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Abstract

Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that harbor a
large number of Pathogenesis-Related 1 genes, many of which are induced in the biotrophic
interaction with Theobroma cacao. Here, we provide evidence that the evolution of PR-1 in
Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle
in this genus. Phylogenetic analysis revealed conserved PR-1 genes, shared by many
Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to
pathogenicity in Moniliophthora, as well as in recent specialization cases within both species.
PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in
the biotrophic interaction and positive selection clues, supporting the hypothesis that these
proteins accumulated adaptive changes in response to host-pathogen arm race. Furthermore,
we show that the highly diversified MpPR-1 genes are not induced by two phytoalexins,

suggesting detoxification might not be their main function as proposed before.

Introduction

Pathogenesis Related-1 (PR-1) proteins are part of CAP (cysteine-rich secretory

proteins, antigen 5, and pathogenesis-related 1) superfamily, also known as SCP/TAPS
1
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proteins (sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7), and are present throughout the
eukaryotic kingdom (Cantacessi et al., 2009; Gibbs et al., 2008). In plants, PR-1 proteins are
regarded as markers of induced defense responses against pathogens (van Loon et al., 2006).
These proteins have also been ascribed roles in different biological processes in mammals,
insects, nematodes and fungi, including reproduction, cellular defense, virulence and
evasion of the host immune system (Asojo et al., 2005; Chalmers et al., 2008; Ding et al., 2000;
Gao et al., 2001; Hawdon et al., 1999; Lozano-Torres et al., 2014; Prados-Rosales et al., 2012;
Schneiter & Di Pietro, 2013; Zhan et al., 2003). In Saccharomyces cerevisiae, Pry proteins
(Pathogen related in yeast) bind and export sterols and fatty acids to the extracellular medium,
an activity that has also been demonstrated for other proteins of the CAP superfamily through
functional complementation assays (Choudhary & Schneiter, 2012; Darwiche, Mene-Saffrané,

et al., 2017; Darwiche & Schneiter, 2016; Gamir et al., 2017; Kelleher et al., 2014).

The basidiomycete fungi Moniliophthora perniciosa and Moniliophthora roreri are
hemibiotrophic phytopathogens that cause, respectively, the Witches' Broom disease (WBD)
and Frosty Pod Rot of cacao (Theobroma cacao). Currently, three biotypes are recognized for
M. perniciosa based on the hosts that each one is able to infect. The C-biotype infects species
of Theobroma and Herrania (Malvaceae); the S-biotype infects plants of the genus Solanum
(e.g., tomato) and Capsicum (pepper); and the L-biotype is associated with species of lianas
(Bignoniaceae), without promoting visible disease symptoms (Evans, 1978; Evans, 2007;

Purdy & Schmidt, 1996).

With the genome and transcriptome sequencing of the C-biotype, 11 PR-1-like genes,
named MpPR-1a to k, were identified in M. perniciosa (Teixeira et al., 2012). Interestingly,
many of these genes are upregulated during the biotrophic interaction of M. perniciosa and T.
cacao, which constitutes a strong indication of the importance of these proteins in the disease
process (Teixeira et al., 2012; Teixeira et al., 2014). In this context, efforts have been made to
elucidate the role of these molecules during the interaction of M. perniciosa with cacao, such
as the determination of the tridimensional structure of MpPR-1i (Baroni et al., 2017) and the
functional complementation of MpPR-1 genes in yeast Pry mutants (Darwiche et al., 2017).
These studies revealed that seven MpPR-1 proteins display sterol or fatty acid binding and
export activity, suggesting that they could function as detoxifying agents against plant lipidic

toxins (Darwiche et al., 2017).
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Despite these advances, studies with a deeper evolutionary perspective have not yet
been performed for MpPR-1 proteins. Evolutionary analysis can be an important tool for the
inference of gene function and the identification of mechanisms of evolution of specific
traits, such as pathogenicity. Genes that are evolving under negative selection pressures are
likely to play a crucial role in basal metabolism (Oleksyk et al., 2010). On the other hand, genes
that are evolving under positive selection may have changed to adjust their function to a
relatively new environmental pressure (Manel et al., 2016). Thus, it can be hypothesized that
Moniliophthora PR-1 might have accumulated adaptive substitutions in response to selective
pressures related to a pathogenic lifestyle, and the analysis of these substitutions may reveal
protein targets and specific codons that are potentially important for the pathogenicity in

Moniliophthora.

In this study, we performed a two-level evolutionary analysis of Moniliophthora PR-1
genes: (i) their macroevolution in the order Agaricales, which consists mainly of saprotrophic
fungi, being the Moniliophthora species one of the few exceptions; (ii) and their
microevolution within M. perniciosa and its biotypes that differ in host-specificity. By
characterizing PR-1 proteins encoded by 22 Moniliophthora genomes, reconstructing their
phylogenetic history and searching for evidence of positive selection, we identified an
increased diversification in these proteins in Moniliophthora that is potentially related to its
pathogenic lifestyle, as supported by expression data, and also presents cases of species-

specific and biotype-specific diversification.

Results

Characterization of PR-1 gene families in Moniliophthora

Previous work had already reported the identification of 11 PR-I-like genes in the
genome of M. perniciosa isolate CP02 (C-biotype), which were named MpPR-1a to MpPR-1k
(Teixeira et al., 2012). Likewise, 12 PR-1-like genes were identified in the genome of M. roreri
(MCA2977) (Meinhardt et al., 2014). With the sequencing and assembly of 18 additional
genomes of M. perniciosa isolates and other 4 genomes of M. roreri isolates, it was possible to
characterize the PR-1 gene families in the different biotypes of M. perniciosa and in its sister
species M. roreri in order to look for similarities and differences at the species and biotype

levels. Figure 1.A shows the number of genes identified as PR-1 per isolate.
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The examination of orthogroups containing PR-I-like hits revealed that the PR-1i
orthogroup has the highest number of duplications with two copies in M. roreri and in L-
biotype. Moreover, a new PR-1-like orthogroup with seven candidates that are more similar
to MpPR-1i (67% identity) was found. This newly identified gene was named “MpPR-11" and
was not found in M. roreri. It has the same number and structure of introns and exons as the
MpPR-1i gene and they are closely located in the same scaffold, which is evidence of a
duplication event within M. perniciosa. Interestingly, the sequences corresponding to MpPR-
1lin the five S-biotype isolates from Minas Gerais were found in another orthogroup, in which
MpPR-11 was fused to the adjacent gene in the genome (a putative endo-polygalacturonase
gene containing the IPR011050 domain: Pectin lyase fold) with no start codon found between
the two domains. Furthermore, we found that the MpPR-1i gene and, consequently, its
predicted protein is truncated in almost all S-biotype isolates from MG (except for S-MG2)
(Figure 4).

Examining these gene families to look for other putatively species-specific PR-1 in
Moniliophthora, we observed that the MpPR-1k and MpPR-1c genes are not found in the M.
roreri genomes analyzed in this work, while MrPR-1n constitutes an exclusive family in this
species. The MrPR-10 gene previously identified by Meinhardt et al. (2014) was not predicted
in any genome as a gene in this work. The protein sequence of MrPR-10 has higher identity
with MrPR-1j (70%), MpPR-1j (66%) and MpPR-1c (56%), but it is shorter than all 3 protein
sequences and does not have a signal peptide like other PR-1 proteins, which suggested that

MrPR-10is a pseudogenized paralog of MrPR-1j.

The absence of MpPR-Ic in all S-biotype genomes suggested that this gene could be
biotype-specific within M. perniciosa, however, it was predicted in the L-biotype genome L-
EC2. Therefore, we sought to confirm the presence or absence of this gene in different M.
perniciosa by PCR amplification and synteny analysis. The absence of MpPR-Ic in the S-
biotype isolates and in the L-biotype L-EC1 was confirmed, as well as its presence in L-EC2
(Figure 1.B). We also amplified the MpPR-1d gene, which was predicted in all genomes, in
almost all tested isolates, except for S-MG3 because of a mismatch in the annealing regions
of both primers. Even though our PCR results indicated that MpPR-1c is not present in the S-
biotype, synteny analysis of the genome region where MpPR-1j-c-d are found in tandem (22)

revealed that, in fact, MpPR-Ic is partially present in these S-biotype genomes (Figure 1.C),
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Figure 1. Characterization of PR-1 gene families in M. perniciosa and M. roreri genomes. A.

Heatmap of the number of gene copies per family of PR-1-like candidates per Moniliophthora

isolate. Identification of genomes are in columns and PR-1 family names are in rows. B.

Amplification by PCR of MpPR-Ic and MpPR-1d genes in the genomic DNA of eight M.

perniciosa isolates. 1Kb Ld = 1 Kb Plus DNA Ladder (Invitrogen), Neg = PCR negative control
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(no DNA). Expected fragment sizes were 687 bp for MpPR-1c and 902 bp for MpPR-1d. C.
Synteny analysis of a 10 Kb portion of the genome where the MpPR-1j, ¢, d genes are found in
the three biotypes of M. perniciosa and M. roreri. The genomes analyzed were C-BA3, S-MG2,
R-CO2, L-EC1 and L-EC2. Only identity above 75% to the C-biotype reference is shown.

PR-1 genes evolution along the Agaricales order

To study the macroevolution of PR-1 proteins, we identified orthologous sequences of
genes encoding PR-1-like proteins in 16 genomes of species from the Agaricales order,
including 3 selected M. perniciosa genomes (one of each biotype) and 1 M. roreri genome for
comparisons. The phylogenetic reconstruction of Agaricales PR-1 proteins revealed a basal

separation of two major clades, hereafter called cladel and clade2 (Figure 2.A).

The first PR-1 clade includes most Agaricales species outside Moniliophthora showing
PR-1 genes that diverged early in the phylogeny, before the appearance of PR-la-l-n
orthologues. From this first clade including the early diverged PR-1 proteins, subsequently
diverged PR-1d and PR1-j. The separation between PR-1d and j proposed for Moniliophthora
only occurs in Volvariella volvacea, while for all other species, paralogous of PR-1d diverged
early. In Moniliophthora, PR-1j and PR-1d have more recent common ancestors, and the only
paralogous of these Moniliophthora PR-1s originates from a possible duplication of MpPR-1j
in the C-biotype of M. perniciosa, which was previously named MpPR-Ic, therefore exclusive

to this species and biotype.

The second clade includes all other PR-1 families and other Agaricales PR-1s that do
not have a common ancestor with a single PR-1 from Moniliophthora. Clade2 is divided into 2
subclasses in its base, one of them composed of the PR-1b clade, which is distributed among
14 species. In the second subgroup, PR-1a shows a common ancestor in a total of 16 species,
being the most common PR-1 here. The great diversification of a PR-la-like ancestor in
Moniliophthora resulted in the formation of at least 4 new and exclusive PR-1 genes (k, g, i, [)
with high evolutionary rates reflected on the branch lengths (Figure 2.B). PR-1n showed a
putative ortholog in Armilaria mellea, the only other plant pathogen in the Agaricales dataset,

however, this connection has low branch support.
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Figure 2. Phylogenetic cladogram of PR-1 proteins in Agaricales (Basidiomycota). A.
Phylogenetic relationships were inferred by maximum likelihood and branch support was
obtained using 1000 bootstraps. Only branch support values greater than 70 are shown. PR-1c
isindicated as a yellow branch inside the PR-1j clade, and PR-1n is indicated with a dark green
dot and branch. Proteins with ancestral divergence to more than one family were named with
the letters of the derived families. Full species names are in SM1. The branch lengths were
dimensioned for easy visualization. B. The same phylogeny shown in “A” is presented with

the respective branch lengths augmented for the Moniliophthora specific PR-1 genes.
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Recent diversification of PR-1 genes in Moniliophthora

Through the investigation of the phylogenetic history of PR-1 proteins within 22
Moniliophthora isolates (Figure 3), we found that the previous classification of MpPR-1a to k
and MrPR-1nrepresents monophyletic clades in the tree, except for MpPR-1c which is a recent
paralogous of MpPR-1j. The evolution of Moniliophthora PR-1 also reflected the basal
divergence between two large clades as observed in the Agaricales PR-1 tree (Figure 2). The
only incongruence between the two phylogenetic trees is the relative position of PR-1k, which
appeared after the divergence of PR-1a in Agaricales and before it in Moniliophthora. This
incongruence may be due to the extreme differentiation of PR-1k, with longer branch lengths

in Moniliophthora, being its position on the Agaricales tree more reliable.

Among the PR-1 families, the proteins with the greatest number of changes in the tree
are PR-1g, i, and k, which are exclusive PR-1s in the genus Moniliophthora, as pointed out by
the previous phylogenetic analysis. In addition, PR-1h also showed a greater branch length
than the others, being a family of PR-1s only shared between Moniliophthora and Marasmius
in the Agaricales PR-1 tree (Figure 2). PR-1c also presented a large number of changes in
relation to its ancestor PR-1j. This greater number of changes in these MpPR-1s, and their
exclusive presence in comparison to the other Agaricales, indicate a recent potential adaptive

process of diversification of these proteins in Moniliophthora.
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197  Figure 3. Phylogenetic reconstruction of PR-1 proteins in Moniliophthora and heatmap of
198  expression Z-scores of PR-1. Phylogenetic relationships of PR-1 proteins from 18 M.
199  perniciosa and 4 M. roreri isolates were inferred by maximum likelihood and branch support
200  was obtained using 1000 bootstraps. The PRY1 protein of Saccharomyces cerevisiae was used as
201  an outgroup. Clades filled with pink color represent PR-1 families with evidence of positive
202  selection. A version of this tree with non-collapsed branches can be found in Supplementary
203  Figure 1. For each PR-1 family, the Z-score of log transformed expression levels of MpPR-1

204  and MrPR-1 from transcriptomic data was calculated for conditions (columns) and plotted as

205  aheatmap. The heatmap includes MpPR-1 data from seven conditions of the C-biotype of M.

206  perniciosa from the Witches’ Broom Transcriptomic Atlas, 7 different time points of S-biotype

207  infection in MicroTom tomato plants, and two conditions of M. roreri infection in cacao pods

208  (frosty pod rot). Conditions highlighted with a grey background indicate the biotrophic stage

209  of the plant-pathogen interaction.

210

211  Positive selection shaping PR-1 families in Moniliophthora

212 Based on the observations of high diversification of PR-1 families within

213 Moniliophthora, we hypothesized that positive selection could be shaping these proteins
9
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either in the C-biotype or in the S-biotype. To test this hypothesis, we tested the branch-sites
evolutionary model for each PR-1 family. None of these tests brought evidence of positive
selection in any PR-1 family for the C-biotype branches. For the S-biotype branches, a signal

of positive selection was detected for PR-1g on one site of the protein sequence.

Considering that the existence of M. perniciosa biotypes are very recent in the
evolutionary timescale and that C-biotype itself has almost no genetic variation among its
sequences, which makes it very difficult to apply separate dN/dS tests, we tested both C- and
S- biotypes together. We tested the hypothesis that there was a single selective pressure
shaping PR-1 families throughout the M. perniciosa and M. roreri evolution regardless of the
biotype, using the site model test. In these tests, sites with positive selection signs were
detected in five families (PR-1f, g, h, i, 1) (Table 2). The PR-1n family was not included in these

tests because all sequences were identical.

Table 2. Omega (dN/dS) values and protein sites (amino acid: position) detected with
significant probability of positive selection for each PR-1 family in Moniliophthora.

Family Omega  Sjtes under positive selection (p>0.95)

PR-1a 4.12 None

PR-1b 2.31 None

PR-1c 1 None

PR-1d 2.07 None

PR-1e 1 None

PR-1f 2.74 K: 49, S: 157

PR-1g 7.05 P: 211, P: 234, A: 242, S: 260, S: 271

PR-1h 4.33 S:78,Y:107, P: 141, S: 155, E: 187, D: 206, L: 209, M: 224, R: 259, Q: 267
PR-1i 4.38 T: 40, Q: 54, D: 56, R: 118, K: 132, A: 141, L: 150

PR-11 6.39 Q: 65, Q: 76, -: 164, N: 176, R: 192, K: 193, E: 194, F: 196
PR-1j 2.76 None

PR-1k 2.50 None

PR-1g stands out for having the highest omega and for being one of the most expressed
genes during the green broom phase (Teixeira et al., 2014). Three of the codons under positive
selection are part of the ‘keke’ domain, which is possibly involved in the interaction with
divalent ions or proteins (Teixeira et al., 2012). Among the sites detected under positive

selection for PR-1i, one is found in the caveolin binding motif (CBM), an important region for
10
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binding to sterols, and another site is in the alpha-helix 1, which together with alpha-helix 4

form the cavity for ligation to palmitate (Baroni et al., 2017) (Figure 4).

Although the two exclusive PR-1 families of M. perniciosa, PR-1c and PR-1k, do not
present evidence of positive selection, both revealed processes of diversification in the PR-1
phylogenies. It is possible that these families have also undergone selective pressures in their
evolution, but the short time of evolution of M. perniciosa in relation to the genus has reduced

the accuracy of the dN/dS tests in these exclusive families.

(@ PR-1i_S-MG2 KT KWEELHNNERT TR QEDS BEWDGNEAWKAQQWAT QCNMDNP QEWGDNGASENBAKNTKEQABAEWT ATS GSEPD- - - DRSIPWOQRIIMANS AQKMGCGEAT CABE- - - GDMENTVNY
KNKWEEEHNNERTTRQEDS EEWDGNEAWKAQQ¥AT QCNVDNP QEWGDNGASENHARYTKEQARAEWT ATSGSEPD- - - DRSIPWQRIIMANS AQKMGCGEAT CMEE - - - GDMANITMNY
KNKWEELHNNERT TRQEDS EEWDGNEAWKAQQWAT QCNYDNP QEWGDNGASENBARYTKEQABAEWT ATSGSEPD- - - DRSIPWQRIIMANS AQKMGCGEAT CMIEE - - - GOMANITMNY
KNKWEEEHNNERTTRQEDS EEWDGNEAWKAQQMAT QCNVDNP QEWGDNGASENNARYTKEQARAEWTATSGSEPD- - - DRSIPWQRIIMANS AQKMGCGEAT CMIEE - - - GDMANTMNY
KNKWEELHNNERT TRQEDS EEWDGNEAWKAQQWAT QCNMDNP QEWGDNGASENBARYTKEQABAEWT ATSGSEPD- - - DRSIIPWQRIIMANS AQKMGCGEAT CMEBE GDMANITMNM
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Figure 4. Sequence alignment and phylogeny of PR-1i proteins in Moniliophthora isolates.
Only a slice of the middle portion of the alignment is shown to highlight the sites with positive
selection signs, indicated by red (p-value < 0.01) or orange (p-value < 0.05) bars in the bar
chart of omega values below the alignment. Below de bar chart, annotations indicate the
locations along the sequence of the CAP domains, caveolin-binding motif (CBM) and alpha-
helices (a). On the 3D crystal structure of MpPR-1i protein (PBD:5V50) and on the bar chart,
“A” indicates the site under positive selection detected in the CBM and “B” indicates the site

under positive selection in alpha-helix 1.

Adaptive evolution of PR-1 is reflected on expression data

It has already been shown that MpPR-1 genes of the C-biotype have distinct expression
profiles in several different conditions of the WBD Transcriptome Atlas, which were also

confirmed by quantitative RT-PCR (Teixeira et al., 2012; Teixeira et al., 2014). MpPR-1a, b, d,
11
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eare ubiquitously expressed during the necrotrophic mycelial stage, while MpPR-1jis mainly
expressed in primordia and basidiomata. Six MpPR-1s are highly and almost exclusively
expressed during the biotrophic stage of WBD: MpPR-1c, f, g, h, i, k (Teixeira et al., 2012).
However, in contrast to MpPR-1i, the newly discovered MpPR-1lis not expressed in any of the

conditions analyzed, suggesting that this gene may not be functional in the C-biotype.

Expression data of MpPR-1 genes from the S-biotype during a time course of the
biotrophic interaction with MT tomato revealed that MpPR-1f, g, h, I, and k are highly
expressed during 10-30 days after infection (d.a.i.) (Figure 3). These results are similar to the
expression profile verified for the C-biotype during the biotrophic interaction with T. cacao,
with the exceptions that MpPR-1c is absent in the S-biotype and, instead of MpPR-1i, MpPR-11
is expressed during tomato infection. S-biotype MpPR-1s are highly expressed starting at 10
d.a.i., which is usually when the first symptoms of stem swelling are visible in MT tomato
(Deganello et al., 2014). MpPR-1a and b appear to have ubiquitous expression profiles since
they show similar expression levels in almost all conditions. MpPR-1j, d, e, and i did not show
significant expression in these libraries. Because MpPR-1iis truncated in the S-MG1 genome,
quantification of expression was also done with S-MG2 as a reference, since it has a complete
MpPR-1igene. However, we still obtained the same expression profiles as S-MG1 for all MpPR-
1. This could suggest that MpPR-11is expressed in S-biotype even with a fusion to the adjacent

gene. In the C-biotype, this adjacent gene is only expressed during the biotrophic interaction.

In M. roreri, it has been previously reported that MrPR-1n, MrPR-1g and MrPR-1i2
were upregulated in samples from the biotrophic phase (30 days post infection of pods),
MrPR-1d was upregulated in the necrotrophic phase (60 days post infection of pods) and five
other MrPR-1 were constitutively expressed under these conditions (Meinhardt et al., 2014).
The heatmap in Figure 3 shows that similar to M. perniciosa’s PR-1 expression profile, MrPR-
1gisthe most expressed PR-1 gene during the biotrophic stage. Moreover, while MrPR-1h and
MrPR-1f were not differentially expressed when comparing the biotrophic and necrotrophic
stages, they also showed higher expression when compared to other MrPR-Is that belong to

the conserved families.
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Expression of recently diversified MpPR-1 was not induced by plant antifungal
compounds

It has been previously demonstrated that CAP proteins of M. perniciosa bind to a
variety of small hydrophobic ligands with different specificities. Thus, it has been suggested
that the MpPR-1 genes induced in the biotrophic interaction could function in the
detoxification of hydrophobic molecules produced by the host as a defense strategy
(Darwiche et al., 2017). In this context, we investigated if MpPR-1 genes, especially the ones
induced in WBD (c, f, h, 1, k, g), are differentially expressed by the presence of the plant
antifungal compounds eugenol or a-tomatin, which are similar to sterol and fatty acids,
respectively. However, when the necrotrophic mycelia of M. perniciosa was treated with
eugenol, only MpPR-1e, k, d were up-regulated, while MpPR-1f was down-regulated in a-
tomatin-treated samples (Figure 5). In all samples, among all MpPR-1 genes, MpPR-1a and
MpPR-1b had the highest expression levels, while MpPR-1c, i, g, j have the lowest (TPM < 2).
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Figure 5. Expression profile of MpPR-1 genes in response to two plant antimicrobial
compounds. The necrotrophic mycelium of M. perniciosa C-biotype (C-BAla) was grown in
liquid media in the presence of eugenol, a-tomatin or DMSO (mock condition) for 7 days. The

expression values (Log2 transformed) for each MpPR-1 were obtained by RNA-Seq and
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subsequent quantification of read counts and between-sample normalization using size
factors. Red bars indicate the mean of expression values within a group of replicates.
Asterisks indicate that MpPR-1e, k, d, f are differentially expressed (s-value<0.005) when
compared to the mock condition, with blue asterisk indicating up-regulation and red

indicating down-regulation.

Discussion

The evolution of PR-1 and the emergence of pathogenicity among saprotrophs

The plant pathogen M. perniciosa has at least 11 genes encoding PR-1-like secreted
proteins, which were previously identified and characterized in the genome of the C-biotype
CPO02 isolate (Teixeira et al., 2012). Many of these genes were shown to be highly expressed
during the biotrophic interaction of M. perniciosa and cacao, suggesting that MpPR-1 proteins
have important roles during this stage of WBD. M. perniciosa has two other known biotypes (S
and L) that differ in host specificity and virulence, the closest related species M. roreri that
also is a T. cacao pathogen, and other nine Moniliophthora species: one described as a non-
pathogenic grass endophyte (Aime & Phillips-Mora, 2005), three of biotrophic/parasitic habit
(Niveiro et al., 2020), and five species of unascertained lifestyle, found in dead or decaying
vegetal substrates (Kerekes et al., 2009; Kropp & Albee-Scott, 2012; Takahashi, 2002). Because
the majority of Moniliophthora related fungi in the Agaricales order are saprotrophs, the
occurrence of parasitic Moniliophthora species raises the question about the emergence of
biotrophic/parasitic lifestyle in this lineage of Marasmiaceae (Niveiro et al., 2020; Teixeira et
al., 2015). The evolutionary scenario of host-pathogen arms race that emerges through the
diversification of the Moniliophthora genus in the Agaricales order and of host-specific
biotypes in M. perniciosa isolates, is especially suitable for the study of adaptive evolution in
pathogenicity-related genes. Besides, the knowledge on putative adaptations gained through
pathogen evolution are also specially interesting for further development of strategies against
the pathogen. Based on our findings, Figure 6 presents a model for the adaptive evolution of

PR-1 proteins in Moniliophthora.

Through the characterization of the evolution of PR-1 proteins in Agaricales, we
observe that at least one copy of PR-1 is present in all the sampled fungi, with most of the

Agaricales species encoding between 1 and 7 PR-1 proteins. This is in contrast with
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Moniliophthora species, which encode among 10-12 proteins. Moniliophthora PR-1 proteins
are derived independently from both ancient clades in the Agaricales gene tree. The longer
branch-lengths in PR-1 families exclusive to Moniliophthora along with the evidence of
evolution under positive selection identified in independently diverged clades suggest that
the diversification of PR-1 in the genus was adaptive and related to its pathogenic lifestyle.
The accentuated adaptive evolution of PR-1 in Moniliophthora is not only reflected in the
genomic evolution of these genes, but also in their expression context. PR-Ic, f, g, h, i, k, , n
are upregulated during the biotrophic interaction, while PR-Is that are also conserved in
other Agaricales species are mainly expressed in mycelial stages of M. perniciosa (MpPR-1a,
b, d, e). Most Agaricales species are not plant pathogens, which is also an evidence that PR-1
in Moniliophthora diverged from a few ancestral PR-1s that are related to basal metabolism in
fungi and have been evolving under positive selective pressure possibly because of a benefit

for the biotrophic/pathogenic lifestyle.

The emergence of SCP/TAPs proteins as pathogenicity factors has been reported in
other organisms, such as the yeast Candida albicans and the filamentous fungus Fusarium
oxysporum (Braun et al., 2000; Prados-Rosales et al., 2012). Even though their specific function
and mode of action may be different and remains to be characterized in plant pathogens, the
recent evolution of these proteins towards their pathogenic role in the Moniliophthora genus
could have contributed for the transition from a saprotrophic to parasitic lifestyle.
Accelerated adaptive evolution evidenced by positive selection signs has also been observed
in other virulence-associated genes of pathogenic fungi, such as the genes PabaA, fos-1, pes1,
and pksP of Aspergillus fumigatus, which are involved in nutrient acquisition and oxidative
stress response (Fedorova et al., 2008), and several gene families in C. albicans, including cell

surface protein genes enriched in the most pathogenic Candida species (Butler et al., 2009).

Adaptive evolution of PR-1 within Moniliophthora species and its biotypes

The high diversification of PR-1 families observed within Moniliophthora was
reinforced by our findings of positive selection in families that have also augmented
expressions during infection: PR-1f, g, h, i, I. Among these five families, PR-1g and PR-1i are
two of the most diversified families in Moniliophthora and have a more recent common
ancestor with PR-1f than with the other PR-1s, placing this monophyletic clade of PR-1f, g, i

as the key one to diversification and adaptive evolution of these proteins in the genus. Many
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sites that potentially evolved under selective pressure were also found in PR1-h, indicating

that a parallel process of adaptive evolution occurred in this family.

Within the diversification of PR-1 in Moniliophthora, four cases of putative species-
specific evolution of PR-1 families were found: PR-1c, PR-1k and PR-1l in M. perniciosa and
PR-1n in M. roreri. Although vestigial sequences indicate that PR-1c probably emerged as a
paralog of PR-1j in the ancestral of both species, it was only kept in the evolution of C-biotype,
in which a change in expression profile occurred, thus placing MpPR-Ic as a case of PR-1
diversification within M. perniciosa biotypes and a potential candidate for host specificity.
Another candidate for biotype-specific diversification is PR-1l, which diverged from a
duplication of PR-1i. Even though PR-11 was found in all three M. perniciosa biotypes, it was
expressed only in the S-biotype during the biotrophic interaction, instead of PR-1i, which is
expressed in M. roreri and in the C-biotype. This suggests that the divergence of PR-1i can be
host-specific, but further experiments are necessary to clarify if they are either a cause or

consequence of M. perniciosa pathogenicity.

Even though almost all PR-1 families are present in the genomes of L-biotype isolates,
this biotype has an endophytic lifestyle and does not cause visible disease symptoms in their
hosts (H. C. Evans, 1978; Griffith & Hedger, 1994). There is no available expression data for
the L-biotype, so it is unknown whether their PR-1 genes could have any role related to their
lifestyle or these genes are not pseudogenized yet due to a small evolutionary time. Evans
(1978) reported that the L-biotype can induce weak symptoms in seedlings of the Catongo
variety of T. cacao. Therefore, it could be possible that host susceptibility is an important

factor for the manifestation of WBD symptoms.

From basal metabolism to key roles in disease: How PR-1 proteins could have
functionally adapted for pathogenicity?

It was previously shown that Pry proteins detoxify and protect yeast cells against
eugenol (Darwiche, Méne-Saffrané, et al., 2017) and that MpPR-1 proteins can bind to
hydrophobic compounds secreted by plants, indicating that they could antagonize the host
defense response (Darwiche, El Atab, et al., 2017). When the necrotrophic mycelia of M.
perniciosa was cultivated with eugenol, expression of MpPR-1d and MpPR-1k was up-
regulated, which is in agreement with the ability of these two proteins to bind to plant and

fungal sterol compounds (Darwiche, El Atab, etal., 2017). MpPR-1e expression was also highly
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induced by eugenol, even though it was previously shown to bind only to fatty acids, but not
sterols. Additionally, MpPR-1f, which is up-regulated during the biotrophic interaction like
MpPR-1k, was down-regulated by a-tomatin. Given the above, it appears that M. perniciosa
does not rely on MpPR-1 for cellular detoxification or this function is not transcriptionally
regulated by plant hydrophobic compounds in the necrotrophic mycelia, or even, they could

have different roles other than detoxification.

Considering that some PR-1 proteins are not associated with infection and are
conserved in other saprotrophic fungi, here we hypothesize that the primary function of PR-
1 in fungi can be related to the export of sterols from basal metabolism, such as ergosterol,
the most abundant sterol in fungal cell membrane (Mohd et al., 2011; Zhao et al., 2005). PRY
of S. cerevisiae transports acetylated ergosterol to the plasma membrane (Choudhary &
Schneiter, 2012) and MpPR-1d, which belongs to a relatively conserved PR-1 family in
Agaricales, can also efficiently bind to ergosterol (Darwiche et al., 2017). Furthermore,
ergosterol acts as a PAMP molecule (pathogen-associated molecular pattern) in plants
(Niirnberger et al., 2004), resulting in the activation of defense-related secondary metabolites
and genes, including plant PR-1s (Kasparovsky et al., 2003; Klemptner et al., 2014; Lochman
& Mikes, 2006; van Loon et al., 2006), which are likely to have a role in sequestering sterols
from the membranes of microbes (Gamir et al., 2017) and stress signaling (Chen et al., 2014,
Chien et al., 2015). Additionally, PR-1 receptor-like kinases (PR-1-RLK) from T. cacao are also
upregulated on WBD and could be binding to the same ligand of PR-1 (Teixeira et al., 2013).
Given that, it is possible that MpPR-1 could have evolved different adaptive roles through
neofunctionalization. Besides export of hydrophobic compounds of basal metabolism, they
could be acting in the protection of the cell membrane against the disruption caused by
antifungal compounds, in the detoxification of hydrophobic compounds like phytoalexins
secreted by the host, or it could even be possible that those MpPR-1s expressed during
infection are sequestering the membrane sterols of the fungus itself in order to prevent
detection by a possible ergosterol recognition complex from the host (Khoza et al., 2019), thus
compromising the elicitation of plant immunity in a similar fashion of MpChi, a chitinase-
like effector that is highly expressed by M. perniciosa during the biotrophic stage of WDB
(Fiorin et al., 2018).

It has been shown that the ability of MpPR-1 proteins to bind to sterols can be altered
by a point mutation in the caveolin binding motif (Darwiche et al., 2017), highlighting the
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significance of understanding those sites under positive selection that are detected in
important regions of the proteins, such as the candidate sites found in the CBM and alpha-
helix 1 of PR-1i. These findings are central to learn how changes in the nucleotide or protein
sequences could impact binding affinity and function. Even though this is speculative, as the
specific role of PR-1 remains unknown, these results can guide further validation

experiments and maybe demonstrate another case of adaptive evolution of fungal effectors.

+ duplication events \ R
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[0 higher expression in biotrophic interaction se o s
g P P Moniliophthora perniciosa
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Figure 6. Proposed model for the adaptive evolution of PR-1 proteins in Moniliophthora
towards the pathogenic lifestyle. All Moniliophthora PR-1 proteins derived independently
from two ancient clades (PR-1b-like and PR-1d-like) within the Agaricales order, as indicated
in PR-1 phylogeny. The subsequent diversification of PR-1a and PR-1e from PR-1b, and PR-1j
from PR-1d, occured in putative saprotroph lineages before the divergence of Moniliophthora
genus, suggesting a diversification not related to pathogenicity. Within Moniliophthora
hypothetical pathogenic ancestors, five other PR-1 proteins were derived (c from j, h from b,
f-g-i from e) and most of these new lineages showed evidence of positive selection in M.
perniciosa samples (indicated by pink circles). New PR-1 copies (n and i2 in M. roreri, 1 and k
in M. perniciosa) diverged within M. species. Recently diversified PR-1 genes in
Moniliophthora, not only show an elevated rate of evolution and positive selection evidence
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but are also predominantly expressed during the biotrophic interaction (indicated by green
highlights). This supports the hypothesis that these proteins accumulated adaptive changes
related to pathogen lifestyle that might also contribute to the host specialization observed in

Moniliophthora species and biotypes.

Conclusions

Based on genomic and transcriptomic data, we presented evidence of adaptive
evolution of PR-1 proteins in processes underlying the pathogenic lifestyle in Moniliophthora.
These results reinforce the power of evolutionary analysis to reveal key proteins in the
genomes of pathogenic fungi and contribute to the understanding of the evolution of
pathogenesis. Our results indicate a set of PR-1 families that are putatively related to
pathogenicity in the genus (PR-1f, g, h, i) and specialization within M. perniciosa biotypes (PR-
1c, k and 1) and M. roreri (PR-1n). The positive selection analysis also indicates protein sites
that are putatively related to those adaptations. PR-1 genes and sites with evidence of
adaptations are strong candidates for further study and should be evaluated in order to
understand how changes in these sites can affect structure, binding affinity and function of

these proteins.

Material and Methods

Identification of PR-1-like gene families

In this study, we used a dataset of families of genes predicted in 22 genomes of
Moniliophthora (Filho Tokimatu, 2018) and 16 genomes of other fungal species of the order
Agaricales, which were obtained from the Joint Genome Institute (JGI) Mycocosm database
(Grigoriev et al., 2014). The Moniliophthora genomes included are 7 isolates of the S-biotype
(collected at the states of Amazonas and Minas Gerais, in Brazil), 9 isolates of the C-biotype
(collected at the states of Amazonas, Pard, and Acre, in Brazil), 2 isolates of the L-biotype
(from Colombia) and 4 samples of M. roreri (from Colombia). Supplementary File 1 contains

the list of species and isolates, their genome identification and source (collection location or

reference publication).

To identify candidate PR-1 gene families, we performed a search for genes encoding

the CAP/SCP/PR1-like domain (CDD: cd05381, Pfam PF00188) using the HMMER software
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(Eddy, 2011). The assignment of protein sequences to families of homologues (orthogroups)
was done using Orthofinder (v. 1.1.2) (Emms & Kelly, 2015). In addition, we searched all gene
families for families containing PR-1 candidate genes with Blastp (Camacho et al., 2009) using
the known 11 MpPR-1 sequences (Teixeira et al., 2012) as baits, in order to search for possible
candidates that were not previously identified and/or that have been wrongly assigned to
other orthogroups due to incorrect gene prediction. To verify the presence of the SCP PR1-
like/CAP domain (InterPro entry IPR014044) in the sequence, the InterProscan platform
(Hunter et al., 2009) was used. All PR-1 candidate sequences identified in this study are
deposited in GenBank under accession numbers MW659198 - MW659445.

Sequence alignment and phylogenetic reconstruction

For the inference of the phylogenetic history of the gene, the protein sequences of the
PR-1 homologue families identified in the 22 Moniliophthora isolates were aligned with the
PRY1 sequence of S. cerevisiae (GenBank ID CAA89372.1), which was used as outgroup.
Multiple sequence alignments were performed with Mafft (v. 7.407) (Katoh & Standley, 2013)
using the iterative refinement method that incorporates local alignment information in pairs
(L-INS-i), with 1000 iterations performed. Then, the alignments were used for phylogenetic
reconstruction using the maximum likelihood method with IQ-Tree (v. 1.6.6) (Nguyen et al.,
2015), which performs the selection of the best replacement model automatically, with 1000
bootstraps for branch support. Bootstraps were recalculated with BOOSTER (v. 0.1.2) for
better support of branches in large phylogenies (Lemoine et al., 2018). Likewise, the
phylogenetic inference for PR-1 of the Agaricales group of species was performed with the
alignment of the homologous proteins identified in the 16 species obtained from Mycocosm,
3isolates of M. perniciosa (C-BA3, S-MG3, L-EC1, one representing each biotype), an isolate of
M. roreri (R-CO1), and PRY1 of S. cerevisiae as the outgroup. To improve alignment quality,
trimAl package (Capella-Gutiérrez et al., 2009) was used. For dN/dS analysis, considering each
gene family independently, the phylogenetic reconstruction was performed using IQ-Tree (v.
1.6.6) with the multiple local alignment of the protein sequences obtained with Mafft (v.
7.407), and the codon-based alignment of the nucleotide sequences was performed with

Macse (v. 2.01) (Ranwez et al., 2018).
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Detection of positive selection signals

To search for genes and regions that are potentially under positive selection in each
of the PR-1 families of the 22 isolates, the CodeML program of the PAML 4.7 package (Yang,
2007) was used with the ETEToolkit tool (Huerta-Cepas et al., 2016). CodeML implements a
modification of the model proposed by (Goldman & Yang, 1994) to calculate the omega (rate
of non-synonymous mutations (dN)/rate of synonymous mutations (dS)) of a coding gene
from the multiple alignment sequences and phylogenetic relationships that have been

previously inferred.

In order to detect positive selection signals in isolates or specific positions in the
sequences, we performed tests with the “branch-site” model, which compares a null model
(bsAl) in which the branch under consideration is evolving without restrictions (dN/dS = 1)
against a model in which the same branch has sites evolving under positive selection (bsA)
(dN/dS > 1) (Zhang et al., 2005). In these tests, those branches that were tested for significantly
different evolving rates from the others (foreground branches wfrg) are marked in the
phylogenetic trees - in this case, the branches corresponding to the isolates of the C-biotype
or S-biotype. To detect signs of positive selection at specific sites throughout the sequences,
regardless of the isolate, we used the “sites” model (M2 and M1, NSsites 0 1 2) to test all

branches of the phylogenetic trees.

In both tests, the models are executed several times with different initial omegas (0.2,
0.7, 1.2), and the models with the highest probability are selected for the hypothesis test, in
which a comparison between the alternative model and the null model is made through a
likelihood ratio test. If the alternative model is the most likely one (p-value <0.05), then the
possibility of positive selection (w>1) can be accepted, and sites with evidence of selection

(probability> 0.95) are reported by Bayes Empirical Bayes analysis (BEB) (Zhang et al., 2005).

Gene amplification and synteny analysis of PR-1c

In order to confirm the presence or absence of MpPR-1c and MpPR-1d genes in the
genomes of M. perniciosa isolates, these genes were amplified by polymerase chain reaction
(PCR) from isolates C-AC1, C-BAla, C-BA3, S-AM1, S-MG3, S-MG4, L-EC1 and L-EC2. The
necrotrophic mycelia of these isolates was cultivated in 1.7% MYEA media (15 g L™ agar; 5¢g
L' yeast extract, 17 g L" malt extract) at 28°C for 14 days, then harvested and ground in liquid

nitrogen for total DNA isolation with the phenol-chloroform method (Sambrook & Russell,
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2006). PCRs were performed with primers designed for MpPR-i1c (F: 5"
GGATCCCGACTTGACAACTCCATCTCG-3', R: 5'-GAGCTCTCACTCAAACTCCCCGTCATAAT-3
and MpPR-1d (F: 5'-GGATCCCCCTCGCAATGGGTTTTC-3), R: 5'-
GTCGACTCAGTCAAGATCAGCCTGGAGA-3’) and amplifications cycles consisting of an initial
stage of 94°C for 3 min, 35 cycles of 95°C for 30s, 60°C for 50 s and 72°C for 1 min, and final

extension at 72°C for 10 min.

For synteny analysis, the positions of PR-1j, PR-1c and PR-1d genes were searched in
the scaffolds of genomes C-BA3, S-MG2, R-CO2, L-EC1 and L-EC2 by blastn. The scaffolds were
then excised 5000bp upstream and 5000bp downstream from the starting position of PR-1jin
the scaffolds. The resulting 10000 bp excised scaffolds were used for synteny analysis with

Mummer (v. 4.0.0beta2) (Kurtz et al., 2004), using the C-BA3 sequence as the reference.

MpPR-1 expression data

MpPR-1 expression data in RPKM (Reads Per Kilobase per Million mapped reads)
values from the C-biotype of M. perniciosa in seven biological conditions (dikaryotic mycelium
14 days, basidiomata, germinating spores, green broom, initial necrosis, advanced necrosis,

dry broom) were downloaded from the Witches’ Broom Disease Transcriptome Atlas (v. 1.1)

(http://bioinfo08.ibi.unicamp.br/atlas/).

MpPR-1 expression data of M. perniciosa treated with plant antifungal compounds
were obtained from RNA-seq data. The C-BAla isolate’s necrotrophic mycelia was initially
inoculated in 100 mL of liquid MYEA media and cultivated for 5 days under agitation of 150
rpm at 30°C, then 5 mL of this initial cultivation were transferred to 50 mL of fresh MYEA
liquid media containing eugenol (500uM), a-tomatin (80uM) or DMSO (250 uL, solvent
control) and cultivated again under agitation of 150 rpm at 30°C for 7 days. The total RNA was
extracted using the Rneasy® Plant Mini Kit (Quiagen, USA) and quantified on a fluorimeter
(Qubit, Invitrogen). cDNA libraries were prepared in five biological replicates for each
treatment, plus biological control. The cDNA libraries were built from 1000 ng of total RNA
using Illumina's TruSeq RNA Sample Prep kit, as recommended by the manufacturer. The
libraries were prepared according to Illumina's standard procedure and sequenced on
MNlumina's HiSeq 2500 sequencer. The quality of raw sequences was assessed with FastQC
(v.0.11.7). Read quantification was performed by mapping the generated reads against 16084

gene models of the C-BAla genome using Salmon (v.0.14.1) in mapping-based mode (Patro et
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al., 2017). Read counts were normalized to Transcripts Per Million (TPM) values for plotting.
Differential expression analysis was performed with the DESeq2 (v.1.22.2) package using
Wald test and Log fold change shrinkage by the apegim method (IfcThreshold=0.1, s-value
<0.005) (Love et al., 2014). TPM values and DESeq2 results for MpPR-1 genes in these

experimental conditions are available at Supplementary File 2.

MpPR-1 expression data in TPM for the S-biotype was obtained from RNA-seq libraries
of infected MicroTom tomato plants in 7 different time points after inoculation (12h, 24h, 48h,
5 days, 10 days, 20 days, 30 days) (Costa et al., under review, Costa, 2017). The quality of raw
sequences was assessed with FastQC (v. 0.11.7). Next, Trimmomatic (v.0.36) (Bolger et al.,
2014) was used to remove adaptor-containing and low-quality sequences. Quality-filtered
reads were then aligned against the S-MG1 or S-MG2 reference genome using HISAT2 (v.2.1.0)
with default parameters (Kim et al., 2019). Reads that mapped to coding sequences were
counted with featureCounts (v.1.6.3) (Liao et al., 2014). TPM values for MpPR-1 genes in these

experimental conditions are available at Supplementary File 3.

MrPR-1 expression data in TPM was obtained from RNA-Seq reads of M. roreri in the
biotrophic (30 days after infection) and necrotrophic (60 days after infection) stages of frosty
pod rot from (Meinhardt et al., 2014). Reads were mapped and quantified with Salmon
(v.0.14.1) (Patro et al., 2017) using 17910 gene models of M. roreri MCA 2997 (GCA_000488995)

available at Ensembl Fungi.

Supplementary Files

Supplementary File 1. List of fungal genomes and their source (collection site or reference
publication. This table contains the species names and biotypes of the fungal genomes used
for the identification of PR-1-like genes, the identification names we used for the genomes,
and their source, which for M. perniciosa and M. roreri isolates corresponds to their collection

site, and for the other Agaricales species corresponds to their reference publication.

Supplementary File 2. MpPR- 1 quantification data and differential expression results of M.
perniciosa treated with eugenol or alpha-tomatin treatment. First tab contains a matrix of
expression values in Transcripts Per Million (TPM) for MpPR-1 genes of the necrotrophic
mycelia of M. perniciosa (C-biotype) treated with eugenol (500 uM), a-tomatin (80 uM) or
DMSO (250 pL) (solvent control) for 7 days. Quantification was performed from RNA-Seq
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reads using the C-BAla genome as reference. Second tab contains the results table for MpPR-
1 genes in the differential expression analysis comparing the expression profiles between
Eugenol vs Control treaments, while comparison between a-tomatin vs Control treatments is

shown in the third tab.

Supplementary File 3. MpPR-1 expression data in S-biotype infection in tomato. Matrix of
expression values in Transcripts Per Million (TPM) for MpPR-1 genes of M. perniciosa S-
biotype infection in MicroTom tomato in various time points of infection (12h, 24h, 48h, 5d,
10d, 20d, 30d). Quantification was performed from RNA-Seq reads using the S-MG1 (data in

first tab) or S-MG2 genome (data in second tab) as reference.

Supplementary Figure 1. Phylogenetic reconstruction of PR-1 proteins in Moniliophthora
isolates (version with non-collapsed branches). Phylogenetic relationships of PR-1 proteins
identified from genomes of 18 M. perniciosa and 4 M. roreri isolates were inferred by
maximum likelihood and branch support was obtained using 1000 bootstraps. The PRY1

protein of Saccharomyces cerevisiae was used as an outgroup.
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