8b, si:ch211-66k16.27, cxcl18b, tlr3, tlr21, caspb, cxcr4b, p2ry12, si:ch73-226l13.2, adam8a, csf1ra, il1fma, pycard, anxa1a

oligodendrocyte differentiation	9 of 529 genes, 1.7%	52 of 25457 genes, 0.2%	0.00177	0.00%	0	olig1, sox9a, myrf, swap70b, plp1b, nkk2.2a, sox10, olig2, il7r
regulation of cytosolic calcium ion concentration	17 of 529 genes, 3.2%	207 of 25457 genes, 0.8%	0.00273	0.00%	0	itpr2, ccr12a, p2ry10, scgn, cmklr1, gpr18, gpr65, cxcr3.2, ptbp1a, cxcr4b, ccr9a, gpr17, aplnra, aplnrb, itpr3, p2rx7, lpar5b
hemopoiesis	29 of 529 genes, 5.5%	520 of 25457 genes, 2.0%	0.00279	0.00%	0	spi1b, ephx2, csf1rb, scube1, gpr183a, kita, ada2b, myd88, hlx1, blk, gpr65, cdca7a, il7r, sh2b3, f11r.1, rgs18, slc7a7, arpc1b, notch1a, ikzf1, kitb, jak3, spi1a, il2rga, csf1ra, bdh2, anxa1a, dok2, itgb2
regulation of multicellular organismal process	47 of 529 genes, 8.9%	1090 of 25457 genes, 4.3%	0.00336	0.00%	0	lgals2, spi1b, cgas, apoc1, ano6, ptk2ba, enpp1, myd88, blk, cdca7a, grn2, f11r.1, sema5a, plxnc1, tlr3, notch1a, pak2a, spi1a, sema4aa, cd74a, cdk1, cd74b, cdc25b, csf1rb, gpr183a, cnn2, ccnd1, grn1, socs3a, sox10, tlr8b, gpr65, sox9a, lgals9l1, anxa5b, swap70b, cxcr4b, grna, lgals9l3, aplnra, csf1ra, aplnrb, eif4ebp3l, apoeb, kctd12.2, anxa1a, olig2
Rac protein signal transduction	6 of 529 genes, 1.1%	20 of 25457 genes, 0.1%	0.00373	0.00%	0	arhgap17b, rac2, rhoga, robo4, rhogb, si:ch211-246e12.3
hematopoietic or lymphoid organ development	29 of 529 genes, 5.5%	532 of 25457 genes, 2.1%	0.00438	0.00%	0	spi1b, ephx2, csf1rb, scube1, gpr183a, kita, ada2b, myd88, hlx1, blk, gpr65, cdca7a, il7r, sh2b3, f11r.1, rgs18, slc7a7, arpc1b, notch1a, ikzf1, kitb, jak3, spi1a, il2rga, csf1ra, bdh2, anxa1a, dok2, itgb2
glial cell differentiation	13 of 529 genes, 2.5%	131 of 25457 genes, 0.5%	0.00572	0.00%	0	olig1, sox9a, slc7a7, myrf, swap70b, notch1a, tuba8l3, plp1b, nkk2.2a, csf1ra, sox10, il7r, olig2
small GTPase mediated signal transduction	22 of 529 genes, 4.2%	344 of 25457 genes, 1.4%	0.00581	0.00%	0	rhof, p2ry10, cyth4b, arhgap31, si:dkey-172h23.2, rac2, robo4, rhogb, dock8, gpr18, gpr65, arhgap17b, rhoga, rasgrp4, arhgef3l, gpr17, si:ch1073-90m23.1, myo9b, lpar5b, ngfrb, rgl1, si:ch211-246e12.3
neutrophil chemotaxis	11 of 529 genes, 2.1%	94 of 25457 genes, 0.4%	0.00647	0.00%	0	ccl34b.1, ccl34b.8, cxcl32b.1, cxcl11.5, cxcr4b, rac2, lgals3b, wasb, myd88, cxcl18b, inpp5d
immune system development	29 of 529 genes, 5.5%	543 of 25457 genes, 2.1%	0.00652	0.00%	0	spi1b, ephx2, csf1rb, scube1, gpr183a, kita, ada2b, myd88, hlx1, blk, gpr65, cdca7a, il7r, sh2b3, f11r.1, rgs18, slc7a7, arpc1b, notch1a, ikzf1, kitb, jak3, spi1a, il2rga, csf1ra, bdh2, anxa1a, dok2, itgb2
regulation of neutrophil migration	6 of 529 genes, 1.1%	22 of 25457 genes, 0.1%	0.00694	0.00%	0	rac2, rhoga, rhogb, wasb, cxcr4b, inpp5d
positive regulation of cellular process	80 of 529 genes, 15.1%	2322 of 25457 genes, 9.1%	0.00751	0.00%	0	cgas, ccl34b.1, pik3r5, cd4-1, cxcl32b.1, tnfsf10l, rac2, cdc14ab, blk, tpx2, myrf, notch1a, igf2b, sema4aa, lpar5b, rxa, cd74b, cdc25b, cdk2, p2ry10, foxj2, scgn, gpr183a, ccnd1, si:dkey-206d17.12, trim33l, gpr65, ptbp1a, si:ch211-113a14.18, arhgef3l, caspb, etv4, esco2, gpr17, aplnra, sesn2, aplnrb, wasf2, pycard, olig2, lgals2a, bnip4, ccl34b.8, tradd, kita, si:dkey-172h23.2, nkk2.2a, wasb, ppp1r15b, gpr18, myd88, wasa, il7r, sema5a, bida, fam49ba, plxnc1, arpc1b, fam83ha, pak2a, traf3ip2l, ptpc, cd74a, rbck1, csf1rb, casp22, caspa, robo4, sox10, nfe2l1a, pparg, sox9a, pfn1, swap70b, kitb, nfe2l2b, csf1ra, adam8a, anxa1a, top2a