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Abstract

Virus-host protein-protein interactions are central to viral infection, but are challenging to identify and
characterise, especially in complex systems involving intact viruses and cells. In this work, we demonstrate
a proteome-wide approach to identify virus-host interactions using chemical cross-linking coupled with
mass spectrometry. We adsorbed tick-borne encephalitis virus onto metabolically-stalled neuroblastoma
cells, covalently cross-linked interacting virus-host proteins, and performed limited proteolysis to release
primarily the surface-exposed proteins for identification by mass spectrometry. Using the intraviral protein
cross-links as an internal control to assess cross-link confidence levels, we identified 22 high confidence
unique intraviral cross-links and 59 high confidence unique virus-host protein-protein interactions. The
identified host proteins were shown to interact with eight distinct sites on the outer surface of the virus.
Notably, we identified an interaction between the substrate-binding domain of heat shock protein family A
member 5, an entry receptor for four related flaviviruses, and the hinge region of the viral envelope
protein. We also identified host proteins involved in endocytosis, cytoskeletal rearrangement, or located in
the cytoskeleton, suggesting that entry mechanisms for tick-borne encephalitis virus could include both
clathrin-mediated endocytosis and macropinocytosis. Additionally, cross-linking of the viral proteins
showed that the capsid protein forms dimers within tick-borne encephalitis virus, as previously observed
with purified C proteins for other flaviviruses. This method enables the identification and mapping of
transient virus-host interactions, under near-physiological conditions, without the need for genetic

manipulation.

Author summary

Tick-borne encephalitis virus is an important human pathogen that can cause severe infection often
resulting in life-long neurological complications or even death. As with other viruses, it fully relies on the
host cells, and any successful infection starts with interactions between the viral structural proteins and

cellular surface proteins. Mapping these interactions is essential both for the fundamental understanding
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of viral entry mechanisms, and for guiding the design of new antiviral drugs and vaccines. Here, we stabilise
the interactions between tick-borne encephalitis virus and human proteins by chemical cross-linking. We
then detect the interactions using mass spectrometry and analyse the data to identify protein-protein
complexes. We demonstrate that we can visualise the protein interaction interfaces by mapping the cross-
linked sites onto the host and viral protein structures. We reveal that there are eight distinct sites on the
outer surface of the viral envelope protein that interact with host. Using this approach, we mapped
interactions between the tick-borne encephalitis virus envelope protein, and 59 host proteins, identifying a
possible new virus receptor. These results highlight the potential of chemical cross-linking coupled with

mass spectrometry to identify and map interactions between viral and host proteins.

Introduction

Viruses are obligatory intracellular parasites that depend on virus-host protein-protein interactions (PPIs) to
establish successful infections. The identification of these interactions and knowledge of the interaction
interfaces contribute to our understanding of the initial steps of the viral life cycle, and can guide the design

of antivirals and vaccines [1-6].

Advances in high throughput methods have led to the large-scale identification of virus-host interactions,
but the structural characterisation of these interactions is often still limited [7]. Affinity purification coupled
with mass spectrometry, yeast two-hybrid, and protein microarrays, have identified virus-host PPIs for
multiple viruses including: Japanese encephalitis virus, HIN1 influenza, human immunodeficiency virus,
human cytomegalovirus, and severe acute respiratory syndrome coronavirus 2 [8—12]. These methods are
however limited in their applicability to detect transient interactions between wild-type viruses and cells.
Alternative methods, using chemical cross-linking, or proximity labelling (BiolD and TurbolD), demonstrate
improved detection of weak and transient interactions [13—18]. In these approaches, cells are probed with
modified viral proteins conjugated to trifunctional cross-linkers or biotin ligases. Host proteins in close
proximity to the viral bait are then permanently cross-linked or biotinylated, and purified using the biotin or

cross-linker tag. Enriched proteins are detected by comparison of the protein signal to that in negative

3]


https://doi.org/10.1101/2021.10.29.464531
http://creativecommons.org/licenses/by-nc-nd/4.0/

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.464531,; this version posted November 30, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

controls using bottom-up proteomics. Alternative chemical cross-linking mass spectrometry (XL-MS)
workflows that directly detect the cross-linked peptides additionally provide information about the
interaction interfaces. Previous studies have used the finite length of the chemical cross-linker to indicate
the proximity of two amino acid side chains during the cross-linking reaction, and to build structural models
of bacteria-host PPIs [19,20]. This shows the potential of XL-MS in both the identification of PPIs and the

characterisation of the binding interface.

The flavivirus, tick-borne encephalitis virus (TBEV) is the causative agent of one of the most important
arbovirus-caused diseases in Europe, Russia, and Northern China [21,22]. Symptomatic infection with TBEV
can cause meningitis, encephalitis, and meningoencephalitis, and often results in life-long neurological
complications or death [23,24]. The TBEV virion has three different structural proteins, the envelope
protein (E protein), membrane protein (M protein) and capsid protein (C protein), in addition to a lipid
bilayer and an ~11 kilobase-long positive-strand RNA genome (Fig 1). The E protein forms the smooth outer
surface of the virion and is responsible for receptor binding [25,26]. The atomic structure of the mature
TBEV virion E and M proteins has been solved by cryo-electron microscopy at a resolution of 3.9 A and the
crystal structure of the E protein at a resolution of 1.9 A (Fig 1) [25,27]. Non-infectious immature and
partially immature viruses also egress from cells, and have a spikey surface (Fig 1) [27]. No proteome-wide

study of TBEV virus-host protein interactions has been published to our knowledge.

membrane<Xc

Immature § Mature

Fig 1: TBEV mature and immature virus structures. A) Schematic representation of TBEV with the

immature structure shown on the left and the mature on the right. Multiple copies of the C protein dimer
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surround the genome forming the nucleocapsid complex, positioned beneath the lipid bilayer. The surface
of the immature virion is covered in 60 spikes, composed of trimers of prM (pre-membrane)-E
heterodimers embedded into the lipid bilayer. The surface of the mature virion is covered in 90 E-M
heterotetramer complexes embedded into the lipid bilayer. TBEV E protein domain | is shown in red,
domain Il in dark blue, domain Il in yellow and domain 4 in purple. B) Surface representation of the mature
TBEV virion (PDB accession: 506A)[27]. The three E proteins within each asymmetric unit are shown in
blue, red, and yellow. Symmetry axes are indicated by the black pentagon (five-fold), triangle (three-fold),
and ellipse (two-fold). C) Surface representation of the immature Spondweni virus, a related flavivirus (PDB
accession 6ZQW) [28]. The three E proteins within each asymmetric unit are shown in blue, red, and yellow,
and the prM protein is shown in cyan. Symmetry axes are indicated by a black pentagon (five-fold), triangle

(three-fold), and ellipse (two-fold).

In this large-scale proteomics study, we used XL-MS to identify the interaction interfaces of PPIs between
TBEV and the surface of human neuroblastoma (SK-N-SH) cells. Here, the homobifunctional chemical cross-
linker disuccinimidyl suberate (DSS) was used to covalently fix PPIs by cross-linking primary amine
containing residues (the side chain of lysine residues or the N-terminus of the protein). The finite length of
DSS (11.4 A) imposed a maximum distance between cross-linked residues and was used to validate
intraviral crosslinks by measuring their distances on TBEV proteins with known structures or reliable
homology models. The final dataset was filtered using the intraviral cross-links as an internal control,
leading to the identification 59 unique high confidence interactions between the TBEV E protein and

cellular proteins.

Results

Identification of cross-linked peptides

To identify interactions between the mature TBEV virion and host proteins, we incubated the virus with

metabolically-stalled neuroblastoma cells on ice, allowing for TBEV to bind to the cells, but preventing

(5]
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subsequent internalization. The TBEV-host PPls were then stabilized and fixed by chemical cross-linking
with DSS (Fig 2). To reduce the sample complexity and search space during data analysis, we used limited
proteolysis to release primarily cell-surface associated host proteins. The released proteins were digested
to peptides and analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) followed by
label-free data dependent acquisition (DDA) quantitation to determine their relative abundance (S1 Table).
Identified proteins were used to generate smaller, defined sets of sequences to use in the cross-linking data

analysis workflow.

-l
5 5 4 Fe il
= 1
1 2 3

4 5
Attachment of virus to Cross-linking of TBEV to Limited proteolysis = Enzymatic digestion LC-MS/MS,
host cells on ice cell surface proteins  to release TBEV with to peptides protein identification
cross-linked host and cross-linking analysis
proteins

Fig 2: Schematic representation of cross-linking workflow. 1. TBEV was allowed to attach to metabolically-
stalled SK-N-SH cells. 2. TBEV-host PPIs were stabilised by chemical cross-linking with DSS. 3. Cell-surface
associated proteins, and cross-linked TBEV were released from the cell surface using limited proteolysis. 4.
The released proteins were digested to peptides. 5. Peptides were analysed by LC-MS/MS and host and
viral proteins identified and quantified using label-free DDA. Identified host proteins were analysed to

identify cross-links between the host proteins and TBEV.

For cross-linking, we used four different cross-linker concentrations, in addition to a negative control
sample to which no cross-linker was added. Each condition was repeated in triplicate, and the experiment
repeated three times independently with different TBEV preparations and cell line passages, yielding 9
replicates per cross-linker concentration. The samples were initially analysed by immunoblotting of the
TBEV E and C Proteins (Fig 3). The presence of higher molecular weight bands greater than 100 kDa in
samples treated with DSS confirms cross-linking (Fig 3). The C protein has been shown to form antiparallel

dimers in the crystal and NMR structures of other flaviviruses [29—31]. We identified a band with a
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molecular weight corresponding to that of C protein dimers, indicating that the C protein dimerizes in TBEV

1 2 3 4 5 6
245 kDa
190 kDa
135 kDa
100 kDa
58 kDa
46 kDa
32 kDa
25 kDa
22 kDa
17 kDa
11 kDa

Fig 3: Immunoblot analysis of the TBEV E and C proteins in cross-linked samples. The TBEV C protein in

(Fig 3).

<4 E Protein

<4 C Protein Dimer

<4 C Protein Monomer

shown in red and the TBEV E protein in green. Lane 1- protein marker; Lane 2- negative control with 0 mM
DSS, Lane 3- cross-linking with 0.1 mM DSS; Lane 4- cross-linking with 0.25 mM DSS; Lane 5- cross-linking
with 0.5 mM DSS; Lane 6- cross-linking with 1mM DSS. Higher molecular weight bands greater than 100 kDa
corresponding to the cross-linking of E and C to other proteins can be seen in lanes 2-5. Lower molecular
weight bands less than 50 kDa corresponding to the partial cleavage of the viral proteins during the limited

proteolysis step are also observed in all lanes.

Identification of cross-linked peptides is computationally challenging as all primary amine-primary amine
combinations in a given sequence database need to be considered. To reduce the search space for cross-
linked peptide identification, proteins identified by DDA were probed for cross-links in batches (see
materials and methods). A total of 7167 spectral observations of cross-linked peptides were identified using
pLink2 at a false discovery rate (FDR) of 5%, excluding interfaces supported by cross-linked peptides
identified in the negative controls, which correspond to false positives likely arising from erroneous peptide
matches in the complex proteome background (S2 Table) [32]. Spectral observations of cross-links between

two peptides within the same protein (intraprotein PPIs) accounted for the majority of the observations

(7]
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(5589), compared to 1578 for those identified between two peptides from different proteins (interprotein
PPIs). Intraprotein cross-links have been consistently shown to make up a higher proportion of spectral
observations within cross-linked datasets, as two residues within the same protein are highly likely to be in
close physical proximity within the cell, leading to an increased cross-linking frequency [33,34]. In total,
1697 different cross-linked interfaces were observed, and on average each interface was supported by 4.2
spectral observations. The cross-linked interfaces map to a network of 698 PPls, consisting of 588 host
proteins and the 3 viral structural proteins. Overall, 66.3 % of the unique PPIs were attributed to
interactions between host proteins, 33.5 % to virus-host interactions and only 0.2 % to intraviral

interactions. We also identified intraprotein cross-links in 297 host proteins and the TBEV C and E proteins.

The confidence of the cross-linking dataset can be investigated by examining the spatial distances between
cross-linked residues for protein complexes where high-resolution structures or reliable homology models
are available. As intraviral protein interactions account for 62 % of the detected spectral observations, we

used the intraviral cross-links as an internal control to assess the confidence level for the dataset.

Mapping of intraviral cross-links

The published mature TBEV structure and homology models of the immature virus and C protein dimer
were used to accurately measure cross-link distances. The C-score of the homology models were -0.65 (C
protein), 2.00 (E protein) and 0.57 (prM protein) [35-37] . We measured the distance between cross-linked
residues and applied a maximum distance constraint of 30 A between the lysine or N-terminus Ca. (Table 1
and Figs 1 and 4) [38]. In total, 24 cross-links were mapped onto the viral structural proteins, and 22 fell
within the accepted distance range. Overall, 14 of the cross-links satisfied the distance constraint in both
the mature and immature TBEV structures, six were only acceptable in the mature structure and two in the
immature structure. Cross-links with acceptable distances in only the mature structure were identified by
2089 spectral observations compared to 31 for those only accepted in the immature structure,

demonstrating that the majority of the virus particles in the analysed samples were mature.

(8]
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175  Table 1: Intraviral cross-links identified, the corresponding average expectation value and SVM score of

176  the peptide spectrum matches, and distances in the mature and immature virus structures

Distance
Distance Between
Mean Mean Number of Between Ca Carbons
Residue Residue E- SVM Spectral Ca Carbons  Immature
Cross-link Type Proteinl  Protein 2 1* 2* Value Score observations Virion Virus
Iy EProtein  EProtein 251 284 059 007 1346 16.74 47.74
Intertrimer
Intramonomer E Protein E Protein 64 126 0.25 0.08 939 12.10 11.95
Intramonomer E Protein E Protein 300 161 0.02 0.02 910 17.42 15.99
Intramonomer E Protein E Protein 118 69 0.13 0.11 315 9.47 9.08
Lol el EProtein  EProtein 136 309 048  0.10 265 17.25 32.414
Intertrimer
Interdimer/Intertrimer  E Protein E Protein 309 69 0.09 0.10 172 17.88 30.877
Intradimer E Protein M Protein 266 1 0.42 0.15 155 8.79 N/A
Interdimer/ EProtein  EProtein 118 309 034 006 150 18.54 30.671
Intertrimer
Intramonomer/ CProtein  CProtein 10 25 041  0.06 63 23.18/23.68 23.18/23.68
Intradimer
Intramonomer E Protein E Protein 64 69 0.35 0.16 34 15.26 14.58
Interdimer/ EProtein  EProtein 251 311 1.00 0.3 23 31.63% 28.63
Intertrimer
Intramonomer/ CProtein  CProtein 20 10 009  0.02 19 16.45/24.22  16.45/24.22
Intradimer
Intramonomer/ CProtein  CProtein 20 8 1.00 035 12 19.30/28.73 19.30/28.73
Intradimer
Interdimer/Intertrimer  E Protein E Protein 251 309 1.00 0.03 10 26.00 29.38
Intramonomer E Protein E Protein 251 69 1.00 0.03 9 9.11 8.26
Interdimer/ EProtein  E Protein 64 161  1.00  0.06 8 39.391 30.06
Intertrimer
Interdimer/Intertrimer  E Protein E Protein 64 309 1.00 0.30 4 25.91 27.17
Intramonomer E Protein E Protein 309 407 1.00 0.41 3 41.090 43.78"
Intramonomer C Protein C Protein 20 25 0.69 0.22 3 7.12/32.63~ 7.12/32.637
Intramonomer E Protein E Protein 309 408 1.00 0.50 2 39.541 41.457
Intramonomer E Protein E Protein 69 124 1.00 0.62 1 26.85 25.98
Intramonomer E Protein E Protein 298 309 1.00 0.23 1 25.96 26.46
Intramonomer E Protein E Protein 311 309 1.00 0.22 1 6.04 5.60
Interdimer M . M Protein 1 1 1.00 0.70 1 19.70 N/A
Protein

177 *The TBEV polyprotein sequence was obtained from GenBank (accession: AWC08512.1). The C protein corresponds to
178 residues 1-96; the M protein 206-280 and the E protein 281-776. Residue numbers in the table begin from 1 at the
179 start of each protein.

180 ADjstances between cross-linked residues that are greater than 30 A and are not considered feasible.
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A) E Protein Crosslinks M Protein Crosslink C Protein Crosslinks

B)

E Protein Crosslinks

181

182  Fig 4: Mapping of intraviral crosslinks. Identified intraviral cross-links with the distances < 30 A mapped to
183  the viral structural proteins are shown above in red, blue and teal. Red cross-links corresponding to

184 intramonomer cross-links, teal intradimer cross-links, and blue interdimer or intertrimer cross-links. A)

185  Cross-links mapped to the known cryoEM structure of the TBEV virion or the C protein homology model. B)
186  Cross-links mapped to the generated homology model of the immature virus, E proteins in trimer 1 are

187  coloured in plum and light blue and the E protein in trimer 2 is coloured grey. The schematic diagram

188  additionally shows the position of the lipid bilayer (light grey) and the prM protein (light yellow).

189 Locating the cross-links on the virus structures with distance constraints applied, allowed us to distinguish

190 between three different types of E-E cross-links in the mature virion: intramonomer, intradimer and

[10]
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interdimer cross-links, and two in the immature virus: intramonomer and intertrimer cross-links. As
expected, intramonomer E cross-links show similar distances in the mature and immature structures and
accordingly the distance constraints are satisfied equally well for both. In contrast, as the E proteins
rearrange from trimers to dimers upon virus maturation, only 2 cross-links satisfy the distance constraint in
both the intertrimer positions found in the immature virus and the intradimer or interdimer positions
found in the mature virus. Two types of cross-links are possible within the C protein dimer, intramonomer
and intradimer. In our dataset, three of the four identified C protein cross-links satisfy the distance
constraints for both interaction types, making it impossible for us to distinguish between these two

alternatives.

Two of the intramonomer cross-links between E protein residues 309 and 407 or 408 demonstrate cross-
linking lengths of ca. 40 A in both the mature and immature structures. The cross-links were identified by a
low number of spectral observations, 3 for 309-407 and 2 for 309-408, and may arise from interactions
between disrupted virions, free E proteins, alternative viral conformations or be false positives. To
distinguish between these alternatives, we examined the cross-linked spectra in detail (Fig 5). Fig 5A shows
representative spectra for cross-links that satisfy the distance constraint and are identified by a high
number of spectral observations, and Fig 5B and C show representative spectra for the two questioned
crosslinks. As compared to the spectra shown in Fig 5A, spectra in Fig 5B and C show both a low signal-to-
noise ratio and a low sequence coverage for the peptide fragments, and most likely represent false positive

hits from background noise.

[11]
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210

211  Fig 5: Representative spectra of E protein cross-links that satisfy the distance constraint (< 30 A) and

212 cross-links with distances > 30 A. The cross-linked peptides are shown with the longer a peptide positioned
213  above the shorter B peptide and a connecting line between the cross-linked residues. Modified residues in
214  the peptides are shown in red and the detected beta and gamma fragments shown in green and orange

215  respectively. Peaks corresponding to the detected fragments are coloured and labelled accordingly. The
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charge state of the cross-linked peptide is shown in blue. A) Representative spectrum of E protein cross-link
300-161 that are less than 30 A and show a high number of spectral observations. B) Representative
spectrum for the cross-link 309-407, that has a cross-linking distance of 41.09 A in the mature structure and
43.78 A in the immature structure. C) Representative spectrum for the cross-link 309-408 that has a cross-
linking distance of 39.54 A in the mature structure and 41.45 in the immature structure. Cross-links with
distances > 30 A show poor fragmentation and signal to noise ratio in the cross-linked spectral (B and C),

compared to cross-links with distances < 30 A (A).

Based on the imposed distance constraints, we calculated that 91.7 % of the intraviral cross-linked
interfaces are identified with high confidence, at a distance threshold of <30 A indicating that our approach

allows detection of specific intra- and inter-protein cross-links with high confidence.

Filtering the cross-linking dataset

The program pLink2 provides two parameters for assessing the confidence of cross-linked peptide
spectrum matches (PSM), the expectation value (E-value) and the SVM score [32]. Both the E-value and
SVM score describe the probability of a cross-linked PSM being a random match, and have values ranging
from 1 to 0, where the smaller the value the more confident the PSM. The SVM score is calculated for every
PSM, acting as the prime measure for FDR estimation, whereas the E-value is only calculated for PSMs that
pass the FDR threshold [32]. In addition, cross-links may occur due to the sporadic proximity of proteins in
the sample, or due to specific cross-linking of interacting proteins. Cross-links identified by more spectral
observations have a higher probability of reflecting specific interactions. Therefore, the number of spectral
observations per cross-linked interface can provide information about the cross-linking confidence on the
protein-protein interaction level. Previous studies have used the E-value, SVM score, number of spectral
observations or a combination of the aforementioned to assess the confidence of the identified cross-links
but no standardized values have been established [32,39,40]. Here, we investigated the correlation
between the E-value, SVM score, number of spectral observations and the acceptable distance constraint

(<30 A) as measured for our intraviral cross-links, to determine confidence parameters for the dataset.
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Our data show a correlation between the measured distance of each unique intraviral cross-link and the
calculated SVM scores, but not the E-values (Fig. 6, S1 Fig). Consequently, the E-value was not considered
as a suitable measure of confidence for this dataset. We observed that intraviral cross-links with distances
> 30 A in both the mature and immature structures (indicated as red bars in Fig. 6) had the 3" and 4"
highest mean SVM scores of the intraviral cross-links (Table 1). Furthermore, cross-links with higher

mean SVM scores were only identified by one spectral observation (Table 1). Based on the SVM scores of
intraviral cross-links with distances > 30 A in both the mature and immature structures, we imposed a SVM
score threshold of < 0.355, hence discarding 884 of the identified cross-linked interfaces. Interestingly, 97.8

% of the excluded interfaces were identified by only one spectral observation.
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Fig 6: Box and whisker plot of the SVM scores for the intraviral cross-links, plotted against the distance
between the cross-linked residues for each cross-link. The bars are coloured based on whether the
distance constraint is satisfied for both the mature and immature conformations (green), only the mature
conformation (blue), only the immature conformation (yellow) or not satisfied in either the mature or
immature conformation (red). The mean SMV score is marked with a cross. A SVM score confidence

threshold of < 0.355 is shown by a red dashed line.

[14]


https://doi.org/10.1101/2021.10.29.464531
http://creativecommons.org/licenses/by-nc-nd/4.0/

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.464531,; this version posted November 30, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The number of cross-linked spectral observations for 101 randomly selected proteins in the dataset was
compared to the average spectral count of these proteins across all the samples in the DDA analyses (S1
File). The number of spectral observations for cross-linked peptide pairs for these same 101 selected
proteins was also compared to the number of lysine residues present within each protein (S1 File). No
correlation was observed in either of these cases; so, neither protein abundancy nor lysine content affect
the data content (S1 File). Therefore, the number of spectral observations was used in a non-biased

manner to assess the confidence of each unique cross-link to reduce the dataset for analysis further.

Here, we filtered the data in a stepwise manner, first on the PSM level using the SVM score and secondly
on the protein-protein interaction level using the number of spectral observations. A cross-linked interface
was considered to be of high confidence if it had an SVM score < 0.355 and was identified by > 2 spectral
observations. Filtering the data in the reverse order would lead to inclusion of interactions only supported
by one high confidence spectral observation. The filtered cross-linking dataset consisted of 218 cross-linked

interfaces, 36.7 % of which were attributed to virus-host PPIs (S3 Table).

Virus-host protein-protein interactions

Virus-host PPls were identified between TBEV and 61 host proteins in the filtered cross-linking dataset. In
total, 59 proteins were shown to interact with the TBEV E protein and 2 with the M protein. Cross-links with
the M protein form between N-terminal serine of mature M and the host proteins. As the M protein is
buried and not accessible for cross-linking in the mature virion, these interactions likely occur between the

host proteins and disrupted virions, free M protein, or conformations that have yet to be described.

E -host PPls were mapped to eight different lysine residues on the outer surface of the virion (E protein
residues 118, 126, 136, 161, 251, 280, 300, and 336; Fig 5), indicating that the host proteins were indeed
interacting with assemble capsids. Only six of these residues shown in blue are also accessible on the outer
surface of the immature particle, as residue 336 is obscured by other E proteins and residue 251 by prM
(Fig 7). The cross-linked lysine residues are distributed evenly across the surface of the E protein, showing
no preference for domains I, Il or Il (Fig 7).
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Fig 7: Visualisation of E protein lysine residues that form cross-links with host proteins. A) Surface

representation of the TBEV virion (PDB accession: 506A) [27]. The three E proteins within each asymmetric
unit are shown in white, grey and dark grey. One E protein monomer is shown in colour (TBEV domain | is
shown in peach, domain Il in yellow, domain Ill in lilac with the cross-linked lysines shown in blue. B)
Mapping of the cross-linked lysines on the structure of the E protein (PDB accession 506A). Lysines
detected with cross-links are shown in blue if located on the surface of both the mature and immature virus
and black for those only located on the surface of the mature virus; lysines without cross-links are shown in

red. TBEV domain | is shown in peach, domain Il in yellow, domain Ill in light blue and domain IV in lilac.
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292  Fig 8: String network of 59 host proteins identified as interacting with the TBEV E protein in the filtered
293  cross-linking dataset. The string-database network shows both direct and indirect protein interactions and
294 s clustered based on the combined score associated with each interaction, using the Markov clustering
295 algorithm [41]. Proteins are coloured based on the clustering and each cluster is numbered (1-9). Proteins
296  that do not have any known interactions with other host proteins identified in the filtered cross-linking

297  dataset are shown in grey.

298  We performed String-database analysis to identify if any of the 59 E protein-interacting host proteins also
299  interact with each other (Fig 6) [41]. In total, 46 proteins were shown to interact with at least one other
300 protein, and nine interaction clusters were identified. This suggests that TBEV may interact with both

301 individual proteins and larger protein complexes. Gene ontology (GO) analysis (S4 Table) of the clusters
302 indicates that proteins in clusters 1, 2 and 4 are located in the extracellular region (GO:0005576), at the
303 plasma membrane (GO:0005886) or in extracellular exosomes (GO:0070062). Clusters 1 and 2 show

304  enrichment for receptor-mediated biological processes, including receptor-mediated endocytosis

305 (GO:0006898; cluster 1), and receptor-mediated signalling (GO:0038095, GO:0050852, GO:0002223; cluster
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2), whereas proteins in cluster 4 are involved in protein transport (GO:0015031). Cluster 3 is the largest
cluster and consists of proteins found in the cytosol (G0:0005829) predominantly as part of ribosomes
(G0:0005840), ribonucleoprotein complexes (G0O:1990904) or the eukaryotic translation initiation factor 4F
complex (GO:0016281). Other cytosolic proteins belong to cluster 8 (GO:0005829) and are involved in
protein folding (GO:0006457) or translation (GO:0006412). Finally, proteins in clusters 5,6, 7 and 9 are
primarily found in the nucleus (GO:0005634) and are involved in RNA processing (GO:0006396),
posttranscriptional regulation of gene expression (GO:0010608; cluster 5), and chromosome organisation
(G0O:0051276; clusters 6, 7 and 9). Importantly, many proteins primarily located in the cytosol or nucleus
(clusters 3, 5-9) are also found in the plasma membrane or extracellular regions where they perform
alternative biological functions; for example, HMGB1 (UniprotKB:P09429; cluster 6), functions as a
nonhistone nucleoprotein in the nucleus and an inflammatory cytokine in the extracellular region [42]. In
addition, GO analysis identified 19 proteins that are associated with immune system process, and 11

proteins associated with the cytoskeleton or cytoskeletal rearrangement.

Discussion

In this study, we present a chemical cross-linking proteomics approach to simultaneously identify TBEV-
neuroblastoma cell PPIs and their interaction interfaces. We used metabolically-stalled cells to adsorb and
cross-link virus only to the cell surface, hoping to primarily enrich proteinaceous cell surface interactions.
The cross-linked proteins were released by limited proteolysis. Analysis of this highly complex protein
mixture by LC-MS/MS generated a large database of spectra containing four different peptide species with
the minority being cross-linked. In addition, cross-linked peptides are the least well-fragmented in the
database. In the next step, the pLink2 software compares the database of spectra with all of the possible
theoretical cross-linker reaction outcomes. This step is a clear bottle neck in the process as in our hands,
only a subset proteins could be analysed at a time, requiring multiple batch runs. Here, we optimised the
analysis workflow in order to extract the most significant virus-host PPIs from our complex data. Firstly, we

reduced the cross-linking search space by only analysing proteins identified by linear peptides in the
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samples. Secondly, we have an internal validation control in the sample. We identified high-confidence
intraviral crosslinks using both the known and predicted three-dimensional structures of TBEV and the
known length of the chemical cross-linker. Then, we correlated the high confidence cross-links with the
SVM score and the quality of the spectra, allowing us to use an SVM score cut-off < 0.355 for the entire
dataset. Finally, we imposed a spectral count cut-off > 2 to select for the most specific protein interactions.
Using this method, we identified 22 high confidence unique intraviral cross-links and 59 high confidence
unique virus-host PPIs between the surface of TBEV and human neuroblastoma cells. These proteins form a
robust and reliable dataset that can be investigated further for their roles in the virus life cycle. They could

be targets for intervention.

Our approach presents four major advantages over alternative approaches used to identify virus-host PPls
described in the literature: 1) The wild-type virus interacts with cellular proteins on the surface of
neuroblastoma cells. In comparison, affinity purification, yeast two hybrid and protein microarrays detect
interactions in artificial systems [8—12]. Therefore, the expression levels, presentation and glycosylation
state of the host and viral proteins may differ from that in natural infections, leading to both false positives
and false negatives; 2) When fully assembled viral particles are used as bait, the capsid proteins are in the
right biological conformation and molecular context for infection. In contrast, single recombinant bait
proteins used in affinity purification, yeast two hybrid, protein microarrays and BiolD may not be [8-12,16].
For instance, the monomeric Dengue virus ancillary receptor, DC-SIGN binds across two neighbouring E
proteins on the capsid [43]. In our virus-based protocol, there would be 90 such sites for the DC-SIGN
interaction giving both the correct biological context, but also increasing the avidity of the interactions; 3)
The virus interacts with cellular proteins prior to crosslinking. In contrast, in the previously described
approaches using trifunctional cross-linkers or BiolD, the viral proteins are first conjugated to the cross-
linker or biotin ligase prior to the interaction with cells. Conjugation may require genetic modification [13—
17]. Consequently, interactions may be missed if the modification sterically hinders the binding region.
Here we could identify PPIs, under near-physiological conditions, without the need for genetic

manipulation; 4) The clearest advantage in our approach as compared to other methods mapping virus host
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PPIs in culture is the use of DSS. Despite its limitations (see below), this allows us to directly map peptide-
level interaction interfaces. Other approaches lacking this level of information have been used for instance
for identifying host receptors to Sars-CoV using crosslinking followed by immunoprecipitation and LC-
MS/MS from SDS-PAGE bands, identifying vimentin as a critical protein for virus entry [18]; or using an

affinity-enrichable crosslinker to identify NCMA1 as a receptor for Zika virus [15].

Although this approach shows promise for detecting a wide-range of virus-host PPIs, there are also some
challenges. The complete coverage of the interaction space is limited by the accessibility of surface cross-
linkable lysine residues and the sample complexity. In order to detect an interaction, there must be cross-
linkable residues on both sides of the interaction interface within 30 A of each other. Furthermore, in
complex systems containing a higher number of protein species, the number of cross-links per species is
lower in comparison to simpler systems. Consequently, interactions that occur in lysine deficient regions or
with low frequency cannot be detected, leading to an incomplete picture of the interaction interface or
failure to detect the PPI. Performing parallel experiments using chemical cross-linkers with different lengths
or reactive residues such as arginine, aspartate or glutamate, could overcome this limitation [44,45]. Simple
cross-linking experiments including only the virus and a single interaction partner can be used to ensure

complete coverage of the 3D interaction space once interesting PPI have been identified.

Having considered the potential advantages and challenges of this protocol, we will now consider potential
biological implications. Laminin binding protein has previously been suggested as a TBEV receptor. It was
present in our dataset, but no cross-links were identified to TBEV [46,47]. Our data do not support that
laminin binding protein is a TBEV receptor in this cell line. However, we have identified proteins that are
associated with the early stages of viral infection in other viruses, including ITGB1, ATP6V1A, EZR, HSPA9,
and HSPAGS. ITGB1 as an entry receptor for a large number of viruses including, cytomegalovirus, Epstein-
Barr virus, human parvovirus B19, and mammalian reovirus [48-51]. ATP6V1A directly interacts with rabies

viral matrix protein facilitating uncoating [52]. EZR is an essential host factor required for the entry of
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Japanese encephalitis virus into human brain microvascular endothelial cells [53]. HSPA9 has been

identified as a putative receptor for Tembusu virus [54].

HSPAS (Cluster 4, Fig 6) has been identified as a receptor for several flaviviruses including, Zika and
Japanese encephalitis where HSPA5 was shown to affinity purify with recombinant E protein domain Ill, but
the interaction context in virions has not been studied [56,57]. HSPAS is a multifunctional regulator of
endoplasmic reticulum homeostasis, playing an important role in protein processing and quality control
[59-62]. It is located both in the endoplasmic reticulum lumen and on the outer surface of the plasma
membrane in many cell types including neurons [63—66]. HSPAS consists of 2 domains, a nucleotide-binding
domain that binds ATP, and a substrate-binding domain that binds and stabilises partially folded or folded
proteins [67]. Here we identified four spectral observations mapping to the TBEV E hinge region (residue
136) and the HSPAS substrate binding domain residues 521 and 516 (Fig 9). Therefore, the interaction
between HSPAS and the E protein hinge region could constitute a unique binding interface, or be part of a
larger interface that also binds domain Ill consistent with other flavivirus studies [54-56,58]. We
hypothesize that HSPAS could interact with both the hinge region of one E monomer and domain Il of an
adjacent E monomer at the 3-fold axis, where the regions are in close spatial proximity (Fig 9).
Interestingly, Fab fragments of the TBEV neutralising antibody 19/1786 have been shown to bind across
this interface at the 3-fold axis potentially preventing the HSPAS interaction[27]. Although, no cross-links
were detected between domain Il and HSPAS in our study, this can be partly explained by poor lysine
availability. Structural bioinformatics studies of the Zika virus domain 1lI-HSPAS interaction do not detect

any interacting lysine residues on HSPA5[68].
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Fig 9: Cross-linking of HSPA5 and TBEV E protein A) Assigned spectrum for the peptide associated with the
HSPAS5-E protein interaction. B) TBEV E protein (PDB accession 506A) and HSPAS (PBD accession 6ZMD)
were placed in close proximity to allow for the visualisation of the cross-links, indicated here with red lines.
TBEV E protein domain | is shown in red, domain Ill in dark blue, domain Il in yellow and domain 4 in purple.
HSPAS substrate-binding domain is shown in light blue and the remainder of the protein in grey. C)
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Schematic representation of speculated HSPAS binding region on the mature virus. The three E proteins
within each asymmetric unit are shown in blue, red, and yellow. The proposed HSPAS5 binding site is shown

in green.

After the virus has attached to the cell surface, the next step is to enter the cells either through clathrin-
mediated endocytosis or macropinocytosis, and we found evidence for both pathways being used. We
identified AP2B1 in the GO analysis that binds to the clathrin heavy chain [69]. We also identified an
abundance of cytoskeletal proteins and cytoskeletal remodelling proteins required in macropinocytosis
including, NES, NUMA1, ITGB1, EZR, PAK2, COTL1, CCT5, CNN3, EPPK1 and RANBP1. This supports the

hypothesis that macropinocytosis is used by TBEV as well as Dengue virus [70].

Conclusions

In this study, we present a XL-MS method to identify and map transient virus-host PPIs under near-
physiological conditions, without the need for genetic modification. Using this method, we identified 59
high confidence virus-host PPls between TBEV and the surface of neuroblastoma cells. These proteins form
a robust and reliable dataset that can be investigated further for functional relevance in targeted follow-up
experiments. The presented methodologies are generally applicable to other virus-host systems and can

assist in expanding our knowledge of viral infections.

Materials and methods

Viruses and cells

Neuroblastoma SK-N-SH cells (ECACC 86012802) were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma) supplemented with 10 % heat inactivated FBS (Gibco), 100 ug/ml of penicillin-
streptomycin mix (PenStrep) (Sigma) and 2 mM L-glutamine (Sigma), at 37 °C and under a 5 % CO;
atmosphere. For virus propagation, cells were infected with TBEV strain, MG569938 Kuutsalo-14 Ixodes

ricinus Finland-2017, at a MOI of 0.003, in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma)
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supplemented with 2 % heat inactivated FBS (Gibco), 100 pg/ml of penicillin-streptomycin mix (PenStrep)
(Sigma), 2 mM L-glutamine (Sigma) and 0.35 uM rapamycin and incubated at 37 °C for 3 days under a 5 %
CO; atmosphere. Virus-containing supernatant was aspirated and centrifuged at 4500 x g for 5 minutes to
remove cell debris. Cleared supernatant was aliquoted into cryopreservation vials and frozen at -80 °C. Viral
titers were determined using plaque-forming assay. SK-N-SH cells were grown on a 6-well plate, infected
with ten-fold serial dilutions of the virus and incubated for 1 hour at 37 °C, under a 5 % CO, atmosphere.
Overlay medium (Minimum Essential Medium Eagle, PenStrep and 2 mM L-glutamine, 1.2 % avicel) was
added to each well and the cells incubated for 4 days at 37 °C, under a 5 % CO, atmosphere. After 4 days
the cells were fixed with 10 % formaldehyde, stained with crystal violet and the plaques counted to

determine the number of plaque forming units per ml (PFU/ml).

Production of amino acid free virus stock

SK-N-SH cells were grown to 90% confluence, washed twice with PBS and the medium changed to amino
acid free DMEM (Genaxxon) supplemented with 100 ug/ml of penicillin-streptomycin mix (PenStrep)
(Sigma) and rapamycin 0.35 uM (selleckchem). Cells were infected with TBEV, at multiplicity of infection 1,
and incubated at 37 °C for 4 Days, under a 5 % CO; atmosphere. Virus-containing supernatant was
aspirated and centrifuged at 4500 x g for 5 minutes to remove cell debris. The virus was pelleted through a
30 % sucrose cushion in HNE buffer (20 mM HEPES pH 8.5, 150 mM NaCl, 1 mM EDTA), 2 h, 27000 rpm, 4
°C. The virus pellet was then resuspended in amino acid free DMEM (Genaxxon) overnight, 4 °C, with mild
shaking. The virus was aliquoted into cryopreservation vials and frozen at -80 °C. The stock was titered as

described above. The typical obtained titer was 5 x 10° pfu/ml.

Cross-linking of TBEV with SK-N-SH cells

SK-N-SH cells were grown in a 6 well plate to 90 % confluence, washed twice with PBS, and the medium
changed to amino acid free DMEM (Genaxxon) supplemented with 100 pug/ml of penicillin-streptomycin
mix (PenStrep) (Sigma). The cells were incubated overnight at 37 °C, under a 5 % CO; atmosphere. The cells

were infected with TBEV at a MOI of 375 for 60 min, with rocking, on ice. Heavy/light disuccinimidyl
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suberate cross-linker (DSS-H12/D12, Creative Molecules Inc., www. creativemolecules.com) resuspended in
dimethylformamide (DMF) was added to final concentrations of 0, 100, 250, 500 and 1000 uM and
incubated for 60 min, with rocking on ice. The cross-linking reaction was quenched with a final
concentration of 50 mM ammonium bicarbonate with rocking, on ice. The SK-N-SH cell surface proteins
with attached TBEV virions were digested off with 1.25 g trypsin (Promega) and the supernatant collected.
Finally, cell debris was removed via centrifugation (16,000 x g, 5 min), the supernatant recovered, and the

samples prepared for mass spectrometry (Fig 2).

Immunoblot analysis

Proteins were resolved in 4-20 % SDS-PAGE, transferred onto a nitrocellulose membrane, and probed using
anti-Langat E protein (BEI NR-40318; 1:1000 dilution) and C protein (57) (1:1000 dilution) antibodies in 5 %
milk, tris-buffered saline 0.1 % tween-20 (TBST) [71]. The protein bands were visualised using IR800 and
IR680-conjugated secondary anti-rabbit (Li-COR, 926-68071) and anti-mouse antibodies (KPL, 072071806)
diluted 1:10,000 in tris-buffered saline 0.1 % tween-20 (TBST). The membrane was imaged using the

Odyssey infrared imaging system (Li-COR).

Preparation of cross-linked samples for mass spectrometry

Samples from cross-linking were first denatured with 8 M urea-100 mM ammonium bicarbonate. The
cysteine bonds were then reduced with 5 mM tris(2-carboxyethyl) phosphine (37 °C, 60 min, 400 rpm) and
alkylated with 10 mM 2-iodoacetamide (22 °C, 30 min, in the dark). Protein digestion was then performed
with 0.1 pg/ul sequencing-grade lysyl endopeptidase (Wako chemicals) (37 °C, 2h, 400 rpm). Following the
dilution of the sample with 100 mM ammonium bicarbonate to a final urea concentration of 800 mM the
proteins were digested further with 0.2 pg/ul trypsin (Promega) (37 °C, 18h, 400 rpm). Digested samples
were then acidified with 10% formic acid to a pH of 3.0, and the peptides were subsequently purified with
C18 reverse-phase spin columns according to the manufactures protocol (Microspin Column, SS18V, The
Nest Group, Inc). Peptides were then dried in a speedvac and reconstituted in 2% acetonitrile, 0.2% formic

acid prior to mass spectrometric analyses
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Liquid chromatography tandem mass spectrometry

All peptide analyses were performed on a Q Exactive HFX mass spectrometer (Thermo Scientific) connected
to an EASY-nLC 1200 ultra-high-performance liquid chromatography system (Thermo Scientific). The
peptides were loaded onto an Acclaim PepMap 100 (ID 75um x 2 cm, 3 pm, 100 A) pre-column and
separated on an EASY-Spray column (Thermo Scientific; ID 75 um x 25 cm, column temperature 45 °C)
operated at a constant pressure of 800 bar. A linear gradient from 4% to 45% of 0.1% formic acid in 80%
acetonitrile was run for 50 min at a flow rate of 300 nl/min One full MS scan (resolution 60,000@200 m/z;
mass range 350 to 1600 m/z) was followed by MS/MS scans (resolution 15,000@200 m/z) of the 15 most
abundant ion signals. The precursor ions were isolated with 2 m/z isolation width and fragmented using
higher-energy collisional-induced dissociation at a normalized collision energy of 30. Charge state screening
was enabled, and precursors with an unknown charge state and singly charged ions were excluded. The
dynamic exclusion window was set to 15 s and limited to 300 entries. The automatic gain control was set to
3 x 108 for MS and 1 x 10° for MS/MS with ion accumulation times of 110 and 60 ms, respectively. The

intensity threshold for precursor ion selection was set to 1.7 x10%.

MS data analysis

Raw DDA data was converted to gzipped and Numpressed mzML [72] using MSconvert from the
ProteoWizard, v3.0.5930 suite [73]. All data was managed and analysed using openBIS [74]. The acquired
spectra were analysed using the search engine X! Tandem (2013.06.15.1-LabKey, Insilicos, ISB) [75], OMSSA
(version 2.1.8) [76] and COMET (version 2014.02 rev.2) [77] against an in-house compiled database
containing the reviewed Homo sapiens reference proteome (UniProt proteome ID UP000005640) and the
TBEV proteome (GenBank accession: AWC08512.1), yielding a total of 78121 protein entries and an equal
amount of reverse decoy sequences. Full tryptic digestion was used allowing two missed cleavages.
Carbamidomethylation (C) was set to static and oxidation (M) to variable modifications, respectively. Mass
tolerance for precursor ions was set to 0.2 Da, and for fragment ions to 0.02 Da. Identified peptides were

processed and analysed through the Trans-Proteomic Pipeline (TPP v4.7 POLAR VORTEX rev O, Build

[26]
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506 201403121010) using PeptideProphet [78]. The false discovery rate (FDR) was estimated with Mayu

507 (v1.7)[79] and peptide spectrum matches (PSMs) were filtered with protein FDR set to 1% resulting in a
508 peptide FDR >1%. Proteins were filtered to remove hits identified by only 1 unique peptide, and an average
509  spectral count of < 2 across all samples. The protein names and corresponding UniProt ID are given in

510 Supplementary information 1.

s11  Cross-link identification

512 In total 874 proteins that were identified by 2 or more unique peptides, and an average spectral count of
513 22 across all samples in the DDA data were probed for cross-links. Cross-links between the TBEV structural
514  proteins and host proteins were identified using the pLink2 software package [32]. In order to reduce the
515  search space for cross-link identification the data was analysed in 35 batches. The raw data dependent
516  acquisition data, and compiled FASTA file databases containing a total of 28 protein sequences, from 25
517  different host proteins and the 3 viral structural protein were used as the software input. Host protein
518 sequences were obtained from UniProt. The TBEV polyprotein sequence was obtained from GenBank

519  (accession: AWC08512.1), the C protein corresponds to residues 1-96, the M protein 206-280 and the E
520  protein 281-776. The following search parameters were used in the pLink2 software: Conventional cross-
521  linking (Higher-energy C-trap dissociation (HCD)), precursor mass tolerance of 20 ppm; fragment mass
522  tolerance of 20 ppm; peptide length of 6-60; peptide mass of 350-6000 Da, up to 3 missed cleavage sites;
523 carbamidomethylation (C) was set to static modification; and oxidation (M) to variable modification. The
524  results were then filtered using a filtering tolerance of £10 ppm and a separate FDR >5% at the peptide
525  spectrum matches level. 7716 cross-linked spectral observations were observed across all samples, 302 of
526  these were observed in the negative control samples. In total, 247 cross-linked spectral observations in the
527  0.1-1mM DSS samples corresponded to cross-linked interfaces also identified in negative control samples

528 and were excluded from further analysis.

[27]
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Homology modelling, structure visualization and measuring cross-link

distances

Homology models for the TBEV C protein, immature conformation of the E protein and the prM protein
were generated using the |-TASSER (lterative Threading ASSEmbly Refinement) server [35—-37]. A C-score
(confidence score for estimating the quality of predicted models by I-TASSER) is generated for each model
and can range from -5 to 2, with a higher value signifies a higher confidence and where a C-score >-1.5is
considered good [35—-37]. The C-protein homology model was generated using PDB accession 50W2, and
the immature conformation of the E protein, and the prM protein using PDB accession 7L30 as the
template. The TBEV polyprotein sequence was obtained from GenBank (accession: AWC08512.1). The
sequence for the C protein was obtained from residues 1-96, the E protein residue 281-776, and the prM
residues 113-280 in the polyprotein. Generation of the assembled immature virus homology model, and
the C-protein dimer was performed in UCSF Chimera [80]. The homology model for the immature virus was
generated by superimposing the models for the immature E protein and prM protein onto the assembled
immature Spondweni virus (PDB accession 6ZQW) structure, using the MatchMaker function. The
homology model for the C protein dimer was generated by superimposing two models of the C protein
onto the Zika C protein dimer (PDB accession 5YGH), using MatchMaker. The atomic models were used to
position both intraprotein and interprotein cross-links by choosing the distance between Ca atoms in

Chimera [25,27].

Networking and clustering analysis

String data were obtained from string database [41] and imported into Cytoscape 3.4 [81] .The following
interaction sources were considered: experiments, databases, co-expression, co-occurrence and gene
fusion, and interactions with a minimum interaction score of 0.7 are shown. Clusters were generated using
the Markov clustering algorithm and gene ontology annotations for each cluster were obtained using

GOnet [82].

[28]
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Data Availability Statement

The datasets generated during and/or analysed in the current study are available in the repositories with

the persistent web links: ftp://massive.ucsd.edu/MSV000088272/ [76].

The mass spectrometry data has been deposited to the ProteomeXchange consortium via the MassIVE

partner repository https://massive.ucsd.edu/ with the dataset identifier PXD029384 [76].
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Supporting information captions

S1 Table: DDA analysis of viral and host protein in all samples (XLSX).

S2 Table: Cross-linking dataset Identified cross-linked peptides, corresponding proteins, E-values and SVM

scores for each cross-linked spectral observation (XLSX).

S3 Table: Filtered cross-linking dataset Cross-linking dataset (S2 Table) filtered to remove spectral
observations corresponding to unique cross-links identified by less than 2 spectral observations with SVM

scores < 0.355 (XLSX).

S4 Table: GO analysis of host proteins GO analysis of the 59 host proteins shown to interact with the

surface of TBEV in the filtered cross-linking dataset (S3 Table) (XLSX).

S1 File: Correlation between number of cross-linked spectral observations, protein abundance and
protein lysine content Table showing the number of cross-linked spectral observations, the average protein
abundance calculated in the DDA analysis (S1 Table) and the number of lysines for 101 randomly selected
proteins. Scatter graphs show no correlation between the number of cross-linked spectral observations and
the number of lysines for the proteins, and no correlation between the number of cross-linked spectral

observations and the protein abundance (XLSX).

S1 Fig: Box and whisker plot of the E-value for the intraviral cross-links, plotted against the distance
between the cross-linked residues for each cross-link. The smallest distance out of the mature and
immature calculated distances, and the C protein dimer or monomer distances is plotted. The mean E-value

is marked with a cross.
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