

1 **Single-domain antibodies for targeting, detection and *in vivo* imaging of human CD4⁺**
2 **cells**

3 *Bjoern Traenkle¹, Philipp D. Kaiser¹, Stefania Pezzana², Jennifer Richardson³, Marius*
4 *Gramlich¹, Teresa R. Wagner^{1,4}, Dominik Seyfried^{2,7}, Melissa Weldle⁴, Stefanie Holz⁴, Yana*
5 *Parfyonova⁴, Stefan Nueske⁵, Armin M. Scholz⁵, Anne Zeck¹, Meike Jakobi¹, Nicole*
6 *Schneiderhan-Marra¹, Martin Schaller⁶, Andreas Maurer^{2,8}, Cécile Gouttefangeas^{3,7,8}, Manfred*
7 *Kneilling^{2,6,8}, Bernd J. Pichler^{2,7,8}, Dominik Sonanini^{2,9}, and Ulrich Rothbauer^{1,4,8#}*

8 **Affiliations/Addresses**

9 ¹ NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen,
10 Germany

11 ² Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
12 University of Tübingen, Tübingen, Germany

13 ³ Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen,
14 Germany

15 ⁴ Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Germany

16 ⁵ Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University
17 Munich, Oberschleissheim, Germany

18 ⁶ Department of Dermatology, University of Tübingen, Tübingen, Germany

19 ⁷ German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner
20 site Tübingen, Tübingen, Germany

21 ⁸ Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor
22 Therapies", University of Tübingen, Germany⁹ Department of Medical Oncology and
23 Pneumology, University of Tübingen, Tübingen, Germany

24

25 [#] corresponding author

26 Prof. Dr. Ulrich Rothbauer, Natural and Medical Sciences Institute at the University of Tübingen
27 Markwiesenstr. 55, 72770 Reutlingen, Germany.

28 E-mail: ulrich.rothbauer@uni-tuebingen.de

29 Phone: +49 7121 51530-415

30 Fax: +49 7121 51530-816

31 Orcid ID: 0000-0001-5923-8986

32

33 **Abstract**

34 The advancement of new immunotherapies necessitates appropriate probes to monitor the
35 presence and distribution of distinct immune cell populations. Considering the key role of CD4⁺
36 T cells in regulating immunological processes, we generated novel single-domain antibodies
37 (nanobodies, Nbs) that specifically recognize human CD4. After in depth analysis of their
38 binding properties, recognized epitopes, and effects on T cell proliferation, activation and
39 cytokine release, we selected CD4 Nbs that did not interfere with crucial T cell processes *in*
40 *vitro* and converted them into immune tracers for non-invasive molecular imaging.
41 By optical imaging, we demonstrate the ability of a high-affinity CD4-Nb to specifically visualize
42 CD4⁺ cells *in vivo* using a xenograft model. Furthermore, time-resolved immune positron
43 emission tomography (immunoPET) of a human CD4 knock-in mouse model showed rapid
44 accumulation of ⁶⁴Cu-radiolabeled CD4-Nb in CD4⁺ T cell-rich tissues. We propose that the
45 CD4 Nbs presented here could serve as versatile probes for stratifying patients and monitoring
46 individual immune responses during personalized immunotherapy in both cancer and
47 inflammatory diseases.

48

49 Keywords: CD4, nanobody, immune tracer, PET imaging, magnetic resonance imaging,
50 immunotherapies

51

52 **Introduction**

53 In precision medicine, diagnostic classification of the disease-associated immune status
54 should guide the selection of appropriate therapies. A comprehensive analysis of a patient's
55 specific immune cell composition, activation state, and infiltration of affected tissue has been
56 shown to be highly informative for patient stratification (Delhalle et al., 2018; Rossi et al., 2019;
57 Scheuenpflug, 2017). CD4⁺ T cells are a key determinant of the immune status due to their
58 essential role in orchestrating immune responses in autoimmune diseases, immune-mediated
59 inflammatory diseases (IMIDs), cancer, and chronic viral infections (Aubert et al., 2011; Becker
60 et al., 1990; Borst et al., 2018; Byrareddy et al., 2016; Chitnis, 2007; Di Mascio et al., 2009;
61 Goverman, 2009; Penalosa-MacMaster et al., 2015). Current diagnostic standards such as
62 intra-cytoplasmic flow cytometry analysis (IC-FACS), immunohistochemistry and ex vivo
63 cytokine assays or RT-PCR analysis are exclusively invasive and limited to endpoint analyses
64 (Doan et al., 2018; Hartmann et al., 2019; Matos et al., 2010; Mousset et al., 2019).
65 Considering the emerging role of infiltrating lymphocytes and the impact of CD4⁺ T cells on the
66 outcome of immunotherapies novel approaches are needed to assess CD4⁺ T cells more
67 holistically (Tay et al., 2021). In this context, non-invasive imaging approaches offer a
68 significant benefit compared to the current diagnostic standard. To date, radiolabeled
69 antibodies have been applied to image CD4⁺ T cells in preclinical models (Di Mascio et al.,
70 2009; Kanwar et al., 2008; Rubin et al., 1996; Steinhoff et al., 2014). Due to the recycling effect
71 mediated by the neonatal Fc receptor, full-length antibodies have a long serum half-life, which
72 requires long clearance times of several days before high-contrast images can be acquired
73 (Dammes and Peer, 2020). Additionally, effector function via the Fc region was shown to
74 induce depletion or functional changes in CD4⁺ cells including the induction of proliferation or
75 cytokine release (Dialynas et al., 1983; Haque et al., 1987; Wilde et al., 1983). Notably, also
76 higher dosages of recombinant antibody fragments like Fab fragments or Cys-diabodies
77 derived from the monoclonal anti-CD4 antibody GK1.5 were recently shown to decrease CD4
78 expression *in vivo* and inhibit proliferation and IFN- γ production *in vitro* (Freise et al., 2017;
79 Haque et al., 1987; Wilde et al., 1983). These studies highlight the importance of carefully

80 investigating CD4⁺ T cell-specific immunoprobes for their epitopes, binding properties, and
81 functional effects.

82 During the last decade antibody fragments derived from heavy-chain-only antibodies of
83 camelids (Hamers-Casterman et al., 1993), referred to as VHJs or nanobodies (Nbs) (Hamers-
84 Casterman et al., 1993), have emerged as versatile probes for molecular imaging (reviewed in
85 (Lecocq et al., 2019)). In combination with highly sensitive and/or quantitative whole-body
86 molecular imaging techniques such as optical or radionuclide-based modalities (particularly
87 positron emission tomography (PET)), Nbs have been shown to bind their targets within
88 several minutes of systemic application (Chakravarty et al., 2014). Due to their great potential
89 as highly specific imaging probes, numerous Nbs targeting immune- or tumor-specific cellular
90 antigens are currently in preclinical development and even in clinical trials (Chanier and
91 Chames, 2019; Lecocq et al., 2019; Yang and Shah, 2020).

92 Here, we generated a set of human CD4-specific Nbs. Following in depth characterization of
93 their binding properties we selected candidates which did not affect T cell proliferation,
94 activation or cytokine release and converted them into immune-tracer for noninvasive optical
95 and PET imaging. Using a mouse xenograft model as well as a human CD4 knock-in mouse
96 model, we successfully demonstrated the capacity of these CD4-Nbs to visualize CD4⁺ cells
97 *in vivo*.

98

99 **Results**

100 *Generation of high-affinity CD4 nanobodies*

101 To generate Nbs directed against human CD4 (hCD4), we immunized an alpaca (*Vicugna*
102 *pacos*) with the recombinant extracellular portion of hCD4 following an 87-day immunization
103 protocol. Subsequently, we generated a Nb phagemid library comprising $\sim 4 \times 10^7$ clones that
104 represent the full repertoire of variable heavy chains of heavy-chain antibodies (VHHs or Nbs)
105 of the animal. We performed phage display using either passively adsorbed purified hCD4 or
106 CHO and HEK293 cells stably expressing full-length human CD4 (CHO-hCD4, HEK293-hCD4
107 cell lines). Following two cycles of phage display for each condition, we analyzed a total of 612
108 individual clones by whole-cell phage ELISA and identified 78 positive binders. Sequence
109 analysis revealed 13 unique Nbs representing five different B cell lineages according to their
110 complementarity determining regions (CDR) 3 (**Figure 1 A**). One representative Nb of each
111 lineage, termed CD4-Nb1 – CD4-Nb5, was expressed in bacteria (*E.coli*) and isolated with
112 high purity using immobilized metal ion affinity chromatography (IMAC) followed by size
113 exclusion chromatography (SEC) (**Figure 1 B**). To test whether selected Nbs are capable of
114 binding to full-length hCD4 localized at the plasma membrane of mammalian cells, we
115 performed live-cell staining of CHO-hCD4 cells (**Figure 1 C, Supplementary Fig. 1**). Executed
116 at 4°C, images showed a prominent staining of the plasma membrane, whereas at 37°C the
117 fluorescent signal was mainly localized throughout the cell body, presumably a consequence
118 of endocytotic uptake of receptor-bound Nbs. CHO wt cells were not stained by any of the five
119 CD4-Nbs at both temperatures (data not shown). CD4-Nb1 and CD4-Nb3, both identified by
120 whole-cell panning, displayed strong staining of CHO-hCD4 cells. Of the Nbs derived from
121 panning with recombinant hCD4, CD4-Nb2 also showed strong cellular staining, whereas
122 staining with CD4-Nb4 revealed weak signals. CD4-Nb5 showed no staining under these
123 conditions and was consequently excluded from further analyses (**Figure 1 C**). To
124 quantitatively assess binding affinities, we performed biolayer interferometry (BLI) measuring
125 serial dilutions of Nbs on the biotinylated extracellular domain of hCD4 immobilized at the
126 sensor tip. For CD4-Nb1 and CD4-Nb2, determined K_D values ~ 5 and ~ 7 nM, respectively,

127 while CD4-Nb3 and CD4-Nb4 displayed lower affinities of 75 nM and 135 nM, respectively
128 (**Figure 1 D, Table 1, Supplementary Fig. 2 A**). In addition, we determined corresponding
129 EC₅₀ values with full-length plasma membrane-located hCD4 on HEK293-hCD4 cells by flow
130 cytometry. In accordance with cellular staining and biochemically determined affinities these
131 values revealed a strong functional binding for CD4-Nb1 and CD4-Nb2 with EC₅₀ values in the
132 subnanomolar range (~0.7 nM), whereas CD4-Nb3 and CD4-Nb4 displayed substantially lower
133 cellular affinities (**Figure 1 E, Table 1, Supplementary Fig. 2 B**). In summary, we generated
134 four CD4-Nbs that bind isolated as well as cell-resident hCD4. While CD4-Nb3 and CD4-Nb4
135 appeared less affine, CD4-Nb1 and CD4-Nb2 displayed high affinities in the low nanomolar
136 range.

137

138 *Domain mapping*

139 Next, we applied chemo-enzymatic coupling using sortase A for site-directed functionalization
140 of CD4-Nbs (Massa et al., 2016; Popp and Ploegh, 2011). We thereby linked peptides
141 conjugated to a single fluorophore to the C-terminus of CD4-Nbs yielding a defined labeling
142 ratio of 1:1 (Virant et al., 2018). Live-cell immunofluorescence imaging showed that all sortase-
143 coupled CD4-Nbs retained their capability of binding to cell-resident hCD4 of CHO-hCD4 cells
144 (**Supplementary Fig. 3 A**). To localize the binding sites of the selected CD4-Nbs, we
145 generated domain-deletion mutants of hCD4. Expression and correct surface localization of
146 these mutants in CHO cells was confirmed by staining with antibody RPA-T4 binding to domain
147 1 of CD4. For mutants lacking domain 1, we introduced an N-terminal BC2 tag (Braun et al.,
148 2016) to allow for live-cell surface detection with a fluorescently labeled bivBC2-Nb (Virant et
149 al., 2018) (**Supplementary Fig. 3 B**). Transiently expressed domain-deletion mutants were
150 then tested for binding of CF568-labeled CD4-Nbs by live-cell immunofluorescence imaging,
151 including a non-specific fluorescently labeled GFP-binding Nb (GFP-Nb) as negative control.
152 Based on these results, we allocated binding of CD4-Nb1 and CD4-Nb3 to domain 1, whereas
153 CD4-Nb2 and CD4-Nb4 bind to domain 3 and/or 4 of hCD4 (**Figure 2 A, Supplementary Fig.**
154 **3 C**).

155 To further examine combinatorial binding of the different CD4-Nbs, we performed an epitope
156 binning analysis by BLI. Recombinant full-length hCD4 was immobilized at the sensor tip and
157 combinations of CD4-Nbs were allowed to bind consecutively (**Supplementary Fig. 4**).
158 Unsurprisingly, CD4-Nbs binding to different domains, displayed combinatorial binding.
159 Interestingly, a simultaneous binding was also detected for the combination of CD4-Nb1 and
160 CD4-Nb3, suggesting that both CD4-Nbs bind to different epitopes within domain 1. In contrast,
161 we did not observe simultaneous binding for CD4-Nb2 and CD4-Nb4, which might be due to
162 close-by or overlapping epitopes at domain 3/4 for the latter Nb pair.
163 For a more precise epitope analysis, we conducted a hydrogen-deuterium-exchange (HDX)
164 mass spectrometry analysis of hCD4 bound to CD4-Nb1, CD4-Nb2 or CD4-Nb3 (**Figure 2 B-E, Supplementary Fig. 5**). Due to its low affinity, CD4-Nb4 was not considered for HDX-MS
165 analysis (data not shown). In accordance with our previous findings, binding of CD4-Nb1 and
166 CD4-Nb3 protected sequences of domain 1 from HDX, whereas CD4-Nb2 protected
167 sequences of domain 3 and 4 of hCD4 (**Figure 2 B**). The results obtained for binding of CD4-
168 Nb1 (**Figure 2 C**) are similar to those obtained for CD4-Nb3 (**Figure 2 D**) in that binding of
169 either Nb reduced hydrogen exchange at amino acid residues (aa) from aa T17 to N73, albeit
170 with a different extent of protection at individual sequence segments. For CD4-Nb1 the greatest
171 protection from HDX was observed for the sequence ranging from aa K35 – L44 corresponding
172 to β strand C' and C'' of the immunoglobulin fold of domain 1 and residues aa K46 – K75,
173 comprising β strands D and E. In contrast, binding of CD4-Nb3 confers only a minor reduction
174 in HDX within the latter sequence, but additionally protects sequence aa C84 – E91, which
175 correspond to β strands G and F and their intermediate loop. For CD4-Nb2 we found protection
176 of sequences aa W214 – F229 (β strands C and C') and aa K239 – L259 (β strands C''-E),
177 and to a minor extend sequence aa R293 - L296 as part of β strands A of domain 4 (**Figure 2**
178 **E**). In summary, our HDX-MS analysis revealed that all three tested Nbs bind three dimensional
179 epitopes within different parts of hCD4. It further provides an explanation how CD4-Nb1 and
180 CD4-Nb3 can bind simultaneously to domain 1 of hCD4, and confirms that the epitope of CD4-
181 Nb2 is mainly located at domain 3.

183 *Binding of CD4-Nbs to human PBMCs*

184 Having demonstrated that all selected Nbs bind to recombinant and exogenously
185 overexpressed cellular hCD4, we next examined their capability and specificity of binding to
186 physiologically relevant levels of CD4⁺ T cells within PBMC samples. We co-stained human
187 PBMCs from three donors with CD4-Nbs1-4 coupled to CF568 (100 nM for high-affine CD4-
188 Nb1 and CD4-Nb2; 1000 nM for low-affine CD4-Nb3 and CD4-Nb4) in combination with an
189 anti-CD3 antibody and analyzed the percentage of double-positive cells (CD3⁺CD4⁺) by flow
190 cytometry (**Figure 3 A, Supplementary Fig. 6**). Compared to staining with an anti-CD4
191 antibody used as positive control, all CD4-Nbs stained a similar percentage of CD4⁺ T cells for
192 all tested donors, while the non-specific GFP-Nb yielded a negligible percentage of double-
193 positive cells even at the highest concentration (1000 nM) (**Figure 3 B, Table 2**).

194

195 *Impact of CD4-Nbs on activation, proliferation and cytokine release of CD4⁺ T and immune
196 cells*

197 Towards the envisioned application as clinical imaging tracer, we next assessed basic issues
198 associated with CD4-Nbs, regarding their influence on the activation, proliferation and cytokine
199 release of CD4⁺ T cells. First, to exclude adverse effects of bacterial endotoxins present in the
200 CD4-Nbs1-4 preparations, we attempted to remove endotoxins by depletion chromatography
201 to yield FDA-acceptable endotoxin levels of <0.25 EU per mg. While this was achieved for
202 CD4-Nb1, CD4-Nb4 and the non-specific GFP-Nb, we failed to lower protein-associated
203 endotoxins to acceptable levels for CD4-Nb2 and CD4-Nb3 even after repeated depletion
204 chromatography. Consequently, we continued these experimental studies only with CD4-Nb1,
205 CD4-Nb4 and GFP-Nb as control. In brief, carboxyfluorescein succinimidyl ester (CFSE)-
206 labeled human PBMCs from three pre-selected healthy donors were pre-treated with CD4-Nbs
207 or a control Nb at concentrations between 0.05 µM – 5 µM for 1 h at 37°C, mimicking the
208 expected approximate concentration and serum retention time during clinical *in vivo* imaging
209 application. Cells were then washed to remove Nbs and stimulated with an antigenic (cognate
210 MHCII peptides) or a non-antigenic stimulus (phytohaemagglutinin, PHA-L) and analyzed after

211 4, 6 and 8 days by flow cytometry with the gating strategy shown in **Supplementary Fig. 7 A**.
212 According to the highly similar CFSE intensity profiles observed, the total number of cell
213 divisions was not affected by the different Nb treatments (exemplarily shown for one of three
214 donors on day 6, **Supplementary Fig. 7 A**). For samples of the same donor and time point,
215 no substantial differences in the percentage of proliferated cells were observed between mock
216 incubation and individual Nb treatments.
217 For both stimuli, the average percentage of proliferated cells increased over time in all donors
218 tested, with no clear differences between conditions (**Figure 4 A**). As quantitative measure of
219 T cell activation, we also determined the cell surface induction of a very early activation marker
220 (CD69) and of the IL-2 receptor α chain (CD25) on CD4 $^{+}$ T cells (**Figure 4 B**). Among samples
221 of the same donor and stimulation, we found highly similar activation profiles for all Nb
222 treatments. While the percentage of CD4 $^{+}$ CD25 $^{+}$ cells steadily increased over time for MHCII
223 peptide stimulation, for PHA-stimulated condition the percentage of positive cells was similarly
224 high at all times of analysis. Importantly, regardless of the differences between donors, the
225 individual Nb treatments from the same donor did not result in significant differences in the
226 percentage of CD4 $^{+}$ CD25 $^{+}$ or CD4 $^{+}$ CD69 $^{+}$ cells for either stimulation at any point in the
227 analysis.
228 Next, we analyzed cytokine expression of CD4 $^{+}$ T cells by intracellular cytokine staining after
229 restimulation with cognate MHCII peptides. The corresponding gating strategy is shown in
230 **Supplementary Fig. 7 B**. Samples of the same donor treated with different Nbs had highly
231 similar percentages of cytokine (TNF, IFN- γ or IL-2) or activation marker (CD154)-positive cells
232 without stimulation and upon stimulation with MHCII peptides (**Figure 4 C**). Overall, exposure
233 to CD4-Nbs did not affect proliferation, activation or cytokine production of CD4 $^{+}$ T cells. In
234 addition, we analyzed potential effects of CD4-Nbs on the release of cytokines from full-blood
235 samples of three further donors. Upon stimulation with lipopolysaccharide (LPS) or PHA-L, we
236 determined the serum concentrations with a panel of pro- and anti-inflammatory cytokines
237 (**Supplementary Table S2**). Although there was significant inter-donor variation for some

238 cytokines, Nb treatment did not result in significant differences in either stimulated or
239 unstimulated samples (**Supplementary Fig. 8**).

240

241 *CD4-Nbs for in vivo imaging*

242 For optical *in vivo* imaging, we labeled CD4-Nbs with the fluorophore Cy5.5 (CD4-Nb-Cy5.5)
243 by sortase-mediated attachment of an azide group followed by click-chemistry addition of
244 DBCO-Cy5.5. First, we tested potential cross-reactivity of the four Cy5.5-labeled CD4-Nbs to
245 murine CD4⁺ lymphocytes. Notably, flow cytometric analysis showed that none of the selected
246 CD4-Nbs bound murine CD4⁺ cells, suggesting exclusive binding to human CD4. Moreover,
247 low-affine binding CD4-Nb4 bound neither mouse nor human CD4⁺ cells at the concentration
248 used here (0.75 µg/ml, ~49 nM) (**Supplementary Fig. 9**). Consequently, we focused on CD4-
249 Nb1 as the most promising candidate and CD4-Nb4 as a candidate with a high off-target rate,
250 both of which we further analyzed for their *in vivo* target specificity and dynamic distribution
251 using a murine xenograft model.

252 To establish human CD4⁺ expressing tumors, NSG mice were inoculated subcutaneously with
253 CD4⁺ T cell leukemia HPB-ALL cells (Masuda et al., 2009). After 2 – 3 weeks, mice bearing
254 HPB-ALL xenografts were *intravenously* (*i.v.*) injected with 5 µg of CD4-Nb1-Cy5.5, CD4-Nb4-
255 Cy5.5, or a control Nb (GFP-Nb-Cy5.5) and optically imaged in intervals over the course of
256 24 h (**Figure 5 A, Supplementary Fig. 10 A**). The Cy5.5 signal intensity (SI) of the control Nb
257 peaked within 10 – 20 minutes and rapidly declined thereafter to approximately the half and a
258 quarter of maximum level at 2 h and 24 h, respectively (**Figure 5 B, Supplementary Fig. 10**
259 **B**). While the SI of the low-affinity CD4-Nb4-Cy5.5 did not exceed the SI of the control Nb at
260 any time (**Supplementary Fig. 10 B**), CD4-Nb1-Cy5.5 reached its maximum SI within the
261 HPB-ALL xenograft of ~1.8-fold above the control Nb, at 30 min and slowly declined to ~90%
262 and ~80% of maximum after 2 and 4 hours, respectively (**Figure 5 B**). Based on the differences
263 in the SI between CD4-Nb1-Cy5.5 and GFP-Nb-Cy5.5, we observed constant high target
264 accumulation and specificity between 30 and 480 min post injection (**Figure 5 B**). After 24 h,
265 mice were euthanized, and the presence of fluorophore-labeled CD4-Nbs within the explanted

266 tumors was analyzed by optical imaging (OI) (**Figure 5 C, Supplementary Fig. 10 C**).
267 Compared to control, tumors from mice injected with CD4-Nb1-Cy5.5 had ~4-fold higher Cy5.5
268 SI, indicating a good signal-to-background ratio for this Nb-derived fluorescently labeled
269 immunoprobe even at later time point. To confirm CD4-specific targeting of CD4-Nb1 within
270 the xenograft, we additionally performed *ex vivo* immunofluorescence of HBP-ALL tumors at
271 2 h and 24 h post injection (**Supplementary Fig. 11**). At the early time point, when the *in vivo*
272 OI signal peaked, CD4-Nb1 was widely distributed throughout the whole tumor whereas no
273 Cy5.5 signal was detected in the GFP-Nb-injected mice (**Supplementary Fig. 11 A, B**).
274 Semiquantitative analysis at the single-cell level revealed intense CD4-Nb1 binding at the
275 surface of HBP-ALL cells that correlated with the CD4 antibody signal and internalization of
276 CD4-Nb1 in some cells (**Supplementary Fig. 11 C**). In contrast, no binding was observed
277 upon administration of unrelated GFP-Nb (**Supplementary Fig. 11 D**). 24 h post injection we
278 observed regions of strongly internalized CD4-Nb1 (**Supplementary Fig. 11 E, G**), but also
279 regions showing a low residual CD4-Nb1 uptake (**Supplementary Fig. 11 E, H**).
280 The optical imaging data from the xenograft model clearly indicates that the high affinity CD4-
281 Nb1 but not CD4-Nb4 is suitable to specifically visualize CD4⁺ cells *in vivo* within a short period
282 (30 – 120 min) after administration. Considering that this model does not reflect the natural
283 distribution of CD4⁺ T cells in an organism, we continued with a model that allowed us to
284 visualize relevant amounts of CD4⁺ immune cells. Thus we employed a humanized CD4
285 murine knock-in model (hCD4KI) in which the extracellular fraction of the mouse CD4 antigen
286 was replaced by the human CD4 while normal immunological function and T cell distribution is
287 restored (Killeen et al., 1993).
288

289 ⁶⁴Cu-CD4-Nb1 specifically accumulates in CD4⁺ T cell-rich organs
290 To generate immunoPET compatible tracers, CD4-Nb1 and GFP-Nb were labeled with the
291 PET isotope ⁶⁴Cu using a copper-chelating BCN-NODAGA group added to our azide-coupled
292 Nbs. Radiolabeling yielded high radiochemical purity ($\geq 95\%$) and specific binding of ⁶⁴Cu-
293 hCD4-Nb1 to CD4-expressing HBP-ALL cells ($46.5 \pm 5.6\%$) *in vitro*, that was ~30 times higher

294 than the non-specific binding to CD4-negative DHL cells or of the radiolabelled ^{64}Cu -GFP-Nb
295 control (**Supplementary Fig. 12 A**).

296 Subsequently, we injected ^{64}Cu -CD4-Nb1 *i.v.* in hCD4KI and wildtype C57BL/6 mice and
297 performed PET/MR imaging repetitively over 24 h. In two of the hCD4KI animals, we
298 additionally followed tracer biodistribution over the first 90 minutes by dynamic PET
299 (**Supplementary Fig. 12 B**). As expected for small-sized immunotracers, after an initial uptake
300 peak within the first 10 minutes, ^{64}Cu -CD4-Nb1 is rapidly cleared from blood, lung, and liver
301 via renal elimination. In comparison to wildtype, mice carrying the human CD4 antigen on T
302 cells showed an increased tracer accumulation in lymph nodes, thymus, liver, and spleen
303 (**Figure 6 A**). In these organs, which are known to harbor high numbers of CD4 $^{+}$ T cells (Sckisel
304 et al., 2017), we identified 3 h post injection as most suitable imaging time point to discriminate
305 CD4 $^{+}$ -specific signal from organ background (**Figure 6 B**). Here, lymph nodes yielded a ~3-
306 fold, spleen a ~2.5-fold, and liver a ~1.4-fold higher ^{64}Cu -CD4-Nb1 accumulation in hCD4KI
307 mice compared to wildtype littermates (**Figure 6 B**). In contrast, we observed similar uptake
308 levels for blood, muscle, lung, and kidney in both groups (**Supplementary Fig. 12 C**).
309 Analyzing *ex vivo* biodistribution 24 h post tracer injection confirmed persistent accumulation
310 of ^{64}Cu -CD4-Nb1 in lymph nodes and spleen of human CD4 expressing mice, although the
311 limited number of animals per group did not allow statistical significance (**Supplementary Fig.**
312 **12 D**). In summary, these results demonstrate that CD4-Nb1 is capable of visualizing and
313 monitoring CD4 $^{+}$ T cells in both optical and PET-based imaging.

314

315 **Discussion**

316 Given the important role of CD4⁺ T cells, their detailed monitoring is proving to be highly
317 important for the diagnosis and concomitant therapeutic monitoring of a wide variety of
318 diseases. Several mouse studies and early clinical trials have already indicated the value of
319 non-invasive imaging of CD4⁺ cells in rheumatoid arthritis (Steinhoff et al., 2014), colitis
320 (Kanwar et al., 2008), allogenic stem cell transplantation (Tavare et al., 2015), organ transplant
321 rejection (Li et al., 2021), acquired immunodeficiency disease (Di Mascio et al., 2009), and in
322 the context of cancer immunotherapies (Kristensen et al., 2019), using radiolabeled full-length
323 antibodies or fragments thereof. However, biological activity, particularly CD4⁺ T cell depletion,
324 and long-term systemic retention of full-length antibodies limit their development into clinically
325 applied immunoprobes (Choy et al., 2002; Moreland et al., 1995; Steinhoff et al., 2014; Wilde
326 et al., 1983).

327 The aim of this study was to develop human CD4-specific Nbs as novel *in vivo* imaging probes
328 to overcome the limitations of previous non-invasive imaging approaches. To identify binders
329 that recognize the cellular exposed CD4 we employed two screening strategies where we
330 either selected Nbs against adsorbed recombinant CD4 or against human CD4-expressing
331 cells. Interestingly, both panning strategies proved successful, as demonstrated by the
332 selection of two Nbs each that efficiently bind cell-resident CD4. Combining different
333 biochemical analyses including epitope binning, cellular imaging, and HDX-MS, we were able
334 to elucidate in detail the detected domains, as well as the three-dimensional epitopes
335 addressed by the individual Nbs, and thus identified two candidates, CD4-Nb1 and CD4-Nb3,
336 that can simultaneously bind to different segments within domain 1, while CD4-Nb2 has been
337 shown to bind to domain 3 of CD4. Notably, for most Nbs currently developed for *in vivo*
338 imaging purposes such detailed information is not available (Bala et al., 2018; Blykers et al.,
339 2015; Evazalipour et al., 2014; Huang et al., 2008; Jailkhani et al., 2019; Rashidian et al., 2017;
340 Roovers et al., 2007). However, for CD4-specific Nbs this knowledge is all the more important
341 because epitope-specific targeting of CD4⁺ T cell functions have far-reaching implications. This
342 is true especially for cancer treatment, as CD4⁺ cells have opposing effects on tumor growth

343 and response to immunotherapies, crucially depending on the CD4 effector cell differentiation
344 and tumor entity (Accogli et al., 2021; Bruni et al., 2020). In this context it was shown that
345 domain 1 of CD4 mediates transient interaction of the CD4 receptor and the MHCII complex
346 (Cruikshank et al., 1991; Jonsson et al., 2016; Sakihama et al., 1995), while T cell activation
347 is abrogated when TCR and CD4 colocalization is blocked via domain 3 (Vignali and Vignali,
348 1999). To further elucidate a possible impact on immunomodulation, we analyzed the effect of
349 CD4-Nb1 and CD4-Nb4 targeting two different domains on CD4⁺ T cell proliferation and
350 cytokine expression. Notably, neither CD4-Nb1 nor CD4-Nb4 affected the behavior of
351 endogenous CD4⁺ T cells *in vitro* or induced increased cytokine levels in whole blood samples
352 when employed at concentrations which are intended for molecular imaging purposes in
353 patients. From these data it can be concluded that these Nbs are mostly biologically inert and
354 thus might be beneficial compared to full-length antibodies (Wilde et al., 1983) or other
355 antibody fragments such as the anti-CD4 Cys-diabody, which was recently reported to inhibit
356 proliferation of CD4⁺ cells and IFN- γ production *in vitro* (Freise et al., 2017).

357 Following our initial intention to generate immune tracer for *in vivo* imaging, we performed a
358 site-directed labeling approach employing C-terminal sortagging to conjugate an azide group,
359 which can be universally used to attach a multitude of detectable moieties by straightforward
360 DBCO-mediated click chemistry (Rashidian et al., 2017). For the fluorescent and radiolabeled
361 CD4-Nb1, we observed rapid recruitment and sustained staining of CD4⁺ cells in a xenograft
362 and hCD4 knock-in mouse model. Using time resolved PET/MR imaging approach our
363 radiolabeled ⁶⁴Cu-CD4-Nb1 allowed us visualize T cell rich organs with high sensitivity. Beyond
364 lymph nodes we could detect enhanced CD4 specific uptake in liver and spleen. This is a
365 tremendous advantage of an Nb-based tracer, as larger antibody formats tend to accumulate
366 nonspecifically in the spleen and liver due to Fc γ receptor-mediated uptake, making it difficult
367 to distinguish the target-specific signal from background. To further modify serum retention
368 times in order to improve specific tissue targeting, CD4-Nbs could be modified as recently
369 shown by addition of an albumin binding fragment (Tijink et al., 2008) or PEGylation (Rashidian
370 et al., 2017).

371 In summary, this study demonstrates for the first time the generation and detailed
372 characterization of Nbs specific for human CD4 and their comprehensive experimental
373 evaluation *in vitro* and *in vivo*. In particular, CD4-Nb1 turned out as a promising candidate for
374 non-invasive, whole-body study of CD4⁺ T cells in mice, as well as in humans. Considering the
375 increasing importance of advanced molecular imaging, we anticipate that this Nb-based
376 immunotracer will become a highly versatile tool as a novel theranostic to accompany
377 emerging immunotherapies.

378

379 **Data availability**

380 The data that support the findings of this study are available from the corresponding author
381 upon reasonable request.

382

383 **Authorship Contributions**

384 B.T., M.K., D.S., B.P. and U.R. designed the study; S.N., A.S. immunized the animal; P.D.K.,
385 S.H., Y.P. performed Nb selection; P.D.K., B.T., M.W., T.R.W., A.M. performed biochemical
386 characterization and functionalization of Nbs; M.G., A.Z. performed MS analysis; A.Z. and M.G.
387 performed HDX-MS experiments; J.R., C.G., M.J., N.S.M. analyzed the Nb effects on T cell
388 proliferation and cytokine expression; D.Se., A.M., and S.P. radiolabeled the Nbs; S.P., and
389 D.S. performed *in vivo* imaging; M.S. performed staining of xenograft cryosections; B.T., J.R.,
390 C.G., M.K., B.P., D.S. and U.R. drafted the manuscript; M.K., B.P. and U.R. supervised the
391 study.

392

393 **Competing financial interests**

394 D.S., M.K., B.P., B.T., P.D. K., U.R. are named as inventors on a patent application claiming
395 the use of the described nanobodies for diagnosis and therapeutics filed by the Natural and
396 Medical Sciences Institute and the Werner Siemens Imaging Center. The other authors declare
397 no competing interest.

398

399 **Acknowledgements**

400 This work received financial support from the State Ministry of Baden-Wuerttemberg for
401 Economic Affairs, Labour and Tourism (Grant: Predictive diagnostics of immune-associated
402 diseases for personalized medicine. FKZ: 35-4223.10/8). The authors thank Sandra Maier and
403 Ulrich Kratzer (both Natural and Medical Sciences Institute at the University of Tübingen) for
404 technical support with MS analyses, and Birgit Fehrenbacher (Department of Dermatology,
405 University of Tübingen) for technical support with imaging of xenograft cryosections.

406

407 **Materials and Methods**

408 *Nanobody library generation*

409 Alpaca immunization and Nb library construction were carried out as described previously
410 (Maier et al., 2015; Traenkle et al., 2015). Animal immunization has been approved by the
411 government of Upper Bavaria (Permit number: 55.2-1-54-2532.0-80-14). In brief, an alpaca
412 (*Vicugna pacos*) was immunized with the purified extracellular domains of human CD4 (aa26-
413 390) recombinantly produced in HEK293 cells (antibodies-online GmbH, Germany). After initial
414 priming with 1 mg, the animal received six boost injections with 0.5 mg hCD4 each, every
415 second week. 87 days after initial immunization, ~100 ml of blood were collected and
416 lymphocytes were isolated by Ficoll gradient centrifugation using Lymphocyte Separation
417 Medium (PAA Laboratories GmbH). Total RNA was extracted using TRIzol (Life Technologies)
418 and mRNA was transcribed into cDNA using the First-Strand cDNA Synthesis Kit (GE
419 Healthcare). The Nb repertoire was isolated in 3 subsequent PCR reactions using the following
420 primer combinations (1) CALL001 and CALL002, (2) forward primer set FR1-1, FR1-2, FR1-3,
421 FR1-4 and reverse primer CALL002, and (3) forward primer FR1-ext1 and FR1-ext2 and
422 reverse primer set FR4-1, FR4-2, FR4-3, FR4-4, FR4-5 and FR4-6 introducing Sfil and NotI
423 restriction sites. The Nb library was subcloned into the Sfil/ NotI sites of the pHEN4 phagemid
424 vector (Arbabi Ghahroudi et al., 1997).

425

426 *Nb screening*

427 For the selection of CD4-specific Nbs two consecutive phage enrichment rounds were
428 performed, both with immobilized recombinant antigen and CHO-hCD4 cells. *E.coli* TG1 cells
429 comprising the hCD4-Nb-library in pHEN4 were infected with the M13K07 helper phage to
430 generate Nb-presenting phages. For each round 1×10^{11} phages of the hCD4-Nb-library were
431 applied on immunotubes coated with hCD4 (10 µg/ml). In each selection round extensive
432 blocking of antigen and phages was performed with 5% milk or BSA in PBS-T and with
433 increasing panning rounds PBS-T washing stringency was increased. Bound phages were
434 eluted in 100 mM tri-ethylamine, TEA (pH10.0), followed by immediate neutralization with 1 M

435 Tris/HCl pH7.4. For cell-based panning, 2×10^6 CHO-hCD4 or HEK293-hCD4 were non-
436 enzymatically detached using dissociation buffer (Gibco) and suspended in 5% fetal bovine
437 serum (FBS) in PBS. Antigen expressing cells were incubated with 1×10^{11} phages under
438 constant mixing at 4°C for 3 h. Cells were washed 3 x with 5% FBS in PBS. Cell lines were
439 alternated between panning rounds. Phages were eluted with 75 mM citric acid buffer at pH2.3
440 for 5 min. To deplete non-CD4-specific phages, eluted phages were incubated 3 x with 1×10^7
441 wt cells. Exponentially growing E.coli TG1 cells were infected with eluted phages from both
442 panning strategies and spread on selection plates for following panning rounds. Antigen-
443 specific enrichment for each round was monitored by counting colony forming unit (CFUs).

444

445 *Whole-cell phage ELISA*

446 Polystyrene Costar 96-well cell culture plates (Corning) were coated with poly-L-lysine (Sigma
447 Aldrich) and washed once with H₂O. CHO-wt and CHO-hCD4 were plated at 2×10^4 cells per
448 well in 100 µl and grown to confluence overnight. Next day, 70 µl of phage supernatant was
449 added to culture medium of each cell type and incubated at 4°C for 3 h. Cells were washed
450 5 x with 5% FBS in PBS. M13-HRP-labeled antibody (Progen) was added at a conc. 0.5 ng/ml
451 for 1 h, washed 3 x with 5% FBS in PBS. Onestep ultra TMB 32048 ELISA substrate (Thermo
452 Fisher Scientific) was added and incubated until color change was visible and the reaction was
453 stopped by addition of 100 µl of 1M H₂SO₄. Detection occurred at 450 nm at a Pherastar plate
454 reader and phage ELISA-positive clones were defined by a 2-fold signal above wt control cells.

455

456 *Expression constructs*

457 The cDNA of human CD4 (UniProtKB - P01730) was amplified from hCD4-mOrange plasmid
458 DNA (hCD4-mOrange was a gift from Sergi Padilla Parra; addgene plasmid #110192;
459 <http://n2t.net/addgene:110192>; RRID:Addgene_110192) by PCR using forward primer hCD4
460 fwd and reverse primer hCD4 rev and introduced into BamHI and Xhol sites of a pcDNA3.1
461 vector variant (pcDNA3.1(+)IRES GFP, a gift from Kathleen_L Collins; addgene plasmid
462 #51406; <http://n2t.net/addgene:51406>; RRID:Addgene_51406). We replaced the neomycin

463 resistance gene (NeoR) with the cDNA for Blasticidin S deaminase (bsd), amplified with
464 forward primer bsd fwd and reverse primer bsd rev, by integration into the XmaI and BssHII
465 sites of the vector. CD4 domain deletion mutants were generated using the Q5 Site-Directed
466 Mutagenesis Kit (NEB) according to the manufacturer's protocol. For mutants lacking domain
467 1 of hCD4 we introduced an N-terminal BC2-tag (Braun et al., 2016). For the generation of
468 plasmid pcDNA3.1_CD4_ΔD1_IRES-eGFP we used forward primer ΔD1 fwd and reverse
469 primer ΔD1 rev; for pcDNA3.1_CD4_ΔD1ΔD2_IRES-eGFP forward primer ΔD1ΔD2 fwd and
470 reverse primer ΔD1ΔD2 rev; for pcDNA3.1_CD4_ΔD3ΔD4_IRES-EGFP forward primer
471 ΔD3ΔD4 fwd and reverse primer ΔD3ΔD4 rev. For bacterial expression of Nbs, sequences
472 were cloned into the pHEN6 vector (Rothbauer et al., 2008), thereby adding a C-terminal
473 sortase tag LPETG followed by 6xHis-tag for IMAC purification as described previously (Virant
474 et al., 2018). For protein production of the extracellular domains 1-4 of hCD4 in Expi293 cells,
475 corresponding cDNA was amplified from plasmid DNA containing full-length human CD4 cDNA
476 (addgene plasmid #110192) using forward primer CD4-D1-4 f and reverse primer CD4-D1-4 r.
477 A 6xHis tag was introduced by the reverse primer. Esp3I and EcoRI restriction sites were used
478 to introduce the cDNA into a pcDNA3.4 expression vector with the signal peptide
479 MGWTLVFLFLLSVTAGVHS from the antibody JF5 (Davies et al., 2017).

480

481 *Cell culture, transfection, stable cell line generation*

482 HEK293T and CHO-K1 cells were obtained from ATCC (CCL-61, LGC Standards GmbH,
483 Germany). As this study does not include cell line-specific analysis, cells were used without
484 additional authentication. Cells were cultivated according to standard protocols. Briefly, growth
485 media containing DMEM (HEK293) or DMEM/F12 (CHO) (both high glucose, pyruvate,
486 Thermo Fisher Scientific (TFS)) supplemented with 10% (v/v) FBS, L-glutamine and
487 penicillin/streptomycin (P/S; all from TFS) were used for cultivation. Cells were passaged using
488 0.05% trypsin-EDTA (TFS) and were cultivated at 37°C and 5% CO₂ atmosphere in a
489 humidified chamber. Plasmid DNA was transfected using Lipofectamine 2000 (TFS) according
490 to the manufacturer's protocol. For the generation of the stable HEK293-hCD4 and CHO-hCD4

491 cell line, 24 h post transfection, cells were subjected to a two-week selection period using 5
492 µg/ml Blasticidin S (Sigma Aldrich) followed by single cell separation. Individual clones were
493 analyzed by live-cell fluorescence microscopy regarding their level and uniformity of GFP and
494 CD4 expression.

495

496 *Protein expression and purification*

497 CD4-specific Nbs were expressed and purified as previously published (Maier et al., 2015;
498 Wagner et al., 2021). Extracellular fragment of human CD4 comprising domains 1-4 of human
499 CD4 and a C-terminal His6-tag was expressed in Expi293 cells according to the
500 manufacturer's protocol (Thermo Fisher Scientific). Cell supernatant was harvested by
501 centrifugation 4 days after transfection, sterile filtered and purified according to previously
502 described protocols (Becker et al., 2021). For quality control, all purified proteins were analyzed
503 via SDS-PAGE according to standard procedures. Therefore, protein samples were
504 denaturized (5 min, 95°C) in 2x SDS-sample buffer containing 60 mM Tris/HCl, pH6.8; 2%
505 (w/v) SDS; 5% (v/v) 2-mercaptoethanol, 10% (v/v) glycerol, 0.02% bromphenole blue. All
506 proteins were visualized by InstantBlue Coomassie (Expedeon) staining. For immunoblotting
507 proteins were transferred to nitrocellulose membrane (Bio-Rad Laboratories) and detection
508 was performed using anti-His primary antibody (Penta-His Antibody, #34660, Qiagen) followed
509 by donkey-anti-mouse secondary antibody labeled with AlexaFluor647 (Invitrogen) using a
510 Typhoon Trio scanner (GE-Healthcare, excitation 633 nm, emission filter settings 670 nm BP
511 30).

512

513 *Live-cell immunofluorescence*

514 CHO-hCD4, and CHO wt cells transiently expressing CD4 domain-deletion mutants were
515 plated at ~10,000 cells per well of a µClear 96-well plate (Greiner Bio One, cat. #655090) and
516 cultivated at standard conditions. Next day, medium was replaced by live-cell visualization
517 medium DMEMgfp-2 (Evrogen, cat. #MC102) supplemented with 10% FBS, 2 mM L-
518 glutamine, 2 µg/ml Hoechst33258 (Sigma Aldrich) for nuclear staining, and fluorescently

519 labeled or unlabeled CD4-Nbs at concentrations between 1 nM and 100 nM. Unlabeled CD4-
520 Nbs were visualized by addition of 2.5 µg/ml anti-VHH secondary Cy5 AffiniPure Goat Anti-
521 Alpaca IgG (Jackson Immuno Research). Images were acquired with a MetaXpress Micro XL
522 system (Molecular Devices) at 20x or 40x magnification.

523

524 *Biolayer interferometry (BLI)*

525 To determine the binding affinity of purified Nbs to recombinant hCD4, biolayer interferometry
526 (BLItz, ForteBio) was performed. First, CD4 was biotinylated by 3-fold molar excess of biotin-
527 N-hydroxysuccinimide ester. CD4 was then immobilized at single-use streptavidin biosensors
528 (SA) according to manufacturer's protocols. For each Nb we executed four
529 association/dissociation runs with concentrations appropriate for the affinities of the respective
530 nanobodies (overall between 15.6 nM and 1 µM). As a reference run, PBS was used instead
531 of Nb in the association step. As negative control the GFP-Nb (500 nM) was applied in the
532 binding studies. Recorded sensograms were analyzed using the BLItzPro software and
533 dissociation constants (K_D) were calculated based on global fits. For the epitope competition
534 analysis, two consecutive application steps were performed, with a short dissociation period
535 of 30 s after the first association.

536

537 *PBMC isolation, cell freezing, and thawing*

538 Fresh blood, buffy coats, or mononuclear blood cell concentrates were obtained from healthy
539 volunteers at the Department of Immunology or from the ZKT Tübingen gGmbH. Participants
540 gave informed consent and the studies were approved by the ethical review committee of the
541 University of Tübingen, projects 156/2012B01 and 713/2018BO2. Blood products were diluted
542 with PBS 1x (homemade from 10x stock solution, Lonza, Switzerland) and PBMCs were
543 isolated by density gradient centrifugation with Biocoll separation solution (Biochrom,
544 Germany). PBMCs were washed twice with PBS 1x, counted with a NC-250 cell counter
545 (Chemometec, Denmark), and resuspended in heat-inactivated (h.i.) fetal bovine serum
546 (Capricorn Scientific, Germany) containing 10% DMSO (Merck). Cells were immediately

547 transferred into a -80°C freezer in a freezing container (Mr. Frosty; Thermo Fisher Scientific).
548 After at least 24 hours, frozen cells were transferred into a liquid nitrogen tank and were kept
549 frozen until use. For the experiments, cells were thawed in IMDM (+L-Glutamin +25mM
550 HEPES; Life Technologies) supplemented with 2.5% h.i. human serum (HS; PanBiotech,
551 Germany), 1x P/S (Sigma-Aldrich), and 50 μ m β -Mercaptoethanol (β -ME; Merck), washed
552 once, counted and used for downstream assays.

553

554 *Affinity determination by flow cytometry*

555 For cell-based affinity determination, HEK293-hCD4 were detached using enzyme-free cell
556 dissociation buffer (Gibco) and resuspended in FACS buffer (PBS containing 5% FBS). For
557 each staining condition 200,000 cells were incubated with suitable dilution series of CD4
558 nanobodies at 4°C for 30 min. Cells were washed two times and for detection Cy5 AffiniPure
559 Goat Anti-Alpaca IgG, VHH domain (Jackson ImmunoResearch) was applied for 15 min.
560 PBMCs (Department of Immunology/ ZKT Tübingen gGmbH, Germany) were freshly thawed
561 and resuspended in FACS buffer. For each sample 200,000 cells were incubated with suitable
562 concentrations of CD4 Nbs coupled to CF568 in combination with 1:500 dilution of anti-CD3-
563 FITC (BD Biosciences) at 4°C for 30 min. For control staining PE/Cy5-labeled anti-human CD4
564 antibody (RPA-T4, Biolegend) was used. After two washing steps, samples were resuspended
565 in 200 μ l FACS buffer and analyzed with a BD FACSMelody Cell Sorter. Final data analysis
566 was performed via FlowJo10® software (BD Biosciences).

567

568 *Sortase labeling of nanobodies*

569 Sortase A pentamutant (eSrtA) in pET29 was a gift from David Liu (Addgene plasmid # 75144)
570 and was expressed and purified as described (Chen et al., 2011). CF568-coupled peptide H-
571 Gly-Gly-Gly-Doa-NH₂ (sortase substrate) was custom-synthesized by Intavis AG. For the
572 click chemistry a peptide H-Gly-Gly-Gly-propyl-azide was synthesized. In brief, for sortase
573 coupling 50 μ M Nb, 250 μ M sortase peptide dissolved in sortase buffer (50 mM Tris, pH 7.5,
574 and 150 mM NaCl) and 10 μ M sortase were mixed in coupling buffer (sortase buffer with 10

575 mM CaCl₂) and incubated for 4 h at 4°C. Uncoupled Nb and sortase were depleted by IMAC.
576 Unbound excess of unreacted sortase peptide was removed using Zeba Spin Desalting
577 Columns (ThermoFisher Scientific, cat. #89890). Azide-coupled Nbs were labeled by SPAAC
578 (strain-promoted azide-alkyne cycloaddition) click chemistry reaction with 2-fold molar excess
579 of DBCO-Cy5.5 (Jena Bioscience) for 2 h at 25°C. Excess DBCO-Cy5.5 was subsequently
580 removed by dialysis (GeBAflex-tube, 6-8 kDa, Scienova). Finally, to remove untagged Nb,
581 (side product of the sortase reaction), we used hydrophobic interaction chromatography (HIC,
582 HiTrap Butyl-S FF, Cytiva). Binding of DBCO-Cy5.5-coupled Nb occurred in 50 mM H₂NaPO₄,
583 1.5 M (NH₄)₂SO₄, pH7.2. Elution took place with 50 mM H₂NaPO₄, pH7.2. Dye-labeled protein
584 fractions were analyzed by SDS-PAGE followed by fluorescent scanning on a Typhoon Trio
585 (GE-Healthcare, CF568: excitation 532 nm, emission filter settings 580 nm BP 30; Cy5.5
586 excitation 633 nm, emission filter settings 670 nm BP 30; 546) and subsequent Coomassie
587 staining. Identity and purity of final products were determined by LC-MS (CD4-Nbs-CF568,
588 >60%; CD4-Nb1-Cy5.5, ~94%; CD4-Nb4-Cy5.5, ~99%; GBP-Cy5.5; ~94%, CD4-Nb1-3,
589 ~99%; bivGFP-Nb, ~99%).

590

591 *Hydrogen-deuterium exchange*

592 *CD4 deuteration kinetics and epitope elucidation*

593 On basis of the affinity constants of 5.1 nM (CD4-Nb1), 6.5 nM (CD4-Nb2), 75.3 nM (CD4-
594 Nb3) (pre-determined by BLI analysis) the molar ratio of antigen to Nb was calculated ensuring
595 90% complex formation according to (Kochert et al., 2018). CD4 (5 µL, 65.5 µM) was pre-
596 incubated with CD4-specific Nbs (5 µl; 60.3; 67.4 and 143.1 µM for Nb1; Nb2 and Nb3
597 respectively) for 10 min at 25°C. Deuteration samples containing CD4 only were pre-incubated
598 with PBS instead of the Nbs. HDX of the pre-incubated samples was initiated by 1:10 dilution
599 with PBS (150 mM NaCl, pH7.4) prepared with D₂O leading to a final content of 90% D₂O.
600 After 5 and 50 min incubation at 25°C, aliquots of 20 µL were taken and quenched by adding
601 20 µL ice-cold quenching solution (0.2 M TCEP with 1.5% formic acid and 4 M guanidine HCl

602 in 100 mM ammonium formate solution pH2.2) resulting in a final pH of 2.5. Quenched samples
603 were immediately snap-frozen.

604 Immobilized pepsin (TFS) was prepared using 60 μ l of 50% slurry (in ammonium formate
605 solution pH2.5) that was then dried by centrifugation (1000 x g for 3 min at 0°C) and discarding
606 the supernatant. Prior each analysis, samples were thawed and added to the dried pepsin
607 beads. After digestion for 2 min in a water ice bath the samples were separated by
608 centrifugation at 1000 x g for 30 s at 0°C using a 22 μ m filter (Merck, Millipore) and were
609 immediately analyzed by LC-MS. Undeuterated control samples for each complex and CD4
610 alone were prepared under the same conditions using H₂O instead of D₂O. Additionally, each
611 Nb was digested without addition of CD4 to generate a list of peptic peptides deriving from the
612 Nb. The HDX experiments of the CD4-Nb-complex were performed in triplicates. The back-
613 exchange of the method as determined using a standard peptide mixture of 14 synthetic
614 peptides was 24%.

615

616 *Chromatography and Mass Spectrometry*

617 HDX samples were analyzed as described previously (Wagner et al., 2021).

618

619 *HDX data analysis*

620 A peptic peptide list was generated in a preliminary LC-MS/MS experiment as described
621 previously (Wagner et al., 2021). For data based search no enzyme selectivity was applied,
622 furthermore, identified peptides were manually evaluated to exclude peptides originated
623 through cleavage after arginine, histidine, lysine, proline and the residue after proline (Hamuro
624 and Coales, 2018). Additionally, a separate list of peptides for each nanobody was generated
625 and peptides overlapping in mass, retention time and charge with the antigen digest, were
626 manually removed. Analysis of the deuterated samples was performed in MS mode only and
627 HDExaminer v2.5.0 (Sierra Analytics, USA) was used to calculate the deuterium uptake
628 (centroid mass shift). HDX could be determined for peptides covering 87-88% of the CD4
629 sequence (**Supplementary Fig. 11**). The calculated percentage deuterium uptake of each

630 peptide between CD4-Nb and CD4-only were compared. Any peptide with uptake reduction of
631 5% or greater upon Nb binding was considered as protected. All relevant HDX parameters are
632 shown in **Supplementary Table S3** as recommended (Masson et al., 2019).

633

634 *Endotoxin determination and removal*

635 The concentration of bacterial endotoxins was determined with Pierce LAL Chromogenic
636 Endotoxin Quantitation Kit (Thermo Fisher Scientific) and removal occurred using EndoTrap
637 HD 1 ml (Lionex) according to the manufacturers' protocols.

638

639 *Synthetic peptides*

640 The following HLA-class II peptides were used for the stimulations: MHC class II pool (HCMVA
641 pp65 aa 109-123 MSIYVYALPLKMLNI, HCMV pp65 aa 366-382 HPTFTSQYRIQGKLEYR,
642 EBVB9 EBNA2 aa 276-290 PRSPTVFYNIPPMPL, EBVB9 EBNA1 aa 514-527
643 KTSLYNLRRGTALA, EBV BXLF2 aa 126-140 LEKQLFYIIGTMLPNTRPHS, EBV BRLF1 aa
644 119-133 DRFFIQAPSNSRVMIP, EBVB9 EBNA3 aa 381-395 PIFIRRLHRLLLMRA, EBVB9
645 GP350 aa 167-181 STNITAVVRAQGLDV, IABAN HEMA aa 306-318 PKYVKQNTLKLAT,) or
646 CMVpp65 aa 510-524 YQEFFWDANDIYRIF. All peptides were synthesized and dissolved in
647 water 10% DMSO as previously described (purity \geq 80%), and were kindly provided by S.
648 Stevanović (Loffler et al., 2019).

649

650 *Stimulation and cultivation of PBMCs*

651 PBMCs from donors previously screened for *ex vivo* CD4 $^{+}$ T cell reactivities against MHC-
652 class II peptides were thawed and rested in T cell medium (TCM; IMDM + 1x P/S + 50 μ M β -
653 ME + 10% h.i. HS) containing 1 μ g/mL DNase I (Sigma-Aldrich) at a concentration of 2-3x10 6
654 cells/mL for 3h at 37°C and 7.5% CO $_{2}$. After resting, cells were washed once, counted and up
655 to 1x10 8 cells were labeled with 1.5-2 μ M Carboxyfluorescein succinimidyl ester (CFSE;
656 BioLegend, USA) in 1 mL PBS 1X for 20 min according to the manufacturer's protocol. The
657 cells were washed twice in medium containing 10% FBS after CFSE labeling and incubated

658 with 5 μ M, 0.5 μ M, or 0.05 μ M of CD4-Nb1, CD4-Nb4 or a control Nb for 1h at 37°C in serum-
659 free IMDM medium. Concentrations and duration were chosen to mimick the expected
660 approximate concentration and serum retention time during clinical application. After
661 incubation, cells were washed twice, counted and each condition was separated into three
662 parts and seeded in a 48-well cell culture plate (1.6-2.5x10⁶ cells/well in triplicates). Cells were
663 stimulated with either 10 μ g/ml PHA-L (Sigma-Aldrich), 5 μ g/mL MHC class-II peptide(s) or left
664 unstimulated, and cultured at 37°C and 7.5% CO₂. 2 ng/mL recombinant human IL-2 (R&D,
665 USA) were added on days 3, 5, and 7. One third of the culture on day 4, one half of the culture
666 on day 6 and day 8, and the remaining cells on day 12 were harvested, counted and stained
667 for flow cytometry analyses. For donor 1, the proliferation/activation status and cytokine
668 production were analyzed in two different experiments, whereas for donors 2 and 3, cells from
669 a single experiment were used for the three assays.

670

671 *Assessment of T cell proliferation and activation*

672 Cells from days 4, 6, and 8 were transferred into a 96-well round-bottom plate and washed
673 twice with FACS buffer (PBS + 0.02% sodium azide (Roth, Germany) +2 mM EDTA (Sigma-
674 Aldrich) +2% h.i. FBS). Extracellular staining was performed with CD4 APC-Cy7 (RPA-T4, BD
675 Biosciences), CD8 BV605 (RPA-T8, BioLegend), the dead cell marker Zombie Aqua
676 (BioLegend), CD25 PE-Cy7 (BC96, BioLegend), CD69 PE (FN50, BD Biosciences) and
677 incubated for 20 min at 4°C. All antibodies were used at pre-tested optimal concentrations.
678 Cells were washed twice with FACS buffer. Approx. 500.000 cells were acquired on the same
679 day using a LSRII FortessaTM SORP (BD Biosciences, USA) equipped with the DIVA Software
680 (Version 6, BD Biosciences, USA). The percentage of proliferating CD4⁺ cells was determined
681 by assessment of CFSE negative cells, activation by the percentage of CD69⁺ or CD25⁺.

682

683 *Assessment of T cell function by intracellular cytokine staining*

684 On day 12, the MHC class II peptide(s)-stimulated and cultured cells were transferred into a
685 96-well round-bottom plate (0.5 to 1x 10⁶ cells/well) and restimulated using 10 μ g/ml of the

686 same peptide(s), 10 µg/ml *Staphylococcus enterotoxin B* (SEB, Sigma-Aldrich; positive
687 control), or 10% DMSO (negative control). Protein transport inhibitors Brefeldin A (10 µg/ml,
688 Sigma-Aldrich) and Golgi Stop (BD Biosciences) were added at the same time as the stimuli.
689 After 14 h stimulation at 37°C and 7.5% CO₂, cells were stained extracellularly with the
690 fluorescently labeled antibodies CD4 APC-Cy7, CD8 BV605, and Zombie Aqua and incubated
691 for 20 min at 4°C. After, cells were washed once, then fixed and permeabilized using the BD
692 Cytofix/Cytoperm solution (BD Biosciences) according to the manufacturer's instructions,
693 stained intracellularly with TNF Pacific Blue (Mab11), IL-2 PE-Cy7 (MQ1-17H12), IFN- γ
694 AlexaFluor 700 (4S.B7) and CD154 APC (2431) antibodies (all BioLegend) (Widenmeyer et
695 al., 2012) and washed twice. Approx. 500,000 cells were acquired on the same day using a
696 LSRFortessaTM SORP (BD Biosciences, USA), equipped with the DIVA Software (Version 6,
697 BD Biosciences). All flow cytometry analyses were performed with FlowJo version 10.6.2,
698 gating strategies are shown in **Supplementary Fig. 6**. Statistical analyses were performed
699 with GraphPad Prism version 9.0.0.

700

701 *Full blood stimulation and cytokine release assay*

702 100 µl of lithium-heparin blood was incubated for 1 h at 37°C and 7.5% CO₂. The blood was
703 stimulated with 5 µM Nb (CD4-Nb1, CD4-Nb4 or control Nb), with 100 ng/mL LPS (Invivogen,
704 USA), or with 2 µg/mL PHA-L in a final volume of 250 µl (serum-free IMDM medium), or left
705 unstimulated for 24 h at 37°C and 7.5% CO₂. After two centrifugations, supernatant was
706 collected without transferring erythrocytes. The supernatants were frozen at -80°C until
707 cytokine measurements. Levels of IL-1 β , IL-1Ra, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, GM-
708 CSF, IFN γ , MCP-1, MIP-1 β , TNF α and VEGF were determined using a set of in house
709 developed Luminex-based sandwich immunoassays each consisting of commercially available
710 capture and detection antibodies and calibrator proteins. All assays were thoroughly validated
711 ahead of the study with respect to accuracy, precision, parallelism, robustness, specificity and
712 sensitivity (EMEA, 2013; FDA, 2018). Samples were diluted at least 1:4 or higher. After
713 incubation of the pre-diluted samples or calibrator protein with the capture coated

714 microspheres, beads were washed and incubated with biotinylated detection antibodies.
715 Streptavidin-phycoerythrin was added after an additional washing step for visualization. For
716 control purposes, calibrators and quality control samples were included on each microtiter
717 plate. All measurements were performed on a Luminex FlexMap® 3D analyzer system, using
718 Luminex xPONENT® 4.2 software (Luminex, USA). For data analysis MasterPlex QT, version
719 5.0 was employed. Standard curve and quality control samples were evaluated according to
720 internal criteria adapted to the Westgard Rules (Westgard et al., 1981) to ensure proper assay
721 performance.

722

723 *Analysis of cross-species reactivity binding to mouse CD4⁺ cells by flow cytometry*

724 Murine CD4⁺ cells were isolated from spleen and lymph nodes of C57BL/6N mice by positive
725 selection over CD4 magnetic microbeads (Miltenyi Biotech, Germany). Human CD4⁺ cells were
726 extracted from blood using StraightFrom® Whole Blood CD4 MicroBeads (Miltenyi Biotech).
727 Single cell suspensions were incubated with 0.75 µg/ml of CD4-Nbs-Cy5.5 (~47 – 60 nM) or
728 GFP-Nb-Cy5.5 (~51 nM) in 1% FPS/PBS at 4°C for 20 min and subsequently analyzed on a
729 LSR-II cytometer (BD biosciences).

730

731 *Optical Imaging of CD4-expressing HPB-ALL tumors*

732 Human T cell leukemia HPB-ALL cells (German Collection of Microorganisms and Cell
733 Cultures GmbH, DSMZ, Braunschweig, Germany) were cultured in RPMI-1640 supplemented
734 with 10% FBS and 1% P/S. 10⁷ HPB-ALL cells were injected *subcutaneously* in the right upper
735 flank of 7-week-old NOD SCID gamma mice (NSG, NOD.Cg-*Prkdc*^{scid} *Il2rg*^{tm1Wjl}/SzJ, Charles
736 River Laboratories, Sulzfeld, Germany) and tumor growth was monitored for 2-3 weeks. When
737 tumors reached a diameter ~7 mm, 5 µg of CD4-Nbs-Cy5.5 or control Nb (GFP-Nb-Cy5.5)
738 were administered into the tail vein of 2 mice each. Optical imaging (OI) was performed
739 repetitively in short-term isoflurane anesthesia over a period of 24 h using the IVIS Spectrum
740 In Vivo Imaging System (PerkinElmer, Waltham, MA, USA). Four days after the first Nb
741 administration, the CD4-Nbs-Cy5.5 groups received the GFP-Nb-Cy5.5 (and vice versa) and

742 tumor biodistribution was analyzed identically by OI over 24 h. After the last imaging time point,
743 animals were sacrificed and tumors were explanted for ex vivo OI analysis. Data were analyzed
744 with Living Image 4.4 software (PerkinElmer). The fluorescence intensities were quantified by
745 drawing regions of interest around the tumor borders and were expressed as average radiant
746 efficiency (photons/s)/(μ W/cm²) subtracted by the background fluorescence signal before Nb
747 injection to eliminate potential residual signal from the previous Nb application. All mouse
748 experiments were performed according to the German Animal Protection Law and were
749 approved by the local authorities (Regierungspräsidium Tübingen, R5/18).

750

751 *Immunofluorescence staining of explanted xenograft tumors*

752 Freshly frozen 5 μ m sections of hCD4-Nb1-Cy5.5-containing mice tumors were analyzed using
753 an LSM 800 laser scanning microscope (Zeiss). Afterwards the sections were fixed with
754 perjodate-lysine-paraformaldehyde, blocked using donkey serum and stained with primary
755 rabbit-anti-CD4 antibody (Cell Marque, USA). Bound antibody was visualized using donkey-
756 anti-rabbit-Cy3 secondary antibody (Dianova, Germany). YO-PRO-1 (Invitrogen, USA) was
757 used for nuclear staining. Acquired images of the same areas were manually overlaid.

758

759 *Radiolabeling with NODAGA and ^{64}Cu*

760 All procedures for conjugation and radiolabeling with ^{64}Cu were performed using metal-free
761 equipment and Chelex 100 (Sigma-Aldrich) pretreated buffers. Azide-modified Nbs (100 μ g)
762 were treated with 4 μ l of 5 mM EDTA in 250 mM sodium acetate buffer (pH 6) for 30 min at
763 RT. The protein was reacted with 15 molar equivalents of BCN-NODAGA (CheMatech, Dijon
764 France) in 250 mM sodium acetate pH 6 for 30 min at RT followed by incubation at 4 °C for 18
765 h. Excess of chelator was removed by ultrafiltration (Amicon Ultra 0.5 ml, 3 kDa MWCO, Merck
766 Millipore) using the same buffer. $[^{64}\text{Cu}]\text{CuCl}_2$ (150 MBq in 0.1 M HCl) was neutralized by
767 addition of 1.5 volumes of 0.5 M ammonium acetate solution (pH 6), resulting in a pH of 5.5.
768 To this solution, 50 μ g of conjugate was added and incubated at 42 °C for 60 min. 1 μ l of 20%
769 DTPA solution was added to quench the labeling reaction. Complete incorporation of the

770 radioisotope was confirmed after each radiosynthesis by thin-layer chromatography (iTLC-SA,
771 Agilent Technologies; mobile phase 0.1 M citric acid pH 5) and high-performance size
772 exclusion chromatography (HPSEC, BioSep SEC-s2000, 300 x 7.8 mm, Phenomenex; mobile
773 phase DPBS with 0.5 mM EDTA). All radiolabeled preparations used for *in vivo* PET imaging
774 had radiochemical purities of $\geq 97\%$ (iTLC) and $\geq 94\%$ (HPSEC).

775

776 *In vitro radioimmunoassay*

777 10^7 HPB-ALL or DHL cells were incubated in triplicates with 1 ng (3 MBq/ μ g) of radiolabeled
778 ^{64}Cu -CD4-Nb1 or ^{64}Cu -GFP-Nb for 1 h at 37°C and washed twice with PBS/2% FCS. The
779 remaining cell-bound radioactivity was measured using a Wizard² 2480 gamma counter
780 (PerkinElmer Inc., Waltham, MA, USA) and quantified as percentage of total added activity.

781

782 *PET/MR imaging*

783 Human CD4 knock-in (hCD4KI, genOway, Lyon, France) and wildtype C57BL/6J mice
784 (Charles River) were injected intravenously with 5 μ g (~ 15 MBq) of ^{64}Cu -CD4-Nb1. During the
785 scans, mice were anesthetized with 1.5% isoflurane in 100% oxygen and warmed by water-
786 filled heating mats. Ten-minute static PET scans were performed after 1.5, 3, 6, and 24 h in a
787 dedicated small-animal Inveon microPET scanner (Siemens Healthineers, Knoxville,
788 Tennessee, USA; acquisition time: 600 s). For anatomical information, sequential T2
789 TurboRARE MR images were acquired immediately after the PET scans on a small animal 7
790 T ClinScan magnetic resonance scanner (Bruker BioSpin GmbH, Rheinstetten, Germany).
791 Dynamic PET data of the first 90 minutes post injection were gained in two mice and divided
792 into 10-minute-frames. After attenuation correction by a cobalt-57 point source, PET images
793 were reconstructed using an ordered subset expectation maximization (OSEM3D) algorithm
794 and analyzed with Inveon Research Workplace (Siemens Preclinical Solutions). The volumes
795 of interest of each organ were drawn based on the anatomical MRI to acquire corresponding
796 PET tracer uptake. The resulting values were decay-corrected and presented as percentage
797 of injected dose per volume (%ID/ml). *Ex vivo* γ -counting was conducted after the last imaging

798 time point by measuring the weight and radioactivity of each organ. For quantification,
799 standardized aliquots of the injected radiotracer were added to the measurement.

800

801 *Analyses and Statistics*

802 Data analysis of the flow cytometry data was performed with the FlowJo Software Version
803 10.6.2 (FlowJo LLT, USA) and graph preparation and statistical analysis was performed using
804 the GraphPad Prism Software (Version 8.3.0 or higher).

805

806 **References**

807 Accogli, T., M. Bruchard, and F. Vegran. 2021. Modulation of CD4 T Cell Response According
808 to Tumor Cytokine Microenvironment. *Cancers* 13:

809 Arbabi Ghahroudi, M., A. Desmyter, L. Wyns, R. Hamers, and S. Muyldermans. 1997.
810 Selection and identification of single domain antibody fragments from camel heavy-
811 chain antibodies. *FEBS letters* 414:521-526.

812 Aubert, R.D., A.O. Kamphorst, S. Sarkar, V. Vezys, S.J. Ha, D.L. Barber, L. Ye, A.H. Sharpe,
813 G.J. Freeman, and R. Ahmed. 2011. Antigen-specific CD4 T-cell help rescues
814 exhausted CD8 T cells during chronic viral infection. *Proceedings of the National
815 Academy of Sciences of the United States of America* 108:21182-21187.

816 Bala, G., H. Baudhuin, I. Remory, K. Gillis, P. Debie, A. Krasniqi, T. Lahoutte, G. Raes, N.
817 Devoogdt, B. Cosyns, and S. Hernot. 2018. Evaluation of [(99m)Tc]Radiolabeled
818 Macrophage Mannose Receptor-Specific Nanobodies for Targeting of Atherosclerotic
819 Lesions in Mice. *Mol Imaging Biol* 20:260-267.

820 Becker, M., M. Strengert, D. Junker, P.D. Kaiser, T. Kerrinnes, B. Traenkle, H. Dinter, J.
821 Haring, S. Ghozzi, A. Zeck, F. Weise, A. Peter, S. Horber, S. Fink, F. Ruoff, A. Dulovic,
822 T. Bakchoul, A. Baillot, S. Lohse, M. Cornberg, T. Illig, J. Gottlieb, S. Smola, A. Karch,
823 K. Berger, H.G. Rammensee, K. Schenke-Layland, A. Nelde, M. Marklin, J.S.
824 Heitmann, J.S. Walz, M. Templin, T.O. Joos, U. Rothbauer, G. Krause, and N.
825 Schneiderhan-Marra. 2021. Exploring beyond clinical routine SARS-CoV-2 serology
826 using MultiCoV-Ab to evaluate endemic coronavirus cross-reactivity. *Nature
827 communications* 12:1152.

828 Becker, W., F. Emmrich, G. Horneff, G. Burmester, F. Seiler, A. Schwarz, J. Kalden, and F.
829 Wolf. 1990. Imaging rheumatoid arthritis specifically with technetium 99m CD4-specific
830 (T-helper lymphocytes) antibodies. *Eur J Nucl Med* 17:156-159.

831 Blykers, A., S. Schoonooghe, C. Xavier, K. D'Hoe, D. Laoui, M. D'Huyvetter, I. Vaneycken, F.
832 Cleeren, G. Bormans, J. Heemskerk, G. Raes, P. De Baetselier, T. Lahoutte, N.
833 Devoogdt, J.A. Van Ginderachter, and V. Caveliers. 2015. PET Imaging of Macrophage

834 Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 18F-
835 Radiolabeled Camelid Single-Domain Antibody Fragments. *Journal of nuclear*
836 *medicine : official publication, Society of Nuclear Medicine* 56:1265-1271.

837 Borst, J., T. Ahrends, N. Babala, C.J.M. Melief, and W. Kastenmuller. 2018. CD4(+) T cell help
838 in cancer immunology and immunotherapy. *Nat Rev Immunol* 18:635-647.

839 Braun, M.B., B. Traenkle, P.A. Koch, F. Emele, F. Weiss, O. Poetz, T. Stehle, and U.
840 Rothbauer. 2016. Peptides in headlock—a novel high-affinity and versatile peptide-
841 binding nanobody for proteomics and microscopy. *Scientific reports* 6:

842 Bruni, D., H.K. Angell, and J. Galon. 2020. The immune contexture and Immunoscore in cancer
843 prognosis and therapeutic efficacy. *Nat Rev Cancer* 20:662-680.

844 Byrareddy, S.N., J. Arthos, C. Cicala, F. Villinger, K.T. Ortiz, D. Little, N. Sidell, M.A. Kane, J.
845 Yu, J.W. Jones, P.J. Santangelo, C. Zurla, L.R. McKinnon, K.B. Arnold, C.E. Woody,
846 L. Walter, C. Roos, A. Noll, D. Van Ryk, K. Jelicic, R. Cimbro, S. Gumber, M.D. Reid,
847 V. Adsay, P.K. Amancha, A.E. Mayne, T.G. Parslow, A.S. Fauci, and A.A. Ansari. 2016.
848 Sustained virologic control in SIV+ macaques after antiretroviral and alpha4beta7
849 antibody therapy. *Science* 354:197-202.

850 Chakravarty, R., S. Goel, and W. Cai. 2014. Nanobody: the "magic bullet" for molecular
851 imaging? *Theranostics* 4:386-398.

852 Chanier, T., and P. Chames. 2019. Nanobody Engineering: Toward Next Generation
853 Immunotherapies and Immunoimaging of Cancer. *Antibodies (Basel)* 8:

854 Chen, I., B.M. Dorr, and D.R. Liu. 2011. A general strategy for the evolution of bond-forming
855 enzymes using yeast display. *Proceedings of the National Academy of Sciences of the*
856 *United States of America* 108:11399-11404.

857 Chitnis, T. 2007. The role of CD4 T cells in the pathogenesis of multiple sclerosis. *Int Rev*
858 *Neurobiol* 79:43-72.

859 Choy, E.H., G.S. Panayi, P. Emery, S. Madden, F.C. Breedveld, M.C. Kraan, J.R. Kalden, A.
860 Rascu, J.C. Brown, N. Rapson, and J.M. Johnston. 2002. Repeat-cycle study of high-

861 dose intravenous 4162W94 anti-CD4 humanized monoclonal antibody in rheumatoid
862 arthritis. A randomized placebo-controlled trial. *Rheumatology (Oxford)* 41:1142-1148.

863 Cruikshank, W.W., J.L. Greenstein, A.C. Theodore, and D.M. Center. 1991. Lymphocyte
864 chemoattractant factor induces CD4-dependent intracytoplasmic signaling in
865 lymphocytes. *Journal of immunology* 146:2928-2934.

866 Dammes, N., and D. Peer. 2020. Monoclonal antibody-based molecular imaging strategies
867 and theranostic opportunities. *Theranostics* 10:938-955.

868 Davies, G., A.M. Rolle, A. Maurer, P.R. Spycher, C. Schillinger, D. Solouk-Saran, M.
869 Hasenberg, J. Weski, J. Fonslet, A. Dubois, F. Boschetti, F. Denat, M. Gunzer, M.
870 Eichner, L.S. Ryder, M. Jensen, R. Schibli, B.J. Pichler, S. Wiehr, and C.R. Thornton.
871 2017. Towards Translational ImmunoPET/MR Imaging of Invasive Pulmonary
872 Aspergillosis: The Humanised Monoclonal Antibody JF5 Detects Aspergillus Lung
873 Infections In Vivo. *Theranostics* 7:3398-3414.

874 Delhalle, S., S.F.N. Bode, R. Balling, M. Ollert, and F.Q. He. 2018. A roadmap towards
875 personalized immunology. *NPJ Syst Biol Appl* 4:9.

876 Di Mascio, M., C.H. Paik, J.A. Carrasquillo, J.S. Maeng, B.S. Jang, I.S. Shin, S. Srinivasula,
877 R. Byrum, A. Neria, W. Kopp, M. Catalfamo, Y. Nishimura, K. Reimann, M. Martin, and
878 H.C. Lane. 2009. Noninvasive in vivo imaging of CD4 cells in simian-human
879 immunodeficiency virus (SHIV)-infected nonhuman primates. *Blood* 114:328-337.

880 Dialynas, D.P., D.B. Wilde, P. Marrack, A. Pierres, K.A. Wall, W. Havran, G. Otten, M.R. Loken,
881 M. Pierres, J. Kappler, and et al. 1983. Characterization of the murine antigenic
882 determinant, designated L3T4a, recognized by monoclonal antibody GK1.5:
883 expression of L3T4a by functional T cell clones appears to correlate primarily with class
884 II MHC antigen-reactivity. *Immunol Rev* 74:29-56.

885 Doan, M., I. Vorobjev, P. Rees, A. Filby, O. Wolkenhauer, A.E. Goldfeld, J. Lieberman, N.
886 Barteneva, A.E. Carpenter, and H. Hennig. 2018. Diagnostic Potential of Imaging Flow
887 Cytometry. *Trends Biotechnol* 36:649-652.

888 EMEA. 2013. Guideline on Bioanalytical Method Validation. *European Medicines Agency;*
889 *Comittee for Medicinal Products for Human Use (CHMP)*

890 Evazalipour, M., M. D'Huyvetter, B.S. Tehrani, M. Abolhassani, K. Omidfar, S. Abdoli, R.
891 Arezumand, H. Morovvati, T. Lahoutte, S. Muyldermans, and N. Devoogdt. 2014.
892 Generation and characterization of nanobodies targeting PSMA for molecular imaging
893 of prostate cancer. *Contrast Media Mol Imaging* 9:211-220.

894 FDA. 2018. Bioanalytical Method Validation: Guidance for Industry. *U.S. Department of Health*
895 *and Human Services, Food and Drug Administration, Center for Drug Evaluation and*
896 *Research, Center for Veterinary Medicine*

897 Freise, A.C., K.A. Zettlitz, F.B. Salazar, X. Lu, R. Tavare, and A.M. Wu. 2017. ImmunoPET
898 Imaging of Murine CD4(+) T Cells Using Anti-CD4 Cys-Diabody: Effects of Protein
899 Dose on T Cell Function and Imaging. *Mol Imaging Biol* 19:599-609.

900 Goverman, J. 2009. Autoimmune T cell responses in the central nervous system. *Nat Rev*
901 *Immunol* 9:393-407.

902 Hamers-Casterman, C., T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers, E.B. Songa,
903 N. Bendahman, and R. Hamers. 1993. Naturally occurring antibodies devoid of light
904 chains. *Nature* 363:446-448.

905 Hamuro, Y., and S.J. Coales. 2018. Optimization of Feasibility Stage for Hydrogen/Deuterium
906 Exchange Mass Spectrometry. *J Am Soc Mass Spectrom* 29:623-629.

907 Haque, S., K. Saizawa, J. Rojo, and C.A. Janeway, Jr. 1987. The influence of valence on the
908 functional activities of monoclonal anti-L3T4 antibodies. Discrimination of signaling
909 from other effects. *Journal of immunology* 139:3207-3212.

910 Hartmann, F.J., J. Babdor, P.F. Gherardini, E.D. Amir, K. Jones, B. Sahaf, D.M. Marquez, P.
911 Krutzik, E. O'Donnell, N. Sigal, H.T. Maecker, E. Meyer, M.H. Spitzer, and S.C. Bendall.
912 2019. Comprehensive Immune Monitoring of Clinical Trials to Advance Human
913 Immunotherapy. *Cell reports* 28:819-831 e814.

914 Huang, L., L.O. Gainkam, V. Caveliers, C. Vanhove, M. Keyaerts, P. De Baetselier, A. Bossuyt,
915 H. Revets, and T. Lahoutte. 2008. SPECT imaging with 99mTc-labeled EGFR-specific
916 nanobody for in vivo monitoring of EGFR expression. *Mol Imaging Biol* 10:167-175.

917 Jailkhani, N., J.R. Ingram, M. Rashidian, S. Rickelt, C. Tian, H. Mak, Z. Jiang, H.L. Ploegh,
918 and R.O. Hynes. 2019. Noninvasive imaging of tumor progression, metastasis, and
919 fibrosis using a nanobody targeting the extracellular matrix. *Proceedings of the National
920 Academy of Sciences of the United States of America* 116:14181-14190.

921 Jonsson, P., J.H. Southcombe, A.M. Santos, J. Huo, R.A. Fernandes, J. McColl, M. Lever, E.J.
922 Evans, A. Hudson, V.T. Chang, T. Hanke, A. Godkin, P.D. Dunne, M.H. Horrocks, M.
923 Palayret, G.R. Scream, J. Petersen, J. Rossjohn, L. Fugger, O. Dushek, X.N. Xu, S.J.
924 Davis, and D. Kleinerman. 2016. Remarkably low affinity of CD4/peptide-major
925 histocompatibility complex class II protein interactions. *Proceedings of the National
926 Academy of Sciences of the United States of America* 113:5682-5687.

927 Kanwar, B., D.W. Gao, A.B. Hwang, J.P. Grenert, S.P. Williams, B. Franc, and J.M. McCune.
928 2008. In vivo imaging of mucosal CD4+ T cells using single photon emission computed
929 tomography in a murine model of colitis. *Journal of immunological methods* 329:21-30.

930 Killeen, N., S. Sawada, and D.R. Littman. 1993. Regulated expression of human CD4 rescues
931 helper T cell development in mice lacking expression of endogenous CD4. *The EMBO
932 journal* 12:1547-1553.

933 Kochert, B.A., R.E. Iacob, T.E. Wales, A. Makriyannis, and J.R. Engen. 2018. Hydrogen-
934 Deuterium Exchange Mass Spectrometry to Study Protein Complexes. *Methods Mol
935 Biol* 1764:153-171.

936 Kristensen, L.K., C. Fröhlich, C. Christensen, M.C. Melander, T.T. Poulsen, G.R. Galler, J.
937 Lantto, I.D. Horak, M. Kragh, C.H. Nielsen, and A. Kjaer. 2019. CD4(+) and CD8a(+)
938 PET imaging predicts response to novel PD-1 checkpoint inhibitor: studies of Sym021
939 in syngeneic mouse cancer models. *Theranostics* 9:8221-8238.

940 Lecocq, Q., Y. De Vlaeminck, H. Hanssens, M. D'Huyvetter, G. Raes, C. Goyvaerts, M.
941 Keyaerts, N. Devoogdt, and K. Breckpot. 2019. Theranostics in immuno-oncology
942 using nanobody derivatives. *Theranostics* 9:7772-7791.

943 Li, H., Y. Chen, Q. Jin, Y. Wu, C. Deng, Y. Gai, Z. Sun, Y. Li, J. Wang, Y. Yang, Q. Lv, Y.
944 Zhang, R. An, X. Lan, L. Zhang, and M. Xie. 2021. Noninvasive Radionuclide Molecular
945 Imaging of the CD4-Positive T Lymphocytes in Acute Cardiac Rejection. *Mol Pharm*
946 18:1317-1326.

947 Loffler, M.W., B. Nussbaum, G. Jager, P.S. Jurmeister, J. Budczies, P.L. Pereira, S. Clasen,
948 D.J. Kowalewski, L. Muhlenbruch, I. Konigsrainer, S. Beckert, R. Ladurner, S. Wagner,
949 F. Bullinger, T.H. Gross, C. Schroeder, B. Sipos, A. Konigsrainer, S. Stevanovic, C.
950 Denkert, H.G. Rammensee, C. Gouttefangeas, and S.P. Haen. 2019. A Non-
951 interventional Clinical Trial Assessing Immune Responses After Radiofrequency
952 Ablation of Liver Metastases From Colorectal Cancer. *Frontiers in immunology*
953 10:2526.

954 Maier, J., B. Traenkle, and U. Rothbauer. 2015. Real-time analysis of epithelial-mesenchymal
955 transition using fluorescent single-domain antibodies. *Scientific reports* 5:13402.

956 Massa, S., N. Vikani, C. Betti, S. Ballet, S. Vanderhaegen, J. Steyaert, B. Descamps, C.
957 Vanhove, A. Bunschoten, and F.W. Leeuwen. 2016. Sortase A-mediated site-specific
958 labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple
959 molecular imaging modalities. *Contrast media & molecular imaging* 11:328-339.

960 Masson, G.R., J.E. Burke, N.G. Ahn, G.S. Anand, C. Borchers, S. Brier, G.M. Bou-Assaf, J.R.
961 Engen, S.W. Englander, J. Faber, R. Garlish, P.R. Griffin, M.L. Gross, M. Guttman, Y.
962 Hamuro, A.J.R. Heck, D. Houde, R.E. Iacob, T.J.D. Jorgensen, I.A. Kaltashov, J.P.
963 Klinman, L. Konermann, P. Man, L. Mayne, B.D. Pascal, D. Reichmann, M. Skehel, J.
964 Snijder, T.S. Strutzenberg, E.S. Underbakke, C. Wagner, T.E. Wales, B.T. Walters,
965 D.D. Weis, D.J. Wilson, P.L. Wintrode, Z. Zhang, J. Zheng, D.C. Schriemer, and K.D.
966 Rand. 2019. Recommendations for performing, interpreting and reporting hydrogen

967 deuterium exchange mass spectrometry (HDX-MS) experiments. *Nature methods*
968 16:595-602.

969 Masuda, S., K. Kumano, T. Suzuki, T. Tomita, T. Iwatsubo, H. Natsugari, A. Tojo, M. Shibutani,
970 K. Mitsumori, Y. Hanazono, S. Ogawa, M. Kurokawa, and S. Chiba. 2009. Dual
971 antitumor mechanisms of Notch signaling inhibitor in a T-cell acute lymphoblastic
972 leukemia xenograft model. *Cancer Sci* 100:2444-2450.

973 Matos, L.L., D.C. Trufelli, M.G. de Matos, and M.A. da Silva Pinhal. 2010.
974 Immunohistochemistry as an important tool in biomarkers detection and clinical
975 practice. *Biomark Insights* 5:9-20.

976 Moreland, L.W., P.W. Pratt, M.D. Mayes, A. Postlethwaite, M.H. Weisman, T. Schnitzer, R.
977 Lightfoot, L. Calabrese, D.J. Zelinger, J.N. Woody, and et al. 1995. Double-blind,
978 placebo-controlled multicenter trial using chimeric monoclonal anti-CD4 antibody, cM-
979 T412, in rheumatoid arthritis patients receiving concomitant methotrexate. *Arthritis*
980 *Rheum* 38:1581-1588.

981 Mousset, C.M., W. Hobo, R. Woestenenk, F. Preijers, H. Dolstra, and A.B. van der Waart.
982 2019. Comprehensive Phenotyping of T Cells Using Flow Cytometry. *Cytometry A*
983 95:647-654.

984 Penaloza-MacMaster, P., D.L. Barber, E.J. Wherry, N.M. Provine, J.E. Teigler, L. Parenteau,
985 S. Blackmore, E.N. Borducchi, R.A. Larocca, K.B. Yates, H. Shen, W.N. Haining, R.
986 Sommerstein, D.D. Pinschewer, R. Ahmed, and D.H. Barouch. 2015. Vaccine-elicited
987 CD4 T cells induce immunopathology after chronic LCMV infection. *Science* 347:278-
988 282.

989 Popp, M.W.L., and H.L. Ploegh. 2011. Making and breaking peptide bonds: protein
990 engineering using sortase. *Angewandte Chemie International Edition* 50:5024-5032.

991 Rashidian, M., J.R. Ingram, M. Dougan, A. Dongre, K.A. Whang, C. LeGall, J.J. Cagnolini, B.
992 Bierie, M. Gostissa, J. Gorman, G.M. Grotenbreg, A. Bhan, R.A. Weinberg, and H.L.
993 Ploegh. 2017. Predicting the response to CTLA-4 blockade by longitudinal noninvasive
994 monitoring of CD8 T cells. *The Journal of experimental medicine* 214:2243-2255.

995 Roovers, R.C., T. Laeremans, L. Huang, S. De Taeye, A.J. Verkleij, H. Revets, H.J. de Haard,
996 and P.M. van Bergen en Henegouwen. 2007. Efficient inhibition of EGFR signaling and
997 of tumour growth by antagonistic anti-EGFR Nanobodies. *Cancer Immunol Immunother*
998 56:303-317.

999 Rossi, J.F., P. Ceballos, and Z.Y. Lu. 2019. Immune precision medicine for cancer: a novel
1000 insight based on the efficiency of immune effector cells. *Cancer Commun (Lond)* 39:34.

1001 Rothbauer, U., K. Zolghadr, S. Muyldermans, A. Schepers, M.C. Cardoso, and H. Leonhardt.
1002 2008. A versatile nanotrap for biochemical and functional studies with fluorescent
1003 fusion proteins. *Molecular & Cellular Proteomics* 7:282-289.

1004 Rubin, R.H., D. Baltimore, B.K. Chen, R.A. Wilkinson, and A.J. Fischman. 1996. In vivo tissue
1005 distribution of CD4 lymphocytes in mice determined by radioimmunoscintigraphy with
1006 an 111In-labeled anti-CD4 monoclonal antibody. *Proceedings of the National Academy
1007 of Sciences of the United States of America* 93:7460-7463.

1008 Sakihama, T., A. Smolyar, and E.L. Reinherz. 1995. Oligomerization of CD4 is required for
1009 stable binding to class II major histocompatibility complex proteins but not for
1010 interaction with human immunodeficiency virus gp120. *Proceedings of the National
1011 Academy of Sciences of the United States of America* 92:6444-6448.

1012 Scheuenpflug, J. 2017. Precision Medicine in Oncology and Immuno-Oncology: Where We
1013 Stand and Where We're Headed. *Biomed Hub* 2:79-86.

1014 Sckisel, G.D., A. Mirsoian, C.M. Minnar, M. Crittenden, B. Curti, J.Q. Chen, B.R. Blazar, A.D.
1015 Borowsky, A.M. Monjazeb, and W.J. Murphy. 2017. Differential phenotypes of memory
1016 CD4 and CD8 T cells in the spleen and peripheral tissues following immunostimulatory
1017 therapy. *J Immunother Cancer* 5:33.

1018 Steinhoff, K., M. Pierer, J. Siegert, U. Pigla, R. Laub, S. Hesse, W. Seidel, D. Sorger, A. Seese,
1019 J.U. Kuenstler, H.J. Pietzsch, T. Lincke, M. Rullmann, F. Emmrich, and O. Sabri. 2014.
1020 Visualizing inflammation activity in rheumatoid arthritis with Tc-99 m anti-CD4-mAb
1021 fragment scintigraphy. *Nucl Med Biol* 41:350-354.

1022 Tavare, R., M.N. McCracken, K.A. Zettlitz, F.B. Salazar, T. Olafsen, O.N. Witte, and A.M. Wu.

1023 2015. Immuno-PET of Murine T Cell Reconstitution Postadoptive Stem Cell

1024 Transplantation Using Anti-CD4 and Anti-CD8 Cys-Diabodies. *J Nucl Med* 56:1258-

1025 1264.

1026 Tay, R.E., E.K. Richardson, and H.C. Toh. 2021. Revisiting the role of CD4(+) T cells in cancer

1027 immunotherapy-new insights into old paradigms. *Cancer Gene Ther* 28:5-17.

1028 Tijink, B.M., T. Laeremans, M. Budde, M. Stigter-van Walsum, T. Dreier, H.J. de Haard, C.R.

1029 Leemans, and G.A. van Dongen. 2008. Improved tumor targeting of anti-epidermal

1030 growth factor receptor Nanobodies through albumin binding: taking advantage of

1031 modular Nanobody technology. *Mol Cancer Ther* 7:2288-2297.

1032 Traenkle, B., F. Emele, R. Anton, O. Poetz, R.S. Haeussler, J. Maier, P.D. Kaiser, A.M. Scholz,

1033 S. Nueske, A. Buchfellner, T. Romer, and U. Rothbauer. 2015. Monitoring interactions

1034 and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells.

1035 *Molecular & cellular proteomics : MCP* 14:707-723.

1036 Vignali, D.A., and K.M. Vignali. 1999. Profound enhancement of T cell activation mediated by

1037 the interaction between the TCR and the D3 domain of CD4. *Journal of immunology*

1038 162:1431-1439.

1039 Virant, D., B. Traenkle, J. Maier, P.D. Kaiser, M. Bodenhofer, C. Schmees, I. Vojnovic, B.

1040 Pisak-Lukats, U. Endesfelder, and U. Rothbauer. 2018. A peptide tag-specific

1041 nanobody enables high-quality labeling for dSTORM imaging. *Nature communications*

1042 9:930.

1043 Wagner, T.R., E. Ostertag, P.D. Kaiser, M. Gramlich, N. Ruetalo, D. Junker, J. Haering, B.

1044 Traenkle, M. Becker, A. Dulovic, H. Schweizer, S. Nueske, A. Scholz, A. Zeck, K.

1045 Schenke-Layland, A. Nelde, M. Strengert, J.S. Walz, G. Zocher, T. Stehle, M.

1046 Schindler, N. Schneiderhan-Marra, and U. Rothbauer. 2021. NeutrobodyPlex-

1047 monitoring SARS-CoV-2 neutralizing immune responses using nanobodies. *EMBO*

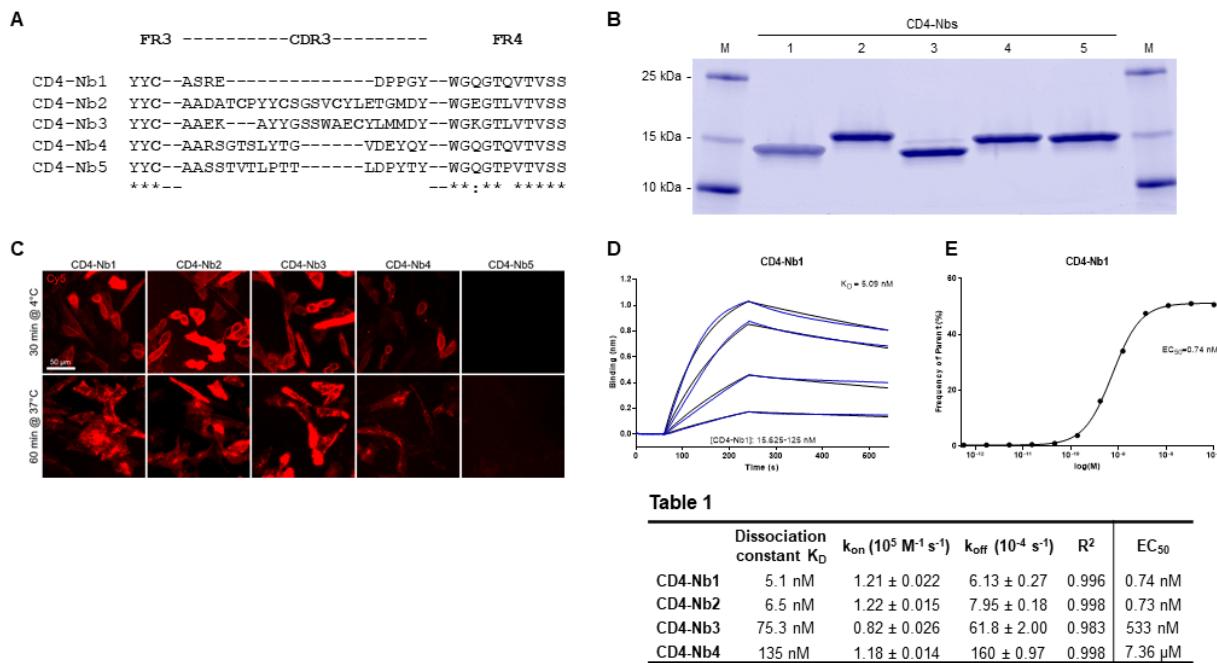
1048 *Rep* 22:e52325.

1049 Westgard, J.O., P.L. Barry, M.R. Hunt, and T. Groth. 1981. A multi-rule Shewhart chart for
1050 quality control in clinical chemistry. *Clin Chem* 27:493-501.

1051 Widenmeyer, M., H. Griesemann, S. Stevanovic, S. Feyerabend, R. Klein, S. Attig, J.
1052 Hennenlotter, D. Wernet, D.V. Kuprash, A.Y. Sazykin, S. Pascolo, A. Stenzl, C.
1053 Gouttefangeas, and H.G. Rammensee. 2012. Promiscuous survivin peptide induces
1054 robust CD4+ T-cell responses in the majority of vaccinated cancer patients.
1055 *International journal of cancer. Journal international du cancer* 131:140-149.

1056 Wilde, D.B., P. Marrack, J. Kappler, D.P. Dialynas, and F.W. Fitch. 1983. Evidence implicating
1057 L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a)
1058 blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding
1059 by cloned murine helper T lymphocyte lines. *Journal of immunology* 131:2178-2183.

1060 Wu, H., P.D. Kwong, and W.A. Hendrickson. 1997. Dimeric association and segmental
1061 variability in the structure of human CD4. *Nature* 387:527-530.


1062 Yang, E.Y., and K. Shah. 2020. Nanobodies: Next Generation of Cancer Diagnostics and
1063 Therapeutics. *Front Oncol* 10:1182.

1064

1065 **Figures**

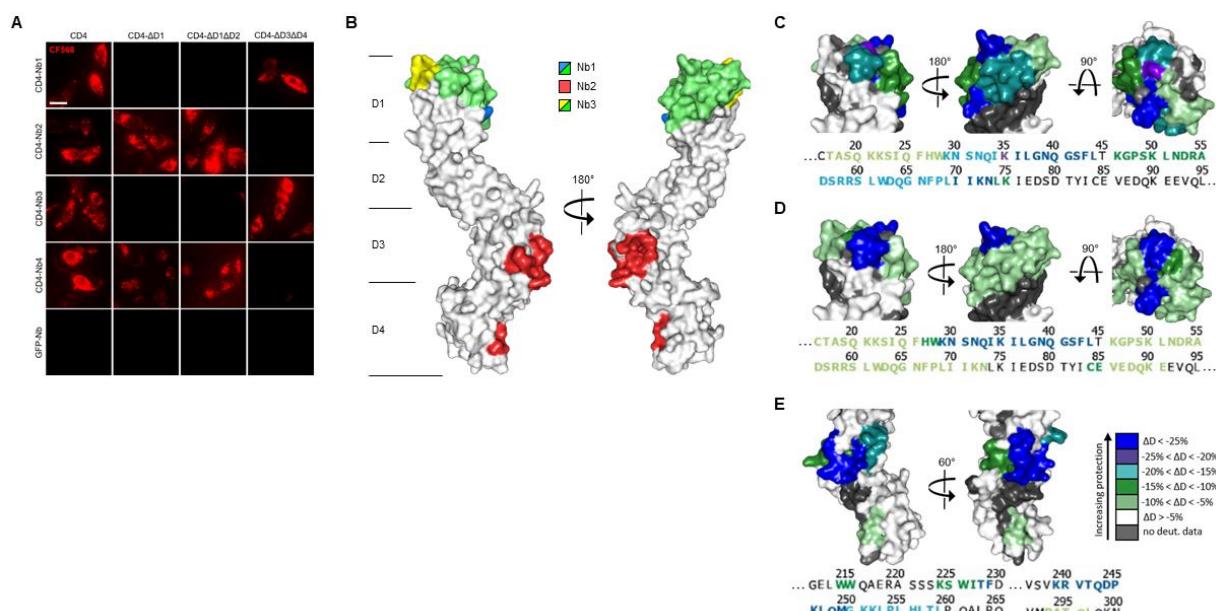
1066 **Figure 1**

1067

1068

1069

1070 **Figure 1 Identification and characterization of Nbs against hCD4**


1071 **(A)** Amino acid sequences of the complementarity determining region (CDR) 3 from unique
1072 CD4-Nbs selected after two rounds of biopanning are listed. **(B)** Recombinant expression and
1073 purification of CD4-Nbs using immobilized metal affinity chromatography (IMAC) and size
1074 exclusion chromatography (SEC). Coomassie stained SDS-PAGE of 2 μg of purified Nbs is
1075 shown. **(C)** Representative images of live CHO-hCD4 cells stained with CD4-Nbs for 30 min
1076 at 4°C (top row) or 60 min at 37°C (bottom row), scale bar: 50 μm . **(D)** For biolayer
1077 interferometry (BLI)-based affinity measurements, biotinylated hCD4 was immobilized on
1078 streptavidin biosensors. Kinetic measurements were performed using four concentrations of
1079 purified Nbs ranging from 15.6 nM - 1000 nM. As an example, the sensogram of CD4-Nb1 at
1080 indicated concentrations is shown. **(E)** EC_{50} determination by flow cytometry. Exemplarily
1081 shown for CD4-Nb1, the percentage of positively stained HEK293-hCD4 (frequency of parent)
1082 was plotted against indicated concentrations of CD4-Nbs.

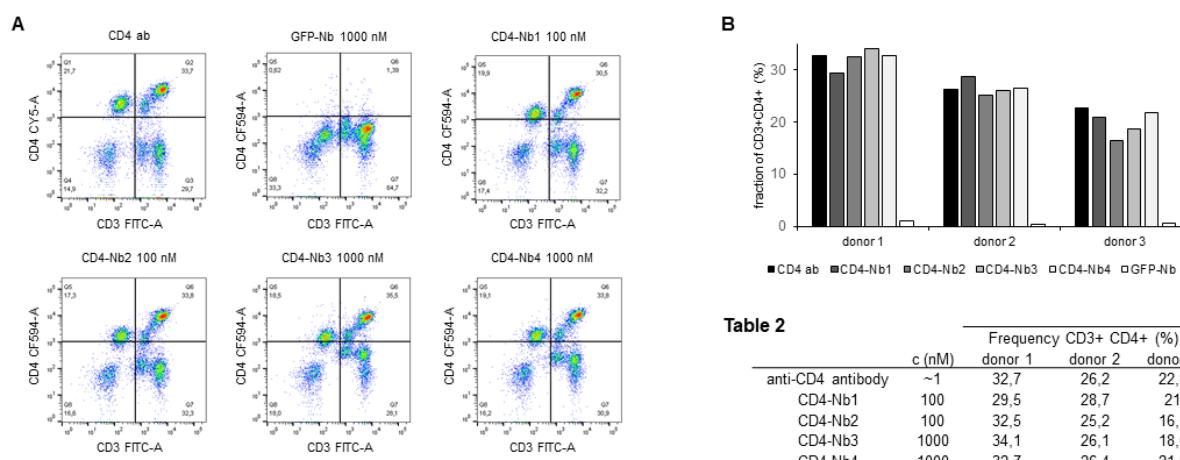
1083 **Table 1** Summary of affinities (K_D), association (K_{on}) and dissociation constants (K_{off})
1084 determined by BLI (left side) and EC_{50} values of flow cytometry (right side).

Table 1

Dissociation constant K_D	$k_{on} (10^5 \text{ M}^{-1} \text{ s}^{-1})$	$k_{off} (10^{-4} \text{ s}^{-1})$	R^2	EC_{50}	
CD4-Nb1	5.1 nM	1.21 ± 0.022	6.13 ± 0.27	0.996	0.74 nM
CD4-Nb2	6.5 nM	1.22 ± 0.015	7.95 ± 0.18	0.998	0.73 nM
CD4-Nb3	75.3 nM	0.82 ± 0.026	61.8 ± 2.00	0.983	533 nM
CD4-Nb4	135 nM	1.18 ± 0.014	160 ± 0.97	0.998	7.36 μM

1085 **Figure 2**

1086


1087

1088 **Figure 2 Localization of CD4-Nb binding epitopes**

1089 **(A)** Representative images of live CHO cells expressing full-length or domain-deletion mutants
1090 of hCD4 stained with fluorescently labeled CD4-Nbs (CF568) are shown, Scale bar 10 μ m. **(B)**
1091 Surface structure model of hCD4 (PDB 1wiq) (Wu et al., 1997) and the HDX-MS epitope
1092 mapping results of CD4-Nb1 – 3 are depicted. Different colours highlight the amino acid
1093 residues protected by CD4-Nb1 (blue), CD4-Nb2 (red) or CD4-Nb 3 (yellow). Overlapping
1094 residues protected by both Nb1 and Nb3, are coloured in green. A more detailed surface map
1095 (% Δ D) of these specific regions is highlighted in **C** (CD4-Nb1), **D** (CD4-Nb3) and **E** (CD4-
1096 Nb2) with the corresponding CD4 amino acid sequence.

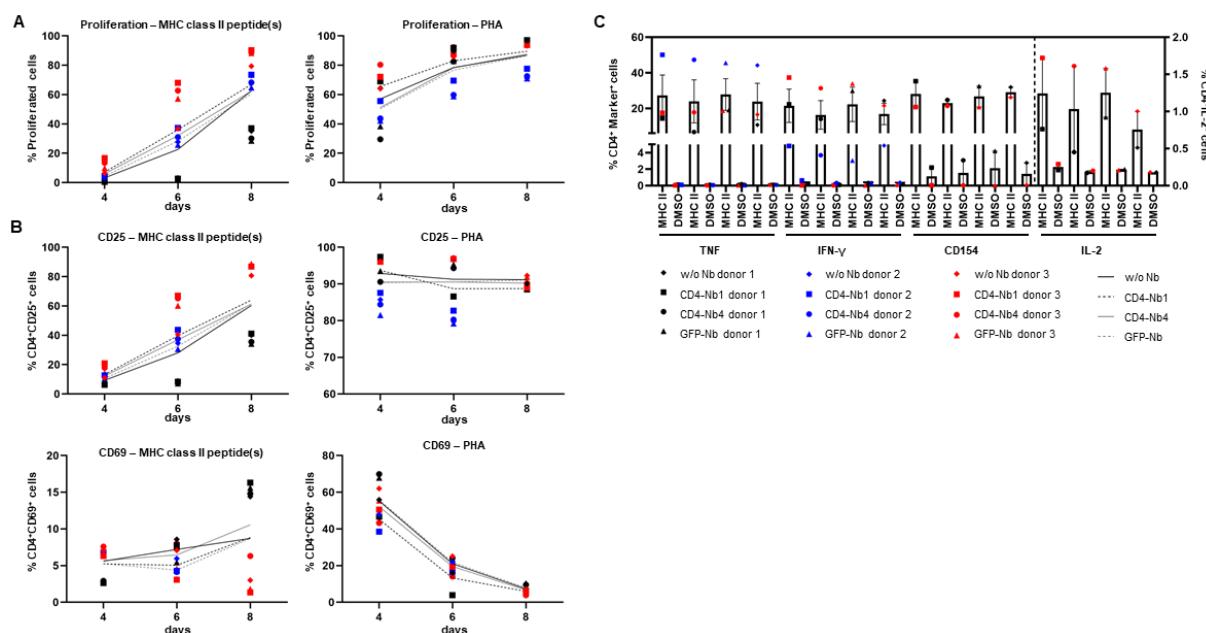
1097

1098 **Figure 3**

1099

1100

1101 **Figure 3 Flow cytometry analysis of human PBMCs stained with fluorescently labeled**
1102 **CD4-Nbs**

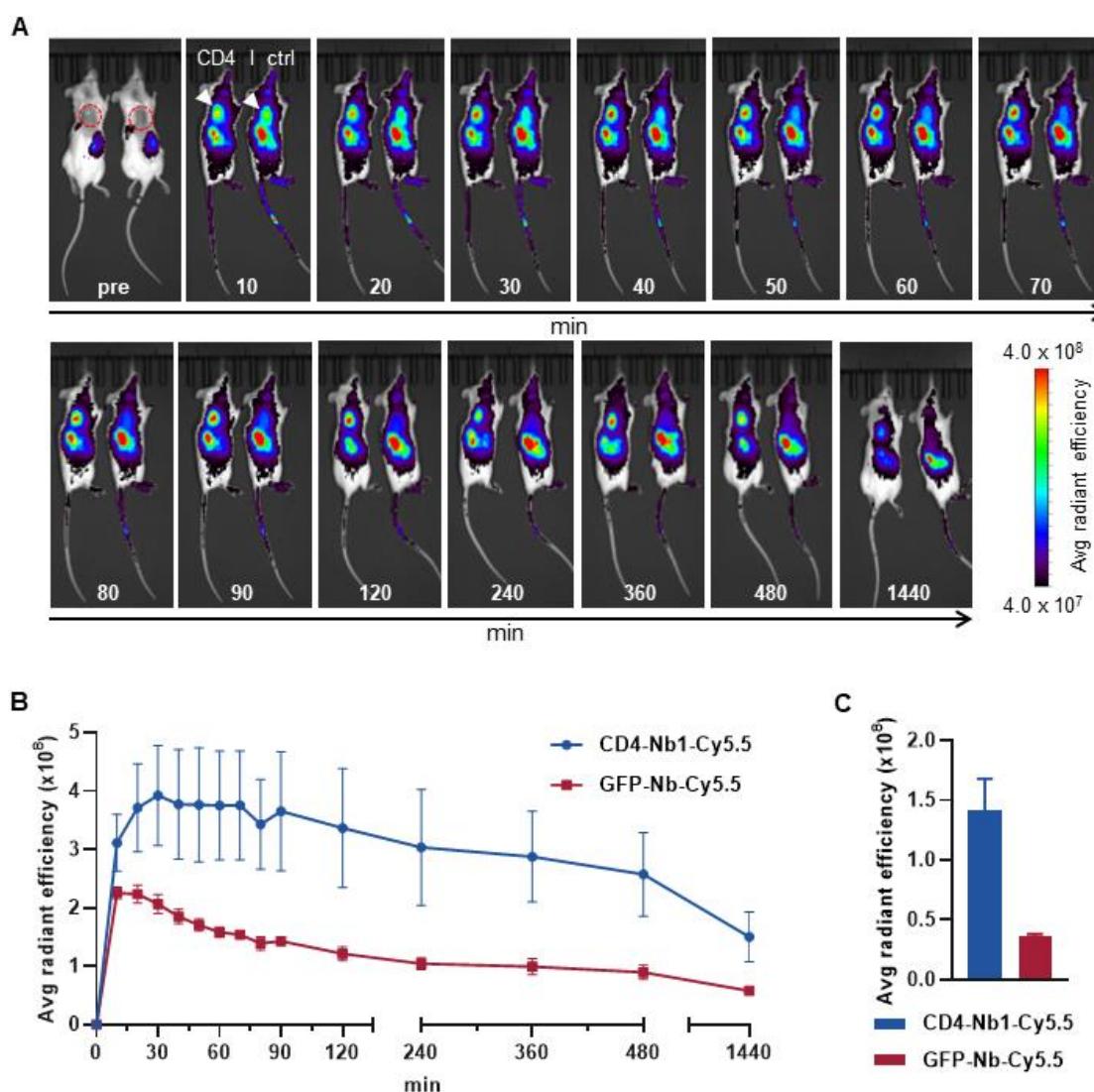

1103 **(A)** Schematic representation of the final gating step for CD3⁺CD4⁺ double-positive cells
1104 derived from donor one. **(B)** Percentage of double-positive cells of three donors, stained with
1105 CD4-Nb1 or CD4-Nb2 (100 nM), or CD4-Nb3 or CD4-Nb4 (1000 nM), compared to anti-CD4
1106 antibody and negative control Nb (GFP-Nb, 1000 nM).

1107 **Table 2** Percentage of double-positive PBMCs from three donors stained with hCD4-Nbs at
1108 indicated concentrations.

1109

1110

1111 **Figure 4**

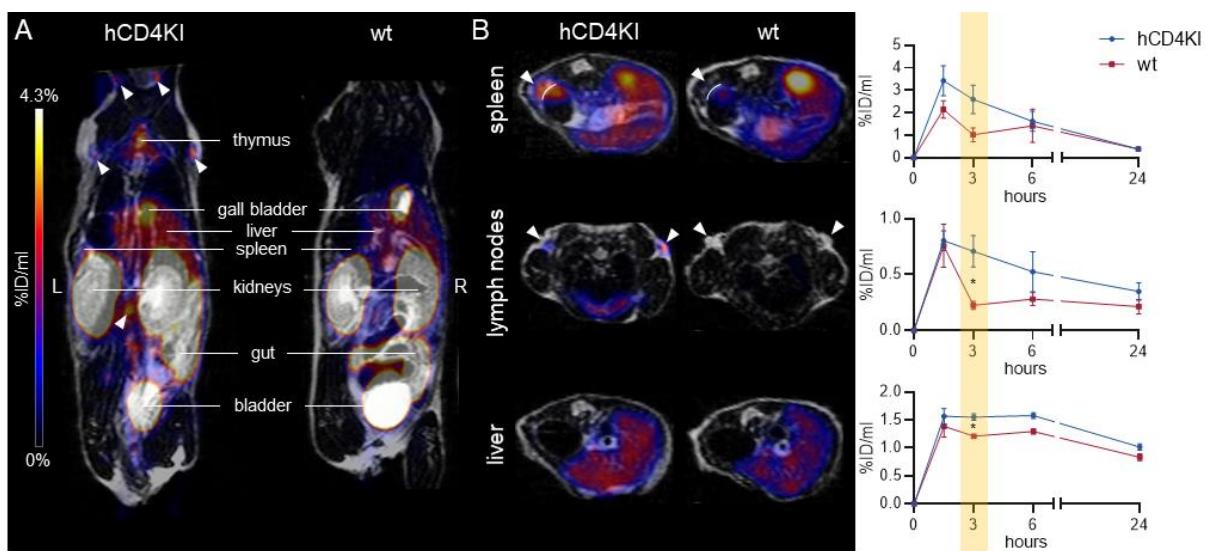


1112

1113 **Figure 4 Impact of CD4-Nbs on activation, proliferation and cytokine release of T cells**

1114 Cells were stained with CFSE, treated with 5 μ M Nbs or without for 1 h (one replicate each),
 1115 washed and then stimulated with 5 μ g/ml MHC-class II peptides, 10 μ g/ml PHA or not
 1116 stimulated, and cultured for 12 days. **(A)** Cells were analyzed by flow cytometry for proliferation
 1117 (CFSE-low/negative fraction) and activation (CD25 and CD69) on days 4, 6, 8. Proliferation of
 1118 CD4 $^{+}$ cells after stimulation with MHC-class II peptide(s) (left) or PHA (right). **(B)** Activation
 1119 markers on CD4 $^{+}$ cells, Top: CD25 expression after stimulation with MHCII peptide(s) (left) or PHA
 1120 (right); Bottom: CD69 expression after stimulation with MHCII peptide(s) (left) or PHA
 1121 (right). Mean percentages of all 3 donors are shown as plain or dotted lines. **(C)** Cytokine and
 1122 activation marker expression of CD4 $^{+}$ cells – TNF, IFN- γ , CD154 (left y-axis) or IL-2 (right y-
 1123 axis). Cells were restimulated on day 12 with MHC-class II peptide(s) or DMSO (background)
 1124 for 14 h in the presence of Golgi Stop and Brefeldin A and analyzed by flow cytometry. Error
 1125 bars display SEM. Gating strategy is shown in **Supplementary Fig. 6**, all percentages are
 1126 given within CD4 $^{+}$ T cells.

1127 **Figure 5**

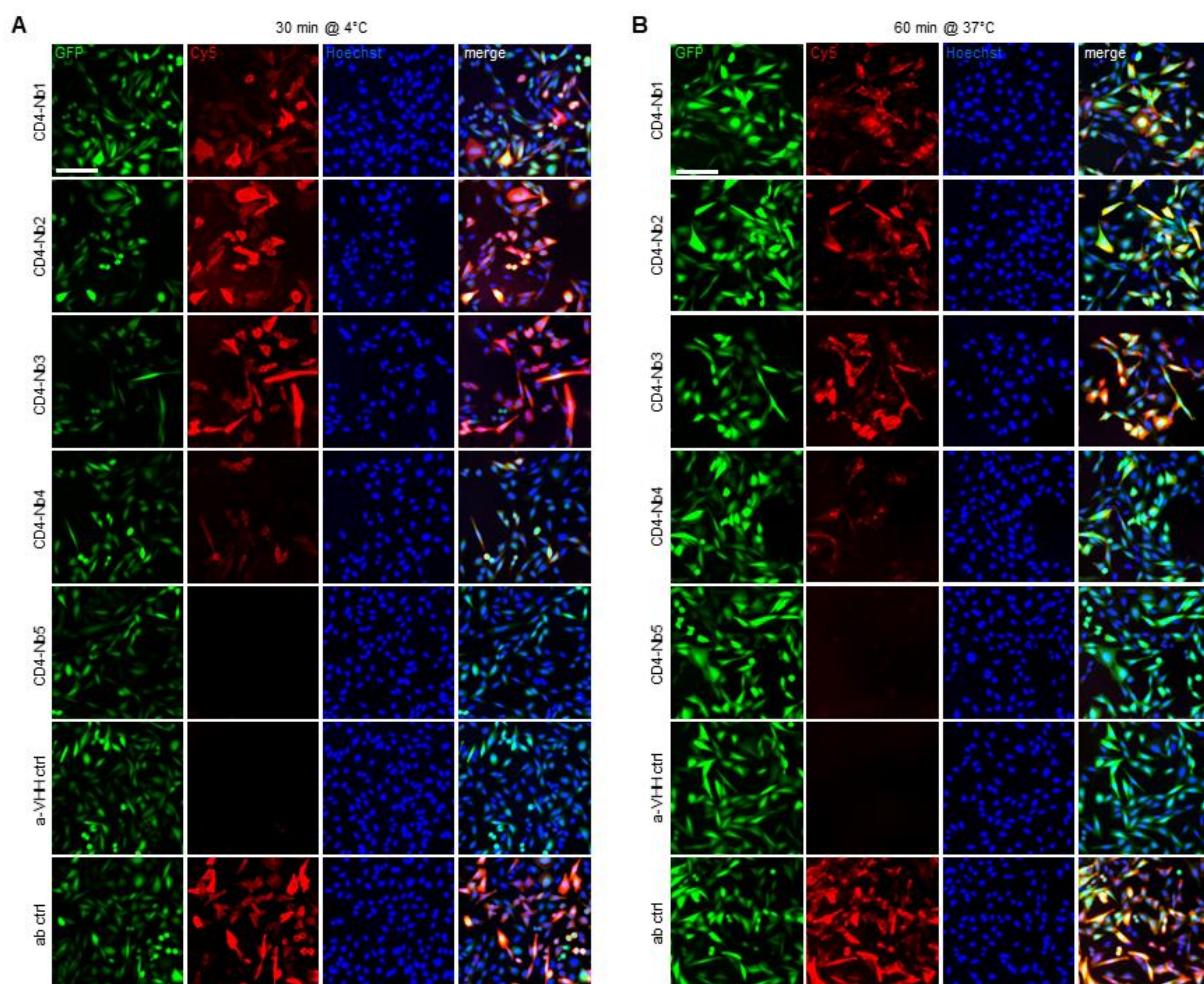


1128

1129 **Figure 5 *In vivo* optical imaging (OI) of CD4-Nb1-Cy5.5**

1130 5 μ g of CD4-Nb1-Cy5.5 or GFP-Nb-Cy5.5 were administered *i.v.* to *subcutaneously* human
1131 CD4 $^{+}$ HPB-ALL-bearing NSG mice and tumor biodistribution was monitored by repetitive OI
1132 measurements over the course of 24 h. **(A)** Acquired images of each measurement time point
1133 of one representative mouse injected with CD4-Nb1-Cy5.5 (left, CD4) or GFP-Nb-Cy5.5 (right,
1134 ctrl). Red circles and white arrows indicate the tumor localization at the right upper flank. **(B)**
1135 Quantification of the fluorescence signal from the tumors ($n = 4$ per group, arithmetic mean of
1136 the average radiant efficiency \pm SEM). **(C)** After the last imaging time point tumors were
1137 explanted for *ex vivo* OI, confirming increased accumulation of CD4-Nb1-Cy5.5 compared to
1138 the GFP-Nb-Cy5.5 ($n = 2$ per group, arithmetic mean \pm SEM).

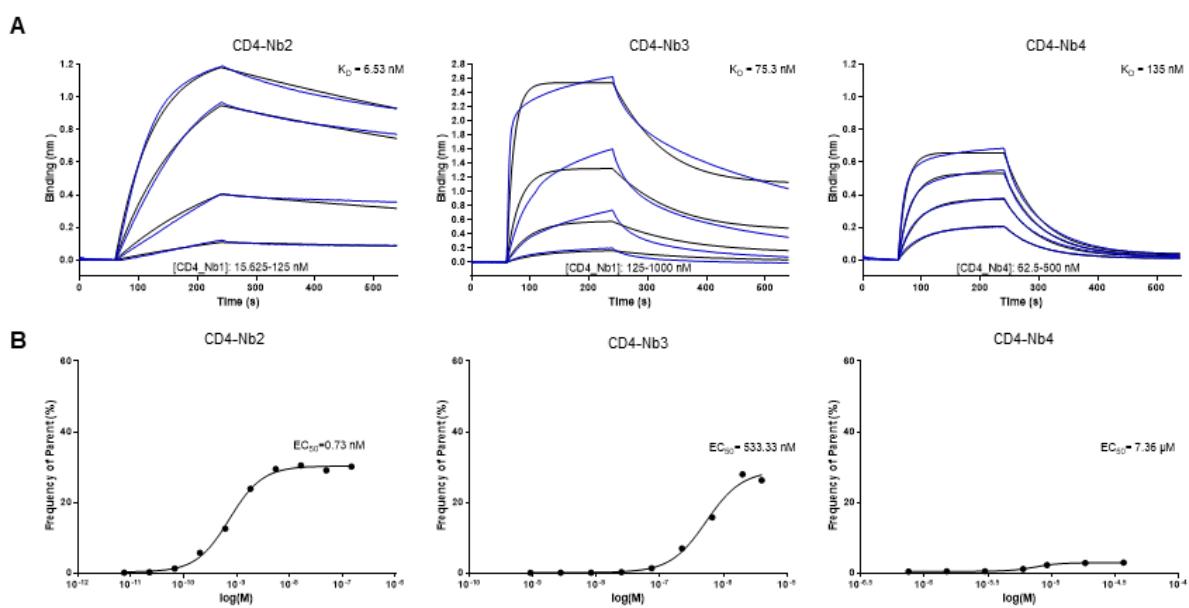
1139 **Figure 6**


1140

1141 **Figure 6** ^{64}Cu -CD4-Nb1 specifically accumulates in CD4 $^{+}$ T cell-rich organs. (A)
1142 Representative maximum intensity projection PET/MR images of human CD4 knock-in
1143 (hCD4KI) and wildtype (wt) C57BL/6 mice 3 h post *i.v.* injection of ^{64}Cu -CD4-Nb1. White arrows
1144 indicate localization of lymph nodes. (B) Exemplary transversal PET/MR images of spleen,
1145 lymph nodes, and liver (3 h post injection) and dynamic organ uptake quantification of ^{64}Cu -
1146 CD4-Nb1 over 24 h (n = 3 per group, arithmetic mean the % injected dose per ml (%ID/ml) \pm
1147 SEM, unpaired t-test of the 3 h time point, (*) p<0.05). White arrows indicate the target organ.

1148

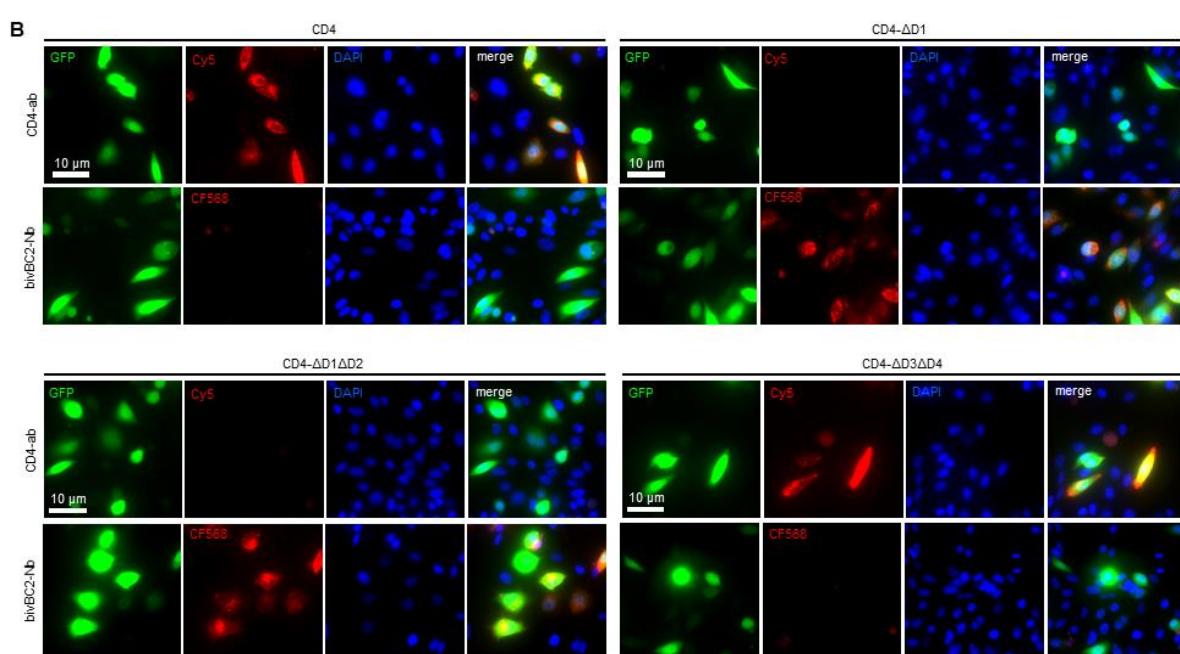
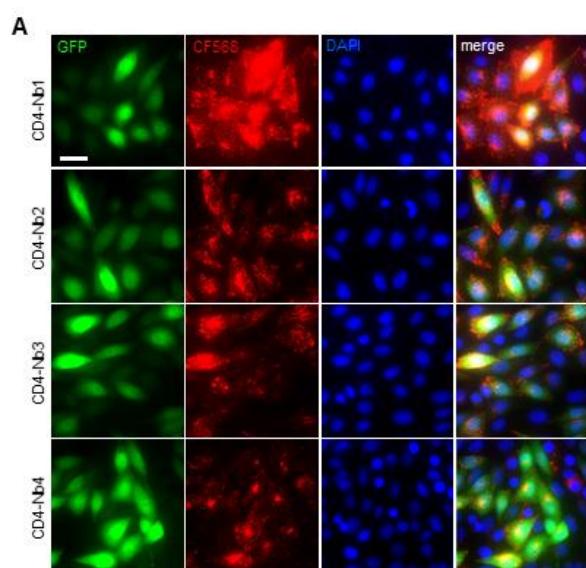
1149 **Supplementary Information**

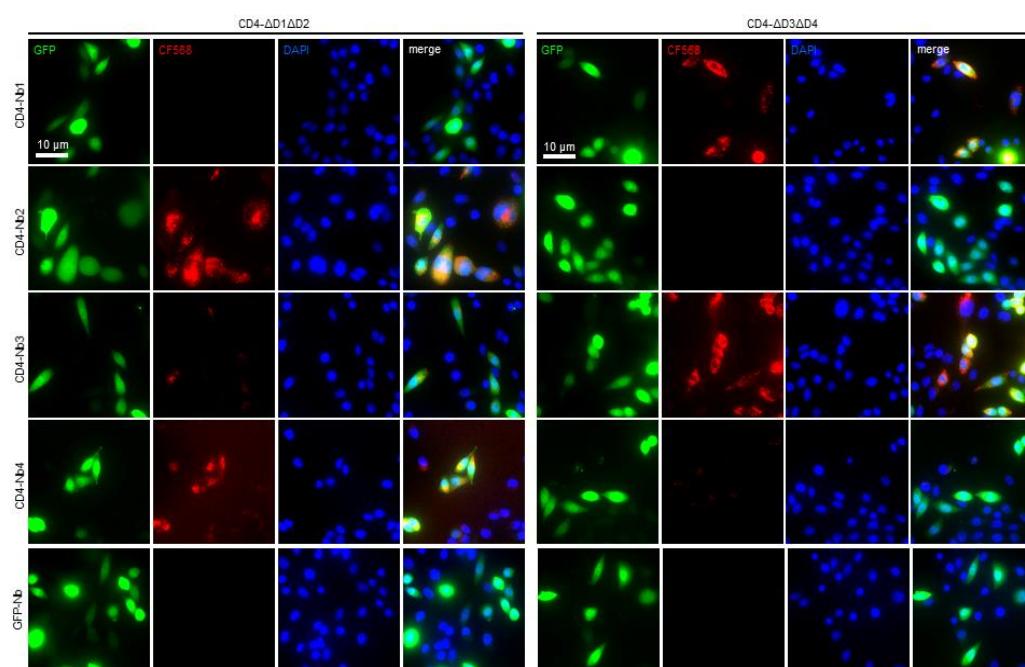
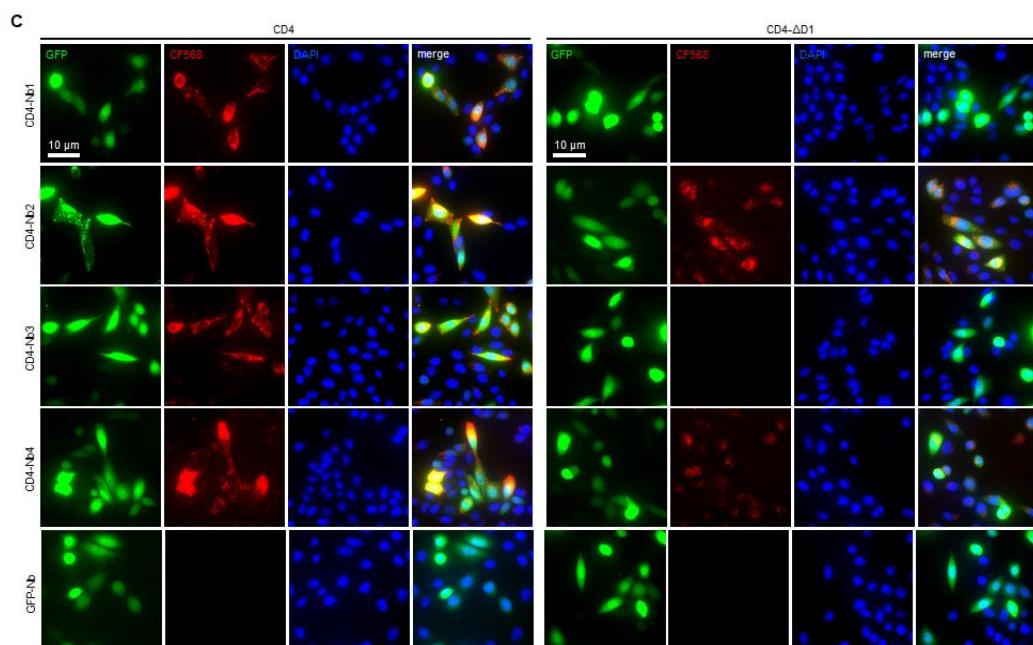

1150 **Supplementary Figure 1**

1152 **Supplementary Figure 1** Live-cell immunofluorescence staining of CHO-hCD4 cells
1153 incubated with CD4-Nbs (100 nM) followed by detection using a secondary Cy5-labeled anti-
1154 VHH antibody and 2 µg/ml Hoechst33258 for 30 min at 4°C (**A**) or 60 min at 37°C (**B**). Shown
1155 are representative images of CHO-hCD4 cells simultaneously expressing cytosolic GFP (left
1156 column) and hCD4 (second column from left) from a bicistronic mRNA. Nuclear staining and
1157 merge of channels is shown in column 3 and 4 from the left. Negative control staining using
1158 secondary Cy5-labeled anti-VHH antibody alone (a-VHH ctrl) and positive control using Cy5-
1159 labeled anti-hCD4 antibody (ab ctrl) are shown in bottom two rows. Scale bar 100 µm.

1160

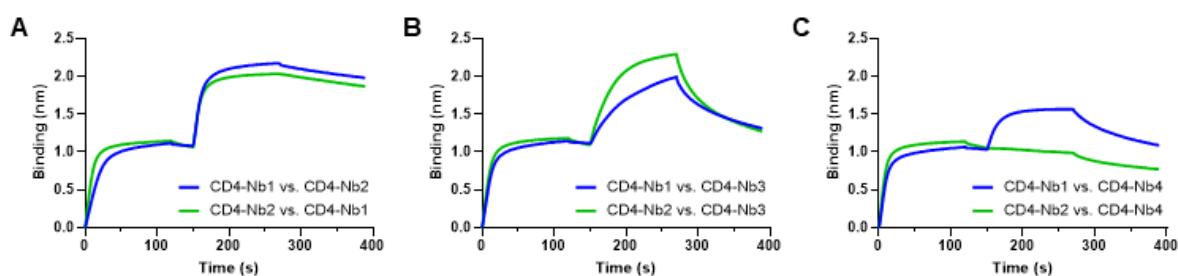
1161 **Supplementary Figure 2**



1162



1163 **Supplementary Figure 2** Affinities of identified CD4-Nbs **(A)** Sensograms of biolayer
1164 interferometry-based affinity measurements of CD4-Nb2, CD4-Nb3 and CD4-Nb4 are shown.
1165 Biotinylated hCD4 was immobilized on streptavidin biosensors and kinetic measurements were
1166 performed by using four concentrations of purified Nbs ranging from 15.6 nM - 1 μM. **(B)** EC₅₀
1167 determination of CD4-Nbs for cellularly expressed hCD4 by flow cytometry. The percentage of
1168 positively stained HEK293-hCD4 (frequency of parent) was plotted against indicated
1169 concentrations of CD4-Nbs. EC₅₀ values were calculated from a four-parametric sigmoidal
1170 model.

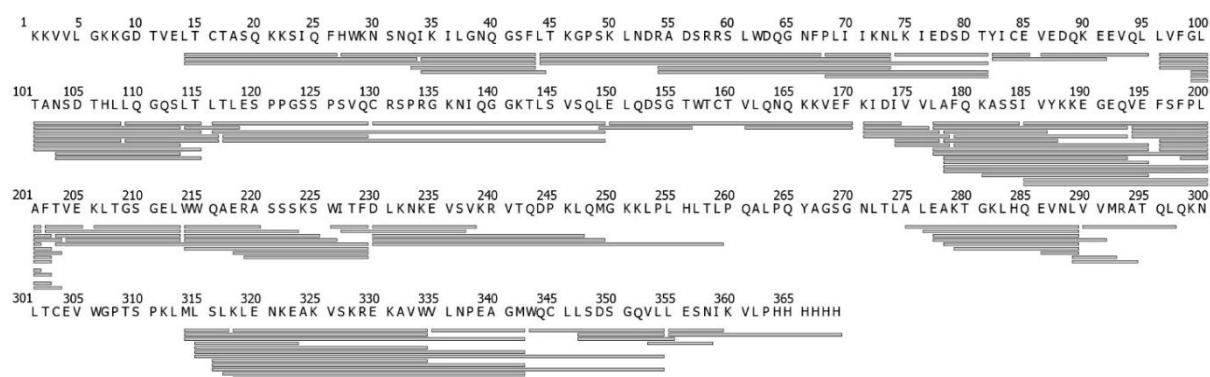
1171

1172


1173 **Supplementary Figure 3**

1178 **Supplementary Figure 3** CD4-Nbs bind different domains of human CD4. **(A)** Live-cell
1179 immunofluorescence staining of CHO-hCD4 cells with CD4-Nbs coupled to the fluorescent dye
1180 CF568, and 2 µg/ml Hoechst33258 for 60 min at 37°C. **(B)** Control staining of full-length hCD4
1181 (CD4) or hCD4 domain-deletion mutants CD4-ΔD1, CD4-ΔD1ΔD2 or CD4-ΔD3ΔD4 with
1182 fluorescently labeled anti-CD4 antibody RPA-T4-PE/Cy5 (CD4-ab) or bivalent BC2-Nb coupled
1183 to CF568 (bivBC2-Nb). **(C)** Live-cell immunofluorescence staining of CHO cells transiently
1184 expressing full-length hCD4 or hCD4 domain-deletion mutants with CF568-labeled CD4-Nbs
1185 or a non-specific GFP-Nb (100 nM). Scale bars 10 µm.

1186 **Supplementary Figure 4**



1188 **Supplementary Figure 4** Epitope binning analysis of CD4-Nbs by biolayer interferometry (BLI)

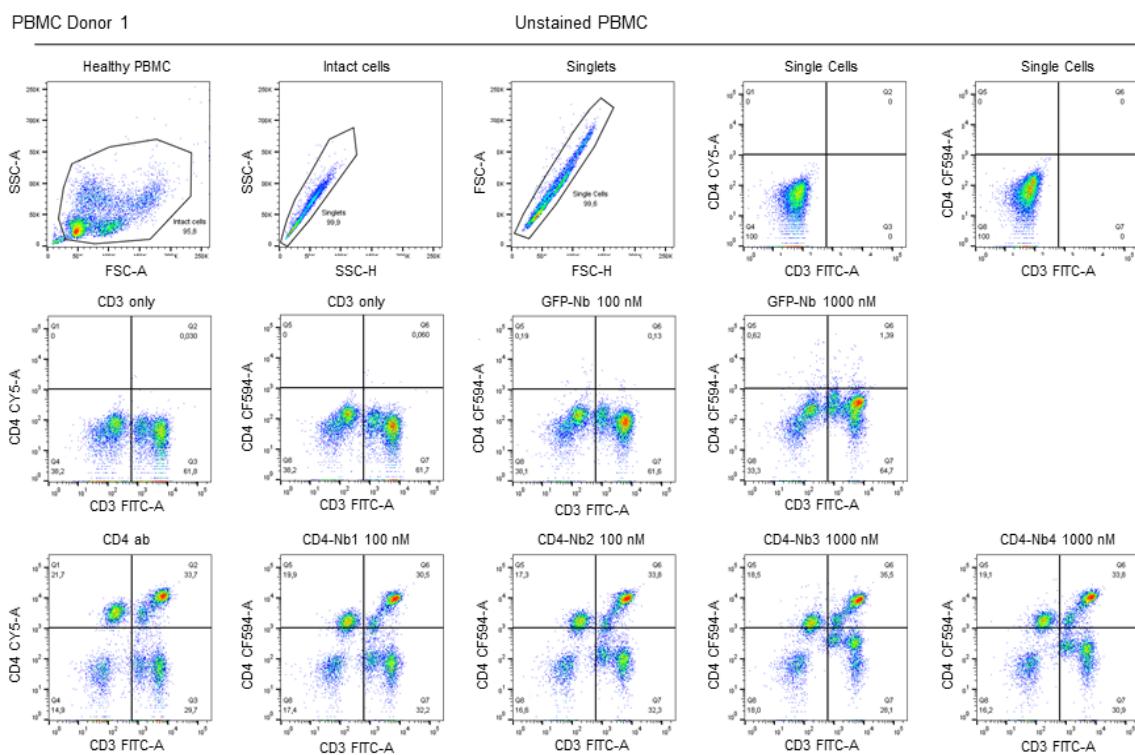
1189 (A) Representative BLI sensograms of single measurements of combinatorial Nb binding to
1190 the recombinant extracellular portion of hCD4 of CD4-Nb1 (blue) and CD4-Nb2 (green) with
1191 (A) one another, (B) CD4-Nb3, or (C) CD4-Nb4.

1192

1193 **Supplementary Figure 5**

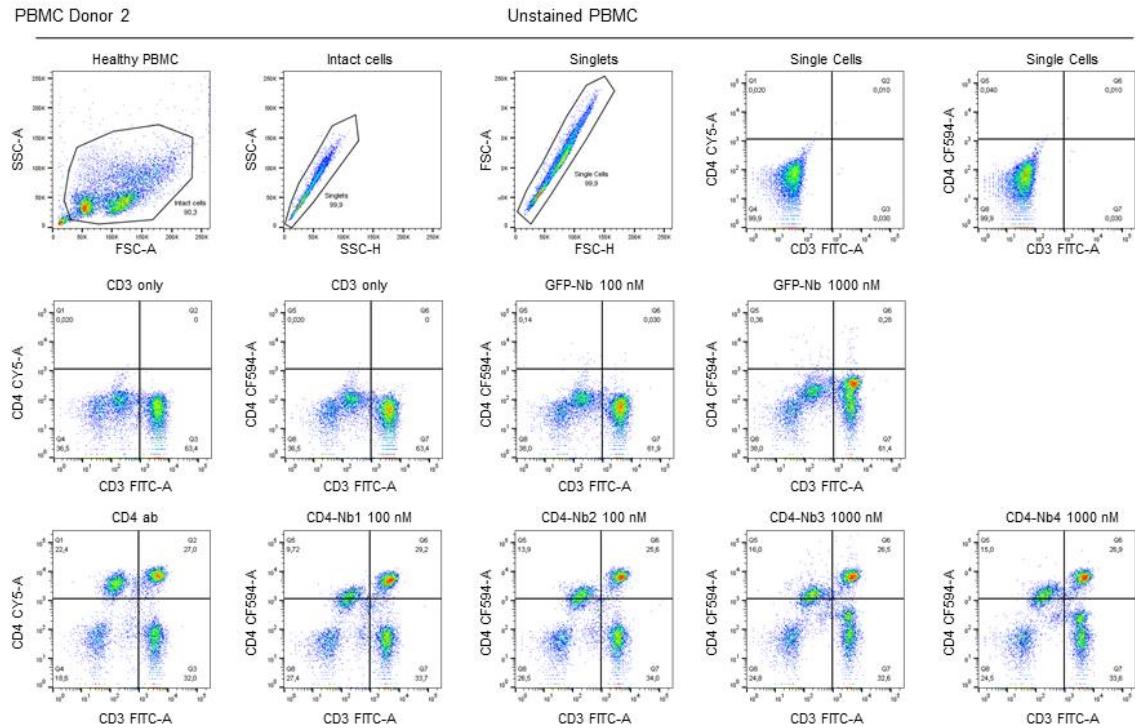
1194

1195 **Supplementary Figure 5** Peptide sequence coverage of human CD4 for HDX-MS analysis.

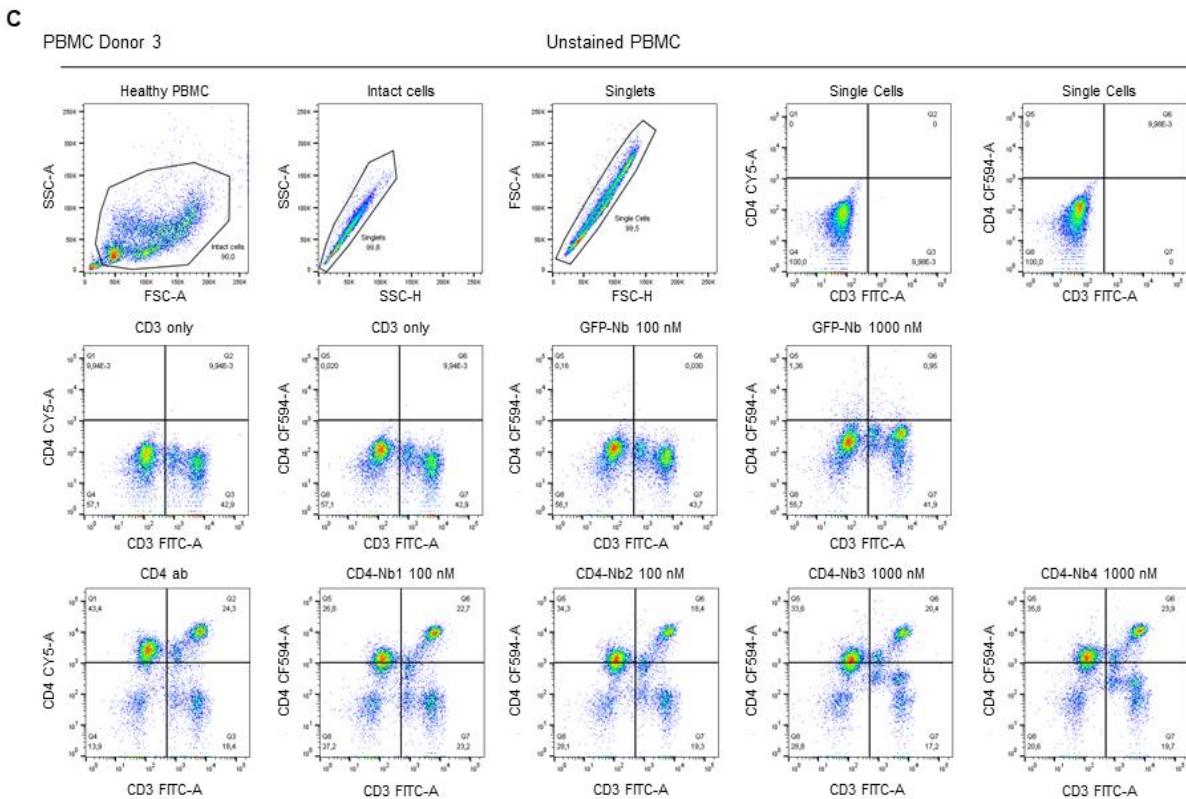

1196 116 possible peptides could be identified by MSMS (depicted as bars) leading to a sequence
1197 coverage of 88% for the HDX analysis.

1198

1199

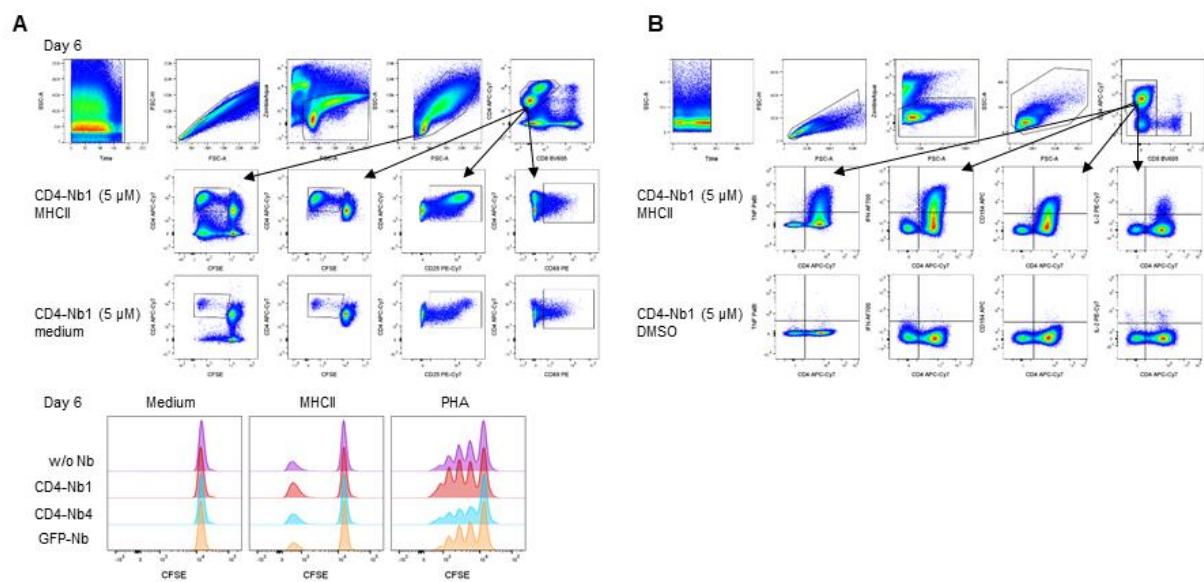

1200 **Supplementary Figure 6**

A



1201

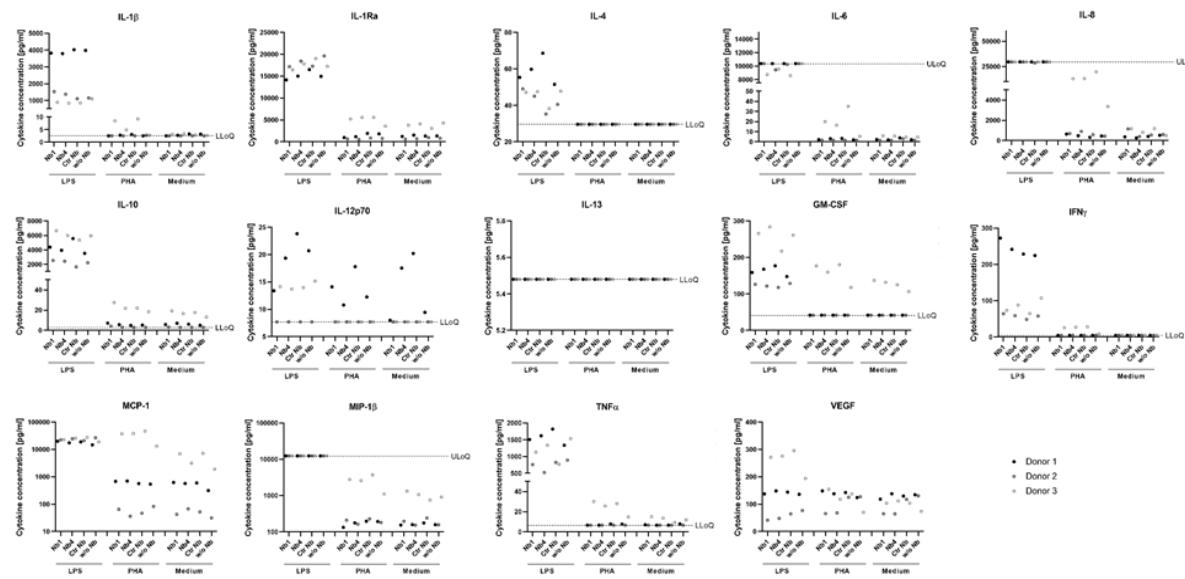
B



1202

1204 **Supplementary Figure 6** Binding of CD4-Nbs to CD4⁺ cells present in human PBMCs. Top
1205 row shows gating strategy for flow cytometry analysis of CD4⁺CD3⁺ double-positive human
1206 PBMCs. Middle and bottom row shows final gating step and quantification of these cells for
1207 donor 1 (**A**), donor 2 (**B**), and donor 3 (**C**) stained with an anti-CD4 antibody (CD4 ab), anti-
1208 GFP control Nb (GFP-Nb), or CD4-Nb1 - CD4-Nb4 at indicated concentrations.
1209

1210 **Supplementary Figure 7**

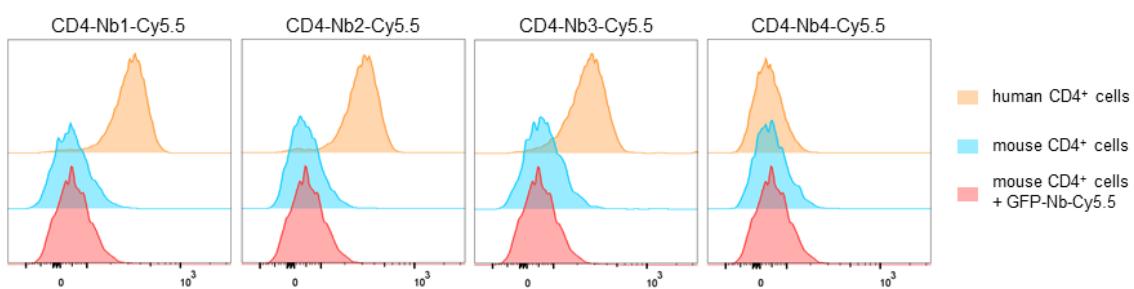


1211

1212 **Supplementary Figure 7** Determination of the effect of CD4-Nbs on CD4⁺ T cells. **(A)** Gating
1213 strategy for analysis of proliferation and activation of CD4⁺ cells after stimulation. Top row from
1214 left to right: Time gate, single cells, live cells, lymphocytes, CD4⁺ cells. Middle and bottom
1215 rows: gates were placed on proliferating CFSE-low/negative CD4⁺ cells (left), CD25⁺CD4⁺ cells
1216 (middle) and CD69⁺CD4⁺ cells (right). Histogram overlay shows the number of divisions as
1217 CFSE labeling within CD4⁺ cells. Shown is one representative example (donor 2) on day 6. **(B)**
1218 Gating strategy (donor 3) for analysis of activation marker and cytokine expression of CD4⁺
1219 cells in intracellular staining after 12 days of culture and 14 h restimulation. Top row from left
1220 to right: Time gate, single cells, live cells, lymphocytes, CD4⁺ cells, CD4/CD8 staining (gating
1221 on CD8^{neg} cells). Middle and bottom rows show the expression of TNF, IFN- γ , CD154 and IL-
1222 2 after restimulation with MHC-class II peptides or control DMSO/water.

1223

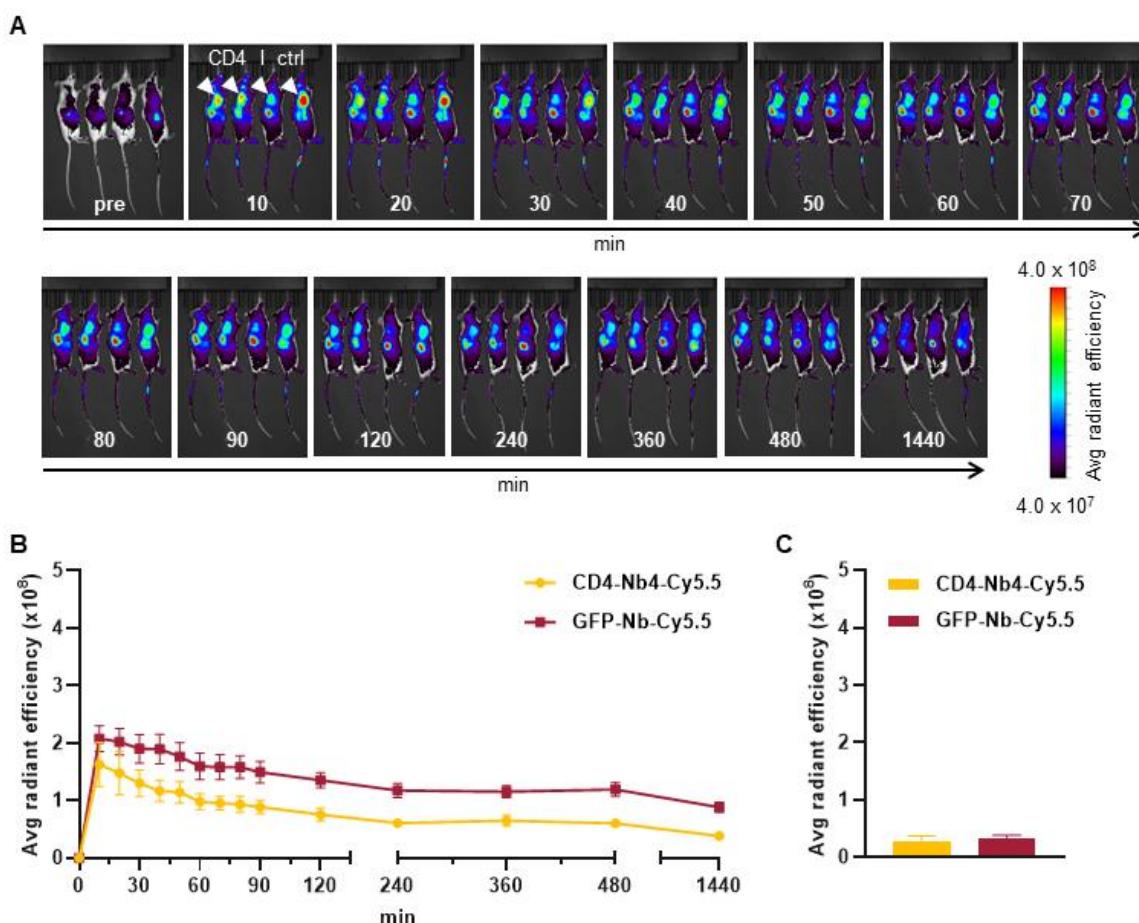
1224 **Supplementary Figure 8**



1225

1226 **Supplementary Figure 8** Determination of cytokines secreted from whole blood samples of
1227 donors after treatment with CD4-Nbs. Blood samples of three donors were incubated with 5
1228 μ M CD4-Nb1, CD4-Nb4, GFP-Nb (control) or w/o Nb and stimulated with lipopolysaccharide
1229 (LPS), phytohaemagglutinin (PHA) or medium only as control. Secreted cytokines (listed in
1230 table S2) were measured and quantified using an in-house developed microsphere-based
1231 (Luminex) multiplex sandwich immunoassay. Results of one biological experiment are shown
1232 as colored dots indicating measured cytokine levels of one individual.

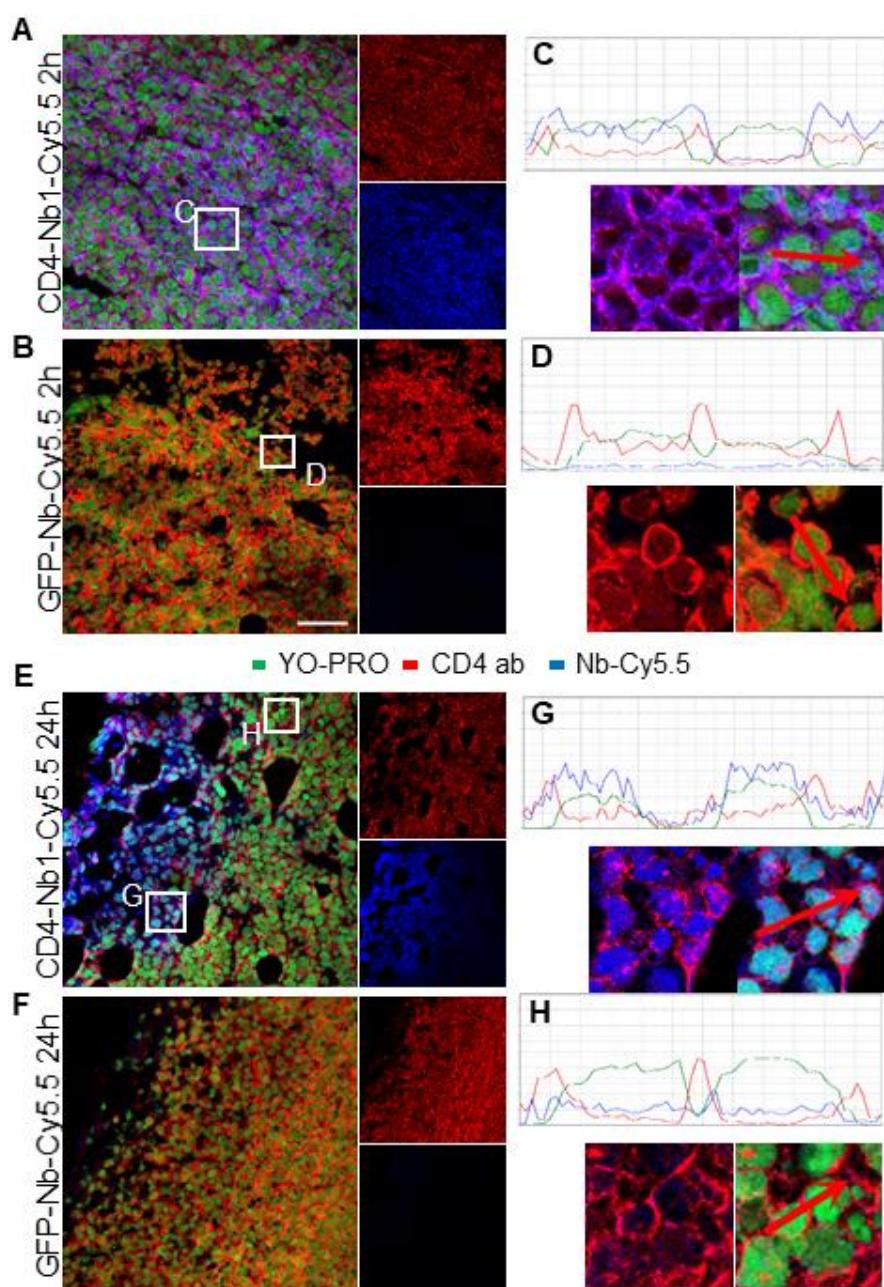
1233


1234 **Supplementary Figure 9**

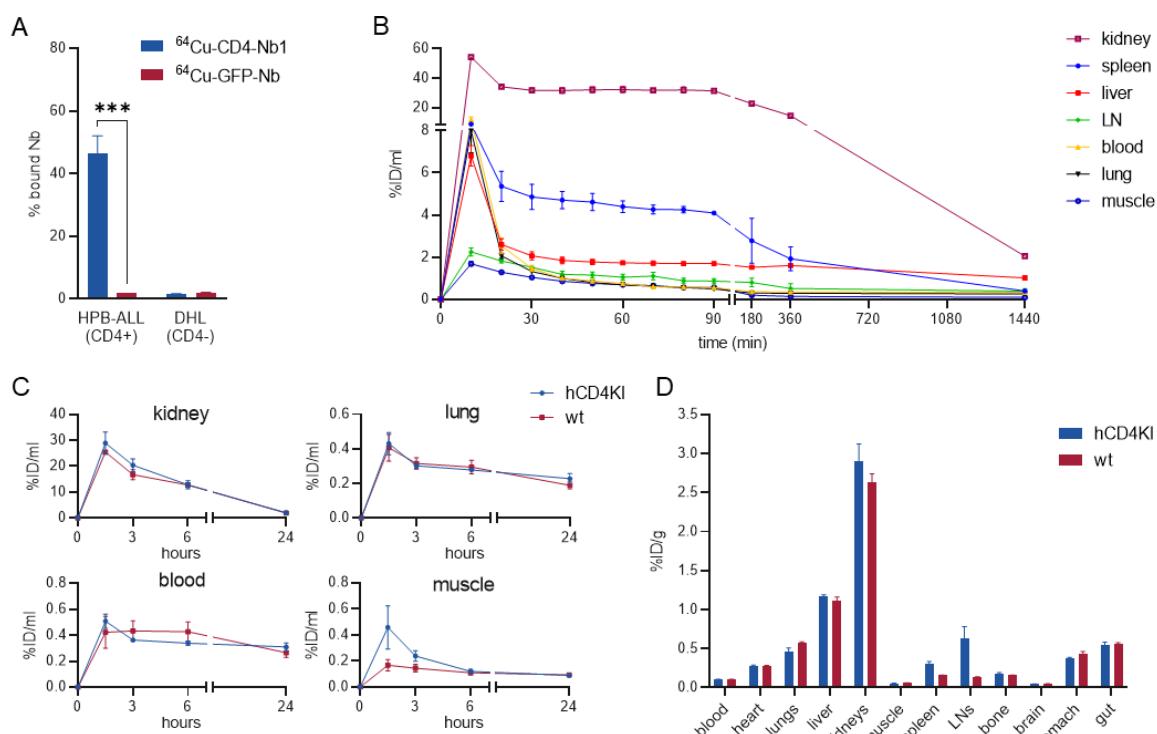
1236 **Supplementary Figure 9** Cross-species reactivity testing of Cy5.5-labeled CD4-Nbs. Flow
1237 cytometry of human and mouse CD4⁺ cells stained with CD4-Nbs-Cy5.5 or GFP-Nb-Cy5.5.
1238 Binding to human CD4 was confirmed for CD4-Nb1, CD4-Nb2 and CD4-Nb3. CD4-Nb4 did not
1239 show staining at this concentration (0.75 µg/ml, ~49 nM). None of the tested CD4-Nbs stained
1240 murine CD4.

1241

1242 **Supplementary Figure 10**



1243


1244 **Supplementary Figure 10** *In vivo* optical imaging (OI) of low-affinity binding CD4-Nb4-Cy5.5.

1245 5 µg of CD4-Nb4-Cy5.5-or GFP-Nb-Cy5.5 were administered *i.v.* to *subcutaneously* human
1246 CD4⁺ HPB-ALL-bearing NSG mice and tumor bio distribution was monitored by repetitive OI
1247 measurements over the course of 24 h. **(A)** Representative images of each measurement time
1248 point of 4 mice injected either with CD4-Nb4-Cy5.5 (left, CD4) or GFP-Nb-Cy5.5 (right, ctrl).
1249 White arrows indicate the tumor localization at the right upper flank. **(B)** Quantification of the
1250 fluorescence signal from the tumors (n = 4 per group, arithmetic mean of the average radiant
1251 efficiency ± SEM). **(C)** After the last imaging time point, tumors were explanted for *ex vivo* OI,
1252 demonstrating similar accumulation of CD4-Nb4-Cy5.5 and GFP-Nb-Cy5.5 (n = 2 per group,
1253 arithmetic mean ± SEM)

1254 **Supplementary Figure 11**

1264 **Supplementary Figure 12**

1265

1266 **Supplementary Figure 12 ^{64}Cu -CD4-Nb1 specifically accumulates in CD4 $^{+}$ T cell-rich**
 1267 **organs. (A)** *in vitro* binding of ^{64}Cu -CD4-Nb1 or ^{64}Cu -GFP-Nb to excess of CD4 $^{+}$ HPB-ALL or
 1268 CD4 $^{-}$ DHL control cells analyzed by γ -counting (triplicates, arithmetic mean \pm SD, unpaired t-
 1269 test, (***) p<0.001)). **(B)** Dynamic *in vivo* biodistribution of ^{64}Cu -CD4-Nb1 in 2 hCD4KI mice by
 1270 PET/MR. **(C)** Dynamic uptake quantification of ^{64}Cu -CD4-Nb1 in non-T cell rich organs over
 1271 24 h (n = 3 per group). **(D)** *Ex vivo* organ biodistribution analyzed by γ -counting.

1272 **Supplementary Methods**

Name	Sequence 5'-3'	purpose
CALL001	GTCCTGGCTGCTCTTCTACAAGG	Nb library generation
CALL002	GGTACGTGCTGTTGAAGTGTCC	Nb library generation
FR1-1	CAT GGC NSA NGT GCA GCT GGT GGA NTC NGG NGG	Nb library generation
FR1-2	CAT GGC NSA NGT GCA GCT GCA GGA NTC NGG NGG	Nb library generation
FR1-3	CAT GGC NSA NGT GCA GCT GGT GGA NAG YGG NGG	Nb library generation
FR1-4	CAT GGC NSA NGT GCA GCT GCA GGA NAG YGG NGG	Nb library generation
FR1-ext1	GTAGGCCAGCCGCCATGGCNSANGTCAGCTGGTGG	Nb library generation
FR1-ext2	GTAAGGCCAGCCGCCATGGCNSANGTCAGCTGCAGGA	Nb library generation
FR4-1	GAT GCG GCC GCN GAN GAN ACG GTG ACC NGN RYN CC	Nb library generation
FR4-2	GAT GCG GCC GCN GAN GAN ACG GTG ACC NGN GAN CC	Nb library generation
FR4-3	GAT GCG GCC GCN GAN GAN ACG GTG ACC NGR CTN CC	Nb library generation
FR4-4	GAT GCG GCC GCR CTN GAN ACG GTG ACC NGN RYN CC	Nb library generation
FR4-5	GAT GCG GCC GCR CTN GAN ACG GTG ACC NGN GAN CC	Nb library generation
FR4-6	GAT GCG GCC GCR CTN GAN ACG GTG ACC NGR CTN CC	Nb library generation
NGS fwd	ACACTCTTCCCTACACGACGCTTCCGATCTGGATTGTTATTACTCGCGGCC	library PCR for NGS
NGS rev	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGATCAGCTCTGTTCTGCGGC	library PCR for NGS
hCD4 fwd	GGAGGATCCACAATGAACCGGGGGAGTCCCTT	hCD4 expression
hCD4 rev	GGTCTCGAGTCAAATGGGGCTACATGTCTTCTGA	hCD4 expression
bsd fwd	ATACCCGGGGCCACCATGGCCAAGCCTTGTCTC	hCD4 expression
bsd rev	TATGCGCGCTTAGCCCTCCACACATAACCAAG	hCD4 expression
ΔD1 fwd	GCAGTCTCTCACTGGAGCAGCGCGTTCGGATTGACTGCCAACTCTGACACC	CD4_ΔD1 expression
ΔD1 rev	GCGCACCGCGATCAGGCATTCCCTGAGTGGCTGCTGGGAGG	CD4_ΔD1 expression
ΔD1ΔD2 fwd	GCAGTCTCTCACTGGAGCAGCGCTTCCAGAAGGCCCTCCAGCATAG	CD4_ΔD1ΔD2 expr.
ΔD1ΔD2 rev	GCGCACCGCGATCAGGCATTCCCTGAGTGGCTGCTGGGAGG	CD4_ΔD1ΔD2 expr.
ΔD3ΔD4 fwd	CCCACATGGTCCACCCCG	CD4_ΔD3ΔD4 expr.
ΔD3ΔD4 rev	AGCTAGCACCACGATGTCTATTTG	CD4_ΔD3ΔD4 expr.
CD4-D1-4 f	ATACGTCTCAACTCTAAGAAAGTGGTGCTGGGCAAAAAAGG	CD4-D1-4 production
CD4-D1-4 r	TATGAATTCACTGGTGATGGGGTGGTGGGAGAACCTTGATGTTGGATTCC	CD4-D1-4 production

1273 Table S1: primers used in this study

1274

1275

Cytokine	indicative for
Interleukin 1 β (IL-1 β)	proinflammatory
Interleukin 1 receptor antagonist (IL-1RA)	antiinflammatory
Interleukin 4 (IL-4)	antiinflammatory
Interleukin 6 (IL-6)	pro-/antiinflammatory
Interleukin 8 (IL-8)	proinflammatory
Interleukin 10 (IL-10)	antiinflammatory
Interleukin 12 p70 (IL-12p70)	proinflammatory
Interleukin 13 (IL-13)	antiinflammatory
Granulocyte-macrophage colony-stimulating factor (GM-CSF)	pro-/antiinflammatory
Interferon γ (IFN γ)	proinflammatory
Monocyte chemoattractant protein 1 (MCP-1)	proinflammatory
Macrophage inflammatory protein 1 β (MIP-1 β)	proinflammatory
Tumor necrosis factor α (TNF- α)	proinflammatory
Vascular endothelial growth factor (VEGF)	wound healing factor

1276 Table S2: cytokines analyzed in this study

1277

Table HDX summary

State	CD4 & CD4 bound by Nb1; Nb2; Nb3
HDX reaction details	1 x PBS pH 7.4, 25 °C, 90% D ₂ O
Time points	5 & 50 min
Av. back exchange (Synthetic peptides)	24%
Digest conditions	2 min in an water ice-bath, 30 µl pepsin beads
Number of identified Peptides /Sequence coverage	116 / 88%
Average peptide length / average redundancy	14.6 (Std. Dev. 8.3) / 4.6
Technical replicates (triplicate)	min 2 of 3 peptides per time point, in both states
Determined ΔHX threshold for each time point	0.25 – 0.27 Da
Significant differences in HDX	Students t-distribution on 95% confidence level

1278 Table S3: HDX-MS Summary

1279