bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443497; this version posted May 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

LYRUS: A Machine Learning Model for
Predicting the Pathogenicity of Missense

Variants

Jiaying Lai,"** Jordan Yang, ¥+ Ece D. Gamsiz Uzun,** Brenda M.

Rubenstein,*%# and Indra Neil Sarkar*[.#

T Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island,
United States of America
I Center for Computational Molecular Biology, Brown Unwwersity, Providence, Rhode
Island, United States of America
Y Department of Chemistry, Brown University, Providence, Rhode Island, United States of
America
§ Department of Pathology and Laboratory Medicine, Brown University Alpert Medical
School, Providence, Rhode Island, United States of America
|| Rhode Island Quality Institute, Providence, Rhode Island, United States of America
1 These authors contributed equally to this work

# To whom correspondence should be addressed.

E-mail: brenda_rubenstein@brown.edu: neil_sarkar@brown.edu

Abstract

Single amino acid variations (SAVs) are a primary contributor to variations in the
human genome. Identifying pathogenic SAVs can aid in the diagnosis and understand-

ing of the genetic architecture of complex diseases, such as cancer. Most approaches
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for predicting the functional effects or pathogenicity of SAVs rely on either sequence
or structural information. Nevertheless, previous analyses have shown that methods
that depend on only sequence or structural information may have limited accuracy.
Recently, researchers have attempted to increase the accuracy of their predictions by
incorporating protein dynamics into pathogenicity predictions. This study presents
<Lai Yang Rubenstein Uzun Sarkar> (LYRUS), a machine learning method that
uses an XGBoost classifier selected by TPOT to predict the pathogenicity of SAVs.
LYRUS incorporates five sequence-based features, six structure-based features, and
four dynamics-based features. Uniquely, LYRUS includes a newly-proposed sequence
co-evolution feature called variation number. LYRUS’s performance was evaluated us-
ing a dataset that contains 4,363 protein structures corresponding to 20,307 SAVs based
on human genetic variant data from the ClinVar database. Based on our dataset, the
LYRUS classifier has a higher accuracy, specificity, F-measure, and Matthews correla-
tion coefficient (MCC) than alternative methods including PolyPhen2, PROVEAN,
SIFT, Rhapsody, EVMutation, MutationAssessor, SuSPect, FATHMM, and MVP.
Variation numbers used within LYRUS differ greatly between pathogenic and neu-
tral SAVs, and have a high feature weight in the XGBoost classifier employed by this
method. Applications of the method to PTEN and TP53 further corroborate LYRUS’s
strong performance. LYRUS is freely available and the source code can be found at

https://github.com/jiaying2508 /LYRUS.

Introduction

Recent technological advances such as high-throughput screening methods have made an
abundance of sequencing data that have transformed our understanding of human genetic
variation readily available. Since the determination of the first human genome sequence,
more than one million human genomes have been collectively sequenced across the academic,
clinical, and private sectors'2. This increase in genomic data is revealing a growing number

of rare variants, for which there is insufficient data to decipher whether they are pathogenic.
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Rationalizing the functional and clinical implications of these millions of observed sequence
variants remains a formidable undertaking.

In the postgenomic era, understanding the relationship among genetic and phenotypic
variations represents a major challenge®. Single nucleotide polymorphisms (SNP) refer to
a single nucleotide substitution that occurs in more than 1% of the population. SNPs,
which occur approximately once in every 1000 nucleotides, significantly contribute to human
genetic variation and diversity?. There are approximately 4 to 5 million SNPs in the human
genome, which result in a wide range of phenotypic properties, such as eye color, disease, and
individual drug responses®. There are two types of coding region SNPs: (1) synonymous
and (2) non-synonymous. Synonymous SNPs do not alter the encoded protein sequence,
yet perturb splicing, regulatory mechanisms, and gene expression levels®. Non-synonymous
SNPs, on the other hand, alter the protein sequence, and may result in single amino acid
variants (SAVs)”. Among the known disease variants, roughly 45% are missense variants
that encode a single amino acid change in the affected protein®, which are tied to human

910 Differentiating

diseases such as Parkinson’s disease, Alzheimer’s disease, and cancer
pathogenic SAVs from neutral SAVs is thus of great importance in the post-genomic era,
as it can enhance our understanding of the correlation between genotype and phenotype,
facilitating the development of novel treatment strategies for complex diseases.

The accurate classification of effects of genetic variants on various disorders remains a
difficult goal to achieve, despite the abundance of genomic data collected over the last decade
and the multiple efforts to elucidate their links to phenotypic traits. Most existing software
for predicting the functional effects of amino acid variations are based on the assumption
that protein sequences observed among living organisms have survived natural selection. As
a result, evolutionarily-conserved amino acid positions across multiple species are assumed
to be functionally important, and amino acid variations observed at conserved positions are

assumed to be pathogenic!!.

Previous analyses have shown that methods incorporating only sequence-related infor-
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mation may suffer from reduced accuracy!?. Furthermore, Sunyaev et al.'® have shown
that pathogenic mutations often affect the intrinsic structural features of proteins, including
sites involved in disulphide bonds, and Wang and Moult!* have demonstrated that most
pathogenic mutations appear to affect protein stability. It is therefore evident that know-
ing the impact of mutations on protein stability is essential for clarifying the relationships
among the structure, function, and dynamics of a given protein. Structure-based modeling
approaches have lagged behind sequence-based approaches in evaluating the effects of SAVs,
even though first-generation classifiers that can take 3D structures into account have shown
considerable success!®17. Additionally, most computational methods focus on reaching the
highest variant classification accuracy rather than understanding the modifications that oc-
cur at the molecular scale, which might be crucial for the design of drugs or treatments.
Changes in folding free energies (AAGgyq) are the standard thermodynamic measures
to probe the effects of mutations on protein stability and have already been demonstrated
to characterize sequence and structural patterns among human pathogenic amino acid vari-

18-20

ants Several computational approaches have been developed to predict AAGgq as

21726 Besides changes in folding free

a means to link it to the pathogenicity of mutations
energies, solvent accessibility has been known to be associated with the pathogenicity of
SAVs. SAVs located on the protein surface are more likely to be neutral, whereas those
that are buried in the protein core are more likely to be pathogenic!!. Accordingly, various
approaches for predicting pathogenicity that rely on structural features are available, such
as Bongo, which uses graph theoretic measures to evaluate the structural impacts of single

16,27,28

point mutations . Other studies have shown that structural information can provide

results of comparable quality to those that use sequence and evolutionary information in
predicting pathogenic SAVs?3L,
In addition to sequence conservation and protein structure, protein dynamics have also

been proven to be useful for predicting SAV functional impacts. Ponzoni and Bahar3? eval-

uated a set of features generated by elastic network models (ENMs) of proteins to efficiently
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screen protein dynamics. Their study shows the utility of considering the equilibrium dy-
namics of the protein as a means of improving the predictive ability of current pathogenicity
predictors. Other dynamic features, such as stiffness, effectiveness, and sensitivity, have also
been shown to be important in pathogenicity prediction?. Tools that use dynamics-based
features (e.g., Rhapsody) demonstrate that predictions are improved when dynamics-based
and sequence-based features are combined®*.

Picking the most suitable machine learning (ML) algorithm that can learn the most
salient of these many possible features for prediction can be challenging. The Tree-based
Pipeline Optimization Tool (TPOT) is an evolutionary algorithm-based automated machine
learning (autoML) system that uses genetic programming (GP) to optimize a series of feature
selectors, preprocessors, and ML models to maximize classification/regression accuracy and
recommend an optimal pipeline®. TPOT has been shown to frequently outperform standard
ML analyses given no a priori knowledge about the problem. We utilized TPOT to search
the best ML pipeline for our dataset.

We introduce LYRUS, an ML-based approach that incorporates the essential properties
of structural information, evolutionary conservation, and protein dynamics, to predict the
pathogenicity of SAVs. We recently developed a sequence-evolutionary based concept, called
variation number, which has been shown to vary significantly among pathogenic and neutral
variants in BRCA1 and BRCA2 SNPs3¢. The inclusion of variation number distinguishes
LYRUS from tools currently used in the field. LYRUS was trained and evaluated on a large
set of human protein variations obtained from a publicly accessible database. The results sug-
gest that sequence-based features have higher weights than structural and dynamic features.
We compared our approach to PolyPhen2, PROVEAN, SIFT, Rhapsody, EVMutation, Mu-
tationAssessor, SuSPect, FATHMM, and MVP, which is a recently developed method that
uses deep residual networks and has shown high prediction accuracy 5343742 'We illustrate
the utility of LYRUS by applying it to phosphatase and tensin homolog (PTEN) and tumor
protein 53 (TP53).
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Methods

Training dataset

The training dataset for the ML pipeline was generated using ClinVar, which is a public

archive of human variations and phenotypes®.

Each entry in ClinVar is associated with
a review score: the larger the number of review stars an entry receives up to a maximum
of four, the more verified that entry has been. All of the SAVs in ClinVar with at least
one review star were obtained. The SAVs in the resulting dataset were further categorized
as having a pathogenicity of benign, benign/likely benign, likely benign, likely pathogenic,
pathogenic/likely pathogenic, or pathogenic. Benign, benign/likely benign, and likely benign
SAVs were assigned a pathogenicity score of 0, while all other SAVs were assigned a score of
Table 1. Features Used for SAV Pathogenicity Prediction. Fifteen features belonging
to three different categories are used. Each feature calculation requires either an amino acid

sequence or PDB file, or both. SEQ: sequence-based feature. STR: structure-based feature.
DYN: dynamics-based feature.

Feature Name Description Type
Variation Number Sequence position conservation score calculated using homologs SEQ
Variation numbers employed in the model are scaled using

min-max normalization for each amino acid sequence
AE Epistatic Score Change in evolutionary statistical energy computed by EVmutation®® SEQ
Functional Impact Score (FIS) Predicted magnitude of the effects of amino acid substitutions SEQ
weighted by the relative frequency of disease-causing and neutral
amino acid substitutions computed by FATHMM *!

APSIC Difference of PSIC scores for two amino acid residue variants SEQ
computed by PolyPhen-21°

Wild-type PSIC PSIC score for wild type amino acid residue computed by PolyPhen-2'° SEQ

AAGiq Folding free energy difference computed by FoldX* STR

SASA Solvent accessible surface area computed by FreeSASA** STR

Mutant SSF Knowledge-based potential for mutant amino acid variants STR
computed by MAESTRO*

Active Site Value Calibrated probability of being a ligand-binding residue STR

Assigned 1 if the probability is greater than 0.5
computed by P2Rank*6

Mutant Reference Energy Unfolded-state reference energies for mutant amino acid variants STR
computed by PyRosetta”
AReference Energy Difference between unfolded-state reference energies for two amino acid variants STR
computed by PyRosetta*”
MSD Mean squared displacements of C, atoms derived from the anisotropic network model | DYN
computed by ProDy*®
Mechanical Stiffness Measurement of the mechanical resistance of residues to external pulling forces DYN
computed by ProDy*®
Effectiveness The ability of a residue to transmit mechanical deformation signals DYN
when subjected to a unit perturbation computed by ProDy*
Sensitivity The ability of a residue to sense mechanical deformation signals DYN

when subjected to a unit perturbation computed by ProDy*
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Total ClinVar Entries
1,637,866

Missense SAVs
666,293

Benign, Likely benign, Likely
pathogenic, or Pathogenic

78,569

Review Stars >= 1
63,377

All Feature Values Available
20,307

Figure 1. Number of SAVs from ClinVar. Among all of the SAVs available in ClinVar,
roughly 1.2% of SAVs meet the selection criteria.

1. After data cleaning, the values of each feature for each SAV were calculated (Figure 1).

Feature selection for SAV pathogenicity prediction

The three categories of features widely used in SAV pathogenicity prediction are sequence-
based features, structure-based features, and dynamics-based features. We picked 15 features
in total from these three categories in our prediction pipeline. The 15 features are described
in Table 1 and the links to the methods used to produce them are listed in Supplementary
Table S1. The variation number is a phylogenetic measure recently developed by our lab that
can quantify sequence conservation using sequence homologs from different species®. The
pipeline for calculating variation numbers is depicted in Figure 2. The orthologous sequences
required by variation number and EVMutation were obtained from the NCBI Orthologs
Database. In addition to the sequence and variant information, all of the structural and
dynamic features also require protein structure files from the Protein Data Bank (PDB).
The PDB files were downloaded from SWISS-MODEL?®!.

Principal component analysis (PCA) is a way of identifying patterns in data that highlight
their similarities and differences. The target dataset can be compressed by performing a PCA
that reduces its number of dimensions if the data’s cumulative variance does not drop below

a desired threshold, i.e., if there is not too much loss of information. Redundancy was
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analyzed for the 15 selected model features using PCA.

Machine learning model selection and evaluation

TPOT was used in this study to determine the ML pipeline with the highest accuracy for

t52. To prevent overfitting, we avoided any overlaps between training and

our training datase
evaluation datasets. Eighty percent of the dataset was used for training and twenty percent
was used for testing. For TPOT parameters, both the number of generations and population
size were set to 100, the cross validation size was set to 5, and the verbosity was set to 2.
TPOT suggested an XGBoost classifier to be the most suitable for our training dataset.
The XGBoost algorithm, originally created by Chen and Guestrin, is a scalable tree boosting

3

system that has been widely used by researchers®®. Extensive studies have been done to

showcase that XGBoost is very well-suited for building up a strong classification model, and
it has been used to obtain many winning solutions in ML competitions® 5.

The performance of the chosen ML pipeline was compared to that of the PolyPhen-
2, PROVEAN, SIFT, Rhapsody, EVMutation, MutationAssessor, SuSPect, FATHMM and
MVP algorithms 343742 The performance of each method was assessed based upon its

accuracy, sensitivity, specificity, F-measure, and Matthews Correlation Coefficient (MCC),

as defined below:

) B TP+ FN
Y = TP Y TN+ FP+ FN
S ittty = rr
ENSITLIUl y = TP+FN
TN
P
Speci ficity TN FP


https://doi.org/10.1101/2021.05.10.443497
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443497; this version posted May 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B TP
- TP+ i(FP+FN)

By

and

TP xTN—FPxFN

MCC =
V(TP +FN)x (TP+FP)x (IN+ FN) x (I'N + FP)

For those algorithms that could not predict the pathogenicity of an SAV, the corresponding

SAV was left out of the performance assessments.

Homologs Generate multiple Count the total number of occurrences
Sequences from === sequencealignment === Build Phylogenetic Tree ==  of position as a character attribute
NCBI (MSA) file Uses Breadth First Search
Variation Numb
>S1FLA APRGQDA >S1FLA APRGQDA S1FLA APRGQDA *ereon Tum ers1 2 9\ 3F;°§§A
>S2 FLA APRGQDA  >S2FLA APRGQDA S4FLA APRGQDA S4FLA APRGQDA
>S3 FLA A QDA >S3 FLA A QDA S2FLA A°RGQDA
>S4 FLA PSS APRCQDA >S4 FLA PSS APRGQDA S2 FLATPS--TAPRGQDA
S3FLA A QDA S3FLA A QDA

Figure 2. Pipeline for Calculating Variation Number. Variation number counts the
number of occurrences of a position as a character attribute in all tree clades, where a charac-
ter attribute may be defined as a state that exists in some elements of a clade, but not in the
alternate clade under the same parent node®®. For a given amino acid sequence, the homolog
sequences are obtained using the NCBI Homologs Database. Multiple sequence alignment
files are built using Clustal Omega’”. Phylogenetic trees are generated using PAUP software
with the maximum parsimony method®®. Variation number, calculated using breadth first
search, is the number of occurrences of a position as a character attribute in a given tree?3¢.
For each amino acid sequence, variation numbers at all of the human positions are normal-
ized using min-max normalization. A smaller variation number suggests more conservation.

The software is available at thesentence https://github.com/jiaying2508 /variation-number.

Results

Feature validation

Figure 3a shows the histograms of variation numbers for the pathogenic and neutral SAVs.

Variation numbers range from 0 to 1, where 0 means high conservation and 1 means low
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conservation. The mean variation number for the pathogenic SAVs is 0.12, while the mean
variation number for the neutral SAVs is 0.32. A t-test was performed using variation
numbers for pathogenic and neutral SAVs®®. The resulting t-statistic is -80.33, with a p-value
of 0.0. The t-test results suggest that variation numbers for pathogenic and neutral SAVs are
significantly different: pathogenic SAVs have smaller variation numbers than neutral SAVs,

which suggests that pathogenic SAVs are more conserved than neutral SAVs.
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Figure 3. Feature Validations. (a) A comparison of variation number histograms for the
pathogenic and neutral SAVs. Among the 20,307 selected SAVs, 9,743 SAVs were neutral
and 10,564 SAVs were pathogenic. The mean variation number for the pathogenic SAVs
was 0.12 while the mean variation number for the neutral SAVs was 0.32. (b) Plot of the
cumulative variance vs. the number of principal components from a PCA analysis of our 15
features. This cumulative variance plot illustrates that 13 components are needed to describe
90% of the variance in the data.

PCA was applied to our feature dataset with the objective of cross-validating our feature
selections and checking redundancy among our 15 features. Figure 3b shows the correlation
between the cumulative variance (i.e., the sum of the variances of the individual principal
components) and the number of principal components. The plot shows that 13 components
are needed to describe 90% of the variance in the calculated results of all SAVs’ 15 features.
Because most of the population variance cannot be attributed to the first few components,

they cannot replace the original variables without loss of information. This analysis validates

10
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that there is minimal redundancy in our dataset and further supports the use of the selected
features in the subsequently chosen ML model.

In addition to the PCA, Pearson correlations were calculated between all pairs of features,
as depicted in Supplementary Figure S1. The top features that have the highest correlation
with clinical scores are the wild-type PSIC, APSIC, functional impact score, and variation
number, which are all sequence-based features. Four pairs of features have a (negative)
correlation greater than 0.5. The wild-type PSIC and APSIC have a correlation of 0.66,
the wild-type PSIC and variation number have a negative correlation of -0.59, the solvent
accessible surface area (SASA) and mechanical stiffness have a negative correlation of -
0.53, and the mutant reference energy and mutant statistical scoring function (SSF) have a
negative correlation of -0.52. All other pairs of features have (negative) correlations smaller
than 0.5. The correlation heatmap of the raw data suggests that sequence features have a
larger correlation with pathogenicity than the structural and dynamic features. It also shows
that all of the features are largely independent of one another, and thus the inclusion of all

of the features in our model is necessary.

Machine learning pipeline

The classification model is intended for predicting whether an SAV is pathogenic (score 1)
or non-pathogenic (score 0). TPOT recommended the XGBoost Classifier, which achieved
the highest accuracy of 0.87, as the most suitable ML method for our dataset®*5. The
optimized XGBoost classifier has a learning rate of 0.1. Feature importance scores were
calculated and the average of 1000 repeats was taken(Supplementary Figure S2). APSIC
has the highest weight, followed by FIS, wild-type PSIC, and variation number, which are
all sequence-based features. This is all in accordance with the feature correlation heatmap
(Supplementary Figure S1). All of the other features had smaller, but similar importance

values.
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Predictive power of the model

A total of 20,307 SAVs were extracted from ClinVar. To examine the performance of the
model, 20% of the training dataset (4,062 SAVs) was randomly selected for testing purposes
1000 different times. Supplementary Table S2 present the true positive, true negative, false
positive, and false negative counts for each method. Rhapsody and EVMutation are able to
predict the correct pathogenicity of less than 60% of the SAVs. To further test the ability
of the methods to distinguish pathogenic mutations, we plotted both the receiver operating
characteristic (ROC) curve and the precision recall (PR) curve; the results are shown in
Figures 4a and 4b. LYRUS has the highest AUC score of 0.941. It also dominates the PR
space with a score of 0.95. The overall accuracy, sensitivity, specificity, F-measure (F7), and
MCC were calculated for LYRUS as well as nine other methods (Supplementary Figure S3
and Table S3). LYRUS achieved the highest accuracy, specificity, F-measure, and MCC.
LYRUS has a sensitivity of 0.890, which is lower than that of MVP (0.986), Polyphen-2

(0.924) and SIFT (0.906). These statistics demonstrate the power of our pipeline.
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Figure 4. AUC and AUPR. (a) Area under the ROC Curve (AUC). The AUC of
LYRUS was compared with that of SuSPect, EVMutation, Rhapsody, SIFT, PROVEAN,
and PolyPhen2. The AUC for LYRUS was about 0.941, which was greater than that for all
of the other methods studied here. (b) Area under the PR Curve (AUPR). The AUPR
for LYRUS was 0.950, which was once again greater than that for all of the other methods.
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Illustrative Applications

To illustrate the effectiveness of LYRUS for identifying pathogenicity from neutral variants,
we present a case study of two proteins, phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN) and tumor protein 53 (TP53), which possess both pathogenic and neutral
variants. Before being applied to PTEN and TP53, LYRUS was retrained on datasets that

excluded the SAVs of these two proteins.

Pathogenicity of PTEN mutants

PTEN is associated with advanced-stage or metastatic cancers® %2, LYRUS was applied to a
dataset of 7,657 (403x19) SAVs of PTEN. PTEN (UNIPROT: P60484) has 403 amino acids.
However, the complete X-ray crystal structure for PTEN is unavailable. The PDB 1D5R
structure was used as a template to simulate PTEN using the Robetta server®. Simulated
structures were used for the PTEN amino acids 1-13, 282-312, and 352-403, which are missing
from the crystal structure. The prediction results for PTEN are shown in Supplementary
Figure S4. Most SAVs in PTEN are predicted to be pathogenic, but all possible 342 mutants
from Thr286 to Ser305 except Asn292 and Gly293 were predicted to be neutral. These
positions are all located on the surface of the protein (Figure 5a), and the neutral predictions
are due to their low APSIC scores, negative or small positive AAGg,q values, large SASA
values, low stiffness values, and large MSD values.

We used ClinVar and Humsavar to find PTEN SAVs with clinical implications®®:%4. There
are 110 PTEN SAVs with a ‘review star’ of at least one in ClinVar®®. Humsavar was also used
to retrieve PTEN SAVs%. There are 52 SAVs that are categorized as either “Polymorphism”
(equivalent to our score of 0) or “Disease” (equivalent to our score of 1). Between the two
datasets, there are 29 repetitive SAVs, seven of which had contradicting annotations. All
seven contradicting SAVs are classified as “Polymorphism” in Humsavar and “Pathogenic”

in ClinVar. We used ClinVar annotations for these seven SAVs. In total, 133 SAVs for
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PTEN were used to test the performance of LYRUS against that of other methods. The
results are listed in Supplementary Table S4 and Supplementary Figure S5. Only 39% of
the SAVs can be predicted using EVMutation. SuSPect and FATHMM have slightly higher

accuracies and sensitivities than LYRUS.

Figure 5. Cartoon and Surface Representations of the PTEN Protein. (a) The
red surface corresponds to PTEN positions 286 to 305. (b) Visualization of the positions of
the five false negative variants. (c) Visualization of the positions of the three false positive
variants.

We further examine the SAVs whose pathogenicity is incorrectly predicted by LYRUS.
There are five false negative SAVs: R15K, Y16H, R335Q, M134L, and K289E (Figure 5b).
R15K is predicted to be neutral given its low APSIC and WT PSIC values. APSIC scores
indicate the difference between the profile scores (obtained from computing the profile ma-
trix%) of the two allelic variants in the polymorphic position'®. Large positive values of this
difference suggest that the studied substitution is rarely or never observed in the protein fam-
ily. R15K’s small positive APSIC value implies that this specific substitution is frequently
observed in the protein family and hence less likely to be pathogenic®. The same rationale
can be used to explain the remaining four false negative predictions (i.e., Y16H, R335Q),
M134L, and K289E) even though their positive AAGyq values would suggest that they
are destabilizing mutations. Interestingly, variation numbers of all five SAVs are relatively
low, indicating that these five sites are highly conserved. This finding also demonstrates
the efficacy of variation number in pathogenicity prediction. Despite these five false neg-

ative predictions, predictions based on dynamics-based features alone were largely correct.
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For example, it is evident from the PTEN structure (Figure 5b) that M134L belongs to a
[-strand, which validates its small MSD and large stiffness values.

The three false positive SAVs are G20E, R130G, and S227F (Figure 5¢). These three
false positive SAVs are not solvent-exposed (Figure 5c¢), are buried within the structure,
and accordingly form more interactions with neighboring residues. Interestingly, G20E is
predicted to be pathogenic by all of the software studied (an EVMutation prediction is
not available for G20E). Although G20E is annotated as a polymorphism in Humsavar,
two studies suggested G20E to be a cancer-associated variant%-%7 thus the annotation of
G20E might be incorrect in Humsavar. R130G is labeled as a polymorphism in Humsavar.
However, there were three other variants at position 130, R130Q, R130L, and R130P, that are
recorded as pathogenic in ClinVar. R130G is predicted to be pathogenic, not only because
it is located in the active site but also because of its calculated large APSIC value and low
variation number, AE, FIS, and SASA values. However, the computed AAGy,q value of this
variant is negative, which means that this SAV is presumably a stabilizing mutant or that it
could be an overstabilizing mutant rendering it pathogenic. The last false positive is S227F
whose incorrect prediction was due to its large APSIC and AAGy,q values, and low variation
number, AE, and SASA values. Based on our calculations, the values of some features are
closer to the averages of those of features for pathogenic SAVs and the rest are closer to the
averages of the features for neutral SAVs. Therefore, inclusion of more relevant features (see

Discussion) may prove to be an effective way to further improve the performance of LYRUS.

Pathogenicity of TP53 mutants

LYRUS was also applied to TP53, which encodes a multifunction transcription factor whose
loss promotes tumor formation®. The predicted probabilities of pathogenicity of the TP53
variants are presented in Supplementary Figure S6. The region spanning codons 100-290
is predicted to be highly pathogenic. This region contains the core domain of the TP53

protein, and mutations in the core domain can result in the loss of DNA binding activity .
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In addition, more than 80% of somatic TP53 mutations in human cancers occur in this

69,70 " These findings validate our predictions. The performance of LYRUS was also

region
compared with that of nine other software using 142 ClinVar entries (Supplementary Figure
S7 and Supplementary Table S5). LYRUS achieved the second highest accuracy as well as
sensitivity. SuSPect and FATHMM have much lower accuracy predicting the pathogenicity
of SAVs in TP53 than in PTEN, highlighting the inconsistent performance of these two
software. Furthermore, MVP achieved the highest sensitivity but the lowest specificity for
both PTEN and TP53, substantiating the potential high false-negative rates. LYRUS, on the
other hand, performed well in predicting both PTEN and TP53. There are four false positive
predictions by LYRUS: Y107H, S185N, N235S, and G293W. All four SAVs are located on

the surface of the protein and are hence solvent-exposed (Figure 6). They are all predicted

to be pathogenic due to their high APSIC and SASA values and low AE and FIS values.

Figure 6. Carton Representation of the TP53 Protein. TP53 protein structure and
the visualization of the positions of the false positive variants.

Discussion

This study introduces LYRUS, an ML approach with the optimal pipeline selected by TPOT
for predicting the pathogenicity of human SAVs. We aimed to develop an algorithm for pre-
dicting the clinical pathogenicity of human SAVs, thus the ClinVar database was used to

generate the training dataset. Most methods in the field, such as PolyPhen2 and FATHMM,
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were designed to predict the effects of SAVs on protein function rather than their clinical

1541 " Functional effects and clinical significance are not one and the same. How-

significance
ever, in order to compare the predictions across a wider range of methods, we purposefully
disregarded this subtlety.

Four pairs of features used by LYRUS have correlation coefficients higher than 0.5. The
wild-type PSIC and APSIC have a correlation of 0.66, which is expected since the model
of sequence family evolution that computes the scores was constructed with the assumption
that substitution probabilities are position-dependent®. The wild-type PSIC and variation
number have a negative correlation of -0.59, which is intuitively reasonable considering that
the lower the variation number, the more conserved a given amino acid is at a particular
position, and the higher the PSIC score, the more likely this particular amino acid occurs at
this position. SASA and mechanical stiffness have a negative correlation of -0.53, because
buried residues with less solvent accessible surface area are more resistant to external pulling
forces, thus exhibiting high mechanical stiffness.

The XGBoost classifier was picked by TPOT as the best model for our dataset. The

. A large number of false positives

XGBoost classifier minimizes data-overfitting issues
is often a consequence of overfitting, and by using the XGBoost classifier, this issue was
minimized in LYRUS. LYRUS achieved the highest specificity among all the software to
which we compared (Supplementary Figure S3 and Supplementary Table S3), while the
sensitivity of LYRUS is lower than that of MVP, PolyPhen2, andSIFT. MVP achieved the
highest sensitivity, suggesting the power of the method to identify all of the pathogenic
variants. However, MVP has a very low specificity, which can be problematic as all the non-
pathogenic variants in PTEN and TP53 are also classified as pathogenic (Supplementary
Figure S5 and Supplementary Figure S7). LYRUS achieved the highest overall accuracy,
F-measure, and MCC, demonstrating the software’s strong performance.

The most predictive features in LYRUS are sequence-based features. Studies have shown

the importance of using amino acid conservation for pathogenicity prediction, which explains
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the high impact of sequence-based features in LYRUS!%37:7!

. The high impact score of vari-
ation number also suggests the effectiveness of this novel feature for categorizing pathogenic
and non-pathogenic SAVs. Although structural and dynamics-based features have lower
weights in LYRUS, these features are still valuable to include. Existing studies have shown
that combining information gained from multiple sequence alignment and three-dimensional
protein structures increases prediction performance!?®7. Among the structural and dynamic
features, change in folding free energies and the location of binding sites have the highest
weights in LYRUS. In fact, several computational approaches have been developed to predict
AAGg,q in order to link it to the pathogenicity of mutations, which suggests the importance
of incorporating AAGgq into LYRUS20, Catalytic residues, which comprise drug binding
sites, are often conserved during evolution, and mutations of these residues can be detrimen-
tal™. This suggests the importance of incorporating information regarding the location of
binding sites into pathogenicity predictors.

Although studies have demonstrated the utility of considering the equilibrium dynamics
of proteins as a means of improving the predictive ability of pathogenicity predictors, our
study reveals that dynamics-based features did not significantly contribute to the predictive
power of LYRUS. One reason that dynamics-based features have a low impact score in
LYRUS might be the limitations imposed by the models we used to calculate them. For
example, the main disadvantage of the anisotropic network model (ANM) is its inability
to account for anharmonic motions or multimeric transitions driven by a protein’s slowest
collective modes™. The use of more sophisticated dynamics models may better capture
the protein dynamics and further improve the prediction accuracy. The inclusion of other
dynamic models are of future interest.

Another area for future improvement is the incorporation of structural changes caused by
mutations into the model. LYRUS predicts the pathogenicity of SAVs based on the original
protein structure instead of the mutated one. It has been proven that mutations promoting

protein misfolding contribute to a variety of human diseases. Incorporating information re-
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lated to structural changes, such as protein root mean square deviations (RMSDs), which
reflect structural changes, may facilitate pathogenicity prediction™ 7". Other thermody-
namic information, such as changes in binding free energies, may also enhance the accuracy
of the model. The prediction method may additionally be extended to other types of DNA
mutations, such as insertions and deletions which may result in frameshifts.

SAVs from the Clinvar and Humsavar databases were used to test the performance of
LYRUS on PTEN5%64. Twenty nine SAVs are present in both datasets, seven (24%) of which
have contradictory annotations. The disagreement between the two datasets demonstrates
the importance of choosing the most appropriate annotations for the SAVs.

In this study, a small part of the PTEN structure was simulated. However, because
our method relies heavily on the PDB structure of the protein, we would not recommend
applying LYRUS to a protein whose experimental PDB structure is unavailable. Thus, our
method cannot be applied to proteins such as BRCA1, which is a limitation of our approach.
With advances in protein folding algorithms, such as AlphaFold, it may become possible

8 Future work is needed

to predict the pathogenicity of SAVs using predicted structures
to generate a pipeline which can be applied to simulated structures. LYRUS is built upon
existing software (Supplementary Table S1), and the most computationally expensive part of
the method is the calculation of AAGy,q using FoldX. The current software is built to predict

the SAVs for a single protein structure, and future improvement is needed to improve the

computational efficiency and enable the prediction of SAVs from different protein structures.

Conclusion

This study presents an ML pipeline (LYRUS) to predict human SAV pathogenicity that
incorporates variation number along with 14 other features. LYRUS attained an accuracy of
0.87 using an autoML-selected (TPOT) XGBoost classifier. The XGBoost model suggests

that sequence-based features have larger weights than structural and dynamic features in
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SAV pathogenicity prediction. Variation number feature is negatively correlated with clinical
pathogenicity, and has the fourth highest weight among all of the features studied here.
Comparisons among LYRUS and nine other methods suggested that our model had the
highest overall accuracy, specificity, F-measure, and MCC. Application to PTEN and TP53
also showed the high and consistent performance of LYRUS compared to other software.

The scripts for LYRUS are available at https://github.com /jiaying2508 /LYRUS.
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Figure S1. Feature Correlation Heatmap. Heatmap of the Pearson correlation coefficient
for each pair of the features. The features with the highest correlation with the ClinVar scores
were all sequence-based features. Of the 105 possible pairs of features, only four pairs had a
(negative) correlation coefficient greater than 0.5, suggesting that the selected features were

largely independent.
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Figure S2. Feature Importance Scores from LYRUS. The sequence-based features
had higher weights than structural and dynamics-based features. APSIC had the highest
importance score, followed by the wild-type PSIC, FIS, and variation number. The remaining
11 features had similar importance scores.
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Figure S3. Statistics Compared to Other Software. The accuracy, sensitivity, speci-
ficity, F-measure, and MCC for each of the prediction methods were calculated. LYRUS
achieved the greatest accuracy, specificity, F-measure, and MCC. The sensitivity of LYRUS
was lower than that of MVP, PolyPhen2, and SIFT. Rhapsody and EVMutation were able
to predict less than 60% of the the SAVs.
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Figure S4. PTEN Prediction Heatmap. The x-axis represents PTEN amino acid posi-
tions and the y-axis represents different amino acid substitutions. The color coding of each
heatmap cell represents the predicted probability of the SAV being pathogenic. Wild-type
amino acids were assigned a probability of 0. LYRUS predicts most PTEN SAVs to be
pathogenic.
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Figure S5. PTEN Statistics Compared to Other Software. The accuracy, sensitiv-
ity, specificity, F-measure, and MCC of LYRUS, PolyPhen2, PROVEAN, SIFT, Rhapsody,
EVMutation, MutationAssessor, SuSPect, FATHMM, and MVP.
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Figure S6. TP53 Prediction Heatmap. The x-axis represents TP53 amino acid posi-
tions and the y-axis represents different amino acid substitutions. The color coding of each
heatmap cell represents the predicted probability of the SAV being pathogenic. Wild-type
amino acids were assigned a probability of 0.
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Figure S7. TP53 Statistics Compared to Other Software. The accuracy, sensitiv-
ity, specificity, F-measure and MCC of LYRUS, PolyPhen2, PROVEAN, SIFT, Rhapsody,
EVMutation, MutationAssessor, SuSPect, FATHMM, and MVP.
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Table S1. Links to the software used to compute each feature.

Link
https://github.com/jiaying2508 /X GBClassifier
https://github.com/debbiemarkslab/EVmutation

Feature Name
Variation Number
AE Epistatic Score

FIS http://fathmm.biocompute.org.uk
APSIC http://genetics.bwh.harvard.edu/pph2/
Wild-type PSIC http://genetics.bwh.harvard.edu/pph2/
AAGio1q http://foldxsuite.crg.eu
SASA https://freesasa.github.io
Mutant SSF https://pbwww.che.sbg.ac.at/?page_id=416

Active Site Value https://github.com/rdk/p2rank

Mutant Reference Energy
AReference Energy

http://www.pyrosetta.org
http://www.pyrosetta.org

MSD http://prody.csb.pitt.edu
Mechanical Stiffness http://prody.csb.pitt.edu
Effectiveness http://prody.csb.pitt.edu
Sensitivity http://prody.csb.pitt.edu

Table S2. Comparison to Other Models. TP = True Positive. TN = True Negative. FP =
False Positive. FN = False Negative.

Model Name TP | TN | FP | FN | Missing | Total Prediction
LYRUS 1883 | 1664 | 284 | 231 0 4062
PolyPhen-2 1953 | 1090 | 858 | 161 0 4062
PROVEAN 1877 | 1322 | 625 | 234 4 4058
SIFT 1912 | 1244 | 703 | 199 4 4058
Rhapsody 1159 | 672 | 136 | 241 | 1854 2208
EVMutation 1214 | 577 | 180 | 281 | 1810 2252
MutationAssessor | 1786 | 1245 | 657 | 298 76 3986
SuSPect 1480 | 1448 | 451 | 520 163 3899
FATHMM 1604 | 1367 | 581 | 510 0 4062
MVP 2043 | 686 | 1057 | 22 236 3808
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Table S3. Comparison to Other Models. MCC =Matthews Correlation Coefficient.

Model Name Accuracy | Sensitivity | Specificity | F-measure | MCC | No Prediction
LYRUS 0.873 0.890 0.854 0.880 0.746 0%
PolyPhen-2 0.749 0.924 0.560 0.793 0.523 0%
PROVEAN 0.788 0.889 0.679 0.814 0.583 0.101%
SIF'T 0.778 0.906 0.639 0.809 0.568 0.101%
Rhapsody 0.829 0.828 0.832 0.860 0.645 45.644%
EVMutation 0.795 0.812 0.762 0.840 0.559 44.565%
MutationAssessor 0.760 0.857 0.654 0.789 0.525 1.864%
SuSPect 0.751 0.740 0.762 0.753 0.503 4.003%
FATHMM 0.731 0.759 0.702 0.746 0.461 0%
MVP 0.716 0.986 0.381 0.794 0.478 5.810%

Table S4. PTEN Case Study. A total of 133 SAV classifications are available from ClinVar
and Humsavar. True positive (TP), true negative (TN), false positive (FP). false negative
(FN), no prediction (NP), accuracy, sensitivity, specificity, F-measure and MCC are listed.

Model Name TP | TN | FP | FN | NP | Accuracy | Sensitivity | Specificity | F-measure | MCC
LYRUS 1221 3 3 5 0 0.940 0.961 0.5 0.968 0.402
PolyPhen-2 116 | 3 3 11110 0.895 0.913 0.5 0.943 0.280
PROVEAN 120 3 3 7 0 0.925 0.945 0.5 0.96 0.350
SIFT 118 | 3 3 9 0 0.910 0.929 0.5 0.952 0.311
Rhapsody 106 | 4 1120 | 2 0.840 0.841 0.8 0.910 0.318
EVMutation 47 1 0 1 3 | 82 0.922 0.94 0 0.959 -0.035
MutationAssessor | 120 | 3 3 7 0 0.925 0.945 0.5 0.96 0.350
SuSPect 127 2 4 10 0 0.970 1 0.333 0.984 0.568
FATHMM 126 | 0 6 1 0 0.947 0.992 0 0.973 -0.019
MVP 1271 0 6 0 0 0.955 1 0 0.977 N/A

Table S5. TP53 Case Study. A total of 142 SAV classifications are available from ClinVar.
True positive (TP), true negative (TN), false positive (FP). false negative (FN), no prediction
(NP), accuracy, sensitivity, specificity, F-measure and MCC are listed.

Model Name TP | TN | FP | FN | NP | Accuracy | Sensitivity | Specificity | F-measure | MCC
LYRUS 129 9 4 10 0 0.972 1.0 0.692 0.985 0.819
PolyPhen-2 125 13 | 0 | 4 0 0.972 0.969 1.0 0.984 0.861
PROVEAN 122 12 | 1 7 0 0.944 0.946 0.923 0.968 0.736
SIFT 127 12 | 1 2 0 0.979 0.984 0.923 0.988 0.878
Rhapsody 126 | 6 5 0 5 0.964 1.0 0.545 0.981 0.724
EVMutation 1071 9 0|22 4 0.841 0.829 1.0 0.907 0.491
MutationAssessor | 128 | 5 8 1 0 0.937 0.992 0.385 0.966 0.540
SuSPect 107 2 |11 22| 0 0.768 0.829 0.154 0.866 -0.013
FATHMM 1291 0 | 13| O 0 0.908 1.0 0 0.952 N/A
MVP 1291 0 [ 13| O 0 0.908 1.0 0 0.952 N/A
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