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Abstract

Single amino acid variations (SAVs) are a primary contributor to variations in the

human genome. Identifying pathogenic SAVs can aid in the diagnosis and understand-

ing of the genetic architecture of complex diseases, such as cancer. Most approaches
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for predicting the functional effects or pathogenicity of SAVs rely on either sequence

or structural information. Nevertheless, previous analyses have shown that methods

that depend on only sequence or structural information may have limited accuracy.

Recently, researchers have attempted to increase the accuracy of their predictions by

incorporating protein dynamics into pathogenicity predictions. This study presents

<Lai Yang Rubenstein Uzun Sarkar> (LYRUS), a machine learning method that

uses an XGBoost classifier selected by TPOT to predict the pathogenicity of SAVs.

LYRUS incorporates five sequence-based features, six structure-based features, and

four dynamics-based features. Uniquely, LYRUS includes a newly-proposed sequence

co-evolution feature called variation number. LYRUS’s performance was evaluated us-

ing a dataset that contains 4,363 protein structures corresponding to 20,307 SAVs based

on human genetic variant data from the ClinVar database. Based on our dataset, the

LYRUS classifier has a higher accuracy, specificity, F-measure, and Matthews correla-

tion coefficient (MCC) than alternative methods including PolyPhen2, PROVEAN,

SIFT, Rhapsody, EVMutation, MutationAssessor, SuSPect, FATHMM, and MVP.

Variation numbers used within LYRUS differ greatly between pathogenic and neu-

tral SAVs, and have a high feature weight in the XGBoost classifier employed by this

method. Applications of the method to PTEN and TP53 further corroborate LYRUS’s

strong performance. LYRUS is freely available and the source code can be found at

https://github.com/jiaying2508/LYRUS.

Introduction

Recent technological advances such as high-throughput screening methods have made an

abundance of sequencing data that have transformed our understanding of human genetic

variation readily available. Since the determination of the first human genome sequence,

more than one million human genomes have been collectively sequenced across the academic,

clinical, and private sectors1,2. This increase in genomic data is revealing a growing number

of rare variants, for which there is insufficient data to decipher whether they are pathogenic.
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Rationalizing the functional and clinical implications of these millions of observed sequence

variants remains a formidable undertaking.

In the postgenomic era, understanding the relationship among genetic and phenotypic

variations represents a major challenge3. Single nucleotide polymorphisms (SNP) refer to

a single nucleotide substitution that occurs in more than 1% of the population. SNPs,

which occur approximately once in every 1000 nucleotides, significantly contribute to human

genetic variation and diversity4. There are approximately 4 to 5 million SNPs in the human

genome, which result in a wide range of phenotypic properties, such as eye color, disease, and

individual drug responses5. There are two types of coding region SNPs: (1) synonymous

and (2) non-synonymous. Synonymous SNPs do not alter the encoded protein sequence,

yet perturb splicing, regulatory mechanisms, and gene expression levels6. Non-synonymous

SNPs, on the other hand, alter the protein sequence, and may result in single amino acid

variants (SAVs)7. Among the known disease variants, roughly 45% are missense variants

that encode a single amino acid change in the affected protein8, which are tied to human

diseases such as Parkinson’s disease, Alzheimer’s disease, and cancer9,10. Differentiating

pathogenic SAVs from neutral SAVs is thus of great importance in the post-genomic era,

as it can enhance our understanding of the correlation between genotype and phenotype,

facilitating the development of novel treatment strategies for complex diseases.

The accurate classification of effects of genetic variants on various disorders remains a

difficult goal to achieve, despite the abundance of genomic data collected over the last decade

and the multiple efforts to elucidate their links to phenotypic traits. Most existing software

for predicting the functional effects of amino acid variations are based on the assumption

that protein sequences observed among living organisms have survived natural selection. As

a result, evolutionarily-conserved amino acid positions across multiple species are assumed

to be functionally important, and amino acid variations observed at conserved positions are

assumed to be pathogenic11.

Previous analyses have shown that methods incorporating only sequence-related infor-

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.10.443497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443497
http://creativecommons.org/licenses/by-nc-nd/4.0/


mation may suffer from reduced accuracy12. Furthermore, Sunyaev et al.13 have shown

that pathogenic mutations often affect the intrinsic structural features of proteins, including

sites involved in disulphide bonds, and Wang and Moult14 have demonstrated that most

pathogenic mutations appear to affect protein stability. It is therefore evident that know-

ing the impact of mutations on protein stability is essential for clarifying the relationships

among the structure, function, and dynamics of a given protein. Structure-based modeling

approaches have lagged behind sequence-based approaches in evaluating the effects of SAVs,

even though first-generation classifiers that can take 3D structures into account have shown

considerable success15–17. Additionally, most computational methods focus on reaching the

highest variant classification accuracy rather than understanding the modifications that oc-

cur at the molecular scale, which might be crucial for the design of drugs or treatments.

Changes in folding free energies (∆∆Gfold) are the standard thermodynamic measures

to probe the effects of mutations on protein stability and have already been demonstrated

to characterize sequence and structural patterns among human pathogenic amino acid vari-

ants18–20. Several computational approaches have been developed to predict ∆∆Gfold as

a means to link it to the pathogenicity of mutations21–26. Besides changes in folding free

energies, solvent accessibility has been known to be associated with the pathogenicity of

SAVs. SAVs located on the protein surface are more likely to be neutral, whereas those

that are buried in the protein core are more likely to be pathogenic11. Accordingly, various

approaches for predicting pathogenicity that rely on structural features are available, such

as Bongo, which uses graph theoretic measures to evaluate the structural impacts of single

point mutations16,27,28. Other studies have shown that structural information can provide

results of comparable quality to those that use sequence and evolutionary information in

predicting pathogenic SAVs29–31.

In addition to sequence conservation and protein structure, protein dynamics have also

been proven to be useful for predicting SAV functional impacts. Ponzoni and Bahar32 eval-

uated a set of features generated by elastic network models (ENMs) of proteins to efficiently
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screen protein dynamics. Their study shows the utility of considering the equilibrium dy-

namics of the protein as a means of improving the predictive ability of current pathogenicity

predictors. Other dynamic features, such as stiffness, effectiveness, and sensitivity, have also

been shown to be important in pathogenicity prediction33. Tools that use dynamics-based

features (e.g., Rhapsody) demonstrate that predictions are improved when dynamics-based

and sequence-based features are combined34.

Picking the most suitable machine learning (ML) algorithm that can learn the most

salient of these many possible features for prediction can be challenging. The Tree-based

Pipeline Optimization Tool (TPOT) is an evolutionary algorithm-based automated machine

learning (autoML) system that uses genetic programming (GP) to optimize a series of feature

selectors, preprocessors, and ML models to maximize classification/regression accuracy and

recommend an optimal pipeline35. TPOT has been shown to frequently outperform standard

ML analyses given no a priori knowledge about the problem. We utilized TPOT to search

the best ML pipeline for our dataset.

We introduce LYRUS, an ML-based approach that incorporates the essential properties

of structural information, evolutionary conservation, and protein dynamics, to predict the

pathogenicity of SAVs. We recently developed a sequence-evolutionary based concept, called

variation number, which has been shown to vary significantly among pathogenic and neutral

variants in BRCA1 and BRCA2 SNPs36. The inclusion of variation number distinguishes

LYRUS from tools currently used in the field. LYRUS was trained and evaluated on a large

set of human protein variations obtained from a publicly accessible database. The results sug-

gest that sequence-based features have higher weights than structural and dynamic features.

We compared our approach to PolyPhen2, PROVEAN, SIFT, Rhapsody, EVMutation, Mu-

tationAssessor, SuSPect, FATHMM, and MVP, which is a recently developed method that

uses deep residual networks and has shown high prediction accuracy15,34,37–42. We illustrate

the utility of LYRUS by applying it to phosphatase and tensin homolog (PTEN) and tumor

protein 53 (TP53).
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Methods

Training dataset

The training dataset for the ML pipeline was generated using ClinVar, which is a public

archive of human variations and phenotypes50. Each entry in ClinVar is associated with

a review score: the larger the number of review stars an entry receives up to a maximum

of four, the more verified that entry has been. All of the SAVs in ClinVar with at least

one review star were obtained. The SAVs in the resulting dataset were further categorized

as having a pathogenicity of benign, benign/likely benign, likely benign, likely pathogenic,

pathogenic/likely pathogenic, or pathogenic. Benign, benign/likely benign, and likely benign

SAVs were assigned a pathogenicity score of 0, while all other SAVs were assigned a score of

Table 1. Features Used for SAV Pathogenicity Prediction. Fifteen features belonging
to three different categories are used. Each feature calculation requires either an amino acid
sequence or PDB file, or both. SEQ: sequence-based feature. STR: structure-based feature.
DYN: dynamics-based feature.

Feature Name Description Type
Variation Number Sequence position conservation score calculated using homologs SEQ

Variation numbers employed in the model are scaled using
min-max normalization for each amino acid sequence

∆E Epistatic Score Change in evolutionary statistical energy computed by EVmutation39 SEQ
Functional Impact Score (FIS) Predicted magnitude of the effects of amino acid substitutions SEQ

weighted by the relative frequency of disease-causing and neutral
amino acid substitutions computed by FATHMM41

∆PSIC Difference of PSIC scores for two amino acid residue variants SEQ
computed by PolyPhen-215

Wild-type PSIC PSIC score for wild type amino acid residue computed by PolyPhen-215 SEQ
∆∆Gfold Folding free energy difference computed by FoldX43 STR
SASA Solvent accessible surface area computed by FreeSASA44 STR

Mutant SSF Knowledge-based potential for mutant amino acid variants STR
computed by MAESTRO45

Active Site Value Calibrated probability of being a ligand-binding residue STR
Assigned 1 if the probability is greater than 0.5

computed by P2Rank46

Mutant Reference Energy Unfolded-state reference energies for mutant amino acid variants STR
computed by PyRosetta47

∆Reference Energy Difference between unfolded-state reference energies for two amino acid variants STR
computed by PyRosetta47

MSD Mean squared displacements of Cα atoms derived from the anisotropic network model DYN
computed by ProDy 48

Mechanical Stiffness Measurement of the mechanical resistance of residues to external pulling forces DYN
computed by ProDy 48

Effectiveness The ability of a residue to transmit mechanical deformation signals DYN
when subjected to a unit perturbation computed by ProDy 49

Sensitivity The ability of a residue to sense mechanical deformation signals DYN
when subjected to a unit perturbation computed by ProDy 49
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Figure 1. Number of SAVs from ClinVar. Among all of the SAVs available in ClinVar,
roughly 1.2% of SAVs meet the selection criteria.

1. After data cleaning, the values of each feature for each SAV were calculated (Figure 1).

Feature selection for SAV pathogenicity prediction

The three categories of features widely used in SAV pathogenicity prediction are sequence-

based features, structure-based features, and dynamics-based features. We picked 15 features

in total from these three categories in our prediction pipeline. The 15 features are described

in Table 1 and the links to the methods used to produce them are listed in Supplementary

Table S1. The variation number is a phylogenetic measure recently developed by our lab that

can quantify sequence conservation using sequence homologs from different species36. The

pipeline for calculating variation numbers is depicted in Figure 2. The orthologous sequences

required by variation number and EVMutation were obtained from the NCBI Orthologs

Database. In addition to the sequence and variant information, all of the structural and

dynamic features also require protein structure files from the Protein Data Bank (PDB).

The PDB files were downloaded from SWISS-MODEL51.

Principal component analysis (PCA) is a way of identifying patterns in data that highlight

their similarities and differences. The target dataset can be compressed by performing a PCA

that reduces its number of dimensions if the data’s cumulative variance does not drop below

a desired threshold, i.e., if there is not too much loss of information. Redundancy was
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analyzed for the 15 selected model features using PCA.

Machine learning model selection and evaluation

TPOT was used in this study to determine the ML pipeline with the highest accuracy for

our training dataset52. To prevent overfitting, we avoided any overlaps between training and

evaluation datasets. Eighty percent of the dataset was used for training and twenty percent

was used for testing. For TPOT parameters, both the number of generations and population

size were set to 100, the cross validation size was set to 5, and the verbosity was set to 2.

TPOT suggested an XGBoost classifier to be the most suitable for our training dataset.

The XGBoost algorithm, originally created by Chen and Guestrin, is a scalable tree boosting

system that has been widely used by researchers53. Extensive studies have been done to

showcase that XGBoost is very well-suited for building up a strong classification model, and

it has been used to obtain many winning solutions in ML competitions53–55.

The performance of the chosen ML pipeline was compared to that of the PolyPhen-

2, PROVEAN, SIFT, Rhapsody, EVMutation, MutationAssessor, SuSPect, FATHMM and

MVP algorithms15,34,37–42. The performance of each method was assessed based upon its

accuracy, sensitivity, specificity, F-measure, and Matthews Correlation Coefficient (MCC),

as defined below:

Accuracy =
TP + FN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

8
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F1 =
TP

TP + 1
2
(FP + FN)

and

MCC =
TP × TN − FP × FN√

(TP + FN)× (TP + FP )× (TN + FN)× (TN + FP )

For those algorithms that could not predict the pathogenicity of an SAV, the corresponding

SAV was left out of the performance assessments.

Figure 2. Pipeline for Calculating Variation Number. Variation number counts the
number of occurrences of a position as a character attribute in all tree clades, where a charac-
ter attribute may be defined as a state that exists in some elements of a clade, but not in the
alternate clade under the same parent node56. For a given amino acid sequence, the homolog
sequences are obtained using the NCBI Homologs Database. Multiple sequence alignment
files are built using Clustal Omega57. Phylogenetic trees are generated using PAUP software
with the maximum parsimony method58. Variation number, calculated using breadth first
search, is the number of occurrences of a position as a character attribute in a given tree36.
For each amino acid sequence, variation numbers at all of the human positions are normal-
ized using min-max normalization. A smaller variation number suggests more conservation.
The software is available at thesentence https://github.com/jiaying2508/variation-number.

Results

Feature validation

Figure 3a shows the histograms of variation numbers for the pathogenic and neutral SAVs.

Variation numbers range from 0 to 1, where 0 means high conservation and 1 means low
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conservation. The mean variation number for the pathogenic SAVs is 0.12, while the mean

variation number for the neutral SAVs is 0.32. A t-test was performed using variation

numbers for pathogenic and neutral SAVs59. The resulting t-statistic is -80.33, with a p-value

of 0.0. The t-test results suggest that variation numbers for pathogenic and neutral SAVs are

significantly different: pathogenic SAVs have smaller variation numbers than neutral SAVs,

which suggests that pathogenic SAVs are more conserved than neutral SAVs.

(a) Variation Number Histogram (b) PCA

Figure 3. Feature Validations. (a) A comparison of variation number histograms for the
pathogenic and neutral SAVs. Among the 20,307 selected SAVs, 9,743 SAVs were neutral
and 10,564 SAVs were pathogenic. The mean variation number for the pathogenic SAVs
was 0.12 while the mean variation number for the neutral SAVs was 0.32. (b) Plot of the
cumulative variance vs. the number of principal components from a PCA analysis of our 15
features. This cumulative variance plot illustrates that 13 components are needed to describe
90% of the variance in the data.

PCA was applied to our feature dataset with the objective of cross-validating our feature

selections and checking redundancy among our 15 features. Figure 3b shows the correlation

between the cumulative variance (i.e., the sum of the variances of the individual principal

components) and the number of principal components. The plot shows that 13 components

are needed to describe 90% of the variance in the calculated results of all SAVs’ 15 features.

Because most of the population variance cannot be attributed to the first few components,

they cannot replace the original variables without loss of information. This analysis validates
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that there is minimal redundancy in our dataset and further supports the use of the selected

features in the subsequently chosen ML model.

In addition to the PCA, Pearson correlations were calculated between all pairs of features,

as depicted in Supplementary Figure S1. The top features that have the highest correlation

with clinical scores are the wild-type PSIC, ∆PSIC, functional impact score, and variation

number, which are all sequence-based features. Four pairs of features have a (negative)

correlation greater than 0.5. The wild-type PSIC and ∆PSIC have a correlation of 0.66,

the wild-type PSIC and variation number have a negative correlation of -0.59, the solvent

accessible surface area (SASA) and mechanical stiffness have a negative correlation of -

0.53, and the mutant reference energy and mutant statistical scoring function (SSF) have a

negative correlation of -0.52. All other pairs of features have (negative) correlations smaller

than 0.5. The correlation heatmap of the raw data suggests that sequence features have a

larger correlation with pathogenicity than the structural and dynamic features. It also shows

that all of the features are largely independent of one another, and thus the inclusion of all

of the features in our model is necessary.

Machine learning pipeline

The classification model is intended for predicting whether an SAV is pathogenic (score 1)

or non-pathogenic (score 0). TPOT recommended the XGBoost Classifier, which achieved

the highest accuracy of 0.87, as the most suitable ML method for our dataset52,53. The

optimized XGBoost classifier has a learning rate of 0.1. Feature importance scores were

calculated and the average of 1000 repeats was taken(Supplementary Figure S2). ∆PSIC

has the highest weight, followed by FIS, wild-type PSIC, and variation number, which are

all sequence-based features. This is all in accordance with the feature correlation heatmap

(Supplementary Figure S1). All of the other features had smaller, but similar importance

values.
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Predictive power of the model

A total of 20,307 SAVs were extracted from ClinVar. To examine the performance of the

model, 20% of the training dataset (4,062 SAVs) was randomly selected for testing purposes

1000 different times. Supplementary Table S2 present the true positive, true negative, false

positive, and false negative counts for each method. Rhapsody and EVMutation are able to

predict the correct pathogenicity of less than 60% of the SAVs. To further test the ability

of the methods to distinguish pathogenic mutations, we plotted both the receiver operating

characteristic (ROC) curve and the precision recall (PR) curve; the results are shown in

Figures 4a and 4b. LYRUS has the highest AUC score of 0.941. It also dominates the PR

space with a score of 0.95. The overall accuracy, sensitivity, specificity, F-measure (F1), and

MCC were calculated for LYRUS as well as nine other methods (Supplementary Figure S3

and Table S3). LYRUS achieved the highest accuracy, specificity, F-measure, and MCC.

LYRUS has a sensitivity of 0.890, which is lower than that of MVP (0.986), Polyphen-2

(0.924) and SIFT (0.906). These statistics demonstrate the power of our pipeline.

(a) Area under the ROC Curve (AUC) (b) Area under the PR Curve (AUPR)

Figure 4. AUC and AUPR. (a) Area under the ROC Curve (AUC). The AUC of
LYRUS was compared with that of SuSPect, EVMutation, Rhapsody, SIFT, PROVEAN,
and PolyPhen2. The AUC for LYRUS was about 0.941, which was greater than that for all
of the other methods studied here. (b) Area under the PR Curve (AUPR). The AUPR
for LYRUS was 0.950, which was once again greater than that for all of the other methods.
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Illustrative Applications

To illustrate the effectiveness of LYRUS for identifying pathogenicity from neutral variants,

we present a case study of two proteins, phosphatase and tensin homolog deleted on chromo-

some 10 (PTEN) and tumor protein 53 (TP53), which possess both pathogenic and neutral

variants. Before being applied to PTEN and TP53, LYRUS was retrained on datasets that

excluded the SAVs of these two proteins.

Pathogenicity of PTEN mutants

PTEN is associated with advanced-stage or metastatic cancers60–62. LYRUS was applied to a

dataset of 7,657 (403x19) SAVs of PTEN. PTEN (UNIPROT: P60484) has 403 amino acids.

However, the complete X-ray crystal structure for PTEN is unavailable. The PDB 1D5R

structure was used as a template to simulate PTEN using the Robetta server63. Simulated

structures were used for the PTEN amino acids 1-13, 282-312, and 352-403, which are missing

from the crystal structure. The prediction results for PTEN are shown in Supplementary

Figure S4. Most SAVs in PTEN are predicted to be pathogenic, but all possible 342 mutants

from Thr286 to Ser305 except Asn292 and Gly293 were predicted to be neutral. These

positions are all located on the surface of the protein (Figure 5a), and the neutral predictions

are due to their low ∆PSIC scores, negative or small positive ∆∆Gfold values, large SASA

values, low stiffness values, and large MSD values.

We used ClinVar and Humsavar to find PTEN SAVs with clinical implications50,64. There

are 110 PTEN SAVs with a ‘review star’ of at least one in ClinVar50. Humsavar was also used

to retrieve PTEN SAVs64. There are 52 SAVs that are categorized as either “Polymorphism”

(equivalent to our score of 0) or “Disease” (equivalent to our score of 1). Between the two

datasets, there are 29 repetitive SAVs, seven of which had contradicting annotations. All

seven contradicting SAVs are classified as “Polymorphism” in Humsavar and “Pathogenic”

in ClinVar. We used ClinVar annotations for these seven SAVs. In total, 133 SAVs for
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PTEN were used to test the performance of LYRUS against that of other methods. The

results are listed in Supplementary Table S4 and Supplementary Figure S5. Only 39% of

the SAVs can be predicted using EVMutation. SuSPect and FATHMM have slightly higher

accuracies and sensitivities than LYRUS.

(a) (b) (c)

Figure 5. Cartoon and Surface Representations of the PTEN Protein. (a) The
red surface corresponds to PTEN positions 286 to 305. (b) Visualization of the positions of
the five false negative variants. (c) Visualization of the positions of the three false positive
variants.

We further examine the SAVs whose pathogenicity is incorrectly predicted by LYRUS.

There are five false negative SAVs: R15K, Y16H, R335Q, M134L, and K289E (Figure 5b).

R15K is predicted to be neutral given its low ∆PSIC and WT PSIC values. ∆PSIC scores

indicate the difference between the profile scores (obtained from computing the profile ma-

trix65) of the two allelic variants in the polymorphic position15. Large positive values of this

difference suggest that the studied substitution is rarely or never observed in the protein fam-

ily. R15K’s small positive ∆PSIC value implies that this specific substitution is frequently

observed in the protein family and hence less likely to be pathogenic65. The same rationale

can be used to explain the remaining four false negative predictions (i.e., Y16H, R335Q,

M134L, and K289E) even though their positive ∆∆Gfold values would suggest that they

are destabilizing mutations. Interestingly, variation numbers of all five SAVs are relatively

low, indicating that these five sites are highly conserved. This finding also demonstrates

the efficacy of variation number in pathogenicity prediction. Despite these five false neg-

ative predictions, predictions based on dynamics-based features alone were largely correct.
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For example, it is evident from the PTEN structure (Figure 5b) that M134L belongs to a

β-strand, which validates its small MSD and large stiffness values.

The three false positive SAVs are G20E, R130G, and S227F (Figure 5c). These three

false positive SAVs are not solvent-exposed (Figure 5c), are buried within the structure,

and accordingly form more interactions with neighboring residues. Interestingly, G20E is

predicted to be pathogenic by all of the software studied (an EVMutation prediction is

not available for G20E). Although G20E is annotated as a polymorphism in Humsavar,

two studies suggested G20E to be a cancer-associated variant66,67, thus the annotation of

G20E might be incorrect in Humsavar. R130G is labeled as a polymorphism in Humsavar.

However, there were three other variants at position 130, R130Q, R130L, and R130P, that are

recorded as pathogenic in ClinVar. R130G is predicted to be pathogenic, not only because

it is located in the active site but also because of its calculated large ∆PSIC value and low

variation number, ∆E, FIS, and SASA values. However, the computed ∆∆Gfold value of this

variant is negative, which means that this SAV is presumably a stabilizing mutant or that it

could be an overstabilizing mutant rendering it pathogenic. The last false positive is S227F

whose incorrect prediction was due to its large ∆PSIC and ∆∆Gfold values, and low variation

number, ∆E, and SASA values. Based on our calculations, the values of some features are

closer to the averages of those of features for pathogenic SAVs and the rest are closer to the

averages of the features for neutral SAVs. Therefore, inclusion of more relevant features (see

Discussion) may prove to be an effective way to further improve the performance of LYRUS.

Pathogenicity of TP53 mutants

LYRUS was also applied to TP53, which encodes a multifunction transcription factor whose

loss promotes tumor formation68. The predicted probabilities of pathogenicity of the TP53

variants are presented in Supplementary Figure S6. The region spanning codons 100-290

is predicted to be highly pathogenic. This region contains the core domain of the TP53

protein, and mutations in the core domain can result in the loss of DNA binding activity69.
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In addition, more than 80% of somatic TP53 mutations in human cancers occur in this

region69,70. These findings validate our predictions. The performance of LYRUS was also

compared with that of nine other software using 142 ClinVar entries (Supplementary Figure

S7 and Supplementary Table S5). LYRUS achieved the second highest accuracy as well as

sensitivity. SuSPect and FATHMM have much lower accuracy predicting the pathogenicity

of SAVs in TP53 than in PTEN, highlighting the inconsistent performance of these two

software. Furthermore, MVP achieved the highest sensitivity but the lowest specificity for

both PTEN and TP53, substantiating the potential high false-negative rates. LYRUS, on the

other hand, performed well in predicting both PTEN and TP53. There are four false positive

predictions by LYRUS: Y107H, S185N, N235S, and G293W. All four SAVs are located on

the surface of the protein and are hence solvent-exposed (Figure 6). They are all predicted

to be pathogenic due to their high ∆PSIC and SASA values and low ∆E and FIS values.

(a)

Figure 6. Carton Representation of the TP53 Protein. TP53 protein structure and
the visualization of the positions of the false positive variants.

Discussion

This study introduces LYRUS, an ML approach with the optimal pipeline selected by TPOT

for predicting the pathogenicity of human SAVs. We aimed to develop an algorithm for pre-

dicting the clinical pathogenicity of human SAVs, thus the ClinVar database was used to

generate the training dataset. Most methods in the field, such as PolyPhen2 and FATHMM,
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were designed to predict the effects of SAVs on protein function rather than their clinical

significance15,41. Functional effects and clinical significance are not one and the same. How-

ever, in order to compare the predictions across a wider range of methods, we purposefully

disregarded this subtlety.

Four pairs of features used by LYRUS have correlation coefficients higher than 0.5. The

wild-type PSIC and ∆PSIC have a correlation of 0.66, which is expected since the model

of sequence family evolution that computes the scores was constructed with the assumption

that substitution probabilities are position-dependent65. The wild-type PSIC and variation

number have a negative correlation of -0.59, which is intuitively reasonable considering that

the lower the variation number, the more conserved a given amino acid is at a particular

position, and the higher the PSIC score, the more likely this particular amino acid occurs at

this position. SASA and mechanical stiffness have a negative correlation of -0.53, because

buried residues with less solvent accessible surface area are more resistant to external pulling

forces, thus exhibiting high mechanical stiffness.

The XGBoost classifier was picked by TPOT as the best model for our dataset. The

XGBoost classifier minimizes data-overfitting issues53. A large number of false positives

is often a consequence of overfitting, and by using the XGBoost classifier, this issue was

minimized in LYRUS. LYRUS achieved the highest specificity among all the software to

which we compared (Supplementary Figure S3 and Supplementary Table S3), while the

sensitivity of LYRUS is lower than that of MVP, PolyPhen2, andSIFT. MVP achieved the

highest sensitivity, suggesting the power of the method to identify all of the pathogenic

variants. However, MVP has a very low specificity, which can be problematic as all the non-

pathogenic variants in PTEN and TP53 are also classified as pathogenic (Supplementary

Figure S5 and Supplementary Figure S7). LYRUS achieved the highest overall accuracy,

F-measure, and MCC, demonstrating the software’s strong performance.

The most predictive features in LYRUS are sequence-based features. Studies have shown

the importance of using amino acid conservation for pathogenicity prediction, which explains
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the high impact of sequence-based features in LYRUS15,37,71. The high impact score of vari-

ation number also suggests the effectiveness of this novel feature for categorizing pathogenic

and non-pathogenic SAVs. Although structural and dynamics-based features have lower

weights in LYRUS, these features are still valuable to include. Existing studies have shown

that combining information gained from multiple sequence alignment and three-dimensional

protein structures increases prediction performance12,72. Among the structural and dynamic

features, change in folding free energies and the location of binding sites have the highest

weights in LYRUS. In fact, several computational approaches have been developed to predict

∆∆Gfold in order to link it to the pathogenicity of mutations, which suggests the importance

of incorporating ∆∆Gfold into LYRUS19,20. Catalytic residues, which comprise drug binding

sites, are often conserved during evolution, and mutations of these residues can be detrimen-

tal73. This suggests the importance of incorporating information regarding the location of

binding sites into pathogenicity predictors.

Although studies have demonstrated the utility of considering the equilibrium dynamics

of proteins as a means of improving the predictive ability of pathogenicity predictors, our

study reveals that dynamics-based features did not significantly contribute to the predictive

power of LYRUS. One reason that dynamics-based features have a low impact score in

LYRUS might be the limitations imposed by the models we used to calculate them. For

example, the main disadvantage of the anisotropic network model (ANM) is its inability

to account for anharmonic motions or multimeric transitions driven by a protein’s slowest

collective modes74. The use of more sophisticated dynamics models may better capture

the protein dynamics and further improve the prediction accuracy. The inclusion of other

dynamic models are of future interest.

Another area for future improvement is the incorporation of structural changes caused by

mutations into the model. LYRUS predicts the pathogenicity of SAVs based on the original

protein structure instead of the mutated one. It has been proven that mutations promoting

protein misfolding contribute to a variety of human diseases. Incorporating information re-
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lated to structural changes, such as protein root mean square deviations (RMSDs), which

reflect structural changes, may facilitate pathogenicity prediction75–77. Other thermody-

namic information, such as changes in binding free energies, may also enhance the accuracy

of the model. The prediction method may additionally be extended to other types of DNA

mutations, such as insertions and deletions which may result in frameshifts.

SAVs from the Clinvar and Humsavar databases were used to test the performance of

LYRUS on PTEN50,64. Twenty nine SAVs are present in both datasets, seven (24%) of which

have contradictory annotations. The disagreement between the two datasets demonstrates

the importance of choosing the most appropriate annotations for the SAVs.

In this study, a small part of the PTEN structure was simulated. However, because

our method relies heavily on the PDB structure of the protein, we would not recommend

applying LYRUS to a protein whose experimental PDB structure is unavailable. Thus, our

method cannot be applied to proteins such as BRCA1, which is a limitation of our approach.

With advances in protein folding algorithms, such as AlphaFold, it may become possible

to predict the pathogenicity of SAVs using predicted structures78. Future work is needed

to generate a pipeline which can be applied to simulated structures. LYRUS is built upon

existing software (Supplementary Table S1), and the most computationally expensive part of

the method is the calculation of ∆∆Gfold using FoldX. The current software is built to predict

the SAVs for a single protein structure, and future improvement is needed to improve the

computational efficiency and enable the prediction of SAVs from different protein structures.

Conclusion

This study presents an ML pipeline (LYRUS) to predict human SAV pathogenicity that

incorporates variation number along with 14 other features. LYRUS attained an accuracy of

0.87 using an autoML-selected (TPOT) XGBoost classifier. The XGBoost model suggests

that sequence-based features have larger weights than structural and dynamic features in
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SAV pathogenicity prediction. Variation number feature is negatively correlated with clinical

pathogenicity, and has the fourth highest weight among all of the features studied here.

Comparisons among LYRUS and nine other methods suggested that our model had the

highest overall accuracy, specificity, F-measure, and MCC. Application to PTEN and TP53

also showed the high and consistent performance of LYRUS compared to other software.

The scripts for LYRUS are available at https://github.com/jiaying2508/LYRUS.
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McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J. D.; Higgins, D. G. Fast, scalable

generation of high-quality protein multiple sequence alignments using Clustal Omega. Molec-

ular Systems Biology 2011, 7, 539.

(58) Swofford, D. Phylogenetic Analysis Using Parsimony. 2003,

(59) Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.

Nature Methods 2020, 17, 261–272.

(60) Li, D.-M.; Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein

tyrosine phosphatase regulated by transforming growth factor β. Cancer research 1997, 57,

2124–2129.

(61) Liaw, D.; Marsh, D. J.; Li, J.; Dahia, P. L.; Wang, S. I.; Zheng, Z.; Bose, S.; Call, K. M.;

Tsou, H. C.; Peacoke, M., et al. Germline mutations of the PTEN gene in Cowden disease,

an inherited breast and thyroid cancer syndrome. Nature genetics 1997, 16, 64–67.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.10.443497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443497
http://creativecommons.org/licenses/by-nc-nd/4.0/


(62) Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc, J.; Miliaresis, C.;

Rodgers, L.; McCombie, R., et al. PTEN, a putative protein tyrosine phosphatase gene mu-

tated in human brain, breast, and prostate cancer. science 1997, 275, 1943–1947.

(63) Song, Y.; DiMaio, F.; Wang, R. Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.;

Baker, D. High-resolution comparative modeling with RosettaCM. Structure 2013, 21, 1735–

1742.

(64) Consortium, T. U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research

2018, 47, D506–D515.

(65) Sunyaev, S. R.; Eisenhaber, F.; Rodchenkov, I. V.; Eisenhaber, B.; Tumanyan, V. G.;

Kuznetsov, E. N. PSIC: profile extraction from sequence alignments with position-specific

counts of independent observations. Protein engineering 1999, 12, 387–394.

(66) Denning, G.; Jean-Joseph, B.; Prince, C.; Durden, D. L.; Vogt, P. K. A short N-terminal

sequence of PTEN controls cytoplasmic localization and is required for suppression of cell

growth. Oncogene 2007, 26, 3930–3940.

(67) Nguyen, H.-N.; Yang, J.-M., Jr; Rahdar, M.; Keniry, M.; Swaney, K. F.; Parsons, R.;

Park, B. H.; Sesaki, H.; Devreotes, P. N.; Iijima, M. A new class of cancer-associated PTEN

mutations defined by membrane translocation defects. Oncogene 2015, 34, 3737–3743.

(68) Vousden, K. H.; Lu, X. Live or let die: the cell’s response to p53. Nature Reviews Cancer

2002, 2, 594–604.

(69) Cho, Y.; Gorina, S.; Jeffrey, P. D.; Pavletich, N. P. Crystal structure of a p53 tumor suppressor-

DNA complex: understanding tumorigenic mutations. Science 1994, 265, 346–355.

(70) Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: origins, conse-

quences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010, 2, a001008.

(71) Bromberg, Y.; Yachdav, G.; Rost, B. SNAP predicts effect of mutations on protein function.

Bioinformatics 2008, 24, 2397–2398.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.10.443497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443497
http://creativecommons.org/licenses/by-nc-nd/4.0/


(72) Bromberg, Y.; Rost, B. SNAP: predict effect of non-synonymous polymorphisms on function.

Nucleic acids research 2007, 35, 3823–3835.

(73) Porter, C. T.; Bartlett, G. J.; Thornton, J. M. The Catalytic Site Atlas: a resource of catalytic

sites and residues identified in enzymes using structural data. Nucleic acids research 2004,

32, D129–D133.

(74) Doruker, P.; Atilgan, A. R.; Bahar, I. Dynamics of proteins predicted by molecular dynamics

simulations and analytical approaches: Application to α-amylase inhibitor. Proteins: Struc-

ture, Function, and Bioinformatics 2000, 40, 512–524.

(75) Doss, C. G. P.; Zayed, H. Comparative computational assessment of the pathogenicity of

mutations in the Aspartoacylase enzyme. Metabolic Brain Disease 2017, 32, 2105–2118.

(76) Studer, R. A.; Dessailly, B. H.; Orengo, C. A. Residue mutations and their impact on protein

structure and function: detecting beneficial and pathogenic changes. Biochemical journal

2013, 449, 581–594.

(77) Mishra, S.; Singh, S.; Misra, K. Restraining pathogenicity in Candida albicans by taxifolin as

an inhibitor of Ras1-pka pathway. Mycopathologia 2017, 182, 953–965.

(78) Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning.

Nature 2020, 577, 706–710.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.10.443497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443497
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Information for “LYRUS: A Machine Learning Model

for Predicting the Pathogenicity of Missense Variants”

Jiaying Lai1,2†, Jordan Yang3†, Ece D. Gamsiz Uzun2,4, Brenda M. Rubenstein3*, Indra Neil

Sarkar1,5*

1 Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island,

United States of America

2 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island,

United States of America

3 Department of Chemistry, Brown University, Providence, Rhode Island, United States of

America

4 Department of Pathology and Laboratory Medicine, Brown University Alpert Medical

School, Providence, Rhode Island, United States of America

5 Rhode Island Quality Institute, Providence, Rhode Island, United States of America

* To whom correspondence should be addressed.

† These authors contributed equally to this work.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.10.443497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443497
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1. Feature Correlation Heatmap. Heatmap of the Pearson correlation coefficient
for each pair of the features. The features with the highest correlation with the ClinVar scores
were all sequence-based features. Of the 105 possible pairs of features, only four pairs had a
(negative) correlation coefficient greater than 0.5, suggesting that the selected features were
largely independent.
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Figure S2. Feature Importance Scores from LYRUS. The sequence-based features
had higher weights than structural and dynamics-based features. ∆PSIC had the highest
importance score, followed by the wild-type PSIC, FIS, and variation number. The remaining
11 features had similar importance scores.

Figure S3. Statistics Compared to Other Software. The accuracy, sensitivity, speci-
ficity, F-measure, and MCC for each of the prediction methods were calculated. LYRUS
achieved the greatest accuracy, specificity, F-measure, and MCC. The sensitivity of LYRUS
was lower than that of MVP, PolyPhen2, and SIFT. Rhapsody and EVMutation were able
to predict less than 60% of the the SAVs.
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Figure S4. PTEN Prediction Heatmap. The x-axis represents PTEN amino acid posi-
tions and the y-axis represents different amino acid substitutions. The color coding of each
heatmap cell represents the predicted probability of the SAV being pathogenic. Wild-type
amino acids were assigned a probability of 0. LYRUS predicts most PTEN SAVs to be
pathogenic.

Figure S5. PTEN Statistics Compared to Other Software. The accuracy, sensitiv-
ity, specificity, F-measure, and MCC of LYRUS, PolyPhen2, PROVEAN, SIFT, Rhapsody,
EVMutation, MutationAssessor, SuSPect, FATHMM, and MVP.
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Figure S6. TP53 Prediction Heatmap. The x-axis represents TP53 amino acid posi-
tions and the y-axis represents different amino acid substitutions. The color coding of each
heatmap cell represents the predicted probability of the SAV being pathogenic. Wild-type
amino acids were assigned a probability of 0.

Figure S7. TP53 Statistics Compared to Other Software. The accuracy, sensitiv-
ity, specificity, F-measure and MCC of LYRUS, PolyPhen2, PROVEAN, SIFT, Rhapsody,
EVMutation, MutationAssessor, SuSPect, FATHMM, and MVP.
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Table S1. Links to the software used to compute each feature.

Feature Name Link
Variation Number https://github.com/jiaying2508/XGBClassifier
∆E Epistatic Score https://github.com/debbiemarkslab/EVmutation

FIS http://fathmm.biocompute.org.uk
∆PSIC http://genetics.bwh.harvard.edu/pph2/

Wild-type PSIC http://genetics.bwh.harvard.edu/pph2/
∆∆Gfold http://foldxsuite.crg.eu
SASA https://freesasa.github.io

Mutant SSF https://pbwww.che.sbg.ac.at/?page id=416
Active Site Value https://github.com/rdk/p2rank

Mutant Reference Energy http://www.pyrosetta.org
∆Reference Energy http://www.pyrosetta.org

MSD http://prody.csb.pitt.edu
Mechanical Stiffness http://prody.csb.pitt.edu

Effectiveness http://prody.csb.pitt.edu
Sensitivity http://prody.csb.pitt.edu

Table S2. Comparison to Other Models. TP = True Positive. TN = True Negative. FP =
False Positive. FN = False Negative.

Model Name TP TN FP FN Missing Total Prediction
LYRUS 1883 1664 284 231 0 4062

PolyPhen-2 1953 1090 858 161 0 4062
PROVEAN 1877 1322 625 234 4 4058

SIFT 1912 1244 703 199 4 4058
Rhapsody 1159 672 136 241 1854 2208

EVMutation 1214 577 180 281 1810 2252
MutationAssessor 1786 1245 657 298 76 3986

SuSPect 1480 1448 451 520 163 3899
FATHMM 1604 1367 581 510 0 4062

MVP 2043 686 1057 22 236 3808
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Table S3. Comparison to Other Models. MCC =Matthews Correlation Coefficient.

Model Name Accuracy Sensitivity Specificity F-measure MCC No Prediction
LYRUS 0.873 0.890 0.854 0.880 0.746 0%

PolyPhen-2 0.749 0.924 0.560 0.793 0.523 0%
PROVEAN 0.788 0.889 0.679 0.814 0.583 0.101%

SIFT 0.778 0.906 0.639 0.809 0.568 0.101%
Rhapsody 0.829 0.828 0.832 0.860 0.645 45.644%

EVMutation 0.795 0.812 0.762 0.840 0.559 44.565%
MutationAssessor 0.760 0.857 0.654 0.789 0.525 1.864%

SuSPect 0.751 0.740 0.762 0.753 0.503 4.003%
FATHMM 0.731 0.759 0.702 0.746 0.461 0%

MVP 0.716 0.986 0.381 0.794 0.478 5.810%

Table S4. PTEN Case Study. A total of 133 SAV classifications are available from ClinVar
and Humsavar. True positive (TP), true negative (TN), false positive (FP). false negative
(FN), no prediction (NP), accuracy, sensitivity, specificity, F-measure and MCC are listed.

Model Name TP TN FP FN NP Accuracy Sensitivity Specificity F-measure MCC
LYRUS 122 3 3 5 0 0.940 0.961 0.5 0.968 0.402

PolyPhen-2 116 3 3 11 0 0.895 0.913 0.5 0.943 0.280
PROVEAN 120 3 3 7 0 0.925 0.945 0.5 0.96 0.350

SIFT 118 3 3 9 0 0.910 0.929 0.5 0.952 0.311
Rhapsody 106 4 1 20 2 0.840 0.841 0.8 0.910 0.318

EVMutation 47 0 1 3 82 0.922 0.94 0 0.959 -0.035
MutationAssessor 120 3 3 7 0 0.925 0.945 0.5 0.96 0.350

SuSPect 127 2 4 0 0 0.970 1 0.333 0.984 0.568
FATHMM 126 0 6 1 0 0.947 0.992 0 0.973 -0.019

MVP 127 0 6 0 0 0.955 1 0 0.977 N/A

Table S5. TP53 Case Study. A total of 142 SAV classifications are available from ClinVar.
True positive (TP), true negative (TN), false positive (FP). false negative (FN), no prediction
(NP), accuracy, sensitivity, specificity, F-measure and MCC are listed.

Model Name TP TN FP FN NP Accuracy Sensitivity Specificity F-measure MCC
LYRUS 129 9 4 0 0 0.972 1.0 0.692 0.985 0.819

PolyPhen-2 125 13 0 4 0 0.972 0.969 1.0 0.984 0.861
PROVEAN 122 12 1 7 0 0.944 0.946 0.923 0.968 0.736

SIFT 127 12 1 2 0 0.979 0.984 0.923 0.988 0.878
Rhapsody 126 6 5 0 5 0.964 1.0 0.545 0.981 0.724

EVMutation 107 9 0 22 4 0.841 0.829 1.0 0.907 0.491
MutationAssessor 128 5 8 1 0 0.937 0.992 0.385 0.966 0.540

SuSPect 107 2 11 22 0 0.768 0.829 0.154 0.866 -0.013
FATHMM 129 0 13 0 0 0.908 1.0 0 0.952 N/A

MVP 129 0 13 0 0 0.908 1.0 0 0.952 N/A
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